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Abstract 

 

Phlebotomus argentipes (Diptera: Psychodidae) is an important vector responsible for the 

transmission of Leishmania donovani that causes visceral leishmaniasis (VL) or kala-azar, 

in the sub-continent of India. The aims of this study were to investigate the 

semiochemicals that mediate oviposition and mating behaviour and also the courtship 

behaviours in P. argentipes. The result of ovipositional behaviour bioassays shows gravid 

P. argentipes females preferred to oviposit their eggs in the present of conspecific eggs 

and also eggs extract. This suggests the presence of an oviposition pheromone on the 

surface of the eggs which can be removed by washing with an organic solvent and 

transferred to an alternative surface. A Y-tube olfactometer was used to test an upwind 

anemotactic response of virgin females to male headspace volatiles and male extract, in 

the presence or absence of host odour. The results strongly suggest that a volatile male-

produced sex pheromone is present in P. argentipes. The results also suggest that under 

certain circumstances of the age of males and females and the presence of host odour, 

the females are attracted to live male and male extract of P. argentipes. Thus, presence of 

host odour might have a synergistic effect on the male-produced sex pheromone. 

Quantitative description and detailed of courtship behaviour(s) in both males and females 

of P. argentipes were observed. The results show that male behaviours during courtship 

are vital for the success of the mating. These predictor behaviours include approach wing-

flapping, abdomen bending and copulation attempt by male P. argentipes. Understanding 

of the biology, ecology and chemical mediated behaviour in P. argentipes will enhance 

and widen the knowledge leading to the improved of the efficiency and efficacy of the 

current sand fly control programmes. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

 Sand flies are blood-sucking insects in the Order Diptera (Psychodidae: 

Phlebotominae). They are found throughout the tropical, subtropical and 

temperate regions of the world. They act as vectors of the etiologic agents of the 

medically important group of diseases known as Leishmaniasis which affects 12 

million people in more than 88 countries (WHO, 2009). They also transmit other 

disease causing agents e.g. bacteria of the genus Bartonella (Birtles, 2001), 

phleboviruses (Tesh, 1988) and certain flaviviruses (Ashford, 2001). These cause 

significant problems in humans and domesticated animals, in some countries.  

 

 About 800 species of sand flies have been described and are divided into 

five widely accepted genera namely Phlebotomus and Sergentomyia in the Old 

World, and Lutzomyia, Brumptomyia and Warileya in the New World (Ward, 1985; 

Dedet and Pratlong, 2003). Approximately 70 species of sand flies are vectors of 

several species of Leishmania with about 40 species belong to the genus 

Phlebotomus and 30 species belong to the genus Lutzomyia (WHO, 1990). 
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 Phlebotomine sand flies are distinct from other flies that are sometimes 

referred to as sand flies. Members of the families Simulidae or Ceratopogonidae 

can sometimes be referred to as sand flies because of their association with sandy 

habitats. The distinctive features that differentiate Phlebotomine sand flies from 

other subfamilies within the Psychodidae are the presence of biting mouthparts 

that are longer than the head, five-segmented palps, almost cylindrical antennae, 

a five-branched radial vein on the wing and the absence of an eye-bridge (Lane, 

1993). Other general distinguishing features are their small body size (about 1.5-3 

mm long), characteristic hopping flight and the ‘V-shaped’ position in which they 

hold their wings while resting (Killick-Kendrick, 1999).  

 

 Sand flies have a holometabolous life cycle, i.e. going through a 

developmental cycle in which the body form abruptly changes at the pupal moult. 

Female sand flies may lay up to a maximum 100 eggs in a single oviposition but 

normally it is about 40 eggs. The eggs are dark brown or black and elliptical in 

shape with an elaborate chorionic sculpturing. The variations in the patterns of 

these exochorionic sculptures on eggs could be used for species identification 

(Ward and Ready, 1977; Fausto et al., 1991; Perez and Ogusuku, 1997). They are 

laid singly with the size of each egg being about 320 to 450 µm. The eggs are 

believed to be laid in microhabitats that are rich in organic nutrients but they are 

difficult to find in nature. The eggs of some species are able to undergo a 

diapause (delayed development) during long cold periods or during dry seasons 

(Johnson and Hertig, 1961; Ward and Killick-Kendrick, 1974). Eggs are typically 

laid in humid conditions and cannot survive prolonged desiccation. Eggs will hatch 
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into larvae within 4 to 20 days depending upon the temperature and the species of 

sand fly.  

 

 There are four larval stages, which feed on a variety of decaying organic 

materials thought to be present at oviposition sites. Sand fly larvae have long 

caudal setae, with one pair in L1 and two pairs in L2 to L4. Larval development 

takes approximately 20–30 days depending upon species and prevailing 

environmental conditions e.g. temperature and food supply. Diapause occurs 

during the fourth larval stage of several species inhabiting areas with cool winters. 

Induction of diapause in Phlebotomus ariasi is controlled by prevailing temperature 

while in P. perniciosus is controlled by temperature and photoperiod (shortening of 

day length) (Ready and Croset, 1980).  

 

 Before pupation, the fourth stage larvae empty their guts contents, and 

cease to feed and a visible thoracic swelling begins to appear. They attach 

themselves to the substrate using their terminal segment and moult into pupae, 

which at first are pale brown in colour and later become blackish. Pupae emerge 

into adult sand flies after 7 to 8 days.  

 

 The newly emerged adult sand flies first appear with crumpled wings, 

however within a few hours, they start holding their wings above their body at an 

angle of 45° relative to it. Both sexes of sand flies feed on sugar, which they obtain 

from plants or the honeydew of aphids (Young et al., 1980; Killick-Kendrick and 
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Killick-Kendrick, 1987; Schlein and Yuval, 1987; Mac Vicker et al., 1990; Schlein 

and Jacobson, 1999). Only adult females are haematophagous. In most of species 

of sand flies a blood-meal is essential to provide nutrition for the production of 

eggs, and sand flies are gonotrophically concordant (i.e. they take one blood meal 

per batch of eggs). Nevertheless some species undergo autogeny i.e. they have 

the ability to lay eggs without a blood meal (e.g. P. papatasi, (Schmidt, 1965; 

Benkova and Volf, 2007), P. chinensis (Guanghua et al., 1984, 1985), P. gomezi, 

P. panamensis and P. sanguinarius (Johnson, 1961)). Sand flies are pool feeders 

and feeding takes place on exposed parts of the hosts’ body. The female sand fly 

thrusts her mouthparts into the skin and sucks the blood that accumulates. Males 

are ready to mate only after their genitalia have rotated through 180° and this 

normally takes place during the first 24h after emergence. Mating takes place 

before, during or after the females have taken their blood meals, whereas 

oviposition takes place 3 to 8 days after a blood meal.  

 

 Their short and hopping flight gives rise to the assumption that they do not 

disperse far from breeding sites. While this is true for some species e.g., P. 

orientalis was found between 45 - 730 m from the release point in a study done in 

Sudan (Quate, 1964), in Ethiopia, P. longipes flew as far as 240 m in one night 

(Foster, 1972). In another study in Panama, 20,000 flies were marked and 

released, the majority of the sand flies were recaptured within 50 m of the release 

point and only four were recaptured 200 m away (Chaniotis et al., 1974). However, 

in southern France P. ariasi has been shown to fly as far as 2 km (Killick-Kendrick 

et al., 1984). 
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 Sand flies are crepuscular or nocturnal insects. Their biting activities occur 

at different times of the night depending upon species, although a few species will 

bite during daylight when disturbed (Lane, 1993). Daytime resting places are 

comparatively cool and humid and include houses, latrines, cellars, stables, caves, 

fissures in walls, rocks or soil, dense vegetation, tree holes and buttresses, 

burrows of rodents and other mammals, bird’s nests and termitaria (Killick-

Kendrick, 1999). 

 

 Little is known of the natural breeding sites of sand flies but it is believed 

that the breeding sites can vary from domestic, peridomestic and sylvatic habitats 

(El Naiem and Ward, 1991; Killick-Kendrick, 1999; Alexander and Maroli, 2003; 

Feliciangeli, 2004). Feliciangeli (2004) described finding Phlebotomus mascittii 

(Grassi 1908) larvae in a cellar in Rome in 1907. This was the first report of an 

immature stage of a Phlebotomine sand fly in nature. In the New World, the first 

finding of Phlebotomine breeding sites was by Ferreira et al. (1938), where four 

larvae were found at the base of a tree in Brazil and a dozen larvae in the wall of a 

house in Venezuela (Pifano, 1941). Feliciangeli (2004) suggests that, based on 

the frequency of the collections and the abundance of specimens caught, few 

sand flies have consistent breeding sites. For instance P. papatasi breeds in 

human dwellings and cattle sheds in India and gerbil burrows in Central Asia 

(Perfil’ev, 1968); animal burrows are used by P. duboscqi (Mutinga et al., 1986); 

and for P. martini, animal burrows and termite hills are the breeding sites in Kenya 

(Mutinga et al., 1989).   
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1.2 LEISHMANIASIS 

 Leishmaniasis is caused by parasitic Protist of the genus Leishmania, order 

Kinetoplastida and family Trypanosomatidae. There are two principal forms of the 

Leishmania Protist that can be identified as distinct morphological stages; a 

rounded amastigote living and dividing in the macrophages of the vertebrate host, 

and a flagellated promastigote in the intestinal tract of the insect vector (Lainson 

and Shaw, 1987; Lainson et. al., 1987). 

 

 The genus Leishmania consists of 30 species, of which about 20 cause 

disease in human all are either zoonotic or have recent zoonotic origins (Ashford, 

2000). All of the human diseases are known as leishmaniasis. Different species of 

Leishmania cause different diseases and different clinical manifestations of the 

disease in infected humans in various parts of world (Ashford, 1996).  

 

 Leishmaniasis occurs in 88 countries in four continents with 350 million 

people at risk and there is evidence that it is spreading. The World Health 

Organisation (WHO) has reported that worldwide, approximately 12 million people 

are presently infected, with 2 million new cases (1.5 million cutaneous 

leishmaniasis (CL) and 500,000 visceral leishmaniasis (VL)), occurring annually 

(Desjeux, 1996; WHO, 2009). The incidence of leishmaniasis is not evenly 

distributed in the endemic areas: approximately 90% of cutaneous leishmaniasis 

(CL) cases occur in seven countries i.e. Afghanistan, Algeria, Brazil, Iran, Peru, 

Saudi Arabia and Syria; whilst 90% of visceral leishmaniasis (VL) cases occur in 
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rural and suburban areas of five countries i.e. Bangladesh, Brazil, India, Nepal and 

Sudan (Gramiccia and Gradoni, 2005; WHO, 2009).  

 

 Leishmaniasis is endemic in areas of the tropics, subtropics, and southern 

Europe, in different locations varying from rain forests in the Americas to deserts in 

western Asia, and from rural to periurban areas (Ward, 1985; Herwaldt, 1999). 

Indeed, both human and animal leishmaniasis show a wider geographic 

distribution than before. Several cases of autochthonous Leishmania transmission 

have recently been reported from areas previously considered non-endemic, for 

instance in Nan Province and Bangkok in Thailand (Kongkaew et al., 2007; 

Maharom et al., 2008), western Upper Nile in Sudan (Desjeux, 2001) and the 

Northern Territory of Australia (Rose et al., 2004).   

 

 The forms of human leishmaniases are primarily based on the clinical 

presentation in infected persons; most notable are visceral leishmaniasis (VL), 

cutaneous leishmaniasis (CL), and muco-cutaneous leishmaniasis (MCL) 

(Desjeux, 1996; Dedet and Pratlong, 2003; WHO, 2009). As the disease 

progressively develops over time or is interrupted by treatment, this may lead to 

different clinical manifestations for example, post-kala-azar dermal leishmaniasis 

is manifested by various types of skin lesions and most prominently on the face, 

observed in patients recovering from VL, in East Africa and India (Rashid et al., 

1986; Rees and Kager, 1987; Grevelink and Lerner, 1996; Herwaldt, 1999). 

Another type of VL is viscerotropic leishmaniasis, which is more typically 
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dermotropic (Magill et al., 1993). Leishmaniasis recidivans or recurrent 

leishmaniasis refers to the development of new lesions in the centre or periphery 

of a scar healed acute lesion of CL (Grevelink and Lerner, 1996; Herwaldt, 1999). 

 

 In cutaneous leishmaniasis (CL), skin ulcers formed at the site of sand fly 

bites on exposed areas such as the face, arms and legs and this may lead to 

disfiguring scars on the patients. In muco-cutaneous leishmaniasis (MCL), there 

are progressively destructive ulcerations of the mucosa, extending from the nose 

and mouth to throat cavities and surrounding tissue. Diffuse cutaneous 

leishmaniasis (DCL) is an anergic variant of CL in which lesions are disseminated, 

resembling lepromatous leprosy, in other areas of the skin such as limbs, buttocks 

and face. Visceral leishmaniasis (VL), is characterised by high fever, substantial 

weight loss, anaemia and swelling of the spleen and liver and is fatal if left 

untreated. There are two types of VL; zoonotic VL, transmitted by a vector from 

animal to human; and anthroponotic VL transmitted by a vector from human to 

human. 

 

 The diversity in the clinical syndromes of leishmaniasis is observed partially 

because there is a difference in the infecting species of Leishmania involved in 

each type. In CL, Leishmania major, L. tropica, L. infantum, L. brazieliensis, and L. 

mexicana are proven to be involved, while in mucocutaneous, L. brazieliensis and 

L. infantum are involved. In VL, L. infantum is involved in zoonotic VL in Europe 

and South America, whereas L. donovani is involved in anthroponotic VL in Asia 
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(Grevelink and Lerner, 1996; Killick-Kendrick, 1999; Ashford, 2000; Gramiccia and 

Gradoni, 2005).  

 

1.3 PHLEBOTOMUS ARGENTIPES (DIPTERA: PSYCHODIDAE) 

 Phlebotomus argentipes Annandale and Brunetti (Diptera: Psychodidae) a 

sand fly of the Old World has a wide distribution in most Asian countries namely: 

India, Bangladesh, Borneo, Burma (Myanmar), Indonesia, Laos, Nepal, Pakistan, 

Sri Lanka, Thailand, Vietnam, West Malaysia and Iran (Lewis, 1978, 1982). 

Although it has been found over a wide geographical range in Asia, visceral 

leishmaniasis (VL) is confined to North Eastern and Southern India and 

neighbouring Nepal and Bangladesh (Ilango et al., 1994; Ilango, 2000). 

 

 P. argentipes is the only proven vector for VL in India and Leishmania 

donovani has successfully been transmitted by the bite of P. argentipes to human 

volunteers (Swaminath et al., 1942). The first natural infection was reported in a 

single female of this species caught in an endemic area in North Bihar, India 

(Shortt et al., 1926, 1929). In Bangladesh, India and Nepal, it is estimated that 200 

million people are at risk of human VL. It has been reported that the disease 

occurs in more than 109 districts on the Indian sub-continent, where it affects 

mostly the poorest people (Surendran et al., 2005; WHO, 2006; Das et al., 2008).  

In India, it is estimated that 100,000 VL cases occur annually. More than 90% of 

the cases are reported in Bihar State (Singh et al., 2006). Whilst in Bangladesh, it 

is estimated that approximately 40,000 to 45,000 cases occur annually, with a 
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population of 20 million people at risk (Bern and Chowdhury, 2006). In Nepal, VL 

cases are on the rise, with a sharp increase in the population at risk of 5.6 million 

people in 2006 to eight million in 2007. It was estimated that by 2008, one third of 

the Nepalese population (total of 29 million) would be at risk of contracting the 

disease (Anon, 2008). There have also been confirmed cases of Kala-azar 

reported in Afghanistan.  

 

 P. argentipes occurs in domestic and peridomestic environments, and is 

almost endophagic and endophilic in cattle sheds and houses (Hati et al., 1980; 

Hati, 1983, 1991). Adults were also reported to have been caught in; tree holes, 

wells, culverts, under scrubby vegetation and in caves (Kaul et al., 1979; 

Apiwathnasorn et al., 1993). Recently, investigations of the breeding ecology of 

immature stages of this species have been carried out using the soil incubation 

method (a collecting method for immature stages) in Bihar State, India. The 

findings showed that P. argentipes breed more in the cattle sheds than in human 

houses, which appears to be associated with the pH of the soil i.e. alkaline soil 

(Singh et al., 2006).  

 

 Blood meal analyses of P. argentipes indicated that this species feeds on 

cattle when they are available and that humans are a secondary choice for feeding 

and it has been suggested that the presence of animals reduce the man-vector 

contact (Dhanda and Gill, 1982; Dhiman et al., 1984; Pandya, 1985; 

Mukhopadhyay and Chakravarty, 1987; Palit et al, 1988). Dinesh et al. (2001) 
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reported that the landing/biting on man varied in different seasons. It was found 

that the number of P. argentipes caught was highest in summer, followed by the 

rainy season and then lowest during winter and abundance seems to be inversely 

correlated with rainfall. 

 

 P. argentipes has shown geographical variation (Lewis, 1957). It has been 

observed that in India, it is anthropophilic and a vector for VL whereas in Sri 

Lanka, it is zoophilic (Lewis and Killick-Kendrick, 1973). It has been suggested that 

it may be a species complex where a zoophilic and anthropophilic species can 

occur in the same area (Bray, 1974). Lewis (1978) however rejected the proposal 

that two species of P. argentipes occur in India and that P. argentipes is a species 

complex. The only distinctive feature between the 2 proposed members of the 

species complex is the difference in the length of ascoids on the antennae; the 

sand fly with short ascoid (anthropophilic) can be found in eastern India and the 

long ascoids form (zoophilic) in South-east Asia (Lewis, 1978).  

 

 In recent studies, it was found that VL distribution is correlated with the 

length of the sensilla chaetica. Additionally, P. argentipes sand fly populations in 

India are reported to be sympatric (Lane and Rahman, 1980; Ilango et al., 1994) 

and variation in cuticular hydrocarbons of the species has been reported 

(Kamhawi et al., 1992). These studies suggest that P. argentipes is a species 

complex, with two morphologically distinct species with differing vectorial capacity 

(Ilango, 2000; Surendran et al., 2005). It is proposed that variation in feeding 
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preferences and morphology of the vector is the cause for the limited range of VL 

transmission relative to the vector distribution. As VL is believed to be an 

anthroponosis and humans are the reservoir, hence only anthropophagus P. 

argentipes are susceptible to L. donovani. This is consistent with the work of Lewis 

and Killick-Kendrick (1973) which reported that P. argentipes was almost entirely 

zoophilic in its feeding behaviour in the southern part of its range (Lane and 

Rahman, 1980; Kamhawi et al., 1992; Ilango, 2000; Surendran et al., 2005). 

 

1.4 SEMIOCHEMICALS 

 Semiochemicals are the chemical signals used for communication between 

two organisms. They are emitted by one individual and cause a behavioural 

response in another (Law and Reigner, 1971). Volatile semiochemicals are 

perceived by olfaction and involatile semiochemicals are perceived by contact 

chemoreception. 

 

Two categories of semiochemical, attractant and repellent, refer to 

behaviour modifying olfactory compounds that do not require contact with the 

source. Behaviour modifying chemicals that are active on contact or at close range 

are stimulants and deterrents (Dethier et al., 1960; Foster and Harris, 1997). 

 

 Semiochemicals are described as information conveying chemicals and 

toxins that have been used as chemical communication between interspecific and 

intraspecific organisms (Norlund and Lewis, 1976; Norlund, 1981). They convey 
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information, that have been grouped into three classes i.e. 1) depending on the 

interaction, whether it is an intraspecific or interspecific; 2) the cost and benefit that 

may fall to each organism; and 3) the identity of the producer and receiver (Dicke 

and Sabelis, 1988). Thus, an info-chemical is a substance that conveys 

information between two organisms in which the sender releases a chemical 

substance that evokes a behavioural or physiological response from the receiver. 

 

 An allelochemical is an info-chemical that mediates an interaction between 

two organisms of different species. It was categorised by the cost and benefits of 

the organism that has sent the signal (emitter), and the organism that has received 

the signal (receiver). The four categories are, 1) allomones (which favour the 

emitters and not the receivers); 2) kairomones (which favour the receivers and not 

the emitters); 3) synomones (which benefit both emitters and receivers); and 4) 

apneumones (which are derived from non-living sources) (Hick et al., 1999). An 

allomone is defined as a chemical substance, produced or acquired by an 

individual which when received by another individual from different species in a 

natural context, evokes a behavioural or physiological reaction from the receiver 

that is adaptively favourable to the emitter. In contrast, a kairomone is a trans-

specific chemical messenger, which benefits the recipient rather than on the 

emitter (Brown, 1968). 

 

 Pheromones are a subclass of semiochemicals, pheromones mediate an 

interaction between two organisms of the same species (intraspecific chemical 



14 

 

signals). The word pheromone is derived from the Greek pherein = to transfer or 

carry and hormone = to excite or stimulate. It has been defined as ‘a substrate 

secreted to the outside by an individual and received by a second individual of the 

same species in which it releases a specific reaction i.e. a definite behaviour 

(releaser pheromone) or developmental process (primer pheromone)’ (Karlson 

and Lüscher, 1959). Pheromones are usually divided by function for examples 

oviposition pheromone and sex pheromones. In Diptera, oviposition pheromones 

are used by gravid (blood-fed) females to find a suitable location to oviposit and 

sex pheromones are used by females to find and choose a mating partner of the 

right species, sex and reproductive stage.  

 

 The importance of pheromones in nature has been recognised and they 

have been used to manipulate the behaviour of animals. Now, pheromones are 

extensively used for insect pest management, with significant cost and 

environmental benefits i.e. they are safer compared to insecticides and specific to 

the target species (Minks and Kirsh, 1998). The main ways of exploiting 

pheromones to control insects are monitoring, mating disruption, mass trapping 

(lure-and-kill) and other manipulation methods. In monitoring, pheromone-based 

baited traps provide one of the most effective methods for the surveillance of a 

target insect, even when the population levels are very low and provide an early 

warning allowing timely interventions for insect control (Wall, 1989). Mating 

disruption is use to control insects by causing communication disruption between 

adult males and females to find each other, thus reduce mating and indirectly 

stopping the reproduction of the next generation (Campion, 1983; Carde and 
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Minks, 1995). Mass trapping or ‘lure-and-kill’ (also known as attracticide) control is 

use to reduce an insect population by attracting insects with pheromones and then 

either trap or kill the insects (McCall and Cameron, 1995).   

 

1.5 SEMIOCHEMICALS IN SAND FLIES 

 Studies on the chemical ecology of phlebotomine sand flies have been 

pursued because of their importance in the transmission of Leishmaniasis. Most of 

the studies are related to the use of chemical cues by sand flies to survive in the 

environment. These include 1) sex pheromones which are used by adult sand flies 

to find mating partners; 2) oviposition pheromones which are used by gravid 

females to locate suitable (available food for the immature stages) places to 

oviposit and also 3) kairomones such as host volatile chemicals to attract sand 

flies to target locations. 

 

 The initial evidence of the existence of an oviposition pheromone was from 

the eggs of Lutzomyia longipalpis. This was demonstrated when gravid females 

were shown to prefer to oviposit at sites where conspecific eggs were already 

present (El-Naiem and Ward, 1990). They later showed that the age of the eggs 

was unimportant in eliciting a response but the number of eggs present at the site 

was crucial. They showed that although 40 eggs were not sufficient to induce a 

response from gravid females, 80 - 320 eggs elicited a strong response. They also 

demonstrated that the attractant effect of the eggs could be removed by washing 

them in organic solvents and water (El Naiem and Ward, 1991). Dougherty et al. 
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(1992) demonstrated that ovipositing females were attracted to a hexane extract of 

conspecific eggs and that the volatile compounds identified on the external surface 

of the eggs were identical to those found in the accessory glands of the females. A 

hexane extract of eggs elicited a positive oviposition response from the gravid 

females. 

 

 Identification of the active component of the extract was achieved by 

fractionating the whole egg extract by high performance liquid chromatography 

(HPLC) and then testing the fractions to see which one was responsible for 

attracting gravid females to oviposit (Dougherty et al., 1994). The active 

semiochemical fraction was found to attract gravid females thereby increasing the 

number of eggs laid in the vicinity of the eggs that were already present. 

Dougherty et al. (1994) also demonstrated that ovipositing Lu. longipalpis females 

produce the oviposition pheromone in the accessory glands. The pheromone 

coated the surface of the eggs as they passed through the oviducts during 

oviposition. The oviposition pheromone was identified by gas chromatography-

mass spectrometry (GC-MS), gas chromatography (GC) and chemical 

derivatisations as the C12 fatty acid, dodecanoic acid (Dougherty and Hamilton, 

1997).  

 

 In nature, environmental oviposition cues combined with the oviposition 

pheromone may assist female sand flies to locate a suitable oviposition site with 

sufficient food for their immature stages to develop (McCall and Cameron, 1995). 
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Experiments that have been carried out in the laboratory demonstrated the 

presence of environmental cues such as organic materials which influence gravid 

females in choosing suitable oviposition sites.  

 

El Naiem and Ward (1992a) carried out experiments using frass (faecal 

remains), larval rearing medium and rabbit faeces to determine the attractiveness 

of organic materials to gravid females. They found that these organic materials 

attracted ovipositing sand flies. They also showed that these organic materials 

stimulated females to oviposit earlier and increased post-oviposition survival. In 

addition, they showed that extracts of organic materials, made in polar and non-

polar solvents, for example rabbit food and oviposition pheromone produced a 

synergistic effect that resulted in greatly increasing the numbers of eggs laid and a 

highly focused response. Oviposition survival was increased X3.5 and the 

numbers of eggs laid increased by X2.5 (Dougherty et al., 1993). Dougherty et al. 

(1993) showed that combination of dodecanoic acid (oviposition pheromone) and 

also hexanal and 2-methyl-2-butanol (oviposition attractant apneumones from 

rabbit faeces) in a bioassay, enhanced oviposition by the ovipositing sand flies. It 

was suggested that sand flies acquired hexadecanoic acid (palmitic acid) from the 

blood meal and then converted it to dodecanoic acid.  

 

 The situation regarding the presence of oviposition pheromones in other 

species of sand flies e.g. Phlebotomus papatasi (Scopoli, 1786) is less clear. 

Srinivasan et al. (1995) showed that gravid females were attracted to conspecific 
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eggs. They also found that the presence of 100–200 eggs was highly attractive to 

gravid females while the presence of 10-40 eggs in the vicinity elicited no 

oviposition response. The extract of conspecific eggs using diethyl ether showed a 

positive oviposition response from gravid females of P. papatasi. These findings 

are similar to those of Lu. longipalpis. 

 

 It has been demonstrated that male Lutzomyia longipalpis sand flies 

produce sex pheromone to attract female sand flies to a mating site. There is also 

evidence that the sex pheromones are attractive to their males. Male sex 

pheromones are produced in the papule-like structures on pale cuticular patches 

of the tergites of males of that species (Phillips et al., 1986; Ward et al., 1989, 

1991; Lane and Bernades, 1990; Hamilton et al., 1994). At first, male spot patterns 

were thought to be the markers associated with two possible sibling species. From 

cross-mating experiments, the difference in the male spot pattern was found to be 

associated with pre-zygotic mating barriers and it was suggested that Lu. 

longipalpis is a sibling complex. However cross-mating studies carried out by 

Ward et al. (1991) showed that the cross-mating barriers were not related to the 

number of spots directly. The two male spot patterns are a single pair of tergal 

spots on abdominal segment IV (1S males) and additional pair of tergal spots on 

segment III (2S males) (Ward et al., 1991). Nonetheless, the male tergal spot is 

useful as a morphological indicator of different pheromone producing types in 

some parts of Brazil (Ward et al., 1983, 1988; Lanzaro et al., 1993, Arrivilaga and 

Feliciangeli, 2001; Hamilton et al., 2005; Souza et al. 2008).  
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 The structure of the pale spot patches is characterised by numerous small 

cuticular papules. Underlying these are large vacuolated cells with a complicated 

end apparatus, surrounded by an area of highly convoluted cell membrane which 

forms microvilli, opening into a central reservoir. The reservoir is connected to the 

surface of the insect by a small cuticular duct. The physical appearance of the 

cells, ducts and papules led workers to believe that it was a secretory cell that 

secretes sex pheromone. Analysis of compounds extracted from the tergal glands 

showed that there were “pheromone-like” substances present in the cells with 

molecular weight of either 218 (C16H26) or 272 (C20H32). These were identified as 

farnasene-like and diterpenoid-like structures respectively (Lane et al., 1985; 

Phillips et al., 1986; Lane and Bernades, 1990).  

 

 Later, Hamilton et al. (2002) showed that terpene sex pheromones are not 

widely distributed amongst male Lutzomyia sand flies and the abdominal papules 

seen on males of some Lutzomyia species maybe non-functional. Furthermore, 

they have confirmed that males of the New World sand flies that do not possess 

papules will not secrete terpene sex pheromones. It has been suggested that the 

differences in quantities and qualities of terpene extract in male sex pheromones 

of members of Lu. longipalpis from different chemotypes represent significant 

taxonomic differences (Hamilton et al., 1994; Arrivillaga and Feliciangeli, 2001).      

 

 At present, there are five different sex pheromone-producing populations 

(chemotypes) of members of the Lu. longipalpis species complex that have been 
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established from six regions in Brazil based on terpene component of their sex 

pheromone (Hamilton et al., 2005).  They have been shown to produce three 

distinct pheromones, which can be distinguished by qualitative differences in the 

major terpene component: 1) a C16 (m.w. 218) bicyclic homosesquiterpene, 3-

methyl-α-himachalene [3MαH]; 2) a C16 (m.w. 218) monocyclic homo- 

sesquiterpene, (S)-9-methyl-germacrene-B [9MGB] (Hamilton et al., 1996a,b), and 

3) a C20 monocyclic diterpene, partially characterised as a cembrene yet to be 

structurally fully elucidated (Hamilton et al., 2004, 2005; Hamilton, 2008). Other 

species in the subfamily that have been examined are Lu. lenti and Lu. pessoai 

which were found to use diterpenes as sex pheromones. In addition, Lu. cruzi has 

also been shown to secrete a homosesquiterpene whilst in Lu. lichyi, is believed to 

produce an oxygenated form of homosesquiterpene. Finally, Lu. carmelenoi was 

found to secrete sesquiterpenes as sex pheromones (Hamilton and Ward, 1994; 

Hamilton et al., 1999, 2002). 

 

 The dynamics of sand fly aggregation and orientation to host animals are 

not completely understood. Jarvis and Rutledge (1992) described the “lek-like” 

behaviour of adult male Lu. longipalpis sand flies which has been observed in the 

laboratory and field. These authors considered that male age as well as the 

aggressive jostling between them are important factors in successful mating. A lek 

is defined as a male mating aggregation associated with a defended territory that 

contains no resources other than available courting males, which females visit for 

the purpose of mating (Bradbury, 1981; Jones and Quinnell, 2002). The 

aggregation behaviour of Lu. longipalpis starts when males are attracted by the 
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odour of host animals. Then the pheromone produced by the first male to arrive 

may act as an additional attractant for male and female sand flies (Quinnell and 

Dye, 1994). As a consequence females are attracted and other males are 

recruited to these feeding and mating sites (Dye et al., 1991; Quinnell and Dye, 

1994; de Melo Ximenes et al., 1999). 

 

 In the Old World sand fly species, Phlebotomus argentipes, similar lek-like 

male aggregation behaviour has been observed in the field. Males arrive first, 

early in the evening on a selected host cow and beat their wings vigorously and 

jostle with each other, a large aggregation of evenly spaced males is assembled 

and then smaller numbers of females arrive later in the evening for reproductive 

and feeding purposes (Lane et. al., 1990). In addition, Lane et al. (1990) noted that 

swarms were observed clearly on cattle (where hundreds of flies may be involved) 

and smaller aggregations were seen on humans, walls or other vertical surfaces 

adjacent to cattle in a manner similar to other aggregating and sex pheromone 

producing species e.g. Lu. longipalpis. To date, no chemical or biological evidence 

for sex or other pheromones have been found in this species. In other species e.g. 

P. duboscqi a distinctive behaviour has been observed in which an adult male was 

reported to ‘piggy back’ their female mate by clasping her abdomen with his 

coxites. This behaviour was believed to be a form of courtship rather than mate 

guarding, and enables the female to recognise a potential mate (Valenta et al., 

2000). These observations suggest that perhaps different mating strategies are 

employed in different species of sand flies. Thus it would be interesting to carry out 

a similar study in different species of sand flies.  
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 Phlebotomine sand flies respond to host odour kairomones in laboratory 

and field studies e.g. female sand flies use host odour kairomones to locate a 

suitable host (Nigam and Ward, 1991; Oshaghi et al., 1994; Dougherty et al., 

1999). Laboratory and field work proved that female sand flies have the ability to 

discriminate between the different types of hosts that may be available and have a 

tendency to feed on one selected host from many (Morrison et al., 1995). Hence, it 

has been suggested that the initial male sand fly host choice is based on the host 

odour components present and subsequent female and male choice is based on 

the interaction of host odour components and male sex pheromone. A host odour 

contains a mixture of attractive and repellent elements and attraction to a host 

animal is likely to be based on the balance between these different categories of 

kairomones in the animal’s odour profile (Hamilton, 2008). Hamilton and 

Ramsoondar (1994) demonstrated that female Lu. longipalpis were differentially 

attracted to human hosts based on the odours of the hosts, a phenomenon that 

has been well documented in mosquitoes (Takken, 1991; Qiu et al., 2006).  

 

 Carbon dioxide is believed to play an important role in mosquito host-

seeking behaviour. It has been shown to activate and attract several mosquito 

species (Takken, 1991) and is also to synergise the attractiveness of other host 

odour components e.g. Aedes aegypti (Dekker et al., 2005).  

 

 In the field, Pinto et al. (2001) showed that a combination of carbon dioxide 

and human kairomone is important for the attraction of Lu. intermedia and Lu. 
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whitmani. However in laboratory experiments, removing carbon dioxide from 

preparations of host compounds and sex pheromone did not reduce their 

attractiveness (Nigam and Ward, 1991). Recently, Bray and Hamilton (2007) 

demonstrated that 1% of carbon dioxide in air was attractive to female Lu. 

longipalpis but its presence did not synergise the attractiveness of sex pheromone. 

Moreover the study showed that males were only attracted to the combination of 

carbon dioxide and sex pheromone but not to each compound (Hamilton, 2008). 

Hamilton (2008) suggested that the interaction between host odour and sex 

pheromone is complex and possibly may depend on concentrations of the 

components of the odour. 

 

 At present, most of the work on semiochemical mediated oviposition and 

mating in Phlebotomine sand flies (Diptera: Psychodidae) has been done on Lu. 

longipalpis. By comparison Phlebotomus argentipes Annandale and Brunetti, 

arguably the most important vector of Leishmaniasis has received very little 

attention and no chemical or biological evidence for pheromones has been 

presented apart from the reports of aggregations on host animals. A 

comprehensive understanding of the chemical ecology of this vector will enable us 

use this information to develop new tools for monitoring and control of the insect in 

the future that may lead to new disease control options. 

 

 The aim of this study was not only to gather information on semiochemical-

mediated oviposition and sex pheromone production in P. argentipes, but also to 
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provide baseline data to inform the potential use of sand fly pheromones in the 

development of novel traps and control strategies in the vector control programme 

of visceral leishmanisis. 

 

1.6 AIMS 

 

 The overall aim of this study was to investigate the semiochemical 

mediated oviposition and mating behaviour of Phlebotomus argentipes. 

 

The objectives of the work: 

1. To determine if oviposition pheromone is present on eggs. 

2. To determine if the oviposition pheromone is coated on the surface of eggs. 

3. To determine if sex pheromone is present in P. argentipes virgin males using a 

Y-tube olfactometer.  

4. To establish the age when sex pheromone is produced in males and the age of 

females that are most responsive to sex pheromone in P. argentipes. 

5. To determine the effect of sex pheromone of P. argentipes virgin males in the 

presence of host odour in a Y-tube olfactometer. 

6. To determine if sex pheromone can be extracted from P. argentipes males in 

hexane solvent. 

7. To describe in detail the courtship behaviour of P. argentipes males and 

females during mating. 
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

 

 

2.1 INSECT MAINTENANCE 

 

 The Keele University Phlebotomus argentipes colony was established from 

pupae supplied in September 2010 by the Walter Reed Army Institute of Research 

(WRAIR), USA and has been maintained at Keele University since then. It was 

maintained using a combination of methods described by Modi and Tesh (Modi 

and Tesh, 1983) and Ghosh and Bhattacharya (Ghosh and Bhattacharya, 1989). 

The immature stages (eggs, larvae and pupae) were maintained in an 

environmental chamber (Versatile Environmental Test Chamber; Sanyo, MLR-

351/MLR-351H; Figure 2.1) at 28°C±2°C and 12:12 (light:dark) photoperiod. 

Adults were maintained in an insectary at 27°C±1°C and a 12:12 (light:dark) 

photoperiod. A relatively high humidity of approximately 50-80% (r.h.), was 

consistently maintained for both parts of the colony by placing paper towels 

dampened with distilled water in both the adult holding cages and also the boxes 

containing the oviposition and larval pots. For sand fly rearing, careful control of 

both temperature and relative humidity play an important role in the success of the 

colony as well as the speed with which the sand flies progress through their 

developmental stages. Furthermore, to avoid fungal and mite contamination the 

larval pots were checked regularly and food and sand were added as required. 
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Figure 2.1: The Phlebotomus argentipes immature stages were kept inside a 

Sanyo MLR-351/MLR-351H environmental chamber set at a temperature of 

28°C±2°C and 12:12 (light:dark) photoperiod  (left); the larval and oviposition pots 

were kept in plastic boxes which were in turn kept inside black plastic bags (right). 

 

 

Left Right 
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2.1.1  Adults 

Adult flies were kept in (20 x 20 x 20 cm) nylon Barraud cages (Figure 2.2). 

They were allowed to feed on a 60% sugar (fructose) solution soaked onto a piece 

of cotton wool placed on a plastic vial cap at the bottom of the cage. The paper 

towels used to maintain humidity were hung over the metal frame used to support 

the Barraud cage on two sides of the cage. The cage was kept in a plastic bag to 

maintain a relatively high level of humidity at 60-80% r.h.  

 

Emerging adult flies were transferred from the rearing pots to the nylon 

Barraud cage using a mechanical aspirator. Approximately 300-500 sand flies, 

including males and females, were kept in the cage to facilitate mating in 

preparation for blood feeding. Female flies aged 2-3 days old (d) were blood fed 

on anaesthetised mice twice a week. The mice used were about 6-8 weeks old 

and were anaesthetised by injecting a solution of Midazalom and Hypnorm 

(ratio=0.23:0.05 ml). Anaesthesia was administered by a UK Home Office 

registered personal licence holder. The anaesthetised mouse was left for about 3 

minutes post injection to allow the drugs to take effect. To facilitate blood feeding, 

an area of the mouse’s back was shaved, before putting it into a cage for blood 

feeding. The sugar solution was removed and the mouse was placed inside the 

cage on its abdomen. Blood feeding was allowed to take place over a period of 

approximately 1 hour, after this time, before the mouse recovered from the 

anaesthesia, it was subject to a schedule 1 euthanasia which again was carried 

out by a personal licence holder (UK Home Office Protocol, Section 19) under 

Project License 40/3279. The fully engorged blood-fed females, with a relatively 
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lower number of males to ensure that all females copulated, were allowed to 

remain in the feeding cage to complete defecation and oogenesis before they 

were transferred to oviposition pots after 3 days when gravid. Unfed females and 

excess males were transferred into another feeding cage. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Adult P. argentipes were kept inside Nylon Barraud cages (20 x 20 x 

20 cm) which were supported on wire frames. Sections of blue paper roll were 

dampened with distilled water and hung on the wire frame on either side of the 

Barraud cage to maintain humidity. The cages were then placed inside plastic 

bags and kept in the insectary at 27±1°C and a 12:12 (light:dark) photoperiod. 
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2.1.2 Immature Stages 

Oviposition and rearing pots were made of polymethylpentane (PMP) 

(Nalgene, BDH Chemicals) and were 11 cm in diameter and 7 cm in height with a 

base and screw cap lid. A hole, 8 cm in diameter (Figure 2.3), was cut out of both 

the base and the lid. The base was placed on a paper towel and a layer of Plaster 

of Paris was poured into the pot to a depth of 1-2 cm, to produce a solid base. 

Drawing a spatula gently through it before it had completely hardened created an 

uneven top surface in this base layer. This process created a series of grooves 

and indentations which facilitate better oviposition. A thin layer of plaster of Paris 

was also used to coat the wall of the rearing pots (Chelbi and Zhioua, 2007; Chelbi 

et. al., 2011). The top of the pot was covered with nylon netting held in place by 

the screw cap lid to prevent adult flies from escaping. A small incision (1-1.5 cm in 

length) was made in the Nylon netting and a piece of cotton wool was placed into 

the incision to plug the resultant hole (Figure 2.4). The hole was used as an 

access point for the aspirator to transfer adult flies into the pots. Only gravid 

females were transferred as the males may disturb the resting and ovipositing 

females. 

 

The gravid females were kept in the oviposition pots for 5-6 days post blood 

meal until most of them had oviposited and died. After that their dead bodies were 

removed from the pots to avoid fungal contamination that would increase mortality 

of the eggs with fine forceps. Most of the eggs were deposited in the crevices on 

the damp plaster. A small quantity of larval food was sprinkled over the eggs in the 

pots as soon as the first sign of hatching was observed. The developmental stages 



 

30 

 

(eggs, larvae and pupae) took place within the same rearing pot and they were 

checked every day to for signs of contamination e.g. fungus that could increase 

the fatality of the immature stages in the pot. Larval food was added every other 

day or as appropriate. The pots were placed in a large plastic box (13 x 13 x 14 

cm) (Figure 2.5) on paper towels that had been dampened with distilled water. 

These dampened paper towels and Plaster of Paris maintained high humidity in 

the boxes the humidity was maintained by adding water to the towels when they 

dried out. 

 

The pots were labelled with the date on which the females had been blood-

fed. Adult flies usually started to emerge 4-6 weeks after eggs had been deposited 

in the pots. When the larvae pupated a small piece of cotton wool soaked with 

60% fructose solution was put under the rim of the screw cap lid between the 

nylon netting and the plastic of the lid ready for the new emerged adult flies to feed 

on. The pots were maintained in strict date order and as the adults emerged they 

were transferred from the rearing pots into the adult holding cage. Pots were 

checked on a daily basis. The pots were disposed of typically 8 weeks after the 

gravid females had been added by which time most of the pupae had become 

adults. Expired pots were carefully disposed of, Plaster of Paris was removed from 

the used pots, which were washed, dried and autoclaved prior to reuse. Care was 

taken to ensure correct disposal of used materials to avoid contamination.  

 

All nylon netting materials, used for adult and immature rearing, were 

soaked in water with one or two tablets of Presept™ (Advanced Sterilization 
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Products; Johnson & Johnson, CA, USA), disinfectant solution for sterilising 

overnight. Then they were washed a few times with water and dried ready for their 

next use.  

 

 

 

 

Figure 2.3: Shows a PMP rearing pot with a base layer of plaster of Paris which 

has been slightly roughened. The screw-cap lid is shown without the netting. 
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Figure 2.4: Shows a rearing pot containing recently emerged adult P. argentipes. 

The incision made in the netting covering the top of the pot to allow removal of 

adult sand flies can be seen plugged with a small ball of cotton wool. 

 

 

 

 

 

 

 

 

Figure 2.5: Shows part of a plastic box (13 x 13 x 14 cm) used to keep oviposition 

and larval rearing pots in the Sanyo environmental chamber. 
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2.1.3 Larval Food 

The larval food consisted of a blended mix of 200 g of fine silver sand 

(Bradstone, Derbyshire, UK), 200 g of John Innes potting compost No.2 (Westland 

Horticulture Ltd., UK), 210 g of Daphnia (Supa Aquatic Supplies Ltd, Sheffield, UK) 

and 200 g of guinea pig food. The potting compost and the fine silver sand were 

dried until they became free flowing, in order to avoid contamination later. When 

properly dried, both sand and potting compost were sieved before adding to the 

mixture of blended Daphnia and guinea pig food. The mixture was stirred well and 

ground in a coffee grinder to make up a fine larval food. Blended food was then 

put into bottles and autoclaved before use.  

 

2.2 CLEANING OF BIOASSAY APPARATUS  

 

All apparatus used in the bioassays were thoroughly washed to ensure they 

were clean and free from any contaminants. The presence of any contaminants, 

even in a small amount could potentially bias the response shown by the 

respondents in the bioassays. 

 

2.2.1. Treatment of Glassware 

All the glassware was washed with water before being immersed in 10% 

Teepol L detergent (BDH, Poole, UK) for at least an hour. It was then rinsed 

thoroughly with large amounts of water, followed by distilled water. It was then 

rinsed with acetone (Laboratory Reagent Grade; Fisher Scientific, Loughborough, 



 

34 

 

UK) was used to remove any water left on the glassware. Finally, all the glassware 

was baked in an oven overnight at 180°C.  

 

2.2.2 Treatment of Teflon Items and Nylon Netting 

All the Teflon items and nylon netting were also first washed with water and 

then immersed in 10% Teepol L detergent for at least an hour. The items were 

then washed thoroughly with water, followed by distilled water and lastly with 

acetone. Then, they were left to dry in a fume hood before they were used. 

 

2.3 PREPARATION AND STORAGE OF CHEMICALS  

 

Extracts were stored in a vials prepared from Pasteur pipettes (Scientific 

Laboratory Supplies). Vials were prepared by flaming a pipette over a Bunsen 

burner to drive off any contaminants. It was then sealed at the narrow end and left 

to cool down before use. Extracts were transferred into the vials, which were then 

sealed at the open end by flaming over a hot Bunsen burner. Vials were stored at 

approximately -20°C in freezer until use.  
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2.4 STATISTICAL ANALYSIS 

  

The statistical Package for Social Science (SPSS) for Windows version 21 

and Minitab 16 English version were used to analyse the data according to 

suitability of the statistical test. 

 

For the analysis of the oviposition results, Minitab 16 (English version) was 

used. The data were entered and the variables were tested for their distribution 

with a normality test e.g. the Anderson-Darling normality test. If the data were 

normally distributed, a parametric test was used and if the data were not normally 

distributed, a non-parametric test was used. From the study design, a paired T-test 

(Parametric) or a Wilcoxon Signed Rank test (non-Parametric) were used to 

analyse the data. A probability level equal to or less than 0.05 was chosen to 

indicate significant differences between number of eggs deposited by gravid 

females tested in the oviposition choice chamber on the test site (treatments: with 

number of eggs or extract of eggs) and the control site (treatment: no eggs or 

hexane).  

 

For the Y-tube bioassays result analysis, one proportion exact test was 

used to determine whether a greater proportion of females was attracted to each 

test treatment (5 or 30 males) or control (blank) than would be expected by chance 

(50/50). The probability level equal to or less than 0.05 was chosen to indicate 

significant different between test arm and control arm. 
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Statistical analyses applied for courtship behaviour were paired T-tests or 

Wilcoxon Signed Rank tests (whichever was more appropriate depending on the 

distribution of the data) for comparison of courtship behaviour between males and 

females, and also Fisher’s Exact test for predicting the most likely and unlikely 

behaviour that would be displayed in the mating success. 
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CHAPTER 3: OVIPOSITION RESPONSE OF GRAVID 

PHLEBOTOMUS ARGENTIPES TO CONSPECIFIC EGGS AND 

SOLVENT EXTRACT OF CONSPECIFIC EGGS. 

 

 

3.1 INTRODUCTION 

 

 Oviposition attractants and/or stimulants on conspecific eggs or even larvae 

or pupae of many species of haematophagous insects such as mosquitoes, 

blackflies and phlebotomine sand flies have been demonstrated by many workers. 

Oviposition pheromones when combined with kairomones for example 

environmental cues, may help gravid females to locate suitable sites for 

oviposition, which is crucial to maximise the survival of their progeny. It has been 

established that a suitable oviposition site is normally one where ample food and 

an appropriate environment are provided for the immature stages of insect vector. 

A gravid female therefore must identify the best (most suitable site) from many 

competing options and using cues from the eggs laid by other conspecific females 

may be a part of the multitude of infochemicals that contribute to a decision 

(McCall and Cameron, 1995).  

 

 One of the clearest examples of an oviposition pheromone is from Culex 

mosquitoes. Osgood (1971) showed that gravid Culex tarsalis (Say) females 

preferred to lay their egg rafts in water containing conspecific eggs compared to 
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distilled water. Similarly gravid Cx. quinquefasciatus choose sites that have eggs 

of other females present. The oviposition pheromone has been identified as 

erythro-6-acetoxy-5-hexadecanolide. It is found in the apical droplets of their egg 

rafts, is the main volatile pheromone component (Laurence and Pickett, 1982; 

Laurence et al., 1985). This chemical compound is responsible for attracting gravid 

females to lay their eggs around previously laid egg rafts (Laurence and Pickett, 

1985). In Aedes aegypti, fatty acids of chain length C16 to C18 and their methyl 

esters are the major compounds in the egg cuticular lipid extract (Ganesan et al., 

2006). They also showed that dodecanoic and (Z)-9-hexadecanoic acid are 

oviposition attractants. They showed that a greater numbers of eggs were laid on 

the water treated with either one of the compounds obtained from conspecific eggs 

compared to the distilled water control. The numbers of eggs laid were 

comparatively increased when the concentrations of those compounds were 

increased (1, 10 and 100 ppm). Conversely, methyl esters were shown to deter 

oviposition at a higher concentration (more than 1 ppm). In these experiments, 

more eggs were laid in the ‘control’ water compared to ‘treated’ water (Ganesan et 

al., 2006).  

 

 Oviposition traps are used to collect eggs and/or gravid females for 

monitoring vector mosquito populations e.g. Ae. aegypti and Ae. albopictus (Mogi 

et al., 1988) and Culex mosquitoes (Reiter et al., 1986). The efficacy of ovitraps 

can be increased when combined with oviposition attractants (Ritchie, 1984, 2001; 

Reiter et al., 1991). Ritchie (1984) demonstrated the use of oviposition attractants; 

a combination of hay infusion with isopropyl alcohol in a baited CDC light trap 
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proved to be 88% more effective than carbon dioxide baited CDC light traps in 

collecting gravid Culex mosquitoes. Reiter et al. (1991) demonstrated that a pair of 

ovitraps containing a hay infusion and 10% dilution of hay infusion in tap water, 

yielded an eight-fold greater catch than CDC ovitrap containing tap water only. 

 

 Blackflies of the Simulium damnosum complex, exhibit preferences in 

selecting oviposition sites where conspecific eggs are already present (McCall and 

Cameron, 1995; McCall et al. 1997a). McCall et al. (1997a) showed species or 

forms of the S. damnosum complex; S. sanctipauli, S. squomosum, S. sirbanum 

and the Bioko form, have similar chemical components in the oviposition 

aggregation pheromone. Then, McCall et al. (1997b) again demonstrated that egg 

extract of S. yahense and extract of gravid ovaries of S. leonense have similar 

major chemical peaks (named by them as peak A and B) in common and those 

two peaks were associated with the response of ovipositing gravid females, and 

these coincided with earlier studies. Thus, they have suggested traps developed 

using the oviposition pheromone baits might be effective against all of the S. 

damnosum species complex in West Africa. 

 

 McCall and Cameron (1995) suggested that the potential use of oviposition 

pheromone, combined with kairomones (environmentally derived oviposition 

attractants) would enhance the attractiveness of the traps. These enhanced traps 

could be used as a tool in monitoring and controlling vectors as they would allow 

regular sampling to estimate vector population size and structure, and would be 

specific to the target species. Furthermore, they would also specifically attract 
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gravid females (which may have been exposed to infection at their previous blood 

meal). This would have a particular epidemiological significance as the size and 

distribution of the infected host population could be more accurately assessed. 

Recently fed haematophagous insects are generally resting while they digest the 

blood-meal and unfed females have not yet been exposed to the population of 

infected host animals.  

 

 Gravid Lutzomyia longipalpis prefer to oviposit more eggs in the presence 

of conspecific eggs (El Naiem and Ward, 1991; El Naiem et al., 1991). El Naiem 

and Ward (1991) demonstrated in simple laboratory bioassays that the presence 

of eggs (from 80 to 320) caused gravid females to lay their eggs in the vicinity of 

the conspecific eggs when compared to no eggs. They found that 160 eggs 

induced the optimal response from ovipositing females. In the same study, they 

also showed that eggs that had been washed rigorously with hexane, ethyl acetate 

and lastly with distilled water, thus removing any potential attractive chemicals, did 

not attract gravid females. This observation indicated that some active chemical 

compounds were present on the surface of the eggs and were being removed by 

the washing process. Furthermore, this demonstrated that the oviposition 

response was mediated by a chemical cue rather than physical cue. Further 

studies of Lu. longipalpis oviposition pheromone have shown that the accessory 

glands are the site of production of the pheromone and the eggs were coated as 

they pass by in the oviduct. The oviposition pheromone for Lu. longipalpis was 

identified as the C12 fatty acid, dodecanoic acid (El Naiem et al., 1991; Dougherty 

et al., 1992, 1994; Dougherty and Hamilton, 1997). Studies on oviposition 
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attractants and stimulants in this species have shown that frass, larval rearing 

medium, rabbit faeces and rabbit food attracted gravid females and stimulated 

them to lay their eggs (El Naiem and Ward, 1992b; Dougherty et al., 1993). 

Experiments with gravid Lu. longipalpis demonstrated that the texture of the 

oviposition substrate was also important in inducing oviposition by gravid females 

thus a rough surface with small scale crevices was more stimulating to ovipositing 

females than smooth surfaces and they lay more eggs, this is defined as 

thigmotropic behaviour (El Naiem and Ward, 1992a). 

 

The studies outlined above suggested that gravid females of insect vectors 

have a positive response towards conspecific eggs (oviposition pheromone) and 

also environmental cues (kairomones). Together these enhance the attractiveness 

of the oviposition site and may improve the survival of the progeny. Based on the 

information available on the presence of oviposition pheromones and kairomones 

in the New World sand fly species, Lu. longipalpis and the presence of an 

oviposition pheromone in the Old World species, P. papatasi, it is reasonable to 

speculate that an oviposition pheromone may also occur in P. argentipes. 

Therefore, this study aimed to determine if an oviposition pheromone was present 

on the eggs of P. argentipes by observing the numbers of eggs laid on both control 

and treatment sides. Two sets of experiments were carried out that replicate the 

work done in other sand fly species. In the first experiment, freshly laid eggs were 

tested to determine if their presence caused an increase in the number of eggs 

laid by gravid P. argentipes. In the second experiment, eggs were washed with a 
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solvent to determine if the extract could induce a similar oviposition response from 

gravid females as fresh eggs. 
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3.2 MATERIALS AND METHODS 

  

Adult P. argentipes females used were from the colony and were 

maintained as previously described in Chapter 2. 

 

3.2.1 Experimental Conditions 

Oviposition experiments with fresh eggs and egg extracts were carried out 

in a bioassay arena (modified oviposition pot) in the sand fly insectary at 

28°C2°C using gravid female sand flies i.e. they were three days post blood 

meal. Oviposition experiments lasted for four days. The adult female flies had 

been blood fed on mice. The work with the mice followed a UK Home Office 

protocol for feeding and handling and were carried out by an appropriately 

qualified Home Office license holder. Blood-fed female sand flies were kept for 

three days in an adult holding cage in the insectary to allow blood-meal digestion 

and development of eggs before the experiment started. 

 

3.2.2 Gravid Females  

One hundred and twenty engorged females were removed three days after 

blood feeding from the adult holding cage and placed into a new cage. Twenty 

males were added to ensure that the females were mated. The cage was kept for 

three days to allow complete oogenesis and defaecation before starting the 
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experiment. Four replicates with thirty females in each replicate were prepared at 

a time. In total, there were sixteen replicates for each treatment. 

 

3.2.3 Oviposition Arena  

The oviposition arena was a modified standard colony pot (described in 

Chapter 2). The design of the arena was adapted from the study of El Naiem and 

Ward (1991). Freshly prepared Plaster of Paris was poured into a Nalgene pot to a 

depth of approximately 1 cm, to produce a solid base. It was then put in a plastic 

box and left to dry at room temperature for a day. After it was dry, the surface of 

the plaster layer was divided into two halves, which were designated test and 

control sides. Within each half of the pot, an area was marked out using sharp 

forceps, into eight (1 cm x 1 cm) squares bounded by 3 mm deep groove (Figure 

3.1). The number of eggs laid within the ‘eight square’ area were counted and 

recorded accordingly. Eggs laid within the area marked by the 3 mm grooves and 

the grooves themselves were counted, eggs laid outside this area were not 

considered.  
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Figure 3.1: A diagram of ovipositional arena of conspecific eggs;  T= test and  

C = control oviposition sides on surface of the Plaster at the bottom of an 

oviposition arena (11 cm diameter, 7 cm height) used to study the influence of 

whole eggs on the oviposition of gravid P. argentipes females. 

G = 3 mm deep groove along the drawn line left empty with no eggs (control side);  

GE = 3 mm deep groove in which varying numbers of eggs i.e. 40, 80 and 160 

(treatments) placed along the groove (test side). 
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3.2.4 Eggs  

 Eggs used for both the “fresh eggs” and “egg extract” experiments were 

previously laid by colony females. The eggs had been laid in the rearing pots and 

were 1–2 days old.  They were transferred using a fine needle either into the 

oviposition arenas or into specially prepared clean glass ampoules for preparation 

of egg extract. The eggs used were carefully handled and counted and ranged in 

number from forty to three hundred and twenty depending on the experiment. 

 

3.2.5 Preparation of Egg Extract 

 Glass vials were prepared form Pasteur pipettes as described in Section 

2.2.4. After they had cooled to room temperature, a batch of eggs was transferred 

into the ampoule using fine needle. Ampoules containing 80, 160, 240 or 320 eggs 

were prepared in this way. The vials were tapped gently so that all of the eggs 

placed in the vial fell to the bottom and would therefore be covered in solvent. 

About 10 µl of n-hexane (Pesticide grade residue analysis, BDH Chemicals, UK) 

which was sufficient to cover the eggs, was then added to the vial. The ampoules 

were heat–sealed at the open end, labelled with preparation date, number of eggs 

used and stored at -20°C until use.  
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3.2.6. Oviposition Experiments 

3.2.6.1 Whole Egg Experiments 

 For the whole egg experiments, the plaster of Paris in the bottom of the 

choice arena was soaked with distilled water for about thirty minutes prior to the 

introduction of the eggs and then dried with a paper towel. Eggs were then 

transferred gently with a fine needle into the grooves of the eight (1 cm x 1 cm) 

squares on the ‘test’ side at the bottom of oviposition arena equally. The other side 

(control) was left blank. Experiments with 0, 40, 80, 160, and 320 eggs on the ‘test’ 

side were carried out. A control experiment with zero eggs on both sites of the 

oviposition chamber was used to ensure that there was no positional bias inherent 

in the experiment. 

 

 Nylon netting was used to cover the top of the oviposition arena to prevent 

gravid sand flies from escaping. Thirty gravid females were transferred with an 

aspirator into the arena via a small hole blocked with a small piece of cotton wool. 

Another ball of cotton wool soaked with 60% glucose solution was put on top of 

the netting to provide the flies with nutrition. A group of four oviposition arenas was 

prepared for each different number of eggs used at one time. Oviposition arenas 

were labelled with the date that the sand flies were blood fed. The position of the 

‘test’ and ‘control’ side were clearly marked. The oviposition arenas were then 

placed individually in a 2.4 l plastic box (13 cm x 13 cm x 14 cm) along with 

dampened paper towels on the bottom of the box and a lid fitted. All boxes 
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containing the oviposition arenas were then placed in a 49 l black box (30 cm x 38 

cm x 43 cm) to ensure total darkness for oviposition. 

 

 The position of the individual oviposition arenas was rotated randomly to 

avoid positional bias every day for three days. After four days, all the gravid 

females (dead or alive) were removed from the chambers. The numbers of eggs 

laid within the ‘test’ and ‘control’ were noted and recorded separately for each 

treatment. 

 

3.2.6.2 Egg Extract Experiments 

The oviposition arena was prepared as previously described in 3.2.6. A 

piece of triangular filter paper (½ mm x 10 mm x 13 mm) was placed on both the 

test and control side of the oviposition arena between the eight (1 cm x 1 cm) 

squares (Figure 3.2). Extract of 80, 160, 240 and 320 eggs were used and sixteen 

replicates were carried out for each treatment. The vials containing the extracts 

were snapped at the top and the 10 µl aliquot of hexane containing the egg extract 

was removed from the vial with a small (10 µl) syringe and placed onto the 

triangular piece of filter paper on the ‘test’ site, while 10 µl of n-hexane was placed 

with a separate syringe onto the filter paper on the ‘control’ site. The rest of the 

experiments were carried out as for the experiment with whole eggs (3.2.6.1). 

After four days, dead and alive females were removed from the arena, and the 

numbers of eggs laid on both test and control sides, were counted and recorded 

accordingly.  
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Figure 3.2: A diagram of ovipositional arena of conspecific eggs extract; T = test 

and C = control oviposition sides on the surface of the Plaster at the bottom of an 

oviposition arena (11 cm diameter, 7 cm height) used to study the influence of 

extract of eggs on oviposition of gravid P. argentipes females.   

G = 3 mm deep groove along the drawn line; numbers of eggs laid were counted 

within the area of 8 (1 cm x 1 cm) squares 

FP = Filter paper containing only hexane (control); Triangular filter paper (½ mm x 

10 mm x 13 mm) 

FPE = Filter paper containing hexane extract of conspecific eggs (test); Triangular 

filter paper (½ x 10 mm x 13 mm) 
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3.2.7 Data Analysis 

Data recorded from each experiment were compiled and kept in a Microsoft 

Excel file. Descriptive statistics including percentages, means and standard error 

of means were calculated. Whilst for the inferential statistics, data were analysed 

using Minitab 16. In the first experiment a two sample paired t-test (two-tailed test) 

was used to determine if differences in the mean numbers of eggs laid on the test 

or control side were significantly different from each other. A one-way ANOVA was 

used to analyse data obtained from the second experiment. Probability levels 

equal to or less than 0.05 indicated a significant different in the mean number of 

eggs laid.  
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3.3 RESULTS 

 

3.3.1 Oviposition Response of Gravid P. argentipes to Different Numbers of Pre-

existing Eggs 

 The oviposition response of gravid P. argentipes females towards different 

numbers of eggs present on the ‘test’ side is shown in Table 3.1. When 80 or 160 

eggs were placed on the test side, a significantly greater number of eggs were 

added to this side by the females, compared to the control (80 eggs: Paired t-test, 

t=2.36, P=0.032; 160 eggs: Paired t-test, t=4.35, P=0.001). Although the response 

to forty eggs was not significant, the trend was towards significance (40 eggs: 

t=1.99, P=0.065). The number of new eggs laid in the presence of 320 eggs was 

greater than the control but the difference was not significant (320 eggs: t= 0.43, 

P=0.336). These results indicate that gravid females were more likely to oviposit in 

the vicinity of eggs that had already been laid but within a relatively narrow range 

of numbers of eggs. The control experiments (Table 3.1) with no eggs on either 

the test or control sides showed that there was no significant difference in the 

means number of eggs laid on either sides: t=1.05, P=0.311) indicating that the 

apparatus was unbiased. 

  

3.3.2 Oviposition Response of Gravid P. argentipes to Hexane Extracts of 

Different Numbers of P. argentipes Eggs 

 A preliminary experiment showed that the oviposition response of gravid 

female P. argentipes to hexane extracts made by placing eggs in hexane for 
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differing lengths of time was variable. Although it was not possible to discern a 

pattern the experiment was standardised by using extract made from eggs that 

were kept for two hours in hexane. The summary data is presented in Table 3.2. 

 

 Only hexane extract made from two hundred and forty eggs elicited a 

significant oviposition response (Paired t-test, t=3.17, P=0.006). Extracts made 

from the other egg batches did not elicit a significant oviposition response (Table 

3.3). 

 

The control experiments with hexane only on the test and control sides 

(Table 3.3) showed that there was no significant difference in the means number 

of eggs laid (t=1.10, P=0.290) indicating that the apparatus was unbiased. 
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Table 3.1: The mean number of eggs (± SE) laid by 30 gravid females P. argentipes on the test and control sides of the oviposition 

arena in response to the different numbers of eggs (0, 40, 80, 160 and 320) placed on the test side. 

 

 

Treatments 

(No. of eggs placed on the test site) 

  

Eggs laid by gravid females 

(mean ± SE) 

  

 

P  

   
Test 

 
Control 

 

 

      
CONTROL (No eggs)  431.4 ± 38.0 378.3 ± 22.7  0.290 

40  431.9 ± 20.3 370.0 ± 18.1  0.065 

80  510.2 ± 28.5 393.8 ± 28.5  0.032* 

160  535.0 ± 22.0 424.6 ± 19.7  0.001** 

320  433.7 ± 44.1 407.9 ± 41.9  0.336 

 

N = 16 for each treatment; Probability level of paired t-test is at 95%; *significant at P < 0.05; **significant at P < 0.01 
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Table 3.2: The mean number of eggs (±SE) laid by 30 gravid females P. argentipes on the test sides of the oviposition arena in 

response to extract made from different numbers of eggs (80, 160) for different lengths of time (0.17, 2, 24 hrs) placed on the test 

sides.  

 

Treatments Eggs laid by gravid females 

(Mean  SEM) 

 

P 

(No. of eggs extracted with hexane on the filter 

paper at the test side) 

Length of time eggs kept in 

hexane (hours) 

Test side 

 

80 

     

 

0.003** 

  0.17 352.9 ± 17.5 

  2 485.3 ± 35.2 

  24 375.2 ± 26.3 

      

 

 

160 

  0.17 412.9 ± 30.6  

0.002**   2 284.1 ± 19.5 

  24 315.0 ± 22.7 

N=16 for each treatment; Probability level of One-way ANOVA is at 95%; *significant at P  0.05; ** significant at P  0.01 
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Table 3.3: The mean number of eggs (±SE) laid by 30 gravid females P. argentipes on the test and control sides of the oviposition 

arena in response to extract made from different numbers of eggs (80, 160, 240, 320) placed on the test sides. 

 

 

Treatments 

(No. of eggs extracted with hexane on 

the filter paper at the test site) 

  

Eggs laid by gravid females 

(Mean ± SE) 

  

 

P  

   

Test 

 

Control 

 

 

      
CONTROL (No eggs extract)  455.1 ± 33.6 410.6 ± 33.0  0.311 

80  485.3 ± 35.2 470.2 ± 33.6  0.787 

160  504.6 ± 31.9 514.1 ± 31.7  0.835 

240  413.9 ± 27.9 350.8 ± 22.7  0.006* 

320  488.2 ± 27.8 516.3 ± 22.5  0.775 

 
N = 16 for each treatment; Probability level of Paired t- test is at 95%; **significant at P < 0.01; 
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3.4 DISCUSSION 

 

As far as I am aware the results presented here are the first to suggest that 

Phlebotomus argentipes females produce an oviposition pheromone. Oviposition 

pheromones have been found in other species of sand flies e.g. Lutzomyia 

longipalpis (Dougherty and Hamilton, 1997; Dougherty et al., 1992, 1994) and P. 

papatasi (Srinivasan et al., 1995). It appears that the pheromone is present on the 

surface of the eggs and can be removed by washing with an organic solvent and 

transferred to an alternative surface. 

 

In these experiments, P. argentipes females laid more eggs in the vicinity of 

conspecific eggs when compared to the adjacent blank control side. This effect 

was observed within a narrow range of numbers of eggs presented on the test 

side (80 and 160 eggs). When 40 eggs or 320 eggs were placed on the test side 

gravid females did not increase the number of eggs laid on that side. Overall the 

effect was weak, on average the percentage increase when the test side was 

treated with 80 and a 160 eggs, was 12% and 19% respectively by comparison the 

average increase for P. papatasi was approximately 40% (Srinivasan et al., 1995). 

For Lu. longipalpis, the average percentage oviposition rate for the test side 

treated with 80 and 160 eggs was about 68% and 82% respectively. 

 

The results of this study were broadly consistent with the study carried out 

by El Naiem and Ward (1991), which showed that gravid Lu. longipalpis increased 
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the number of eggs laid in response to conspecific eggs range between 80 to 320 

eggs. The results are also in line with those of Srinivasan et al. (1995), who found 

that more eggs were laid in the vicinity of conspecific eggs when 100 or 200 were 

already present. Srinivasan suggested that the response of gravid P. papatasi 

females was mediated by the chemicals of the surface of the eggs but not by 

physical (tactile or visual) cues. 

 

Studies both by El Naiem and Ward (1991) and Srinivasan et al. (1995) 

showed that gravid females did not prefer to lay their eggs near washed eggs. 

 

The methods used in this study differed slightly from work of El Naiem and 

Ward (1991) in their study with Lu. longipalpis. Although the oviposition choice 

chamber design, the condition of the experiments (temperature, humidity, 

complete darkness) and the number of eggs used in these experiments were the 

same as for El Naiem and Ward (1991) and Srinivasan et al. (1995), different 

numbers of gravid females were used in both studies. In El Naiem and Ward 

(1991) and Srinivasan et al. (1995), ten gravid females were used whereas in this 

study, thirty gravid females were used. A preliminary test of numbers of gravid 

females (ten, twenty, thirty and forty) used in the oviposition experiments showed 

that ten gravid females did not give as good a response as thirty gravid females 

(two replicates of each treatment i.e. 10, 20, 30 and 40, data not presented). When 

low numbers of gravid P. argentipes were used, they refused to lay their eggs 
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either on the ‘test’ or ‘control’ sides suggesting that a threshold concentration of 

pheromone is an important trigger for oviposition. 

 

 The results showed that a significantly greater number of eggs were laid by 

female P. argentipes when extract from 240 eggs was present. This supports the 

contention that an oviposition pheromone is present on the eggs. However the 

limited concentration range suggests that other stimuli may be important or that 

making the extract in hexane or indeed the processing of the extract may have an 

effect on the outcome. These possibilities need further investigation. This 

corresponded with the study of an oviposition pheromone of the Lu. longipalpis 

eggs extract (El Naiem and Ward, 1991; Dougherty et al., 1992, 1994) and P. 

papatasi eggs extract (Srinivasan et al., 1995). The results with only 240 eggs 

extract showed a significant difference in the response of females and this also 

supported the earlier experiment with whole eggs, in which there was a limit to the 

attractiveness of the pheromone.  

 

 Compared to other studies of egg extracts of other sand flies, there are 

similarities and differences in the length of time eggs were kept in solvent, the type 

of solvent used, the volume of container used, and the number of eggs being used 

for the extraction. The range of time used to keep the eggs in the solvent was from 

half an hour in the Lu. longipalpis study by El Naiem et al. (1991), two hours in the 

P. papatasi study by Srinivasan et al. (1995) to twenty four hours in the Lu. 

longipalpis study by Dougherty et al. (1992). Varying the length of time that the 



 

59 

 

eggs were kept in a solvent would have an effect on the types of chemicals and 

amounts of chemicals extracted from the eggs. The numbers of eggs being 

extracted were also different; El Naiem et al. (1991) used 160 eggs, possibly 

because it elicited an optimal response from the gravid females of Lu. longipalpis, 

whereas Dougherty et al. (1992) used 100 eggs (within the range of eggs that 

elicited a significant number of additional eggs to be laid on the test side in El 

Naiem and Ward (1991) i.e. more than 80 eggs). Srinivasan et al. (1995) did not 

describe precisely the number of eggs but extracted 200 eggs of P. papatasi in the 

study. Both El Naiem et al. (1991) and Dougherty et al. (1992) used hexane as the 

solvent, but this is a non-polar solvent compared to diethyl ether, which had been 

used by Srinivasan et al. (1995). Compared to my study, the number of gravid 

females used by previous studies was lower than thirty females. That may be the 

reason for the higher number of eggs laid in my experiments compared to others. 

The volume of the container used by El Naeim et al. (1991) and Dougherty et al. 

(1992) was 500 ml and this was the same as in my experiment, but Srinivasan et 

al. (1995) used a 250 ml container. Different volumes of the container might affect 

in the concentration of pheromone or odour released throughout the whole area. 

Though there were the differences in the studies, all of the findings showed there 

was an oviposition pheromone associated with the eggs that attracts or/and 

stimulates ovipositing females sand flies. 

 

 From the laboratory observations throughout my research in colony rearing 

of sand flies, I found that eggs of P. argentipes were either clumped or laid singly 

in a group and were usually found in small numbers compared to P. papatasi 
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(Ifhem Chelbi, personal communication), which were usually clumped in a bigger 

number, whereas the Lu. longipalpis were usually laid singly in a bigger group.  

 

 I found clumped eggs of P. argentipes in the colony were usually deposited 

in the groove, whilst singly laid eggs were deposited on the flat surface of plaster 

of Paris and also in the groove of the rearing pots. The deposition of clumped eggs 

in the groove by gravid females may be due to the nature of P. argentipes 

oviposition behaviour that is affected by oviposition pheromone and environmental 

kairomones help to locate suitable places to lay eggs and also their thigmotropic 

behaviour. The deposition of singly laid eggs may be due to a behaviour whereby 

the female finds the most suitable place which is safe for their progeny when there 

is no oviposition pheromone or kairomones that can help them to identify a 

suitable place to lay their eggs. Unlike in the oviposition choice chambers, I found 

that 95% of the eggs were laid in the vicinity of the test sites (eggs and egg extract 

experiments) and the control sites (blank or hexane solvent) support the 

contention that a pheromone is present. Even though the behaviour of the females 

was not observed directly, the number of eggs laid support the inference. 

 

 Whether the oviposition pheromone of P. argentipes is either an attractant 

or stimulant or both, further experiments should be followed. The experiments 

carried out in an oviposition arena with the test and control in close proximity give 

rise to the possibility of contamination and also the possibility that the 

concentration of pheromone reaches a saturation point quite early thus affecting 
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the numbers of eggs laid. A different type of bioassay, where the test (with eggs or 

egg extract) and control (blank) are separated in different containers might help 

avoid some of these problems. Also the experiments presented here do not make 

it clear if the chemical present on the eggs is an attractant or a stimulant. Using a 

Y-tube olfactometer with air passing over the eggs or egg extract in one arm and a 

blank control on the other arm would allow the gravid females to demonstrate 

upwind anemotaxis. Further experiments of a similar nature would then be able to 

clarify if 320 eggs or more were deterrent or repellent or both to gravid females. 

Additional bioassays using 240 eggs on the test side would be useful to determine 

if this really does represent an optimal number of eggs. This is an important 

question because the results seem to suggest that there is an optimal range of 

numbers of eggs that induce oviposition of gravid females. This would indicate that 

females will avoid sites that may become overcrowded and there is increased 

larval competition for scarce resources that would be detrimental to her offspring. 

Equally if there are very few eggs laid at the oviposition site this may suggest the 

presence of a predator or other hazard for the offspring.  

 

 To support evidence showing that the oviposition pheromone/chemical is 

associated with eggs or that ovipositing females are attracted to eggs by chemical 

or physical cues or both, another experiment using washed eggs (washed with 

hexane) should be pursued. Finally, it would be interesting to see the response of 

gravid females of P. argentipes towards attractants (frass, rabbit food, bacteria, 

and rabbit faeces) and also to see the combination effects of attractants and 
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oviposition pheromone whether it would enhance or inhibit the response of the 

gravid females.  
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CHAPTER 4: RESPONSE OF VIRGIN FEMALE PHLEBOTOMUS 

ARGENTIPES TO MALE-PRODUCED VOLATILES AND HOST 

ODOUR. 

 

 

4.1 INTRODUCTION 

  

Phlebotomus argentipes is the vector of visceral leishmaniasis (VL) in the 

Indian subcontinent. It occurs in more than 109 districts and causes significant 

morbidity and mortality amongst the urban and rural poor (WHO, 2006). Although 

there is some improvement in the treatment options for VL, the drug side effects, 

availability and cost are still significant problems and as yet no vaccine is available 

(Croft and Coombs, 2003). Vector control still remains the best way to control the 

transmission of the disease by reducing contacts between the insect vector and its 

host. As P. argentipes is an anthropophilic vector and Kala-Azar is an 

anthroponotic disease, reducing contacts between the vector and people offers the 

best chance for developing new vector control strategies. Part of the solution 

includes regular surveillance of the insect population densities so that the 

application of control tools such as insecticides can be optimised. 

 

Integrated vector management including the use of long lasting insecticidal 

nets (LLIN), indoor residual spraying (IRS) and ecological vector management 
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(EVM); applying mud/lime mixture to plaster the walls and floors of houses and 

cattle sheds (Kumar et al., 1995) were employed and found successfully to reduce 

sand fly densities in India (WHO, 1996; Das et al., 2008; Kumar et al., 2009; Joshi 

et al., 2009). However, continuous use of the chemicals in a vector control 

programme is not only costly but may also lead to negative impacts on human 

health and the environment (Alexander and Maroli, 2003; Maroli and Khoury, 

2006). Furthermore, the development of insecticide resistance in insect vector 

populations has been observed in many insect vectors, such as  mosquitoes e.g. 

Anopheles gambiae is resistant to DDT, organophosphate (OP) and pyrethroid; 

Aedes aegypti is resistant to pyrethroid, OP and also carbamate; Culex 

quinquefasciatus is resistant to OP and pyrethroid and the  sand fly, P. papatasi is 

resistant to DDT in India (Brown, 1986; El-Sayed et al., 1989; Chandre et al., 

1998, 1999; Hemingway and Ranson, 2000). 

 

New methods that are both specific and sensitive are needed to control and 

monitor the population densities of insect vectors, to help reduce man–vector 

contact and lead to a reduction of disease transmission. Exploitation of the new 

methods including genetically modified (GM) insect vector (Crampton et al., 1990, 

1994), sterile insect technique (Knipling, 1955; Davidson, 1969; Alphey, 2002; 

Alphey et al., 2010), semiochemical based lures (Ritchie, 1984; Morton and Ward, 

1990; Reisen and Meyer, 1990; Ward et al., 1990; Beehler et al., 1994; Millar et 

al., 1994; Kelly and Dye, 1997; Hamilton, 2008; Bray et al., 2009, 2010) and others 

are in progress. 
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The use of pheromones to attract insects in mass trapping, mating 

disruption and attracticides (lure-and-kill) strategies have been widely used in 

agriculture and are an important component of integrated pest management (IPM) 

programs both for surveillance and control of agricultural pests (Carde and Minks, 

1995; Shani, 2000). This new approach could also be adopted for use against 

insect vectors and the potential exists to exploit the approach in vector control 

programmes (Oliveira Filho and Melo, 1994; Sonenshine et al., 2003; Sonenshine, 

2004; Kline, 2006, 2007; El Sayed et al., 2009; Bray et al., 2010).  

 

Studies of semiochemicals, such as insect-produced pheromones, host and 

environmental produced kairomones, and their effects on insect vectors have been 

extensively considered and well documented. For example, in mosquitoes, 

identification of the oviposition pheromone in Culex quinquefasciatus has been 

established (Laurence and Pickett, 1982, 1985; Laurence et al., 1985) and shown 

to be able to attract gravid females to lay their eggs in the vicinity of their 

conspecific eggs. Further studies on the chemical compounds surrounding the 

habitat of the mosquito have also been examined and a few attractants have been 

discovered that can enhance the efficacy of mosquito traps used in vector control 

programmes. These include oviposition attractants. For example a combination of 

hay infusion with isopropyl alcohol used to bait CDC light traps proved to be 88% 

more effective than carbon dioxide baited CDC light traps in collecting gravid 

Culex mosquitoes (Ritchie, 1984). An evaluation study on the efficacy of a lethal 

ovitrap (LO) in combination with a kairomone-baited trap (semiochemical 

attractant) showed that the attractants significantly increased the efficacy of the LO 
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by attracting more adult mosquitoes, especially gravid females (Ritchie, 2009; 

Kline, 2006; Rapley et al., 2009). 

 

Understanding the behaviour of sand flies in response to their pheromones 

and kairomones in nature may lead to effective vector control methods that involve 

the use of pheromone and/or kairomone based lures. Lutzomyia longipalpis is an 

example of a well-studied species especially regarding its sex pheromone and 

kairomones. In Lu. longipalpis, sex pheromone is produced by the male (Lane et 

al., 1985; Morton and Ward, 1989; Hamilton et al., 1994, 2005; Jones and 

Hamilton, 1998) and emitted from the glandular tissue located in the abdomen 

(Lane and Ward, 1984). It plays an important role in mating. In lekking behaviour 

the male emits its’ sex pheromone, and in combination with the hosts odour, 

attracts both males and females to the vicinity of a host animal where both mating 

and blood-feeding can occur (Quinnell and Dye, 1994). The chemical components 

of the sex pheromone have been identified (Hamilton et al., 1996a, 1996b, 2004, 

2005) and the behaviour of female sand flies associated with the pheromone has 

been studied (Morton and Ward, 1989; Nigam and Ward, 1991) in the laboratory. 

Research on the effect of host kairomone and pheromone on female Lu. 

longipalpis has demonstrated that host odour synergises the attraction of females 

to male pheromone (Bray and Hamilton, 2007). A formulation for synthetic 

pheromone has been developed and its potential for use in a pheromone-based 

trap, in combination with host presence, has been demonstrated in the laboratory 

and field (Bray et al., 2009, 2010). In Old World sand flies, behavioural evidence 
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for the presence of a sex pheromone in P. papatasi and P. argentipes has recently 

been demonstrated (Chelbi et al., 2011; Kumar et al., 2012). 

 

The aim of the work discussed in this chapter was to consider behavioural 

evidence for the presence of sex pheromone in P. argentipes. Previous studies 

have indicated that in a simple behavioural experiment that female P. argentipes 

responded to extract of males (Kumar et al., 2012). However the response that 

was demonstrated was not an anemotaxis which would indicate that the signal 

was a volatile chemical capable of conveying an attractive message over longer 

distances. Thus response of female flies to male odour in a moving air bioassay 

was investigated, the numbers of males required to attract a significant response 

from females was analysed and extract of males as a source of male odour was 

examined.  
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4.2 MATERIALS AND METHODS 

 

 Adult males and females were from the colony maintained as previously 

described in Chapter 2.  

 

4.2.1 Male and Female Sand Flies  

 Female and male flies used in mating observations were of the same age 

categories (i.e. 1d (1 day old), 2d, 3d, 4d, 5d and 6d), separated within 5 hours of 

emergence; before rotation of the external male genitalia; fed only on saturated 

sugar solution. On the other hand, male and female flies used in the bioassays 

were 2d and 6d only. Cages of 20 to 50 sand flies were acclimatised to the 

experimental conditions for 2 hours before starting. The mating success 

observations were carried out in two different arenas; 1) in the Barraud cage and 

2) in the mating arena, while the bioassays were done in a Y-tube olfactometer 

(Figure 4.1). All of the experiments were carried out on a, vibration-dampened 

bench in a room used specifically for doing bioassays at 27°C2°C and 85% 

relative humidity under white fluorescent light between 0900 and 1300 hours. 

 

4.2.2 Preliminary Studies: Observation of Mating Success and Response in Y-

tube Bioassays of Different Age of Males and Females 

 Two observational studies were carried out to determine the age at which 

males and females were most likely to mate with each other. Trial bioassays were 
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carried out to set the parameters for the bioassays in which, unmated males and 

females aged 1, 2, 3, 4, 5 or 6d were used. The first experiment was carried out in 

a Barraud cage (20 x 20 x 20 cm) and the second was in an observation chamber, 

which was a round container (3 cm diameter x 2 cm high) with a 1 cm layer of 

plaster of Paris at the bottom. The two different mating studies allowed a 

comparison in the mating response between the environments. Before the 

observations started, a single male was released into the cage or observation 

chamber and left for 5 minutes to acclimatise to the setting. Then a female was 

placed in the chamber and observed for about 30 minutes or until mating i.e. 

copulation took place. In these observational studies, mating was considered as 

being successful when the male and female were observed to copulate for more 

than half a minute. All of the observations were recorded. For every observation, 

the age of the male and female was the same. The minimum and maximum time 

taken to achieve of mating success was recorded. Two replicates of ten 

observations (i.e. 20 pairs) for each of the different age categories (1, 2, 3, 4, 5, 

and 6d) were completed. 

 

4.2.3 The Y-tube Bioassays  

 Experiments were carried out to find out whether male flies produced a 

volatile sex pheromone that could attract females over a relatively short distance in 

a Y-tube olfactometer. Comparisons of the response of female flies to different 

numbers of males that could produce sex pheromone in the test side and the 

effect of different ages were also noted. A Y-tube olfactometer (Figure 4.1) as 
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used by Hamilton and colleagues (Bray and Hamilton, 2007; Chelbi et al., 2011) 

was used to carry out the bioassays.  

 

The apparatus comprised of a Y-shaped glass tube (Figure 4.2; made from 

10mm internal diameter (i.d.) glass tubing), it consisted of a 10 cm long stem that 

branched into two 10-cm-long arms separated from each other at a 65° angle. 

Teflon tubing (40 cm x 3 mm i.d.; Supelco Ltd., Gillingham, UK) was attached to 

both arms by brass Swagelok connectors (Swagelok Company Ltd., Solon, Ohio, 

USA). The other end of each piece of Teflon tubing was attached to a modified 

Dreschel head (VWR International Ltd., Lutterworth, UK) inserted into a 50 ml 

glass round-bottomed flask (one flask was designated as the test [males inside] 

and the other arm as control arm [empty]). Each Dreschel head was connected to 

a compressed air cylinder (BOC Gases Ltd., Guildford, United Kingdom) to supply 

air via Teflon tubing. Airflow was controlled using two-stage regulator (BOC Gases 

Ltd.) attached to the cylinder and a rotameter to control airflow (Supelco Ltd.). The 

airflow exiting each flask was adjusted and set at 2.5 ml s-1, resulting in an airflow 

of 5 ml s-1 at the outlet of the olfactometer stem. Airflow was measured with a 

bubble flow meter. Before passing through the Y-tube olfactometer, compressed 

air was cleaned by an activated charcoal filter (Supelpure HC, Supelco Ltd.). All 

connections were then made airtight by sealing with Teflon tape (Sigma Aldrich 

Company Ltd., Gillingham, UK) and cleaned glass wool was inserted into the inlet 

end of both arms to prevent flies from escaping into the Teflon connecting tubes. 

The apparatus was placed horizontally on the vibration-dampened bench during 

the bioassays. 



 

71 

 

Different numbers of virgin P. argentipes males were placed in the test flask 

for 30 minutes before the experiment started. A female sand fly was removed from 

a holding cage using a modified mouth aspirator and placed into the outlet (open 

end) of the olfactometer stem (Figure 4.1). The movement of the female into the 

‘test’ arm (i.e. the arm connected to the 50 ml bulb holding different numbers of 

male sand flies) or ‘control’ arm (blank) was noted when she moved along at least 

halfway along the length of the chosen arm. If the female made no movement into 

either of the two arms in a maximum of three minutes she was considered as a 

non-responder. Female sand flies (either 120 or 150 depending on the 

experiment) were tested for each treatment over a period of several days. 

Swapping the position of test and control arms by rotating the Y-tube and 

connecting tubing through 180o along its longitudinal axis every 10 replicates was 

done to control any potential effect of a room positional bias. Before each day’s 

trials Teflon tubing was cleaned as previously described. Glass apparatus was 

cleaned as previously described.  
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Figure 4.1: Diagram (not to scale) of a Y-tube olfactometer used in the bioassay (host odour not present) (Adapted from 

Chelbi et al., 2010).  
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Figure 4.2: A photograph of a Y-tube glass olfactometer showing the insertion point for female Phlebotomus argentipes 

at the end of the stem and the two arms which were designated either test or control. Females were counted as having 

made a choice when they passed a point halfway along either arm during 3 minutes.  
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4.2.4 Preliminary Studies: Trial Bioassays without Host Odour 

Based on the observational studies of mating success, parameters such as 

the age of the flies and response times were decided and trial bioassays were 

performed before addressing the principal aims of the study i.e. to determine if 

female flies were attracted to male derived odour in the test arm compared to a 

blank in the control arm. In these trials, the response of male and female flies of 

the same age (2d or 6d) were compared with each other and also the response of 

young flies (2d) was also compared with older flies (6d). As the bioassay for P. 

argentipes had not been attempted previously, times for female flies to respond 

were also tested to establish the best length of time to capture the average 

response of female flies to the males. Response times of 3 min (Bray et al., 2007) 

and as long as 5 min have been used previously in bioassays with Lu. longipalpis.  

 

However, as P. argentipes were observed to be very quiet in their 

behaviour, it was expected that they would react more slowly than other sand fly 

species. The numbers of replicates performed also ranged from 40 to 150 females 

for each treatment over a period of a day. A host was not present in any of these 

trials. The response of the females to either the test or the control arm was 

recorded. Those females that responded to neither the test arm nor the control 

arm were also recorded as non-responders. 
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4.2.5 Bioassays to Determine the Response of Virgin Female P. argentipes to 

Male Headspace Volatiles with and without the Presence of Host Odour 

4.2.5.1 Response of; i) Virgin (2d) Females to Virgin (2d) Males and; ii) Virgin (6d) 

Females to Virgin (6d) Males 

To determine if any preference for any one arm of the olfactometer 

occurred, a Y-tube bioassay without host odour was carried out as described 

above (Figure 4.1). Before the experiment started, the air was allowed to flow for 

about half an hour to help remove any contaminating volatiles from the apparatus. 

Females (n=150) were tested in the apparatus over a period of several days. 

Again to control for positional bias in the room, the Y-tube and connecting tubing 

were rotated every 10 replicates as previously described. The response of the 

females to either the test or the control arm was recorded. Those females that 

responded to neither the test arm nor the control arm were recorded as non-

responders. 

 

4.2.5.2 Response of; i) Virgin (2d) Females to Vrgin (2d) Males and; ii) Virgin (6d) 

Females to Virgin (6d) Males in the Presence of Host Odour 

A Y-tube bioassay was carried out to determine if female flies were 

attracted to male odour in the test arm in the presence of host odour. Two host 

animals (mice) were also included in the apparatus, which was set up as 

described in Section 4.2.3. However a 2 l glass jar with a lid holding two mice was 

added to provide host odour during the experiment. The glass jar was placed 

between the rotameter and the round-bottomed flask (Figure 4.3). Females could 
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then respond to either a combination of host odour and male odour (test arm) or 

the host odour alone (control arm). Before the experiment was started, air was 

passed through the apparatus for about an hour. Either five or thirty males that 

had been anaesthetised by cooling at -20°C for about 30 seconds were added to 

the flask on the test arm of the apparatus and air was passed through for half an 

hour. A similar flask containing no males was placed in the control side of the 

apparatus. Then 150 females were tested individually against the males in the test 

flask or nothing in the control flask over a period of several days. The response of 

the females to either the test or the control arm was recorded. Those females that 

responded to neither the test arm nor the control arm were recorded as non-

responders. The outcomes of the bioassays when a host was present or absent 

were compared and analysed to establish the need to have a host present in the 

bioassay.  

 

4.2.5.3 Response of; i) Virgin (2d) Females to Virgin (6d) Males and; ii) Virgin (6d) 

Female to Virgin (2d) Males in the Presence of Host Odour 

 Experiments were conducted to establish the responses of P. argentipes 

females to males that were either younger or older than those used in the Y-tube 

bioassay, as described above. Sand flies aged 2d were categorised as young and 

6d as old. Tests to determine the responses of young female flies to old male flies 

and old female flies and young male flies were carried out. Host odour was used to 

enhance the potential response to male odour in the test arm. 120 females were 

tested individually in each treatment over a period of days.     
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Figure 4.3: Diagram (not to scale) of a Y-tube olfactometer used in the bioassays with host odour present: (Note the 

additional glass jar used to keep live host animals (mice)). 
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4.2.6 Preparation of Extract of P. argentipes Males 

Extract of males were prepared by freezing male flies (6d) in a -4oC freezer 

for a few minutes to kill them. Dead flies (n=10) were counted and placed in a 

glass ampoule to which 30 l of n-hexane (Pesticide Grade Residue Analysis, 

VWR International Ltd., Lutterworth, UK) was added. Ampoules were prepared 

from glass vials as described in Chapter 2. The ampoule was sealed by flaming 

the open end. This gave a final concentration of 0.3 male equivalents (ME) per μl 

of hexane. The ampoule of male extract was labelled and stored at -20°C until 

use. 

 

4.2.7 Bioassays of Male P. argentipes Extract 

A Y-tube bioassay, as described above but with a slight modification was 

carried out (Figure 4.4). The round-bottomed flasks on both arms were replaced 

by a shorter piece of Teflon tubing which had a hole (ca. 1 mm diameter) made in 

it. A piece of filter paper was rolled-up and placed inside this piece of Teflon tubing 

in each of the test and control sides of the olfactometer. After one hour of allowing 

host odour to flow through the olfactometer, 3 μl of male extract (=1ME) was 

injected onto the rolled filter paper on the test arm and 3 μl of hexane was placed 

on the filter paper in the control arm. After 1 minute, a female was placed into the 

outlet end of the olfactometer stem to make a choice. All the responses were 

recorded. Another bioassay to determine any potential positional bias (control 

bioassay) was carried out without host odour using a Y-tube olfactometer as in 

Figure 4.5.   
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Figure 4.4: Diagram (not to scale) of the Y-tube olfactometer used in the bioassay with male extract. The position of the 

Teflon inserts, the modification for adding the male extract, instead of the glass bulbs containing live males, can be seen. 
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Figure 4.5: Diagram (not to scale) of a Y-tube olfactometer with modification for insertion of extract of males (without host 

odour). 
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4.3 RESULTS 

 

4.3.1 Preliminary Study: Observation of Mating Success and Response in Y-tube 

Bioassays of Different Age Males and Females 

 For both types of mating arenas 6d Phlebotomus argentipes had a higher 

rate of mating success compared to the other ages (Figure 4.6). The Barraud cage 

appeared to be a much better environment for mating compared to the mating 

chamber. However both types of arena showed that as the age increased, the 

proportion of couples that mated increased. It was also found that the duration of 

mating ranged from three to sixteen minutes in both types of mating environments. 

These preliminary observations suggested that it would be best to use 6d sand 

flies in the Y-tube experiments. 

 

 The response of 2d (Figure 4.7) females to 2d males was different from the 

response of 6d females to 6d males (Figure 4.8). Females (2d) chose the control 

side (no males) but 6d females preferred the test side (males present).  

 

The percentage of non-responders in all the preliminary Y-tube bioassays 

was consistently higher than those that responded to either the test and control 

side. The response of the 6d sand flies (Figure 4.8) showed that similar 

proportions of female sand flies chose either the test side or the control side. In the 

experiments with 2d sand flies 17.5% of 40 females chose the test side, 30% 

chose the control side and 53% did not to respond to either side (Figure 4.7).  
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Among the 6d sand flies (Figure 4.8), 23.3% of females (n=150) showed a 

response to 5 males, 22% chose the control side and 54.7% showed no response. 

When 10 males were used in the test side 30% of the females (n=150) chose the 

test side, 25.3% chose the control side and 44.7% were not responsive. When 20 

males were used in the test side, 23.9% of the females (n=46) chose the test side, 

19.6% chose control side and 56.5% did not respond. When 25 males were used 

in the test side 28.7% of females (n=150) chose the test side, 21.3% chose the 

control side, and 50% did not respond. In none of the trials was there a significant 

difference in the numbers of females responding to the test arm compared to the 

control arm. However, the average proportion of 6d females that responded to 6d 

males (n=5, 10, 20 and 25) was 29 and this was significantly greater than the 

proportion of 2d females that responded to 2d males (1-proportion exact test: 

proportion to 6d males (average)=26.5%:proportion to 2d males=17.5%, P=0.036). 

 

These results matched the preliminary behavioural observation experiments 

and suggested that it would be best to use 6d males and females in further 

experiments. 
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Figure 4.6: Percentage of couples, of different ages (1 to 6d) that successfully mated in two different environments; 

Barraud cage or mating chamber. 
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Figure 4.7: Response of P. argentipes females (2d) (n=40) to a group of 5 males (2d) in a Y-tube olfactometer during a 5 

minutes period in a trial bioassay in the absence of host odour. P-value was calculated using a proportional exact test. 

P=ns 
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Figure 4.8: Response of female P. argentipes (6d) (n=46-150) to different sized groups of males (6d) (n=5, 10, 20 and 25) 

during 2 time periods (3 or 5 mins) in a Y-tube (host odour was absent). P-value was calculated using a proportional exact 

test. 

P=ns P=ns P=ns P=ns 
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4.3.2 Response of P. argentipes Females (2d) (n=120) to Males (2d) (n=5 and 

30) and Females (6d) (n=150) to Males (6d) (n=5 and 30) in a Y-tube Olfactometer 

in the Presence of Host Odour 

Female P. argentipes (6d) were significantly attracted to a group of 30 

males (6d) (1-proportion exact test; number of females to test=94, number of 

females to control=51; P<0.01) but not a group of 5 males (6d) (Exact test: 

test=83, control=65; P=0.162) (Figure 4.9). The control experiments with host 

odour but no males present in the test arm of the apparatus showed that there was 

no significant difference in the response of the females to the test arm compared 

to the control arm (Exact test; test=71, control=76; P=0.681). When no host odour 

was present in the test arm again there was no significant difference in the 

response of the females to the test arm compared to the control arm (test=40, 

control=41; P=ns) indicating that the apparatus was unbiased. 

 

An interesting observation is that there was a significantly lower number of 

non-responding female sand flies when host odour was present in the Y-tube 

olfactometer compared to when it was absent (Exact test; no host odour=69, host 

odour=2; P<0.01). 

 

Female P. argentipes (2d) were not significantly attracted to a group of 30 

males (2d) (Exact test: number of females to test=62, number of females to 

control=51; P=ns) or a group of 5 males (2d) (Exact test: test=57, control=57; 

P=ns) (Figure 4.10). The control experiments with host odour but no males present 

in the test arm of the apparatus showed that there was no significant difference in 
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the response of the females to the test arm compared to the control arm (Exact 

test: test=55, control=57, P=ns). Again when no host odour was present in the test 

arm there was no significant difference in the response of the females to the test 

arm compared to the control arm (test=30, control=29; P=ns) indicating that the 

apparatus was unbiased. 

 

There were a significantly lower number of non-responding female sand 

flies when host odour was present in the Y-tube olfactometer compared to when it 

was absent (Exact test: no host odour=51, host odour=8; P<0.01). 
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Figure 4.9: Percentage response of female P. argentipes (6d) (n=120) in a Y-tube olfactometer to: 1) blank/blank 

(test/control); 2) host odour/blank; 3) host odour + males (n=5) (6d)/blank and; 4) host odour + males (n=30) (6d)/blank.  

P-value was calculated using a proportional exact test. 

P=ns P<0.01 P=ns P=ns 
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Figure 4.10: Percentage response of female P. argentipes (2d) (n=120) in a Y-tube olfactometer to: 1) blank/blank 

(test/control), 2) host odour /blank, 3) males (n=5) (2d) + host odour/blank and 4) males (n=30) (2d) + host odour/blank. 

P-value was calculated using a proportional exact test. 

P=ns P=ns P=ns P=ns 



 

90 

 

4.3.3 Response of P. argentipes Females (6d) (n=120) to Males (2d) (n=5 and 

30) and Females (2d) (n=120) to Males (6d) (n=5 and 30) in a Y-tube Olfactometer 

in the Presence of Host Odour 

Females (6d) were significantly attracted to a small group (n=5) of males 

(2d) in the presence of host odour (Figure 4.11) (1-Proportion exact test: number 

of females to test=71, number of females to control=44, P=0.015). 

 

However females (6d) were not significantly attracted to a large group (n= 

30) of males (2d) in the presence of host odour (Figure 4.12) (exact test; test=60, 

control=54, P=ns). 

 

Females (2d) were not significantly attracted to a small group (n=5) of 

males (6d) (Figure 4.12) (exact test; test=60, control=47, P=ns) and females (2d) 

were not significantly attracted to a large group (n=30) (Figure 4.13) in the 

presence of host odour (exact test; test=56, control=52; P=ns) and test arm=0.56, 

control arm=0.44, P=ns). 

 

Although the proportion of non-responding females increased from 4.5%, 

when using 6d females, to 10.5% when using 2d females, this was not a 

significant increase (exact test; average number of 2d females not responding=13, 

average number of 6d females not responding=5; P=ns). 
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Figure 4.11: Percentage response of female P. argentipes (6d) (n=120) in a Y-tube olfactometer to: 1) host odour + males 

(n=5) (2d) / blank and; 2) host odour + males (n=30) (2d) / blank. P-value was calculated using a proportional exact test. 

P=0.015 P=ns 
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Figure 4.12: Percentage response of female P. argentipes (2d) (n=120) in a Y-tube olfactometer to: 1) host odour + males 

(n=5) (6d) / blank and; 2) host odour + males (n=30) (6d) / blank. P-value was calculated using a proportional exact test.

P=ns P=ns 
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4.3.4 Response of Females (6d) to Hexane Extract of 30 Males (6d) P. 

argentipes 

 Females (6d) were significantly attracted to the hexane extract of 30 (6d) 

male P. argentipes in the presence of host odour (Figure 4.13) (1-Proportion exact 

test: number of females to test=59, number of females to control=37, P=0.032) but 

not when host odour was absent (exact test: test=50, control=50, P=ns). 
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Figure 4.13: Percentage response of female P. argentipes (6d) (n=120) in a Y-tube olfactometer to; 1) host odour + male 

extract (6d)/hexane and; 2) hexane/hexane. . P-value was calculated using a proportional exact test. 

P=ns P=0.032 
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4.3 DISCUSSION 

 

 The results presented in this chapter strongly suggest that a volatile male 

produced sex pheromone is present in Phlebotomus argentipes. Although this is 

not the first time that a sex pheromone has been suggested in an Old World 

species (Chelbi et al., 2010) it is the first time that a behavioural response in a 

moving air assay has been observed for this important species. Other workers 

have suggested that P. argentipes males produce a sex pheromone (Kumar et al., 

2012). However their results relied on the demonstration of contact behaviour to a 

filter paper disk rather than an upwind anemotaxis in an olfactometer that could be 

misinterpreted. In addition their results may have been skewed by the activity of a 

few highly active individual females and thus not be representative of the test 

population as a whole. The results presented here show that under certain 

circumstances of age of males and females and the presence of host odour that 

females are attracted to live male P. argentipes and organic solvent extract of 

male P. argentipes. 

 

 The preliminary experiments showed that age was an important factor in 

determining whether or not P. argentipes couples would mate. Older males (6d) 

and females (6d) mated more readily than younger males (2d) and females (2d). 

For this reason older males and females were used in the later experiments to 

determine response to large or small numbers of males and to extract of males. 
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In Y-tube olfactometer experiments, young (2d) male P. argentipes were 

significantly less attractive than older (6d) males. This observation is consistent 

with observations made in other species of sand flies e.g. Lu. longipalpis and P. 

papatasi. In Lu. longipalpis younger males produce less sex pheromone as they 

are observed to have fewer and smaller vacuoles in sex pheromone glands in the 

abdomen (Spiegel et al., 2002). The same may also be true for P. papatasi 

although no source of sex pheromone has yet been identified in that species. 

 

Although newly emerged male and female sand flies are found ready to 

mate in the colony, results from these experiments revealed that there was no 

significant difference in the proportion of young female flies (2d) that responded in 

the Y-tube olfactometer to the arm containing the odour of young males (2d) or the 

blank arm in the presence of potential host odour. This finding suggests that the 

attractiveness of a sex pheromone produced by male P. argentipes could be 

dependent on the age of the responding female. Jones (1997) established that Lu. 

longipalpis females are attracted to and prefer to mate with middle-aged males (4-

6 days old) rather than younger (12 hours – 2 days old) or older (8-10 days old) 

males. This is a choice that could be related to pheromone production (Jones et. 

al., 2000). Jarvis and Rutledge (1992) also presented evidence to suggest that 

middle-aged (6-10 days old) males Lu. longipalpis were more successful in mating 

and females mated to older males laid more eggs than those mated to younger 

males. 

 

A greater proportion of P. argentipes females were attracted to large 
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numbers of males (n=30) compared to small numbers of males (n=5) in the 

presence of host odour. Palit et al. (1993) and Lane et al. (1990) studying the 

aggregation behaviour of P. argentipes on animal hosts in India and Sri Lanka 

respectively, demonstrated that the proportion of males to females on the host 

animal ranged from between 8-27 males to one female. This suggests that a group 

of less than 8 males may be less attractive to females, and most probably a group 

of 30 males would be required to attract females to the vicinity of the potential 

host. 

 

Young females (2d) were not attracted to older males (6d) in small or large 

groups. However old females (6d) were attracted to a small group of young males 

(2d) but were not attracted to a large group of young males. This result seems 

anomalous given the other results reported in this chapter and it might have been 

expected that a large group of young males would be attractive if a small group is 

attractive, and this should be investigated further. The lack of response of young 

females to old males suggests that young females may be sexually immature in 

their response to any sex pheromone released by older males. It has been 

suggested that mating activities are age-dependent (Boufana et al., 1986; Jarvis 

and Rutledge, 1992; Jones, 1997; Jones et al., 2000) and it may be that there is 

an interaction between age of females and size of the lek of males on or around 

the host that have been observed by many workers in the field (Lane et al., 1990; 

Palit et al., 1993). 

 

A striking result of these experiments reported in this chapter was the 
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observation of the importance of the presence of host odour in inducing female P. 

argentipes to respond in the Y-tube olfactometer. There was a significant reduction 

in the numbers of females that did not respond in the bioassay experiment when 

host odour was present. As the potential hosts were not visible to the female sand 

flies from the Y-tube olfactometer and as the temperature was controlled equally 

for both arms, this suggested that host odour was important in stimulating or 

orientating female flies towards male sand flies. Those findings support the 

observed response of Lu. longipalpis virgin females to sex pheromone released by 

their conspecific males flies in the presence of the potential host (Bray and 

Hamilton, 2007). Those results and the results of others suggested that the host 

odour had a synergistic effect on the attractiveness of male sex pheromone. This 

finding indicates that presence of potential host is able to enhance the 

attractiveness of sex pheromone emitted by male flies to female flies for mating 

purposes before, while or after they blood feed on the host. 

 

This chapter also showed that P. argentipes female flies were significantly 

attracted to hexane extract of males when compared to hexane alone in the 

presence of potential hosts. This signifies the possibility of replacing the presence 

of P. argentipes males around the hosts to attract females for mating and blood 

feeding purposes. This would be the first step taken to explore the possibility to 

develop a synthetic sex pheromone compound that equivalent to the sex 

pheromone produces by P. argentipes males. The usage of synthetic pheromone 

lures could possibly apply in an integrated vector control approach, additional to 

conventional control programme, in order to trap and kill female flies that transmit 
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leishmaniasis in a control and monitoring vector programme efficiently (Bray et. al., 

2009).   
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CHAPTER 5: COURTSHIP BEHAVIOUR IN PHLEBOTOMUS 

ARGENTIPES  

 

 

5.1 INTRODUCTION 

  

 Combining synthetic pheromone and insecticide, to attract and kill insects 

has been adopted in some vector control programmes (Oliveira-Filho and Melo, 

1994; Kline, 2006, 2007; El Sayed et al., 2009; Bray et al., 2010). However it has 

been suggested that a comprehensive study of the courtship behaviour of these 

target insects, to better understand their mating behaviour, is needed so that the 

efficacy of such methods can be maximised (Kelly and Dye, 1997; Girling and 

Cardé, 2006; Bray and Hamilton, 2007).  

 

 Extensive studies of mating behaviour in sand flies has been undertaken, in 

particular to understand the relationship between the male sex pheromones and 

their effects on the behaviour of other males and females and mate choice 

between individuals and within populations, either in the laboratory or in nature 

(e.g. Kelly and Dye, 1997; Jones and Hamilton, 1998; Jones et al., 1998, 2000; 

Jones, 2001; Jones and Quinnell, 2002; Bray and Hamilton, 2007). Swarming, or 

lekking in sand flies, has been considered to be a strategy by which males attract 

females and to increase probability of mating success. Males are believed to 
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employ sex pheromones to achieve this. Acoustic signals may also be used during 

mating to communicate with intended mates over either short distance for 

recognition and stimulation e.g. Drosophila (Greenspan and Ferveur, 2000) or long 

distance for attraction e.g. cricket (Hedwig, 2006; Wagner and Basolo, 2007). In 

Lutzomyia longipalpis, an acoustic signal has been identified and it is now clear 

that at least three different types of copulation songs are produced by males 

during courtship depending on which of the populations in Brazil they are derived 

from (Ward et al., 1988; de Souza et al., 2002). There is evidence that sex 

pheromones of these acoustically different populations are also known to be 

different (Hamilton et al., 1996a, b). 

 

 Jarvis and Rutledge (1992) suggested that parading in male Lu. longipalpis 

was a display behaviour that enabled the male to mark his territory to either 

another male or female in a lek. Wing flapping by males may also disperse the sex 

pheromone to attract or arrest female or it may serve as a marker of male fitness 

in male-male competition and/or female choice (Ward et al., 1988; Lane et al., 

1990; Jones and Hamilton, 1998). In Phlebotomus papatasi, it has been 

suggested that male wing flapping helps to move the aedegal filaments closer to 

the spermathecal ducts of female to be able to deposit the spermatophore (Ilango 

and Lane, 2000; Chelbi et al., 2012). A ‘courtship dance’ in P. argentipes, has 

been described by Palit et al. (1993) and it involves the male in short hops, 

swinging of his terminalia and wing flapping while on a host animal. 
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 The series of individual behaviours that occur during courtship and the 

sequence of the behaviours, from the beginning until the end, between a pair of 

male and female sand flies have been studied in Lu. longipalpis and P. papatasi 

(Bray and Hamilton, 2007; Chelbi et. al., 2012). In these studies, details of the 

behaviour displayed were noted, and the sequences of the behaviours were 

analysed and positive and negative behaviours that could be seen during mating 

were also identified. These studies valuably illuminate the intricate interactions 

between males and females some of which may be critical for mating success. 

Understanding why some males or females are not successful whereas others are 

may offer opportunities for control, such as the suggestion that contact 

pheromones may be involved in male female interactions (Bray and Hamilton, 

2007). Chelbi et al. (2012) found that in P. papatasi, female stationary wing-

flapping and male copulation attempts are two behavioural indicators that indicate 

that courtship attempts will lead to successful mating. In Lu. longipalpis, Bray and 

Hamilton (2007) showed that male wing-flapping when nearly approaching female 

and a tendency to semi-circle females before attempting to copulate were two 

behaviours that successfully predicted mating success. Female behaviour is also 

important and female P. papatasi tend to rub her legs when she is not receptive to 

the males, this behaviour was not observed in Lu. longipalpis. 

 

 Observations of P. argentipes mating behaviour that have been described 

by Palit et al. (1993) were mainly on the behaviour of males in a lek and during 

copulation on the host. These are more qualitative description of individuals and 

pairs and so lack any relationship to which are important in the population as a 
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whole. Thus, quantitatively, there is still lack of the exact individual behaviour that 

may be displayed by both males and females during courtship. As there is 

evidence of chemical signals involved in the mating behaviour of P. argentipes, i.e. 

females are attracted to male-produced sex pheromone over a distance in a Y-

tube olfactometer bioassay (Chapter 4), it was hypothesised that there could be an 

association between behaviour displayed and information transferred between 

them during courtship. Knowledge of this could be used to strengthen our 

understanding of the basic biology of P. argentipes and may direct us towards 

future research avenues leading to new vector control tools. 

 

 This study is aimed to provide an accurate, detailed and quantitative 

description of courtship in P. argentipes, in which the interactions of pairs of sand 

flies were observed under laboratory conditions. The differences in the behaviour 

displayed by both the male and the female were described and analysed to 

quantify the behaviour. The interactions between them were analysed to 

determine the sequence of behavioural events and specifically which behaviours 

were significant because they led to subsequent behaviours, which led to 

copulation. The behaviours that were recognised and quantified were based on 

observations and descriptions in previous studies of Lu. longipalpis (Ward et al., 

1988; Jones and Hamilton, 1998; Bray and Hamilton, 2007), P. papatasi (Chelbi et 

al., 2012), P. argentipes (Lane et. al., 1990; Palit et al., 1993) and other insects 

(Kamhawi et al., 1992; Gebre-Michael et al., 1994; Mahamat and Hassanali, 1998; 

Barbour et al., 2007; Casares, 2007). Analyses of the behaviour were to determine 
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the behaviour(s) displayed by either male or female that are vital to mating 

success. 
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5.2 MATERIALS & METHODS 

 

 Adult males and females were from the colony maintained as previously 

described in Chapter 2. Male and female 6d flies used in the observations were 

separated within 5 hours of emergence before the rotation of the external male 

genitalia. They were fed only on saturated sugar solution in an adult holding cage. 

Two separate cages consisting of ten flies of each sex were acclimatised to 

experimental condition for an hour prior to trials. All of the observations were 

carried out on the solid, vibration-damped bench in the bioassay room at 

27°C2°C and 85% relative humidity under white fluorescent light between 1400 

and 1800 hours. 

 

5.2.1 Recording of the Courtship Behaviour  

The courtship interactions between 40 individual pairs of P. argentipes 

males and females were observed in a courtship arena consisting of a round 

plastic container (diameter 22 mm and height 15 mm) with a 10 mm layer of 

plaster of Paris at the bottom and surrounding wall surface. The top of the arena 

was covered with a glass slide (76 x 26 x 1 mm) to prevent flies from escaping and 

to enable recording of the interactions between the couples. The size of arena was 

chosen to facilitate movement of male and female sand flies during courtship and 

also to enable the interactions to be recorded sufficiently. All observations were 

carried out in a temperature-controlled bioassay room and constantly maintained 



 

106 

 

at 27°C±2°C under a white fluorescent light. A fibre optic light source (KL 500; 

Schott UK Ltd, Stafford, UK) was used for additional illumination during filming. 

 

Behavioural interactions were recorded using a colour video camera (TK-

1280E; JVC, London, U.K.) fitted with a zoom lens (Computer 18-108 mm, f 2.5 

manual focus; CBC (Europe) Ltd, London, UK) and supported 30 cm above the 

courtship arena using a copy stand (CS-920; Tracksys Ltd, Nottingham, U.K.). 

Output from the camera was fed through a vertical interval time code (VITC) 

generator (AEC-BOX-18; Adrienne Electronic Corp., Las Vegas, NV, USA) to a 

time-lapse security video recorder (VCR) (HS1024; Mitsubishi Electric, Hatfield, 

U.K.) set to non-stop recording. A feed from the VCR was sent to a colour monitor 

(Trinitron KV-14MIU; Sony, Thatcham, U.K.) to enable camera adjustments and to 

watch observations while filming. 

 

For each observation, a male fly was removed from the cage using a 

mouth aspirator and placed into the arena via a notch cut into the glass slide. After 

a period of 5 min, the VCR was set to record and a female was placed into the 

arena using the aspirator. Males were placed in the arena earlier than the females 

to replicate natural sand fly behaviour i.e. males are reported to arrive earlier and 

establish their territories on or near the host before the females arrive (Lane et al., 

1990; Dye et al., 1991; Jarvis and Rutledge, 1992). Observations of one male and 

female at a time were made until copulation occurred or for a maximum of 15 min 

where copulation did not occur. The courtship arena was replaced between 
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replicate. After use the courtship arena was washed with hexane and the glass 

slides were cleaned with 5% Teepol L detergent (VWR International, United 

Kingdom), distilled water and acetone.  

 

5.2.2 Courtship Behaviour Analysis 

 Courtships behaviours recorded during observations were analysed using a 

PC fitted with a PC-VITC card (Adrienne Electronic Corp.) running the Observer 

Base Package for DOS (Version 3.0) and Support Package for Video Tape 

Analysis (Version 3.1; Noldus Information Technology, Wageningen, the 

Netherlands). Videotapes were played back using the same VCR that was used to 

record observations and the output was sent simultaneously to the PC-VITC card 

and the Sony TV monitor. Behaviour of both male and female sand flies was 

coded into mutually exclusive categories (in which only one of the behaviours 

listed in Table 5.2 could be performed by each fly at any given time) and entered 

into the Observer software via a sequence of key presses during video playback. 

Video images were replayed in slow motion and analysed with key presses in 

Observer synchronised to the time code recorded onto the video by the VITC 

generator, as read by the PC-VITC card.  

  

 Sequences of each pair of male and female courtship behaviours obtained 

from the Observer software were used to calculate the frequency and duration of 

the behaviour performed during observations and formed the basis of subsequent 

analysis of behavioural transitions. The differences in the frequency or duration of 
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behaviours performed by males and females were compared and statistically 

tested using the paired t-test or Wilcoxon signed rank tests, as appropriate. 

Fisher’s exact test was used to establish which behaviour of male and female that 

lead to copulation, occurred most frequently compared to unsuccessful courtship 

interactions. Any behaviour displayed by either male or female that showed 

significant results was identified as a precursor to mating success.  
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5.3 RESULTS 

 

5.3.1 Courtship Behaviour 

 40 pairs of P. argentipes males and females were observed individually 

during courtship. A series of individual behaviours performed by males and 

females were observed and categorised as in Table 5.1. Not courting (behaviour 

1; Figure 5.1), where the sand fly remained stationary without any activity; was 

usually used as separator from one behaviour to other behaviours. Overall time 

spent on courtship activities (excluding time spent for copulating); males were 

found to be significantly more active during courtship than females i.e. mean time 

for male (s): 102.8±22.0, female: 46.8±11.4; (paired t-test) t39=2.561, P=0.01). 

 

 Stationary wing flapping (behaviour 2; Figure 5.2) was observed to be 

performed by both male and female sand flies. Males significantly spent more time 

in stationary wing-flapping which lasted longer (6.39s) than females (2.00 s) (mean 

time for male (s): 5.7±0.69, female: 1.8±0.20; (Wilcoxon Signed rank test) 

Z=11.535, P<0.01). Males were also found to significantly more frequently 

stationary wing-flap compared to females (male: 14.4±2.38, female: 7.5±1.87; 

(Wilcoxon Signed rank test) Z=3.162, P=0.002). 

 

 Both male and female sand flies touched each other with the tips of their 

legs or antennae. The duration of time spent touching (behaviour 3; Figure 5.3a 

and Figure 5.3b) was not significantly different between males and females (mean 
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time for male (s): 2.3±0.41, female: 1.6±0.29; (Wilcoxon Signed rank test) 

Z=2.513, P=0.12). There was also no significant difference in the frequency of 

touching behaviour between male and female (male: 4.3 ± 0.73; female: 2.6 ± 

0.46; (Wilcoxon Signed rank test) Z=1.803, P=0.071).  

 

 Another courtship behaviour performed by both male and female was 

dipping (behaviour 5; Figure 5.5a and Figure 5.5b) in which male or female moved 

their abdomen vertically pointing it to the surface of the courtship arena, a 

movement that happened very quickly. Although the female was found to spend 

significantly more time dipping than the male (mean time for male (s): 2.0±0.41, 

female: 4.3±0.50; (Wilcoxon Signed rank test) Z=4.015, P<0.01), there was no 

significant difference in the frequency for either of them (male: 0.9±0.29; female: 

1.8±0.63; (Wilcoxon Signed rank test) Z=1.001, P=0.317). 

 

 Circling and dipping (behaviour 6; Figure 5.6) was observed in both P. 

argentipes males and females. In this behaviour the sand fly plunged its head and 

thorax to the surface of the arena, followed by dipping its abdomen in a circular or 

semi-circular movement around the same spot. This was often seen in a clockwise 

followed by an anti-clockwise direction and looked like a ‘spinning crazily’ 

movement, with the individual circling and dipping on the floor of the arena when 

observed from the top. There were no significant difference in the time spent or the 

frequency of the behaviour in males or females (mean time for male (s): 7.9±1.53, 

mean time for female: 12.6±2.07; (Wilcoxon Signed rank test) Z=1.903, P=0.057), 
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(frequency: male: 0.3±0.14; female: 0.4±0.14; (Wilcoxon Signed rank test) 

Z=1.185, P=0.236). 

 

 Facing (behaviour 4; Figure 5.4) was performed by the male and female 

concurrently. In this behaviour males and females faced each other and remained 

unmoving for a few seconds. Time spent facing per trial varied from 2.72 s to 4.28 

s and mean frequency of facing for each trial was 0.7±0.16. 

  

 Males exclusively displayed three behaviours including approach-flapping 

(behaviour 8; Figure 5.8), abdomen bending (behaviour 9; Figure 5.9), and 

copulation attempt (behaviour 10, Figure 5.10). The duration of time spent 

abdomen bending per trial was from 2.17 s to 5.43 s and frequency of abdomen 

bending per trial was 0.93±0.29. Time spent approach-flapping per trial was from 

1.93 s to 3.47 s and frequency per trial was 2.0±0.44. Duration of time spent in 

copulation attempt per trial was from 0.69 s to 1.91 s and number of frequency per 

trial was 1.3±0.61.  

 

 In total, 17 pairs (42.5%) out of 40 copulated successfully and 23 pairs 

(57.5%) did not. Only one male (5.9%) successfully copulated at the first attempt 

but 8 males (47.9%) copulated successfully at the second attempt and 5 males 

(29.5%) succeeded at the third attempt. The remaining males succeeded at their 

fourth, fifth and sixth attempts respectively. The duration of copulation i.e. the time 
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taken from when the male and female started to copulate until either the male or 

female pulled away, ranged from 7.3 min to 11.7 min. 
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Table 5.1: Behaviours observed during P. argentipes courtships. 

 

No. Name of behaviour Description 

 Male and female 
behaviours 

 

1 Not courting  
(Fig. 5.1) 

Sand fly remains stationary without moving, wing-flapping, facing or touching its partner. 
 

2 Stationary wing-
flapping (Fig. 5.2) 

Sand fly remains stationary and flaps both wings simultaneously. Flapping followed a pattern of small vibrations through 
a slight rotation of the wings followed by a large flap, in which both wings extended to an angle of 45–70o from the body. 
 

3 Touching  
(Fig. 5.3a,b) 

Sand fly makes contact with its partner usually by touching with the tips of the legs or antennae, and sometimes on the 
surface of its abdomen. 
 

4 Facing (Fig. 5.4) Male and female face each other in close proximity for a few seconds.  
 

5 Dipping (Fig. 5.5a,b) Sand fly moves vertically by dipping its abdomen to touch the floor of the arena, often in a repeating pattern. 
 

6 Circling and dipping 
(Fig.5.6) 

Sand fly positions its head towards the arena floor and dips the end of its abdomen while moving in a circle or semi-
circle around the same spot. Movement occurred in both clockwise and anticlockwise directions. 
 

7 Copulation (Fig. 5.7) Male and female copulate with the tips of the abdomen joined and facing in opposite directions. Males often flapped 
their wings until female appeared to accept copulation. Females normally remained motionless but occasionally 
struggled during copulation. 

 Male-only 
behaviours 

 
 

8 Approach-flapping 
(Fig. 5.8) 

Male vigorously flaps his wings and steps towards female in an alternating repeating pattern. 
 

9 Abdomen bending 
(Fig. 5.9) 

Male bends his abdomen laterally; swinging his terminalia to the left and right, commonly when female is nearby. 
 

10 Copulation attempt 
(Fig. 5.10) 

From a position parallel to the female, male bends his abdomen in an attempt to make contact with the female genitalia, 
often while wing-flapping. 
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Figure 5.1: Not courting; both sand flies (indicated by the arrows) remain 

stationary without moving, wing-flapping, facing or touching their partner. 

 

 

Figure 5.2: Wing flapping; male sand fly (indicated by the arrow) is stationary wing 

flapping. 
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Figure 5.3a: Touching; sand fly makes contact by touching its partner with the tips 

of its legs. 

 

 

Figure 5.3b: Touching; sand fly makes contact by touching its partner with the tips 

of its antennae. 
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Figure 5.4: Facing; male and female sand fly facing each other closely for a few 

seconds. 
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Figure 5.5 a: Dipping; female sand fly (on the right) moves vertically by dipping 

her abdomen to the floor of the arena. 

 

 
 
Figure 5.5 b: Dipping; male sand fly (on the right) moves vertically by dipping his 

abdomen to the floor of the arena. 
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Figure 5.6: Circling and Dipping; female is circling and dipping. 

 

 

 
 
Figure 5.7: Copulation;male and female copulate when the tips of their abdomen 

joined. 
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Figure 5.8: Approach flapping; the male wing flaps and steps towards the female 

in an alternating repeating pattern. 

 
 

 
 
Figure 5.9: Abdomen bending; male bends its abdomen laterally towards female. 
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Figure 5.10: Copulation attempt; male bends its abdomen attempting to copulate 

with female. 
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5.3.2 Courtship Behaviour as a Predictor of Copulation Success 

 In the courtship trials, certain male behaviours played an important role in 

determining the success of copulation attempts and thus could be considered as 

predictors of success. Specifically those behaviours were the male flapping his 

wings vigorously while walking toward female, and then, while in the vicinity of the 

female, the horizontal swaying of his genitalia followed by a copulation attempt 

whilst parallel to the female. These behaviours were performed significantly more 

frequently by males who successfully copulated when compared to unsuccessful 

males (Table 5.2). Males (82.5%) that had successful courtships performed 

approach wing-flapping behaviour (Figure 5.8) in contrast to 34.8% whose 

courtships were unsuccessful. Also 52.9% of males performed abdomen bending 

(Figure 5.9) in successful courtship compared to 17.4% involved in unsuccessful 

courtships. The most important behaviour that predicted successful courtship was 

‘copulation attempt’ (Figure 5.10), 94.1% of males that attempted copulation were 

successful compared to only 4.3% of males that did not (Table 5.2). 

 

 P. argentipes male also displayed a behaviour that very reliably predicted 

an unsuccessful courtship. Dipping behaviour (Figure 5.5a and Figure 5.5b), in 

which the male moved his abdomen vertically onto the surface of the arena, was 

carried out by 56.5% of males that failed to copulate with their partners, in contrast 

only 5.9% of males that displayed dipping behaviour successfully copulated with 

their partners (Table 5.2). Although females also displayed the same behaviour, 

there was no significant difference in the number that displayed it in successful 
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compared to unsuccessful courtships. Circling and dipping behaviour (Figure 5.6) 

occurred in 26.1% of males that were unsuccessful in courtship and did not occur 

at all in successful males (Table 5.2). Again, although females also performed this 

behaviour it did not predict female courtship success. 

 

 Stationary wing-flapping (Figure 5.2), touching (Figure 5.3a and Figure 

5.3b) and facing (Figure 5.4) behaviours were commonly displayed by both males 

and females. These behaviours showed statistically no different in the frequency of 

occurrence in either successful or unsuccessful courtships (Table 5.2).  
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Table 5.2: The numbers of courtship behaviours occur in successful and unsuccessful courtships for each individual. 
 

  
Courtship Behaviours 

 
Successful courtship 
[N=17] (%) 

 
Unsuccessful courtship 
[N=23] (%) 

 
P value 
 

  
Male behaviours: 

   

 Stationary wing-flapping 17 (100) 22 (95.7) 1.00 
 Touching 15 (88.2) 21 (91.3) 1.00 
 Facing 6 (35.3) 10 (43.5) 0.747 
§ Dipping 1 (5.9) 13 (56.5) 0.012* 
§ Circling and dipping 0 6 (26.1) 0.030* 
† Approach wing-flapping 14 (82.4) 8 (34.8) 0.004** 
† Abdomen bending 9 (52.9) 4 (17.4) 0.038* 
† Copulation attempt 16 (94.1) 1 (4.3) < 0.005** 
  

Female behaviours: 
   

 Stationary wing-flapping 11 (64.7) 14 (60.9) 1.00 
 Touching 10 (58.8) 19 (82.6) 0.153 
 Facing 6 (35.3) 10 (43.5) 0.747 
 Dipping 6 (35.3) 13 (56.5) 0.216 
 Circling and Dipping 2 (11.8) 6 (26.1) 0.428 

 
 
†Behaviour more likely to lead to successful courtships. (Fisher’s exact test) 
§ Behaviour more likely to lead to unsuccessful courtships. 
Significant difference at: *P<0.05, **P<0.01 
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5.4 DISCUSSION 

 

 The courtship behaviour of Phlebotomus argentipes comprises of a series 

of individual behaviours of male and female sand flies both of which actively 

participate. The core progression of behaviours comprised the male wing-flapping 

while approaching the female, before touching her with the legs or antennae prior 

to attempting copulation. This builds on a previous description of the ‘courtship 

dance’ of P. argentipes, described as involving males hopping, swinging the 

terminalia and wing-flapping (Palit et al., 1993). 

 

 Some of the behaviours displayed by P. argentipes are similar to those 

described in other Old World (P. papatasi) and New World (Lutzomyia longipalpis) 

species. In both P. argentipes and P. papatasi (Chelbi et al., 2012) stationary 

wing-flapping, touching and facing are performed by males and females. However 

in Lu. longipalpis only stationary wing-flapping and touching behaviour are seen 

(Bray and Hamilton, 2007). 

 

  Wing-flapping is commonly seen in the mating behaviour of sand flies 

(Ashford, 1974; Ward et al., 1988; Bray et. al., 2010). However, even though 

stationary wing-flapping was frequently observed among P. argentipes males and 

females, it is not a predictor of successful mating for either sex. This is unlike the 

situation in female Lu. longipalpis and P. papatasi where, interestingly, stationary 

wing-flapping during courtship indicated that the courtship would lead to 
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successful mating. In male Lu. longipalpis, although wing-flapping is not an 

indicator of successful mating, it is believed to be an act to disseminate the sex 

pheromone. It is possible that the act of wing-flapping in P. argentipes males has a 

role that is comparable to a suspected role of wing-flapping in Lu. longipalpis i.e. to 

disseminate the sex pheromone. Further investigations are needed to reveal and 

confirm this matter for P. argentipes. 

 

 In addition to chemical communication, P. argentipes wing-flapping may 

also function in production of audio signals important to mating. Courtship songs, 

produced by rhythmic wing vibrations are believed to play a role in species 

recognition in Lu. longipalpis, as the pattern of sound produced by males during 

copulation differs between members of the species complex (Souza et al., 2004, 

2008). Similar audio signals have also been recorded during courtship in Lu. 

intermedia (Vigoder et al., 2011), and during copulation in Lu. cruzi (Vigoder et al., 

2010a) and Lu. migonei (Vigoder et al., 2010b). Audio signals have recently been 

recorded from P. argentipes (Hamilton and Brazil, 2015 unpublished) and it is 

therefore likely that they are widespread in other Old World species where wing-

flapping has been noted (Bray et al., 2010; Chelbi et al., 2012). As in P. papatasi, 

male P. argentipes flapped their wings only briefly at the start of copulation (Chelbi 

et al., 2012), possibly to assist in alignment of the male and female genitalia. This 

may suggest that audio signals produced prior to copulation (rather than during) 

may play a greater role in courtship. Manipulative playback experiments, similar to 

those carried out in Drosophila (Talyn and Dowse, 2004) are needed to determine 

the function of audio signals (if any) in sand fly mating behaviour. 
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 Both male and female P. argentipes were observed to physically contact 

each other by touching their partners, most commonly on the legs or the antennae. 

This behaviour has also been reported from studies of P. papatasi and Lu. 

longipalpis (Bray and Hamilton, 2007; Chelbi et al., 2012). Whilst found to be an 

integral part of the behavioural progression towards copulation, occurrence of this 

behaviour does not in itself predict copulation success in any of the three species 

examined to date by Bray and Hamilton (2007); Chelbi et al. (2012) and also Bray 

et al. (2014). 

 

Although the function of this touching behaviour is unknown in sand flies, it 

has been explained in detail in other insects. In Drosophila melanogaster, a layer 

of chemicals on the cuticle, known as cuticular hydrocarbons, were shown to be 

involved in mating via physical contact (Casares, 2007) and in the long-horned 

beetle, cuticular hydrocarbons mediate mate recognition (Barbour et al., 2007). In 

sand flies, including P. argentipes, differences in cuticular hydrocarbons can be 

used to distinguish between populations and species (Kamhawi et al., 1992; 

Gebre-Michael et al., 1994; Mahamat and Hassanali, 1998). There is lack of 

evidence that shows exchange of cuticular hydrocarbons between male and 

female P. argentipes however a recent study examined in detail the cuticular 

hydrocarbon profiles of male and female P. argentipes and there were significant 

differences between the sexes. Comparison of retention times with straight chain 

alkanes suggested that the female-associated chemicals may be smaller than the 

C20–C40 chemicals normally recovered from cuticle wax (Phillips and Milligan, 
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1986), whereas the male-associated compounds appeared to be in the normal 

range for cuticular hydrocarbons. Differences in the chemical profiles of males and 

females, and a potential behavioural mechanism for transmission and reception of 

these chemicals (touching) suggest the presence of a sex pheromone. However, 

this is not in itself evidence for sex pheromones and more work is required to 

identify the potential chemicals involved, and to conduct bioassays to ascertain 

their relevance to mating and other behaviour. In particular, experiments are 

needed to determine whether the male-associated chemicals detected here could 

be responsible for the response of female P. argentipes to male extracts observed 

in Chapter 4. 

 

 During courtship, male and female P. argentipes were observed to move 

their abdomen vertically, dipping it onto the surface of the courtship arena. 

Analysis revealed that male P. argentipes could use this as a signal of 

unwillingness to mate. When this occurred, copulation was significantly less likely 

to occur. Similar abdomen dipping behaviour has previously been observed in 

female Lu. longipalpis, which are free to choose from a number of potential mates 

within a lek (Jones and Hamilton, 1998). However in males this behaviour is 

unique to P. argentipes it has not been reported either in P. papatasi or Lu. 

longipalpis. It has been suggested that in Lu. longipalpis females that this 

behaviour is linked to monandry as for the female the correct mate choice is 

essential. However, why male P. argentipes should reject a potential mate is 

unclear, as males make relatively little contribution to offspring production. As only 

virgin males were used in this study, sperm depletion is also unlikely to explain this 
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result. Another behaviour unique to male P. argentipes courtship is circling and 

dipping. The sand fly first, plunges his head to the floor and then follows that by 

dipping the end of his abdomen while moving in circular or semi-circular around 

the same spot, usually in a clockwise and anti-clockwise direction. This behaviour, 

when seen from above, looks like the sand fly is spinning its whole body in a 

clockwise and then anti-clockwise direction interchangeably, and very rapidly. 

Whenever the male displayed this behaviour it indicated that he was not interested 

in mating with his partner. Further work is needed to ascertain whether rejection of 

females is a genuine feature of mating behaviour of P. argentipes, or an artefact of 

the trial conditions. If chemically mediated, mate rejection could form a target for 

mating disruption as a means of vector control. 

 

 Other P. argentipes male only behaviours that include; approach wing-

flapping, abdomen bending and attempt to copulate, were very much alike those 

previously observed in P. papatasi (Chelbi et al., 2012) Abdomen bending is not 

seen in Lu. longipalpis, but the other two behaviours, approach wing-flapping and 

attempt to copulate are seen (Bray and Hamilton, 2007). 

 

 The courtship behaviours displayed by P. argentipes males resembled 

those that had been observed by Palit et al. (1993) on a hamster in a laboratory 

experiment. In that study they described that when a P. argentipes male closely 

approached a P. argentipes female, he bent his terminalia horizontally to the left 
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and right of his body, while flapping his wings vigorously in a manner similar to that 

described in P. orientalis (Ashford, 1974) and Lu. longipalpis (Ward et al., 1988).  

 

They assumed that males were displaying a ‘courtship dance’ that included short 

hops, wing-flapping (steps towards the female while flapping his wings) and 

abdomen bending, before copulating happened. They found that in all of the 

observations of successful mating, the ‘courtship dance’ of males occurred, but no 

‘courtship dance’ or any courtship behaviours by females were reported. 

 

 In this study, once copulation started, the P. argentipes male commonly 

remained motionless as did the female this behaviour lasted for from 14 s to 32 

min. It ended when either the male or female pulled away from copulation. 

Sometimes the male wing-flapped until the copulation was stable i.e. when the 

female remained motionless and finally accepted copulation. Sometimes the male 

wing-flapped while moving around the arena with the female still in copula. 

However, Palit et al. (1993) recorded that copulation had occurred in the range 

from 4 s to 3 min 47 s, which was less than in this study. This difference may have 

been due to the presence of the host kairomone that synergised the male 

pheromone making the male more attractive to the female (Palit et al., 1993). A 

further difference is that in those experiments P. argentipes females could choose 

their potential male freely among the other lekking males. In this study the host 

was not present and female was not given a choice of choosing its potential mate 

in essence the male was chosen randomly and placed in the mating arena. It 
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would be very interesting to carry out a further series of experiments in a bigger 

arena and in the presence of host odour to determine how these mating 

interactions might differ under the presence of different numbers of males and 

females where the males were forced to compete with each other for mating and 

also females were forced to compete for the available males. However the 

experiments reported here clearly indicate which behaviours are critical to mating 

success. 

 

 Interestingly, in P. argentipes, female courtship behaviours were not 

significant in leading to successful mating this is unlike the situation in P. papatasi 

and Lu. longipalpis where stationary wing-flapping leads to successful courtship. 

Only P. argentipes male behaviours during courtships were considered crucial to a 

successful mating. Whilst dipping and also circling and dipping were behaviours to 

indicate failure to mate, approach wing-flapping, abdomen bending and copulation 

attempt were usually associated with mating success. Generally, in insect mating 

systems, males are considered to be more prepared to court and copulate than 

females because time and sperm donated are their main mating cost. In contrast 

females are commonly found to be very selective in their mate choices (Thornhill 

and Alcock, 2001) this is likely to be due to their investment in time and resources 

to producing the next batch of offspring. 

 

 P. argentipes mating behaviour is very similar to Lu. longipalpis mating 

behaviour in that males of both species appear to lek on or near the animal host 



 

131 

 

(Ward, 1988; Lane et al., 1990; Palit et al., 1993). They also reported that the male 

wing flapping, which is usually performed in short pulses, is similar to that seen in 

Lu. longipalpis and we now know that this wing fluttering produces a “courtship 

song” that is similar but different to the songs produced in the Lu. longipalpis 

species complex (Hamilton and Brazil, 2015 unpublished). This courtship song is 

likely to be a very important part of the initiation and maintenance of successful 

mating in both P. argentipes and Lu. longipalpis. 

 

 P. argentipes males were observed to be likely to bend their abdomen to 

nearby females before their attempt to copulate, this behaviour has not been 

observed in Lu. longipalpis, however it was in P. papatasi. All three species of 

sand flies; P. argentipes, P. papatasi and Lu. longipalpis, share one common 

behaviour, copulation attempt and this is critical to mating success in all three 

species.  

 

 Very little is known about the mating strategy of P. argentipes and this is the 

first quantitative study of courtship behaviour in this important vector species. 

Experiments to answer questions such as whether females mate only once or 

more often, or why males appear to reject females are essential for developing 

and understanding of a key life history stage of this insect and for the development 

of new and innovative control strategies. The results of this study demonstrate that 

courtship in P. argentipes shares similarities with both the new world VL vector Lu. 

longipalpis, and the Old World cutaneous leishmaniasis vector P. papatasi. As 
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wing flapping seems crucial to mating success in this species, future studies 

should attempt to identify the modality of the signal produced by this behaviour 

and in particular its role in the courtship behaviour for example whether or not it is 

a pre- or post-zygotic mating barrier. In Lu. longipalpis the range of courtship 

songs produced by males appear to be indicative of different members of the 

species complex; it would also be interesting to determine and if the P. argentipes 

courtship song varied in a similar way across the full range of P. argentipes 

distribution. There may also be opportunities for exploitation of the courtship song 

as a means of vector control which should be explored in due course. Touching is 

an important behaviour displayed by both males and females and may be 

associated with detecting specific chemicals on the cuticle of the partner. 

 

Chemical analyses and behavioural bioassays are now required to identify 

the chemicals present on the surface of male and female P. argentipes, and to 

determine if they have any role in attracting or dissuading potential mates. Both 

sexes of P. argentipes reject potential mates, which suggests that some 

individuals are more attractive than others. Lu. longipalpis females are known to 

prefer a small number of males within an aggregation, and attractiveness in this 

species is both an inheritable characteristic, and associated with pheromone 

production (Jones and Hamilton, 1998; Jones et al., 1998). Identifying differences 

between relatively attractive and unattractive individuals in P. argentipes would be 

a logical next step in identifying the modality of sexual signals used in this species. 

 

The study in this chapter revealed a series of interactions between P. 
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argentipes males and females that involved cues and responses between them 

that lead to mating success. The full range of cues could involve chemical, tactile, 

vision or acoustic signals or encompassing two or more signals, and these should 

be investigated further. 
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CHAPTER 6: GENERAL DISCUSSION  

 

 

6.1 PRINCIPAL FINDINGS 

 

The overall aim of this study was to determine if volatile chemicals involved 

in oviposition and mating might be present in Phlebotomus argentipes and by a 

detailed examination of the courtship behaviour of both sexes determine if non-

volatile chemical cues might also be important. Specific objectives were to; 1) 

determine if an oviposition pheromone was associated with eggs; 2) determine if 

the oviposition pheromone was present on the surface of eggs; 3) establish in an 

moving air olfactometer if a volatile sex pheromone is produced by male P. 

argentipes; 4) determine the age of males that produce this cue and the age of 

females that respond to it; 5) determine if the sex pheromone can be removed 

from male P. argentipes in an organic solvent and used to induce a response by 

females in a Y-tube olfactometer and; 7) establish a detailed description of 

courtship behaviour of P. argentipes to determine if other non-volatile chemical 

cues and behaviours might be critical to successful mating. 
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6.1.1 Oviposition Response to Oviposition Pheromone Associated with 

Conspecific Eggs 

 The presence of an oviposition pheromone associated with conspecific 

eggs was investigated using behavioural bioassays. It was found that gravid P. 

argentipes laid their eggs in the vicinity of a site where conspecific eggs had 

previously been placed. This type of response has been previously observed in 

other species of sand flies e.g. Lutzomyia longipalpis (El Naiem and Ward, 1991; 

El Naiem et al., 1991; Dougherty et al., 1992, 1994; Dougherty and Hamilton, 

1997) and P. papatasi (Srinivasan et al., 1995), where gravid females are 

stimulated to lay more eggs in the vicinity of previously deposited conspecific 

eggs. There is no evidence presented here or by the previous workers to suggest 

that the eggs are attractive to gravid females and it would be very interesting to 

conduct a series of olfactometer experiments to investigate this issue. 

 

It was also noted that gravid P. argentipes females seem to lay their eggs in 

alternative sites when the number of eggs present on the initial site reaches a 

threshold. This suggests that there may be a maximum number of eggs which can 

be laid at any one site and this information could be relayed by high 

concentrations of pheromone (i.e. when greater number of eggs are present), 

stimulating females to find other sites to lay their eggs (El Naiem and Ward, 1991; 

Dougherty et al., 1994). It is suggested that this behaviour may be a mechanism to 

avoid over populating a habitat. 
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 The observation that gravid females response to previously laid whole eggs 

with further egg laying suggested that a pheromone may be present on the surface 

of the eggs. Experiments to test this hypothesis where carried out and organic 

solvent was used to remove any chemical present on the surface of the eggs. 

These experiments confirmed that a chemical was present on the surface of the 

eggs and that it could be transferred to an alternative media such as filter paper 

and others. Again these results are similar to studies on Lu. longipalpis and P. 

papatasi, carried out by others (El Naiem and Ward, 1991; Srinivasan et al., 1995) 

and establish the presence of an oviposition pheromone on the surface of eggs of 

this species also. 

 

In the study reported here the effect of other semiochemicals from the 

oviposition site (kairomones) and their possible interaction with the oviposition 

pheromone were not done. It would be interesting in the future to see how these 

semiochemicals, which might be derived from decaying organic material e.g. 

faecal or other organic material influence oviposition behaviour. Very little is known 

about oviposition in sand flies in the wild, and as far as I am aware there have only 

been a small number of publications on oviposition in Lu. longipalpis and none that 

describe oviposition in P. argentipes in the wild or in the laboratory. The small 

amount of literature that is available suggests that sand flies oviposit in sites rich in 

decaying organic material therefore one might reasonably expect that odours from 

these sites might influence P. argentipes sand flies decision to oviposit and that 

these compounds might be attractants, stimulants or even deterrents. For 

example, when gravid Lu. longipalpis females were exposed to the oviposition 



 

137 

 

pheromone of that species together with extract of rabbit faeces, females were 

found to lay their eggs earlier and in greater numbers (El Naiem and Ward, 1992a; 

Dougherty et al., 1995). These authors established that the rabbit faeces extract 

was an oviposition stimulant and attractant. Dougherty et al. (1995) postulated that 

gravid female sand flies were directed to the oviposition sites, first by long range 

volatile attractants and by the physical quality of the oviposition substrate. They 

postulated that the oviposition pheromone is the final phase in oviposition site 

selection because it is believed that the pheromone influences gravid females over 

a very limited range. In P. papatasi, Schlein et al. (1990) demonstrated that the 

optimal condition chosen by gravid female would be based on physical and 

chemical cues of the oviposition substrate.  

 

The study of oviposition in P. argentipes has demonstrated the presence of 

an oviposition pheromone on conspecific eggs. However, the chemical involved 

has not been unidentified. Further studies will be needed to identify the chemical 

structure of the P. argentipes oviposition pheromone and also of the possible 

oviposition attractants or stimulants. However it is very likely that in P. argentipes 

the pheromone is a medium chain length fatty acid as in Lu. longipalpis where it 

has been shown to be dodecanoic acid (Dougherty and Hamilton, 1997). This is 

important for future study in which with the knowledge, exploitation of using the 

synthetic oviposition pheromone together with the oviposition attractants or 

additives in the endemic area of visceral leishmaniasis (VL) will indirectly reduce 

the population of adult P. argentipes by attracting and killing the gravid females 

while ovipositing their eggs in their breeding areas. 
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6.1.2 Male Sex Pheromone Mediated Mating Behaviour 

 The behavioural bioassays described in Chapter 4 were carried out to 

determine if male P. argentipes produce a sex pheromone. Simple preliminary 

experiments showed that pairs of 6d virgin male and female P. argentipes mated 

more frequently than pairs of younger age categories (1, 2, 3, 4 and 5d). This 

could have been because the females were most receptive at that age or the 

males were most attractive at that age. From these preliminary studies it was 

decided to determine the response of 2d and 6d females to males of the same age 

(and 2d females to 6d males and vice-versa) in a simple moving air two-choice 

olfactometer (Y-tube). From these experiments it was clear that 6d males 

produced a sex pheromone (2d males did not) and 6d virgin females were more 

responsive to the sex pheromone than 2d females. Jarvis and Rutledge (1992), 

working with Lu. longipalpis, showed that mating success was correlated with male 

age; middle-aged males (6-10d) were more successful in obtaining mating than 

young (1-5d) or old (11-15d) flies. Jones (1997) also showed that mating success 

in Lu. longipalpis was age-dependent. She showed that females prefer to mate 

with middle-aged males rather than younger or older males. P. argentipes females 

may use the same mate choice strategy as Lu. longipalpis females are attracted to 

the vicinity of a group of males by the male produced sex pheromone and mate 

choice by the female is the result of a combination of male signals including the 

pheromone. In the Y-tube olfactometer experiments described in Chapter 4 the 

display behaviour of males was eliminated showing that the sex pheromone is 

important in attracting females, however these experiments could not determine 
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the importance of sex pheromone production by individual males. This would be 

an interesting and important experiment to carry out but however because of 

limitations in apparatus it is currently impossible to relate female choice to quantity 

of pheromone produced by individual males. The closest approach to answering 

this question was work carried out by Jones and Hamilton (1998), who showed 

that the successful male, in a competing pair of males, had more pheromone in his 

glands and spent more time wing-flapping than unsuccessful males. The limitation 

of that study is that the amount of pheromone in the glands may not be related to 

the amount of pheromone produced by the successful male. 

 

 Bioassays carried out in the presence of host odour showed that the 

presence of host odour was important in improving the response of virgin females 

to males. In Lu. longipalpis host kairomones added to the sex pheromone in a 

bioassay synergised the response of the females (Bray and Hamilton, 2007) and 

similar observations have been made of the effect of host odour on the 

attractiveness of synthetic sex pheromone in the field (Bray et al., 2010). One 

possible scenario in P. argentipes, mating is that, males and females are attracted 

to a host animal first by host odour (kairomone) over long distance then the males 

disperse their sex pheromone (which is attractive over short range) while wing-

flapping to attract females for mating. Of course there are many possible 

alternative explanations for the role of the sex pheromone and how it interacts with 

the host odour and until the experiments are done the precise role played by the 

sex pheromone will remain uncertain. 
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 In my bioassays a bigger group of P. argentipes males was more attractive 

than a smaller group of males. Work by Palit et al. (1993) and Lane et al. (1990) 

showed that the ratio of males to females in wild leks ranged from 9:1 to 27:1; and 

19:1, respectively, suggesting that bigger groups of males might be more attractive 

than smaller groups.  

 

Females P. argentipes were more attracted to an organic solvent extract of 

males in the presence of host odour compared to when the extract was presented 

without host odour. As this response mimics the response seen by females to live 

males it adds weight to the conclusion that there is a chemical compound in the 

body of males that could attract females for mating. It was not possible to extend 

the investigation to analyse male extracts or male extracts plus host odour by 

G/MS or electrophysiology to determine the exact nature of the male sand fly 

produce chemical.  

 

6.1.3 Courtship Behaviour of P. argentipes 

 Laboratory observations of pairs of P. argentipes males and females 

described in Chapter 5 established in detail the behaviours that are displayed by 

both sexes during courtship and their sequence. Some of the behaviours 

displayed by P. argentipes males (i.e. short hops, swaying of terminalia and wing 

flapping) have previously been observed during mating on or around the host 

during laboratory and field observations of P. argentipes and Lu. longipalpis sand 

flies (Ward et al., 1988; Lane et al., 1990; Palit et al., 1993). Although stationary 



 

141 

 

wing flapping is commonly displayed by both P. argentipes males and females 

throughout mating it was not found to be an indicator of successful mating. Male 

wing flapping is thought to be associated with sex pheromone dispersal by males 

in other species of sand flies such as Lu. longipalpis (Lane et al., 1985; Ward et 

al., 1988; Jones and Hamilton, 1998). Although there is no direct evidence, 

Ashford (1974) suggested that wing flapping was related to sex pheromone 

production in P. orientalis and Lane et al. (1990) and Palit et al. (1993) suggested 

that it may serve a similar function in P. argentipes. Stationary wing flapping is 

apparently a common act in sand fly courtship but it is not an assurance of a 

successful mating. 

 

 Even though, “touching” and “facing” were two behaviours that were 

displayed quite frequently in both P. argentipes males and females, their functions 

are difficult to discern. In other insects e.g. Drosophila melanogaster touching is an 

act that allows exchange of information on the chemical compounds present on 

the insect cuticle. These chemicals, known as cuticular hydrocarbons, are involved 

in the mating process (Casares, 2007). Also in the long-horned beetle, cuticular 

hydrocarbons that are perceived by contact have been demonstrated to mediate 

mate recognition (Barbour et al., 2007). Studies of cuticular hydrocarbons in sand 

flies, especially in Phlebotomus species, including P. argentipes, have been done 

usually to differentiate between different populations and species (Kamhawi et al., 

1992; Gebre-Michael et al., 1994; Mahamat and Hassanali, 1998). Though there is 

a lack of evidence showing that cuticular hydrocarbons are exchanged during this 

touching process it is possible that males touch females or females touch males 
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as a signal for mating or mate recognition or to distinguish potential mates. Whilst 

“facing” could simply be a physical act used to visually assess a potential mate. In 

a successful mating attempt, P. argentipes males approach females by flapping 

their wings, then when they are closely to females, they bend their abdomen 

laterally in an attempt to copulate, these behaviours have been referred to as a 

‘courtship dance’ (Palit et al.,1993).  

 

 P. argentipes males displayed two behaviours (“circling and dipping” and 

“dipping”) that indicated that mating would not occur, significantly, these 

behaviours have not been reported in similar studies carried out with either in P. 

papatasi or Lu. longipalpis. Whenever a male displayed these behaviours, it 

indicated that the male was not interested in mating with his partner. Although an 

explanation for males rejecting females is difficult to perceive it may be that the 

male may have ejaculated his sperm while he dipped his terminalia on the surface 

of the arena or potentially the available partner was not compatible due to the 

male being unable to recognise his mate because of intrinsic factors such as age, 

body size, hormonal stage, mating status. Alternatively, the influence of external 

factors (such as surroundings, temperature, etc.) could affect male behaviour 

towards his mate (extrinsic behaviour). All of the observations for this study were 

carried out in a small observation chamber. In the work for Chapter 4, it was 

shown that the small observation chamber resulted in fewer successful 

copulations that a larger Barraud cage suggesting that the sand flies are 

constrained to an extent by their immediate surroundings. It would be ideal to 

repeat these male/female interactions in the larger arena to determine the 
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significance of these behaviours in a different environment. Darwin (1871) 

hypothesised that intrasexual competition (involving competition within one sex for 

individuals of the opposite sex) and mate choice (also known as intersexual 

selection involving preferential choice by one sex for individuals of the opposite 

sex) are the two mechanisms that stimulate sexual selection. Intrasexual 

competition normally refers to male-male competition that competes for the female 

to be his mate, whereas mate choice is more of a female’s choice of attractive 

males. Few studies have examined potential costs of female choice and factors 

intrinsic to females that affect choice. Gray (1999) found that in female house 

crickets, Acheta domesticus age had a significant effect on female choosiness in 

which young females were selective of her mate but not older females. He also 

found that nutritional condition, body size, and size-relative reproductive 

investment did not influence female choice. Furthermore, females spent more time 

in choosing attractive males compared to unattractive males.  

 

It is possible that P. argentipes employ not only chemical signals (e.g. the 

sex pheromone that is dispensed while “wing-flapping” and a contact pheromone 

while “touching”) during courtship but also a physical (tactile) signal (also while 

“touching”) and visual (when “facing”). In nocturnal Lepidoptera, females emit a 

species-specific sex pheromone to recruit a sexual partner (Shorey, 1973). This 

sex pheromone elicits an immediate response of sexual behaviour in mature, 

conspecific males, who exhibit a positive response in search of the pheromone 

source (Kennedy et al., 1981). When a male approaches the female, in response 

to a high pheromone concentration and potentially other cues, he is stimulated to 
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display his courtship behaviour, which may consist of chemical signals, with the 

extrusion of scent glands such as hair pencils (Birch et al., 1990), a series of 

contact moves (Girling and Cardé, 2006) and/or acoustic signaling by wing-fanning 

(Spangler, 1987). Female emission of and male response to pheromones are 

affected by extrinsic factors (e.g. temperature, wind speed, relative humidity) and 

intrinsic factors (e.g. age).  

 

Mating behaviours are complex and involve a series of interdependent 

events including searching for mates, participation in courtship, copulation and the 

need to recover from the cumulative costs of previous events. Searching for mates 

and courtship involves communication and coordination between individuals 

including those that may not necessarily share similar intentions (Thornhill, 1979; 

Parker, 1983; Bradbury and Vehrencamp, 1998; Johansson and Jones, 2007). 

Therefore courtship behaviour is seen to be a complex hierarchical series of steps 

leading toward successful conspecific mating in many species of insects and the 

work presented here indicated that this is likely to be the case also for P. 

argentipes.  

 

6.2 FUTURE WORK 

 

 The experiments that were carried out have demonstrated that pheromones 

are used to mediate oviposition and mating in P. argentipes. The pheromones are 

produced by P. argentipes females and males respectively, and their presence 
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demonstrated through oviposition and mating bioassays. The work presented here 

also investigated some aspects of the sequence of event involved in successful 

courtship behaviour. The work also showed that host odour cues (kairomones) are 

important and enhance the activity of the sex pheromone during mating. These 

findings have improved our knowledge of oviposition and mating behaviour in P. 

argentipes and raise the possibility of applying the knowledge for the control and 

monitoring of sand flies in a vector control programme. 

 

 Further work is required to improve and extend the current findings. In the 

case of oviposition pheromones of gravid P. argentipes females, although there 

was evidence showing that an oviposition pheromone helps to facilitate the choice 

of oviposition site, it is unclear if the effect of this oviposition cue is as a stimulant 

or attractant. Testing the P. argentipes oviposition pheromone in a moving air 

olfactometer such as a wind-tunnel or Y-tube might allow us to determine if it is an 

attractant or stimulant. In addition testing the oviposition pheromone in 

combination with environmental oviposition cues from frass, larval rearing medium 

or rabbit faeces, etc. might help reveal important information about the interactions 

between environment and insect. In nature, it is known that oviposition 

pheromones and other cues; such as environmental, physical and visual, will be 

used by gravid insects to find suitable oviposition sites to oviposit. 

 

 Identification of the chemical structure of the oviposition pheromone of P. 

argentipes and other oviposition attractants/stimulants would be a significant 
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addition to our understanding of P. argentipes oviposition behaviour and offer new 

opportunities for vector control. Further experiments to identify the chemicals 

involved and their interaction need to be done in the laboratory and field before we 

can make progress in the possibility of developing an oviposition trap to monitor or 

control populations of P. argentipes. However as ovitraps, with or without the 

addition of attractants in lures, have been used as one of the tools to reduce 

mosquito populations there is considerable potential for developing this line of 

work in sand flies. 

 

 The work in this thesis has established that P. argentipes male sex 

pheromone attracts P. argentipes females and the presence of host odour 

synergises the attraction. Further work is needed to identify and fully characterise 

the chemical compound(s) that make up the sex pheromone and the compounds 

in host odour that synergise it. In Lu. longipalpis species complex several novel 

methylsesquiterpenes were identified as the active component of the members of 

the complex. Each member has its own unique chemical. A preliminary 

examination of P. argentipes male extract did not reveal the presence of a similar 

class of compounds so further work to identify the chemical will involve complex 

statistical comparisons of male extracts and related electrophysiology to identify 

receptor active compounds. Further work to understand the basic biology of this 

communication system is also required. For example the range of concentrations 

and distances over which the chemical is attractive and more information on the 

age of males that produce the pheromone as well as the receptivity of females is 

should be explored in the laboratory and in the field. 
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Although the basic elements of the courtship behaviour of P. argentipes 

have been established, there is still more information that need to be gathered to 

fully understand the mating system; for example what is happening when the 

males and females have more space to move around in while making their choice. 

Further work to determine which of the individual courtship behaviours (if any) are 

exclusive and their exact function in regulating mating success may include the 

manipulation of the individual behaviours. Play-back experiments, for example, 

where the sounds that males and females make while mating, are included in a 

manipulative experimental setting, may reveal the importance of individual 

acoustic elements of the mating interactions. 

 

A fuller understanding of the mating system of P. argentipes may help to 

develop the potential of this pheromone for its use for vector control. Several 

possibilities exist; 1) a ‘lure-and-kill’ strategy as is being developed currently 

against Lu. longipalpis in Brazil which comprises the use of a synthetic pheromone 

and animal host to attract females to a trap or insecticide (Bray et al., 2010) and; 

2) mating disruption strategy in which release of synthetic sex pheromone over a 

wide area can prevent males and females from locating one another.  

 

 The extension of the preliminary studies described in this thesis will 

enhance and widen our knowledge on the biology, ecology and chemical mediated 

behaviour of P. argentipes that could lead to improve the efficiency and efficacy of 
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the sand fly control programmes, when used alongside existing insecticides, in 

which could directly reduce the amount of VL being transmitted among the 

populations at risk.  
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Abstract

Background: The sand fly Phlebotomus argentipes is arguably the most important vector of leishmaniasis worldwide. As
there is no vaccine against the parasites that cause leishmaniasis, disease prevention focuses on control of the insect vector.
Understanding reproductive behaviour will be essential to controlling populations of P. argentipes, and developing new
strategies for reducing leishmaniasis transmission. Through statistical analysis of male-female interactions, this study
provides a detailed description of P. argentipes courtship, and behaviours critical to mating success are highlighted. The
potential for a role of cuticular hydrocarbons in P. argentipes courtship is also investigated, by comparing chemicals
extracted from the surface of male and female flies.

Principal Findings: P. argentipes courtship shared many similarities with that of both Phlebotomus papatasi and the New
World leishmaniasis vector Lutzomyia longipalpis. Male wing-flapping while approaching the female during courtship
predicted mating success, and touching between males and females was a common and frequent occurrence. Both sexes
were able to reject a potential partner. Significant differences were found in the profile of chemicals extracted from the
surface of males and females. Results of GC analysis indicate that female extracts contained a number of peaks with
relatively short retention times not present in males. Extracts from males had higher peaks for chemicals with relatively long
retention times.

Conclusions: The importance of male approach flapping suggests that production of audio signals through wing beating,
or dispersal of sex pheromones, are important to mating in this species. Frequent touching as a means of communication,
and the differences in the chemical profiles extracted from males and females, may also indicate a role for cuticular
hydrocarbons in P. argentipes courtship. Comparing characteristics of successful and unsuccessful mates could aid in
identifying the modality of signals involved in P. argentipes courtship, and their potential for use in developing new
strategies for vector control.

Citation: Bray DP, Yaman K, Underhilll BA, Mitchell F, Carter V, et al. (2014) Multi-modal Analysis of Courtship Behaviour in the Old World Leishmaniasis Vector
Phlebotomus argentipes. PLoS Negl Trop Dis 8(12): e3316. doi:10.1371/journal.pntd.0003316

Editor: Paulo Filemon Pimenta, Fundaçao Oswaldo Cruz, Brazil
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Introduction

Visceral leishmaniasis (VL) is a debilitating disease estimated to

cause 20,000–40,000 deaths worldwide each year [1]. The Indian

subcontinent is one of the areas most affected by VL, with over

140,000 cases per year estimated to occur in India alone [1]. The

etiologic agent in this region is the protozoan parasite Leishmania
donovani (Kinetoplastida: Trypanosomatidae), with the sand fly

Phlebotomus argentipes (Diptera: Psychodidae) the proven or

suspected vector in Bangladesh, India, Nepal and Sri Lanka [2].

As there is no vaccine against VL, and cost and drug resistance

limit effectiveness of treatment in India [3], control of the sand fly

vector remains a priority for reducing transmission [4]. To be

successful these programmes require a thorough understanding of

the behaviour of the insect vector [5], not least because many

human activities can significantly alter sand fly behaviour and

potential risk of transmission. Agricultural practices, for example,

may lead to creation of new habitats for sand flies [6]. Insecticide

spraying for control can lead to unintentional diversion of sand

flies away from normal resting sites in animal houses, potentially

increasing the biting risk to humans [7,8].

Studies of insect vector mating behaviour facilitate development

of novel tools for control. For example, a new approach for

controlling the South American vector of VL, Lutzomyia long-
ipalpis, exploits attraction to male-produced sex pheromones. A

synthetic version of this chemical attracts both females and males
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to traps and insecticide-sprayed surfaces for up to 3 months in the

field [8,9]. Field and laboratory observations suggest that P.
argentipes shares some underlying behavioural characteristics with

L. longipalpis. In both species, males form aggregations on or

above host animals prior to the arrival of females, where mating

and blood-feeding takes place [10,11]. Currently, very little is

known about the signals which mediate male-female interactions

in P. argentipes. Insect courtship is often a complex process, and

can include transmission and reception of auditory, physical, visual

and chemical signals between potential mates [12]. In common

with L. longipalpis, aggregating male P. argentipes perform wing-

flapping behaviours, but their relevance to mating or courtship is

unknown [10,13–16]. There is also evidence that female P.
argentipes investigate unidentified chemicals that can be extracted

from male P. argentipes [13]. Hydrocarbons present in the

cuticular wax, which function as chemical signals in mating

behaviour of many insect species [17], have also been reported

from many species of sand fly, including female P. argentipes [18].

However, the extent to which male and female P. argentipes differ

in the hydrocarbons they produce, and how these potential

chemicals signals might be transmitted during courtship (e.g.

through touching [12]), remains to be investigated.

To date, studies of mating behaviour in P. argentipes have been

limited to observations of aggregations on host animals [10,13,14].

The small-scale interactions between individual males and females,

which occur prior to copulation, have not been described. The

aim of this study was therefore to provide a detailed analysis of the

individual behaviours performed by male and female P. argentipes
during courtship, and the sequence in which they occur.

Behaviours which predicted copulation success, and are therefore

critical to mating, were identified through statistical analysis.

Courtship in P. argentipes was then compared with that of L.
longipalpis [16] and Phlebotomus papatasi [19], species from

which there is also evidence of chemical communication [20].

Through a combination of gas chromatography and mathematical

analysis, we also determined whether there are sex-specific

differences in the chemicals present in or on the male and female

cuticle of unmated P. argentipes. Such chemicals might play a

crucial role in sexual signalling of this important disease vector.

Methods

Sand fly rearing
P. argentipes were from a colony maintained at Keele

University, UK, for approximately 28 generations. Adults were

kept in Barraud cages at 27uC, 95% RH, under a 12:12 light:dark

photocycle. Females were blood fed 3 days post-emergence in

accordance with UK Home Office Licence requirements (see

Ethical Statement). Male and female P. argentipes used in both

mating trials and chemical analyses were placed into single-sex

cages within 5 h of eclosion (prior to rotation of male genitalia) to

prevent mating prior to experiments, and fed only on saturated

sugar solution.

Recording of courtship behaviour
Courtship interactions between 38 pairs of male and female P.

argentipes were recorded under white florescent light in a purpose

built bioassay room at Keele University. The males and females

used were between 4 and 6 days old as this is the age at which they

are believed to be sexually mature. The room was maintained at

27uC62uC and 85% rh, with all recordings made between 1400

and 1800 hours. Courtship took place in a round plastic mating

arena (22 mm ID615 mm H) (Figure S1 and S2). The top of the

arena was covered with a glass slide (7662661 mm) which

prevented flies escaping while enabling videoing of courtship

behaviour. Recordings were made using a colour video camera

(TK-1280E; JVC, London, UK) fitted with a zoom lens

(Computar 18–108 mm, f 2.5 manual focus; CBC (Europe) Ltd,

London, UK) and supported 30 cm above the courtship arena

using a copy stand (CS-920; Tracksys Ltd, Nottingham, UK).

Output from the camera was fed through a vertical interval time

code (VITC) generator (AEC-BOX-18; Adrienne Electronic

Corp., Las Vegas, NV, USA) to a time-lapse security video

recorder (VCR) (HS1024; Mitsubishi Electric, Hatfield, UK) set to

non-stop recording. A feed from the VCR was sent to a colour

monitor (Trinitron KV-14MIU; Sony, Thatcham, UK) to enable

camera adjustments and observations while filming. Additional

illumination for recording was provided by a fibre optic light

source (KL 500; Schott UK Ltd, Stafford, UK).

For each observation, a male fly was placed into the arena, via a

round hole made in the side, using a mouth aspirator. After a

period of 5 min, the VCR was set to record and a female was

placed into the arena using the aspirator. Males were placed into

the arena first to mimic the natural behaviour of P. argentipes, in

which males aggregate on host animals prior to the arrival of

females [10]. Each observation was recorded for a maximum of

ten minutes, or terminated earlier once the pair had disengaged

from copulation. The copulation arena was cleaned with hexane

to remove any contaminating volatiles (VWR International Ltd,

Leighton Buzzard, UK) and left in a fume hood for the hexane to

evaporate prior to reuse. The glass slide was washed with 5%

Teepol detergent (VWR International, Lutterworth, United

Kingdom), distilled water and acetone (Sigma Aldrich, Gilling-

ham, UK) between trials.

Analysis of courtship behaviour
Recordings of courtship behaviours were analysed using a PC

fitted with a PC-VITC card (Adrienne Electronic Corp.,

Henderson, USA), running the Observer Base Package for DOS

(Version 3.0) and Support Package for Video Tape Analysis

(Version 3.1; Noldus Information technology, Wageningen, the

Author Summary

The sand fly Phlebotomus argentipes transmits Leishmania
parasites through female blood-feeding. These parasites
cause leishmaniasis, a potentially fatal disease for which
there is no vaccine. Understanding how insect vectors
behave can aid in developing strategies to reduce disease
transmission. Here, we investigate courtship behaviour in
P. argentipes. Courtship is critical to an organism’s life
cycle, as it is essential for mating and reproduction. We
show that courtship in this species begins with the male
wing-flapping while approaching the female. This behav-
iour may suggest production of audio signals, or dispersal
of chemicals from the male, which the female finds
attractive. There then follows a period of touching
between males and females prior to copulation. This
behaviour may function in the transmission and reception
of chemical signals, present on the insect surface. Many
insects use these kinds of chemicals in courtship, and here
we show differences in the chemicals extracted from the
cuticle of male and female P. argentipes. Both males and
females were found to be able to reject a potential mate.
Understanding why some P. argentipes are more attractive
than others could help identify the signals essential to
reproduction, and their potential for use in vector control.
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Netherlands). Videos of courtship were replayed on the VCR, with

the output sent simultaneously to the PC-VITC card and the Sony

TV monitor. Behaviour of both male and female P. argentipes was

coded into mutually exclusive categories (in which only one of the

behaviours listed in Table 1 could be performed by each fly at any

given time) and entered into the Observer software via a sequence

of key presses during video playback. Video images were replayed

in slow motion, with key presses in Observer synchronised to the

time code recorded onto the video by the VITC generator, as read

by the PC-VITC card.

Raw data on the order and duration of behaviours performed

during courtship were exported from Observer into R version 3.1

[21]. These data formed the basis of subsequent analysis of

behavioural transitions (see below). Frequency or duration of

behaviours performed by males and females were compared

statistically using Wilcoxon signed rank tests. Fisher’s exact test

was used to establish which male and female behaviours occurred

more frequently in successful and unsuccessful courtships, in order

to identify behaviours which predicted mating success.

Analysis of behavioural transitions
A log-linear modelling approach in R was used to devise a

statistical model of courtship behaviour in P. argentipes
[16,19,22,23]. Chi-square tests first established whether there

was a significant overall association between preceding and

following behaviour in male-male, male-female, female-female

and female-male behavioural transitions during courtship (Tables

S1, S2, S3, S4), ignoring periods of not courting (Table 1,

behaviour 1). To improve robustness of X2 tests, behaviours which

occurred less than five times in rows or columns of transition tables

were excluded from analysis. Adjusted residuals .1.96 in a no-

effect model identified individual behavioural transitions which

occurred significantly more likely than expected by chance in each

table [24,25]. Significant transitions were joined together to form a

kinetogram outlining the overall sequence of behaviours in P.
argentipes courtship (Figure 1).

Chemical analysis of cuticular profiles
Volatile and non-volatile chemicals present on the surface of the

cuticle or in glandular tissue of sexually mature (4–6 day old),

unmated male and female P. argentipes were extracted by placing

individual flies in glass vials containing 20 ml of hexane for

15 minutes [26]. Following removal of flies, vials were sealed and

stored at 220uC until use. For gas chromatography–mass

spectrometry (GC/MS) analysis, individual extracts were reduced

to dryness at room temperature under nitrogen and then re-

suspended in 2 ml hexane prior to injection. Samples were

analysed via splitless injection (inlet temperature: 280uC) into an

Agilent 7890A-5975C GC/MS (Agilent Technologies UK Ltd,

Cheshire, UK) on a non-polar HP-5MS column. Oven temper-

ature was maintained at 75uC for 5 min, before rising at 17uC
min21 and held at 310uC for 10 min. The carrier gas was

hydrogen.

Gas chromatographs expressed as detector response over time

from 24 male and 24 female sand flies were imported into R for

analysis [27]. Chromatographs were aligned, and variation in

baseline was removed using the ptw (parametric time warping)

package [28]. Noise in chromatograms was reduced by averaging

responses over 25 ms, and ignoring peaks below a threshold of

50000 in height. This resulted in a set of 39 peaks not present in

control ‘blank’ samples for further analysis. Principle component

analysis (Psych package [29]) was then used to extract and rotate

components explaining underlying variation in the matrix of peak

heights for the 48 flies. Linear discriminant analysis with jack-

knifed predictions (Mass package [30]) was then used to determine

the accuracy with which fly sex could be predicted from the scores

assigned to each sand fly from the extracted components.

Ethics statement
Female P. argentipes were blood fed on anaesthetized

laboratory mice. All work involving blood-feeding was carried

out in the UK under UK Home Office licence 4003279 and was

approved by the Home Office. The Keele University animal

Table 1. Behaviours performed during P. argentipes courtship.

Name of behaviour Description

Male & female behaviours

1 Not courting Sand fly remains stationary or moves around the arena without wing-flapping, facing or touching its courtship partner.

2 Stationary wing-flapping Sand fly remains stationary and flaps both wings simultaneously. Flapping followed a pattern of small vibrations through a
slight rotation of the wings followed by a large flap, in which both wings extended to an angle of 45–70u from the body.

3 Touching Sand fly makes contact with its partner by touching with the tips of the legs or antennae. Contact was most often made with
the partner’s legs or antennae, and occasionally the abdomen.

4 Facing Male and female remaining motionless while facing one another.

5 Dipping Sand fly moves vertically by dipping its abdomen to touch the floor of the arena, often in a repeating pattern.

6 Circling and dipping Sand fly positions its head towards the arena floor and dips the end of its abdomen while moving in a circle or semi-circle
around the same spot. Movement occurred in both clockwise and anticlockwise directions.

7 Copulation Male and female copulate with the tips of the abdomen joined and facing in opposite directions. Males often flapped their
wings until female appeared to accept copulation. Females normally remained motionless but occasionally struggled during
copulation.

Male-only behaviours

8 Abdomen bending Male bends his abdomen laterally; swinging his terminalia to the left and right, often while female is nearby.

9 Approach-flapping Male rigorously flaps his wings and steps towards female in an alternating repeating pattern.

10 Copulation attempt From a position parallel to the female, male bends his abdomen in an attempt to make contact with the female genitalia,
often while wing-flapping.

doi:10.1371/journal.pntd.0003316.t001
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welfare ethics review board at Keele University also reviewed and

approved the blood feeding protocol prior to commencement of

this study. The study was conducted according to the guidelines set

for animal husbandry by Keele University and the UK Home

Office. These rules are governed by the Animals (Scientific

Procedures) Act 1986. In addition we comply with the Common

Rules for Animal Research that are prepared by the UK National

Centre for the Replacement, Refinement and Reduction of

Animals in Research (NC3Rs).

Results

Overview of courtship behaviour
Both male and female P. argentipes actively participated in

courtship, performing stationary wing-flapping, touching, facing,

dipping, and circling and dipping behaviours (Table 1). Males

performed three behaviours not performed by females: abdomen

bending (Table 1, behaviour 8), approaching the female while

wing-flapping (behaviour 9) and attempting copulation (behaviour

10). Bouts of active courtship were separated by periods of not

courting (behaviour 1), in which sand flies were either stationary or

moving around the arena. In total, males spent a greater

proportion of time during trials actively courting than females

(median (25%–75% quartiles), males 20.5% (8.7%–35.1%),

females 6.6% (3.0–20.5%), Wilcoxon signed rank test P,0.01).

While both sexes performed stationary wing-flapping (behaviour

2), males spent more time wing-flapping per trial than females

(males: 27.8 s (8.2–90.6), females: 2.4 s (0.0–29.3), P,0.001), and

wing-flapped more frequently (median behaviours per trial, males:

9.50 (3.0–17.6), females: 2.0 (0.0–10.0), P,0.01).

However, there was no difference between sexes in time spent

touching per trial (behaviour 3) (males: 2.3 (0.2–6.5), females: 4.0

(0.0–7.6), not significant (NS)), or frequency of touching behav-

iours initiated per trial (males: 3.0 (1.0–5.8), females: 2.0 (0.0–3.0),

NS). Similarly, there was no difference between sexes in time spent

dipping (behaviour 5) (males: 0.0 (0.0–4.0), females (0.26 (0.0–8.1),

NS) or overall frequency of dipping behaviours (males: 0.0 (0.0–

1.0), females: 0.5 (0.0–2.0), NS). There was also no difference in

time spent circling and dipping (behaviour 6) (males: 0.0 (0.0–0.0)

[mean 3.1 s], females: 0.0 (0.0–0.0) [mean 4.7 s], NS), or

frequency of circling and dipping (males 0.0 (0.0–0.0) [mean 0.3

behaviours per trial], females 0.0 (0.0–0.0) [mean 0.3], NS).

Pairs of sand flies spent a median of 2.5 s (0.6–3.7) facing

(behaviour 4) in 15 of 38 trials in which this behaviour occurred.

Males spent 2.3 s (0.76–4.0) approach flapping (behaviour 8), 1.8 s

(1.2–5.2) abdomen bending (behaviour 9) and 0.7 s (0.3–1.7)

attempting copulation (behaviour 10), where each of these

behaviours occurred during courtship trials.

Courtship proceeded to copulation in 16/38 (42%) of the

10 minute trials. Where copulation occurred, median copulation

latency (measured from the beginning of the trial) was 104.1 s

(63.6–142.3). In ten cases, copulation was concluded within the

10 min trial, with a median duration of 264.4 s (81.4–315.4).

Successful males copulated on their first (8 males) second (6 males)

third (one male) or fifth (one male) attempt. Males were observed

to continue wing-flapping during 4/16 (25%) copulations. In

general, males flapped their wings rapidly when beginning

copulation, but then ceased.

Sequence of behaviours during courtship
An overall effect of preceding behaviour on following behaviour

was found in male-male behavioural transitions (X2 = 168.7,

df = 48, P,0.001; Table S1). Significant individual transitions

occurred between approach flapping and touching, touching and

copulation attempt, and copulation attempt to copulation. A

significant transition also occurred between dipping to circling and

dipping. Similarly, an effect of preceding behaviour on following

behaviour was also found for female-female transitions (X2 = 45.5,

df = 11, P,0.001; Table S2). As for males, a significant transition

occurred between dipping and circling and dipping. In addition,

there was also a significant transition between facing and touching.

Examining behavioural interactions between sexes, an overall

effect of preceding behaviour on following behaviour was found in

male to female transitions (X2 = 79.9, df = 20, P,0.001; Table S3).

Male copulation attempt led to copulation, and facing to female

touching. An overall effect of preceding behaviour on following

behaviour was also found in female to male transitions (X2 = 34.3,

df = 20, P,0.05; Table S4), with the only significant individual

transition occurring between female dipping and male touching.

Figure 1. Kinetogram depicting sequence of male (square), female (circle) and joint (diamond) behaviours during P. argentipes
courtship, based on observation of 38 male-female pairs. * Behaviour significantly (P,0.05) more likely to occur in successful courtships,
ending in copulation. { Behaviour significantly more likely to occur in unsuccessful courtships (no copulation).
doi:10.1371/journal.pntd.0003316.g001
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Behaviours predicting copulation
Two male behaviours, approach flapping (8) and attempting

copulation (10) occurred significantly more frequently in court-

ships leading to copulation, and therefore predicted courtship

success (Fisher’s exact test, P,0.05, Table 2). Two further male

behaviours, dipping (5) and circling and dipping (6) occurred more

frequently in unsuccessful courtships than successful courtships.

These behaviours may therefore signal rejection of the female as a

potential mate. Occurrence of individual female behaviours or

facing during courtship did not predict copulation (Fisher’s exact

test, P,0.05 Table 2).

Kinetogram of courtship behaviour
Analysis of behavioural transitions and occurrence of behav-

iours in successful and unsuccessful copulations suggests the

following model of courtship in P. argentipes (Figure 1). In

successful copulations, the male progresses from approach

flapping, to touching, to attempting copulation, and copulation

(Video S1). Dipping and circling and dipping appear to be related

behaviours, and may indicate an unwillingness to mate. Female

dipping was found to lead to the male touching the female, while

periods of facing were followed by female touching the male. Both

may indicate an attempt to investigate or prompt an unwilling

mate.

Analysis of cuticular extracts
Two varimax-rotated principle components were extracted

from the matrix of 39 peak heights derived from male and female

P. argentipes. These two components explained 57% and 19% of

the variation in peak height respectively. Plotting of component

loading indicated that component 1 scaled positively with peaks

with relatively short retention times (6.68–11.86 minutes; Fig-

ure 2, x axis). Component 2, scaled with peaks with relatively long

retention times (13.54–21.79 minutes; Figure 2, y axis).

Plotting component scores for individual P. argentipes, females

had higher scores for component 1, while males showed greater

variation on component 2 (Figure 3). This translates to female

extracts exhibiting higher peaks for chemicals with shorter

retention times (which may not be present in males), and males

higher peaks for chemicals with longer retention times (Figure 4).

Linear discriminate function analysis performed on the two

rotated components resulted in jack-knife predictions of fly sex

(male or female) which were significantly better than chance (fly

sex correctly predicted in 75% of cases, Fishers exact test, P,

0.001). Predictions for males (21/24, 88% of individuals correctly

sexed) were more accurate than those for females (15/24, 63%).

This difference in predictive ability may reflect the general absence

of variation in males in component 1: i.e. peaks with low retention

times present in females, but not males (Figure 4).

Discussion

Courtship behaviour in P. argentipes shared several similarities

with both P. papatasi and the new world leishmaniasis vector L.
longipalpis. The core progression of behaviours comprised the

male wing-flapping while approaching the female, before touching

her with the legs or antennae prior to attempting copulation. This

builds on a previous description of the ‘courtship dance’ of P.
argentipes, described as involving males hopping, swinging the

terminalia and wing-flapping [14]. Both female and male P.
argentipes engaged in wing-flapping behaviour during courtship,

with male approach flapping a significant predictor of copulation

success. While integral to P. argentipes courtship, the function of

wing-flapping in this species is currently unknown. In L. long-
ipalpis, male wing-flapping has been hypothesised to aid in

dispersal of attractive sex pheromones released from abdominal

tergites [15,31]. These pheromones attract female L. longipalpis to

aggregations of males formed on or above host animals [32]. Male

P. argentipes also form mating aggregations on cows or other

animals, and perform wing-flapping behaviours prior to the arrival

of females [10,13]. It is therefore possible that male P. argentipes
also release an attractive sex pheromone to aid females in locating

these aggregations. Male P. argentipes also performed abdomen

Table 2. Behaviours predicting copulation during P. argentipes courtships.

Unsuccessful courtships (n = 22){ Successful courtships (n = 16)`

Male behaviours

Approach flapping 36.4% 81.3%**

Copulation attempt 9.1% 93.8%***

Abdomen bending 18.2% 50.0%

Circling and dipping 27.3%* 0.0%

Dipping 45.5%* 12.5%

Stationary wing-flapping 95.5% 100.0%

Touching 81.8% 87.5%

Female behaviours

Circling and dipping 31.8% 6.3%

Dipping 59.1% 37.5%

Stationary wing-flapping 68.2% 62.5%

Touching 86.4% 56.3%

Joint behaviours

Facing 45.5% 31.3%

{Percentage of unsuccessful courtships (no copulation) in which the behaviour occurs.
`Percentage of successful courtships (copulation) in which the behaviour occurs. Asterisks indicate behaviours which occurred significantly more frequently in unsuccessful
or successful courtships (Fishers exact test on count data: * P,0.05, ** P,0.01, *** P,0.001).
doi:10.1371/journal.pntd.0003316.t002
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bending during courtship, a behaviour previously reported from

Phlebotomus papatasi [19], Phlebotomus longipes [33] Phlebotomus
martini [34] and Lutzomyia vexator [35]. This could conceivably

also function in pheromone release from abdominal tergites, the

site of production of pheromones in L. longipalpis, [36]. There is

behavioural evidence of chemically mediated attraction of females

to males in both P. argentipes and P. papatasi [13,20]. However,

to date no sex pheromone, or likely sex pheromone-producing

structure, has been identified in any of the abdomen-bending sand

flies [37], and L. longipalpis (which does produce pheromones)

does not perform this behaviour [16].

In addition to chemical communication, P. argentipes wing-

flapping may also function in production of audio signals

important to mating. Courtship songs, produced by rhythmic

wing vibrations are believed to play a role in species recognition in

L. longipalpis, as the pattern of sound produced by males during

copulation differs between members of the species complex

[38,39]. Similar audio signals have also been recorded during

courtship in Lutzomyia intermedia [40], and during copulation in

Lutzomyia cruzi [41] and Lutzomyia migonei [42]. To our

knowledge, no audio signals have been recorded from P.
argentipes, despite descriptions of wing-flapping in this and other

Old World species [19,43]. As in P. papatasi, male P. argentipes
flapped their wings only briefly at the start of copulation [19],

possibly to assist in alignment of the male and female genitalia.

This may suggest that audio signals produced prior to copulation

(rather than during) may play a greater role in courtship.

Manipulative playback experiments, similar to those carried out

in Drosophila [44] are needed to determine the function of audio

signals (if any) in sand fly mating behaviour.

Whether associated with chemical, audio or visual signals, wing-

flapping appears to be a predominantly male activity, with male P.
argentipes wing-flapping more frequently, and for longer periods

of time than females. The same trend has previously been

observed in both P. papatasi and L. longipalpis [16,19]. In these

species, female wing-flapping was found to be a predictor of

courtship success, possibly indicating a willingness to mate. The

same was not found to be the case of P. argentipes reported here.

Touching, initiated by both male and female P. argentipes, was

frequently observed during courtship. This behaviour has also

been reported from studies of P. papatasi and L. longipalpis
[16,19]. Whilst found to be an integral part of the behavioural

progression towards copulation, occurrence of this behaviour does

not in itself predict copulation success in any of the three species

Figure 2. Component loadings for gas chromatogram peaks with different retention times extracted from 24 male and 24 female P.
argentipes. Peaks with lower retention times had higher loadings for rotated component 1, which explained 57% of the variation in the original
dataset. Peaks with higher retention times had higher loading for component 2, which explained 19% of the original variation.
doi:10.1371/journal.pntd.0003316.g002
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examined to date [16,19]. Touching in many insects, including

member of the genus Drosophila, is involved in the transmission of

short-range pheromones during courtship [12,45]. These chem-

icals include cuticular hydrocarbons, which can provide a range of

information including species, sex, age and mating status of a

potential partner [46]. Here, GC analysis revealed consistent

differences in the profile of chemicals extracted from the surface of

male and female P. argentipes. Comparison of retention times

with straight chain alkanes suggest the recovered female-associated

chemicals may be smaller than the C20–C40 chemicals normally

recovered from cuticle wax [47]. The male-associated peaks

however appear to be in the range for cuticular hydrocarbons,

although identification will be required to confirm their structure.

Previous studies have revealed variation in similar extracts from

female P. argentipes from different regions, and between wild and

colonized females [18]. Taken together, the results here indicate

that there are also differences in the chemical profile of males and

females, and that a potential behavioural mechanism exists for

transmission and reception of these chemicals (touching). Howev-

er, this is not in itself evidence for sex pheromones: more work is

required to identify the potential chemicals involved, and to

conduct bioassays to ascertain their relevance to mating and other

behaviour. In particular, experiments are needed to determine

whether the male-associated chemicals detected here could be

responsible for the response of female P. argentipes to male

extracts [13].

Courtship analysis revealed that male P. argentipes could signal

an unwillingness to mate by dipping their abdomen toward the

surface of the arena. When this occurred, copulation was

significant less likely to occur. Similar abdomen dipping behaviour

has previously been observed in female L. longipalpis, which are

free to choose from a number of potential mates within a lek [15].

It has been suggested that in L. longipalpis this behaviour is linked

to monandry as for the female the correct mate choice is essential.

Why male P. argentipes should reject a potential mate is unclear,

as males make relatively little contribution to offspring production.

As only virgin males were used in this study, sperm depletion is

also unlikely to explain this result. Further work is needed to

ascertain whether rejection of females is a genuine feature of

mating behaviour of P. argentipes, or an artefact of the trial

conditions. If chemically mediated, mate rejection could form a

target for mating disruption as a means of vector control.

Where mating did take place, P. argentipes copulated back to

back, as occurs in most species of sand fly. There was no evidence

Figure 3. PCA component scores for 24 male and 24 female P. argentipes. Females had generally higher scores for component 1, while males
showed greater variation in scores along component 2.
doi:10.1371/journal.pntd.0003316.g003
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of piggy backing behaviour (a possible mate-guarding activity), as

performed by Phlebotomus duboscqi [48]. As in L. longipalpis and

P. papatasi, there was considerable variation in both copulation

latency, and the duration of copulation in P. argentipes [16,19].

The extent to which the latter is related to successful transfer of

sperm and subsequent fertilization is unknown.

Very little is known about the mating strategy of P. argentipes.
Experiments to answer questions such as whether females mate

only once or more often, or why males appear to reject females are

essential for developing control strategies. The results of this study

demonstrate that courtship in P. argentipes shares similarities with

both the new world VL vector L. longipalpis, and the Old World

cutaneous leishmaniasis vector P. papatasi. As wing-flapping

seems crucial to mating in this species, future studies should

attempt to identify the modality of the signal produced by this

behaviour, and its potential for exploitation as a means of vector

control. Similarly, chemical analyses and behavioural bioassays

are now required to identify the chemicals present on the surface

of male and female P. argentipes, and to determine if they have

any role in attracting or dissuading potential mates. Both sexes of

P. argentipes reject potential mates, which suggests that some

individuals are more attractive than others. L. longipalpis females

are known to prefer a small number of males within an

aggregation, and attractiveness in this species is both an inheritable

characteristic, and associated with pheromone production [15,49].

Identifying differences between relatively attractive and unattrac-

tive individuals in P. argentipes would be a logical next step in

identifying the modality of sexual signals used in this species, and

their potential for exploitation in vector control.

Supporting Information

Figure S1 Close-up image of the arena used to observe male/

female courtship interactions. The image shows the walls of the

arena resting on a glass slide covered with a glass coverslip. For

each observation, a male fly was placed into the arena, via a round

hole made in the side, using a mouth aspirator.
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Figure S2 Close-up image of the arena used to observe male/

female courtship interactions. The image shows the walls of the

arena resting on a glass slide covered with a glass coverslip. For

each observation, a male fly was placed into the arena, via a round

hole made in the side, using a mouth aspirator.
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Table S1 Frequencies of male to male behaviours.

(DOCX)

Table S2 Frequencies of female to female behaviours.

(DOCX)

Table S3 Frequencies of male to female behaviours.

(DOCX)

Table S4 Frequencies of female to male behaviours.

(DOCX)

Video S1 Courtship behaviour of male and female P. argentipes.
The thinner male, identifiable by the genital clasper at the end of

the abdomen, approaches the female while wing-flapping

(Table 1, behaviour 9), who also performs wing-flapping while

Figure 4. Example cleaned gas chromatographs extracted from individual male (blue line) and female (red line) P. argentipes.
Females appeared to possess chemicals with lower retention times (less than 12 minutes) not recovered from males. Conversely males had larger
peaks for chemicals present at retention times greater than 18 minutes. Dotted vertical lines represent retention times for undecane (C11) and
eicosane (C20) under the same temperature programme.
doi:10.1371/journal.pntd.0003316.g004
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stationary (behaviour 2).The male makes contact with the female

through touching with the legs or antennae (behaviour 3) several

times prior to copulation.

(MP4)
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