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Abstract 

Background 

Hand problems are common in older adults causing pain and disruption to daily living. 

Understanding prognosis of such problems is therefore important to provide information 

on likely symptom course and to target treatment to those in most need. The aim of this 

thesis was to investigate prognosis of hand pain and functional difficulty in community-

dwelling older adults with hand pain.  

Methods 

The majority of data analysis was based on a cohort of adults aged 50 years and over 

reporting hand pain in the last 12-months at baseline (N=623). The Australian/Canadian 

Hand Osteoarthritis Index (AUSCAN) was the primary measure of hand pain (0-10) and 

function (0-10), measured at baseline and four follow-up time-points (1.5, 3, 5, and 7.5-

years). Random effect models, latent class growth models, parallel process growth 

models and parallel process growth mixture models were used to model longitudinal 

trajectories of AUSCAN pain and functional difficulty over time.  

Results 

Trajectories of hand pain and functional difficulty were shown to be relatively stable for the 

majority of participants over the 7.5-year follow-up period with an overall mean change per 

year of 0.05 (95% confidence interval: 0.02, 0.07) and 0.07 (95% confidence interval 0.05, 

0.09) points for AUSCAN pain and function respectively. Although combinations of 

predictors were identified that predicted symptom course, the strongest predictor was the 

baseline measure for the outcome of interest, with model fit not greatly improved by 

adding three further predictors to the model e.g. Nagelkerke’s pseudo R-square: Hand 

pain, baseline only 0.64; with additional predictors 0.70; Hand function, 0.80 and 0.83 

respectively. A group of participants with hand pain trajectories that differed greatly from 
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their hand function trajectories was not identified suggesting that changes in hand pain 

are linked to changes in hand function over time.   

Conclusions 

Progression of hand symptoms was not inevitable for all participants when assessed over 

a 7.5 year time-period. Baseline symptom severity may be the single most important 

predictor to identify those with an unfavourable symptom course and where early onward 

referral/treatment may be useful. This work remains exploratory however until findings are 

replicated in an external dataset.       

Key words: hand, pain, function, prognosis, older adults  
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1 Introduction 

1.1 Musculoskeletal disorders – background 

Musculoskeletal disorders represent a wide range of conditions that affect the joints, 

bones, muscles and soft tissue of the human body (Parsons et al. 2011). Although a 

diverse range of conditions (exceeding 200 in number (Parsons et al. 2011)) they are 

commonly linked by their impact on pain and functional difficulty (Woolf et al. 2003). 

Musculoskeletal disorders are common in the general population and a common cause of 

longstanding illness (Woolf et al. 2003).  

In the UK, it is estimated that 137 adults per 1000 of the population will report a disabling 

musculoskeletal condition (Office for National Statistics (ONS) 2009). This equates to just 

over 3-million adults, given the size of the UK population in 2010 and defining disability to 

be moderate to severe (Parsons et al. 2011). Patients with such conditions frequently 

report difficulties with completing tasks of everyday living and participating in work, 

hobbies and social activities (Hill et al. 2010, Wilkie et al. 2007), thus reducing quality of 

life for the individual and any family members involved in their care. The cost of such 

conditions has also been estimated in monetary terms by direct costs (e.g. use of medical 

services) and indirect costs (e.g. loss of productivity at work). In the UK it is estimated that 

the annual monetary cost of musculoskeletal disorders is £5.3 billion (Arthritis Research 

UK 2014).        

It is clear that musculoskeletal disorders have major individual, societal and economic 

impact (Woolf et al. 2003), and are reported as a leading cause of years lived with 

disability in Western Europe (Vos et al. 2012). This has prompted governments worldwide 

to set musculoskeletal conditions as a priority for future health-planning and research, with 

the World Health Organisation (WHO) declaring the ten year period (2000 – 2010) as the 

‘Bone and Joint’ decade – an initiative set up to raise awareness of the growing burden of 
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musculoskeletal disorders on society. The period for the ‘Bone and Joint’ decade has 

since been extended to 2020 highlighting the need for continued high quality research in 

this area (Bone and Joint decade's Musculoskeletal Portal 2015). 

1.2 Hand pain and function in older adults 

The hand is a common site for musculoskeletal pain (Urwin et al. 1998). Prevalence 

estimates for hand pain in the general population range between 5 and 26% depending on 

how severity and duration of symptoms are defined (Palmer 2003). Unlike the lower limb, 

the hand is not a weight-bearing joint and (for most people) is not directly involved in 

mobility. However, its role in achieving satisfactory function is clear, with the ability to 

grip/pinch objects, touch and feel sensation being vital to the completion of many tasks of 

everyday living (Bland et al. 2008). Hand problems are therefore the focus of this thesis, 

and worthy of study, separate from other areas of the body, particularly as they have been 

less frequently researched in older adults than musculoskeletal problems at other body 

sites, e.g. the hip or knee (Myers et al. 2007).    

The prevalence of hand pain increases with age (Palmer 2003), and for adults aged over 

55 and 50 years, respectively, the one-month and one-year period prevalence of hand 

pain is estimated at 17% and 30% (Dahaghin al. 2005b, Dziedzic et al. 2007). It is 

anticipated that the percentage of older people in the UK will increase in future years and 

projections from the Office for National Statistics estimate that by 2030 nearly a quarter of 

the UK population will be aged 65 years and over (Office for National Statistics (ONS) 

2012). The number of older adults with hand problems in the UK can therefore only rise as 

a consequence.   

Older adults represent a particular sector of the population that warrant attention as 

distinct from the population as a whole. Firstly, older adults are at greater risk of hand pain 

(Palmer 2003) and risk factors for progression of hand pain may differ from those in their 

younger years (Gagliese 2009). For example, the role of occupational risk factors may 
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differ in populations of mainly retired workers and the influence of any co-existing medical 

conditions may also impact on outcome in older adults. Secondly, the profile of the 

underlying cause of hand pain varies with age. For example, hand osteoarthritis is the 

most common cause of hand pain in older adults (National Collaborating Centre for 

Chronic Conditions 2008), yet this condition is relatively rare for adults aged 18 – 45 years 

(Haugen et al. 2011).  

1.3 Prognosis  

Prognosis is defined as the probable course or prediction of the outcome of a health 

condition over time (Hayden et al. 2010). Providing information to patients and clinicians 

on prognosis of a health condition is important and musculoskeletal conditions are no 

exception: in a postal survey of patients consulting for musculoskeletal conditions, 82% 

reported that information on prognosis would be useful, however only 33% reported 

discussing prognostic information with their general practitioner (GP) (Mallen et al. 2009). 

Prognosis research has been described by the PROGnosis RESearch Strategy 

(PROGRESS) Partnership1 as including four key inter-related themes: (1) exploring the 

course of a condition in the context of current care (Hemingway et al. 2013), (2) identifying 

specific factors associated with prognosis (Riley et al. 2013), (3) developing, validating, 

and exploring the impact of using statistical models to predict individual risk of a future 

outcome (Steyerberg et al. 2013), and (4) using prognostic information to help tailor 

treatment decisions to individuals with similar characteristics, i.e. stratified medicine 

(Hingorani et al. 2013). However, to achieve these aims, well designed longitudinal 

studies are needed.  

For musculoskeletal conditions, longitudinal studies with long-term follow-up are desirable 

so that the prognosis of conditions that are potentially chronic and of a long duration can 

be tracked over time. In addition, studies with outcome measurements collected at 

                                                 
1 The PROGRESS Partnership is an initiative funded by the UK Medical Research Council that 
aims to improve the quality and reporting of prognosis studies: http://progress-partnership.org/ 
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multiple time-points are also needed so that symptom course can be reliably tracked over 

time. Such studies, however, are lacking for people with hand pain and other common 

musculoskeletal conditions, especially in primary care and the community (Mallen et al. 

2007a). A recent report from the European League Against Rheumatism (EULAR) 

highlighted that a future research priority for osteoarthritis research is to increase the 

evidence base on the natural history and progression of osteoarthritis over time 

(Conaghan et al. 2014). There is therefore a gap in the literature for further studies to 

provide information on the prognosis of musculoskeletal hand conditions over time.   

1.4 Summary and thesis aims 

In summary, hand pain is prevalent in the population and commonly affects older adults. It 

affects the ability to function and reduces quality of life. A greater understanding of the 

clinical course of hand pain is needed, both to understand the nature and severity of the 

condition and to inform patients and clinicians of the likely future course and impact of the 

condition.  

The overall aim of this thesis is therefore to investigate the clinical course and prognosis 

of hand pain and function over time in community-dwelling older adults with hand pain.  

Specifically, three key objectives are addressed: 

1) To describe the long-term (6-year) trajectories of hand pain and functional difficulty in 

community-dwelling older adults;  

2) To identify baseline predictors of poor prognosis (i.e. worsening of symptoms over time) 

and to develop potential prognostic models (prediction rules) to identify those at risk of 

poor outcome; 

3) To explore the simultaneous relationship between changes in hand pain and functional 

difficulty over time. 
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Although the focus of this thesis is on symptom course over time, rather than diagnosis, it 

is recognised that multiple causes exist for hand symptoms. The prevalence of such 

causes will be reported in this thesis, however in a population of older adults, it is 

recognised that the most likely cause of hand symptoms is osteoarthritis. The data 

analysed in this thesis therefore represent a population of older adults who either have, or 

are at risk of, developing hand osteoarthritis over time.  

1.5 Thesis overview 

 

Chapter 2 – Factors associated with hand pain and functional difficulty in older adults: a 

systematic review  

 

In this chapter a systematic search of the literature is presented to summarise current 

evidence on factors associated with severity and progression of self-reported hand pain 

and functional difficulty in older adults. The aim of this search is to help identify potential 

prognostic factors that can then be later tested for their prognostic value in the models 

that are subsequently presented in Chapters 7 and 8.  

 

Chapter 3 – Recruitment design and data collection procedures 

 

The recruitment design and data collection methods for the Clinical Assessment Study of 

the Hand (CAS-HA) are presented in this chapter as this study provides the primary 

source of data analysed in this thesis. In addition, any evidence for selection bias in the 

cohort is explored. 
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Chapter 4 – Psychometric properties of the Australian/Canadian Hand Osteoarthritis Index 

(AUSCAN) 

The psychometric properties of the AUSCAN are explored in this chapter and the 

suitability of this measure to assess hand pain and function is evaluated. This analysis is 

of particular relevance to this thesis as the AUSCAN is used as the primary measure of 

hand pain and functional difficulty throughout. 

 

Chapter 5 – Statistical methodology 

 

The statistical methods used in this thesis are described in this chapter and evaluated, 

both for their strengths and weaknesses, and also for their suitability to address the 

research questions as stated in Section 1.4.  

 

Chapter 6 – Describing the trajectory of hand pain and functional difficulty in CAS-HA  

 

The AUSCAN (as described in Chapter 4) is applied to the CAS-HA data set in this 

chapter and its distribution, rates of missing data and course over time are described for 

the CAS-HA sample as a whole. The analysis in this chapter aims to address Objective 1 

as stated in Section 1.4.   

 

Chapter 7– Predicting the course of hand pain and function over time.  

 

The aim of this chapter is to explore whether a set of baseline factors can be identified 

that predict the course of hand pain and functional difficulty over time (using a pool of 

baseline variables as identified from the systematic review in Chapter 2). The analysis in 

this chapter aims to address Objective 2 in Section 1.4.   
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Chapter 8 – Trajectory subgroups for hand pain and function in CAS-HA 

 

The analysis in this chapter is an extension of that presented in Chapters 6 and 7. The 

first aim of the chapter is to explore whether subgroups of participants can be identified 

that have a differing outcome course over time, for hand pain or hand function when 

analysed as two separate outcomes of interest. The second aim is then to explore 

whether the baseline predictors, as presented in the thesis so far, differ across the 

outcome subgroups identified, or predict in combination subgroup membership as defined. 

The analysis in this chapter aims to address Objectives 1 and 2 in Section 1.4.   

 

Chapter 9 – Joint trajectory modelling 

 

This final results chapter aims to extend the analysis in this thesis by considering the 

outcomes of hand pain and function jointly, i.e. to explore whether there is a relationship 

between changes in hand pain over time and changes in hand function. In addition, it is 

also explored whether groups of participants can be identified that have a differing course 

of hand pain and hand function over time (e.g. a group of participants with increasing 

hand pain, but stable hand function). This analysis aims to meet Objective 3 in Section 

1.4.    

  

Chapter 10 – Discussion and conclusions 

 

A summary of the key findings from this thesis are presented in this chapter, along with a 

consideration of the strengths and weaknesses of the analyses as presented. The 

discussion around strengths and weaknesses will focus solely on issues that are relevant 

across the thesis as a whole as chapter-specific issues are discussed in separate sections 



8 
 

at the end of each chapter. In this chapter (Chapter 10), the overall implications of these 

findings for future research are also discussed.   
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2 Factors associated with hand pain and functional difficulty in 

older adults: a systematic review 

2.1 Introduction 

It was highlighted in the previous chapter that prognosis of hand pain and function is 

important. However, before prognosis can be fully evaluated, potential prognostic factors 

need to be identified. The aim of this chapter is to present a systematic review that 

summarises the available evidence on factors associated with progression and severity of 

hand pain and functional difficulty in community-dwelling older adults. The results of this 

review are then planned to inform and generate a list of potential prognostic factors that 

can be tested for their prognostic value in later thesis chapters.   

The chapter will be presented in three sections: the first will describe the methodology 

used to locate and evaluate the quality of the papers in the review (Section 2.2), the 

second to present the results of the review (Section 2.3) and the third to discuss the 

findings and their implications for later thesis chapters (Section 2.4).  

2.2 Methods 

2.2.1 Selection criteria  

Publications were included in the review if they had explored factors associated with 

severity or progression of self-reported hand pain or functional difficulty in older adults 

selected from the general population2. Studies were excluded if they: (1) measured only 

presence of hand pain or functional difficulty (yes/no), (2) were based in subgroups of the 

general population (such as those with specific medical complaints, e.g. Parkinson’s 

disease, or specific hand conditions, e.g. rheumatoid arthritis (RA)), (3) were not written in 

English, (4) were not original research published in a peer-reviewed journal, (5) reported 

only measures of hand stiffness or numbness, (6) were studies of hand injury, treatment 

                                                 
2 It was anticipated that the number of prognostic studies in the review would be small so cross-
sectional studies were also included     
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or surgery, (7) were validation studies of questionnaire tools or diagnostic tests (e.g. x-ray 

or magnetic resonance imaging), or (8) were clinical case studies, case series, or 

qualitative studies. 

2.2.2 Search strategy 

NHS Healthcare Databases (search 2.0) was used to search the following databases for 

relevant review articles: MEDLINE, EMBASE, CINHAHL, BNI (British Nursing Index), 

AMED (Allied and Complementary Medicine), HMIC (Health Management Information 

Consortium), PsycINFO (psychology and allied fields). ISI Web of Knowledge was 

searched to identify any further key articles not included in the main search. The search 

included any publication in any of the databases prior to January 20113. 

A maximum of three components were included in the search strategy and were 

combined using Boolean logic: (hand) AND (pain or function) AND (epidemiological 

study). Subject Headings (e.g. MESH headings) were used to describe the concepts of 

“hand”, “pain” or “function” if available; otherwise text words were used (Table 2-1). A 

published search filter was used to focus the search to epidemiological studies in 

MEDLINE, EMBASE and CINHAL (Scottish Intercollegiate Guidelines Network) (Table 

2-2). Titles and abstracts were searched in all databases with the exception of Web of 

Knowledge – a title search only was completed as an abstract search was not available. 

                                                 
3 This review has not been updated since January 2011 as the results were needed at an early 
stage in the thesis to define a list of factors that could be included in the models presented in 
Chapters 7 and 8. An automatic alert however was created within NHS Healthcare Databases to 
run the search periodically so that any relevant papers published post January 2011 could be 
incorporated into the discussion chapter of the thesis. The systematic review has been previously 
published (Nicholls et al. 2012)  
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Table 2-1: Literature review search strategy 

 Health Care Database 

Search term 

M
E

D
LI

N
E
α
 

C
IN

H
A

Lβ
 

E
M

B
A

S
E
α
 

B
N

I 

A
M

E
D
β
 

H
M

IC
 

P
sy

cI
N

F
O

β
 

W
eb

 o
f K

no
w

le
dg

e 

Hand         

MESH headings (not exploded)         

 Hand  + + + + + +   

 Hand joints  +        

 Hand deformities  + +       

 Hand dermatoses  +        

 Hand bones +        

 Carpal tunnel syndrome + + +  + +   

 Dupuytren’s contracture + + +   +   

 Tenosynovitis + + +  + +   

 De Quervain disease +        

 Hand joint   +      

 Hand bone   +      

 Hand disease   +      

 Hand eczema   +      

 Hand endema   +      

 Hand malformation   +      

 Hand paresthesia   +      

 Hand radiography   +      

 Hand muscle   +      

 Hand (anatomy)       +  

Keywords (title and abstract)         

 Quervain*  + + + + + +  

 Dequervain*  + + + + + +  

 Carpal tunnel    +   +  

 Dupuytren*    + +  +  

 Tenosynovitis    +   +  
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Keywords (title only)         

 Hand        + 

Pain/Function         

MESH headings (exploded)         

 Pain  + + +  +  +  

 Pain Measurement + +   +  +  

 Activities of daily living + +   +  +  

 Functional status  +       

 Functional assessment  +       

 Geriatric functional assessment  +       

 Functional assessment inventory  +       

 Pain assessment   +      

 Musculoskeletal function   +      

 Daily life activity   +      

 Pain perception       +  

Keywords (title and abstract)         

 Problem* + + +  +  +  

 Symptom* + + +  +  +  

 Function* +    +  +  

 Disabilit* + + +  +  +  

 Activit* + + +  +  +  

Keywords (title only)         

 Pain        + 

 Function        + 

Epidemiological filter + + +      

Footnote: Search terms within each major section were combined using a logical OR. The major sections 
were then combined using a logical AND (hand AND pain/function AND epidemiological filter (if used)).  
+ = included in the search strategy 
* = word truncation 
α = Search restricted to Humans and English language articles 
β = Search restricted to English language articles 
 = Subject headings can be searched in exploded format. This format generates a larger number of 
articles as it is searching not only the main heading but on all narrower subject headings relating to that 
topic as well 
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Table 2-2: Published epidemiological filters (reproduced from the Scottish Intercollegiate Guidelines Network website – SIGN) 

MEDLINE EMBASE CINHAL 

1. Epidemiologic studies/  1. Clinical study/  1. Prospective studies/  

2. Exp case control studies/  2. Case control study  2. Exp case control studies/  

3. Exp cohort studies/  3. Family study/  3. Correlational studies/  

4. Case control.tw.  4. Longitudinal study/  4. Nonconcurrent prospective studies/  

5. (cohort adj (study or studies)).tw.  5. Retrospective study/  5. Cross sectional studies/  

6. Cohort analy$.tw.  6. Prospective study/  6. (cohort adj (study or studies)).tw.  

7. (Follow up adj (study or studies)).tw.  7. Randomized controlled trials/  7. (observational adj (study or studies)).tw.  

8. (observational adj (study or studies)).tw.  8. 6 not 7  8. or/1-7 

9. Longitudinal.tw.  9. Cohort analysis/   

10. Retrospective.tw.  10. (Cohort adj (study or studies)).mp.   

11. Cross sectional.tw.  11. (Case control adj (study or studies)).tw.   

12. Cross-sectional studies/  12. (follow up adj (study or studies)).tw.   

13. Or/1-12  13. (observational adj (study or studies)).tw.   

 14. (epidemiologic$ adj (study or studies)).tw.  

 15. (cross sectional adj (study or studies)).tw.  

 16. Or/1-5,8-15   

Footnotes (reproduced from the SIGN website): / after an index term indicates that all subheadings were selected. "exp" before an index term indicates that the 
term was exploded. .tw. indicates a search for a term in title/abstract .mp. indicates a free text search for a term .$ at the end of a term indicates that this term has 
been truncated. adj indicates a search for two terms where they appear adjacent to one another 
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The titles and abstracts of publications generated by the search strategy were screened 

for possible inclusion in the review. In the first stage, two reviewers (EN & ET4) 

independently reviewed the first 100 abstracts to ensure inclusion and exclusion criteria 

were appropriately and consistently applied. One reviewer (EN) then continued to review 

the abstracts of the remaining papers, with a second independent reviewer being 

consulted where any ambiguity arose. A third reviewer (DvdW5) was involved when 

consensus was not achieved between the first two reviewers. Where inclusion or 

exclusion could not be determined from the abstract alone, full text articles were obtained 

and screened using the same consensus process that was applied at the abstract 

selection stage.    

The reference lists of all articles included in the review were hand searched to identify any 

further relevant publications (EN). In addition, topic or clinical experts within our research 

centre (DvdW and KD6) were asked if any further articles could be identified for inclusion 

in the review.  

2.2.3 Quality assessment  

Multiple quality assessment tools exist that can serve as a guide to help reviewers to 

judge the overall quality and potential for bias in a study (e.g. methodology checklists from 

the Critical Appraisal Skills Programme (CASP), National Institute for Clinical Excellence 

(NICE), and the Scottish Intercollegiate Guidelines Network (SIGN)). In this review, study 

quality was assessed using the QUIPS tool - QUality In Prognosis Studies. (Hayden et al. 

2006, Hayden et al. 2013).  

The QUIPS tool was used as it was likely to encompass many of the quality assessment 

items that would be included in other quality instruments. This is noted as the QUIPS tool 

was developed by reviewing all of the quality items (including those on published 

checklists and those generated by individual authors) that had been used when assessing 
                                                 
4 EN = Elaine Nicholls, ET = Elaine Thomas 
5 DvdW = Danielle van der Windt 
6 KD = Krysia Dziedzic 
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quality for systematic reviews of prognostic studies prior to October 2005. The QUIPS tool 

was used as it was relevant to the main study design that was of interest to this review, 

i.e. prognostic study design.  

The QUIPS tool includes six major domains each addressing a possible bias that could 

occur in a prognostic study: study participation, study attrition, prognostic factor 

measurement, outcome measurement, confounding and analysis. A description of each 

bias is given for the reviewer to then rate whether the study is at “low”, “medium” or “high” 

risk of that particular bias.  

The authors of the QUIPS tool encourage users to adapt the tool to make it applicable for 

the review being completed. For this review a minor adaptation was made to the tool to 

enable it to be applicable to both cross-sectional and longitudinal studies, namely that the 

domain heading “prognostic factor measurement” was simplified to “factor measurement” 

(so factors measured concurrently with outcome could also be included). Also, the domain 

for “study attrition” was automatically labelled as “not applicable” for cross-sectional 

studies as this could not be assessed for studies with no follow-up data.      

The modified QUIPS tool (shown in Appendix 2) was applied to each paper in the review 

by two independent reviewers (EN & DvdW or EN & ET). Any disagreements in bias 

ratings were resolved by consensus.   

2.2.4  Data extraction 

Data extraction was completed for each article and included the following information: 

author, year of publication, study location, participant inclusion criteria, and measure of 

hand pain and function. Factors explored for association with hand pain and function were 

listed, and their strength of association recorded (e.g. odds ratio, mean difference, 

correlation). When more than one adjusted analysis was presented (from several multiple 

regression models), data were only extracted for the model with the highest number of 
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adjusting factors. All data extraction was completed by one reviewer (EN) and was 

checked by two independent reviewers for completeness and accuracy (DvdW or ET). 

 A meta-analysis to pool estimates of association was planned if data collection methods 

and statistical methodology were similar across studies. The meta-analysis would assess 

the heterogeneity of study results (including a test for homogeneity and computation of I2) 

(Higgins al. 2003) and pooling of estimates by random effects modelling if appropriate 

(Kirkwood et al. 2003). A sensitivity analysis would test stability of associations after 

excluding any studies of poor quality, i.e. those scoring high risk from bias on any quality 

assessment domain. 

2.3 Results 

The search strategy identified 6363 citations (MEDLINE 2074; EMBASE 1287; CINHAL 

220; BNI 129; AMED 525; HMIC 140; PsychINFO 561; Web of Knowledge 1427). After 

removal of duplicate citations in more than one database (duplicate citations identified by 

electronic filters), 5679 citations were considered for inclusion in the review. Screening of 

article titles and abstracts excluded 5207 articles from the review.  Common reasons for 

exclusion were study samples not selected from the general population (e.g. studies 

evaluating the effectiveness of surgery or based in a group of patients with a specific 

clinical condition not directly related to the hand, e.g. stroke) or studies not focussed on 

older adults.  

The remaining 472 abstracts were screened by a second reviewer (ET) and after a 

consensus meeting 315 were excluded. Articles were mainly removed because they 

focussed on a particular hand condition requiring specific treatment or specialist care (e.g. 

RA or carpal tunnel syndrome). Papers on hand osteoarthritis however were kept in at this 

stage to ensure that no studies using a clinical diagnosis of “hand osteoarthritis” based on 

“hand pain” were missed and also because this condition is likely to specifically affect the 

population of interest, i.e. older adults in the community.  
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A total of 157 full text articles were reviewed and after applying the exclusion criteria, six 

articles remained in the review (Dahaghin et al. 2005a, Dahaghin et al. 2005b, Hill et al. 

2007, Baron et al. 1987, Niu et al. 2003, Marshall et al. 2009). An additional article 

(Dziedzic et al. 2007b) was identified by a clinical expert at our research centre (KD) 

giving a total of seven articles in the review7. A search of the reference lists of these seven 

articles did not yield any further articles for inclusion in the review. Further details of article 

selection are given in Figure 1.   

  

                                                 
7 This article was not identified in the original search as the key words were “hand pain” and “hand 
function” rather than the separate components of “hand” AND “pain”, or “hand” AND “function” 



18 
 

 

Figure 1: Flow chart of stages of article selection 

  
Articles identified 

(n=6363) 

Titles and abstracts read 

(n=5679) 

Full text articles 

(n=157) 

Review articles 

 (n=6) 

Duplicate articles 

(n=684) 

Articles excluded 

(n=5522) 

Articles excluded 
(n=151) 

 
- Participants not from general population (22) 
- Study not focussed on older adults (22)   
- No risk factor data (6) 
- Not an original peer-reviewed paper (30) 
- Osteoarthritis risk factors only (25) 
- No self-report measure of level of hand pain 

or functional difficulty (44) 
- Qualitative studies (2) 

  

Studies identified by experts 

 (n = 1) 

Total review articles 

 (n=7) 



19 
 

2.3.1 Description of articles included 

Data extracted from all studies were cross-sectional in nature. The articles in the review 

were based on five independent studies of older adults, which varied in size from 32 to 

7983 participants. Response rates varied across studies (16 – 79%).  

Three self-reported measures were used to measure hand function: the Arthritis Impact 

Measurement Scales 2 (AIMS2) hand and finger function subscale (Meenan et al. 1992), 

the Australian/Canadian Hand Osteoarthritis Index (AUSCAN) hand and finger function 

subscale (Bellamy et al. 2002a) and the upper limb components of the Stanford Health 

Assessment Questionnaire (HAQ) (Fries et al. 1982). The AIMS2 and AUSCAN pain 

subscales (Meenan et al. 1992, Bellamy et al. 2002a) were also used to measure hand 

pain severity along with the number of painful joints with radiographic OA (Kellgren-

Lawrence (KL) grade >=2) (Kellgren et al. 1957). Details regarding the seven articles 

included in the review are in Table 2-3.  
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Table 2-3: Summary of study populations, design and outcome measures in the review 

Author (year) 
and Country 

Study design Study population  Response rate Outcome 
Hand function  

Outcome 
Hand pain 

Dahaghin et 
al. (2005b) α 
Netherlands  

Population-
based cohort 
study 

Inhabitants of 
Ommoord aged 55 
years and over 

N=7983.  
Response rate = 78% 

Eight questions from HAQ 
(Fries et al. 1982) -higher 
score (>=0.5), more 
functional difficulty 

Not included: measured 
as pain presence not 
severity 

Dahaghin et 
al. (2005a) α 
Netherlands 

Population-
based cohort 
study.  

Inhabitants of 
Ommoord aged 55 
years and over 

N=3906. 
Response rate = 35% (only 
cases with radiographic data at 
time of analysis are included) 

Eight questions from HAQ 
(Fries et al. 1982) -higher 
score (>=0.5), more 
functional difficulty 

Not included: measured 
as pain presence not 
severity 

Hill et al. 
(2007) β 
UK  

Population-
based cohort 
study. 

Participants aged 50 
years and over, 
reporting hand pain on 
a health survey.  

N=2113 
2-stage survey:  
Survey 1 response rate  = 71% 
Survey 2 response rate = 79% 

Hand and finger function 
sub-scale of AIMS2 
(Meenan et al. 1992) - 
higher score (>1.5), more 
functional difficulty 

Hand pain sub-scale of 
AIMS2 (Meenan et al. 
1992) - higher score 
(>3.5), more pain 
 

Baron et al. 
(1987) 
Canada  

Cohort Study 
 
 
 

Tenants of a senior 
citizens apartment 
building aged 60 years 
and over  

N=32. Response rate = 16% Questions from the (HAQ) 
(Fries et al. 1982) on upper 
extremity activities - higher 
score, more functional 
difficulty 

Self-reported data not 
given 

Dziedzic et 
al. (2007b) β 
UK  

Population-
based cohort 
study 

Participants aged 50 
years and over, 
reporting hand pain on 
a health survey 

N=2113 
2-stage survey:  
Survey 1 response rate  = 71% 
Survey 2 response rate = 79% 

Hand and finger function 
sub-scale of AIMS2 
(Meenan et al. 1992) - 
higher score, more 
functional difficulty. Severe 
functional difficulty = top 
25% of observed sub-scale

Hand pain sub-scale of 
AIMS2 (Meenan et al. 
1992) - higher score, 
more pain. Severe pain = 
top 25% of observed 
sub-scale 
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Niu et al. 
(2003) 
United States 
of America 
(U.S.A) 

Cohort Study 
(Framingham 
Osteoarthritis 
Study)  
 

Participants aged 70 
years or over reporting 
pain, aching or 
stiffness on most days 
in any joint  

N=976. Response rate unclear Self-reported data not 
given 

Number of self-reported 
painful joints with 
radiographic OA (defined 
as a joint with KL grade 
>=2) 

Marshall et 
al. (2009) UK 

Cohort study  Participants aged 50 
years and over, 
reporting hand pain on 
a health survey and 
attending a hand 
assessment clinic  

N = 623. Response rate to 
attend clinical assessment = 
46% 

AUSCAN function 
subscale (Bellamy et al. 
2002a) – higher score, 
more functional difficulty 

AUSCAN pain subscale 
(Bellamy et al. 2002a) – 
higher score, more pain 

α = Studies by (Dahaghin et al. 2005b) and (Dahaghin et al. 2005a) are derived from the same cohort study, although (Dahaghin al. 2005a) is based on a sub-sample 
of participants with radiographic data 
β = Studies by (Hill et al. 2007) and (Dziedzic et al. 2007b) are derived from the same cohort study 
Abbreviations: HAQ = Health Assessment Questionnaire, AIMS2 = Arthritis Impact Measurement Scales 2, KL = Kellgren-Lawrence, AUSCAN = Australian/Canadian 
Hand Osteoarthritis index 
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2.3.2 Quality assessment 

Complete agreement between reviewers on the quality assessment scores was not 

obtained initially, but easily resolved. There was no one domain on the quality checklist 

where disagreements between reviewers were more common. In many instances the 

reviewer had scored the item as “Low to Moderate”, or “Moderate to High” risk of bias, so 

the consensus process was to aid a clear decision on category allocation, or to resolve 

issues where aspects of the study had been overlooked or misinterpreted.  

The results of the quality scoring using the QUIPS tool are shown in Table 2-4. As all 

studies had a cross-sectional design, attrition bias was not scored for any of the studies in 

the review. Table 2-4 therefore shows the results of the remaining five bias domains only. 
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Table 2-4: Quality assessment of review articles 

 

Study participation Factor 
measurementα 

Outcome 
measurement 

Measurement and 
controlling for 
confounding 

variables 

Statistical analysis 

Dahaghin et al. 2005b Moderate Moderate Moderate Moderate Low 

Dahaghin et al. 2005a Moderate Low Moderate Moderate Low 

Hill et al. 2007 Moderate Low Low Moderate Low 

Baron et al. 1987 Moderate Low Moderate Moderate Moderate 

Dziedzic et al. 2007b Moderate Low Low Not applicable Low 

Niu et al. 2003 High Low Low Moderate Low 

Marshall et al. 2009 Moderate Low Low Moderate Low 

Text in table indicates level of risk from bias 
Study attrition not evaluated, as studies were not longitudinal in design. 
α Includes any factor tested for association with level of hand pain or functional difficulty 
Note that Dziedzic et al. (2007b) scored “Not applicable” for “Measurement and controlling for confounding variables”. This study aimed to describe a 
population of interest rather than look at association, so the issue of confounding was not relevant.  
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Of the five domains on the quality assessment checklist that were assessed, two were 

frequently rated as “Moderate” risk of bias: “Study participation” and “Measuring and 

controlling for confounders”. For “Study participation”, this was mainly due to lack of 

information describing the target population or insufficient evidence that the sample was 

representative of the target population; for “Measuring and controlling for confounding”, 

this was mainly due to lack of explanation of why specific confounding variables were 

chosen, how they fitted into the conceptual model, and whether confounders were 

assessed using validated measures. Reasons for deviating from “Low risk” of bias in the 

remaining domains included use of non-validated assessment methods and presentation 

of estimates without quantifying their statistical precision (i.e. lack of confidence intervals). 

Overall, the quality of the papers included in the review was satisfactory.    

2.3.3 Main results 

The results of the data extraction process are shown in Table 2-5 (detailed format) and 

Table 2-6 (summary format). The factors tested for association with hand pain and 

functional difficulty can be broadly categorised under six headings: demographic factors, 

history of previous health conditions, radiographic/clinical evidence of hand osteoarthritis, 

illness perceptions, self-reported diagnosis, and performance-based measures of hand 

function (Table 2-6). Most factors were assessed in a single study with the exception of 

age, gender and presence of OA which were assessed in 2, 4 and 5 independent studies, 

respectively. A smaller number of studies assessed associations with self-reported hand 

pain than with hand function. 

Factors significantly associated with limited hand function were older age, female gender, 

manual occupation, neck or shoulder pain, clinical and radiographic osteoarthritis 

(although evidence depended on definition of OA), weaker hand strength, hand pain, 

history of Parkinson’s disease, stroke, diabetes or rheumatoid arthritis, and illness 

perceptions (namely frustration, impact, and symptom count). Key factors associated with 
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hand pain severity were age, impact, frustration, patient expectation of a long disease 

time course and self-reported diagnosis of the cause of the hand problem. 
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Table 2-5: Factor associated with increasing hand pain and poorer hand function 

Factor measurement  Association with hand function  

 

Association with hand pain 

 Dahaghin et al. (2005b)β 
Unadjusted 

OR (95% CI) 

Adjusted 

OR (95% CI) 

  

Age 70+ years (c.f. 55-69 years) 6.4 (5.4, 7.6) 4.5 (3.6, 5.6)   

Female Gender 2.8 (2.4, 3.3) 2.2 (1.7, 2.8)   

Manual occupation  2.0 (1.8, 2.3) 1.5 (1.2, 1.8)   

Body Mass index >=30kg/m2 1.3 (1.0, 1.5) 0.8 (0.6, 1.1)   

Self reported history of:     

 Rheumatoid arthritis (RA) 6.3 (4.9, 8.1) 3.3 (2.3, 4.7)   

 Osteoarthritis (OA) in any joint 1.6 (1.4, 1.9) 1.1 (0.9, 1.4)   

 Diabetes 2.4 (2.0, 3.0) 1.6 (1.1, 2.2)   

 Stroke 5.2 (4.1, 6.5) 4.8 (3.4, 6.8)   

 Thyroid disease 2.0 (1.7, 2.3) 1.2 (0.9, 1.6)   

 Neck & shoulder pain (last month) 2.2 (1.9, 2.5) 1.8 (1.4, 2.2)   

 Gout 0.9 (0.4, 2.0) -   

 Hand/wrist fracture last 5 years 1.8 (1.5, 2.1) 0.9 (0.6, 1.3)   



27 
 

 Parkinson’s disease 18.4 (10.9, 30.8) 23.8 (11.4, 49.5)   

 Hand pain (last month) 2.6 (2.3, 3.1) 2.4 (1.9, 3.0)   

Radiographic OA 2.1 (1.5, 2.9) 1.4 (0.9, 2.0)   

 Dahaghin et al. (2005a)β 
Adjustedµ  

OR (95% CI) 

Adjustedλ  

OR (95% CI) 

  

Radiographic hand OA      

 KL>=2 in any DIP or IP joint 1.3 (0.9, 1.8) 1.2 (0.8, 1.7)   

 KL>=2 in any PIP joint 1.1 (0.8, 1.7) 0.9 (0.6, 1.4)   

 KL>=2 in any MCP joint 2.0 (1.3, 3.0) 1.8 (1.2, 2.9)   

 KL>=2 at the CMC1 or TS joint 1.3 (1.0, 1.9) 1.2 (0.8, 1.7)   

 KL>=2 in two hand joint groups  1.5 (1.1, 2.1) -   

 KL>=3 in two hand joint groups 1.6 (1.1, 2.5) -   

 KL>=4 in two hand joint groups 1.6 (0.9, 2.9) -   

 Number of joints with KL>=2 
Borderline significant 

(data not given) 
-   

 Number of joints with KL>=2 
 (Dominant hand only)  

1.1 (1.0, 1.2) -   

 KL>=2 in all four hand joint groups 2.7 (1.3, 6.0) -   
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Hill et al. (2007) 
Unadjusted 

OR (95% CI) 

Adjusted 

OR (95% CI) 

Unadjusted 

OR (95% CI) 

Adjusted 

OR (95% CI) 

Age      

 60 –69 years (c.f. 50-59) 1.27 (1.03, 1.57) 1.37 (0.98, 1.91) 1.21 (0.98, 1.50) 1.01 (0.80, 1.45) 
 70 + years (c.f. 50-59) 1.84 (1.49, 2.28) 2.04 (1.44, 2.90) 1.49 (1.20, 1.84) 1.63 (1.20, 2.21) 
Female Gender 1.88 (1.57, 2.26) 2.02 (1.50, 2.73) 1.18 (0.99, 1.41) 0.89 (0.68, 1.15) 
Self-reported diagnosis     
 RA (c.f. OA) 1.06 (0.82, 1.38) 1.24 (0.84, 1.85) 0.92 (0.71, 1.20) 0.90 (0.64, 1.27) 
 Other (c.f. OA) 0.76 (0.59, 0.97) 1.28 (0.88, 1.89) 0.57 (0.43, 0.73) 0.59 (0.42, 0.83) 
 Don’t know (c.f. OA) 0.47 (0.36, 0.61) 0.92 (0.61, 1.39) 0.38 (0.29, 0.49) 0.53 (0.37, 0.76) 
Frustration with hand problem 8.45 (6.85, 10.44) 4.31 (3.17, 5.86) 9.10 (7.36, 11.26) 4.84 (3.70, 6.34) 
Illness perception subscales (Moss-
Morris, Weinman et al. 2002a) 

    

 Timeline cyclical P >0.05 - P >0.05  - 
 Timeline acute chronic  P >0.05 - 2.51 (2.07, 3.04) 1.41 (1.06, 1.87) 
 Consequences 1.26 (1.23, 1.29) 1.18 (1.14, 1.23) 1.29 (1.25, 1.32) 1.18 (1.13, 1.22) 
 Personal control P >0.05 - P >0.05 - 
 Treatment control P >0.05 - P >0.05 - 
 Emotional representations P >0.05 - P >0.05 - 
 Illness coherence P >0.05 - P >0.05 - 
 Psychological attribution P >0.05 - P >0.05 - 
 Identity 5.34 (4.29, 6.64) 2.32 (1.73, 3.12) - - 

Baron et al. (1987)   
  

Gender Females more functional difficulty than males 
(t=2.35, p=0.026)  

Hand function index (Smith hand 
function test (Smith 1973)) 

Uncorrelated, but no estimates given   

Hand strength index R = -0.56 (p=0.001)  
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Hand pain R = 0.67 (p<0.001)  
Adduction deformity of the CMC1 
joint 

R = 0.28 (p=0.057)  

Tenderness on motion R = 0.33 (p=0.034)  
Clinical OA index R adjusted for gender = 0.37 (p=0.03)  

 Dziedzic et al. (2007b) Males Females Males Females 

Age  

Mean (SD)

Severe 
functional 
difficulties 

N (%) 
 

Mean (SD) 

Severe 
functional 
difficulties 

N (%) 
 

Mean 
(SD) 

Severe 
functional 
difficulties 

N (%) 
 

Mean 
(SD) 

Severe 
functional 
difficulties 

N (%) 
 

  50-59 years 1.5 (2.1) 37 (15) 2.3 (2.4) 100 (23) 3.7 (2.4) 47 (19) 3.8 (2.5) 102 (23) 

  60-69 years 2.0 (2.6) 50 (19) 2.5 (2.3) 109 (25) 4.2 (2.5) 75 (28) 4.1 (2.4) 107 (26) 

  70-79 years 2.0 (2.6) 40 (20) 3.0 (2.5) 109 (35) 3.9 (2.4) 45 (23) 4.3 (2.4) 86 (28) 

   80+ years 2.5 (3.0) 13 (27) 4.0 (2.8) 65 (48) 4.2 (2.1) 13 (25) 4.6 (2.7) 49 (38) 

Niu et al. (2003)   Males Females 

Number (%) of painful hand joints 
with radiographic OA 

    

  0   309 (88) 464 (74) 

  1   13 (4) 35 (6) 

  2   7 (2) 29 (5) 

  3   5 (1) 11 (2) 

  4   5 (1) 16 (3) 
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  5+   12 (3) 70 (11) 

Marshall et al. (2009) 
    

Radiographic subgroup Un-adj 
mean 

 (95% CI) 

Adj∞ 

Mean 

(95% CI)

Adjρ 

Mean 

(95% CI) 

Adj± 

Mean 

(95% CI) 

Adj 

Mean 

(95% CI) 

Un-adj 
mean 

 (95% CI) 

Adj∞ 

Mean 

(95% CI) 

Adjρ 

Mean 

(95% CI) 

Adj± 

Mean 

(95% CI)

Adj 

Mean 

(95% CI) 

No OA 8.3  

(6.7-9.8) 

8.1 

(6.6-9.7) 

8.7 

(7.1-10.3) 

8.9 

(7.1-10.7) 

8.9 

(7.1-10.6) 

5.4 

(4.6-6.2) 

5.4 

(4.6-6.2) 

5.4 

(4.5-6.2) 

5.7 

(4.7-6.6) 

5.8 

(4.9-6.7) 

Finger only OA 8.2 

(6.3-10.1) 

8.2 

(6.4-10.1) 

8.3 

(6.4-10.2) 

8.6 

(6.6-10.6) 

8.6 

(6.6-10.5) 

5.7 

(4.7-6.8) 

5.7 

(4.7-6.7) 

5.7 

(4.7-6.8) 

5.9 

(4.8-6.9) 

6.0 

(4.9-7.0) 

Thumb only OA 8.6 

(6.9-10.3) 

8.1 

 (6.5-9.8) 

8.7 

(7.0-10.4) 

9.0  

(7.2-10.8) 

8.8 

(7.1-10.5) 

5.8 

(4.9-6.7) 

5.7 

(4.8-6.6) 

5.8 

(4.9-6.7) 

5.9 

(5.0-6.9) 

5.9 

(5.0-6.8) 

Combined thumb and finger OA 10.5 

(9.6-11.4) 

9.9  

(9.0-10.8) 

10.3 

(9.4-11.2) 

10.1 

(9.0-11.2) 

10.4 

(9.4-11.3) 

6.5 

(6.1-7.0) 

6.5 

(6.0-7.0) 

6.5 

(6.1-7.0) 

6.4 

(5.8-6.9) 

6.4 

(5.9-6.9) 

 p-value for overall association 0.018 0.084 0.093 0.601 0.206 0.077 0.095 0.091 0.698 0.573 

- term not entered in the model,  = data not available for review, β = studies by (Dahaghin et al. 2005b) and (Dahaghin et al. 2005a) are derived from the 
same cohort study, although (Dahaghin et al. 2005a) is based on a sub-sample of participants with radiographic data,  = studies by (Hill et al. 2007) and 
(Dziedzic et al. 2007b) are derived from the same cohort study,  = data derived from a smaller subset of cases with radiographic data (N=3906),  = adjusted 
for all other factors measured, µ = adjusted for age and gender, λ = adjusted for age, gender and all other factors measured, ∞ = adjusted for gender, ρ = 
adjusted for age, ± = adjusted for number of hand joints with radiographic OA,  = adjusted for the presence of moderate to severe radiographic OA. 
Abbreviations: DIP = Distal interphalangeal joints, IP = First interphalangeal joint, PIP = Proximal interphalangeal joints, MCP = Metacarpophalangeal joints, 
CMC1 = First carpometacarpal joint, TS = Trapezio-scaphoid joint, SD = Standard deviation, OR = odds ratio, CI = confidence interval, c.f = compared with, p = 
p-value, R= Pearson’s correlation, t= t-statistic 
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Table 2-6: Summary table of review findings: evidence for factors associated with increasing hand pain and poorer hand function 

 Reference for observed association 

Factor Hand function Hand pain 

Demographic   

 Older age Dahaghin et al. (2005b), Hill et al. (2007) Hill et al. (2007) 

 Female gender Dahaghin et al. (2005b), Hill et al. (2007), Baron et al. 
(1987) 

α 

 Manual occupation Dahaghin et al. (2005b) α 

 Higher body mass index (BMI) n.s. α 

Self-reported history of previous health conditions   

 Rheumatoid arthritis (RA) Dahaghin et al. (2005b) α 

 Diabetes Dahaghin et al. (2005b) α 

 Stroke Dahaghin et al. (2005b) α 

 Thyroid disease n.s. α 

 Neck and shoulder pain (last month) Dahaghin et al. (2005b) α 

 Gout n.s. α 

 Hand/wrist fracture last 5 years n.s. α 

 Parkinson’s disease Dahaghin et al. (2005b) α 

 Hand pain/tenderness Dahaghin et al. (2005b), Baron et al. (1987) α 

Osteoarthritis   

 Radiographic Dahaghin et al. (2005a) 

Evidence of association depends on how OA presence 
n.s. 
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is defined 

 Clinical Baron et al. (1987) α 

Higher scores for Illness perceptions (Moss-Morris, 
Weinman et al. 2002a) 

  

 Timeline cyclical  n.s. n.s. 

 Timeline acute/chronic  n.s. Hill et al. (2007) 

 Consequences Hill et al. (2007) Hill et al. (2007) 

 Personal control  n.s. n.s. 

 Treatment control n.s. n.s. 

 Emotional representations  n.s. n.s. 

 Illness coherence  n.s. n.s. 

 Psychological attribution n.s. n.s. 

 Identity  Hill et al. (2007) α 

   

 Frustration Hill et al. (2007) Hill et al. (2007) 

Self-reported diagnosis  

 (OA, RA, other, don’t know) 
n.s. Hill et al. (2007) 

Performance-based measures of hand function    

 Poorer score Hand function index (Smith hand 
 function test) (Smith 1973) 

n.s. α 

 Hand strength index Baron et al. (1987) α 

Table includes studies with factors that show a statistically significant association (p<0.05) with more hand pain or poorer function. Studies with descriptive data only are 
excluded (Dziedzic et al. 2007b, Niu et al. 2003) α= data not available for review, n.s. = tested in at least one study but not statistically significant (p>=0.05) 
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2.3.4 Meta-analysis 

A meta-analysis was not conducted to pool estimates across studies because the factors 

measured in each study differed greatly and the statistical methods used to describe 

associations were not consistent (e.g. odds ratio vs mean difference vs correlation).  

2.4 Discussion 

2.4.1 Summary of review findings 

In this review, five cross-sectional studies (seven published articles) have been identified 

that have investigated factors associated with the severity of hand pain and functional 

difficulty in general population samples of older adults. No longitudinal studies 

investigating the prognosis of hand problems that meet the criteria for the review have 

been identified. The factors associated with hand pain and/or function included generic 

factors (e.g. age, gender), those related to concurrently occurring clinical conditions (e.g. 

stroke), and hand specific factors (e.g. illness perceptions and radiographic/clinical hand 

osteoarthritis).  

2.4.2 Factors associated with hand pain and functional difficulty 

Older age was associated with both worse hand pain and functional ability and was the 

only factor where a (cross-sectional) “dose-response” (Woodward 1999) relationship was 

tested, i.e. that the severity of hand pain and functional difficulty progressively worsened 

with increasing age. These findings are in line with evidence from population and clinical 

studies that show that the prevalence of hand pain, pain interference and functional 

difficulty increases with age (Palmer 2003, Thomas et al. 2004a, Jones et al. 2001).   

Although female gender was associated with hand pain, such an association was not 

found for hand function (Hill et al. 2007), despite the prevalence of upper limb 

musculoskeletal pain being higher for women (Walker-Bone et al. 2003) and female 

gender being a risk factor for many common hand conditions (Hart et al. 2000, Walker-

Bone et al. 2003). This may suggest that a more complex relationship between hand 
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function and gender may exist which could be explained by other external factors, such as 

ability to cope and adapt to limited hand function (Myers et al. 2008)  

Some of the strongest predictors of hand function found in this review relate to disease 

history, e.g. history of Parkinson’s disease or stroke. Prevalence of such conditions in the 

population is likely to be low, which may lead to unreliable estimates of association, 

although it has been shown in several clinical studies that such conditions are related to 

impaired hand function (e.g. Hunter et al. 2002, Cano-de-la-Cuerda et al. 2010).  

Only three out of the seven papers in the review have examined both hand pain and 

function thus allowing direct comparisons to be made (Hill et al. 2007, Dziedzic et al. 

2007b, Marshall et al. 2009). In these studies findings were similar for hand pain and 

function, however, hand pain, but not hand function, was related to self-reported diagnosis 

of the cause of the hand problem and to patient expectation of a long disease time course 

(Hill et al. 2007). This may reflect patients focus on absence of pain as the main sign of 

recovery from their hand condition or that pain may encourage consultation to receive a 

clinical diagnosis. It may also be that receiving a medical diagnosis may be associated 

with more pain perceptions or that some diagnoses reflect more painful conditions.   

Of the cross-sectional factors identified in the review, many cannot be modified by 

treatment (e.g. age, gender and occupation), or relate to disease history that cannot be 

altered at the point of consultation. Illness perceptions, however, have the potential to be 

modified and have been identified as important predictors of outcome in studies of primary 

care consulters with hand pain (Spies-Dorgelo et al. 2008) and back pain (Foster et al. 

2008, Macfarlane 2008).  

The majority of factors identified by this review are generic factors (e.g. age and gender) 

or related to clinical conditions not solely affecting the hand (e.g. stroke). Few hand-

specific factors were tested; the exceptions were illness perceptions measured in the 

context of a patients’ current hand problem and radiographic/clinical hand osteoarthritis. 
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The inclusion criteria specified that only studies from the general population would be 

included in the review, possibly biasing the type of factors tested to those that are generic; 

hand-specific factors may be more likely to be tested in hand–specific clinical subgroups, 

e.g. hospital patients with RA.  

2.4.3 Strengths and limitations 

A major strength of this review was the comprehensive and inclusive search strategy that 

was developed to minimise the risk of missing key articles. This was achieved by 

searching in multiple health care databases and tailoring searches to apply directly to the 

particular databases’ indexing method. At each stage in the review, methods were piloted 

and key decisions on abstract inclusion, quality assessment and data extraction were 

derived by consensus, improving the quality of the data reported.     

Selected databases included conference abstracts and other non-journal articles: HMIC 

and Web of Knowledge (Centre for Reviews and Dissemination 2009) however, only full 

journal articles were included in the review. Searching of grey literature or unpublished 

studies was not undertaken. It might be speculated that as the number of published 

studies in the review is low, the number of extra studies identified by this method would 

also be small. Articles written in English were selected electronically and included in the 

review. Only a small percentage of all articles found in the search were written in other 

languages (<13%) so it is unlikely that this number would bias the results of the review 

(Centre for Reviews and Dissemination 2009).          

The search was focussed to include only self-report measures of pain and function so 

studies measuring hand function using clinical tests alone, such as grip strength and 

timed performance tests were not included. Self-report measures, although potentially 

prone to recall bias, were chosen as they are frequently used in population-based surveys 

to fully capture the range of limitations experienced during everyday activities (Jordan et 
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al. 2009) and it is a self-reported measure of hand pain and functional difficulty that is 

used throughout this thesis.    

2.4.4 Implications 

All associations described in this review are observed using cross-sectional data so reflect 

factors associated with severity of hand pain and functional difficulty at a single point in 

time. It remains to be tested whether such factors would also predict change in hand pain 

and functional difficulty over time. In addition, several studies in the review presented 

unadjusted associations of predictors with outcome, which may not remain clinically 

important or statistically significant after adjustment for other theoretically plausible 

variables.         

A key aim of this review was to generate a list of variables that could be tested for their 

potential prognostic value in the CAS-HA study. This has been achieved and provides a 

starting point to define which factors to test in a prognostic model. However, due to the 

small number of studies included in the review and the lack of prognostic information, 

additional literature may be useful to ensure that a broad range of prognostic factors are 

considered within the thesis e.g. using literature from other sites of pain (e.g. knee pain) or 

other populations (e.g. participants consulting their general practitioner). This has been 

considered using the approach below (Section 2.4.5) and is the approach that was used 

to define a list of potential predictive factors to be tested in this thesis. 

2.4.5 Generating a list of potential baseline prognostic factors to test in this thesis 

The following sources of data were reviewed and used to generate an initial list of 

potential prognostic factors for analysis: 

(1) The systematic review included in this chapter - although the factors in the review were 

all tested in cross-sectional data they were still considered as they could have potential 

prognostic value yet to be determined, 
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 (2)  A study of knee pain designed with identical recruitment methods to CAS-HA to 

recruit participants with knee rather than hand pain – the Clinical Assessment Study of the 

Knee (CAS-K) (Peat et al. 2004, Mallen et al. 2007b).   

(3) A sample of systematic reviews of prognostic factors in body areas other than the 

hand and in populations other than community-dwelling older adults with hand pain 

(Hayden et al. 2009, van Dijk et al. 2006, Kuijpers et al. 2004, Mallen et al. 2007b, Tas et 

al. 2007, Kwok et al. 2013), with systematic reviews chosen as the highest level of 

evidence in the evidence hierarchy (Greenhalgh 1997).  

(4) Individual studies found by EN during the systematic review process that did not fully 

meet the criteria to be in the review (Spies-Dorgelo et al. 2008, Botha-Scheepers et al. 

2009, Bijsterbosch et al. 2011).  

The initial list of potential factors was reviewed to identify those factors that were 

particularly relevant to the CAS-HA population (i.e. older adults with hand pain)8,9 and that 

mapped onto concepts that had been measured in CAS-HA (i.e. restricting the list to only 

those factors that could be explored in this thesis). Each factor was then tested for (a) 

their prevalence in the CAS-HA data and (b) the percentage of missing data that they had, 

as those of low or high prevalence (<10% or >90%) or with a high percentage of missing 

data (>20%) were unlikely to produce reliable estimates in the data. This latter stage was 

also included to try and reduce the number of factors on the list (to limit the possibility of 

over-fitting the data) and also because prognostic factors with high rates of missing data 

                                                 
8 Some factors were clearly pain-site specific (e.g. malalignment for knee pain) or were relevant 
only to participants in a working population (e.g. detailed questions on current work environment 
such posture at work and ability to modify work environment) so were excluded from the initial list.   
9 At this stage, the factors were not restricted to those that showed a significant relationship to the 
severity/progression of the outcome as factors were often derived from populations and pain-sites 
that differed from CAS-HA so presence or absence of an effect in a different population could not 
be assumed and evidence was often derived from single studies requiring replication. In addition, 
factors were not restricted to those that had a strong theoretical justification for the mechanism 
through which they were prognostic as the aim of the analysis was to explore which factors, or 
combinations of factors, best predicted participants’ outcome trajectories over time, rather than to 
explain why the factors were predictive per se (Hayden et al. 2010).   
 



38 
 

were likely to have high rates of missing data if measured again in another study or in 

clinical practice, which is not ideal (Royston et al. 2009) (see Appendix 3 for excluded 

items).     

The initial list of factors was then presented to a group of clinical experts, including an 

occupational therapist, physiotherapist, epidemiologist, and radiographer, to be reviewed 

for clinical relevance for use in a primary care setting10. In addition to refining the list of 

prognostic factors (see Appendix 3 for details), the clinical experts also advised EN that 

the most clinically relevant model would be obtained if factors were grouped by their 

method of measurement, i.e. by questionnaire, clinical assessment, or x-ray, so EN could 

observe how much variability in the data could be explained by relatively cheap and 

simple methods of assessment (i.e. the questionnaire), compared to those that are more 

complex and that required specialist trained staff and equipment (i.e. clinical assessment 

and x-ray). The expert group also aimed to identify (by consensus) any important 

prognostic factors that had been omitted from the list, but this did not generate any more 

variables than those on the initial list. The list of factors therefore taken forward to the 

modelling stage is shown in Table 2-7, grouped by measurement method and, for 

questionnaire measures only, under the sub-headings of demographic, lifestyle, health, 

hand condition characteristics and psychological factors. It is these factors that are 

explored in more detail in Chapters 3, 7 and 8 that follow. 

  

                                                 
10 The group were only asked to consider whether the construct represented by each prognostic 
factor was relevant to primary care, rather than whether the measure (as used in CAS-HA) was 
feasible to apply in this setting. This was because the purpose of the model (at this stage) was to 
be a research tool, rather than a clinical tool hence the most reliable form of the prognostic factor 
was required for modelling rather than considering a simplified version that could be more readily 
applied in clinical practice (e.g. full questionnaire tools were used (where available) rather than 
single items for the questionnaire-based measures). 
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Table 2-7: Potential baseline prognostic factors used to model the trajectory of 
hand pain and function over time 

Concept 

Questionnaire 

 Demographic 

  Age  

  Gender 

   Marital status 

   Occupation/Social Class 

   Employment status 

   Education level 

   Income 

  Lifestyle 

  Alcohol consumption 

  Smoking status 

   Social networks 

 Health  

   Self-rated health 

  Co-morbidities 

  Pain in other body areas 

  Characteristics of hand condition 

  Hand pain severity   

  Hand functional difficulty 

  Side affected 

   Time since onset of hand problem 

  Sudden onset of hand problem 

   Onset of hand condition following accident or injury to the hand  

  Physical load on hands during work and leisure 

 Psychological factors 

  Anxiety   

  Depression  

  Illness perceptions 

   Long disease time course 

  Consequences 

  Personal control 

  Treatment control 
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   Illness coherence 

  Cyclical time course 

  Emotional representation 

  Frustration with hand condition 

Clinical Assessment  

 Body-mass index 

 Hand grip-ability 

 Muscle strength 

 Severity of hand osteoarthritis  

 Carpal tunnel syndrome 

 Dupuytren’s contracture 

 De Quervain’s tenosynovitis 

 Trigger finger 

X-ray  

 Severity of hand osteoarthritis 
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3 Recruitment design and data collection procedures 

3.1 Introduction 

The aim of this chapter is to describe the recruitment, follow-up and data collection 

procedures used in the Clinical Assessment Study of the Hand (CAS-HA) as this study 

provides the majority of the data analysed in this thesis. The description of the CAS-HA 

study includes information on study design (Section 3.2), data entry and accuracy 

(Section 3.3), recruitment and follow-up rates (Section 3.4), and an assessment of 

whether the baseline characteristics of participants at each recruitment and follow-up 

stage are representative of the broader population from which they are drawn (Section 

3.5). This latter assessment is included to explore whether there is any selection bias in 

the sample.  

3.2 Study design 

The CAS-HA study is a population-based, prospective observational cohort study of all 

eligible adults aged 50 years and over registered at two general practices in North 

Staffordshire. The study forms part of the North Staffordshire Osteoarthritis Project 

(NorStOP), which is a set of linked cohort studies designed to evaluate the course of 

musculoskeletal conditions over time (Thomas et al. 2004b). All stages of the study have 

been given full ethical approval prior to data collection11.  A protocol for the CAS-HA study 

has previously been reported (Myers et al. 2007), however, as this is the main data set 

used in this thesis, for completeness, study details are given below.  

3.2.1 Baseline study recruitment   

Participants were recruited to the CAS-HA study by postal survey. A Health Survey was 

mailed to all adults aged 50 years and over registered at the two study general practices 

                                                 
11 Ethical approval was gained from the North Staffordshire Ethics Committee (baseline and 18-
month follow-up), Hereford and Worcester Ethics Committee (3-year and 54-month follow-up) and 
the West Midlands - Solihull ethics committee (6-year follow-up) Project Reference Numbers: 1430, 
05/Q2604/89, 06/Q2801/90 (3-year and 54-month) and 11/WM/0196, respectively)) 
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after exclusion of participants for which survey mailing was inappropriate, e.g. those with 

severe psychiatric or terminal illness. Participants reporting hand pain or problems (e.g. 

stiffness or knobbly swellings) in the last 12-months on the General Health Survey and 

providing written consent to further contact were then sent a Regional Pains Survey to 

collect further information on their reported hand pain or problem.  

Participants reporting hand pain or problems and completing both of the mailed surveys 

were then sent a letter inviting them to attend a CAS-HA research clinic at a local 

rheumatology hospital (Haywood Hospital). At the research clinic participants underwent a 

clinical interview and hand assessment, which included questions on the history of the 

participants’ hand problem, an assessment of key clinical features for a range of common 

hand conditions, e.g. osteoarthritis, and objective measures of hand function. In addition 

digital images and x-rays were taken of both hands. The questions/assessments collected 

on the two surveys and at the research clinic provide measurement of each factor listed in 

Chapter 2 and were therefore used for further analysis in Chapters 7 and 8 (Table 3-1 and 

Appendix 4 for further details). Participants consenting to, and attending the research 

assessment form the baseline sample for the CAS-HA study, and provide the sample 

used for most analyses presented in this thesis.  
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Table 3-1: Measurement of potential baseline prognostic factors in the CAS-HA study 

Concept Detail of measurement in CAS-HA 

Questionnaire  

Demographic  

Age  Age at baseline: years 

Gender Female, Male 

Marital status Married, Separated, Divorced, Widowed, Cohabiting, Single 

Occupation/Social Class SOC 2000 codes  (Office for National Statistics (ONS) 2002): Higher managerial, Higher professional, 

Lower managerial/professional, Intermediate occupations, Self-employed, Lower supervisory/technical, 

Semi-routine occupations, Routine occupations 

Employment status Employed, Not working due to ill health, Retired, Unemployed, Housewife, Other 

Education level Age when left school (years);  

Go from school to full time education or university: Yes, No 

Income Find it a strain to get by from week to week, Have to be careful with money, Able to manage without 

much difficulty, Quite comfortably off 

Lifestyle  

Alcohol consumption Daily or most days, Once or twice a week, Once or twice a month, Once or twice a year,  Never 

Smoking status Never, Previously smoked, Currently smoke 

Social networks Live alone: Yes, Noα 

Health   

Self-rated health General health: Excellent, Very good, Good, Fair, Poor 
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 Physical component of the SF-12 (0-100)  (Ware et al. 1996) 

Co-morbidities Number of co-morbidities including diabetes, raised blood pressure, eyesight problems, deafness, heart 

and chest problems  

Pain in other body areas Manchester definition of regional pain  (MacFarlane et al. 1996): No other pain, Regional pain, 

Widespread pain 

Characteristics of hand condition  

Hand pain severity   Australian/Canadian Hand Osteoarthritis index (AUSCAN) pain  (Bellamy et al. 2002a) (0-20)  

Number of days in the last 12-months with hand pain: less than 7-days, 1-4 weeks, >1-month but <3-

months, 3-months or more 

Hand functional difficulty Australian/Canadian Hand Osteoarthritis index (AUSCAN) function  (Bellamy et al. 2002a) (0-36) 

Side affected Dominant hand only, Non-dominant hand only, One hand affected but participant ambidextrous, Both 

hands affected  

Time since onset of hand problem Length of time with a hand problem (years) 

Sudden onset of hand problem Bilateral problem - both hands sudden onset, Bilateral problem – one hand sudden onset, Bilateral 

problem – neither hand of sudden onset, Unilateral problem – of sudden onset, Unilateral problem – not 

of sudden onset   

Onset of hand condition following 

accident or injury to the hand  

Bilateral problem - both hands onset following accident/injury, Bilateral problem – one hand onset 

following accident/injury, Bilateral problem – neither hand onset following accident/injury, Unilateral 

problem – onset following accident/injury, Unilateral problem – onset not following accident/injury   

Physical load on hands during 

work and leisure 

Past or present job, hobbies or pastimes involved excessive use of your hands? Yes, No 

Psychological factors  
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Anxiety   Hospital Anxiety and Depression scale (HADS) (0-21) (Zigmond et al. 1983);  

Mental component of the SF-12 (0-100)  (Ware et al. 1996) 

Depression  Hospital Anxiety and Depression scale (HADS) (0-21) (Zigmond et al. 1983)  

Mental component of the SF-12 (0-100)  (Ware et al. 1996) 

Illness perceptions  

 Long disease time course Subscale of the Illness perceptions questionnaire (IPQ-R) (6-30) (Moss-Morris et al. 2002) 

Consequences Subscale of the Illness perceptions questionnaire (IPQ-R) (6-30)(Moss-Morris et al. 2002) 

Personal control Subscale of the Illness perceptions questionnaire (IPQ-R) (6-30) (Moss-Morris et al. 2002) 

Treatment control Subscale of the Illness perceptions questionnaire (IPQ-R) (5-25) (Moss-Morris et al. 2002) 

Illness coherence Subscale of the Illness perceptions questionnaire (IPQ-R) (5-25) (Moss-Morris et al. 2002) 

Cyclical time course Subscale of the Illness perceptions questionnaire (IPQ-R) (4-20) (Moss-Morris et al. 2002) 

Emotional representation Subscale of the Illness perceptions questionnaire (IPQ-R) (6-30) (Moss-Morris et al. 2002) 

Frustration with hand condition All days, Most days, Some days, Few days, No days 

Clinical Assessment   

Body-mass index Weight (kgs)/(height (meters))2 

Hand grip-ability Grip-ability test (seconds) (Dellhag et al. 1995)  

Muscle strength Average of left and right grip strength (lbs); Average of left and right pinch strength (lbs) (Mathiowetz et 

al. 1984) 

Severity of hand osteoarthritis  Meets the American College of Rheumatology (ACR) criteria for hand osteoarthritis: Yes, No  (Altman et 

al. 1990) 

Carpal tunnel syndrome Present in either hand: Yes, No (Palmer et al. 2000)   

Dupuytren’s contracture Present in either hand: Yes, No 
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α A more detailed measure of social support was included in the CAS-HA study (The Berkman-Syme Social Network Index (SNI) (Berkman, Syme 1979)), but 
this measure had a large percentage of missing data (21%) so was not used for analysis  

 

De Quervain’s tenosynovitis Present in either hand: Yes if positive Finkelstein test, No if negative  Finkelstein test   (Lister 1978, 

Simpson 2002) 

Trigger finger Present in either hand: Fingers lock, trigger or catch and need to be released by participant: Yes, No 

X-ray   

Severity of hand osteoarthritis Number of hand joints with Kellgren-Lawrence  (Lawrence 1977)  x-ray grade >=2 (0-32) 
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3.2.2 Study follow-up 

Participants in the CAS-HA baseline sample were mailed follow-up questionnaires at 

regular 18-month intervals over the six-year period following their baseline assessment. 

Prior to each follow-up mailing, a “thank you” letter was sent to participants to thank them 

for their response to the previous survey and to inform them that their next follow-up 

questionnaire was due. Follow-up questionnaires were only mailed to those who had not 

withdrawn their consent to be in the study. To ensure that follow-up surveys were not 

mailed to participants who had recently died, or for whom receiving a survey would be 

inappropriate, the practice lists were screened by the general practitioners (GPs) before 

mailing and screened by a member of the health informatics staff to ensure that contact 

details for participants were up-to-date. If needed, address details were updated using the 

NHS tracing service. 

In addition at the 6-year follow-up, all participants were invited to attend a research 

assessment clinic alongside completing a postal survey. The research assessment clinic 

was similar in format to that conducted at baseline.   

3.2.3 Reminder mailings 

Reminder mailings were included to increase response to the postal surveys. Reminder 

mailings at the baseline stage were sent 2- and 4-weeks after the initial mailing to any 

participant not responding to the survey. The 2-week reminder was a postcard asking 

participants to return the survey; the 4-week reminder included a second copy of the 

questionnaire.  

At follow-up, an extra reminder stage was included in addition to those described above – 

minimum data collection (MDC). Participants not responding 6-weeks after the initial 

mailing date for that stage were telephoned (if consent was given) and were asked if they 

were willing to complete a short survey over the phone. If participants could not be 

contacted by phone a postal version of the short survey was mailed.   
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3.3 Data entry and data accuracy 

The data from each recruitment and follow-up stage was entered onto an ACCESS data 

entry database (Microsoft Office) after checking that the questionnaire had been 

completed by the intended participant12. It was also checked that only one unique entry 

was on the data entry database for each participant who had returned a questionnaire and 

that all participants who had been logged as returning a questionnaire did indeed have a 

corresponding entry on the data entry database13. The accuracy of the data entry was 

also checked for 10% of the questionnaires entered (i.e. the “1 in 10” check) and any 

errors revealed by this process corrected on the database. The full dataset was only used 

for analysis after it was checked that the error rate was low and that any errors found were 

not occurring systematically (i.e. that the errors were occurring at random and not always 

for the same question on the questionnaire). The data were also checked to ensure that 

responses entered for the questionnaire were plausible given the range of values that 

each question could take.   

The quality of the data was also enhanced by using well-validated and reliable research 

tools (where possible) (e.g. the SF-12, the HADS and the IPQ-R, see Appendix 4 for 

further details) to minimise information bias14 and the primary outcome (the AUSCAN) 

was only selected after a systematic review had been conducted to identify and review the 

validity of any existing tools to measure this construct (Dziedzic et al. 2005).    

In addition, prior to data collection, the research assessors were trained to use a 

standardised protocol to collect the measures at the clinical assessments, the reliability of 

                                                 
12 This was achieved by checking that the name and date of birth given by the person completing  
the questionnaire matched the information that was on a (separate) mailing database used to log 
when questionnaires were sent and when they were returned 
13 A multi-stage process was used to resolve any discrepancies between the number of 
questionnaires logged as being returned and the number of questionnaires entered on the data 
entry database (e.g. checking whether the questionnaire had been entered under an incorrect 
study identification number, liaising with the administrative team to check whether the 
questionnaire had been misfiled, searching the phone log to see if the participant had phoned the 
research centre giving information to explain why a discrepancy arose)     
14 Information bias can occur due to errors in the assessment of patient outcomes or predictor 
variables (Grimes et al. 2002) 
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which was tested in a pilot study (Myers et al. 2011). Clinical equipment (i.e. the JAMAR 

dynamometer and B&L pinch gauge) were calibrated prior to data collection and the 

average of three readings taken on each hand to improve the reliability of the reading 

used in the analysis – an approach recommended in reliability and validity studies of grip 

and pinch strength measures previously reported (Mathiowetz et al. 1984, Dellhag et al 

1995). 

3.4 Recruitment rates and loss to follow-up 

Figure 2 and Figure 3 show the number of participants included at each stage of 

recruitment and follow-up. From the participants identified as reporting hand pain or 

problems in the last year (N=2114), 623 attended the clinical assessment (attendance rate 

= 29%, Figure 2) and were defined as the baseline sample for the CAS-HA cohort. The 

most common reasons for not attending the baseline clinical assessment were lack of 

consent to receive postal mailings, lack of time to attend, or ill health; however, in many 

instances the reason for non-attendance is unknown.  

The response rates to the follow-up surveys were 96, 91, 71, and 66%, respectively, and 

represent the percentage of follow-up data collected at each time point from those in the 

original baseline cohort (denominator = 623)15. When the follow-up rates were calculated 

excluding those who were not mailed, as they had either died or had withdrawn from the 

study (their own decision or a decision made by their GP) response rates ranged from 89 

– 97% (Figure 3). 

  

                                                 
15 The lower response rate to the 54-month follow-up compared to 3-years was partly explained by 
the fact that participants were asked to re-consent to the study by positively completing a question 
on consent on the 3-year questionnaire 
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Figure 2: Recruitment flow chart for the Clinical Assessment Study of the Hand 
(CAS-HA) 
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Attended CAS-HA research clinic (RC) 
(n=623) 

Adjusted RC response = 45.5% 

Excluded prior to mailing 
(Death n=1) 

Excluded during mailing 
(n=100) 

Deaths and departures (43), withdrawn 
(16), returned addressee unknown (41)

No hand pain or problems in last 12 
months 

(n=2397) 

No consent to further contact 
(n=508) 

Excluded during mailing 
(n=5) 

Deaths and departures (2), returned addressee 
unknown (3) 

Not sent invite to baseline research 
clinic (n=1) 

Non-respondents (704), Unable to 
attend (31), Refusals (11) 

(n=746) 

Refusals / non-respondents 
(n=1800) 

Ill health (49), refused (109), non-response 
(1642) 

Refusals / non-respondents 
(n=231) 

Ill health (5), refused (31), non-response (195) 
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Figure 3: Retention flow charts for the Clinical Assessment Study of the Hand 
(CAS-HA) 

18-month follow-up 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
3-year follow-up 
 
Note that eligibility for the 3-year mailing includes non-responders to the 18-month survey 
(n=9) and five participants who gave consent to the 3-year mailing despite not wanting to 
complete the 18-month survey  
   

  

Attended CAS-HA research clinic  
(n=623) 

Mailed 18m follow-up survey   
(n=620) 

Respondents to 18m follow-up Survey 
(n=595) 

(588 full Health Survey, 7 Minimum data only) 
Adjusted 18m response = 97% 

Eligible for mailing of 3yr health 
questionnaire (n=609) 

Respondents to 3yr Health Survey 
 (n=564)  

(542 full Health Survey, 22 Minimum data only) 
Adjusted 3yr response = 94% 

Excluded prior to mailing  
(Death n=3) 

Excluded during mailing 
(n=4) 

Deaths (3), returned addressee unknown (1) 

Refusals / Non-respondents 
(n=21) 

Ill health (3), refused (9), non-response (9) 

Excluded prior to mailing  
(Death or departures n=8) 

Mailing 3yr health questionnaire 
 (n=601) 

Excluded during mailing 
(n=3) 

1 death 
1 withdrawn due to ill health 

1 returned addressee unknown 

Refusals / Non-respondents  
(n=34) 

                   3 ill health 
                  14 refused 
                  17 non-response  
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54-month follow-up 

Note that eligibility for the 54-month mailing includes only those participants that gave 
written consent to further contact on the 3-year survey 
   

  

Eligible for mailing of 54m health 
questionnaire (n=506) 

Respondents to 54m Health Survey 
 (n=445)  

(424 full Health Survey, 21 Minimum data only) 
Adjusted 54m response = 97% 

Excluded prior to mailing 
(n=42) 

8 deaths 
22 from death and departure check 

12 GP screen  

Mailing 54m health questionnaire 
 (n=464) 

Excluded during mailing 
(n=4) 

3 incorrect contact details 
1 withdrawn due to ill health 

 

Refusals / Non-respondents  
(n=15) 

1 ill health 
6 refused 

8 non-response 
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6-year follow-up 

Note that eligibility for the 6-year mailing includes participants who gave written consent 
on the 3-year questionnaire that was maintained throughout the 54-month follow-up 
mailing. It also includes 3 participants who phoned the research centre to request to be 
put back in the mailing sample after receiving the 54-month thank you letter, 5 participants 
who no longer needed to be excluded by the GP-screen, and 22 participants who had left 
the practice and were not traced at the 54-month follow-up (the NHS tracing service was 
not available in the NHS at the time of the 54-month mailing, but was available for the 6-
year follow-up). 
  
   

 

  

Eligible for mailing of 6yr health 
questionnaire (n=489) 

Respondents to 6yr Health Survey 
 (n=413)  

(389 full Health Survey, 24 Minimum data only) 
Adjusted 6yr response = 89% 

Excluded prior to mailing 
(n=16) 

16 deaths 

Mailing 6yr health questionnaire 
 (n=473) 

Excluded during mailing 
(n=9) 

6 died during mailing 
2 withdrawn due to ill health 
1 incorrect contact details 

Refusals / Non-respondents  
(n=51) 

1 ill health 
10 refused 

40 non-response 
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3.5 Assessing selection bias in CAS-HA    

As the CAS-HA study includes multiple stages of recruitment there are multiple 

opportunities for selection bias to occur, i.e. for there to be a lack of comparability 

between participant groups studied at each study stage (Grimes et al. 2002). To assess 

this, the distribution of all variables in Table 3-1 were compared at each study stage (i.e. 

at each stage of recruitment and follow-up), using numbers and percentages (for 

categorical data) or means and standard deviations/medians and interquartile ranges (for 

normally distributed and skewed continuous data respectively) (Table 3-2 and Table 3-3). 

The key comparisons in Table 3-2 were between (1) the baseline eligible population and 

those responding to the Health Survey (column A vs B) and (2) those reporting hand pain 

or problems in the last 12-months on the baseline Health Survey (column C) and three 

sub-groups within that a) those that gave consent to further contact (column D), b) 

responded to the Regional Pains Survey (column E) and c) attended the research clinic, 

i.e. the baseline CAS-HA sample used in this thesis (column F)16.  

In general, those responding to the Health Survey were largely representative of the 

baseline eligible population for age, gender and general practice (i.e. for the variables that 

were available for the entire eligible population). Participants attending the clinical 

assessment (i.e. the CAS-HA baseline sample) had a tendency to be more likely to be 

married, of a non-manual social class (i.e. to be in the higher or lower managerial or 

professional classes), to be quite comfortably off, to have lower alcohol consumption, and 

have good/excellent general health than those reporting hand pain on the Health Survey 

questionnaire. They also had slightly worse hand pain severity and functional difficulty 

than all of those responding to the Regional Pains Survey.  

                                                 
16 Participants returning the health questionnaire were not compared to participants included at 
recruitment stages C-F; participants at recruitment stages C - F have been selected (by design) as 
those with hand pain/problems making comparisons to recruitment stages C-F no longer solely 
about selection bias  
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In addition, the effect of loss to follow-up within the CAS-HA cohort is small although there 

is slight evidence that those remaining in the cohort at the 6-year follow-up have 

marginally better general health than those responding to the earlier follow-up time-points 

(Table 3-3).   
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Table 3-2: Participant characteristics at each stage of recruitment to the CAS-HA study (baseline data collection) 

 Column A Column B Column C Column D Column E Column F 

Baseline characteristics 

Baseline eligible 
population 

 
 
 

N=6411 

Responded to 
Health Survey 

 
 
 

N=4511 

Reported hand 
pain or 

problems in last 
12 months 

 
N=2114 

Consented to 
further contact 

 
 
 

N=1606 

Responded to 
Regional Pains 

Survey 
 
 

N=1370 

Attended 
research clinic 
(i.e. CAS-HA 

sample) 
 
 

N=623 
 

General Practice A 2752 (43) 1888 (42) 842 (40) 665 (41) 575 (42) 243 (39) 
Age (years) 63 (56, 72) 64 (57, 73) 64 (57, 73) 63 (57, 71) 63 (57, 71) 63 (58, 71) 
Female gender 3377 (53) 2479 (55) 1300 (62) 967 (60) 835 (61) 385 (62) 
Marital status       
 Married - 3136 (70) 1436 (69) 1129 (71) 974 (72) 472 (76) 
 Separated - 38 (1) 15 (1) 13 (1) 10 (1) 4 (1) 
 Divorced - 286 (6) 153 (7) 119 (8) 98 (7) 38 (6) 
 Widowed - 717 (16) 370 (18) 240 (15) 197 (15) 69 (11) 
 Cohabiting - 93 (2) 44 (2) 39 (2) 32 (2) 17 (3) 
 Single - 185 (4) 75 (4) 55 (3) 50 (4) 19 (3) 
Social class       
 Higher managerial - 202 (5) 80 (4) 70 (5) 59 (5) 28 (5) 
 Higher professional - 110 (3) 40 (2) 35 (2) 30 (2) 11 (2) 
 Lower managerial/professional - 574 (14) 258 (14) 227 (15) 207 (16) 114 (20) 
 Intermediate occupations - 438 (11) 209 (11) 172 (12) 156 (12) 82 (14) 
 Self-employed - 295 (7) 126 (7) 104 (7) 84 (7) 41 (7) 
 Lower supervisory/technical - 253 (6) 115 (6) 95 (6) 76 (6) 33 (6) 
 Semi-routine - 1049 (26) 509 (27) 390 (26) 327 (26) 128 (22) 
 Routine - 1135 (28) 575 (30) 405 (27) 341 (27) 144 (25) 
Employment status       
 Employed - 1366 (32) 563 (28) 483 (31) 403 (31) 165 (28) 
 Not working due to ill-health - 274 (6) 188 (9) 138 (9) 113 (9) 56 (9) 
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 Retired - 2249 (52) 1067 (52) 756 (49) 654 (50) 309 (52) 
 Unemployed - 39 (1) 15 (1) 11 (1) 10 (1) 3 (1) 
 Housewife - 288 (7) 145 (7) 112 (7) 97 (7) 45 (8) 
 Other - 126 (3) 57 (3) 52 (3) 44 (3) 18 (3) 
Age when left school (years) - 15 (14, 16) 15 (14, 16) 15 (15, 16) 15 (15, 16) 15 (15, 16) 
Go from school to full time education - 606 (14) 263 (13) 233 (15) 201 (15) 97 (16) 
Income       
 Find it a strain to get by from week to week - 142 (3) 90 (4) 72 (5) 58 (4) 23 (4) 
 Have to be careful with money - 1694 (38) 858 (42) 634 (40) 532 (39) 229 (37) 
 Able to manage without much difficulty - 1794 (41) 808 (39) 620 (39) 532 (39) 251 (41) 
 Quite comfortably off - 781 (18) 311 (15) 253 (16) 227 (17) 111 (18) 
Alcohol consumption       
 Daily or most days - 932 (21) 410 (20) 342 (22) 293 (22) 136 (22) 
 Once or twice a week, - 1576 (35) 714 (34) 562 (35) 482 (36) 218 (35) 
 Once or twice a month - 698 (16) 319 (15) 250 (16) 217 (16) 116 (19) 
 Once or twice a year - 717 (16) 367 (18) 267 (17) 219 (16) 97 (16) 
 Never - 543 (12) 285 (14) 173 (11) 148 (11) 52 (8) 
Smoking status       
 Never - 2153 (48) 1003 (48) 763 (48) 657 (48) 315 (51) 
 Previously smoked - 1746 (39) 847 (40) 648 (41) 557 (41) 258 (42) 
 Currently smoke - 571 (13) 250 (12) 186 (12) 148 (11) 45 (7) 
Lives alone - 916 (22) 467 (24) 322 (21) 273 (21) 108 (18) 
General Health       
 Excellent - 191 (4) 54 (3) 49 (3) 43 (3) 29 (5) 
 Very good - 1038 (23) 354 (17) 305 (19) 268 (20) 132 (21) 
 Good - 1866 (42) 845 (41) 669 (42) 575 (42) 256 (41) 
 Fair - 1113 (25) 642 (31) 438 (28) 365 (27) 158 (26) 
 Poor - 256 (6) 192 (9) 130 (8) 104 (8) 44 (7) 
Physical component score of the SF-12 (0-
100) 

- 47 (33, 54) 39 (29, 51) 41 (30, 52) 41 (30, 52) 40 (30, 51) 

Number of comorbidities       
 0 - 1591 (35) 653 (31) 525 (33) 449 (33) 219 (35) 
 1 - 1566 (35) 693 (33) 539 (34) 452 (33) 198 (32) 
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 2 - 814 (18) 448 (21) 324 (20) 284 (21) 122 (20) 
 3 - 342 (8) 190 (9) 129 (8) 113 (8) 55 (9) 
 4 - 134 (3) 87 (4) 61 (4) 48 (4) 19 (3) 
 5 - 40 (1) 30 (1) 21 (1) 17 (1) 7 (1) 
 6 - 24 (1) 13 (1) 7 (1) 7 (1) 3 (1) 
Pain in other body areas       
 No other pain - 1506 (33) 387 (18) 278 (17) 228 (17) 101 (16) 
 Regional pain - 2476 (55) 1246 (59) 952 (59) 818 (60) 358 (58) 
 Widespread pain - 529 (12) 481 (23) 376 (23) 324 (24) 164 (26) 
AUSCAN pain (0-20) - - - - 5.0 (3.0, 9.0) 6.0 (3.0, 9.0) 
Number of days in the last 12-months with 
hand pain 

      

 less than 7-days - - - - 115 (10) 40 (7) 
 1-4 weeks - - - - 146 (13) 66 (12) 
 >1-mth but <3-mths - - - - 192 (17) 85 (15) 
 3-mths or more - - - - 677 (60) 363 (66) 
AUSCAN function (0-36) - - - - 7.0 (2.0, 15.8) 8.0 (3.0, 17.0) 
Side affected       
 Dominant hand only - - - - - 75 (12) 
 Non-dominant hand only - - - - - 28 (4) 
 One hand affected but participant 
 ambidextrous 

- - - - - 7 (1) 

 Both hands affected - - - - - 513 (82) 
Time since hand problem onset (years) - - - - 5 (2, 10) 5 (2, 12) 
Sudden onset       
 Bilateral problem - both hands sudden 
 onset 

- - - - - 78 (13) 

 Bilateral problem – one hand sudden onset - - - - - 34 (5) 
 Bilateral problem – neither hand of sudden 
 onset 

- - - - - 408 (66) 

 Unilateral problem – of sudden onset - - - - - 38 (6) 
 Unilateral problem – not of sudden onset - - - - - 64 (10) 
Onset following accident or injury       
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 Bilateral problem - both hands onset 
 following accident/injury 

- - - - - 16 (3) 

 Bilateral problem – one hand onset 
 following accident/injury 

- - - - - 33 (5) 

 Bilateral problem – neither hand onset 
 following accident/injury 

- - - - - 471 (76) 

 Unilateral problem – onset following 
 accident/injury 

- - - - - 16 (3) 

 Unilateral problem – onset not following 
 accident/injury 

- - - - - 86 (14) 

Past or present job, hobbies or pastimes 
involved excessive hand use 

- - - - 996 (80) 480 (81) 

HADS – Anxiety (0-21) - 6.0 (3.0, 9.0) 7.0 (4.0, 10.0) 7.0 (4.0, 9.0) 7.0 (4.0, 9.0) 6.0 (4.0, 9.0) 
HADS – Depression (0-21) - 4.0 (2.0, 7.0) 4.0 (2.0, 7.0) 4.0 (2.0, 7.0) 4.0 (2.0, 7.0) 3.8 (2.0, 6.0) 
Mental component score of the SF-12 (0-100) - 54 (44, 58) 52 (39, 58) 53 (41, 58) 53 (42, 58) 54 (44, 59) 
Illness perceptions       
 Long disease time course (6-30) - - - - 24 (20, 26) 24 (21, 26) 
 Consequences (6-30) - - - - 13 (10, 17) 13 (11, 18) 
 Personal Control (6-30)α - - - - 17.7 (4.3) 17.9 (4.2) 
 Treatment Control (5-25)α - - - - 14.4 (3.3) 14.5 (3.3) 
 Illness coherence (5-25) - - - - 11 (10, 15) 11 (10, 15) 
 Cyclical time course (4-20) - - - - 12 (9, 15) 12 (8, 14) 
 Emotional representation (6-30)α - - - - 13.5 (4.5) 13.6 (4.6) 
Frustration with hand condition in the last 
month 

      

 All days - - - - 82 (7) 40 (7) 
 Most days - - - - 139 (11) 75 (13) 
 Some days - - - - 222 (18) 107 (18) 
 Few days - - - - 242 (20) 117 (20) 
 No days - - - - 540 (44) 242 (42) 
Body-mass index (kg/m2)α - - - - - 28.2 (4.8) 
Hand grip-ability (GAT) (seconds) - - - - - 29 (24, 36) 
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Grip strength (lbs)α - - - - - 49.2 (25.9) 
Pinch strength (lbs)α - - - - - 10.4 (4.3) 
Meets the ACR criteria for hand OA - - - - - 191 (31) 
Has carpal tunnel syndrome - - - - - 275 (46) 
Has Dupuytren’s contracture - - - - - 165 (26) 
Has De Quervain’s tenosynovitis - - - - - 137 (23) 
Has trigger finger - - - - - 123 (20) 
Number of joints with kellgren-Lawrence x-ray 
grade >=2 

- - - - - 3 (1,7) 

Figures are numbers and percentages unless otherwise stated. α = Mean (standard deviation); = Median (inter-quartile range) 
Abbreviations SF-12 = Short-form 12; AUSCAN = Australian/Canadian Hand Osteoarthritis Index; HADS = Hospital Anxiety and Depression Scale; ACR = American College of 
Rheumatology; OA = Osteoarthritis 
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Table 3-3: Participant characteristics at each follow-up stage of the CAS-HA study 

 Column F Column G Column H Column I Column J 

Baseline characteristics 

Attended 
research clinic 

 
N=623 

Responded to 
18-month survey 

 
N=595  

Responded to 3-
year survey 

 
N=564 

Responded to 
54-month survey 

 
N=445 

Responded to 6-
year survey 

 
N=413 

General Practice A 243 (39) 229 (39) 216 (38) 181 (41) 168 (41) 
Age (years) 63 (58, 71) 63 (58, 70) 63 (58, 70) 62 (57, 69) 62 (57, 68) 
Female gender 385 (62) 368 (62) 349 (62) 279 (63) 255 (62) 
Marital status      
 Married 472 (76) 454 (77) 427 (76) 341 (77) 318 (77) 
 Separated 4 (1) 4 (1) 4 (1) 3 (1) 3 (1) 
 Divorced 38 (6) 36 (6) 35 (6) 28 (6) 30 (7) 
 Widowed 69 (11) 64 (11) 60 (11) 45 (10) 35 (9) 
 Cohabiting 17 (3) 15 (3) 16 (3) 10 (2) 11 (3) 
 Single 19 (3) 19 (3) 19 (3) 15 (3) 14 (3) 
Social class      
 Higher managerial 28 (5) 28 (5) 27 (5) 22 (5) 22 (6) 
 Higher professional 11 (2) 10 (2) 11 (2) 7 (2) 7 (2) 
 Lower managerial/professional 114 (20) 110 (19) 103 (19) 84 (20) 85 (22) 
 Intermediate occupations 82 (14) 81 (14) 76 (14) 57 (14) 52 (13) 
 Self-employed 41 (7) 39 (7) 38 (7) 28 (7) 23 (6) 
 Lower supervisory/technical 33 (6) 33 (6) 31 (6) 27 (6) 24 (6) 
 Semi-routine 128 (22) 121 (20) 117 (22) 92 (22) 88 (23) 
 Routine 144 (25) 137 (23) 128 (24) 102 (24) 88 (23) 
Employment status      
 Employed 165 (28) 160 (28) 150 (28) 131 (31) 125 (32) 
 Not working due to ill-health 56 (9) 52 (9) 49 (9) 34 (8) 34 (9) 
 Retired 309 (52) 297 (52) 283 (52) 214 (50) 193 (49) 
 Unemployed 3 (1) 3 (1) 3 (1) 1 (1) 2 (1) 
 Housewife 45 (8) 42 (7) 41 (8) 31 (7) 26 (7) 
 Other 18 (3) 17 (3) 17 (3) 16 (4) 16 (4) 
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Age when left school (years) 15 (15, 16) 15 (15, 16) 15 (15, 16) 15 (15, 16) 15 (15, 16) 
Go from school to full time education 97 (16) 94 (16) 89 (16) 69 (16) 67 (17) 
Income      
 Find it a strain to get by from week to week 23 (4) 22 (4) 20 (4) 14 (3) 14 (3) 
 Have to be careful with money 229 (37) 215 (37) 202 (36) 153 (35) 136 (33) 
 Able to manage without much difficulty 251 (41) 243 (42) 233 (42) 190 (43) 178 (44) 
 Quite comfortably off 111 (18) 106 (18) 102 (18) 86 (19) 81 (20) 
Alcohol consumption      
 Daily or most days 136 (22) 131 (22) 127 (23) 103 (23) 97 (24) 
 Once or twice a week, 218 (35) 207 (35) 191 (34) 149 (34) 144 (35) 
 Once or twice a month 116 (19) 112 (19) 110 (20) 86 (19) 75 (18) 
 Once or twice a year 97 (16) 90 (15) 85 (15) 71 (16) 62 (15) 
 Never 52 (8) 51 (9) 47 (8) 34 (8) 32 (8) 
Smoking status      
 Never 315 (51) 306 (52) 288 (51) 230 (52) 219 (54) 
 Previously smoked 258 (42) 245 (42) 232 (41) 180 (41) 165 (40) 
 Currently smoke 45 (7) 40 (7) 40 (7) 31 (7) 25 (6) 
Lives alone 108 (18) 103 (18) 99 (18) 76 (18) 67 (17) 
General Health      
 Excellent 29 (5) 27 (5) 27 (5) 24 (5) 24 (6) 
 Very good 132 (21) 128 (22) 122 (22) 105 (24) 103 (25) 
 Good 256 (41) 246 (42) 233 (42) 186 (42) 172 (42) 
 Fair 158 (26) 150 (25) 143 (26) 104 (24) 90 (22) 
 Poor 44 (7) 40 (7) 36 (6) 23 (5) 21 (5) 
Physical component score of the SF-12 (0-
100) 

40 (30, 51) 40 (30, 51) 40 (30, 51) 42 (31, 52) 42 (31, 52) 

Number of comorbidities      
 0 219 (35) 213 (36) 206 (37) 171 (38) 164 (40) 
 1 198 (32) 189 (32) 178 (32) 140 (32) 128 (31) 
 2 122 (20) 117 (20) 111 (20) 78 (18) 75 (18) 
 3 55 (9) 50 (8) 45 (8) 35 (8) 32 (8) 
 4 19 (3) 17 (3) 16 (3) 14 (3) 9 (2) 
 5 7 (1) 7 (1) 6 (1) 5 (1) 4 (1) 
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 6 3 (1) 2 (0) 2 (0) 2 (0) 1 (0) 
Pain in other body areas      
 No other pain 101 (16) 92 (16) 88 (16) 69 (16) 68 (17) 
 Regional pain 358 (58) 344 (58) 327 (58) 256 (58) 238 (58) 
 Widespread pain 164 (26) 159 (27) 149 (26) 120 (27) 107 (26) 
AUSCAN pain (0-20) 6.0 (3.0, 9.0) 6.0 (3.0, 9.0) 5.0 (3.0, 9.0) 5.0 (3.0, 9.0) 5.0 (3.0, 9.0) 
Number of days in the last 12-months with 
hand pain 

 
    

 less than 7-days 40 (7) 40 (8) 39 (8) 30 (8) 27 (7) 
 1-4 weeks 66 (12) 62 (12) 62 (12) 48 (12) 47 (13) 
 >1-mth but <3-mths 85 (15) 79 (15) 74 (15) 60 (15) 58 (16) 
 3-mths or more 363 (66) 346 (66) 328 (65) 259 (65) 235 (64) 
AUSCAN function (0-36) 8.0 (3.0, 17.0) 8.0 (3.0, 16.0) 8.0 (3.0, 16.4) 7.0 (2.0, 15.0) 7.0 (2.0, 15.0) 
Side affected      
 Dominant hand only 75 (12) 73 (12) 67 (12) 59 (13) 56 (14) 
 Non-dominant hand only 28 (4) 27 (5) 24 (4) 22 (5) 19 (5) 
 One hand affected but participant 
 ambidextrous 

7 (1) 
7 (1) 7 (1) 6 (1) 7 (2) 

 Both hands affected 513 (82) 488 (82) 466 (83) 358 (80) 331 (80) 
Time since hand problem onset (years) 5 (2, 12) 5 (2, 12) 5 (2, 12) 5 (2, 11) 5 (2, 11) 
Sudden onset      
 Bilateral problem - both hands sudden 
 onset 

78 (13) 73 (12) 73 (13) 55 (12) 54 (13) 

 Bilateral problem – one hand sudden onset 34 (5) 31 (5) 27 (5) 21 (5) 20 (5) 
 Bilateral problem – neither hand of sudden 
 onset 

408 (66) 391 (66) 373 (66) 289 (65) 265 (64) 

 Unilateral problem – of sudden onset 38 (6) 37 (6) 34 (6) 28 (6) 26 (6) 
 Unilateral problem – not of sudden onset 64 (10) 62 (10) 56 (10) 51 (12) 47 (11) 
Onset following accident or injury      
 Bilateral problem - both hands onset 
 following accident/injury 

16 (3) 16 (3) 14 (3) 10 (2) 11 (3) 

 Bilateral problem – one hand onset 
 following accident/injury 

33 (5) 30 (5) 29 (5) 23 (5) 21 (5) 
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 Bilateral problem – neither hand onset 
 following accident/injury 

471 (76) 449 (76) 430 (76) 332 (75) 307 (75) 

 Unilateral problem – onset following 
 accident/injury 

16 (3) 16 (3) 15 (3) 12 (3) 11 (3) 

 Unilateral problem – onset not following 
 accident/injury 

86 (14) 83 (14) 75 (13) 67 (15) 62 (15) 

Past or present job, hobbies or pastimes 
involved excessive hand use 

480 (81) 460 (81) 434 (81) 348 (83) 320 (82) 

HADS – Anxiety (0-21) 6.0 (4.0, 9.0) 6.0 (4.0, 9.0) 6.0 (4.0, 9.0) 6.0 (4.0, 9.0) 6.0 (3.3, 9.0) 
HADS – Depression (0-21) 3.8 (2.0, 6.0) 3.0 (2.0, 6.0) 3.0 (2.0, 6.0) 3.0 (1.0, 6.0) 3.0 (1.0, 6.0) 
Mental component score of the SF-12 (0-100) 54 (44, 59) 54 (45, 59) 54 (44, 59) 54 (46, 59) 55 (45, 59) 
Illness perceptions      
 Long disease time course (6-30) 24 (21, 26) 24 (21, 26) 24 (21, 26) 24 (21, 26) 24 (21, 27) 
 Consequences (6-30) 13 (11, 18) 13 (11, 18) 13 (11, 18) 13 (10, 17) 13 (10, 17) 
 Personal Control (6-30)α 17.9 (4.2) 17.9 (4.3) 18.0 (4.2) 18.1 (4.3) 18.1 (4.4) 
 Treatment Control (5-25)α 14.5 (3.3) 14.6 (3.3) 14.6 (3.3) 14.7 (3.3) 14.7 (3.4) 
 Illness coherence (5-25) 11 (10, 15) 11 (10, 15) 11 (10, 15) 11 (10, 15) 11 (10, 15) 
 Cyclical time course (4-20) 12 (8, 14) 12 (8, 14) 12 (8,14) 12 (8, 14) 12 (8, 14) 
 Emotional representation (6-30)α 13.6 (4.6) 13.6 (4.6) 13.6 (4.6) 13.4 (4.5) 13.3 (4.6) 
Frustration with hand condition in the last 
month 

 
    

 All days 40 (7) 36 (7) 35 (7) 22 (5) 20 (5) 
 Most days 75 (13) 71 (13) 71 (14) 60 (15) 51 (13) 
 Some days 107 (18) 102 (18) 94 (18) 74 (18) 74 (19) 
 Few days 117 (20) 112 (20) 102 (19) 86 (21) 78 (20) 
 No days 242 (42) 236 (42) 224 (43) 173 (42) 163 (42) 
Body-mass index (kg/m2)α 28.2 (4.8) 28.3 (4.8) 28.2 (4.7) 28.1 (4.5) 28.0 (4.6) 
Hand grip-ability (GAT) (seconds) 29 (24, 36) 29 (24, 36) 28 (24, 35) 28 (24, 34) 27 (23, 34) 
Grip strength (lbs)α 49.2 (25.9) 49.2 (25.9) 49.5 (25.8) 51.0 (25.7) 50.8 (25.6) 
Pinch strength (lbs)α 10.4 (4.3) 10.4 (4.4) 10.5 (4.4) 10.7 (4.4) 10.7 (4.4) 
Meets the ACR criteria for hand OA 191 (31) 181 (31) 172 (31) 134 (30) 127 (31) 
Has carpal tunnel syndrome 275 (46) 261 (46) 247 (46) 191 (44) 176 (44) 
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Has Dupuytren’s contracture 165 (26) 157 (26) 150 (27) 110 (25) 102 (25) 
Has De Quervain’s tenosynovitis 137 (23) 129 (23) 123 (23) 100 (24) 90 (23) 
Has trigger finger 123 (20) 118 (20) 112 (20) 77 (17) 76 (18) 
Number of joints with kellgren-Lawrence x-ray 
grade >=2 

3 (1,7) 
3 (1, 7) 3 (1, 7) 3 (1, 7) 3 (1, 7) 

Figures are numbers and percentages unless otherwise stated. α = Mean (standard deviation);  = Median (inter-quartile range) 
Abbreviations SF-12 = Short-form 12; AUSCAN = Australian/Canadian Hand Osteoarthritis Index; HADS = Hospital Anxiety and Depression Scale; ACR = 
American College of Rheumatology; OA = Osteoarthritis 
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3.6 Summary 

The CAS-HA study has been presented in this chapter and it is acknowledged that the 

study design has both strengths and weaknesses. A discussion of these issues, however, 

is reserved for Chapter 10, to make the discussion relevant to the results presented in 

Chapters 6 to 9. The CAS-HA study data is used as a dataset in all chapters of this thesis 

and is used in the next chapter to explore the reliability, validity and interpretability of the 

AUSCAN as a measure of hand pain and functional difficulty in the CAS-HA study.
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4 Psychometric properties of the Australian/Canadian Hand 

Osteoarthritis Index (AUSCAN) 

4.1 Introduction 

The Australian/Canadian Hand Osteoarthritis Index (AUSCAN) (Bellamy et al. 2002a) is 

the primary measure of hand pain and functional difficulty used in this thesis. The aim of 

this chapter is therefore to explore the psychometric properties of this measure for use 

with older adults with hand pain.  

The chapter is structured into four sections, the first to describe the AUSCAN measure 

(Section 4.2), the second to define how the psychometric properties of the AUSCAN are 

assessed in this chapter (Section 4.3), the third to describe the results of the assessment 

(Section 4.4) and a final section to summarise the findings and discuss their implications 

for later thesis chapters (Section 4.5).  

The primary source of data used in this chapter is the CAS-HA data, however, for some 

assessments external datasets are drawn upon, as they are able to provide data that is 

more appropriate to test specific psychometric properties of the measure. Where such 

external studies are used, they are referred to in the sections described above and include 

data from the CAS-HA pilot study (Myers et al. 2011) and the Self-management in 

Osteoarthritis of the Hand trial (the SMOotH trial) (Dziedzic et al. 2011, Dziedzic et al. 

2013). It is therefore assumed that data are from the CAS-HA study unless otherwise 

stated.  

4.2 The Australian/Canadian Hand Osteoarthritis Index (AUSCAN) 

The AUSCAN is a self-administered questionnaire used to assess hand pain, stiffness 

and limitations in hand function in patients with hand osteoarthritis (OA) (Bellamy et al. 

2002a). The authors of the tool have previously described its development (Bellamy et al. 
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2002a) and highlight the importance of developing questionnaires using a multistage 

approach, including item generation, item reduction, piloting and psychometric evaluation.  

Initially 95 potential items were identified for inclusion in the AUSCAN questionnaire which 

were generated by interviews with hand OA patients, clinicians experienced in their 

management (rheumatologists, orthopaedic surgeons and physiotherapists), and by 

review of eight previously published tools purporting to measure hand disability. A multi-

stage process was used to select the final 15 items for inclusion in the questionnaire. This 

included steps to ensure that items selected were important to patients, unambiguous, not 

gender-specific and relevant to a hand OA population (indicated by selecting only items 

with a prevalence rate >= 60%).  

The AUSCAN questionnaire was originally developed for patients with a clinical diagnosis 

of hand OA, so it may not be appropriate for use with all CAS-HA participants, as not all 

participants have a clinical diagnosis of hand OA. In response, the AUSCAN 

questionnaire was adapted for CAS-HA participants by changing the question reference 

from ‘hand arthritis’ to ‘hand problem’ and by extending the question time frame from ‘in 

the last 48 hours’ to ‘in the last week’ to account for the likelihood of milder symptoms in 

the CAS-HA cohort. However, due to the age of the participants in the sample, many were 

expected to have radiographic or clinical OA, and results from the clinical assessment 

indeed showed that 82% had radiographic evidence of hand OA (Kellgren & Lawrence ≥2 

in at least one hand joint) and 30% met the ACR clinical criteria for hand OA (Marshall et 

al. 2009).  

Furthermore, for clarity, examples were added to the items ‘carrying a pot with one hand’ 

and ‘wringing out washcloths’ and some words in the questionnaire were changed to 

apply more directly to the UK population, e.g. faucet changed to tap. The items included in 

the AUSCAN questionnaire are shown in Box 1. The adapted version of the AUSCAN tool 
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was piloted before use; it was well-completed and acceptable to participants (Myers et al. 

2011). 

Box 1: AUSCAN questionnaire items used in the CAS-HA study 

Pain: 

Severity of hand pain in the last week when…..  

o At rest 

o Gripping objects 

o Lifting objects 

o Turning objects 

o Squeezing objects 

Stiffness: 

Hand stiffness after first waking in the morning 

Function: 

Degree of difficulty in the last week due to your hand problem….. 

o Turning taps 

o Turning a round door-knob or handle 

o Doing up buttons 

o Fastening jewellery 

o Opening a new jar 

o Carrying a full pot with one hand (e.g. saucepan) 

o Peeling vegetables/fruit 

o Picking up large heavy objects 

o Wringing out wash clothes (e.g. squeezing a wet sponge or flannel) 

 

4.2.1 Scoring of the AUSCAN questionnaire 

Each item included in the AUSCAN questionnaire was rated by participants in the CAS-

HA study using a 5-point Likert scale with response options of “None” to “Extreme”. After 

completion of the questionnaire, response options were scored on a scale of 0-4 and, for 

subscales containing multiple items, added together to make two total scores (one for 

hand pain and one for hand function). Although the AUSCAN questionnaire includes 

within it a measure of hand stiffness, the scores for this item were not assessed in this 

chapter as they were not analysed in later thesis chapters and have potential to be 
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unreliable as based on a single item only. Hand pain scores ranged from 0 to 20 and the 

hand function score from 0 to 36, with a higher score representing greater pain or 

functional difficulty. 

The authors of the AUSCAN (Bellamy et al. 2002a) provide guidelines on scoring of 

missing data and suggest that participants with a single item missing for hand pain, and 

up to two items missing for hand function, can still have a score computed for the 

outcome. The authors suggest that missing values (where necessary) be imputed with the 

mean item response for completed items on the specific subscale. A total score for hand 

pain or function would therefore be obtained for that participant by summation of both 

completed and imputed responses.  

4.3 Psychometric testing of the AUSCAN questionnaire 

The psychometric properties of the AUSCAN were assessed in this chapter using the 

eight criteria shown in Box 2 (Terwee et al. 2007). The criteria encapsulate the key 

concepts of reliability; that the questionnaire tool is measuring the concept in a 

reproducible way, and validity; that the tool is measuring what it intends to measure (Frey 

2015). Each concept is described below with an explanation of how it was assessed in 

this chapter. 

Box 2: Psychometric criteria used to determine if the AUSCAN was a reliable and 
valid measure of hand pain and functional difficulty 

 

o Face and content validity 

o Item distribution (missing data rates and floor and ceiling effects) 

o Internal consistency 

o Reproducibility (test-retest reliability) 

o Construct validity 

o Criterion validity 

o Responsiveness 

o Interpretability and definition of minimum important change 

List derived from (Terwee et al. 2007) and (Streiner 2003) 
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4.3.1 Face and content validity 

Face and content validity are two terms that are used to describe whether the items 

included in any questionnaire scale are reasonable (Coolican 2014). The term face validity 

refers to a subjective opinion that the questionnaire is measuring the desired qualities 

intended (e.g. when assessed by clinical experts), whereas content validity is a judgement 

as to whether the questionnaire tool samples all of the important content or domains of a 

condition (Streiner 2003). In this chapter face and content validity were determined by 

reviewing evidence in the publication that describes how items in the AUSCAN were 

initially generated (Bellamy et al. 2002a). In addition, items were assessed to see how 

suitable they were to measure hand pain and function in the CAS-HA cohort.  

4.3.2 Item distribution (missing data rates and floor and ceiling effects) 

Missing data rates and floor and ceiling effects were considered in this chapter for each 

AUSCAN item and their respective subscale scores. High item-level missing data rates 

could indicate ambiguous or unacceptable items for participants to complete. High floor 

and ceiling effects, i.e. the percentage of participants at the lowest and highest value on 

the scale respectively (Bowling 2014), could indicate items or subscale scores that do not 

fully capture the range of symptoms experienced by CAS-HA participants and where 

discrimination between participants at the extreme ends of the outcome distribution is 

poor. When floor and ceiling effects were assessed in this chapter, the guideline by 

Terwee et al. 2007 was used: that floor or ceiling effects (the proportion of participants 

scoring either the lowest or highest response option on the scale) greater than 15% 

indicate inferior content validity and hence limited ability to assess change over time. 

4.3.3 Internal consistency 

Internal consistency is the degree to which items on a measurement scale measure the 

same construct (Walsh et al. 1990) and is important to demonstrate, to ensure that items 

included within the scale are capturing different aspects of a single construct rather than 

tapping into constructs not intended to be measured by that scale (Streiner 2003). In this 
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thesis internal consistency was assessed using confirmatory factor analysis, item-total 

correlations and Cronbach’s alpha, as described below.  

Confirmatory factor analysis 

A 2-factor confirmatory factor analysis (CFA) model was fitted to the hand pain and 

function AUSCAN items to test whether the items measured two distinct constructs and 

hence whether it was appropriate to analyse them as two separate subscales17. The items 

were defined in the model to relate only to their hypothesised factor (either hand pain or 

functional ability), were measured with independent errors and were modelled assuming 

an ordinal scale of measurement. A correlation term between the latent constructs was 

also included to represent the overall correlation between hand pain and functional 

difficulty.  

Goodness-of-fit of the confirmatory factor models were assessed using the following fit 

indices: Tucker-Lewis index (TLI) (Tucker et al. 1973), comparative fit index (CFI) (Bentler 

1990), standardised root mean-square residual (SRMR) (Bentler 1995) and the root mean 

square error of approximation (RMSEA) (Steiger 1990), with good fit indicated if the TLI 

and CFI were greater than 0.95, and the SRMR and RMSEA were less than 0.05 and 

0.06, respectively. In addition, factor loadings were assessed to ensure they were 

statistically plausible and interpretable, i.e. that all estimates of variance were positive, 

that correlations were between plus and minus one, and that the standardised regression 

coefficients were statistically significant and greater than 0.4 (Ferguson et al. 1993).  

In addition, if the CFA model was found not to be a good fit to the data, modification 

indices were used as an exploratory tool to identify any correlations that, if added to the 

                                                 
17 Confirmatory factor analysis was used rather than exploratory factor analysis as there was a 
clear hypothesis around which items were planned to measure which construct (i.e. five items to 
measure hand pain and nine items to measure hand function) (Bellamy et al. 2002a)).    
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model, would greatly improve model fit18. The extra correlations were added to the model 

sequentially, starting with the correlation that had the potential to improve model fit by the 

largest amount, and continued until good model fit was achieved using the fit indices as 

defined above, i.e. model fit was assessed after each additional correlation was added to 

the model and this process continued until good model fit was achieved. The aim of this 

analysis was to gain understanding as to why the model did not fit the data well if that was 

a finding from the CFA. 

Item-total correlations and Cronbach’s alpha 

Item-total correlations and Cronbach’s alpha were used to measure the degree of 

homogeneity of items within each subscale and were reported if the results of the CFA 

model demonstrated that hand pain and function were two separate subscales19. If the 

item-total correlations were between 0.2 and 0.8 and Cronbach’s alpha for each subscale 

was in the region of 0.7 to 0.95 then internal consistency of the scales would be 

concluded (Bowling 2014, Terwee et al. 2007). The upper limit was required for these 

statistics as values greater than this may suggest item redundancy, i.e. items are so 

highly correlated that the benefit of including two items rather than one is not worthwhile 

(Streiner 2003).  

4.3.4 Reproducibility  

Reproducibility is a measure of the degree to which repeated measurements in stable 

patients provide similar results and includes within it two key concepts: reliability and 

agreement (de Vet et al. 2006a). Reliability (when discussed in the context of 

reproducibility) concerns the degree to which patients can be distinguished from each 

other despite measurement error, whereas agreement concerns absolute measurement 

                                                 
18 Modification indices give the expected drop in the model chi-square fit statistic if the correlation 
of interest is added to the model (Muthen et al 2010) 
19 Item-total correlations are defined as the correlations of each individual item with the total 
subscale score omitting that item. Cronbach’s alpha is the average of all possible split-half 
correlations with a split half correlation defined by splitting the items in a subscale into two parts, 
and correlating the resulting scales (Streiner 2003). 
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error and reflects how close scores on repeated measures are (Terwee et al. 2007) (see 

Appendix 5 for illustration).  

Both these concepts were important to consider in this thesis as the AUSCAN is used to 

measure how symptoms change over time. They were assessed using data from the 

CAS-HA pilot study only (N=55) because the time-interval between data collection time-

points in the main CAS-HA study was too long for an accurate assessment of 

reproducibility to be conducted (see Appendix 6 for details of the test-retest component of 

the CAS-HA pilot study). Participants were only included in this analysis if they reported 

no change in symptoms over time on a global assessment of change question (see 

footnote for question wording)20. These concepts, and how they were assessed in this 

thesis, are described below: 

Reliability 

Intra-class correlation coefficients (ICCs) were used to measure the reliability of the 

AUSCAN hand pain and function measures using the formula defined in Box 3. The ICCs 

were measured on a scale of zero to one with one representing perfect reliability, i.e. no 

measurement error. The AUSCAN subscales were considered reliable if the ICC 

correlations were greater than 0.7 (Terwee et al. 2007).  

  

                                                 
20 The wording for this question was “Compared to when you came for your assessment one month 
ago, how do you think your hand problem has changed?:  “Completely recovered”, “Much better”, 
“Better”, “No change”, “Worse”, “Much worse” 
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Box 3: Formulae used to calculate intra-class correlations (ICCs) in this thesis21 

ICC=
σ2

s

σ2
s+ σ2

t + σ
2

e 
 

where σ2
s, σ2

t, and σ2
e are estimated from a two-way random effects analysis of variance 

(ANOVA) model as: 
 
σ2

s = variability between participants,  
σ2

t = variability between measurement time-points 
σ2

e = residual error  
 
 
 

Agreement  

Agreement was assessed using the standard error of measurement (SEM). The SEM was 

calculated using the components of the ICC formula given in Box 3 as ටσ2
t+σ

2
e  (Terwee et 

al. 2009) to provide an estimate of the within-person standard deviation of a set of 

AUSCAN scores assuming they were measured repeatedly on a single participant with no 

symptom change over time (van Kampen et al. 2013). It is therefore expressed in units on 

the AUSCAN scales and in the context of the range of values that each scale can take (de 

Vet et al. 2006a).  

In addition, Bland and Altman plots were used to explore whether the level of absolute 

agreement between AUSCAN scores at the two time points (i.e. d = the difference in the 

                                                 
21 The ICC in Box 3 is referred to as ICC2 (A,1) using standard notation by McGraw and Wong 
(McGraw et al. 1996). This indicates that the ICCs are in class 2 (so all patients are measured on 
two occasions) by a single observer. The ‘A’ refers to agreement to indicate that variability between 
time points is included as measurement error, along with residual variability. Although the word 
‘Agreement’ is used in this notation De Vet et al (de Vet et al. 2006b) highlight that ‘Agreement’ in 
the ICC context is still part of a description of reliability. Other ICC’s can be calculated e.g. ICC2 
(C,1) where the ‘C’ stands for ‘Consistency’ to indicate that measurement error is estimated using 
residual variability alone (i.e. the denominator in the ICC formula in Box 3 is σ2

s+	 σ2
e. The 

ICC2(C,1) was not used in this thesis as De Vet et al (de Vet et al. 2006a) support that systematic 
variability between time points should be included as part of measurement error as it would be 
considered an error, for example if participants were to systematically rate the AUSCAN one point 
higher on the second occasion than the first when no change in symptom state had occurred. 
Other ICCs can also be calculated e.g. when multiple raters provide measurement at each time 
point, but these ICCs were not relevant to assessing the reproducibility of the AUSCAN so were not 
considered further.  

 Measurement error 
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AUSCAN score between the two time-points) was dependent on the severity of AUSCAN 

score observed (i.e. m = the mean AUSCAN score between the two time-points)22 (Bland 

et al. 1999). It was desirable for such plots to show no pattern in the data and for data 

points to be equally scattered across the full range of symptom severity. 95% Bland and 

Altman limits of agreement were also calculated as (m +/- 1.96*(standard deviation of the 

d score)) and superimposed on the plots to show the upper and lower bounds for which 

95% of the difference scores would lie in the data.  

4.3.5 Construct validity 

Construct validity refers to the extent to which scores on a measurement tool relate to 

other measures in a manner consistent with theoretically derived hypotheses concerning 

the concepts being measured (Terwee et al. 2007). Construct validity of the AUSCAN was 

tested in this chapter using a priori hypotheses as stated in Box 4 and Box 5. The 

hypotheses included tests of convergent validity, i.e. to test whether the AUSCAN was 

correlated with a set of external variables hypothesised to be related to the AUSCAN, as 

well as extreme groups/discriminative validity, i.e. to test whether the mean AUSCAN 

scores differ between known groups expected to differ by their AUSCAN levels (Streiner 

2003). The hypotheses were tested using correlation coefficients or mean differences, as 

appropriate. 

  

                                                 
22 Bland and Altman plots were derived by plotting the mean AUSCAN score across the two 
occasions of measurement against the difference in AUSCAN score across the two measurement 
occasions 
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Box 4: Construct validity hypotheses for AUSCAN pain 

AUSCAN pain would be positively correlated with: 

o Pain severity in the last month (rated on a 0-10 scale) 
o Pain subscale of the Arthritis Impact Measurement scales 2 (AIMS2) ((Meenan et al. 

1992) and Appendix 7) 
o The “Consequences” subscale of the Illness Perceptions Questionnaire – Revised 

(IPQ-R) (Moss-Morris et al. 2002) 

AUSCAN pain scores would be higher if: 

o Participants had visited their general practitioner (GP) in the last 12 months 
o Participants reported hand pain in the last month using a dichotomous yes/no 

question 
 

Box 5: Construct validity hypotheses for AUSCAN function 

AUSCAN function would be positively correlated with: 

o Grip strength (Mathiowetz et al. 1984) 
o Pinch strength (Mathiowetz et al. 1984) 
o Grip-ability test (GAT) (Dellhag 1995) 
o AIMS2 hand and finger function scale (Meenan et al. 1992) and Appendix 7) 
o The “Consequences” subscale of the Illness Perceptions Questionnaire – Revised 

(IPQ-R) (Moss-Morris et al. 2002) 
 

AUSCAN function scores would be higher if: 

o Participants had visited their general practitioner (GP) in the last 12 months 
 
 

4.3.6 Criterion validity 

Criterion validity is defined as the correlation of a scale with a ‘gold standard’ of the 

measure of the trait or disorder under study (Bowling 2014). A ‘gold standard’ measure of 

hand pain and function was not collected in the CAS-HA study so this form of validity 

testing was not explored further23. 

                                                 
23 Measures of grip and pinch strength could have been potential ‘gold standards’ for hand function. 
They were not used as a ‘gold standard’ in this chapter as self-reported hand function is a measure 
of hand function in daily living, e.g. with the ability to use gadgets to help with daily tasks, so is not 
a measure of hand strength alone.  
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4.3.7 Sensitivity to change and responsiveness 

Sensitivity to change and responsiveness are two terms often used interchangeably to 

indicate the ability of a measure to detect change over time when change has occurred. 

However, it has been highlighted that “sensitivity to change” taps a measure’s ability to 

measure any degree of change, whereas responsiveness assesses ability to measure 

change that is important to the patient (Streiner 2003). To acknowledge this distinction, 

sensitivity to change was derived using all participants completing the AUSCAN at 

baseline and the first follow-up time point, whereas responsiveness was determined by 

excluding participants reporting no change in their hand problem using a global 

assessment of change question24. 

Sensitivity to change and responsiveness were measured in the CAS-HA study and the 

SMOotH trial (Dziedzic et al. 2011, Dziedzic et al. 2013). The SMOotH trial data was used 

as an extra resource as it provided an opportunity to test sensitivity to change and 

responsiveness in a different data sample that had a greater potential for change over 

time to occur, as participants had been randomised to receive potentially effective 

treatments (see Appendix 8 for details of the SMOotH study). In addition, the time period 

between the first two measurements in the SMOotH study was much shorter than in CAS-

HA (3-months vs 18-months), reducing the potential for recall bias in the global 

assessment of change question used to select participants for analysis25.    

Cohen’s effect size (Cohen 1988) and the Standardised Response Mean (SRM) (Stratford 

et al. 2005) were used to assess sensitivity to change and responsiveness. Both 

measures were based on the difference between the mean AUSCAN at baseline and 

follow-up but varied by the sample used to estimate variability in the data. Cohen’s effect 

                                                 
24 The wording for this question was “Compared to when you came for your assessment x months 
ago, how do you think your hand problem has changed?:  “Completely recovered”, “Much better”, 
“Better”, “No change”, “Worse”, “Much worse” 
25 Three versions of the global assessment of change question were included in the SMOotH study 
which referred to change in (1) ‘your hand problem’ (2) ‘your hand pain’ (3) ‘your ability to use your 
hands’. The three versions of the measure were highly correlated so only the global assessment of 
change question referring to ‘your hand problem’ was used in the analysis in this chapter to simplify 
comparison to the CAS-HA study data (see Appendix 9)  
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size used the standard deviation of the AUSCAN at baseline; the SRM used the standard 

deviation of the AUSCAN change score (Box 6).  

Box 6: Formulae to calculate sensitivity to change and responsiveness 

Cohen's effect size=
xതBL- xതFU

SD of BL score
 

Standardised response mean ሺSRMሻ=  
xതBL- xതFU

SD of ሺBL-FUሻ change score
 

Guyatt's responsiveness ratio=  
ሺxതBL- xതFUሻin treated patients 

(SD of ሺBL-FUሻ change score)in control patients

 

Where 
BL = baseline, FU = follow-up 
xതBL=Mean score at baseline,  
xതFU=Mean score at follow-up	
SD = standard deviation 
 
 

Responsiveness was also assessed using Guyatt’s responsiveness ratio (Box 6) (Guyatt 

et al. 1986). This ratio depends on a treatment and control group being identified in the 

data, which was not possible for participants in the CAS-HA study, and is less relevant for 

participants in the SMOotH study as no significant treatment effects for the AUSCAN were 

found in the trial. The formula for Guyatt’s responsiveness ratio was therefore adapted in 

both studies by defining the control group as participants reporting no symptom change 

over time on the global assessment of change measure and the treated group were those 

reporting symptom change (improvement or deterioration) on the same measure. This 

approach was used as it has been considered acceptable in other responsiveness studies 

where a treatment and control group was not defined by the study design or where the 

treatment effect was not significant (Crosby et al. 2003, Sim et al. 2006).    

Standard benchmarks for Cohen’s effect size and the SRM were used to indicate the 

degree of responsiveness/sensitivity to change that had been achieved: “low”: < 0.5; 

“medium”: between 0.5 and 0.79; “high” > 0.8 (Cohen 1988). For Guyatt’s responsiveness 

statistic, a cut-off of greater than one is proposed to indicate a responsive measure as a 
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value greater than one would indicate that the average change score in 

improving/deteriorating participants was bigger than the amount of variability observed in 

stable patients (van der Windt et al. 1998).   

4.3.8 Interpretability  

Interpretability is defined as the degree to which qualitative meaning can be assigned to 

quantitative scores (Terwee et al. 2007) and was assessed for the AUSCAN using the 

concept of minimum important change (MIC). MIC has been defined by Jaeschke et al 

(1989) as the smallest difference on the score of interest, that is perceived as beneficial 

by patients, that in the absence of side effects, would change the patient’s management 

(Jaeschke et al. 1989)26. This concept adds to the interpretability of the AUSCAN as it 

enables one to interpret the magnitude of change in the data as being “large” or “small” 

independently of statistical significance and the sample size used in the study of interest.   

Several methods have been proposed to calculate MIC including anchor-based and 

distribution-based methods. Anchor-based methods use an external criterion, or anchor, 

to determine what patients or clinicians consider important improvement/deterioration and 

relate this to change on the outcome measure for which MIC is derived (Wright et al. 

2012). Distribution-based approaches, in contrast, are based on the distributional 

properties of the data or on the standard error of measurement as defined in Section 4.3.4 

above (de Vet et al. 2007). Both methods are described below, along with how they were 

assessed for the AUSCAN in this thesis.    

Anchor-based methods 

The global assessment of change question (defined in Section 4.3.4) was used as an 

external anchor to explore whether suitable cut-offs could be identified for change scores 

                                                 
26 Minimum important change (MIC) is often used interchangeably with minimum important 
difference (MID), however, De Vet et al 2007 make the distinction that minimum important change 
relates to within-person change, and minimum important difference to between-person differences. 
The term MIC is used throughout this thesis as the derivation for MIC uses change between two 
time-points as the focus of the analysis 
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on the AUSCAN, baseline to first follow-up, for hand pain and hand function, that best 

discriminated (1) any worsening in symptoms from those reporting no change, and (2) any 

improvement in symptoms from those reporting no change. The cut-offs represent values 

for MIC as they provide “best estimates” for the smallest value on each AUSCAN change 

score that would need to be observed before symptom change can be concluded. A 

precursor to this analysis, however, was to check that the correlations between the 

external anchor and the AUSCAN change scores were greater than 0.5, as relatively high 

correlations were needed for a reliable estimate of MIC to be obtained (de Vet et al. 

2007). 

The cut-offs were estimated using Receiver Operating Characteristic (ROC) curves to 

identify values on the AUSCAN change scores that minimised the quantity: ((1-sensitivity) 

+ (1-specificity)) (de Vet et al. 2007) and minimised the rate of false positive and negative 

classifications between groups defined by the global assessment of change measure  

(see Appendix 10 for further details). The analyses were conducted separately for 

participants in the SMOotH and CAS-HA main studies and for worsening and 

improvement of symptoms as values for MIC could differ depending on the direction of 

change analysed in the data. 

Distribution-based approaches 

Several distribution-based methods have been proposed to define MIC including 

measures based on statistical significance, effect sizes and the standard error of 

measurement (SEM) (Crosby et al. 2003). Only the SEM is used in this chapter to 

estimate MIC as it has the preferred property that it is a characteristic of the measure, so 

is measured in units of the AUSCAN, rather than being based on specific characteristics 

of the sample likely to vary from study-to-study, i.e. the size of the sample for statistical 

significance approaches or the amount of variability in the data for effect size based 

approaches (Crosby et al. 2003).    
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Several cut-offs, based on multiples of the SEM, have been suggested in the literature to 

define MIC, e.g. 1*SEM or 1.96*SEM (Crosby et al. 2003), however some authors 

recommend that any cut-off used to define MIC should exceed the smallest detectable 

change (SDC) for the measure (de Vet et al. 2006a). The SDC for a measure is calculated 

as 1.96*√2*SEM and represents the smallest within-person change in score that, with 

p<0.05, can be interpreted as ‘real change’ above measurement error27 (Terwee et al. 

2007). The SEM value derived from the CAS-HA pilot study in Section 4.3.4 was used to 

give a possible range of values for a distribution-based MIC. 

Integrating anchor- and distribution-based approaches 

Anchor-based and distribution-based methods can each be used to define MIC, however, 

each approach is limited. The first, because it does not take into account the 

measurement error in the outcome tool, and the second, because it does not consider 

whether the value for MIC is meaningful to patients, i.e. it is exploring minimum detectable 

change rather than minimum important change. In response, De Vet et al. 2007, proposed 

an integrated approach to determine minimum important change.  

The integrated approach works by plotting participants’ AUSCAN change scores for 

participants reporting “no change” on the global assessment question and calculating two 

limits on this distribution that are defined as: mean change score ± 1.645 SD of the 

change score28. The limits represent the two change scores that 90% of patients will lie 

between if they report no symptom change over the specified time period, with the upper 

limit defining the MIC for improvement, the lower limit, MIC for deterioration (De Vet el al. 

                                                 
27 The SDC is calculated as the upper limit for a 95% confidence for a paired t-test i.e. 1.96* 
standard error of the difference score. The standard error of the difference score is equal to 
√2*SEM as it takes into account that there are two measures in the test-re-test study design that 
are measured with error (Ottenbacher et al. 1988).  
28 The limits of agreement used here are very similar to those proposed by Bland and Altman 
(Bland et al.1999), however, Bland and Altman suggest using 1.96 as a multiple of the SD of the 
change score (rather than 1.645) to define the limits that 95% of participants (rather than 90%) 
would lie between. The difference in approach can be compared to the difference between a 1- and 
2-tailed test, with the approach by De Vet et al ensuring that 5% rather than 2.5% of participants 
have change scores that are above and below the upper and lower limits of interest.  
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2007). These limits were calculated using data from the CAS-HA pilot and main studies 

and the SMOotH clinical trial.  

4.4 Results 

The results in this chapter are presented using sub-headings to represent each 

assessment of reliability and validity described in Box 2 above.  

4.4.1 Face and content validity 

The description of the AUSCAN in Section 4.2 demonstrates that the AUSCAN has face 

validity as questions were developed in consultation with hand OA patients and their 

treating clinicians thus increasing relevance to this patient group (Bellamy et al. 2002a). 

Face validity of the questionnaire was also improved for the CAS-HA study by changing 

the reference from ‘hand arthritis’ to ‘hand problem’ and widening the item time frame to 

‘in the last week’, hence making the questions more relevant to the CAS-HA sample.  

Content validity was also supported as no further items were added to the questionnaire 

after patients were asked to generate items or domains they thought were missing from 

the closed-form version of the AUSCAN (Bellamy et al. 2002a). Also, since its 

development in 2002, the AUSCAN has been used in several other research studies (e.g. 

Bijsterbosch et al. 2011 and Stukstette et al. 2013) suggesting that other researchers 

support that items are clear and relevant for measuring hand pain and functional difficulty.    

4.4.2 Item distribution (missing data rates and floor and ceiling effects) 

The AUSCAN items had low levels of missing data, less than 6%, in the main CAS-HA 

cohort at baseline (Table 4-1). This suggests that items could be completed by most 

participants without difficulty. A hand pain score was derived for 589 participants at 

baseline (95%) suggesting that information could be obtained on hand pain for most 

participants; similarly for hand function N=593, 95%. Only a small percentage of 

participants had any items imputed when the scoring rules were applied (n=9 for both 

hand pain and function).  
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The percentage of respondents reporting no difficulty on each item ranged from 21 to 54% 

(Table 4-1), suggesting that some items were less able to discriminate between 

participants at the non-severe end of the response distribution. However, after summation 

of items into subscales, only 11 and 13% of participants had a total score of zero for hand 

pain and function respectively (Figure 4). This was less than the upper limit, proposed by 

Terwee et al. 2007, for a scale to demonstrate good discriminative ability, i.e. 15%. The 

percentage of respondents reporting extreme problems on the AUSCAN items was low, 

less than 6%, suggesting good discriminative ability at the upper end of the response 

distribution. Consequently, this resulted in skewed distributions for both AUSCAN pain 

and function (Figure 4). 

Table 4-1: Item-level AUSCAN data for participants in the CAS-HA baseline survey 
(N=623) 

Subscale/item 
% 

missing 

%α 

reporting  
no 

problem 

% α 

reporting 
extreme 
problem 

Item-total 
correlation 

Pain subscale     
Hand pain in the last week when…..     
 At rest  6 32 1 0.65 
 Gripping objects 6 21 1 0.86 
 Lifting objects 6 30 1 0.86 
 Turning objects 6 27 3 0.85 
 Squeezing objects 5 21 2 0.87 
 
Function subscale 

    

Difficulty in the last week with……      
 Turning taps 5 54 1 0.83 
 Turning a round door-knob or 
 handle 

5 52 1 0.86 

 Doing up buttons 5 53 2 0.80 
 Fastening jewellery 5 40 4 0.83 
 Opening a new jar 5 25 5 0.82 
 Carrying a full pot with one hand 
 (e.g. saucepan) 

5 30 5 0.86 

 Peeling vegetables/fruit 5 49 2 0.86 
 Picking up large heavy objects 5 27 5 0.84 
 Wringing out wash clothes 
 (e.g. squeezing a wet sponge or 
 flannel)  

5 30 4 0.85 

α Percentage denominator excludes missing data 
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Figure 4: Distribution of AUSCAN pain and function subscales for participants in 
the baseline CAS-HA cohort 
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4.4.3 Internal consistency 

The goodness of fit statistics for the CFA model were TLI = 0.99, CFI = 0.99, SRMR29 = 

0.03 and RMSEA = 0.100 (90% confidence interval = 0.096 to 0.112), which suggested 

that the model was a reasonable fit to the data; only the RMSEA did not meet the pre-

specified criteria for good model fit. All standardised regression coefficients were greater 

than 0.4 and statistically significant (Table 4-2). Variance estimates in the model were 

positive and the estimated correlation between hand pain and function was plausible, i.e. 

0.82. 

Table 4-2: Confirmatory factor analysis of the AUSCAN hand pain and function 
items and item-total correlations (N=601) 

 

Subscale/item 

 
Standardised 

regression 
weight 

95% 
confidence 

interval 

Item-total 
correlation 

Pain subscale    
Hand pain in the last week when…    
 At rest  0.73 (0.68, 0.77) 0.65 
 Gripping objects 0.92 (0.90, 0.93) 0.86 
 Lifting objects 0.94 (0.93, 0.95) 0.86 
 Turning objects 0.93 (0.92, 0.94) 0.85 
 Squeezing objects 0.95 (0.94, 0.97) 0.87 

Function subscale    
Difficulty in the last week with……     
 Turning taps 0.93 (0.92, 0.95) 0.83 
 Turning a round door-knob or handle 0.95 (0.94, 0.97) 0.86 
 Doing up buttons 0.89 (0.87, 0.92) 0.80 
 Fastening jewellery 0.89 (0.87, 0.91) 0.83 
 Opening a new jar 0.88 (0.86, 0.90) 0.82 
 Carrying a full pot with one hand (e.g. 
 saucepan) 

0.93 (0.91, 0.94) 0.86 

 Peeling vegetables/fruit 0.91 (0.90, 0.93) 0.86 
 Picking up large heavy objects 0.92 (0.91, 0.94) 0.84 
 Wringing out wash clothes (e.g. 
 squeezing a wet sponge or flannel)  0.91 (0.89, 0.93) 0.85 

 

                                                 
29 The SRMR could not be calculated in the presence of missing data when an ordinal outcome 
was assumed so this statistic is reported on the data set after missing data have been excluded 
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Modification indices were still explored, however, to see if any correlations could be added 

to the model that would greatly improve model fit from the reasonable fit that had been 

originally obtained. Three were identified that were substantially larger than other 

modification indices in the model and all referred to correlations between items on the 

hand function subscale:  “turning on taps” with “turning a round door-knob or handle”, 

modification index = 147; “Carrying a full pot with one hand“ with “Picking up large heavy 

objects”, modification index = 143 and “Doing up buttons” with “Fastening jewellery”, 

modification index = 111;  the remaining modification indices ranged from 0 to 35. By 

adding these three additional correlations to the model a good model fit was achieved: TLI 

= 0.99, CFI = 0.99, SRMR = 0.02 and RMSEA = 0.06 (90% confidence interval = 0.052 to 

0.069). 

Item-total correlations were also calculated as a satisfactory CFA had been obtained30 

and all were >0.8, with the exception of “hand pain at rest” at 0.67 (Table 4-2). Good 

internal consistency was also shown by high Cronbach’s alphas for both hand pain (0.93) 

and hand function (0.96), with both values at the upper end of the limits defined to 

determine acceptable internal consistency.  

4.4.4 Reproducibility  

An ICC correlation of 0.88 and 0.87 was obtained for hand pain and hand function 

respectively and was calculated using data from 41 participants reporting no symptom 

change in the CAS-HA pilot study. Both ICC values were greater than 0.7 suggesting 

good reproducibility of the AUSCAN in this data set (Table 4-3). The standard error of 

measurement was 1.51 and 3.07 for pain and function respectively (Table 4-3) and the 

Bland and Altman plots showed a broad scatter of data points for hand pain and function 

(Figure 5), suggesting that the discrepancy between measurement time-points did not 

                                                 
30 A satisfactory CFA was concluded even though three correlation terms were added to the initial 
CFA. This was because all of the additional correlations were added within the hand function items 
and they did not cross over into items on the hand pain scale 
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depend on participants’ average level of hand pain or functional difficulty31. The standard 

deviation of the AUSCAN scores were also similar between the pilot and main CAS-HA 

studies suggesting that reliability estimates in the CAS-HA pilot study can generalise to 

the main data set (AUSCAN pain SDpilot = 4.7, SDmain = 4.4; AUSCAN function SDpilot = 9.2, 

SDmain = 8.5).  

Table 4-3: Variance components, standard error of measurement and intra-class 
correlation (ICC) of the AUSCAN hand pain and function measures (N=41) 

 AUSCAN pain AUSCAN function 

Variance between time points (t) -0.05 -0.11 

Variance between subjects (s) 16.19 64.57 

Error variance (e) 2.32 9.55 

Standard error of measurement (SEM) 
(for agreement)  = (t + e) 

1.51 3.07 

ICC2 (A,1)  = s / s + t + e 0.88 0.87 

ICC2 95% confidence interval (0.78, 0.93) (0.77, 0.93) 

 

  

                                                 
31 It is noted that the discrepancy between the two time points is larger around a mean difference of 
fifteen for AUSCAN function, but the reliability of this finding is difficult to confirm as the sample 
size is small (N=41). 
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Figure 5: Bland and Altman plots for AUSCAN pain and function 

a) AUSCAN pain 
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4.4.5 Construct validity 

The AUSCAN pain and function subscales were positively correlated with all outcomes 

they were hypothesised to be related to; correlations ranged from 0.49 to 0.82 (Table 4-4). 

The AUSCAN hand function measure was more highly correlated with a second self-

reported measure of hand function, i.e. the AIMS2 hand and finger function subscale, than 

the objective measures of grip and pinch strength and the grip-ability test. The average 

level of AUSCAN pain and function was higher for participants that reported a GP 

consultation in the previous 12-months on the survey questionnaire. These findings 

support the construct validity of the AUSCAN as a measure of hand pain and functional 

ability.  

Table 4-4: Construct validity tests for the AUSCAN hand pain and function 
measures (maximum N= 593) 

 Spearman’s rank 
Correlation 

Mean (SD) Median (IQR) 

AUSCAN pain     

Pain severity in the last month 0.61 - - 
AIMS2 pain subscale 0.76 - - 
Consequences subscale of the 
IPQ-R 

0.58 - - 

GP consultation for a hand 
problem in the last year 

   

 Yes (n =150) - 8.3 (4.9) 9.0 (5.0, 12.0) 
 No   (n = 431) - 5.5 (3.9) 5.0 (3.0, 8.0) 
Hand pain in the last month    
 Yes (n = 414) - 7.4 (4.2) 7.0 (4.8, 10.0) 
 No   (n =135) - 3.1 (3.1) 3.0 (0.0, 5.0) 
AUSCAN function    

Grip strength -0.54   
Pinch strength -0.51   
Grip-ability test 0.49   
AIMS2 hand and finger function 
subscale  

0.82   

Consequences subscale of the 
IPQ-R 

0.58   

GP consultation for a hand 
problem in the last year 

   

 Yes  (n =149)  13.8 (9.7) 14.0 (5.0, 21.5) 
 No   (n = 434)    8.6 (7.5)   7.0 (2.0, 14.0) 

All correlations and subgroup comparisons were significant at p<0.001. AIMS2 = Arthritis impact 
Measurement Scales 2. IPQ-R = Revised illness perceptions questionnaire, SD = Standard 
deviation, IQR = Inter-quartile range  
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4.4.6 Sensitivity to change and responsiveness 

The proportion of participants reporting symptom deterioration was greater in the CAS-HA 

study than the SMOotH trial (42% vs 17%). In contrast, the proportion of participants 

reporting symptom improvement was higher in the SMOotH trial than the CAS-HA main 

study (32% vs 16%), with study differences potentially explained by involvement of a 

treatment intervention or by the length of study follow-up. Despite such differences in the 

rate of symptom change over time, both studies show low-medium responsiveness for 

both hand pain and function when assessed using Cohen’s effect size and the 

standardised response mean; a finding that occurs even when participants are selected 

out to be those reporting symptom improvement or deterioration on the global assessment 

of change question32 (Table 4-5). Guyatt’s responsiveness ratio provides similar estimates 

of responsiveness to those using the two other methods, i.e. Cohen’s effect size and the 

standardised response mean, with values below the cut-off of one for responsiveness. 

  

                                                 
32 The SRM is possibly preferred over the effect size for this analysis as the change score for the 
AUSCAN is more likely to be normally distributed than the absolute measure at baseline, which is 
skewed (Streiner 2003). It has the disadvantage, however, that it requires data to be present on 
two occasions, but this is less relevant here, as the majority of participants have also completed the 
AUSCAN at the 18-month follow-up 
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Table 4-5: Sensitivity to change and responsiveness statistics applied to the main 
CAS-HA cohort and SMOotH trial data 

 
Sensitivity to 

change 
Responsiveness 

Data sample All participants 

Participants 
reporting 
symptom 

improvementα 

Participants 
reporting 
symptom 

deterioration 
CAS-HA main study    
    
AUSCAN pain     
N 546 88 228 
Cohen’s effect size  -0.06 0.62 -0.38 
Standardised response mean -0.07 0.62 -0.45 
Guyatt’s responsiveness ratio Not calculated 0.68 -0.46 
    
AUSCAN function    
N 550 90 230 
Cohen’s effect size  -0.05 0.37 -0.27 
Standardised response mean -0.07 0.47 -0.41 
Guyatt’s responsiveness ratio Not calculated 0.45 -0.41 
    
SMOotH clinical trial    
    
AUSCAN pain     
N 225 72 39 
Cohen’s effect size  0.04 0.38 -0.26 
Standardised response mean 0.05 0.37 -0.44 
Guyatt’s responsiveness ratio Not calculated 0.42 -0.36 
    
AUSCAN function    
N 226 73 39 
Cohen’s effect size  -0.08 0.21 -0.29 
Standardised response mean -0.12 0.26 -0.55 
Guyatt’s responsiveness ratio Not calculated 0.33 -0.53 
    
α Defined as “better”, “much better” or “completely recovered” on the global assessment of change 
question 
 Defined as “worse” or “much worse” on the global assessment of change question 
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4.4.7 Interpretability 

Anchor-based approach to determining minimum important change 

Table 4-6 shows response frequencies for the global assessment of change question and 

highlights that the proportion of participants reporting extreme changes, i.e. that they are 

‘completely better’, or ‘much worse’ on the global assessment of change question, is low 

(<10%).  

Table 4-6: Distribution of the global assessment of change question 

Response 
CAS-HA main study 

N(%) 
SMOotH clinical trial 

N(%) 
Completely recovered 9 (2) 0 (0) 

Much better 36 (6) 17 (8) 

Better 47 (8) 57 (25) 

No change 246 (42) 115 (50) 

Worse 233 (40) 36 (16) 

Much worse 15 (3) 3 (1) 

 

The Spearman’s rank correlation between the global assessment of change question and 

the AUSCAN change score was low and the degree of distribution overlap when the 

AUSCAN change scores were plotted by response to the global assessment of change 

question was high (see Table 4-7, Figure 6 and Figure 7). This was not ideal as a high 

correlation between these two variables was needed for the global assessment of change 

question to be used as an external anchor to define MIC. In addition, the area-under-the-

ROC-curve statistics were all < 0.7 suggesting lower rates of sensitivity and specificity 

than desirable (Table 4-8). Using an anchor-based approach to define MIC in these 

datasets was therefore not feasible so this analysis was not taken further in this thesis.  
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Table 4-7: Correlation between the global assessment of change question and the 
AUSCAN pain and function change scores 

Data sample CAS-HA  
N=543 

SMOotH  
N=224 

Change in AUSCAN outcome   

Pain  (baseline – first follow-up) -0.34 -0.25 

Function   (baseline – first follow-up) -0.30 -0.25 

Figures are Spearman’s rank correlations 
Global assessment of change question measured using six response categories  
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Figure 6: AUSCAN pain and function change scores by global assessment of change question (CAS-HA study)α 
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Figure 7: AUSCAN pain and function change scores by global assessment of change question (SMOotH clinical trial)α 
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Table 4-8: Area under the ROC curves (95% confidence intervals) 

Data sample CAS-HA 
N=543  

SMOotH  
N=224 

 Symptom 
improvementα 

Symptom 
deterioration 

Symptom 
improvementα 

Symptom 
deterioration 

AUSCAN pain 0.69  
(0.62, 0.75) 

0.61 
 (0.56, 0.66) 

 

0.61 
 (0.52, 0.69) 

0.58 
 (0.49, 0.68) 

AUSCAN function  0.64  
(0.57, 0.70) 

0.61 
 (0.56, 0.66) 

0.64 
 (0.55, 0.72) 

0.56  
(0.45, 0.66) 

α Symptom improvement includes those that are ‘completely better’, ‘much better’ ‘better’ on the 
global assessment of change question 
 Symptom deterioration includes those that are ‘worse’ or ‘much worse’ on the global question   
 

Distribution–based approaches 

A wide range of possible values for MIC were calculated using the distribution-based 

method and the SEM estimates reported in Section 4.4.4 (Table 4-9). The maximum value 

for minimum important change was 4.19 for hand pain and 8.51 for hand function with 

changes larger than these amounts being greater than the smallest detectable change in 

the data. 

Table 4-9: Minimum important change using distribution-based methods 

Data sample CAS-HA pilot study 
 AUSCAN pain 

N=41 
AUSCAN function 

N=41 
1*SEM 1.51 3.07 

1.96*SEM  2.96 6.02 

SDC = 1.96*√2*SEM 4.19 8.51 

SEM = standard error of measurement, SDC = smallest detectable change 
 

Integrated anchor- and distribution-based approaches 

The integrated approach to calculating MIC suggested that MIC for improvement ranged 

from 3.64 to 6.19 for AUSCAN pain and from 6.3 to 9.9 for AUSCAN function across the 

CAS-HA and SMOotH studies (Table 4-10). As the mean change score for hand pain and 

function is around zero in both data sets, MIC for deterioration is similar to that observed 
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for improvement, with the exception of AUSCAN function measured in the SMOotH 

clinical trial. 

Table 4-10: Limits of agreement defined using the integrated anchor and 
distribution-based approach 

 
Nα 

Mean 
change 
scoreα 

SD of 
change 
scoreα 

MIC for 
deteriorationα, 

MIC for 
improvementα, 

AUSCAN pain      

      

CAS-HA pilot study 41 0.10 2.15 -3.44 3.64 

CAS-HA main study 222 0.05 3.73 -6.09 6.19 

SMOotH clinical trial 113 -0.14 3.07 -5.19 4.91 

      

AUSCAN function      

      

CAS-HA pilot study 41 -0.49 4.37 -7.68 6.70 

CAS-HA main study 223 0.24 5.87 -9.42 9.90 

SMOotH clinical trial 112 -1.42 4.70 -9.15 6.31 

      

α = Defined only for participants reporting no symptom change on the global assessment of change 
question,  = Mean change score - 1.645 SD of the change score,  = Mean change score + 1.645 
SD of the change score. SD = standard deviation, MIC = Minimum important change 

 

4.5 Discussion 

4.5.1 Summary of the key findings 

In this chapter, data have been presented that support, in the majority, that the AUSCAN 

is a valid and reliable measure of hand pain and functional difficulty when adapted for use 

in community-dwelling older adults with hand pain. Specifically, support has been shown 

for the face and content validity of the questionnaire, the internal consistency of the two 

subscale scores for pain and function and their overall construct validity and reliability. In 

contrast, weaker evidence has been shown for the measures’ reproducibility when 

assessed using the SEM, and its responsiveness, cumulating in relatively large values for 

MIC being estimated in the data. This finding, however, should be viewed in light of other 
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studies that have explored the psychometric properties of the AUSCAN and in light of 

some of the key limitations of the data used for this analysis (see Section 4.5.2 and 4.5.3 

below for details).      

4.5.2 Comparison with the literature 

There are several other studies that have explored the psychometric properties of the 

AUSCAN, both in populations similar to CAS-HA (Dziedzic et al. 2007a) and in other 

clinical populations such as those with RA (Massy-Westropp et al. 2004), hand OA 

(Bellamy et al. 2002b, Allen et al. 2006b, Slatkowsky-Christensen et al. 2005, MacDermid 

et al. 2007, Wittoek et al. 2009, Moe et al. 2010, Moon et al. 2012), and in community-

based samples including people with and without hand pain (Allen et al. 2007, Arreguin 

Reyes et al. 2012). Despite differences in study inclusion criteria, language, culture and 

versions of the AUSCAN used33, all studies support that the AUSCAN has face and 

content validity although the magnitude of any floor and ceiling effects for the measure 

can depend on the population of interest (Dziedzic et al. 2007a, Massy-Westropp et al. 

2004). These studies also show that the AUSCAN is internally consistent and has good 

construct validity across all studies, which is consistent with the findings in this study34. 

The repeatability of the AUSCAN has been assessed in a smaller number of studies 

administering the AUSCAN on two occasions35 (Bellamy et al. 2002b, Massy-Westropp et 

al. 2004, Dziedzic et al. 2007a, Moon et al. 2012, Moe et al. 2010, Arreguin Reyes et al. 

2012). All studies showed that the AUSCAN was a reliable measure of hand pain and 

function, with the exception of one study by Moon et al (2012) who found lower ICC 

values of 0.46 for pain and 0.67 for function. In the CAS-HA data, the AUSCAN had ICC 

                                                 
33 All studies used either the VAS or the Likert version of the AUSCAN as reported in Bellamy et al 
(Bellamy et al. 2002a) except for Dziedzic et al 2007a that used the adapted version of the 
AUSCAN as reported in this chapter 
34 In the study by Allen et al. 2007 the factor structure of the AUSCAN was explored by ethnic 
origin, Caucasian or African-American. The factor model was only supported in the Caucasian 
dataset, but, as 99% of participants in CAS-HA report their ethnic origin as ‘White’ this study gives 
less concern that the factor structure is not supported in the CAS-HA data  
35 The study by Arreguin Reyes et al. 2012 is not included in this summary as the ICC was only 
calculated for a total AUSCAN score, rather than for the separate subscales of hand pain and 
function 
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values > 0.7 so findings in this chapter are in line with the majority of evidence from other 

studies. Of these studies, only two reported Bland and Altman limits of agreement (Massy-

Westropp et al. 2004, Moe et al. 2010), with only one reporting upper limits for hand pain 

and function separately, i.e. 1.06 and 0.80 for hand pain and function respectively when 

measured on a 0-4 scale (Moe et al. 2010). These limits equate to 27% and 20% of the 

response scales, which are similar to the Bland and Altman upper limits derived in this 

chapter: 22% and 23% for hand pain and function, respectively.  

Evidence for the responsiveness of the AUSCAN differs greatly depending on study 

setting and on how patients with known symptom change are defined for analysis. For 

example, two studies have shown that the AUSCAN has “medium” to “high” 

responsiveness to change before and after non-steroidal anti-inflammatory (NSAID) 

treatment (Bellamy et al. 2002b, Moon et al. 2012), whereas only “low” to “medium” 

responsiveness was shown in a study where CRx-102 was the effective treatment 

compared to placebo for hand OA (Haugen et al. 2009). In this thesis, responsiveness 

was assessed using a global assessment of change question, which has its limitations 

that are discussed further in Section 4.5.3. Nevertheless, this analysis still contributes 

further to the evidence base that highlights that the responsiveness of the AUSCAN is 

dependent on the setting used to test it. 

Across studies providing evidence on the psychometric properties of the AUSCAN there is 

limited information on a value for MIC for the hand pain and function subscales. One 

study, using data collected across several countries, reported MIC values of 1.49 and 1.25 

for hand pain and function when measured on a 0-20 and 0-36 scale, respectively 

(Bellamy 2007). Although these figures are roughly in line with evidence presented by 

Allen et al. (2006a), who report that a one unit change in AUSCAN function relates to 

clinically important changes36 of around 1.3kgs for grip strength and 0.2 kg for pinch 

                                                 
36 Clinically important changes were assessed by the typical forces need to open various 
containers rather than as self-report by patients 
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strength, the evidence from these two studies greatly differs from the analysis in this 

chapter using the integrated method to calculate MIC. The evidence surrounding a single 

value to recommend for MIC for hand pain and function therefore remains inconclusive.     

4.5.3 Strengths and limitations 

A key strength of this analysis is that the majority of analyses are based on relatively large 

sample sizes, with the sample size for the CAS-HA study exceeding most used in other 

studies exploring the psychometric properties of the AUSCAN. It is acknowledged, 

however, that both the repeatability analysis, and the distribution method for calculating 

MIC were limited as they could only be tested using data from the CAS-HA pilot study, 

hence the sample size was small, though of similar size to other studies published on the 

repeatability of the AUSCAN (sample sizes ranged from 17 to 51 participants). The 

analysis in this chapter is strengthened by including data on sensitivity to 

change/responsiveness, and by attempting to define a value for MIC, as fewer studies 

have explored these specific psychometric properties of the measure. However, these 

analyses have their limitations as discussed further below.  

Limitations of the responsiveness analysis    

A global assessment of change question was used in the responsiveness analysis to 

define groups of participants with known symptom change over time. This measure was 

used as it would be difficult, and potentially unreliable, to define a cut-off on an external 

measure for “improving” and “deteriorating” symptoms. In addition, the global assessment 

of change question may encourage patients to think about change over the whole time 

course rather than just at two selected time-points and may be able to incorporate if 

participants’ views of symptom severity change over time (response shift)37 (Streiner 

2003)  

                                                 
37 Response shift could occur in the CAS-HA study if a participant were to experience an episode 
of severe pain between the baseline and 18-month follow-up. The participants’ recalled baseline 
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The global assessment of change measure, however, could be prone to recall bias, as 

current events are easier to recall than those in the past (Wright et al. 2012). This is 

particularly demonstrated in a study by Kamper et al. (2010), which showed that for 

patients with musculoskeletal disorders, the global assessment of change measure was 

more highly correlated with outcomes collected at follow-up than at baseline. This is 

especially an issue in the CAS-HA study as participants are recalling symptom change 

over a long time-period (18-months), and in both studies, CAS-HA and SMOotH, there is 

evidence that AUSCAN pain and function at the first follow-up time period is more highly 

correlated with the global assessment of change measure than at baseline (see Appendix 

11). It is therefore not known whether the groups defined as improving or deteriorating 

over time did indeed experience true symptom change so this may explain why the 

AUSCAN does not show high levels of responsiveness in this analysis.  

To explore the limitation of using a global assessment of change question for this 

analysis, the responsiveness of three additional measures of hand pain or function were 

assessed in the CAS-HA data. The aim of this analysis was to explore if the 

responsiveness of these measures were also low, as this would provide potential 

evidence that it was the framework used to test responsiveness that was problematic, 

rather than the AUSCAN per se. The results of this analysis showed low responsiveness 

for all measures when assessed in participants reporting deterioration in symptoms, yet 

medium to good responsiveness in participants reporting symptom improvement 

(Appendix 7 and Appendix 12). The results of this test were therefore inconclusive. The 

results also did not depend on the statistic that was used to assess responsiveness, i.e. 

Cohen’s effect size, SRM or Guyatt’s responsiveness statistic, so it remains unclear 

whether the low responsiveness of the AUSCAN is due to bias in the global assessment 

of change question. 

                                                                                                                                                 
level of pain severity at follow-up may then be less severe than previously rated as the participant 
is now more aware of the full range of symptom severity that could be experienced.   
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A further reason why the AUSCAN shows low-moderate responsiveness in the CAS-HA 

and SMOotH studies could be because the actual of amount of change over time is small 

even in participants reporting symptom improvement or deterioration over time. This is in 

part supported in the data as the mean rate of change is small in the improving and 

deteriorating groups relative to the scale that the measures are calculated on (Figure 6, 

Figure 7, Appendix 13, and Appendix 14). There is also a large degree of overlap in the 

distribution of change scores in the AUSCAN and the additional measures of hand pain 

and function between participants reporting no change and deterioration in symptoms 

over time. This highlights a key limitation of any assessment of responsiveness: that it is 

highly dependent on the setting and population used to test it and that any measure will 

be more responsive to detect larger, than smaller, changes over time (Streiner 2003), and 

potentially explains why the AUSCAN is shown to be responsive in other treatment 

studies when there is a greater potential for symptom change to occur and therefore be 

detected by the AUSCAN. The data in this thesis may therefore not be very suitable to 

assess questions around the responsiveness of the AUSCAN as the analysis is limited by 

the difficulty of defining data subsets where “true” symptom change has occurred over 

time.             

Limitations of the analysis to calculate MIC 

As discussed above, the limitations associated with the global assessment of change 

measure also apply when the global assessment of change question is used in the 

integrated method to calculate MIC. Also, as the distribution-based approach is based on 

a small sample size it could be that these results are unreliable, however it is noted that 

results from this approach are similar to those using the integrated approached that was 

not based on a small sample size. It may therefore simply be that hand pain and function 

need to change by a large amount before any impact is observed in daily living, i.e. by 

around 25% on the scale score for both hand pain and function. However this finding is 
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not in line with the study by Bellamy et al (2007) who report MIC values that are 

considerably lower than those presented in this chapter.  

This highlights a key criticism of the MIC approach, that it has the potential to generate a 

wide range of possible values across different studies and across the different methods 

used to calculate it, e.g. distribution vs anchor-based approaches, or when using a 

different measure as an external anchor (Terwee et al. 2010). It is therefore 

recommended that values for minimum important change only be implemented when 

multiple analyses, often in separate studies, converge to a single value. This requirement 

therefore means that evidence on MIC in this chapter is tentative and requires further 

replication in future studies. 

A further limitation of the MIC analysis presented is that it does not take into account the 

relative improvement in hand pain and function that has occurred over time, for example, 

a 1 point change may be considered large for a participant with a baseline score of 2, but 

small for a baseline score for 20, so a 50% versus 5% change for an identical value of 

MIC. It would be possible to explore whether a minimum cut-off for percentage change 

could be defined, but this was not taken forward given the lack of an appropriate anchor to 

use in the anchor-based method to calculate MIC.  

Limitations of the distribution of the AUSCAN 

The skewed distributions of the AUSCAN in the CAS-HA sample could potentially be a 

limitation to monitoring symptom change over time to address the research questions in 

Chapter 1 as a sizeable group of participants have AUSCAN scores at baseline of zero so 

have no ability to improve at the first follow-up time point. This may, or may not, be a 

limitation however, as it is plausible that participants genuinely have no pain or functional 

difficulty in the week prior to baseline, as participants were only recruited into the study if 

they had hand pain or problems in the last 12-months, rather than if they had problems on 

the day they completed the baseline questionnaire.   
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4.6  Summary 

In this chapter, the AUSCAN was shown to be a reliable and valid measure of hand pain 

and functional difficulty. It is acknowledged, however, that evidence for the 

responsiveness of the measure was not fully demonstrated in the CAS-HA data hence this 

is a limitation to be considered when interpreting the analyses reported in Chapters 6 to 9. 

This limitation however is made acknowledging that the framework to test responsiveness 

in the CAS-HA study was not ideal and that longer-term symptom change may be more 

easily detected in the data if this is larger than the initial change observed between the 

first two study time-points. A value for MIC has not been determined in the data for hand 

pain and function so further studies are needed before a single value can be 

recommended. Alternative methods to judge the magnitude of change in hand pain and 

function over time are therefore needed and are explored in Chapter 6 after the statistical 

methods used to model the course of hand pain and function over time have been 

presented in the next chapter (Chapter 5).      
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5 Statistical methodology 

The aim of this chapter is to describe the statistical methods that are used in this thesis to 

model the longitudinal data collected from the CAS-HA study, namely the key outcomes of 

hand pain and function38. The methods chosen are those suitable to model longitudinal 

data, i.e. methods that can appropriately account for the lack of independence in data 

collected from single participants at multiple time points (Kahn 2011). The methods are 

described in relation to a continuous outcome measure only, as this is the form of 

measurement used for hand pain and functional difficulty in this thesis.  

The methods used will be discussed in the following sections: 

 Generalised Estimating Equations (GEE) (Section 5.1) 

 Growth models (GM) and parallel process GM (Section 5.2) 

 Latent class growth models (LCGM) (Section 5.3) 

 Growth mixture models (GMM) and parallel process GMM (Section 5.4) 

 

A final section will be included to discuss issues that are generic to all of the statistical 

models above, namely, the computer software used to fit the models of interest (Section 

5.5.1), issues of sample size and power (Section 5.5.2) and how to handle missing data 

(Section 5.5.3).  

5.1 Generalised Estimating Equations (GEE) 

5.1.1 The basic concept 

GEE models were initially developed by Liang and Kung-Lee (Liang et al 1986) and are 

referred to in the literature as “population average” or “marginal” models as their aim is to 

estimate the mean outcome observed for participants based on any covariates included in 

                                                 
38 The aim of this chapter is to focus on only those methods that have been used in this thesis to 
address the research questions in Chapter 1 rather than to give a full and comprehensive guide to 
all possible approaches to analysing longitudinal data.  
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the model (Ballinger 2004). They work by extending the standard generalised linear model 

(GLM) to data that lack independence between time points by treating any correlation 

between the data points as a “nuisance” parameter to be adjusted out of the data prior to 

estimating effects of interest (Hu et al. 1998a, Goldstein et al. 2004).  

The standard GLM is shown in Box 7 and illustrates that, after an appropriate adjustment 

for the correlation in the data, GEE models can be applied to a wide range of outcome 

types. The model illustrates that the expectation of the outcome (the mean) is related to a 

linear combination of the predictors of interest, but this is achieved via a link function, g, to 

transform the data when they do not follow a normal distribution. If the data follow a 

normal distribution, the GEE model can be simplified to: ܧሺݕ௜௧ሻ ൌ 	 ௜ܺ௧ߚ	 with ݕ	~	ܰሺ	ሻ and 

is fitted to the data after standard errors have been adjusted for the correlation between 

the data points.  

Box 7: The generalised linear model (StataCorp 2013a)) 

The generalised linear model is defined for an outcome y and covariates x as: 

 

݃ሺܧሺݕ௜௧ሻሻ ൌ 	 ௜ܺ௧ߚ																		ݕ	~	ܨ	݄ݐ݅ݓ	ݏݎ݁ݐ݁݉ܽݎܽ݌	ߠ௜௧ 

 

where g( ) is the link function, F is the distributional family, ௜ܺ௧ߚ is the linear predictor of 

model covariates and i = 1,…..,m and t = 1,……,ni , where i indexes the individual and t 

the repeated observations per individual (ni is the number of repeated observations for 

individual i) 

 

It was shown, however, in Chapter 4, that both AUSCAN pain and function have skewed 

distributions. An alternative distributional assumption may therefore be needed, with the 

gamma distribution being one possible option to model data that are skewed (Azuero et 

al. 2010). With a gamma distribution, several link functions are possible to relate the mean 
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to the linear predictor – the identity link (which is equal to 1), log, power or reciprocal links 

(StataCorp 2013a). The choice of link function is selected as the one that provides best fit 

to the data (Collett 1999).    

For a GEE model to be fitted to the data, along with the outcome distribution and the link 

function, a working correlation structure for the data also needs to be specified. The 

working correlation structure represents the within-group correlation in the data (this is the 

correlation between time points for longitudinal data) and can take on one of several 

potential forms including: independence, exchangeable, m-dependent, auto-regressive 

and unstructured (see Box 8 (Twisk 2003)). The working correlation structure is often 

chosen as the one that parsimoniously reproduces the observed correlation matrix (Twisk 

2003), however the GEE model has been shown to be robust to misspecification of the 

correlation matrix when robust standard errors are used. The choice of the “correct” 

correlation structure is therefore less crucial as only small gains in model efficiency are 

achieved when a “correct” structure is chosen39 (Ballinger 2004).   

 

                                                 
39 This is because the model estimation process is iterative in nature, so the initial estimates from 
the correlation matrix are overwritten during the model fitting process (Ballinger 2004) 
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Box 8: Working correlation structures for a GEE model 

 

The examples below relate to the CAS-HA study i.e. a study with 5 data collection time points labelled t1 to t5 where ρ = correlation 

     

Independent structure 

Exchangeable 

structure/Compound 

symmetry 

m-dependent structure  

(e.g. m=2) 
Autoregressive structure Unstructured 

 t1 t2 t3 t4 t5   t1 t2 t3 t4 t5   t1 t2 t3 t4 t5  t1 t2 t3 t4 t5  t1 t2 t3 t4 t5 

t1 - 0 0 0 0  t1 - ρ ρ ρ ρ  t1 - ρ1 ρ 2 0 0 t1 - ρ1 ρ 2 ρ 3 ρ 4 t1 - ρ1 ρ2 ρ3 ρ4 

t2 0 - 0 0 0  t2 ρ - ρ ρ ρ  t2 ρ1 - ρ1 ρ 2 0 t2 ρ1 - ρ1 ρ 2 ρ 3 t2 ρ1 - ρ5 ρ6 ρ7 

t3 0 0 - 0 0  t3 ρ ρ - ρ ρ  t3 ρ 2 ρ1 - ρ1 ρ 2 t3 ρ 2 ρ1 - ρ1 ρ 2 t3 ρ2 ρ5 - ρ8 ρ9 

t4 0 0 0 - 0  t4 ρ ρ ρ - ρ  t4 0 ρ 2 ρ1 - ρ1 t4 ρ 3 ρ 2 ρ1 - ρ1 t4 ρ3 ρ6 ρ8 - ρ10 

t5 0 0 0 0 -  t5 ρ ρ ρ ρ -  t5 0 0 ρ 2 ρ1 - t5 ρ 4 ρ 3 ρ 2 ρ1 - t5 ρ4 ρ7 ρ9 ρ10 - 

                                

Correlation between time 

points assumed to be zero 

Common correlation assumed 

between time points 

Common correlation assumed 

but dependent on the time 

distance between data points 

Correlation t measures apart is 

ρ to the power of t e.g. 2 

measures apart is ρ squared 

All correlations between time 

points assumed to be 

different 
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5.1.2 Model estimation and model assumptions 

Parameter estimates and their associated standard errors are estimated using quasi-

maximum likelihood techniques (Twisk 2003) (for further details see (Liang et al. 1986) 

and (Heyde 1997)). Briefly, this is an iterative model fitting procedure that is used when 

there is insufficient information to enable a likelihood function to be constructed, and then 

maximised, for parameter estimates to be obtained using maximum likelihood (Jiang 

2004). A key assumption of the GEE model is that the variance is related to the mean via 

a known function (Ghisletta et al. 2004), e.g. relating the mean and variance in a normal 

or gamma distribution as shown in Box 9. 

Box 9: Relationship between the mean and variance for a normal and gamma 
distribution 

Distribution Mean Variance 

Normal ሺߤ, ሾሺܺܧ ߤ ଶሻߪ െ  ሻଶሿߤ	

Gamma (a, b)40 ܽ
ܾ

 
ܽ
ܾଶ

 

 

In addition, it is assumed that there is a linear relationship between the dependent 

variable and the linear predictor (via an appropriate link function) (Ghisletta et al 2004) 

and that participants are sampled at random from a larger population of interest (i.e. that 

the data are independent when collected from different participants (Kuchibhatla et al. 

2003)).  

5.1.3 Model interpretation  

The parameter estimates from the GEE model are interpreted as the degree to which the 

mean response, given the link function, would change for a one-unit increase in a 

covariate across the population (Ballinger 2004), i.e. their interpretation is at the 

                                                 
40 For the gamma distribution, a is the shape parameter and b is the inverse scale parameter to 
govern the shape of the gamma distribution derived   

 



111 
 

population rather than at the individual level. In this thesis, the statistical significance of 

the β-values in the model are estimated using the Wald chi-square statistic, which is 

distributed as a chi-square test statistic with degrees of freedom equal to the number of 

parameters being tested (Ballinger 2004) 

5.1.4 Coding of time 

Time (t) can be modelled in several ways within the GEE framework: as a linear variable 

(where it is assumed that the change in response is equal when measured for equally-

spaced time points), as a non-linear variable (using higher order polynomials (e.g. t2, t3) or 

as a categorical variable when the assumption of linear growth may not be tenable e.g. 

when rates of change between earlier follow-up time points are hypothesised to be 

quicker than between later data collection points). In the CAS-HA study, the highest order 

of polynomial that can be fitted to the data is cubic as the study only has five data 

collection time points. The most appropriate order of polynomial (linear, quadratic, cubic) 

will therefore be tested by assessing the statistical significance of each higher order 

polynomial and including only those that are statistically significant (p<0.05).    

5.1.5 Model predictors 

Model predictors can be included in the GEE models either as continuous or categorical 

variables and can be measured as time-invariant or time-varying. Time-invariant 

predictors are those that have a constant value over time (either by definition, or because 

they are only measured at a single time point), whereas time-varying predictors are those 

whose value can (potentially) change between time-points (Curran et al. 2010). 

Interactions between predictors are possible (e.g. to explore whether trajectory shape 

differs between population subgroups). In this thesis, GEE models are only used to 

explore the trajectory of the outcome over time so a further description of model prediction 

is reserved for the growth models described in Section 5.2. 
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5.1.6 Model fit  

GEE model fit cannot be assessed using information-based model fit statistics (e.g. 

Akaike’s information criteria (AIC) (Akaike 1974)) as these statistics can only be 

calculated for models estimated using full information, rather than quasi, maximum 

likelihood techniques. However, to address this, an adjusted version of the AIC has been 

developed, the Quasi-likelihood Independence model information Criterion (QIC) (Cui 

2007), that can be used to compare the fit of two competing models of interest. Models 

with a lower score on the QIC would represent an improved model fit. 

In addition, model residuals (i.e. the difference between the observed and predicted 

values (Everitt et al. 2005)) can be used to assess GEE model fit, with a plot of the 

residuals against fitted values at each time point aiming to show residuals that do not 

cluster around an individual value and that have a random pattern that does not 

systematically change in each time-period. The residuals can also be used to assess the 

data for any potential outliers that could influence model estimates derived (Ballinger 

2004).   

5.1.7 Reflections on the GEE model 

The GEE model that has been presented so far provides a valid method to analyse the 

longitudinal data in this thesis and are useful when marginal effects at the population level 

are of interest (Kuchibhatla et al. 2003). However, the GEE model treats the correlation 

between time points as a “nuisance parameter” so its ability to provide information on how 

trajectories differ between participants at the individual level is limited (Kuchibhatla et al. 

2003). For this, growth models are needed as described in Section 5.2.  

5.2 Growth models  

5.2.1 The basic concept 

Growth models are referred to by a variety of the names in the literature (e.g. random 

effect models, random coefficient models, mixed models, multi-level models, hierarchical 
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models, latent growth models (LGM), latent trajectory models (LTM), and latent curve 

models (LCM)) (Byrne et al. 2003, Berrington et al. 2006, Curran et al. 2003); with the 

name used often dependent on the framework used to model the data41. For simplicity 

they will be referred to as growth models throughout this thesis.  

Growth models have a similar aim to GEE models in that they both aim to explore the 

relationship between a set of predictor variables and a longitudinal outcome of interest. 

Their main difference, however, is the way in which they account for the lack of 

independence in data when collected at multiple time-points (Hu et al. 1998a). In growth 

models, the lack of independence between time-points is addressed by estimating an 

average trajectory curve for the population as a whole, but then, in addition, estimating the 

amount of individual variation that has occurred around this average curve (Twisk 2003).  

In the context of a linear growth model, a single average trajectory curve would be 

estimated for the sample as a whole by a mean intercept (initial level) and mean slope 

(rate of growth or decline) (Andruff et al. 2009). These terms in the model are then 

referred to as the fixed effects as they represent a single value that is identical (i.e. fixed) 

for all participants in the sample (Curran et al. 2010). In addition to the fixed effects, 

information on the probability distribution around each fixed effect would also be estimated 

as the variance of the individual trajectories around the group mean intercept and slope 

(Curran et al. 2010). These variance estimates would then be referred to as the random 

effects of the model and can be specified to relate to the fixed intercept term, or to the 

fixed intercept and slope in the model42. It is when the fixed and random effects are taken 

together that the growth curve modelling approach is described (Curran et al. 2010) 

                                                 
41 Growth models can be fitted in a multi-level or structural equation modelling framework (see 
Section 5.2.2 for details) When a structural equation modelling framework is used, common model 
terms are LGM, LTM or LCM, to highlight that growth is modelled using latent variables, (Byrne et 
al. 2003). The remaining names are more commonly used when a multi-level framework for 
analysis is used   
42 It would be inefficient to fit separate regression lines for each individual in the sample (each with 
their own intercept and slope) as this would use too many degrees of freedom. Estimating a small 
number of variance parameters is preferred   
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5.2.2 Frameworks for growth curve modelling 

Growth models can be fitted using either a multi-level or structural equation modelling 

approach (Hox et al. 2005) as described below: 

Multi-level approach 

Multi-level modelling is often used to analyse data that have a hierarchical or nested data 

structure, e.g. children nested within classes at school, or patients nested within general 

practitioners (Curran et al. 2010). It can therefore be used to model longitudinal data as 

data collected at each time point can be considered to be nested within individuals 

(Curran et al. 2010).  

The multi-level formulae for a linear growth model with a random intercept and slope is 

shown in Box 10 and illustrates that the model is multi-level (i.e. is split into two parts, 

level 1 and 2). The level 1 part of the model represents the fixed effects, and shows that 

the outcome y (measured for an individual i, at time point t) is represented as a function of 

an intercept term (αi) multiplied by a constant term equal to one (λαtሻ, a slope term (βi) 

multiplied by the time of measurement (λβtሻ and an error term (εit). The level 2 part of the 

model is used to define the random effects, with the level 1 intercept further defined to 

include a mean intercept (μα), and a random effect term (ζαi) that represents the random 

departure from the mean intercept that is specific for each individual. A similar format is 

used for the slope term, with μβ representing the overall mean slope and ζβi representing 

the random effect for the slope (Hox et al 2005)43. The equivalent model is also illustrated 

pictorially in Figure 8. 

  

                                                 
43 The level 1 part of the model is referred to as the “within-person” regression as it represents 
individual change in the outcome over time. In contrast, the level 2 part of the model is the 
“between person” model as it focusses on inter-individual differences in change in the outcome 
(Byrne et al. 2003) 
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Box 10: Linear growth model with random intercept and slope – the multi-level 
framework (Bollen et al. 2006) 

 

Level 1 – basic model 

yitൌ	ߙi	λαt൅	βiλβt൅	εit	

 

where αi = intercept, βi = linear component, λαt = constant equal to one, λβt = time of 

assessment, ε = residual error 

 

Level 2 -  incorporating the random effects 

αiൌ	μα൅	ζαi	

βiൌ	μβ൅	ζβi 

 

The variances of  ζαi and ζβi and their covariance are represented by: ∑ ൌζ 	ቈ
ఈଶߪ ఈఉߪ

ଶ

ఈఉߪ
ଶ ఉߪ

ଶ ቉ 

and the variance of  εit	is			ߪఌଶ 
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       Reproduced from (StataCorp 2013a)44 

Structural Equation Modelling approach 

Structural Equation Modelling is a framework for modelling the mean and covariance 

structure of a data set and includes within it the option of modelling both measured and 

unmeasured (latent45) variables (Byrne 2001). It lends itself to the modelling of longitudinal 

data as the random effects in the model can be considered as unobserved continuous 

latent variables that describe the underlying, unobserved growth trajectory that is marked 

(or indicated) by the observed repeated measures (Jung et al. 2008, Curran et al. 2003). 

The structural equation modelling approach to modelling a linear growth model with a 

random intercept and slope is shown in Figure 9 using notation comparable to that given 

in Box 10. 

                                                 
44 This figure was  reproduced by permission of the publisher and authors, S. Rabe-Hesketh and A. 
Skrondal, "Multilevel and Longitudinal Modeling Using Stata, 2nd Edition" (College Station, TX: 
Stata Press, 2008), fig. 4.4, copyright 2008 by StataCorp LP. (StataCorp 2013a) 
45 A latent variable is one that is not directly observed, but inferred from other measured variables 
(Byrne 2001) 
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Figure 8: Linear growth model with random intercept and slope 
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Footnote: Circles (or ellipses) represent unobserved factors (latent variables), squares (or rectangles) represent observed variables, single-headed arrows represent the 
impact of one variable on another, double-headed arrows represent co-variances or correlations between pairs of variables (Byrne & Crombie, 2003) and the notation in 
this diagram follows that given in Box 10. In this diagram, the mean of the latent intercept and slope pooled over all participants in the sample represent the model fixed 
effects; the random effects are characterised by the variance of each latent factor (Curran & Hussong, 2003). Intercept parameters are fixed to 1 to represent that the 
intercept is constant over time, whereas parameters for the slope term are fixed to 0,1,2,3 to represent linear growth for four equally spaced time-points. 

Figure 9: Linear growth model fitted in a structural equation modelling framework for a longitudinal study with four time points of 
interest (Hox et al. 2005) 
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Although the SEM and multi-level model frameworks use different approaches to 

modelling the longitudinal data46, they produce identical results when the mean and 

covariance structure of the latent variables in a SEM analysis are specified to correspond 

to the fixed and random effects in the multi-level analysis (Wang et al. 2007, Curran et al. 

2010, Hox et al. 2005). The main difference between the frameworks lies in the ease with 

which they can be extended to address more complex research questions of interest (Hox 

et al. 2005), for example the multi-level approach can be more easily extended to data 

that have a complex hierarchical structure (e.g. when time points are nested within 

participants, who are nested within general practices and geographical regions) (Curran et 

al. 2003), whereas the SEM approach is useful for models that include a combination of 

categorical and continuous latent variables (e.g. latent class growth curve analysis) (Wang 

et al. 2007).  

In this thesis, the multi-level approach will therefore be used to fit the single process 

growth models (to gain experience of using the multilevel modelling commands in the 

STATA software), whereas, the SEM approach will be used for all other models (to gain 

experience of using the Mplus software, and also for ease of application).    

5.2.3 Model estimation  

Unlike the GEE models described in Section 5.1, growth models can be estimated using 

(full information) maximum likelihood (ML) techniques (either ML or restricted ML 

(REML)). ML will be used in this thesis as it has been shown in large samples that the 

difference between ML and REML is negligible47 (Rabe-Hesketh et al. 2008). In addition, 

as the outcomes in this thesis are skewed (see graphs in Chapter 4) the models are 

                                                 
46 Multi-level modelling is often considered a uni-variate approach as “time” is measured as a single 
predictor variable in the model (Hox et al. 2005), whereas SEM uses a multi-variate approach as 
“time” is not modelled by a single variable but by constraining the factor loadings for the latent 
variables to represent the particular growth curve of interest (Wang et al. 2007)    
47 Both REML and ML each have advantages: REML tends to produce more reliable estimates of 
variance, whereas ML tends to produce more reliable estimates of the parameters (Twisk 2003). 
ML was chosen over REML, however, as it allows model fit to be compared using a likelihood ratio 
test for nested model comparisons which cannot be done when REML is used (Rabe-Hesketh et al. 
2008) – see Section 5.2.7 for details of the likelihood ratio test  
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estimated using robust standard errors (i.e. MLR – maximum likelihood with robust 

standard errors) to account for the skewed distribution of the outcome of interest48 

(Muthen et al. 2010). 

5.2.4 Coding of time 

Coding of time in the growth models is identical to that described for the GEE model in 

Section 5.1, with both models able to handle time points with equal and non-equally 

spaced intervals, e.g. time could be coded as 0, 1, 2 and 3 for a study measured at yearly 

intervals over 3-years, or as 0, 0.5, 1, and 3 for a study measured at baseline, 6-months, 

1- and 3-years respectively (Andruff et al. 2009). In this thesis, for the growth models, the 

most appropriate coding for time will be initially informed by plotting the mean outcome 

data at each time point, as prior to analysis, no evidence exists as to the most appropriate 

trajectory shape to model, an approach recommended by Curran et al. (2010).  

If higher order polynomials are added to a growth model, they can be added as a fixed 

effect only (by adding terms to the level 1 of the model only) or as a fixed and random 

effect (to explore whether including such additional random effects improves model fit). 

This is illustrated in Box 11 where a quadratic term is added to the model as both a fixed 

and random effect (the equivalent formulation in a SEM framework is shown in Appendix 

15). 

  

                                                 
48 Transforming the distribution of the outcomes to approximate a normal distribution (e.g. by using 
a log or square root transformation) could also be an option to deal with a skewed outcome. It is 
not used in this chapter as AUSCAN function in particular has a highly skewed distribution so it is 
unlikely that a suitable transformation could be found. Interpreting effect estimates on a revised 
scale is also more complex than if the original units of the scale are preserved 
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Box 11: Formulae for a quadratic growth model with a random intercept and slope 
(Bollen et al. 2006) 

 

Level 1 – the basic model 

yitൌ	ߙi	λαt൅	β1iλβt൅	β2iλβt
ଶ	൅	εit	

	

where αi = intercept, β1i = linear component, β2i = quadratic component, λαt = constant 

equal to one, λβt = time of assessment, ε = residual error 

 

Level 2 – incorporating the random effects 

 

αiൌ	μα൅	ζαi	

β1iൌ	μβ1൅	ζβ1i	

β2iൌ	μβ2൅	ζβ2i	
	  

 

5.2.5 Model predictors 

Growth models (like GEE models) can include within them predictors that are time-

invariant or time-varying. Only predictors measured at baseline are considered in this 

thesis so are assumed to be time-invariant. Such time-invariant predictors can be added 

to a growth model either as a predictor of the model intercept or as a predictor of the 

model slope (or both) as illustrated in Box 12 (and Appendix 16). The predictors can be 

measured on a continuous scale or as a categorical variable (Andruff et al. 2009), (with 

dummy variables needed to model the latter) as no assumptions are made about the 

distribution of the predictors of interest (Curran et al. 2003).  
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Box 12: Formulae for a linear growth model with a random intercept and slope and 
including a time invariant predictor of the model intercept and slope (Bollen et al. 
2006, Hox et al. 2005) 

 

Level 1 – the basic model  

 

௜௧ݕ ൌ ௜λαtߙ	 ൅ 	௜௧ߝ	൅	ఉ௧ߣ௜ߚ	
 

Where αi = intercept, βi = linear component, λαt = constant equal to one, λβt = time of 

assessment, ε = residual error 

 

Level 2 – incorporating the random effects and including a time invariant predictor 

 

௜ߙ ൌ ఈߤ	 ൅	ଵܼ௜ ൅ 	ఈ௜ߞ

௜ߚ ൌ 	 ఉߤ ൅	ଶܼ௜ ൅	ߞఉ௜ 

Where ଵ and ଶ	are the effects of the time-invariant predictor (ܼ௜ሻ	on the intercept and 

slope 

 

5.2.6 Model interpretation 

The terms ଵ and ଶ in the above models are interpreted as the change in the average 

intercept and average slope respectively for a one-point change in the model predictor 

and are equivalent to fitting a model with the predictor in it and an interaction with time. To 

aid interpretation of the model, some authors have suggested that centering variables 

prior to analysis is useful, i.e. subtracting the mean from the independent variable prior to 

analysis. The key benefit of this is that the model intercept can then be interpreted as the 

predicted value for a subject with average values for each independent variable in the 

analysis, which is often more relevant for variables where a value of zero is implausible 
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(e.g. age in the CAS-HA study would never be 0), but also this is thought to improve 

model convergence when more complex models are fitted (Rasbash et al. 2012).   

5.2.7 Selection of model predictors 

Model selection techniques established for linear regression can be used to select 

important predictors in growth models, i.e. backward selection, forward selection, or 

backwards/forwards stepwise selection (Altman 1999), however, their application 

becomes more complex for models that contain both fixed and random effects due to the 

increased number of combinations of parameters that can be included/excluded from the 

model. They also require a careful model fitting process that ensures that the number of 

participants included in each of the models compared is identical (Singer et al. 2003) and 

hence cannot simply be automated.  

A key issue when applying forward/backward model selection techniques is how to 

determine whether a predictor of interest significantly improves the predictive ability of the 

model. The likelihood ratio test is commonly used for this, i.e. a test that compares the 

log-likelihoods between a model with, and without a particular predictor of interest in it. 

However, for this test to be valid, data are required to follow a normal distribution. As the 

outcomes modelled in this thesis do not follow a normal distribution an alternative 

approach is needed. In this thesis the Satorra-Bentler Scaled Chi-square Test (SBSCT) is 

used as it compares the likelihoods between competing models but includes within it a 

scaling factor to account for the skewed nature of the outcome of interest49. As the 

SBSCT test is not automatically calculated in the software used, i.e. Mplus, it was 

calculated “by hand” using the steps described in Box 13.   

                                                 
49 Two other options were considered alongside the SBSCT test: bootstrapping the model standard 
errors (rather than estimating them with robust standard errors) or fitting a generalized mixed 
model with a gamma link function to account for skewness in the data (this works in a similar way 
to a zero-inflated poisson model in that a model is fitted to predict whether people have hand pain 
(yes/no) and then a second model is fitted to predict the outcome distribution for those with hand 
pain i.e. a two part growth model with a preponderance of zeros). The first option was not used as 
a likelihood ratio test could not be calculated on the data and the second option, although elegant 
was highly complex to fit to the data and was not needed as the Satorra-Bentler Scaled chi-square 
test was an acceptable solution to the problem of interest. 
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Box 13: Calculation of the Satorra-Bentler Scaled Chi-square test 

 

 

Step 1: Model fitting  

Fit the two models for comparison using maximum likelihood estimation with robust 

standard errors (MLR). Record the following values: 

 

L0 = Log-likelihood of the model without the predictor in it 

L1 = Log-likelihood of the model with the predictor in it 

 

C0 = the correction factor associated with the model without the predictor in it 

C1 = the correction factor associated with the model with the predictor in it 

 

P0 = number of model parameters for the model without the predictor in it 

P1 = number of model parameters for the model with the predictor in it 

 

Step 2: Calculating the Satorra-Bentler Scaled Chi-square test (SBSCT) 

 

SBSCT = -2*(L0 - L1)/cd  

 

where cd =  (P0 * C0 - P1*C1)/(P0 - P1)  

 

Step 3: Compare the SBSCT to a chi-square distribution with degrees of freedom equal to 

P0 - P1 to calculate the p-value for the test 
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5.2.8 Model fit  

Although the SBSCT test described in Section 5.2.7 is a useful tool in determining 

whether a predictor adds significantly to a model, it does not give any information as to 

whether the model is a good fit to the data (i.e. a predictor may significantly improve 

model fit, but this does not necessarily mean that the model fits the data well). For this, 

goodness of fit indices, developed in the context of SEM, are useful.    

In the SEM context, a wide range of goodness-of-fit indices exist to test how well the 

model of interest reproduces the observed data (Kenny 2014) and have been developed 

in response to the problem that the chi-square test is not a perfect measure of model fit 

(Byrne 2001).  The chi-square test is sensitive to sample size50 and includes a potentially 

unrealistic null hypothesis that the covariance structure in the raw data will be equal to 

that implied by the model (Hu et al. 1998b). Choice therefore needs to be made as to 

which fit indices to report (amongst the range of indices that have been developed and 

presented in the literature) as there is currently no single index that is agreed to be a 

definitive measure of model goodness-of-fit.    

Hu et al. (1998b) highlight that goodness-of-fit indices can be grouped into families of fit 

indices and Muthen (2008a) recommend that at least one fit index from each family is 

reported (rather than reporting multiple measures from the same family). It is only when 

these indices are considered together can judgements be made as to whether the model 

fits the data well (Curran et al. 2003). To this end, only a subset of all possible fit indices 

can be calculated in the Mplus software (from the full range of fit indices shown in Hu et 

al. (1998b)) so these are the goodness of fit indices that are reported in this thesis (see 

Table 5-1 for details).  

                                                 
50 this means that even small departures of the model to the observed data will be statistically 
significant if the sample size is large  
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Table 5-1: Goodness of fit indices used to assess goodness of fit in this thesis 

Fit index Literature guidelines on criteria to use to indicate “good” model fit 

Incremental fit indices  
Tucker-Lewis index (TLI) (Tucker et al. 1973) Ranges from 0 to 1 

Values > 0.95 indicate good model fit (Byrne 2001) 

Comparative fit index (CFI) (Bentler 1990) Ranges from 0 to 1 
Values > 0.95 indicate good model fit  (Byrne 2001) 

Absolute fit indices  

Standardised root mean-square residual (SRMR) (Bentler 
1995) 

Ranges from 0 to 1 
Values < 0.05 indicate good model fit (Hooper et al. 2008) 

Root mean square error of approximation (RMSEA) (Steiger 
1990) 

Values lower than 0.06 indicate good model fit. A 95% confidence interval can 
be calculated for this measure. A model with good fit would have a lower limit for 
the 95% confidence interval close to 0 and an upper limit less than 0.08 (Hooper 
et al. 2008) 

Akaike’s information criterion (AIC) (Akaike 1974) A lower value indicates improved model fit when two competing models are 
compared 

Bayesian information criterion (BIC) (Schwarz 1978) A lower value indicates improved model fit when two competing models are 
compared 

Sample size adjusted BIC (SBIC) (Sclove 1987) A lower value indicates improved model fit when two competing models are 
compared 

Footnote: the TLI and CFI are referred to as incremental fit indices as they compare the model of interest to a baseline model i.e. an independence model 
where no correlation between the observed variables is assumed. The remaining fit indices are absolute measures of fit as they are not compared to specific 
model of interest in the data (Hooper et al. 2008) 
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Goodness of fit will also be considered in the context of the multi-level framework by 

estimating and plotting the model residuals (ߝ௜௧ሻ to assess how close they are to zero51. In 

addition, the magnitude of the variance around the random effect estimates is also 

considered as if small this would suggest that the model is fitting well and explaining a 

high degree of variability in the data52.   

5.2.9 Model assumptions 

When fitting a growth model to a data set of interest key assumptions are made, both 

about the data, and also about the form of the trajectory for analysis. The assumptions 

can be categorised into four main areas: sampling assumptions, normality assumptions, 

linearity assumptions, and assumptions for measurement error (see Appendix 17). The 

assumptions are detailed, so Singer et al. (2003) have suggested that a practical 

approach be used, largely based on graphical methods, to explore whether model 

assumptions are satisfied in the growth curve context. This approach is described below 

and is adopted in this thesis to test whether the assumptions of the growth models are 

satisfied when the models are fitted to the data.   

1) Plot a set of predicted growth curves for a random sample of participants to 

assess whether the assumption on trajectory form is tenable (e.g. that the 

trajectory is linear);  

2) Plot predicted estimates of the growth parameters (i.e. ߙ௜ and ߚ௜ for the linear 

model shown in Box 10) against each time-invariant predictor in the model to 

check that this relationship is linear; 

                                                 
51 Model residuals are estimated using empirical Bayes estimation as this estimation method is 
more precise than ordinary least squares  
52 It was considered whether an R-square value could be calculated for the multi-level model as a 
measure of model goodness-of-fit (similar to that used in linear regression). Although this measure 
can be calculated for a multi-level model, the addition of some predictors can decrease the value of 
the R-square, rather than increase it, due to the multiple variance components involved. This leads 
to negative values of R-square that are not appropriate (Singer et al. 2003). R-square was 
therefore not used as a measure of model fit in this thesis.   
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3) Plot a histogram of the model residuals and random effects (e.g.	ߝ௜௧ , ߞఈ௜ , ߞఉ௜ for 

the linear model shown in Box 10) to assess their magnitude and ensure that they 

follow a normal distribution;  

4) Plot model residuals and random effects (e.g.	ߝ௜௧ , ߞఈ௜ , ߞఉ௜ for the linear model 

shown in Box 10) against: 

(a) each predictor in the model (with 	ߝ௜௧ plotted against time as this predictor is at 

level 1 in the model, and ߞఈ௜ , ߞఉ௜ plotted against the time-invariant predictors 

as they are included in the level 2 part of the model)  

(b) study identification number (study ID)  

For model assumptions to be met, no relationships should exist in the plots as 

derived. In addition, plots in 4a can also be used to test the homogeneity of 

variance assumption for any categorical model predictors (i.e. the variance in	ߝ௜௧ , 

 ఉ௜ is roughly equal at each level of the predictor of interest) and plots in 4bߞ , ఈ௜ߞ

can be used to explore whether there are any participants in the data set whose 

predicted values are excessively large, or small, relative to other participants in 

the data set;   

5) Plots 2 – 4 above can also be used to identify if there are any values on the 

predictor variables that are outliers in the data that may require checking and 

correcting in the data.  

In addition, the co-variances (εit εit'), (εit ߚi), and (εit ߙi) will be inspected (with additional 

random effect terms included if the model is non-linear) to ensure that they are close to 

zero. Assumptions around the representativeness of the sample have also previously 

been explored in Chapter 3 where it was shown that the CAS-HA sample is largely 

representative of the broader population of participants with hand pain from which it has 

been drawn.   
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5.2.10 Variance/co-variance structure of the model random effects 

The growth models, as defined so far, have each assumed an unstructured covariance 

matrix for the random effects, i.e., that the variances and co-variances of the random 

effects are each estimated separately in the model. It is possible, however, for alternative 

variance/co-variance matrices to be assumed for the random effects that simplify the 

model assumptions and may potentially aid model convergence when models are 

complex (see Table 5-2 for details). In this thesis, the alternative variance/co-variance 

matrices are explored via a set of sensitivity analyses to check that overall model 

conclusions do not change when the differing structures as given in Table 5-2 are applied.   

Table 5-2: Alternative variance/co-variance matrices that can be used for the 
random effects in a growth model (StataCorp 2013a) 

Variance-covariance matrix Assumptions implied 

Unstructured All variances and co-variances to be 

distinctly estimated  

Independent  One variance parameter per random effect, 

all co-variances 0  

Exchangeable Equal variances for random effects, and 

one common pairwise co-variance 

Identity Equal variances for the random effects, all 

co-variances 0. 

 

5.2.11 Simultaneous modelling of two growth processes 

The models described so far in this chapter have each been concerned with modelling the 

trajectory of a single outcome over time. Models exist, however, that can be used to 

simultaneously model the trajectory of two separate outcomes over time (e.g. the 

trajectories of hand pain and function over time). The models are an extension of the 

growth models described in Sections 5.2.1 - 5.2.10 and are referred to as parallel process 
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growth models in the literature53. The aim of such models is to test whether the random 

intercepts and random slopes for an outcome are correlated with the random intercepts 

and slopes for a second outcome (Payne et al. 2014). Each outcome has its own growth 

process (akin to that in Figure 9), and is related to the other outcome via a set of 

additional correlations and predictive relationships added to the model (see the SEM 

representation of the model given in Figure 10 (Muthen et al. 2010)). The correlations 

added to the model include those between the intercept for outcomes one and two and 

between the slopes for outcomes one and two. Alongside this, predictive relationships are 

also added between the intercept for outcome one and the slope for outcome two, and the 

intercept for outcome two and the slope for outcome one.  

                                                 
53 This method was preferred over fitting the second outcome as a time-varying predictor in the 
growth model as it enables a trajectory process for the second outcome to be modelled. This would 
not be achieved if it were fitted as a time-varying covariate and would force a choice to be made as 
to which outcome was the dependent variable and which the independent covariate (Curran et al. 
2003) 
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 Footnote: The notation in this diagram is identical to that shown in Figure 9 for the linear growth model, however, an additional subscript is included to indicate 

the outcome of interest that the trajectory parameters refer to, with Y used to indicate outcome one and Z used to indicate outcome two. 

Figure 10: Parallel process linear growth model fitted in a structural equation modelling framework for a longitudinal study with two 
outcomes (Y and Z) each measured at four time points of interest (Muthen et al. 2010) 
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The model shown in Figure 10 can be extended to include growth processes for one or 

both outcomes that are non-linear. This is achieved by adding additional latent variables 

to the model (such as those shown in Appendix 15) to represent quadratic growth over 

time. When such models are fitted to the data, the fit indices described in Section 5.2.8 

can be used to determine whether the model is a good fit to the data.   

5.2.12 Reflections on the growth models 

Both growth models and GEE models can be used to explore the relationship between 

predictors of interest and an outcome trajectory over time. For an outcome measured on a 

continuous scale, the two approaches lead to equivalent results when an exchangeable 

correlation structure is specified in the GEE model and a random intercept growth model 

is fitted to the data (Twisk 2003). It is only when the outcome is measured on a non-

continuous scale (e.g. binary, count or ordinal) that noticeable differences between the 

approaches occur (Twisk 2003). The models have differing assumptions about missing 

data that are explored more fully in Section 5.5.3.  

A key advantage of the growth model approach (over GEEs) is that it provides information 

not only on the mean trajectory over time, but also on the amount of variation between 

individuals to indicate how similar trajectories are for participants in a sample (Kahn 

2011). It also simultaneously provides information on the correlation between the random 

intercept and slope terms so it can be explored whether the degree of change over time 

depends on participants’ initial baseline score when entering the study (Byrne et al. 2003). 

That said though, growth models have been reported to be more sensitive to the 

misspecification of the covariance structure in the data, so if marginal effects only are of 

interest, then the GEE approach is preferred (Goldstein et al. 2002). 

Although growth models provide a flexible approach to analysing longitudinal data, they 

do, however, rest on the key assumptions that individuals are sampled from a single 

population, that a single trajectory curve is sufficient to describe outcome changes over 
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time, and that there is a uniform influence of any predictors on the variance and growth 

parameters within the population (Nagin et al. 2010, Jung et al. 2008). This assumption 

may not always be true, and in some studies unobserved sub-populations may exist, that 

have differing trajectory shapes over time to the population as a whole (Curran et al. 

2003). To respond to this, two additional techniques have been developed in the context 

of growth models to test the specific assumption of whether a single growth curve is valid 

to describe the trajectories of interest in a population of interest. The two techniques are 

latent class growth models (LCGM) and growth mixture models (GMM). They are 

described in more detail in Sections 5.3 and 5.4 respectively.    

5.3 Latent class growth models (LCGM) 

5.3.1 The basic concept 

Latent class growth models (LCGM) are (semi-parametric) statistical models that can be 

used to uncover distinct subgroups of participants that have similar outcome trajectories 

over time within a sample (Andruff et al. 2009). A key feature of LCGM is that prior to 

modelling, subgroup membership is unknown (unobserved) and is derived, based on data, 

by grouping trajectories so that outcome trajectories within a group are more similar to 

each other than to outcome trajectories between groups (Jung et al. 2008).  

In LCGM it is not assumed that all participants are sampled from a single observed 

population and that a single growth curve (with a single estimate of growth parameters) is 

adequate to describe the trajectory of an outcome over time (as is the case for growth 

models) (Jung et al. 2008). Instead it is hypothesised that two or more subgroups exist 

within the data that could (potentially) have differing outcome trajectories over time (Nagin 

et al. 2010). This approach therefore reduces the potential for important sub-groups of 

participants to be masked in the data that may not be uncovered by growth curve 

modelling (Andruff et al. 2009) (e.g. if the trajectories in a 2-group linear model were 

increasing in the first group and decreasing in the second group, a 1-group model would 
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mask this by fitting the average of these two lines to the data, i.e. a flat line with no 

indication that groups who are changing over time existed in the data).  

A key assumption of LCGM is that a (small) number of subgroups exist that can be used 

to approximate the continuous distribution of trajectories of unknown shape that exist in 

the population (Nagin et al. 2010), which is in contrast to the growth models described in 

Section 5.2. There, subgroups of interest are known prior to analysis, and are defined 

using measured variables in the dataset (e.g. gender). LCGM also enables participants to 

be split into groups so that the baseline characteristics of each group can be described 

(this is a test of the validity of the groups as if baseline characteristics do not differ 

between them then the usefulness of the groups is questionable) (Nagin et al. 2010).  

5.3.2 Model formulae 

LCGM can be expressed by extending the notation for the growth models in Section 5.2 

and is achieved by adding an additional subscript K to indicate that separate growth 

models are fitted for each latent group (assuming that the number of latent groups range 

from 1 to K) (Box 14). The notation in Box 14 illustrates a key assumption of LCGM - that 

is, that the within-group variances and co-variances of the random effects (i.e. the random 

intercept ζαKi and slope ζβK	i for the linear model) are assumed to be equal to zero 54 

(Andruff et al. 2009, Jung et al. 2008).  

This is an important assumption as it illustrates that in LCGM, between-participant 

trajectory differences are expressed solely through latent group membership rather than 

via random effects as used in the standard growth model (Andruff et al. 2009) – an 

assumption that implies that knowledge of latent group membership is sufficient to 

describe individual differences in the outcome trajectories over time (Andruff et al. 2009). 

This assumption also implies homogeneous within-group growth curves that do not vary 

between participants in a group (Jung et al. 2008). LCGM can also be expressed in an 

                                                 
54 This is identical to fixing the parameters of the trajectory curve to be equal for all participants 
within a latent group. Trajectory parameters between latent groups can differ.  
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SEM framework (Figure 11), which illustrates how growth models can be extended to 

include an unobserved categorical latent variable that represents group membership and 

predicts the outcome trajectory over time.  

Box 14: Formulae for linear LCGM (Wang et al. 2007) 

 

Level 1 – the fixed effects model 

yKitൌ	ߙKi൅	βKiλβKt൅	εKit	

where αi = intercept, βi = linear component, λβt = time of assessment, k=latent group 

number, ε = residual error	

Level 2 -  the random effects model 

αKiൌ	μαK൅	ζαKi	

βKiൌ	μβK൅	ζβKi	

For LCGM, the variances of ζαKi and ζβKi (ߪఈ௄
ଶ  and ߪఉ௄

ଶ ) are set equal to 0 so the level 2 

model can be simplified to: 

αKiൌ	μαK	

βKiൌ	μβK	
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Figure 11: Linear LCGM fitted in a structural equation modelling framework for a study with data collected at four time points (Wang 
et al. 2007) 

   

 
Intercept 

 
Slope 

Y0 Y1 Y2 Y3 

λαK0	 ൌ 1 
λαK1	 ൌ 1 

λαK2	 ൌ 1 

λαK3	 ൌ 1 

λβK1	 ൌ 1 
λβK2	 ൌ 2 

λβK3	 ൌ 3 
λβK0	 ൌ 0 

 εK0  εK1  εK2  εK3 

 Group membership 

Intercept mean = μαK 

Intercept variance; ߪఓ௄
ଶ  =  0 

 

Slope mean = μβK 

Slope variance; ߪఉ௄
ଶ  =  0 
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5.3.3 Model assumptions 

All of the assumptions described for the growth models in Section 5.2.9 apply to LCGM, 

however the assumption regarding normally distributed random effects no longer applies. 

This is because the variance of the random effects is constrained to be zero in LCGM. In 

particular LCGM are fitted using robust standard errors to account for any skewness in the 

distribution of the outcome of interest (Muthen et al. 2010). 

5.3.4 Model fit  

The CFI, TFL, RMSEA and SRMR fit indices described in Section 5.2.8 for growth models 

cannot be calculated for LCGM when the number of latent groups is greater than one. 

This is because there is no single covariance matrix for the data to be fitted to and 

because models with a varying number of groups are not truly nested, i.e. one model 

cannot be defined by constraining parameter(s) in the other model to be zero (Wang et al. 

2007). Model fit for LCGM is therefore conducted using less formal methods (Curran et al. 

2003) as described below: 

Information-based criteria (i.e. the AIC, BIC, and SABIC)   

The AIC, BIC and SABIC (as defined in Section 5.2.8) are based on the model log-

likelihood so can be applied to LCGM (Wang et al. 2007, Raftery 1995). They can be used 

to compare the fit of two competing LCGM, with the preferred model being the one with 

the smallest value on the information criterion of interest (Wang et al. 2007).  Both the AIC 

and BIC balance model complexity with model goodness of fit (Nagin et al. 2010), 

however the BIC has a greater penalty for model complexity, so would suggest that a 

model with a fewer number of groups were optimal than if the AIC were used (IBM 2011), 

The sample-size adjusted BIC is a modification of the BIC that has been proposed to 

improve the performance of the BIC for models that either have a large number of 

parameters or are analysed in a small data sample (Tofighi et al. 2008) 
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Posterior probabilities 

Posterior probabilities represent the likelihood that each participant (with its respective 

outcome trajectory over time) belongs to each latent group included in the model (Andruff 

et al. 2009). For each participant, high posterior probabilities are desirable for a single 

latent group, with low probabilities for the remaining latent groups. This is illustrated (for 

fictitious data) in Table 5-3, with all participants in the sample having posterior 

probabilities greater than 0.9 for a single latent group, suggesting that the model is a good 

fit to the data (Jung et al. 2008). From the posterior probabilities, two further indices can 

be calculated that can be used to assess model fit: group membership probabilities and 

average posterior probabilities. They are described below:    

Table 5-3: Posterior probabilities for 5 participants in an illustrative fictitious 
dataset 

 Posterior probability  

Participant Latent group 1 Latent group 2 Latent group 3 Group 

membership 

1 0.02 0.06 0.92 3 

2 0.95 0.01 0.04 1 

3 0.90 0.05 0.05 1 

4 0.03 0.97 0.01 2 

5 0.04 0.04 0.92 3 

 

Group membership probabilities 

Group membership can be assigned for each participant using a maximum-probability rule 

that allocates participants to the group that corresponds to their highest posterior 

probability (Andruff et al. 2009). For example, in Table 5-3, participant 1 is allocated to 

group membership 3 as this is the latent group where the highest posterior probability 

(0.92) is achieved for this participant. The probability of belonging to each group can then 
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be calculated (using a frequency table of group membership). It has been suggested for a 

model to fit the data well, the number of participants in each latent group should not fall 

below 1% (Jung et al. 2008) - 5% (Andruff et al. 2009) of the total sample as small groups 

may have occurred by chance and not be replicated in other populations. 

Average posterior probabilities 

Average posterior probabilities can also be calculated by averaging the maximum 

posterior probabilities for participants in each group of interest. For example, in Table 5-3, 

the average posterior probabilities are 0.93 ((0.95 +0.90)/2), 0.97, 0.92 for groups 1, 2 and 

3 respectively. The average posterior probabilities give an indication of the internal 

reliability of each group (Andruff et al. 2009). For the model to fit the data well, average 

posterior probabilities greater than 0.8 are desirable, indicating that the model can 

discriminate between similar and dissimilar trajectories over time, although some authors 

consider that a more relaxed threshold of greater than 0.7 is appropriate for this criterion 

(Andruff et al. 2009, Nagin et al. 2010).    

Entropy 

Entropy is a standardised index, ranging from 0 to 1, that can be used to measure overall 

classification accuracy and determine how accurately participants can be classed into 

one, and only one, latent group (Wang et al. 2007). It is calculated by averaging the 

posterior probabilities after individuals have been assigned to their most likely group 

(Nagin et al. 2010). Although a high entropy value indicates better classification accuracy 

(Jung et al. 2008), no formal criteria exist to indicate how close to one entropy needs to be 

for good model fit to be assumed (Jung et al. 2008). Several authors suggest entropy 

values greater than 0.80 are required for classification accuracy to be demonstrated 

(Wang et al. 2007), so this will be used as a guideline in this thesis. 
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Trajectory plots 

Trajectory plots are a useful graphical tool to assess model fit and are derived by plotting 

the predicted outcome (from LCGM) for each latent group at each time point. The 

predicted trajectories are calculated from the regression coefficients estimated in LCGM 

using techniques common to standard (linear) regression (Andruff et al. 2009). A plot of 

the predicted values and their associated confidence intervals can be used to reveal 

whether the model is a good fit to the data, with specific consideration given to any 

overlap in the confidence intervals for the predicted trajectories (overlapping confidence 

intervals may suggest that the model is over-fitted and that a model with a fewer number 

of groups would be preferable) (Andruff et al. 2009), and also whether the predicted 

trajectories are a good approximation to the raw trajectories within each latent group55. 

This would be an indication of good model fit.   

Model convergence and local solutions 

Model convergence, although not a direct method to assess model fit, is an indicator of 

how well a model fits the data of interest; it indicates whether a reliable model solution has 

been obtained. Poor model convergence often occurs in LCGM due to the complexity of 

the model to be fitted to the data (Jung et al. 2008) and is more likely to occur as models 

increase in their complexity (e.g. models with higher order polynomials and/or a large 

number of latent groups).  

One particular issue in such models is that of local solutions, which occur when the 

modelling algorithm converges to parameter estimates that are not associated with the 

true maximum log likelihood for the model56 (Jung et al. 2008). To avoid reporting local 

                                                 
55 Multi-group SEM can be used to test whether the regression parameters (e.g. the intercept and 
slope) are equal across the latent groups (Andruff et al. 2009), however this approach will not be 
used in this thesis; assessment of trajectory overlap will therefore be based on visual inspection 
only.    
56 A local solution occurs if the algorithm to fit LCGM converges to a maximum value that is only 
true for a small part of the likelihood estimation curve; it is not necessarily the maximum for the 
likelihood estimation curve as a whole i.e. it is not a global solution (Jung et al. 2008). 
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solutions, running the model with multiple starting values is recommended57, to ensure 

that, irrespective of the random starting point used, the algorithm converges to the same 

final stage maximum log likelihood solution. As a general guideline, if the largest58 log 

likelihood is replicated for two or (preferably) more random starting values, a global, rather 

than local, solution can be assumed and the model with the largest log likelihood reported 

as a valid solution (Muthen et al 2010).   

5.3.5 Number of latent groups to include in LCGM 

For LCGM to be fitted to a data set of interest the number of latent groups needs to be 

specified 59 and, unless a clear hypothesis exists around the number of latent groups to 

model, the optimum number of latent groups for the data will need to be identified (Andruff 

et al. 2009). It has been emphasised by several authors (Jung et al. 2008, Curran et al. 

2003) that selection of the optimum number of latent groups cannot be based solely on 

statistical indices of goodness of fit (such as those described in Section 5.3.4), but should 

consider (with equal importance) other factors such as model parsimony, clinical 

interpretability and theoretical knowledge of the outcome of interest (Mora et al. 2009). A 

range of factors need to be considered as there is no single, commonly agreed, index that 

can be used in isolation to identify the number of latent groups that are optimum (Wang et 

al. 2007, Jung et al. 2008). 

For statistical based indices, models with varying numbers of latent groups can be 

compared to find the model that is the best fit to the data. This can be achieved by 

comparing (between models) the indices described in Section 5.3.4. However, in addition, 

likelihood ratio based tests have also been developed to specifically compare model fit 

between models with varying numbers of latent groups, as described below.  

                                                 
57 In this thesis, 500 random starts were used in the analysis, as this was a large value, but not one 
that was too computationally burdensome (Muthen et al. 2010). 
58 A global solution cannot be concluded if the log-likelihood value that is replicated in two or more 
model solutions is not the largest log-likelihood derived (Muthen et al. 2010)  
59 The initial choice for the number of latent groups is encouraged to be guided by previous 
research and clinical knowledge if available (Andruff et al. 2009) 
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Likelihood-ratio based comparative goodness of fit tests for LCGM 

Likelihood-ratio based statistical tests have been proposed to test whether a model with 

K-1 groups is a better fit to the data than a model with K groups, i.e. to test the null 

hypothesis that the data are generated from a model with K-1 groups (Muthen et al. 

2010). A non-significant likelihood ratio test will therefore identify the model with the 

optimum number of groups (Jung et al. 2008). Multiple likelihood ratio based tests have 

been proposed as the standard likelihood ratio test (used for growth models) does not 

follow a chi-square distribution when models with K-1 and K groups are compared (Wang 

et al. 2007) and the models are not nested (Curran et al. 2010). The tests include:  

 the Lo-Mendell-Rubin likelihood ratio test (LMR-LRT) 

 the Adjusted Lo-Mendell-Rubin likelihood ratio test (Adjusted LMR-LRT) 

 the Vuong-Lo-Mendell-Rubin likelihood ratio test (VLMR-LRT) 

 the Parametric Bootstrapped likelihood ratio test (PB-LRT) 

 

Although the unadjusted and adjusted LMR-LRT are frequently used to guide the 

selection of the optimum number of latent groups they have been criticised as being 

sensitive to sample size60 (Wang et al. 2007). The PB-LRT has therefore increased in 

popularity as it is less sensitive to sample size and has been shown to perform well in 

simulation studies (Nylund et al. 2007). However, a limitation of this measure is that it is 

computationally demanding so burdensome to apply in practice. As a compromise, it has 

been suggested that the LMR-LRT be used initially to guide the analysis to a small set of 

near-optimum models and then the PB-LRT be used in the final stages to determine the 

optimum number of groups for analysis (Jung et al. 2008). 

                                                 
60 The optimal number of latent groups will be larger if the sample size is large; larger sample sizes 
tend to give larger test statistics (Wang et al. 2007) 
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5.3.6 Polynomial form to be included in LCGM 

In addition to the number of latent groups, the form of the polynomial (e.g. linear, 

quadratic) needs to be specified for LCGM to be fitted to a dataset of interest. Opinion 

varies as to the optimum approach to achieve this, in particular, on how to combine the 

search for the optimum polynomial form with the search for the optimum number of latent 

groups. For example, Curran et al. (2003) recommend that the optimum polynomial form 

is initially derived for the sample as whole61 and then held constant while the optimum 

number of latent groups are explored. Alternatively, Andruff et al. (2009) suggest a more 

data driven approach, where backwards deletion (based on statistical significance62) and 

model fit comparisons are used at each modelling stage to find the optimum polynomial.  

Although the approach by Andruff et al. (2009) is more flexible, as it allows the polynomial 

form to differ between models with varying numbers of groups and between latent groups 

within a single model, it runs the risk of being tailored too much to the data set of interest, 

so may not replicate in future data samples (Wang et al. 2007). The approach by Curran 

el al. (2003) was therefore used in this thesis.   

5.3.7 Model interpretability and replication 

After statistical criteria have been used to guide the choice of the optimum number of 

groups, the usefulness of the groups derived needs to be evaluated. This can be achieved 

by considering whether the groups differ in terms of their (clinical) history, future 

outcomes, response to treatment, or relationship to trajectories for other outcomes or 

behaviours (Nagin et al. 2010). If the derived groups do not differ with respect to these 

external variables, it can be concluded that the model is not a useful representation of the 

data. Further to this, model replication in a new dataset is also useful to support the true 

existence of the trajectory groups in the data (Nagin et al. 2010).  

                                                 
61 The optimum polynomial would be tested by adding higher order polynomials to the model to see 
if they were statistically significant and improved model fit  
62 The Satorra-Bentler Scaled chi-square test can be used for this purpose if the outcome is 
skewed; models are nested if only the degree of polynomial that is varied between them rather than 
the number of groups they contain (Muthen et al. 2009).  
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5.4 Growth mixture models 

5.4.1 The basic concept 

Growth mixture models (GMM) are similar to LCGM as both models aim to identify 

trajectory groups with similar outcome trajectories over time and are fitted using finite 

mixture models63 (Nagin et al. 2010). The models differ, however, in the assumptions they 

make concerning within-group trajectories. In LCGM it is assumed that all within-group 

trajectories are homogeneous, whereas in GMM this assumption is relaxed, allowing 

within-group trajectories to vary between participants (Jung et al. 2008). GMM therefore 

works by fitting separate growth models to each trajectory subgroup in the model (Nagin 

et al. 2010). 

5.4.2 Model formulae 

GMM can be expressed using the formulae in Box 14 (shown above for LCGM) and are 

derived by relaxing the LCGM assumption that the within group variance and co-variance 

of the random effects is zero, i.e. in GMM these parameters are freely estimated (Wang et 

al. 2007). GMM are therefore a combination of the growth models described in Section 5.2 

and LCGM as it includes a categorical latent variable to define the unobserved subgroups 

of interest alongside a set of continuous latent variables (random effects) to model 

individual variability of the trajectories within each latent group (Wang et al. 2007).  

5.4.3 Model assumptions 

Model assumptions for GMM are similar to LCGM, however normality assumptions 

regarding the random intercept and slope terms are assumed only to be true within each 

group, rather than for the population as a whole. 

                                                 
63 Finite mixture models are a class of statistical model to model data where distinct sub-
populations are thought to exist but sub-group membership is unknown prior to analysis i.e. they 
analyse data from a mixture of two or more groups or populations (Nagin et al. 2010)  
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5.4.4 Reflections on GMM 

A key advantage of GMM over LCGM is that it represents the longitudinal data more 

realistically by assuming a degree of variability around the growth parameters (Wang et al. 

2007). It also has the potential to be used to explore whether the reason why outcome 

trajectories are not sufficiently explained by the predictors and random effects in a growth 

model is due to the existence of unobserved subgroups within the population of interest 

(Nagin et al. 2010, Wang et al. 2007). That said though, a key difficulty with such models 

is their increased complexity and computational burden that can lead to convergence 

problems and unstable solutions when GMM are fitted to real life data (Jung et al. 2008).  

To address the issue of lack of convergence in GMM, several strategies have been 

proposed to modify GMM, so that convergence to a global model solution can be 

achieved either by modifying the starting values in the estimation algorithm or by 

constraining the variances estimated in the model (see Box 15). In addition, to reduce 

computation burden, it has been suggested that LCGM be used to explore and define the 

optimum number of groups and polynomial form in the data and that GMM are then only 

used in a confirmatory manner, to test whether model fit improves by relaxing the 

assumption that the within-group variability is zero, i.e. the key assumption of LCGM 

(Wang et al. 2007). If model fit is then improved for GMM, group membership from this 

model can then be reported, albeit acknowledging that group membership is not as clearly 

defined as if the LCGM assumptions were completely satisfied. Although practical, this 

approach has the potential drawback that when random effects are added to LCGM the 

optimum number of groups required to model the data may be reduced (as adding the 

random effects is allowing for more within-group variability in the individual-level 

trajectories) (Nagin et al. 2010). This needs to be carefully explored when selecting a 

model that is optimum. 
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Box 15: Strategies to promote model convergence for GMM 

 

Starting values  

 Base the starting values for the EM algorithm (i.e. the algorithm that is used to 

calculate the maximum likelihood estimates) on parameter estimates from LCGM 

fitted prior to GMM (rather than using random starting values) (Jung et al. 2008)    

 

Constraining variances of the growth parameters 

 Constrain any (implausible) negative estimates of variance to 0 if this is an 

appropriate assumption from visual inspection of the data (Jung et al. 2008) 

 Constrain the variance of the random effects to be equal (but not 0) across groups 

of interest (Jung et al. 2008) 

 Use LCGM trajectory plots to assess whether there are any latent groups that can 

be simplified by constraining a parameter/variance estimate to be zero (Wang et 

al. 2007) 

 

5.4.5 Parallel process growth mixture models (PPGMM) 

The GMM described in this chapter can be extended so that latent group membership is 

defined not only by the trajectory of a single outcome of interest but also by the 

trajectories of two (or more) outcomes assessed simultaneously (e.g. hand pain and 

function)64. This model is referred to as a parallel process growth mixture model (PPGMM) 

and is illustrated in the SEM framework in Figure 12. This model enables research 

questions to be addressed such as whether groups of participants exist that have a 

                                                 
64 The PPGMM is not the same as a group-based dual trajectory model (GBDTM) (the GBDTM 
simultaneously defines a LCGM for the two outcomes of interest, along with a set of probabilities 
that relate the groups of the two LCGM models together e.g. probabilities express relationships 
such as “if a participant is in group one for outcome one, what is the probability that they will also 
be in group one for the second outcome”) (Xie et al. 2010). The GBTM approach was not used in 
this thesis as the group sizes for the first outcome were not large enough to then support being 
further split into groups that were defined by the LCGM for the second outcome      
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characteristic trajectory for outcome one (e.g. hand pain) that is then simultaneously 

accompanied by a characteristic trajectory for outcome two (e.g. hand function). For 

example, a PPGMM was fitted in a study of substance abuse and conduct problems to 

reveal one group of participants with both high substance abuse and high conduct 

problems throughout the study alongside a separate group of participants (group 2) with 

increasing substance abuse over time that was not matched by an increase in conduct 

problems (Wu et al. 2010). 

As the PPGMM is an extension of the GMM model, the estimation algorithm to fit the 

model and the techniques used to assess goodness of fit are identical to that used for 

GMM. In addition, PPGMM can be simplified to form a parallel process latent class growth 

model (PPLCGM) if needed by restricting the within-group variance on the growth factors 

to be zero; an approach quite often needed, as such models are complex and therefore 

convergence problems are often encountered.   
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 Footnote: The notation in this diagram is identical to that shown in Figure 9 for the linear growth model, however, an additional categorical latent variable has 

been added to the model along with subscripts to indicate the outcome of interest, with Y used to indicate outcome one and Z used to indicate outcome two. 
 

Figure 12: Parallel process linear growth mixture model fitted in a structural equation modelling framework for a longitudinal study 
with two outcomes (Y and Z) each measured at four time points of interest (adapted from (Wu et al. 2010)) 
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5.5 Generic issues relating to the application of the models in this chapter 

5.5.1 Computer software and computation 

The models described in this chapter can be fitted using a range of commercially available 

software packages (e.g. STATA (StataCorp 2013b), AMOS (Arbuckle 2006), SPSS (IBM 

Corp 2013), Mplus (Muthen et al. 2010), and Latent Gold (Vermunt et al. 2013)). In this 

thesis, STATA version 13.0 is used when models are fitted in a multi-level framework and 

Mplus version 6.0 is used when a SEM framework is adopted. 

5.5.2 Sample size calculations for longitudinal data 

A sample size calculation for the CAS-HA study was included in the recruitment protocol 

and was based around the ability to detect a relative risk of deterioration of at least 1.6 at 

the 18-month follow-up between those with and without a baseline risk factor of interest 

(e.g. presence of radiographic OA) with 80% power and alpha of 0.05. This required 500 

participants at baseline, however as more participants were willing to attend the clinical 

assessment than planned, a total of 623 participants were recruited (Myers et al. 2007).  

The sample size calculation was therefore defined prior to planning the full longitudinal 

analysis (using all time-points over the 6-year follow-up) as only the baseline and 18-

month follow-up studies were initially funded. Although formulae exist to estimate required 

sample size for longitudinal studies (such as those given in (Diggle et al. 2002)) more 

general guidelines are used in this study, partly because the sample size calculation was 

done prior to knowing the number of study time points, but also because it would be 

difficult to define one single analysis as primary to base a sample size calculation upon as 

the analysis is largely exploratory. As a general guide, Andruff et al. (2009) suggest that 

sample sizes between 300 and 500 are sufficient in the context of LCGM, and Byrne et al. 

(2003) suggest sample sizes > 200  per time point are adequate for such analysis; limits 

that are both satisfied in the CAS-HA study.    
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In light of the absence of a specific sample size calculation, a particular focus of the 

analysis in this thesis is on the width of the confidence interval to explore how reliable the 

model estimates are. The results are also commented on in light of the estimates given for 

minimum clinically important change to ensure that the sample size is not so large that 

clinically meaningless results are presented (Andruff et al. 2009) and especially that 

higher order polynomials are not included if they are statistically significant yet have little 

influence on the overall trajectory curve obtained (Wang et al. 2007).      

5.5.3 Missing data 

Missing data occurs in most longitudinal studies and happens when participants either 

drop-out of the study or do not respond at one or more time points (Twisk 2003). As both 

types of missing data could potentially occur in the CAS-HA study, the rates of each type 

are reported. When considering the models in this chapter, it is noted that they have 

differing assumptions around missing data, with GEE models assuming that missing data 

are missing completely at random (MCAR), and all other methods assuming data are 

missing at random (MAR) (for an explanation of the terms MCAR and MAR see Appendix 

18)65. Although this is the case, and it could be argued that growth models are preferred 

as their missing data assumptions are less stringent, this becomes less of an issue when 

the outcome is continuous, as in practical terms, the differences between the two models 

are small (Twisk 2003).   

All models described in this chapter can be estimated in the presence of missing data 

which means that the data are included in the analysis if they have data present for at 

least one time point66. This is preferred over running the analysis on participants only with 

data at all time-points (as this represents a loss of information), but also preferred over 

                                                 
65 The GEE model has the MCAR assumption for the calculation of the working correlation 
structure to be unbiased (Ballinger 2004). The growth models have a more relaxed assumption 
around missing data as maximum likelihood estimates are asymptotically unbiased when missing 
data are MAR (Nagin et al. 2010)) 
66 Models are estimated by summing the individual contributions of each participant such that 
participants with a large number of data points are weighted more heavily than those with a smaller 
number of data points  (Curran et al. 2010) 
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using multiple imputation to obtain model estimates when data are missing, this latter 

decision being made based on findings from a recent study which provided inconclusive 

evidence as to whether using multiple imputation for growth models led to more accurate 

results than when growth models without multiple imputation were employed (Twisk et al. 

2013).  

5.6 Discussion 

In this chapter the statistical methods used to address the thesis objectives have been 

described. Specifically, GEE models were discussed as they are used in Chapter 6 to 

describe the overall trajectory of hand pain and function over time, along with growth 

models, that are extensively used in Chapter 7 to identify key baseline predictors of the 

trajectories of hand pain and function over time. LCGM and GMM were discussed as they 

are used in Chapter 8 to explore whether distinct subgroups of participants can be 

identified with differing trajectories of hand pain and functional difficulty over time. Parallel 

process growth models and parallel process GMM are also discussed as they are used in 

Chapter 9 to simultaneously model joint trajectories of hand pain and functional difficulty 

over time. 

Whilst considering the range of longitudinal approaches available, several methods were 

not included, either because the method was limited, or because it addressed a different 

research question to that in the thesis. For example, repeated measures analysis of 

variance (ANOVA) was considered, but not used, despite a continuous outcome and time 

invariant predictors, as this method requires a complete dataset with no missing values 

and normally distributed data. It also does not use the covariance among the repeated 

measures to increase the efficiency of the parameter estimates (Diggle et al. 2002, 

Ballinger 2004)67. In addition, examples of techniques that could have been employed to 

                                                 
67 Other methods that were considered but found to be limited were (1) summary statistics (i.e. 
where the longitudinal data is combined to produce a single per-person measure), limited as it 
represents a loss of information in the data and no strong rationale existed for the most appropriate 
summary measure to use (e.g. average across time points, maximum value across time points) 
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address different research questions include adding time-varying predictors to the growth 

models, or incorporating an external (distal) variable (measured at the 6-year follow-up) 

into the LCGM/GMM to test whether the trajectory groupings obtained predict an external 

outcome of interest (Wang et al. 2007). A discussion around how such additional 

statistical techniques could be used to extend the research questions in this thesis is 

given in Chapter 10 therefore they are not discussed further here. The next four chapters, 

however, are used to describe the results from fitting the models described in this chapter 

to address the research questions as stated previously in Chapter 1.  

  

                                                                                                                                                 
(Matthews 2005) (2) Cluster analysis to group participants into groups based on their repeated 
measures data – limited as participants are unrealistically allocated to be in or out of a group rather 
than to have a probability of being in a group as is used in LCGM (Nagin et al. 2010). (3) Latent 
profile analysis, i.e. latent class analysis with continuous indicators – limited as it does not take into 
account the time-ordering of the repeated measures as collected (Flaherty et al. 2012).    
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6 Describing the trajectory of hand pain and functional difficulty 

in CAS-HA  

6.1 Introduction 

The overall purpose of this chapter is to describe the longitudinal trajectory of hand pain 

and function for participants in the CAS-HA study. More specifically, three key objectives 

will be addressed that will form the three main sections in this chapter:  

Objective 1: To describe the distribution of hand pain and function at each time point and 

their overall trajectories over time (Sections 6.3 and 6.4) 

Objective 2: To explore missing data patterns for the AUSCAN and further characterise 

participants who are lost to follow-up (Section 6.5) 

Objective 3: To compare levels of hand pain and function in CAS-HA to population 

normative data for the AUSCAN at each time point, and then, at an individual level, to 

compare rates of change in these measures to pre-existing treatment responder criteria 

(Section 6.6) 

The first two objectives are included to gain an understanding of the AUSCAN measures 

that are modelled in later thesis chapters, e.g. to inform the choice of trajectory shape to 

model in the data and to assess key modelling assumptions. The third objective is 

included to support interpretation of the results and consider further what value on the 

AUSCAN can be considered a “large” change over time in the CAS-HA population, and is 

included as it was not possible to derive a reliable MIC value using the more established 

methods applied in Chapter 468.   

                                                 
68 As the analysis in this chapter uses descriptive statistics (i.e. data plots and summary statistics), 
or analysis techniques previously described in Chapter 5, a separate methods section is not given 
in this chapter. This chapter is therefore a results chapter only, with findings presented separately 
for hand pain and function 
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Prior to presenting the results in this chapter, two additional comments are made 

regarding the scoring of the AUSCAN and coding of time in the analysis (Sections 6.2.1 

and 6.2.2, respectively). These issues are applicable to all sections of analysis and the 

remaining thesis chapters. A final section will also be included to summarise and discuss 

the overall findings in this chapter (Section 6.7). 

6.2 Data scoring and coding prior to analysis 

6.2.1 The AUSCAN 

Prior to analysis, the AUSCAN pain and function subscales were re-coded on a scale of 0 

– 1069 so that the magnitude of change over time could be directly compared between 

hand pain and function outcomes and to simplify comparisons to population normative 

data that have been published on a 0-10 scale (Bellamy et al. 2011). It is this scaling of 

the AUSCAN that is used throughout the remainder of the analysis presented in this 

thesis. 

6.2.2 Time  

In Chapter 3, the CAS-HA study was described as having regular 18-month intervals over 

a 6-year period (i.e. 0, 18, 36, 54, and 72-months), however, in practice, this timescale 

was not achieved for the latter two time points due to a delay in gaining ethical approval 

and logistical issues when conducting the 6-year assessments. The coding for time used 

throughout this thesis therefore reflects what happened in practice, rather than what was 

planned, and is based on the mean number of months since baseline (i.e. 0, 18, 36, 63, 

and 89-months)70 converted into “time in years” (with time in years used to improve the 

interpretability of the estimates and to reflect that many CAS-HA participants are likely to 

have chronic problems that change over a long time-period). The final coding of time used 

                                                 
69 The AUSCAN scale was originally published on a 0-20 scale for hand pain and on a 0-36 scale 
for hand function. To convert them to a 0-10 scale, hand pain was divided by 2 (i.e. 20/10) and 
hand function by 3.6 (i.e. 36/10). Zero values remained as zero on the converted scale. 
70 The mean (SD) of the length of follow-up at each time point was: 18-months, 18.2 (0.64); 36-
months, 36.2 (2.0); 54-months, 63.4 (1.9); 72-months, 89.0 (1.6).  
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in the analysis is 0, 1.5, 3, 5.25 and 7.417 years, though for shorthand in the text the latter 

two time points are referred to as the 5 and 7.5 year follow-up, respectively. 

6.3 Outcome distribution 

Figure 13 shows that AUSCAN pain and function have distributions that are positively 

skewed at each analysis time point (i.e. not just at baseline as shown in Chapter 4), which 

needs to be accounted for in the analyses in this thesis. Almost all distributions have a 

mode of zero (i.e. no hand pain or problems), except for AUSCAN pain at baseline. If the 

modal group was excluded from the histogram, the two outcomes would have differing 

distributions: AUSCAN pain is (approximately) normally distributed whereas AUSCAN 

function remains positively skewed. The percentage of participants with a score of zero 

was greater at the 18-month follow-up than for all other time-points – a finding that occurs 

for both hand pain and function.   
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Figure 13: AUSCAN hand pain and function at each study time-point in CAS-HA 
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6.4 Trajectory of hand pain and function over time 

The mean trajectory of hand pain and function was relatively stable over the 7.5-year 

follow-up time period with narrow 95% confidence intervals around the mean estimates 

(Figure 14 and Figure 15). There was some evidence, however, that the mean AUSCAN 

scores for hand pain and function increased slightly between the 18-month and 3-year 

follow-up time points (i.e. increase in pain and functional limitations), but this increase is 

small, and not observed when only those participants with complete data are included in 

the plot. The observed trajectories are similar when medians and interquartile ranges are 

considered taking the skew in the data into account (see Appendix 19).  
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Figure 14: Mean and 95% confidence intervals for AUSCAN pain, superimposed on individual trajectory curves 

All participants (N=589) Participants with data at every time-point (N=301) 
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Figure 15: Mean and 95% confidence intervals for AUSCAN function, superimposed on individual trajectory curves 
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When the mean trajectory of hand pain was described using GEE and growth models, a 

linear model was found to be optimal for hand pain for both analysis techniques, with the 

linear model including a random intercept and slope in the growth model (Table 6-1, Table 

6-2 and Appendix 20). Adding quadratic terms to each linear model, either as a fixed or 

random effect term for the growth models, did not significantly improve model fit. In both 

the GEE and growth models, the per-year rate of change was 0.05 AUSCAN points on a 

0-10 scale (95% confidence interval: 0.02, 0.07) (Table 6-1 and Table 6-2).  

In contrast, the quadratic model term was statistically significant for hand function when 

added to the linear model, although there was no significant evidence that fitting the 

quadratic term as a random effect gave a better model fit than fitting it as a fixed effect 

only, i.e. the Satorra-Bentler Scaled Chi-square Test (SBSCT) was non-significant when 

comparing the quadratic model with and without the random effect for the quadratic term 

in it (SBSCT = 4.58 (d.f. = 3); p = 0.21) (Table 6-3). The per-year rate of change was 

therefore more complex to interpret from these models as inclusion of the quadratic term 

resulted in rates of change that differed depending on the time-point of interest, e.g. the 

per year rate of change in the first year post-baseline was estimated as 0.14, but the 

equivalent figure between 6- and 7-years post baseline was only 0.01 (Table 6-4). There 

was no evidence that adding a cubic term to the hand function model improved model fit.  

The estimated mean trajectory curves were virtually identical between the GEE and 

growth models for both outcomes and the GEE model results also did not differ greatly 

depending on whether a normal or gamma distribution was assumed for the data71,72 

(Table 6-1). 

                                                 
71 Changing the link function in the GEE model also did not alter the overall model conclusions (i.e. 
the statistical significance of the time term in the model), however, as expected, the precise values 
of the parameter estimates differed as the choice of link function influenced the scaling of the 
outcome (data not shown).  
72 In the growth models, a separate estimate of the residual at each time point was retained in the 
model as it was observed that the variability in the residuals at the 18-month follow-up time point 
was larger than for all other time-points. The growth model results did not differ if an unstructured, 
independent or identity variance/covariance matrix was assumed for the random effects in the hand 
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pain model, however the model using the exchangeable correlation structure would not converge. 
For hand function, the unstructured and independent variance/covariance matrices gave similar 
results, however the quadratic term was not significant when the exchangeable and identity 
structures were used. Given the results from the unstructured model presented in Table 6-2 and 
Table 6-3, the assumptions of the exchangeable and identity matrices seem unrealistic, i.e. that the 
variance of the random effects are equal, so the results from the unstructured model only are 
presented  
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Table 6-1: GEE model results for hand pain and function 

 Representation of time in the analysis 
  

Linear 
Estimate (95% CI) 

 

Quadratic 
Estimate (95% CI) 

Cubic 
Estimate (95% CI) 

Hand pain    
    
Normal distribution assumed    
    
Constant (α) 3.13 (2.97, 3.30) 3.09 (2.92, 3.25) N/A 
Time (β1) 0.05 (0.02, 0.07) 0.10 (0.03, 0.18) N/A 

Time squared (β2)  
-0.01 (-0.02, 0.00) 

p =0.090 
N/A 

    
Gamma distribution assumed 
with an identity link function  

   

    
Constant (α) 3.13 (2.97,3.29)  3.09 (2.92, 3.26) N/A 
Time (β1) 0.05 (0.02, 0.07) 0.10 (0.03, 0.18) N/A 

Time squared (β2)  
-0.01 (-0.02, 0.00) 

p = 0.108 
N/A 

Hand function    
    
Normal distribution assumed    
    
Constant (α) 2.79 (2.61, 2.97) 2.73 (2.54, 2.91) 2.75 (2.56, 2.94) 
Time (β1) 0.07 (0.05, 0.09) 0.15 (0.09, 0.21) 0.06 (-0.07, 0.19) 

Time squared (β2)  
-0.01 (-0.02, -0.00) 

 p = 0.006 
0.02 (-0.02, 0.07) 

 

Time cubed (β3)   
-0.00 (-0.01, 0.00) 

p = 0.146 
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Gamma distribution assumed 
with an identity link function  

   

    
Constant (α) 2.78 (2.60, 2.96) 2.73 (2.55, 2.91) 2.75 (2.57, 2.94) 
Time (β1) 0.08 (0.06, 0.10) 0.14 (0.08, 0.20) 0.04 (-0.09, 0.18) 

Time squared (β2)  
-0.01 (-0.02, -0.00) 

p =0.020 
0.03 (-0.02, 0.08) 

 

Time cubed (β3)   
-0.00 (-0.01, 0.00) 

p = 0.080 
Model estimates were generated using an exchangeable correlation structure and robust standard errors. The assumption of a common correlation at each 
time point was considered reasonable from inspection of the correlation matrix for AUSCAN hand pain and function (Appendix 21). The model results did not 
differ when an unstructured correlation structure was assumed in the data. Using the independence structure modified the findings (i.e. time in the linear 
model became non-significant) however this model was disregarded as the outcomes have previously been shown to be correlated across time-points (data 
from the independence structure model not shown). 
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Table 6-2: Growth models for AUSCAN pain 

 Model 1 Model 2 Model 3 Model 4 
 

Linear: 
Random intercept 

Linear: 
Random intercept and 

slope 

Quadratic: 
Random intercept and 
slope; fixed quadratic 

Quadratic: 
Random intercept, 

slope; random quadratic 
term 

     
Fixed part     
     
Intercept (α) 3.14 (2.98, 3.31) 3.14 (2.97, 3.30) 3.09 (2.92, 3.26) 3.09 (2.92, 3.26) 
Time (β1) 0.05 (0.02, 0.07) 0.05 (0.02, 0.07) 0.10 (0.03, 0.18) 0.11 (0.04, 0.18) 
Time squared (β2) N/A N/A -0.01 (-0.02, 0.00) -0.01 (-0.02, 0.00) 
     
Random part     
     
Variance     
 Intercept (ߪఈଶሻ 3.30 (2.91, 3.69) 3.26 (2.79, 3.73) 3.27 (2.81, 3.74) 2.98 (2.32, 3.64) 
 Slope ሺߪఉଵ

ଶ ) N/A 0.02 (0.00, 0.03) 0.02 (0.01, 0.03) 0.06 (-0.09, 0.22) 

 Quadratic ሺߪఉଶ
ଶ ) N/A N/A N/A 0.00 (-0.00, 0.00) 

     
Covariance      
 Intercept and slope (ߪఈఉଵ

ଶ ሻ N/A -0.02 (-0.08, 0.04) -0.02 (-0.08, 0.04) 0.13 (-0.14, 0.41) 

 Intercept and quadratic ሺߪఈఉଶ
ଶ ሻ N/A N/A N/A -0.02 (-0.05, 0.01) 

 Slope and quadratic ሺߪఉଵఉଶ
ଶ ሻ N/A N/A N/A -0.01 (-0.03, 0.01) 

     
Residual – variance (	ߪఌ௧

ଶ ሻ     
 Baseline 1.92 (1.61, 2.23) 1.69 (1.35, 2.03) 1.68 (1.35, 2.02) 1.79 (1.23, 2.34) 
 18-months 2.42 (1.98, 2.87) 2.40 (1.96, 2.84) 2.40 (1.95, 2.84) 2.35 (1.89, 2.81) 
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 3-years 1.62 (1.34, 1.90) 1.65 (1.37, 1.94) 1.65 (1.37, 1.92) 1.47 (1.16, 1.78) 
 5-years 1.54 (1.26, 1.82) 1.43 (1.16, 1.70) 1.43 (1.16, 1.70) 1.44 (1.12, 1.76) 
 7.5-years 1.78 (1.44, 2.12) 1.36 (0.96, 1.75) 1.35 (0.95, 1.74) 1.05 (0.19, 1.91) 
     
SBSCT     
     
Model 1 vs Model 2  2  = 14.33 (d.f. = 2); p<0.001  
Model 2 vs Model 3   2  = 2.91 (d.f = 1); p=0.09  
Model 2 vs Model 4  2  = 9.01 (d.f = 4); p=0.06 
Unless otherwise stated, figures are parameter estimates and 95% confidence intervals (based on robust standard errors) in brackets.  = The estimate is 
the same as the upper or lower confidence interval limit due to rounding of model estimates,  = The quadratic model includes within it a term for time (t) and 
a term for time-squared (t2)  = co-variances are given in the table rather than correlations, so it is not appropriate to test whether the correlation is significant 
by assessing whether the 95% confidence interval for the covariance spans zero.  p = p-value, N/A = not applicable, d.f. = degrees of freedom, SBSCT  = 
Satorra-Bentler Scaled Chi-square Test 
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Table 6-3: Growth models for AUSCAN function 

 Model 1 Model 2 Model 3 Model 4 
 

Linear: 
Random intercept 

Linear: 
Random intercept and 

slope 

Quadratic: 
Random intercept and 
slope; fixed quadratic 

Quadratic: 
Random intercept, 

slope; random quadratic 
term 

     
Fixed part     
     
Intercept (α) 2.81 (2.62, 2.99) 2.80 (2.62, 2.98) 2.74 (2.55, 2.92) 2.74 (2.55, 2.92) 
Time (β1) 0.07 (0.05, 0.09) 0.08 (0.05, 0.10) 0.15 (0.09, 0.21) 0.15 (0.09, 0.22) 
Time squared (β2) N/A N/A -0.01 (-0.02, -0.00) -0.01 (-0.02, -0.00) 
     
Random part     
     
Variance     
 Intercept (ߪఈଶሻ 4.74 (4.24, 5.23) 4.51 (3.96, 5.06) 4.54 (3.99, 5.09) 4.51 (3.75, 5.26) 
 Slope ሺߪఉଵ

ଶ ) N/A 0.02 (0.00, 0.03) 0.02 (0.00, 0.03) 0.09 (-0.03, 0.22) 

 Quadratic ሺߪఉଶ
ଶ ) N/A N/A N/A 0.00 (-0.00, 0.00) 

     
Covariance      
 Intercept and slope (ߪఈఉଵ

ଶ ሻ N/A 0.02 (-0.04, 0.08) 0.02 (-0.04, 0.08) 0.04 (-0.23, 0.31) 

 Intercept and quadratic ሺߪఈఉଶ
ଶ ሻ N/A N/A N/A -0.01 (-0.04, 0.02) 

 Slope and quadratic ሺߪఉଵఉଶ
ଶ ሻ N/A N/A N/A -0.01 (-0.03, 0.01) 

     
Residual – variance (	ߪఌ௧

ଶ ሻ     
 Baseline 1.31 (1.04, 1.59) 1.14 (0.82, 1.46) 1.13 (0.81, 1.45) 0.99 (0.47, 1.50) 
 18-months 1.88 (1.48, 2.27) 1.83 (1.45, 2.22) 1.84 (1.45, 2.23) 1.86 (1.47, 2.26) 
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 3-years 0.94 (0.72, 1.16) 0.96 (0.74, 1.18) 0.95 (0.74, 1.16) 0.85 (0.61, 1.10) 
 5-years 1.09 (0.84, 1.34) 0.99 (0.74,1.25) 0.99 (0.74, 1.24) 0.94 (0.69, 1.19) 
 7.5-years 1.36 (1.06, 1.66) 1.05 (0.71, 1.40) 1.03 (0.69, 1.38) 1.01 (0.34,1.69) 
     
SBSCT     
     
Model 1 vs Model 2  2  = 14.59 (d.f. = 2); p < 0.001  
Model 2 vs Model 3   2  = 7.84 (d.f. = 1); p = 0.01  
Model 2 vs Model 4  2  = 10.91 (d.f. = 4); p = 0.03 
Model 3 vs Model 4   2  = 4.58 (d.f. = 3); p = 0.21 
Unless otherwise stated, figures are parameter estimates and 95% confidence intervals (based on robust standard errors) in brackets.  = The estimate is the 

same as the upper or lower confidence interval limit due to rounding of model estimates,  = the quadratic model includes within it a term for time (t) and a term 

for time-squared (t2),  = Co-variances are given in the table rather than correlations, so it is not appropriate to test whether the correlation is significant by 

assessing whether the 95% confidence interval for the covariance spans zero,   = this p-value should (in theory) be divided by two to reflect a one-sided test as 
a variance estimate should never be negative (Rasbash et al. 2012). p = p-value, N/A = not applicable, SBSCT = Satorra-Bentler Scaled Chi-square Test
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Table 6-4: Per-year rates of change over time for hand function 

Time in years Mean predicted valueα Per year rate of change 

0 2.73  

1 2.87 0.14 

2 2.99 0.12 

3 3.08 0.09 

4 3.15 0.07 

5 3.21 0.05 

6 3.23 0.03 

7 3.24 0.01 

α Mean predicted value = 2.73 + 0.15*time - 0.01*time*time. Coefficients are taken from the 
quadratic GEE model however results are virtually identical when the growth models are used.   
 

Although it is shown that the mean trajectories for AUSCAN pain and function are 

relatively stable over the time-period of the study, the growth models also highlight that 

there is significant individual variation around the fixed model estimates. This suggests 

that there is individual variability in the trajectories of hand pain and function over time, 

which is highlighted by plotting individual trajectories over time (Figure 16)73 and 

generating histograms of the standard deviation of participants’ AUSCAN scores over time 

(Figure 17)74. If trajectories are stable over time then their standard deviation would be 0, 

which they are not for AUSCAN pain and function. In addition, the low correlation between 

the random intercept and slope in the hand pain and function models show that the rate of 

change over time is not dependent on a participants’ baseline starting value, i.e. the 

correlation between the random intercept and slope in Model 2 for hand pain was -0.08 

(95% confidence interval -0.29, 0.14) and in Model 3 for hand function was 0.07 (95% 

confidence interval -0.18, 0.33). 

                                                 
73 Some participants showed quite varied AUSCAN scores over time (e.g. participant 30176), 
whereas others showed more stable patterns over time (e.g. participant 30384) (Figure 16) 
74 If participants have data at all five time-points the unit plotted would be the standard deviation of 
the AUSCAN at those five time-points 
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Figure 16: Individual trajectory plots of AUSCAN hand pain and function over time for a sample of 24 participants in CAS-HA 

AUSCAN pain (0-10) AUSCAN function (0-10) 
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Figure 17: Distribution of individual standard deviations calculated across time for each person in the CAS-HA sample 
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6.5 AUSCAN missing data patterns and loss to follow-up 

6.5.1 Missing data patterns 

Missing data rates for AUSCAN pain at each time point are 5, 7, 16, 33 and 38% 

respectively (Table 6-5 – denominator N = 623) and are nearly identical to those for 

AUSCAN function: 5, 8, 14, 33 and 38% (Appendix 22). AUSCAN pain data was present 

at all time-points for 50% of participants and at 3 or more time points (i.e. for more than 

half of the time-points measured) for 85% of participants. The most common pattern of 

missing data occurred for participants who were in the study up to the three year follow-up 

but then did not complete the 5 and 7.5 year follow-up (N=79). Similar missing data 

patterns were found for AUSCAN function (Appendix 22).   

Table 6-5: Missing data patterns for AUSCAN pain 

 
Missing data pattern (X=data present) 

Number of time 
points with non-

missing data 
 Baseline 18-months 3-years 5-years 7.5-years  

 N=589 N=577 N=523 N=417 N=384  

N (%)       

311 (50) X X X X X 5 
79 (13) X X X   3 
59 (9) X X X X  4 
51 (8) X X    2 
32 (5) X X X  X 4 
29 (5) X     1 
19 (3)  X X X X 4 
10 (2) X X  X X 4 
7 (1) X  X X X 4 
6 (1)  X X   2 

3 (<1) X X  X  3 
3 (<1) X  X X  3 
3 (<1) X  X   2 
2 (<1)      0 
2 (<1)  X X X  3 
2 (<1)  X    1 
1 (<1)  X X  X 3 
1 (<1) X   X X 3 
1 (<1)   X X X 3 
1 (<1)  X  X X 3 
1 (<1) X X   X 3 

Footnote: 50%, 20%, 15%, 10% and 5% of participants had data at 5, 4, 3, 2, 1 time points 
respectively 
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6.5.2 Loss to follow-up 

Loss to follow-up of the CAS-HA population as a whole was considered in Chapter 3 

where it was shown that the baseline characteristics of participants in the baseline cohort 

were largely similar to those remaining in the cohort at the 7.5-year follow-up time point 

(with the exception that those remaining in the cohort at 7.5-years were of marginally 

better health). In addition, in this chapter, the data in Table 6-6 show that participants 

responding at time point t on average have lower AUSCAN scores at time t-1 than those 

who did not respond at time point t, suggesting higher levels of pain and function in those 

with missing data or lost to follow-up at the next time point. Therefore, missing data 

cannot be assumed to be missing completely at random (MCAR) as its presence depends 

on observed variables in the dataset75.  

                                                 
75 Although the data are shown to depend on the AUSCAN this is still a test of whether the data are 
missing at random (MAR) as the data at the preceding time-point is an observed variable. It is 
difficult to test whether data are missing not at random (MNAR) as this relates to knowing the 
values of the precise outcome data that has not been collected as part of the study (Twisk et al. 
2013) 
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Table 6-6: Assessing selective loss to follow-up with case selection based on AUSCAN pain and function (0-10) 

 AUSCAN pain present at this time point? 

 18-months 3-years 5-years 7.5-years 

 Yes 

N =577 

No 

N = 46 

Yes 

N =523 

No 

N = 100 

Yes 

N = 417 

No 

N = 206 

Yes 

N=384 

No 

N =239 

AUSCAN pain          

  Baseline 2.5 (1.5, 4.5) 3.5 (1.5, 6.0)       

 18-months   3.0 (0.5, 5.0) 4.0 (0.8, 5.0)     

 3-years     3.0 (1.5, 5.0) 4.0 (2.0, 5.0)   

 5-years       3.0 (1.5, 4.5) 4.5 (2.0, 5.0) 

 AUSCAN function present at this time point? 

 18-months 3-years 5-years 7.5-years 

 Yes 

N =576 

No 

N = 47 

Yes 

N = 537 

No 

N = 86 

Yes 

N = 418  

No 

N = 205 

Yes 

N=384 

No 

N =239 

AUSCAN function         

  Baseline 2.2 (0.8, 4.4) 3.9 (1.1, 6.4)       

 18-months   2.5 (0.3, 4.7) 3.1 (0.0, 4.7)     

 3-years     2.5 (0.8, 4.7) 3.6 (1.7, 6.1)   

 5-years       2.5 (0.8, 4.4) 3.9 (0.8, 6.1) 

Values are medians (interquartile ranges) 
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6.6 Minimum important change (MIC)  

Although MIC for the AUSCAN was considered in Chapter 4, one single value was not 

recommended for MIC as it was not possible to derive a reliable MIC value for the CAS-

HA sample using the methods described therein. To respond to this, two further sources 

of evidence were considered, which, in themselves, are not methods to calculate MIC, but 

may support interpretation of the data and help to consider how “large” change in the 

AUSCAN should be before meaningful change has occurred. The two sources of 

evidence were population normative data derived for the AUSCAN (Bellamy et al. 2011) 

and treatment responder criteria as based on the AUSCAN and a global assessment of 

change measure (Pham et al. 2004).   

6.6.1 Population normative data  

Population data was initially considered to try and parallel the concept of normative data 

used in other disease areas: e.g. to test how many people starting with high blood 

pressure then resolve to being in the “normal range” for adults in their age and gender 

group. This concept could not be easily translated to the population data for the AUSCAN 

as these data have been based on a mixture of participants with and without hand pain. 

Given this, population data are only used in this thesis to test the expectation that 

participants in CAS-HA have higher AUSCAN scores than a general population sample 

(which is supported by data in Table 6-7 and Table 6-8), and also to test, in general, by 

how many AUSCAN points their problems are more severe (differences in median 

AUSCAN scores between the normative and CAS-HA data are typically around 2 to 3 

points for AUSCAN pain and 1 to 2 points for AUSCAN function (Table 6-7 and Table 

6-8)). 
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Table 6-7: Comparing AUSCAN pain measures in CAS-HA to percentile values derived from the normal population 

Normative data reproduced from (Bellamy et al. 2011). Dash indicates that no participants met the criteria to be in the group due to study design. Note that age 
has been recalculated at each time point therefore participants can change age-group over time.  = Stratified sampling was used to gain the same level of 
statistical precision for each age and gender strata, sample size therefore does not reflect the age distribution in the general population. N = number of 
participants, 50 = 50th percentile; 75 = 75th percentile, 90 = 90th percentile. 

 Normative data CAS-HA 

      Baseline  18-months  3-years  5-years  7.5-years 

Males N 50 75 90 N 50 75 90 N 50 75 90 N 50 75 90 N 50 75 90 N 50 75 90 

50-54 296 0.0 1.1 3.2 17 2.5 4.0 6.5 11 2.0 4.0 4.5 7 3.0 6.0 7.5 - - - - - - - - 

55-59 385 0.0 1.4 3.8 50 2.5 4.5 7.3 42 2.0 4.0 5.0 24 2.5 4.8 6.0 8 0.5 2.8 4.5 5 2.5 3.5 4.5 

60-64 333 0.0 1.0 3.6 60 2.8 5.0 6.0 57 3.0 4.5 6.9 51 3.5 5.0 6.0 36 2.5 4.5 5.5 22 2.8 4.5 6.5 

65-69 237 0.0 1.6 4.8 37 2.5 4.4 5.0 47 3.5 5.0 6.0 46 3.3 4.5 5.5 48 3.0 4.5 5.5 43 2.5 3.5 5.0 

70-74 298 0.1 1.6 3.6 24 2.5 3.0 6.0 25 2.5 4.0 5.5 27 2.5 4.0 5.0 25 2.5 5.0 5.5 34 2.5 4.5 6.0 

75-79 259 0.0 1.6 3.8 21 3.0 5.0 6.0 22 3.0 5.0 6.5 25 2.5 5.0 6.5 19 2.5 4.0 5.0 18 2.3 4.0 5.0 

80+ 687 0.4 2.6 5.0 11 2.5 5.5 7.0 17 3.0 5.5 7.5 19 4.0 5.0 6.0 19 3.5 6.0 7.5 23 3.0 5.0 6.0 

Females                         

50-54 308 0.0 1.4 3.8 62 2.5 4.5 6.5 34 2.5 4.0 4.5 10 3.3 4.5 6.3 - - - - - - - - 

55-59 296 0.4 2.4 5.0 88 2.5 4.3 6.0 84 4.0 5.0 6.5 72 3.5 5.0 7.0 40 2.5 4.5 5.5 16 2.5 4.3 5.5 

60-64 367 0.6 2.8 5.8 67 4.0 5.5 6.5 70 3.5 5.0 6.5 72 3.3 5.0 7.0 75 3.5 5.0 6.5 58 3.3 5.0 6.5 

65-69 277 0.6 2.6 5.0 57 2.5 5.0 6.0 62 3.5 4.5 5.5 56 3.5 5.0 6.0 45 4.0 5.0 7.0 60 3.3 5.0 6.5 

70-74 350 0.6 2.8 6.2 55 3.0 4.5 5.5 58 4.0 5.5 7.0 59 3.0 5.0 6.5 51 3.5 5.0 6.0 44 3.0 5.0 7.0 

75-79 269 0.8 3.0 5.4 28 3.3 5.0 6.0 33 4.5 5.0 6.0 41 4.0 5.0 5.5 34 4.0 5.0 6.5 36 4.0 5.0 7.0 

80+ 666 1.2 4.2 6.6 12 4.0 5.5 6.5 15 2.5 4.5 7.0 14 4.3 5.5 8.0 17 5.0 5.5 7.5 25 5.0 5.5 6.5 
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Table 6-8: Comparing AUSCAN function measures in CAS-HA to percentile values derived from the normal population 

Normative data reproduced from (Bellamy et al. 2011). Dash indicates that no participants met the criteria to be in the group due to study design. Note that age 
has been recalculated at each time point therefore participants can change age-group over time.  = Stratified sampling was used to gain the same level of 
statistical precision for each age and gender strata, sample size therefore does not reflect the age distribution in the general population. N = number of 
participants, 50 = 50th percentile; 75 = 75th percentile, 90 = 90th percentile. 

 Normative data CAS-HA 

      Baseline  18-months  3-years  5-years  7.5-years 

Males Nα 50 75 90 N 50 75 90 N 50 75 90 N 50 75 90 N 50 75 90 N 50 75 90 

50-54 294 0.0 0.7 2.4 17 0.6 1.4 5.3 11 0.6 1.9 2.2 7 0.8 1.7 6.7 - - - - - - - - 

55-59 382 0.0 0.9 3.1 51 1.4 4.7 6.9 42 0.3 2.8 5.3 24 1.3 3.5 5.0 8 0.4 1.8 3.9 5 0.8 0.8 1.7 

60-64 329 0.1 1.1 3.3 61 0.8 2.8 5.0 57 1.1 2.8 5.3 53 1.4 3.6 5.7 36 1.4 3.2 5.6 22 1.3 3.9 4.7 

65-69 236 0.2 1.7 4.6 37 1.4 2.8 5.0 47 2.2 3.9 5.6 48 1.5 4.0 5.8 48 1.4 3.9 5.0 44 1.0 2.8 5.0 

70-74 296 0.3 1.4 3.3 24 1.6 3.5 5.6 25 0.8 3.1 4.4 26 1.3 2.5 3.9 26 1.7 3.9 6.1 34 1.7 3.1 5.0 

75-79 256 0.4 1.7 3.8 22 1.4 5.0 6.4 22 2.9 5.0 6.1 28 2.5 5.0 7.5 19 1.9 4.2 5.3 18 1.5 3.6 4.4 

80+ 669 1.0 3.4 6.0 11 3.6 4.7 5.0 16 1.8 4.9 5.0 19 3.6 5.0 6.3 20 3.5 5.8 7.4 23 2.5 4.7 6.1 

Females                         

50-54 307 0.2 1.4 4.2 62 2.1 4.7 6.4 34 1.3 3.1 5.6 10 2.5 4.7 5.7 - - - - - - - - 

55-59 290 0.7 2.8 5.9 87 2.2 3.9 5.6 84 3.3 4.9 6.1 73 2.5 5.0 7.2 40 2.5 4.0 5.8 16 1.9 3.5 3.9 

60-64 361 0.9 3.8 6.4 66 4.0 5.8 6.4 70 2.9 5.0 6.8 74 3.1 5.3 6.7 74 2.9 4.4 6.1 58 2.9 5.6 6.7 

65-69 271 1.0 3.3 5.9 57 2.8 4.2 6.4 62 2.9 4.7 6.1 58 3.8 5.8 6.4 44 3.9 5.8 6.7 60 2.8 5.3 6.1 

70-74 339 1.3 3.9 7.2 57 3.3 5.0 6.1 58 3.9 5.6 7.2 62 3.1 5.3 6.1 49 3.1 5.0 6.9 44 3.3 5.0 5.8 

75-79 267 1.6 4.2 6.7 28 4.3 5.7 6.9 34 4.2 5.0 7.2 40 4.4 5.3 6.3 36 3.9 6.4 7.5 35 3.6 5.6 8.1 

80+ 650 2.7 6.1 8.3 13 2.8 4.7 7.5 14 2.4 5.6 6.1 15 5.6 7.8 8.1 18 5.6 6.4 8.6 25 5.0 5.6 7.5 
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6.6.2 Osteoarthritis Research Society International (OARSI) treatment responder 

criteria  

The OARSI treatment responder criteria are an alternative source that can be used to 

determine if participants in CAS-HA show AUSCAN changes over time that are “large” 

enough to be considered a “response” to treatment in a clincial trial setting. Although 

intially developed for participants with knee and hip osteoarthritis (OA), the criteria have 

been used as the primary outcome measure in several trials of hand OA (Stukstette et al. 

2013, Dziedzic et al. 2013) so are relevant to consider in this thesis. The OARSI 

responder criteria work by allocating participants into groups based on the algorithm 

shown in Figure 18 (reproduced from Pham et al. 2004 and adapted to relate to the 

AUSCAN measured on a 0-10 scale in this thesis76).   

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
76 The OARSI responder criteria presented in Pham et al. 2004 related to an outcome that was 
measured on a 0-100 scale. All absolute values were therefore divided by 10 to make them 
relevant to the 0-10 AUSCAN scale used in this thesis. 

 

 

Yes No 

Improvement in at least 2 of the 3 following: 

 AUSCAN Pain >=20% and absolute change >=1 
 AUSCAN Function >=20% and absolute change >=1 
 Patient’s global assessment >=20% and absolute change >=1 

  

  

Responder 

Yes No 

  

  

Responder Non-responder 

Figure 18: OARSI responder criteria for hand pain and function measured on a 0-10 scale 

High improvement in AUSCAN pain or in function >=50% and absolute change >=2 
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Although the OARSI responder criteria are designed to measure improvement in 

symptoms over time, both symptom ‘improvement’ and ‘deterioration’ are considered in 

this chapter as both are of interest, and could occur, in the CAS-HA study77. In particular, 

for hand pain, on average, 23% and 30%78 of participants met the 20% cut-off component 

of the OARSI responder criteria for improvement or deterioration respectively (range 20 - 

25% for improvement and 28 – 32% for deterioration) (Table 6-9). These figures are 

reduced to 8% and 15% when the 50% cut-off was applied, i.e. high 

improvement/deterioration. The corresponding figures for hand function are slightly lower 

than for hand pain. This suggests that although the overall trajectory of hand pain and 

function appears stable over time, there are still significant proportions of participants 

showing changes over time that are large enough to meet criteria for improvement or 

deterioration according to this algorithm, suggesting that there is variability in the sample 

to be further explored. 

      

                                                 
77 Global assessment of change is not being considered in this chapter as the AUSCAN is the 
focus of analysis for this thesis 
78 Figure obtained by averaging data across the four sets of adjacent time points 
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Table 6-9: Participants in CAS-HA meeting the hand pain and function components of the OARSI responder criteria 

 Time period  

Criteria 
BL to 18-months 

N(%) 

18-months to 3-
years 
N(%) 

3-years to 5-years 
N(%) 

5-years to 7.5 
years 
N(%) 

BL to 7.5 years 
N(%) 

Improvement        
      
Pain       
>=20% and absolute change >=1 138 (25) 101 (20) 88 (22) 83 (24) 79 (22) 
>=50% and absolute change >=2 61 (11) 35 (7) 28 (7) 24 (7) 32 (9) 
Function       
>=20% and absolute change >=1 95 (17) 77 (15) 60 (14) 60 (17) 51 (14) 
>=50% and absolute change >=2 30 (5) 14 (3) 11 (3) 16 (5) 15 (4) 
Pain and Function       
>=20% and absolute change >=1 
for both measures 

68 (13) 41 (8) 32 (8) 40 (12) 37 (10) 

      
Deterioration       
      
Pain       
>=20% and absolute change >=1 177 (32) 148 (29) 124 (31) 98 (28) 133 (36) 
>=50% and absolute change >=2 106 (19) 79 (16) 57 (14) 37 (11) 68 (19) 
Function       
>=20% and absolute change >=1 129 (23) 124 (24) 93 (22) 68 (20) 116 (32) 
>=50% and absolute change >=2 51 (9) 45 (9) 28 (7) 21 (6) 49 (13) 
Pain and Function       
>=20% and absolute change >=1 
for both measures 

80 (15) 71 (14) 49 (12) 40 (12) 62 (17) 

Percentage change calculated as (baseline – follow-up)/baseline; absolute change (baseline – follow-up). AUSCAN scaled from 1 to 11 to avoid dividing by 0 
when calculating relative change over time. BL = baseline 
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6.7 Discussion 

6.7.1 Summary of findings  

In this chapter it has been shown that both AUSCAN pain and function have skewed 

outcome distributions at each time point and that the mean/median trajectory of hand pain 

and function is relatively stable over time. The growth and GEE models show a linear 

trend for hand pain and a quadratic trend for hand function, however when viewed against 

the range of the AUSCAN scale, and also against the suggested values for MIC in 

Chapter 4, the small annual increases in hand pain and function, although statistically 

significant, at the mean level, may not be “large” enough to be considered clinically 

meaningful to the participant.  

By considering the data at the individual level, it has been shown that a greater proportion 

of participants show symptom deterioration over time than improvement, with the 20% cut-

off used in the algorithm for the OARSI responder criteria being similar to the differences 

that were considered as potential values for MIC using the distribution method in Chapter 

4. This data, along with the statistical models and descriptive plots, demonstrate a wide 

degree of variability both in baseline values of AUSCAN pain and function and also in the 

shapes of the trajectories over time, and support the objectives of the later thesis chapters 

to potentially explain such variability using (measured) predictors of interest or reflect 

different (unobserved) latent groups (as is later explored in Chapters 7 and 8, 

respectively).   

6.7.2 Comparison with the literature 

The AUSCAN has been used as an outcome in several community-based studies of hand 

pain and functional limitation, e.g. (Cole et al. 2011, Aslam et al. 2014), however few of 

these studies were comparable to CAS-HA by measuring change in hand pain and 

function over a longer-term follow-up time period. Two exceptions were the Genetics 

ARthrosis and Progression (GARP) study (Bijsterbosch et al. 2011) and the Oslo hand OA 
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cohort (Haugen et al. 2013) that measured changes in the AUSCAN from baseline to a 6 

– and 7-year follow-up, respectively.   

Although these studies recruited patients with a diagnosis of symptomatic hand OA from 

patient records (so are not completely comparable to CAS-HA) both studies reported 

similar findings to those shown in this chapter, i.e. that on average over a 6- to 7-year time 

period, the change in mean AUSCAN hand pain and functional difficulty is small 

(Bijsterbosch et al. 2011, Haugen et al. 2013) and that individual variation around these 

estimates is large (Bijsterbosch et al. 2011). Both studies also used pre-specified cut-offs 

for minimal important change and found that a greater percentage of participants showed 

worsening of hand pain and functional difficulty over time than improvement, which is 

consistent with the analysis of the OARSI responder criteria in this chapter (i.e. the 

analysis that looks at change between baseline and the 7.5 year follow-up time-point)79.     

The distribution of the AUSCAN presented in this chapter differs from other studies that 

have used differing methods to recruit study participants. For example the AUSCAN 

scores were normally distributed, rather than positively skewed, in the Genetics of 

Generalized Osteoarthritis (GOGO) study that recruited participants who had at least two 

siblings with bilateral hand OA defined from clinical assessment and x-ray scoring (Allen 

et al. 2006a). This is to be expected however, as the CAS-HA study recruited participants 

from a population-based sample reporting hand pain or problems in the last 12-months 

rather than from a clinical setting. It is therefore likely that several participants would have 

a score of zero on the AUSCAN as the time frame for this measure is “in the last week” 

rather than “in the last 12-months”. Also, as participants were not recruited from a clinical 

                                                 
79 In the GARP study, 40% and 50% of participants showed worsening of hand pain and function 
over time respectively versus 26% showing improvement for each of hand pain and function. 
Worsening and improvement was defined as having a change score in excess of the positive (for 
worsening) and negative values (for improvement) of the minimum clinically important change 
values of 1.49 and 1.25 for hand pain and function respectively (i.e. 7 and 3% of the scale scores 
respectively when hand pain is measured on a scale of 0-20 and hand function on a scale of 0-36) 
(Bijsterbosch et al. 2011). The same cut-offs were used in the Oslo hand OA cohort and the 
corresponding figures for hand pain and function were 39% and 47% of patients for worsening and 
21% and 32% for improvement (Haugen et al. 2013) 
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setting, they represent a broad spectrum of participants with a broad range of condition 

severity, so it may be that some participants with milder problems resolved to present with 

no pain at the time the questionnaire was completed by participants. This highlights the 

need for a cautious interpretation when generalizing findings from the CAS-HA study to 

other populations of interest. 

The AUSCAN response rates in the CAS-HA study were reasonable when compared to 

other studies that have also used the AUSCAN as the primary measure of hand pain and 

function, e.g. the GARP and Oslo hand OA cohort (AUSCAN response rate: CAS-HA at 

7.5 years = 62%, GARP at 6-years = 76% (Bijsterbosch et al. 2011), Oslo cohort at 7-

years = 52% (Haugen et al. 2013)).   

6.7.3 Limitations 

A limitation of the data presented so far is the potential for selective loss-to-follow as, for 

both outcomes, there is a small increase in mean hand pain and functional difficulty 

between the 18-month and 3-year follow-up that is not replicated when the plot is 

repeated for only those participants with data at all time-points. This could imply that 

participants with more severe problems that have a chronic time course, are those that 

have remained in the cohort, however this is not in line with the finding that the AUSCAN 

score at the time-point prior to exiting the study is greater for those lost-to-follow-up at that 

time-point than those that remained in the study. Selective loss to follow-up is also an 

issue as only 62% of the original CAS-HA cohort completed the AUSCAN questionnaire at 

the 7.5-year follow-up. This has previously been explored in Chapter 3 on study design 

and recruitment.      

6.7.4 Model extensions 

In this chapter, the trajectory of hand pain and function over time has been described, and 

although it has been explored whether the baseline values of AUSCAN pain and function 

are related to rates of change over time, the models do not address any research 
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questions around which baseline factors are important predictors of outcome change over 

time. It is this topic that is explored in more detail in the next chapter (Chapter 7).   
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7 Predicting the course of hand pain and function over time  

7.1 Introduction 

In Chapter 6, GEE and growth models were used to model the trajectory of hand pain and 

function and, for both outcomes, their respective optimal growth models showed 

significant (unexplained) variation around the model fixed effects. The objective of this 

chapter is therefore to explore whether such variation can be explained by extending the 

models in Chapter 6 to include factors (or combinations of factors) measured at baseline 

that could potentially predict prognosis of hand pain and function over time.  

As the GEE and growth models in Chapter 6 showed very similar results, the analysis in 

this chapter is only conducted using growth modelling. Growth models were chosen over 

GEE models as they give additional information on outcome variation between individuals 

and also because the missing data in CAS-HA is unlikely to be missing completely at 

random.   

This chapter is structured into three key sections: the first to describe the modelling 

strategy used to determine which factors, out of those listed in Chapter 3, are strong 

predictors of hand pain and function over time (Section 7.2), the second to present the 

model results (Section 7.3) and the third to discuss the findings, strengths and 

weaknesses of the analysis and implications for later thesis chapters (Section 7.4). 

7.2 Modelling strategy 

7.2.1 Outcome and trajectory shape 

In this chapter, hand pain and function were modelled as two separate outcomes. A linear 

trajectory (with a random intercept and slope) was initially used to model both outcomes to 

aid comparability of results between the two outcomes and to simplify the modelling 

process. The justification for, and impact of, this simplification is discussed further in 

Section 7.2.4. 
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7.2.2 Measurement of predictors 

The same core set of potential predictors as proposed previously (Chapter 3) was used to 

model hand pain and function however “baseline hand pain” and “baseline hand function” 

were removed from the hand pain and hand function models respectively to avoid 

duplication of outcome and predictor information. The baseline for the outcome of interest 

was still included in the model however, but just expressed as the degree of variability 

around the model intercept term rather than as a predictor per se. The list of potential 

predictors was presented in detail in Table 3-1 in Chapter 3, so is summarised only briefly 

here in Figure 19. 
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Figure 19: Summary of potential predictors considered for inclusion in the hand 
pain and hand function models 

 

  

Block 1 – Demographic  Block 5 – Psychological factors

   
Age  Anxiety 

Gender  Depression 

Marital Status  Illness perceptions 

Occupation/Social Class  Frustration with hand condition 

Employment status   

Education  Block 6 – Clinical Assessment 
Income   

  Body-mass index 

Block 2 – Lifestyle  Hand grip-ability 

  Muscle strength 

Alcohol consumption  Hand osteoarthritis 

Smoking status  Carpal tunnel syndrome 

Social networks  Dupuytren’s contracture 

  De Quervain’s tenosynovitis 

Block 3 – Health  Trigger finger 

   

Self-rated health  Block 7 – X-ray 

Number of comorbidities   
Pain in other body areas 

 
Severity of radiographic hand 

osteoarthritis 
   

Block 4  - Characteristics of hand condition   

   

Hand pain severity   

Hand functional difficulty   

Side affected   

Time since onset of hand problem   

Sudden onset of hand problem   

Onset of hand condition following 
accident/injury to the hand 

 
 

Physical load on hands during work and 
leisure 
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All predictors in Figure 19 were initially modelled using their highest level of measurement, 

i.e. with no categorisation for continuous predictors, and using the maximum number of 

response options available (so as measured on the questionnaire or at clinical 

assessment) for categorical predictors. These decisions were taken to maximise the 

amount of predictive information contained within each variable (Royston et al. 2009) as 

the objective of this particular analysis was to predict the trajectory of hand pain and 

function as precisely and accurately as possible. A limitation of this approach for 

categorical variables, however, was the potential for some response categories to contain 

only a small number of participants and produce unstable parameter estimates. To guard 

against this, throughout the modelling process, parameter estimates were checked to 

ensure they were plausible (e.g. all variance estimates were positive) and if not, a minimal 

amount of sensible category merging was considered to ensure plausible estimates were 

achieved.  

7.2.3 Selection of model predictors 

Two alternative modelling strategies were used in this chapter to explore whether the 

choice of modelling strategy impacted on the selection of variables retained. The first 

modelling strategy aimed to fit the most basic model to the data and then subsequently 

added model complexity (Bliese et al. 2002), whereas the second modelling strategy 

aimed to start with a maximal model to be reduced to achieve model parsimony (Cheng et 

al. 2010). Both modelling approaches were supported by the principles reported in Singer 

et al. 2003 who state that: “a sound statistical model includes all necessary predictors and 

no unnecessary ones” and by Preacher et al. 2008 who recommend that models should 

be tested in an order that is supported by theory and driven by the research question of 

interest, hence the decision to use the “block structure” of the predictors within the 

modelling strategy below, rather than relying on a fully automated forward or backwards 

selection approach. As the AUSCAN outcome for hand pain and function has a skewed 

distribution, comparisons of the model log-likelihoods were conducted using the Satorra-
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Bentler Scaled Chi-square (SBSC) test. For all analyses, a predictor was considered to 

add value to a model if the SBSC test was statistically significant with a p-value <0.0580. 

Modelling strategy 1 

Modelling strategy 1 was conducted in three stages, the first to identify an initial pool of 

potentially important predictors of either the model intercept or slope, the second to check 

whether all initial predictors were still statistically significant when all predictors in the 

initial pool were included in a multivariable model, and the third to explore whether the 

predictors did indeed predict both the model intercept and slope, or just the intercept 

alone.  

 Stage 1 

 

As shown in Figure 19, the potential predictors in this chapter have been grouped into 

seven blocks based on their method of measurement (i.e. questionnaire, clinical 

assessment, or x-ray) and it is this block structure that was used as a basis to select the 

important predictors at Stage 1. This is because it was highlighted in Chapter 2 that it 

would be clinically useful to group the measures to determine if a good prediction model 

could be developed using data that was simple to collect, i.e. from a questionnaire, or 

whether data needing more complex collection methods, such as a clinical assessment, 

were then needed to improve model prediction.  

More specifically, forward selection procedures were undertaken to select an optimum 

model firstly from the predictors in the demographic block (block 1). This was achieved by 

comparing the “overall value” of including the predictor in the model, i.e. by comparing the 

fit of the model without the predictor in it to one where the additional predictor was 

included as a potential predictor of both the model intercept and slope. As forward 

selection procedures were used to select the model predictors in the demographic block, 

                                                 
80 A value of 0.05 was chosen (rather than a more inclusive threshold of 0.10) because the number 
of potential model predictors was large so could be statistically significant by chance alone.   
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predictors remained in the model even if they became non-significant later when other 

predictors in the same block were added (a constraint that was later relaxed in Stage 2 of 

the modelling strategy, see below). The optimum81 model from the demographic 

predictors was then carried forward as the null model to which predictors in the lifestyle 

block (block 2) were then tested against (using the same forward selection procedure as 

defined for block 1) to see if they improved model fit. A new optimum model (that could 

potentially include predictors from both the demographic and lifestyle blocks) was then 

carried forward as the new null model to which predictors from the health block (block 3) 

were tested. This procedure continued iteratively until all predictors in all of the blocks 

were tested.  

 Stage 2 

 

In Stage 1 above, forward selection was chosen to select predictors of interest over 

stepwise selection procedures. This approach was used to minimise the number of 

models that needed to be fitted to the data as the SBSCT test was not available as an 

automated process in Mplus so all models had to be fitted “by hand”. This method also 

avoided potentially removing predictors prematurely in the modelling process (i.e. ones 

that later became significant when other predictors were added to the model)82. A 

consequence of this decision was the potential for not all predictors included in Stage 1 to 

improve model fit as predictors were not continually tested for their removal from the 

model when other predictors were added. In Stage 2, backwards deletion was therefore 

used to remove any predictors from the model that did not significantly improve model fit. 

As in Stage 1, the predictors were tested to see whether they were statistically significant 

predictors of the model intercept and/or slope, i.e. by comparing the fit of the model 

                                                 
81 Optimum refers to “optimum at Stage 1 in the modelling”. It does not mean optimal overall as the 
model at this stage could potentially include within it predictors that are non-significant  
82 This decision was taken for practical reasons as the number of models to potentially fit to the 
data is excessively large even for forward selection. Forward selection reduces the number of 
models that need to be fitted to the data, compared to stepwise methods, as the subsequent 
removal of model predictors is not tested after predictors have been initially included in the model 
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without the predictor in it to one where the additional factor was included as a potential 

predictor of both the model intercept and slope.   

 Stage 3 

 

After Stages 1 and 2, all predictor variables had been tested for significant contribution to 

the model, either as a predictor of the model intercept or slope. Given this strategy, there 

was the potential that a predictor could be included in the model that was a significant 

predictor of the model intercept, but not a significant predictor of the model slope. As a 

final stage, to reduce the number of parameters estimated to ensure parsimony, the 

model was further “pruned” to remove any non-significant predictors of the model slope. 

The model slopes, which represent the interaction between time and the predictor, were 

considered for removal prior to the model intercepts, i.e. the main effects, as the latter are 

needed in the model for the interaction to be interpreted83. This was achieved by using 

backwards deletion and comparing a model where the predictor is only predictive of the 

model intercept to that where it is potentially predictive of both the intercept and slope. 

After the slope terms were tested, any predictors of the intercept terms that were not 

identified as a predictor of the slope in the model were also tested for their removal - it 

may be that the estimates for some of the intercepts change as predictors of the slope are 

removed so this was tested in the final modelling stage.    

Modelling strategy 2 

Modelling strategy 2 mirrored modelling strategy 1, except that model predictors were 

selected using backwards deletion (rather than forward selection) at Stage 1. At Stage 1, 

for modelling strategy 2, all predictors in the first block were included in the model and 

were iteratively removed (if necessary) from the model using backwards deletion. The 

optimum model from the first block was then taken forward and all predictors from block 2 
                                                 
83 This also fits with the objective of the model to find predictors that were good predictors of 
change over time, rather than those that were just good predictors of participants’ initial baseline 
starting point  
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added. The block 2 predictors were then subsequently removed from the model (if 

necessary) to form a new null model. The new null model was then taken forward and 

used as a null model for all block 3 predictors to be added and then tested for their 

removal. This procedure continued until all of the predictors in all of the blocks had been 

tested. Stages 2 and 3 as described above were then applied.   
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Contrasting modelling strategies 

In general, modelling strategy 1 was preferred over modelling strategy 2 as it fitted more 

closely with the overarching objective of the model (i.e. to start with a simple model that 

was built up to become more complex as more predictors were added). It also minimised 

the potential for data drop-out84. If the two strategies, however, provided different sets of 

optimal predictors and both are of similar goodness-of-fit, both sets of predictors were 

considered as two potentially competing optimal models. This was to fit in with the 

philosophy that several “optimal models” may exist, each with differing sets of predictors 

in them (Singer et al. 2003).  

7.2.4 Linear trajectory assumption for hand function  

In the modelling process described above a linear trajectory was assumed for both hand 

pain and function, despite there being some evidence in Chapter 6 that a quadratic term 

for hand function was statistically significant. The decision to focus the analysis on a linear 

model was taken to aid comparability between the models for hand pain and function, to 

encourage model convergence (i.e. by estimating the trajectory shape with as few 

parameters as possible) and to simplify the modelling process (i.e. to not also consider 

whether the factors of importance were predictors of the quadratic term in the model as 

well). This was (in part) justifiable as the quadratic term, although statistically significant in 

the hand function model, was small in magnitude and so was unlikely to have a great 

impact on the overall trajectory shape.  

However, to test the impact of ignoring the potential for a quadratic component to 

contribute to the model, two sensitivity analyses were conducted for the “final” hand 

function model(s). The first involved adding a quadratic term for time as a fixed effect to 

the linear model previously defined as the “final model”; the second, increasing further the 

model complexity, involved adding a quadratic term for time as both a fixed and random 
                                                 
84 Modelling strategy 1 uses forward selection so will (in general) be testing models with fewer 
predictors in them. As participants can only be included in the model if they have data present for 
all predictors in the model, a model with fewer predictors will maximise the sample size analysed   
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effect. These sensitivity analyses were used to check to what extent parameter estimates 

in the final model changed when a quadratic term was added to the hand function model 

and if shown to be similar, in part, support the use of a linear trajectory when selecting 

predictors for the model.      

7.2.5 Model assumptions 

After the optimal model, or a small set of optimal models, had been determined from the 

data, the strategies described in Chapter 5 were used to explore whether the model 

assumptions were satisfied for the models fitted in this chapter. For presentation 

purposes, to ensure that visual inspection of the plots was manageable, a random sample 

of 50 participants was drawn independently for hand pain and hand function (to avoid 

assessing goodness of fit on the same participants for both outcomes) and the observed 

and predicted trajectories plotted. The random sample was selected from participants with 

complete AUSCAN data at all time-points and with baseline data for all predictors in the 

model (to make assessment of model fit easier to derive from the plots presented). Model 

assumptions were only tested for the “final” models derived at the end of modelling stage 

3. 

7.2.6 Scaling of the predictor variables 

At the end of the modelling process, the interpretability of the model estimates derived 

was considered by identifying whether there were any continuous predictors in the model 

that could not be (by definition), or were unlikely to be, zero in the dataset (e.g. age, body 

mass index or length of time with a hand condition) and whether the sign for the fixed 

model intercept was negative (a negative sign lacks interpretability for AUSCAN pain and 

function as zero is the minimum value for these measures), and if beneficial, the model 

was re-run after relevant predictors had been centered using the method previously 

described in Chapter 5.   
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7.3 Modelling results 

The modelling results in this chapter are presented for hand pain and function using 

similar headings as defined in the methodology section above, i.e. selection of model 

predictors (Section 7.3.1), linear trajectory assumption for hand function (Section 7.3.2), 

model fit (Section 7.3.3), checking model assumptions (Section 7.3.4) and scaling of 

predictors (Section 7.3.5). Only the results from modelling strategy 1 are presented as, for 

both outcomes, modelling strategy 2 selected the same core set of model predictors.  

7.3.1 Selection of model predictors 

Predictors included at each modelling stage  

Models A, B and C in Table 7-1 (for hand pain) and Table 7-2 (for hand function) show 

parameter estimates and 95% confidence intervals for predictors remaining in the model 

at the end of each of the three modelling stages. At the end of Stage 1, fifteen and 

eighteen predictors remained in the model for hand pain and function, respectively85. For 

both outcomes there was evidence that not all of the predictors in the model at the end of 

Stage 1 were needed, e.g. for both hand pain and function the 95% confidence interval for 

“Age when left school” contains zero for both the model intercept and slope, justifying the 

need for modelling Stage 2.  

At modelling Stage 2, three predictors were excluded for hand pain (age when left school, 

income and emotional representation) and six for hand function (employment status, age 

when left school, income, pain in other body areas, consequences and treatment control). 

Although the estimate of the model intercept changed considerably between the models at 

Stages 1 and 2, only small changes in all other estimates were observed. 

                                                 
85 During modelling Stage 1 it was found that “onset following accident or injury” could not be 
modelled alongside “sudden onset” due to multicollinearity (spearman’s rho between these two 
predictors was 0.74) so to resolve this, “sudden onset” was chosen as the single predictor for 
inclusion in the model as it gave a slightly higher log-likelihood than that for “onset following 
accident or injury” (Hand pain log-likelihood: -3631.158 vs -3631.760; Hand function log-likelihood: 
-3196.537 vs -3197.759) enabling model estimates to be derived 
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At Stage 3, a relatively large number of model slope predictors were removed from the 

model (seven for each of hand pain and function, though only three overlapped for the two 

outcomes: gender, general health, and hand osteoarthritis from clinical assessment). This 

simplified the model greatly. In addition the intercepts for employment status and general 

health were also removed from the hand pain model. Although this simplification degraded 

some of the goodness-of-fit statistics slightly, overall, the simplified models were a good fit 

to the data.    
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Table 7-1: Predictors in the hand pain model at each modelling stage (predictors in Figure 19 not included in this table are those that 
were not statistically significant after Stage 1 had been applied) 

 Model A 
“Predictors after Stage 1” 

N = 432 

Model B 
“Predictors after Stage 2” 

N = 436 

Model C 
“Predictors after Stage 3” 

N = 456 
    
Fixed part    
    
Initial status    
    
Intercept (µα) -0.73 (-2.69, 1.23) 0.32 (-0.99, 1.63) 0.44 (-0.50, 1.37) 
    
Gender    
 Female Ref Ref  
 Male 0.58 (0.30, 0.87) 0.56 (0.28, 0.85) 0.49 (0.25, 0.73) 
Employment status    
 Employed Ref Ref N/A 
 Not working due to ill-health/unemployment 0.47 (0.03, 0.91) 0.46 (0.01, 0.90) N/A 
 Retired -0.23 (-0.49, 0.03) -0.22 (-0.48, 0.04) N/A 
 Housewife -0.26 (-0.65, 0.13) -0.23 (-0.64, 0.19) N/A 
 Other 0.45 (-0.53, 1.42) 0.45 (-0.60, 1.51) N/A 
Age when left school 0.03 (-0.06, 0.11) N/A N/A 
Income    
 Find it a strain to get by from week to week Ref N/A N/A 
 Have to be careful with money 0.44 (-0.09, 0.96) N/A N/A 
 Able to manage without much difficulty 0.52 (-0.01, 1.06) N/A N/A 
 Quite comfortably off 0.60 (0.05, 1.15) N/A N/A 
General health     
 Excellent Ref Ref N/A 
 Very good 0.04 (-0.49, 0.56) 0.10 (-0.42, 0.61) N/A 
 Good 0.05 (-0.49, 0.60) 0.08 (-0.45, 0.61) N/A 
 Fair 0.20 (-0.46, 0.85) 0.22 (-0.41, 0.86) N/A 
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 Poor -0.60 (-1.49, 0.29) -0.64 (-1.51, 0.23) N/A 
Physical component score (SF-12) 0.00 (-0.01, 0.02) 0.00 (-0.01, 0.02) 0.00 (-0.01, 0.01) 
Pain in other body areas    
 No other pain  Ref Ref Ref 
 Regional pain 0.36 (-0.01, 0.73) 0.32 (-0.05, 0.70) 0.34 (0.03, 0.66) 
 Widespread pain 0.76 (0.33, 1.19) 0.75 (0.32, 1.19) 0.76 (0.39, 1.13) 
Number of days in the last 12-months with hand pain    
 Less than 7-days Ref Ref Ref 
 1-4 weeks 0.06 (-0.36, 0.49) 0.00 (-0.43, 0.43) -0.05 (-0.50, 0.41) 
 >1-month but <3-months 0.11 (-0.35, 0.58) 0.11 (-0.35, 0.57) 0.10 (-0.37, 0.57) 
 3-months or more 0.55 (0.17, 0.94) 0.54 (0.16, 0.93) 0.57 (0.17, 0.98) 
Baseline AUSCAN function  0.60 (0.52, 0.68) 0.61 (0.53, 0.69) 0.61 (0.53, 0.68) 
Sudden onset of hand condition    
 Bilateral problem: both hands sudden onset Ref Ref Ref 
 Bilateral problem: one hand sudden onset -0.16 (-0.68, 0.36) -0.14 (-0.66, 0.38) -0.01 (-0.48, 0.46) 
 Bilateral problem: neither hand of sudden onset 0.26 (-0.04, 0.57) 0.25 (-0.06, 0.57) 0.36 (0.09, 0.63) 
 Unilateral problem: of sudden onset -0.22 (-0.83, 0.39) -0.26 (-0.88, 0.35) -0.35 (-0.86, 0.16) 
 Unilateral problem: not of sudden onset 0.22 (-0.22, 0.67) 0.23 (-0.22, 0.68) 0.24 (-0.15, 0.64) 
IPQR - treatment control -0.04 (-0.07, -0.00) -0.03 (-0.07, 0.00) -0.04 (-0.07, -0.01) 
IPQR- emotional representation    0.03 (-0.00, 0.06) N/A N/A 
Average pinch strength  0.01 (-0.03, 0.04) 0.01 (-0.02, 0.04) 0.02 (-0.01, 0.05) 
Meets ACR criteria for hand osteoarthritis (OA)    
 No Ref Ref Ref 
 Yes 0.42 (0.15, 0.69) 0.47 (0.19, 0.74) 0.38 (0.14, 0.61) 
Number of joints with radiographic hand  OA 0.01 (-0.02, 0.03) 0.01 (-0.01, 0.03) -0.00 (-0.02, 0.02) 
    
Rate of change    
    
Time (µβ) 0.55 (0.05, 1.06) 0.42 (0.05, 0.78) 0.52 (0.32, 0.72) 
    
Gender    
 Female Ref Ref N/A 
 Male -0.06 (-0.14, 0.02) -0.06 (-0.13, 0.01) N/A 
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Employment status    
 Employed Ref Ref N/A 
 Not working due to ill-health/unemployment -0.08 (-0.19, 0.03) -0.06 (-0.16, 0.05) N/A 
 Retired 0.00 (-0.06, 0.07) 0.01 (-0.06, 0.07) N/A 
 Housewife 0.02 (-0.08, 0.12) 0.02 (-0.08, 0.13) N/A 
 Other -0.20 (-0.34, -0.05) -0.19 (-0.35, -0.03) N/A 
Age when left school 0.00 (-0.02, 0.02) N/A N/A 
Income    
 Find it a strain to get by from week to week Ref N/A N/A 
 Have to be careful with money -0.10 (-0.20, 0.00) N/A N/A 
 Able to manage without much difficulty -0.14 (-0.25, -0.03) N/A N/A 
 Quite comfortably off -0.14 (-0.25, -0.03) N/A N/A 
General health     
 Excellent Ref Ref N/A 
 Very good 0.08 (-0.08, 0.24) 0.06 (-0.09, 0.22) N/A 
 Good 0.04 (-0.13, 0.20) 0.02 (-0.14, 0.18) N/A 
 Fair 0.06 (-0.13, 0.26) 0.06 (-0.13, 0.25) N/A 
 Poor 0.19 (-0.06, 0.45) 0.21 (-0.03, 0.46) N/A 
Physical component score (SF-12) -0.01 (-0.01, -0.00) -0.01 (-0.01, -0.00) -0.01 (-0.01, -0.00) 
Pain in other body areas    
 No other pain  Ref Ref N/A 
 Regional pain -0.02 (-0.10, 0.07) -0.01 (-0.10, 0.07) N/A 
 Widespread pain -0.01 (-0.11, 0.10) -0.00 (-0.11, 0.10) N/A 
Number of days in the last 12-months with hand pain    
 Less than 7-days Ref Ref Ref 
 1-4 weeks 0.05 (-0.06, 0.17) 0.06 (-0.06, 0.18) 0.07 (-0.06, 0.19) 
 >1-month but <3-months 0.06 (-0.05, 0.18) 0.07 (-0.05, 0.18) 0.05 (-0.07, 0.18) 
 3-months or more -0.02 (-0.12, 0.09) -0.01 (-0.12, 0.09) -0.03 (-0.14, 0.08) 
Baseline AUSCAN function  -0.04 (-0.06, -0.02) -0.04 (-0.06, -0.02) -0.04 (-0.06, -0.02) 
Sudden onset of hand condition    
 Bilateral problem: both hands sudden onset Ref Ref N/A 
 Bilateral problem: one hand sudden onset 0.02 (-0.12, 0.15) 0.01 (-0.13, 0.15) N/A 
 Bilateral problem: neither hand of sudden onset 0.06 (-0.03, 0.14) 0.05 (-0.03, 0.14) N/A 
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 Unilateral problem: of sudden onset -0.06 (-0.18, 0.06) -0.06 (-0.18, 0.06) N/A 
 Unilateral problem: not of sudden onset 0.03 (-0.09, 0.15) 0.02 (-0.10, 0.14) N/A 
IPQR - treatment control -0.00 (-0.01, 0.01) -0.00 (-0.01, 0.01) N/A 
IPQR- emotional representation    -0.01 (-0.01, 0.00) N/A N/A 
Average pinch strength  -0.01 (-0.02, -0.00) -0.01 (-0.02, -0.00) -0.02 (-0.02, -0.01) 
Meets ACR criteria for hand osteoarthritis (OA)    
 No Ref Ref N/A 
 Yes -0.04 (-0.10, 0.02) -0.05 (-0.11, 0.01) N/A 
Number of joints with radiographic hand  OA 0.01 (0.00, 0.01) 0.01 (0.00, 0.01) 0.01 (0.00, 0.01) 
    
Random part    
    
Variance    
 Intercept (ߪఈଶሻ 0.39 (0.22, 0.70) 0.41 (0.24, 0.71) 0.43 (0.25, 0.72) 
 Slope ሺߪఉ

ଶ) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 

    
Covariance     
 Intercept and slope (ߪఈఉ

ଶ ሻ 0.02 (-0.03, 0.06) 0.02 (-0.03, 0.06) 0.01 (-0.03, 0.05) 

    
Residual – variance (	ߪఌ௧

ଶ ሻ    
 Baseline 1.06 (0.83, 1.37) 1.11 (0.87, 1.43) 1.17 (0.91, 1.49) 
 18-months 2.76 (2.27, 3.34) 2.72 (2.25, 3.30) 2.80 (2.33, 3.38) 
 3-years 1.99 (1.65, 2.41) 1.99 (1.65, 2.40) 2.02 (1.68, 2.43) 
 5-years 1.43 (1.15, 1.77) 1.44 (1.16, 1.78) 1.48 (1.22, 1.81) 
 7.5-years 1.39 (1.01, 1.93) 1.41 (1.03, 1.95) 1.38 (1.00, 1.89) 
    
Information criteria model fit    
    
TLI 0.97 0.97 0.96 
CFI 0.98 0.98 0.97 
SRMR 0.01 0.01 0.02 
RMSEA 0.02 0.03 0.04 



199 
 

Unless otherwise stated, figures are parameter estimates and 95% confidence intervals (based on robust standard errors) in brackets. 
Employment categories of “Not working due to ill health” (N = 56) and “Unemployed” (N=3) and comorbidity categories of “Six” (N=7) and “Seven” (N=3) were 
merged during the analysis as the model could not be estimated due to small N.  = The estimate is the same as the upper or lower confidence interval limit 
due to rounding of model estimates.  = a 95% confidence interval around the RMSEA could only be calculated for certain analysis options in Mplus e.g. 
confirmatory factor analysis and was not available for ANALYSIS TYPE = RANDOM in Mplus. It therefore could not be reported in this table. TLI = Tucker-
Lewis index, CFI = Comparative fit index, SRMR = Standardised root mean-square residual, RMSEA = Root mean square error of approximation, p = p-value, 
N/A = not applicable, Ref = reference category.  
 
  

Akaike (AIC) 6545 6598 6879 
Bayesian (BIC) 6822 6834 7015 
Sample-size adjusted (BIC) 6606 6650 6910 
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Table 7-2: Predictors in the hand function model at each modelling stage (predictors in Figure 19 not included in this table are those 
that were not statistically significant after Stage 1 had been applied) 

 Model A 
“Predictors after Stage 1” 

N = 457 

Model B 
“Predictors after Stage 2” 

N = 502 

Model C 
“Predictors after Stage 3” 

N = 502 
Fixed part    
    
Initial status    
    
Intercept (µα) 0.37 (-2.10, 2.83) 2.07 (0.60, 3.53) 2.03 (0.60, 3.46) 
    
Age 0.01 (-0.01, 0.03) 0.01 (-0.00, 0.03) 0.01 (-0.00, 0.03) 
Gender    
 Female Ref Ref Ref 
 Male -0.48 (-0.82, -0.15) -0.40 (-0.73, -0.08) -0.41 (-0.73, -0.10) 
Employment status    
 Employed Ref N/A N/A 
 Not working due to ill-health/unemployment 0.28 (-0.12, 0.68) N/A N/A 
 Retired 0.12 (-0.16, 0.40) N/A N/A 
 Housewife 0.59 (0.24, 0.94) N/A N/A 
 Other -0.13 (-0.99, 0.73) N/A N/A 
Age when left school 0.03 (-0.05, 0.12) N/A N/A 
Income    
 Find it a strain to get by from week to week Ref N/A N/A 
 Have to be careful with money 0.10 (-0.58, 0.78) N/A N/A 
 Able to manage without much difficulty 0.26 (-0.43, 0.94) N/A N/A 
 Quite comfortably off -0.06 (-0.76, 0.64) N/A N/A 
Alcohol consumption    
 Daily or most days Ref Ref Ref 
 Once or twice a week 0.03 (-0.24, 0.29) 0.07 (-0.19, 0.33) 0.04 (-0.21, 0.29) 
 Once or twice a month 0.06 (-0.24, 0.35) 0.06 (-0.23, 0.35) 0.04 (-0.24, 0.32) 
 Once or twice a year -0.00 (-0.35, 0.34) 0.01 (-0.33, 0.34) -0.00 (-0.33, 0.32) 
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 Never 0.75 (0.33, 1.17) 0.75 (0.37, 1.14) 0.71 (0.31, 1.10) 
General health     
 Excellent Ref Ref Ref 
 Very good -0.06 (-0.46, 0.35) -0.05 (-0.45, 0.34) 0.01 (-0.36, 0.38) 
 Good -0.32 (-0.75, 0.12) -0.20 (-0.61, 0.21) -0.12 (-0.50, 0.25) 
 Fair -0.08 (-0.62, 0.46) 0.04 (-0.48, 0.55) 0.14 (-0.34, 0.62) 
 Poor 1.09 (0.25, 1.92) 1.27 (0.48, 2.06) 1.33 (0.61, 2.06) 
Physical component score (SF-12) -0.01 (-0.03, 0.00) -0.02 (-0.03, -0.00) -0.02 (-0.03, -0.00) 
Number of co-morbidities    
 0 Ref Ref Ref 
 1 0.01 (-0.21, 0.23) 0.02 (-0.19, 0.23) 0.02 (-0.20, 0.23) 
 2 0.10 (-0.20, 0.41) 0.09 (-0.22, 0.40) 0.09 (-0.22, 0.40) 
 3 -0.05 (-0.46, 0.37) -0.04 (-0.46, 0.39) -0.05 (-0.47, 0.38) 
 4 -0.68 (-1.25, -0.10) -0.56 (-0.99, -0.13) -0.55 (-0.98, -0.13) 
 5 or 6 -1.20 (-2.08, -0.31) -1.16 (-1.78, -0.54) -1.15 (-1.76, -0.54) 
Pain in other body areas    
 No other pain  Ref N/A N/A 
 Regional pain -0.02 (-0.29, 0.25) N/A N/A 
 Widespread pain 0.02 (-0.34, 0.38) N/A N/A 
Baseline AUSCAN pain 0.43 (0.35, 0.51) 0.43 (0.35, 0.50) 0.43 (0.35, 0.50) 
Length of time with a hand problem 0.02 (0.00, 0.03) 0.01 (0.00, 0.03) 0.01 (0.00, 0.03) 
IPQR - consequences 0.02 (-0.01, 0.04) N/A N/A 
IPQR - treatment control 0.02 (-0.01, 0.05) N/A N/A 
Frustration with hand condition    
 All days Ref Ref Ref 
 Most days -0.12 (-0.58, 0.34) -0.24 (-0.70, 0.23) -0.24 (-0.66, 0.19) 
 Some days -0.79 (-1.23, -0.35) -0.87 (-1.32, -0.42) -0.86 (-1.27, -0.45) 
 Few days -0.97 (-1.41, -0.52) -1.03 (-1.48, -0.58) -1.01 (-1.42, -0.60) 
 No days -1.37 (-1.85, -0.89) -1.43 (-1.91, -0.94) -1.39 (-1.84, -0.95) 
Grip-ability test 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 
Average grip strength -0.01 (-0.02, -0.00) -0.01 (-0.02, -0.01) -0.01 (-0.02, -0.01) 
Meets ACR criteria for hand osteoarthritis (OA)    
 No Ref Ref Ref 
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 Yes 0.36 (0.13, 0.60) 0.34 (0.12, 0.57) 0.35 (0.13, 0.57) 
    
Rate of change    
    
Time (µβ) 0.15 (-0.44, 0.74) 0.09 (-0.24, 0.43) 0.13 (-0.08, 0.35) 
    
Age 0.00 (-0.00, 0.01) 0.00 (0.00, 0.01) 0.00 (0.00, 0.01) 
Gender    
 Female Ref Ref N/A 
 Male 0.01 (-0.07, 0.09) -0.01 (-0.09, 0.06) N/A 
Employment status    
 Employed Ref N/A N/A 
 Not working due to ill-health/unemployment -0.09 (-0.20, 0.02) N/A N/A 
 Retired -0.03 (-0.10, 0.05) N/A N/A 
 Housewife -0.04 (-0.13, 0.05) N/A N/A 
 Other -0.14 (-0.24, -0.03) N/A N/A 
Age when left school 0.01 (-0.01, 0.03) N/A N/A 
Income    
 Find it a strain to get by from week to week Ref N/A N/A 
 Have to be careful with money -0.04 (-0.16, 0.07) N/A N/A 
 Able to manage without much difficulty -0.09 (-0.21, 0.04) N/A N/A 
 Quite comfortably off -0.07 (-0.19, 0.06) N/A N/A 
Alcohol consumption    
 Daily or most days Ref Ref N/A 
 Once or twice a week -0.04 (-0.09, 0.01) -0.03 (-0.09, 0.02) N/A 
 Once or twice a month -0.06 (-0.12, 0.00) -0.02 (-0.08, 0.04) N/A 
 Once or twice a year -0.02 (-0.10, 0.06) -0.01 (-0.09, 0.06) N/A 
 Never -0.07 (-0.15, 0.02) -0.05 (-0.14, 0.03) N/A 
General health     
 Excellent Ref Ref N/A 
 Very good 0.08 (-0.03, 0.19) 0.06 (-0.05, 0.17) N/A 
 Good 0.09 (-0.02, 0.20) 0.07 (-0.04, 0.18) N/A 
 Fair 0.11 (-0.03, 0.26) 0.09 (-0.05, 0.23) N/A 
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 Poor 0.10 (-0.09, 0.28) 0.06 (-0.12, 0.24) N/A 
Physical component score (SF-12) -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) 
Number of co-morbidities    
 0 Ref Ref Ref 
 1 0.04 (-0.01, 0.10) 0.04 (-0.01, 0.10) 0.05 (-0.00, 0.10) 
 2 0.01 (-0.05, 0.07) 0.02 (-0.03, 0.08) 0.02 (-0.03, 0.08) 
 3 0.09 (-0.02, 0.20) 0.09 (-0.01, 0.19) 0.10 (0.01, 0.20) 
 4 -0.09 (-0.22, 0.04) -0.02 (-0.13, 0.10) -0.02 (-0.13, 0.09) 
 5 or 6 0.38 (0.23, 0.54) 0.45 (0.33, 0.57) 0.45 (0.35, 0.56) 
Pain in other body areas    
 No other pain  Ref N/A N/A 
 Regional pain -0.04 (-0.11, 0.03) N/A N/A 
 Widespread pain -0.02 (-0.11, 0.06) N/A N/A 
Baseline AUSCAN pain -0.03 (-0.04, -0.01) -0.02 (-0.04, -0.01) -0.03 (-0.04, -0.01) 
Length of time with a hand problem 0.00 (-0.00, 0.00) 0.00 (-0.00, 0.00) N/A 
IPQR - consequences 0.00 (-0.01, 0.01) N/A N/A 
IPQR - treatment control -0.01 (-0.02, -0.00) N/A N/A 
Frustration with hand condition    
 All days Ref Ref N/A 
 Most days 0.04 (-0.08, 0.16) -0.00 (-0.13, 0.12) N/A 
 Some days 0.07 (-0.04, 0.18) 0.00 (-0.12, 0.12) N/A 
 Few days 0.09 (-0.02, 0.21) 0.02 (-0.11, 0.15) N/A 
 No days 0.11 (-0.01, 0.23) 0.03 (-0.10, 0.16) N/A 
Grip-ability test -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) 
Average grip strength -0.00 (-0.00, 0.00) -0.00 (-0.00, 0.00) N/A 
Meets ACR criteria for hand osteoarthritis (OA)    
 No Ref Ref N/A 
 Yes 0.00 (-0.05, 0.06) 0.00 (-0.05, 0.05) N/A 
    
Random part    
    
Variance    
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Unless otherwise stated, figures are parameter estimates and 95% confidence intervals (based on robust standard errors) in brackets. 
Employment categories of “Not working due to ill health” (N = 56) and “Unemployed” (N=3) and comorbidity categories of “Six” (N=7) and “Seven” (N=3) were 
merged during the analysis as the model could not be estimated due to small N.  = The estimate is the same as the upper or lower confidence interval limit 
due to rounding of model estimates.  = a 95% confidence interval around the RMSEA could only be calculated for certain analysis options in Mplus e.g. 
confirmatory factor analysis and was not available for ANALYSIS TYPE = RANDOM in Mplus. It therefore could not be reported in this table. TLI = Tucker-
Lewis index, CFI = Comparative fit index, SRMR = Standardised root mean-square residual, RMSEA = Root mean square error of approximation, p = p-value, 
N/A = not applicable, Ref = reference category.  
 
 

 Intercept (ߪఈଶሻ 0.50 (0.35, 0.70) 0.57 (0.42, 0.78) 0.58 (0.43, 0.78) 
 Slope ሺߪఉ

ଶ) 0.01 (0.00, 0.03) 0.01 (0.01, 0.03) 0.01 (0.01, 0.03) 

    
Covariance     
 Intercept and slope (ߪఈఉ

ଶ ሻ 0.05 (0.01, 0.09) 0.04 (0.01, 0.08) 0.04 (0.00, 0.08) 

    
Residual – variance (	ߪఌ௧

ଶ ሻ    
 Baseline 0.65 (0.47, 0.90) 0.66 (0.48, 0.91) 0.66 (0.49, 0.90) 
 18-months 2.20 (1.75, 2.75) 2.21 (1.79, 2.73) 2.21 (1.79, 2.73) 
 3-years 1.18 (0.91, 1.53) 1.22 (0.96, 1.54) 1.22 (0.96, 1.54) 
 5-years 0.92 (0.68, 1.24) 0.93 (0.71, 1.23) 0.94 (0.71, 1.23) 
 7.5-years 1.10 (0.77, 1.59) 0.97 (0.68, 1.40) 0.96 (0.67, 1.37) 
    
Information criteria model fit    
    
TLI 1.00 0.96 0.97 
CFI 1.00 0.97 0.98 
SRMR 0.01 0.01 0.01 
RMSEA 0.00 0.04 0.03 
Akaike (AIC) 6453 7079 7055 
Bayesian (BIC) 6800 7332 7241 
Sample-size adjusted (BIC) 6533 7142 7101 
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Comparison of predictors in the hand pain and function models          

Only three factors (gender, the physical component score (PCS) of the SF-12, and hand 

osteoarthritis as measured by the ACR criteria) were significant predictors in both the 

hand pain and function models, either as a predictor of the model intercept and/or model 

slope (see Table 7-3 and Table 7-4 for a simplified version of model C containing only 

those predictors in the “final” model). At least one predictor from each block was included 

in all models, except for the lifestyle block for hand pain and the x-ray block in the hand 

function model – no predictors from these blocks were included in the models, 

respectively. For gender, the direction of the association differed between the outcomes of 

hand pain and function, with men having worse hand pain scores on average at baseline 

than women, but better hand function. The direction and magnitude of the parameter 

estimates associated with meeting the ACR criteria for hand osteoarthritis on the model 

intercept, and increasing PCS scores on the model intercept and slope were similar for 

both outcomes.  

Although baseline hand pain and baseline hand function were not directly included in the 

model as predictors of hand pain and function respectively, the estimate of the correlation 

between the random intercept and slope was non-significant in each model (hand pain 

correlation 0.12 (95% confidence interval: -0.44, 0.61), hand function correlation 0.45 

(95% confidence interval: -0.23, 0.83)). This suggested that participants’ rate of change in 

hand pain or hand function does not depend on the respective baseline starting value for 

each of the measures, however it is noted that the 95% confidence intervals around these 

estimates are wide. 
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Table 7-3: “Final” hand pain prediction model 

 Model C 
“Predictors after Stage 3” 

N = 456 
  
Fixed part  
  
Initial status  
  
Intercept (µα) 0.44 (-0.50, 1.37) 
  
Gender  
 Female  
 Male 0.49 (0.25, 0.73) 
Physical component score (SF-12) 0.00 (-0.01, 0.01) 
Pain in other body areas  
 No other pain  Ref 
 Regional pain 0.34 (0.03, 0.66) 
 Widespread pain 0.76 (0.39, 1.13) 
Number of days in the last 12-months with hand pain  
 Less than 7-days Ref 
 1-4 weeks -0.05 (-0.50, 0.41) 
 >1-month but <3-months 0.10 (-0.37, 0.57) 
 3-months or more 0.57 (0.17, 0.98) 
Baseline AUSCAN function  0.61 (0.53, 0.68) 
Sudden onset of hand condition  
 Bilateral problem: both hands sudden onset Ref 
 Bilateral problem: one hand sudden onset -0.01 (-0.48, 0.46) 
 Bilateral problem: neither hand of sudden onset 0.36 (0.09, 0.63) 
 Unilateral problem: of sudden onset -0.35 (-0.86, 0.16) 
 Unilateral problem: not of sudden onset 0.24 (-0.15, 0.64) 
IPQR - treatment control -0.04 (-0.07, -0.01) 
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Average pinch strength  0.02 (-0.01, 0.05) 
Meets ACR criteria for hand osteoarthritis (OA)  
 No Ref 
 Yes 0.38 (0.14, 0.61) 
Number of joints with radiographic hand  OA -0.00 (-0.02, 0.02) 
  
Rate of change  
  
Time (µβ) 0.52 (0.32, 0.72) 
Physical component score (SF-12) -0.01 (-0.01, -0.00) 
Number of days in the last 12-months with hand painβ  
 Less than 7-days Ref 
 1-4 weeks 0.07 (-0.06, 0.19) 
 >1-month but <3-months 0.05 (-0.07, 0.18) 
 3-months or more -0.03 (-0.14, 0.08) 
Baseline AUSCAN function  -0.04 (-0.06, -0.02) 
Average pinch strength  -0.02 (-0.02, -0.01) 
Number of joints with radiographic hand  OA 0.01 (0.00, 0.01) 
  
Random part  
  
Variance  
 Intercept (ߪఈଶሻ 0.43 (0.25, 0.72) 
 Slope ሺߪఉ

ଶ) 0.02 (0.01, 0.04) 

  
Covariance   
 Intercept and slope (ߪఈఉ

ଶ ሻ 0.01 (-0.03, 0.05) 

  
Residual – variance (	ߪఌ௧

ଶ ሻ  
 Baseline 1.17 (0.91, 1.49) 
 18-months 2.80 (2.33, 3.38) 
 3-years 2.02 (1.68, 2.43) 
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Unless otherwise stated, figures are parameter estimates and 95% confidence intervals (based on robust standard errors) in brackets. 
 = The estimate is the same as the upper or lower confidence interval limit due to rounding of model estimates. β = Coefficients for this variable are not 
significantly different from zero (i.e. the reference category) even though the term is entered into the prediction model. This is because the reference category 
defined was not the category with the smallest regression coefficient when coefficients are ordered by magnitude  = a 95% confidence interval around the 
RMSEA could only be calculated for certain analysis options in Mplus e.g. confirmatory factor analysis and was not available for ANALYSIS TYPE = 
RANDOM in Mplus. It therefore could not be reported in this table. p = p-value, N/A = not applicable, Ref = reference category, TLI = Tucker-Lewis index, CFI 
= Comparative fit index, SRMR = Standardised root mean-square residual, RMSEA = Root mean square error of approximation 

 5-years 1.48 (1.22, 1.81) 
 7.5-years 1.38 (1.00, 1.89) 
  
Information criteria model fit  
  
TLI 0.96 
CFI 0.97 
SRMR 0.02 
RMSEA 0.04 
Akaike (AIC) 6879 
Bayesian (BIC) 7015 
Sample-size adjusted (BIC) 6910 
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Table 7-4: “Final” hand function prediction model and relevant sensitivity analyses 

 Model C 
“Predictors after Stage 3” 

 
N = 502 

Model D 
“Adding a fixed effect 

quadratic term”  
 

N= 502 

Model E 
“Adding a fixed and 

random effect quadratic 
term” 

N= 502 
 

Fixed part    
    
Initial status    
    
Intercept (µα) 2.03 (0.60, 3.46)  1.98 (0.54, 3.41)  1.88 (0.44, 3.33) 
    
Age 0.01 (-0.00, 0.03) 0.01 (-0.00, 0.03)  0.01 (-0.00, 0.03)  
Gender    
 Female Ref Ref Ref 
 Male -0.41 (-0.73, -0.10) -0.42 (-0.73, -0.10) -0.48 (-0.79, -0.16) 
Alcohol consumption    
 Daily or most days Ref Ref Ref 
 Once or twice a week 0.04 (-0.21, 0.29) 0.04 (-0.21, 0.29) 0.01 (-0.24, 0.25) 
 Once or twice a month 0.04 (-0.24, 0.32) 0.04 (-0.25, 0.32) 0.03 (-0.25, 0.31) 
 Once or twice a year -0.00 (-0.33, 0.32) -0.00 (-0.33, 0.32) -0.01 (-0.33, 0.32) 
 Never 0.71 (0.31, 1.10) 0.70 (0.31, 1.10) 0.69 (0.33, 1.06) 
General health     
 Excellent Ref Ref Ref 
 Very good 0.01 (-0.36, 0.38) 0.02 (-0.35, 0.39) 0.07 (-0.31, 0.45) 
 Good -0.12 (-0.50, 0.25) -0.12 (-0.50, 0.26) -0.08 (-0.47, 0.30) 
 Fair 0.14 (-0.34, 0.62) 0.14 (-0.34, 0.62) 0.16 (-0.31, 0.63) 
 Poor 1.33 (0.61, 2.06) 1.34 (0.61, 2.07) 1.41 (0.68, 2.14) 
Physical component score (SF-12) -0.02 (-0.03, -0.00) -0.02 (-0.03, -0.00) -0.01 (-0.03, -0.00) 
Number of co-morbidities    
 0 Ref Ref Ref 
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 1 0.02 (-0.20, 0.23) 0.02 (-0.20, 0.23) 0.03 (-0.18, 0.24) 
 2 0.09 (-0.22, 0.40) 0.09 (-0.22, 0.40) 0.13 (-0.17, 0.44) 
 3 -0.05 (-0.47, 0.38) -0.04 (-0.47, 0.38) -0.02 (-0.43, 0.40) 
 4 -0.55 (-0.98, -0.13) -0.55 (-0.97, -0.12) -0.49 (-0.89, -0.08) 
 5 or 6 -1.15 (-1.76, -0.54) -1.14 (-1.74, -0.54) -1.18 (-1.76, -0.60) 
Baseline AUSCAN pain 0.43 (0.35, 0.50) 0.43 (0.35, 0.50) 0.44 (0.36, 0.52) 
Length of time with a hand problem 0.01 (0.00, 0.03) 0.01 (0.00, 0.03) 0.01 (0.00, 0.02) 
Frustration with hand condition    
 All days Ref Ref Ref 
 Most days -0.24 (-0.66, 0.19) -0.24 (-0.67, 0.18) -0.33 (-0.76, 0.10) 
 Some days -0.86 (-1.27, -0.45) -0.86 (-1.27, -0.45) -1.01 (-1.42, -0.61) 
 Few days -1.01 (-1.42, -0.60) -1.01 (-1.42, -0.60) -1.12 (-1.53, -0.70) 
 No days -1.39 (-1.84, -0.95) -1.39 (-1.84, -0.95) -1.54 (-1.99, -1.10) 
Grip-ability test 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 
Average grip strength -0.01 (-0.02, -0.01) -0.01 (-0.02, -0.01) -0.01 (-0.02, -0.01) 
Meets ACR criteria for hand osteoarthritis (OA)    
 No Ref Ref Ref 
 Yes 0.35 (0.13, 0.57) 0.35 (0.13, 0.57) 0.34 (0.12, 0.55) 
    
Rate of change    
    
Time (µβ1) 0.13 (-0.08, 0.35) 0.21 (-0.00, 0.43) 0.21 (-0.01, 0.42) 
Time squared (µβ2) N/A -0.01 (-0.02, -0.00) -0.01 (-0.02, -0.00) 
Age 0.00 (0.00, 0.01) 0.00 (0.00, 0.01) 0.00 (0.00, 0.01) 
Physical component score (SF-12) -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) 
Number of co-morbidities    
 0 Ref Ref Ref 
 1 0.05 (-0.00, 0.10) 0.05 (-0.00, 0.10) 0.05 (-0.00, 0.10) 
 2 0.02 (-0.03, 0.08) 0.02 (-0.03, 0.08) 0.03 (-0.02, 0.08) 
 3 0.10 (0.01, 0.20) 0.10 (0.01, 0.20) 0.11 (0.01, 0.20) 
 4 -0.02 (-0.13, 0.09) -0.03 (-0.13, 0.08) -0.02 (-0.12, 0.08) 
 5 or 6 0.45 (0.35, 0.56) 0.45 (0.33, 0.56) 0.46 (0.36, 0.56) 
Baseline AUSCAN pain -0.03 (-0.04, -0.01) -0.03 (-0.04, -0.01) -0.02 (-0.04, -0.01) 
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Unless otherwise stated, figures are parameter estimates and 95% confidence intervals (based on robust standard errors) in brackets. 

Grip-ability test -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) -0.00 (-0.01, -0.00) 
    
Random part    
    
Variance    
 Intercept (ߪఈଶሻ 0.58 (0.43, 0.78) 0.58 (0.43, 0.78) 0.61 (0.32, 1.17) 
 Slope ሺߪఉଵ

ଶ ) 0.01 (0.01, 0.03) 0.01 (0.01, 0.03) 0.17 (0.08, 0.38) 

 Quadratic ሺߪఉଶ
ଶ ) N/A N/A 0.00 (0.00, 0.01) 

    
Covariance     
 Intercept and slope (ߪఈఉଵ

ଶ ሻ 0.04 (0.00, 0.08) 0.04 (0.00, 0.08) 0.05 (-0.16, 0.25) 

 Intercept and quadratic ߪఈఉଶ
ଶ ሻ N/A N/A -0.01 (-0.03, 0.02) 

 Slope and quadratic ߪఉଵఉଶ
ଶ ሻ N/A N/A -0.02 (-0.03, -0.00) 

    
Residual – variance (	ߪఌ௧

ଶ ሻ    
 Baseline 0.66 (0.49, 0.90) 0.66 (0.48, 0.90) 0.53 (0.25, 1.10) 
 18-months 2.21 (1.79, 2.73) 2.21 (1.79, 2.74) 2.18 (1.75, 2.70) 
 3-years 1.22 (0.96, 1.54) 1.20 (0.96, 1.51) 0.91 (0.68, 1.22) 
 5-years 0.94 (0.71, 1.23) 0.94 (0.71, 1.23) 0.76 (0.56, 1.04) 
 7.5-years 0.96 (0.67, 1.37) 0.95 (0.66, 1.36) 1.21 (0.70, 2.09) 
    
Information criteria model fit    
    
TLI 0.97 0.97 0.99 
CFI 0.98 0.98 0.99 
SRMR 0.01 0.01 0.02 
RMSEA 0.03 0.03 0.01 
Akaike (AIC) 7055 7051 7018 
Bayesian (BIC) 7241 7241 7221 
Sample-size adjusted (BIC) 7101 7098 7068 
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Comorbidity categories of “Six” (N=7) and “Seven” (N=3) were merged during the analysis as the model could not be estimated due to small N.  = The 
estimate is the same as the upper or lower confidence interval limit due to rounding of model estimates,  = a 95% confidence interval around the RMSEA 
could only be calculated for certain analysis options in Mplus e.g. confirmatory factor analysis and was not available for ANALYSIS TYPE = RANDOM in 
Mplus. It therefore could not be reported in this table. p = p-value, N/A = not applicable, Ref = reference category, TLI = Tucker-Lewis index, CFI = 
Comparative fit index, SRMR = Standardised root mean-square residual, RMSEA = Root mean square error of approximation 
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7.3.2 Linear trajectory assumption for hand function 

Incorporating a fixed quadratic term for time in the hand function model made minimal 

difference to the magnitude of the parameter estimates for the predictors of interest (see 

model D in Table 7-4). Differences in the parameter estimates from the linear model were 

slightly greater when both a fixed and random effect for the quadratic term were added to 

the model, however differences were still small (model E in Table 7-4). This limits the 

probability that for hand function a different set of predictors would have been selected 

from those in the linear model and that predicted values would vary greatly from those 

obtained from the linear model presented.  

7.3.3 Model fit 

For both hand pain and function, the linear model gave goodness-of-fit statistics that were 

above the thresholds defined in Chapter 5 for the model to be considered a good fit to the 

data, i.e. the Tucker-Lewis index (TLI) was >0.95, the Comparative fit index (CFI) >0.95, 

the standardised root mean-square residual (SRMR) <0.05 and the root mean square 

error of approximation (RMSEA) < 0.06. For the hand function model, all three information 

criterion, i.e. Akaike, Bayesian and Sample-size adjusted Bayesian, were slightly lower for 

the quadratic models than for the linear model (Table 7-4). This indicated that the 

quadratic models were a better fit to the data, but this difference was not large, so the 

extra complexity of the quadratic term did not greatly improve model fit over and above 

what could be achieved from the linear model alone.   

7.3.4 Checking model assumptions 

Observed versus predicted trajectories 

Figure 20 and Figure 21 show that when participants’ observed values for hand pain and 

function are roughly linear over time, the model fits the data well, with intercept and slope 

predictions reflecting the true trajectory over time (e.g. participants 30751, 33066, 34381 

for hand pain and participants 32735, 33794, 35991 for hand function). However, for those 
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with non-linear changes over time, where fluctuations around the fitted (straight) line are 

more than just measurement error alone, as expected, the constraint of the linear model is 

too restrictive, providing poor model fit for some participants (e.g. participants 31594, 

32735, and 30354 for hand pain and 32245, 34627, and 35758 for hand function) (plots 

for all participants examined, data not shown).  

Although observed, this assessment of model fit is considered given the results from the 

hand function model showing that the magnitude of the parameter estimates did not differ 

greatly between the linear and quadratic model. This suggests that although a linear 

model may not fit the data well for some participants, the overall impact of such lack of fit 

may be minimal in the CAS-HA data when the data are used to explore the strength of the 

relationship between predictor variables and the outcome of interest.  
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Figure 20: Observed and predicted values for AUSCAN pain for a random sample of 50 participants with complete data at all time-
points 
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Figure 21: Observed and predicted values for AUSCAN function for a random sample of 50 participants with complete data at all 
time-points
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Relationship of model predictors to the growth parameters (i.e. the estimate of the 

intercept and slope for each participant) 

A linear relationship exists between estimates of the model intercept and slope for all 

continuous predictors in the hand pain and function models, however, the strength of the 

linear relationship varied depending on the predictor (Figure 22 and Figure 23). Indirectly, 

these plots also highlight potential outliers in the data, i.e. those whose predicted 

intercepts are not in keeping with their baseline values for one particular variable of 

interest: e.g. one participant has an intercept of 3 in the hand pain model, but a raw 

baseline AUSCAN function score of 8 (indicated by a red circle on Figure 22), another 

participants has an intercept of 12 in the hand function model, yet a raw baseline GAT 

score of 280 (indicated by a green circle on Figure 23). After checking that the potential 

outliers had not occurred due to data entry errors, it was considered whether to re-run the 

analysis removing such participants from the dataset. This approach however was not 

taken as the objective of the analysis was to identify factors that were predictive of the 

outcome given questionnaire and clinical assessment responses that were likely to arise 

in practice when completed by participants (i.e. a pragmatic analysis). Also, the number of 

data points that could be clearly identified as outliers was small, lessening their impact on 

the analysis as presented.  
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Figure 22: Plots of estimated model growth parameters by continuous model predictors for AUSCAN pain 
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Figure 23: Plots of estimated model growth parameters by continuous model predictors for AUSCAN function 
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Residual plots 

For both hand pain and function, the overall residual and the estimate of the random 

intercept and slope were normally distributed and their magnitudes did not depend on the 

participants’ survey identification number, i.e. the order that participants were recruited to 

the study (Figure 24 and Figure 25). The random intercept and slope were not highly 

dependent on the individual values of any model predictor; however, the overall residual 

was more varied at the 18-month follow-up time point so was estimated separately for 

each time point in the model (Figure 26 and Figure 27).  

The correlations between residuals at each time point were small (typically around -0.2) 

however the correlation between the last two time-points for pain and function was larger 

(-0.41 for hand pain and -0.49 for hand function). Correlations between the residuals and 

each growth parameter in the model (ߙi and ߚi) were relatively small for both hand pain 

and function with all correlations less than 0.34. Overall this means that model 

assumptions related to the independence of the residuals in the model were met.
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Figure 24: Residual plots for the hand pain model 
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Figure 25: Residual plots for the hand function model 
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Figure 27: Plots of the random intercept and slope terms against each predictor variable in the hand function model and for the 
overall residual by time 
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7.3.5 Scaling of the predictor variables in the model 

The estimate of the model intercept was positive in both the hand pain and function 

model. Only the hand function model contained predictors that (theoretically) could not be 

zero for CAS-HA participants, i.e. age and length of time with a hand condition (Table 

7-4). By centering these two predictors, and re-running the hand function model, a new 

estimate of the model intercept was derived of 2.86 (95% confidence interval (1.84, 3.87)) 

and is interpreted as the mean hand function score for a participant aged 64 years, who 

had a hand problem for 9 years and who has all remaining model predictors at their lowest 

possible level86. As the majority of predictors in the model did not need centering, and to 

ease comparison with an un-centered hand pain model, for simplicity, the un-centred 

model has been reported in this thesis.      

7.4 Discussion 

7.4.1 Summary of the key findings  

The prediction models in this chapter have been used to show that a wide range of 

baseline factors, when considered in combination, are significantly associated with the 

model random intercept (baseline status) for hand pain, with factors including: gender, 

physical function, body pain, number of days with hand pain in the last 12-months, hand 

function, gradual symptom onset, treatment control, pinch strength and evidence of 

clinical and radiographic hand OA. Only three of these baseline predictors were also 

shown to be associated with baseline status in the hand function model: gender, the 

physical component score (PCS) of the SF-12, and clinical evidence of hand OA. 

However this was estimated after adjustment for nine other variables that were also 

significantly associated with the random intercept in the hand function model, i.e. age, 

alcohol consumption, general health, number of co-morbidities, hand pain, length of time 

                                                 
86 As expected, all other parameter estimates in the model remained unchanged, except for the 
model intercept 
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with a hand condition, frustration with the hand condition and two objective measures of 

hand function (the grip-ability test and grip strength). 

A smaller number of predictors were identified that predicted the model slope (i.e. the rate 

of change of hand pain or function over time) and were predictors only when viewed in 

combination with other predictors in the model. These included physical function, number 

of days with hand pain in the last 12-months, hand function, pinch strength, and the 

number of joints with radiographic hand OA for hand pain. Age, physical function, number 

of co-morbidities, hand pain and the grip-ability test were important predictors of the rate 

of change of hand function.  Evidence has been presented that the models for hand pain 

and function fit the data well.  

7.4.2 Comparison with the literature 

As highlighted in Chapter 6, few longitudinal studies exist in community dwelling older 

adults and no studies have been identified that have used similar analysis techniques to 

those in this chapter. A direct comparison to the published literature is therefore limited, 

not only through lack of publication, but also by differences in the selection criteria used to 

recruit participants to studies, the potential pool of predictors from which predictors are 

drawn and those that are included in the models, and the measurement tools used to 

collect the primary outcome of interest. However, despite all these limitations, data 

collected in cross-sectional studies still provide some support for the factors identified as 

predictors of the model intercept in this chapter, e.g. age and gender have each been 

shown to be associated with levels of functional difficulty for patients with hand OA when 

recruited from rheumatology clinics at a single time point (Jones et al. 2001) and there is 

mixed support for an association between hand pain and functional difficulty and severity 
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of radiographic OA although this was highly dependent on the definition used to define 

radiographic OA87 (Haugen et al. 2013, Dahaghin et al. 2005a). 

As referred to in Chapter 6, two particular studies have been identified that include a 

longitudinal element to their data collection procedures over a longer-term follow-up 

period: the Genetics Arthrosis and Progression study (GARP) (Bijsterbosch et al. 2011) 

and the Oslo hand OA cohort (Haugen et al. 2013) with longitudinal follow-ups of 6- and 7- 

years respectively. Although recruiting participants from those with a diagnosis of 

symptomatic hand OA, the GARP study (Bijsterbosch et al. 2011) showed similar findings 

to those presented in this chapter; that is that a poor outcome for hand pain at 6-years 

was associated with greater baseline functional difficulty and that a poor outcome for hand 

function at 6-years was associated with greater hand pain at baseline. Both studies also 

showed mixed findings on the role of radiographic OA in predicting change in hand pain 

and function over time88. In addition, a Dutch study found age, gender and having 

complaints for longer than 3-months at baseline to be predictive of poor outcome for a 

combined score across pain and function (Spies-Dorgelo et al. 2007), which, with the 

exception of gender is consistent with the findings in this study, despite the study follow-

up period being shorter than CAS-HA, 12-months versus 7.5 years, and adults being 

recruited only if they had consulted with a hand problem.   

Taken together, these studies, although small in number, with varying study designs and 

outcome measure collection, still offer some support that the factors tested in this thesis 

                                                 
87 E.g. whether the definition was based on a simple count of the number of joints with radiographic 
OA or more complex analyses of radiographic subgroups e.g. erosive versus non-erosive OA    
88 The studies explored whether radiographic OA at baseline was predictive of poor outcome for 
hand pain and function. The GARP study showed that structural abnormalities and specific subsets 
of hand OA (e.g. erosive vs non-erosive OA) were not predictive of poor outcome for either hand 
pain or hand function (Bijsterbosch et al. 2011). However, the Oslo hand OA cohort showed that 
increasing radiographic sum scores at baseline, as measured by summing the Kellgren and 
Lawrence scores for each joint, was associated with increasing hand functional difficulty over a 7-
year time period (Haugen et al. 2013). This latter definition of radiographic OA is consistent with 
that used in this thesis   
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are plausible candidates as predictors of change in hand pain and function over time and 

that the results in this thesis are broadly in line with the literature as currently published.  

7.4.3 Strengths and limitations 

The number of predictors modelled 

A major limitation of the analysis in this chapter is the large number of predictors that have 

been modelled, with the potential for model over-fitting, unstable results to be produced, 

and for some predictors to be significant by chance alone due to multiple testing. Although 

this is a limitation of the analysis, it was somewhat unavoidable as it was not possible to 

define a smaller set of potential predictors given the lack of evidence available in the 

literature to define a smaller set. These predictors, although large in number, were 

included in the model after consultation with clinical experts who judged it was an 

important clinical question to model predictors split into blocks depending on how they 

were measured in the data.      

Although multiple testing was an issue for this analysis (as it was the significance level 

that was used to decide on the predictors to include in the model), this was somewhat 

guarded against as the threshold for including items in the forward selection process was 

reduced to 0.05, rather than 0.1 that is a threshold commonly used to avoid removing 

predictors from the model prematurely. It was also minimised by defining the decision 

rules for inclusion/exclusion of predictors from the model a priori, so decisions were not 

influenced by successively looking at the data, and is of somewhat less concern as the 

focus of the analysis was on exploring how well factors predict the outcome of interest in 

combination rather than on the precise statistical significance of the individual predictors 

per se. It is acknowledged however, that some authors recommend that separate 

exploratory and confirmatory analyses should be conducted, either in separate data 

samples or by splitting a single dataset into two parts, to test whether predictors in the 

model remain significant when applied to a separate dataset not used in the development 
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of the model (Cheng et al. 2010). Although using an external dataset was not possible due 

to lack of available data, it would be possible to use the split-half method (Cheng et al. 

2010), or other similar methodologies such as cross-validation or bootstrapping 

(Steyerberg et al 2001), to explore the reliability of the predictors included in the model 

and assess the overall internal validity of the model by estimating any shrinkage in the R-

square value that has occurred when using a single dataset to develop the model. This 

remains an option for further analysis. 

Method used to select the predictors of interest 

The modelling strategies used in this chapter were chosen as those that were practical to 

address the research question of interest and that could be applied to a large number of 

potential predictors. Two modelling strategies were also used, rather than one, to limit the 

possibility that the selection of predictors was dependent on the strategy used. It is 

acknowledged, however, that other modelling strategies could have been used to select 

the predictors of interest (e.g. those that did not consider the block structure imposed on 

the predictors of interest, see Appendix 23 for further details) so a different set of 

predictors could have been included in the models if a different model strategy had been 

used.  

It is also acknowledged that other techniques could have been used to select the 

predictors of interest, especially as forward and backwards selection techniques are 

reported to have limitations, e.g. that they are more likely to include predictors in the 

model with relatively large, rather than relatively small, regression coefficients (Steyerberg 

et al. 2000), they overestimate the magnitude of the parameter estimates and 

underestimate their associated standard errors, and, as previously mentioned, have 

problems due to multiple testing (Flom et al. 2007). Other possible techniques include 

Least Absolute Shrinkage and Selection Operator (LASSO) regression, which aims to 

combine variable selection and shrinkage of the regression parameters in the same model 
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so that it more accurately reflects data from an external data set (Tibshirani 1996). This 

method could be explored further to see if estimates for the predictors of interest were 

similar using this new method, but this is a focus for further work as it is less well used in 

the literature (Walter et al. 2009) and it would need to be explored how to use this method 

for a longitudinal random effects model with a non-normal outcome.   

In the modelling strategy as presented, the questionnaire items have been split into four 

blocks (demographic, lifestyle, health, characteristics of the hand condition and 

psychological factors) and it is possible that if these blocks were analysed in a different 

order then a different set of predictors may have emerged from the data. The blocks were 

generally ordered from generic to more specific questions on health and their hand 

condition, but this is not the only order that could be considered. However, as the analysis 

presented in this chapter required over a 1000 models to be fitted to the data by hand, 

exploring the impact of changing the order that the blocks were analysed was not feasible.  

In this chapter the analysis has focussed on exploring which factors predict the intercept 

and slope and in the model, however the model could be extended to include further 

interactions between the predictors of interest, i.e. additional interactions between the 

model predictors not just the interaction of the predictor with time. In keeping with the 

philosophy of the model this would imply that all interactions (i.e. 2-way, 3-way, and higher 

order interactions) between all predictors should be included and tested to see if they 

improve model fit (without clinical justification for their presence), however, practically this 

could be very complex and add many more terms to the model that may not be reliably 

estimated given the sample size that is available for analysis. Further interactions 

between predictors were therefore not explored, however there is potential that such 

interactions could improve model fit. Additionally, when the sensitivity analysis for hand 

function was conducted for the quadratic model, it was not explored whether any of the 

predictors in the model were significant predictors of the quadratic term in the model 

(along with the intercept and slope) as, similarly to adding in interactions between 
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predictors, this could make the model more complex to fit, but it is acknowledged that this 

also has the potential to improve model fit.    

Interpretation of model predictors 

A key objective of the models in this chapter was to explore which combinations of factors 

best predict each outcome trajectory over time, rather than to explain why the factors were 

predictive per se. Interest is therefore in how well the model predicts the data rather than 

on the interpretation of the coefficients for individual factors in the model. All model 

coefficients are therefore presented “after adjustment” for all other factors so are highly 

dependent on the other predictors that are included in the model (see Appendix 24 for an 

illustration related to gender as a predictor of the model intercept and the SF-12 physical 

function scale as predictor of the model slope). This is a particular limitation of comparing 

the predictors that are common to both the hand pain and function models as the full list of 

model predictors differs between the models compared.  

7.4.4 Model replication and application 

As the work in this chapter has been developed on an exploratory basis, the next step for 

the analysis would be to explore if the selection of model predictors replicated in a 

separate dataset of older adults with hand pain and problems and if other predictors were 

needed to improve model fit (external validation and updating). In addition, it could also be 

tested in an independent data set to assess how close the observed values of hand pain 

and function were to those predicted by the models in this chapter. Alternatively, 

bootstrapping could be used to sample (with replacement) a large number of datasets to 

explore the number of times each predictor was significant across the bootstrapped 

datasets of interest (internal validation). This latter analysis was considered for this thesis 

however was not developed further, as it would be computationally difficult to do without 

an automated process for model selection in each of the bootstrapped datasets.   
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7.4.5 Clinical Applicability  

A key challenge of the models presented in this chapter is to consider how the results can 

be translated into a prediction tool that can be used in clinical practice to identify those 

patients whose condition is likely to worsen over time and hence those who would benefit 

from early intervention and onward referral. Although it is a strength that the outcomes in 

this chapter have not been simplified into categorical variables representing “changed 

over time”/“not changed over time”, to avoid loss of information in the outcome predicted, 

this has a trade-off as such models are more challenging to apply in a clinical setting.  

One possibility may be to generate a predicted value based on patients’ responses to the 

questions that predict the model slope. Inspection of the distribution of the predicted 

values could therefore be used to produce a threshold whereby predicted values less than 

this threshold represent those benefitting from further onward treatment. This is limited 

however as it does not take into account the baseline value for the outcome of interest 

which is likely to be another important determinant when considering which patients are 

likely to benefit from onward referral.  

Models in this Chapter (Chapter 7) are a first step to exploring and understanding which 

factors may be important to predict change over time in the outcomes. The role of the 

baseline value of the outcome is explored further in the analysis presented in chapter 8, 

which aims to provide an alternative approach to identifying important predictors of 

change over time. This chapter explores if distinct subgroups of participants can be 

identified that have similar within-group trajectory shapes over time.          
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8 Trajectory subgroups for hand pain and function in CAS-HA 

8.1 Introduction 

The previous chapter explored whether key baseline predictors of the trajectory of hand 

pain and function could be identified when variation around a single mean trajectory curve 

was modelled. The tenability of this assumption is explored in this chapter by testing 

whether a small number of subgroups exist in the data that have differing trajectory 

shapes of hand pain and function over time for each outcome modelled separately in the 

data (Objective 1). If such subgroups exist, their validity is then explored by examining 

whether the baseline characteristics of participants differ between the groups identified 

(Objective 2). It is also tested whether any combinations of baseline characteristics can be 

identified that predict trajectory group membership well as measured by goodness-of-fit 

and predictive validity of the model derived (Objective 3). 

The chapter is structured by describing the methods used to address Objectives 1-3 in 

Section 8.2. The results are then presented in Section 8.3 and take into account any 

revisions to the methods that were needed in light of the results that were found at earlier 

stages in the modelling process. The chapter then concludes with a discussion of the 

results and the strengths and limitations of the analysis as presented (Section 8.4). 

8.2 Methods 

8.2.1 Identifying the optimum number of trajectory groups and polynomial form 

Modelling strategy 

LCGM (as described in Chapter 5) was used to identify the optimum number of subgroups 

and polynomial form to model in the CAS-HA data89, with a search for the optimum model 

needed, as prior to this current analysis, no published studies in older adults with hand 

pain/problems were identified to suggest what the optimum model might be for this 

                                                 
89 GMM was only used in a later stage of the modelling process (see Section 8.2.2 for details)   
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population of interest (published studies on trajectories of pain or function identified have 

focused on knee pain, back pain or other musculoskeletal conditions rather than people 

with hand problems).   

The search for the optimum model was conducted by initially fitting a one-group linear 

model to the data90 and then subsequently increasing the number of groups (by one) until 

model fit no longer improved, with this approach to model fitting being recommended by 

Curran et al. 2003. Model fit was assessed using the full range of fit indices described in 

Chapter 5 along with a judgement as to whether the model was clinically useful, which, in 

the context of this chapter, was defined as a model where at least one or more groups 

had a rate of change over time that differed from all other groups in the model. This 

definition was used so that groups from the optimum model could be used as an outcome 

to describe the characteristics of participants with varying rates of change over time and 

aligns with the philosophy that the selection of the optimum model should be based both 

on clinical usefulness and statistical goodness-of-fit (Jung et al. 2008, Curran et al. 

2003)91. Clinically useful models were only considered optimal if they also showed 

statistical fit indices that were not greatly inferior to the other alternative models 

considered. This was done to avoid labelling models as optimum if they were over-fitted 

and would hence be unlikely to be reproduced in other external data samples.  

When the optimal Iinear models for hand pain and function had been identified it was 

explored whether the addition of quadratic and cubic terms modified trajectory shapes and 

improved model fit to the data (Curran et al. 2003).  For simplicity, if a quadratic term was 

added to the model, it was added to all groups in the model, irrespective of whether the 

quadratic term was non-significant in some of the trajectory groups. Also, when a cubic 

term was fitted to the model, the cubic term was added to a model that already contained 
                                                 
90 A linear model was chosen (initially) for simplicity, to encourage model convergence by reducing 
the number of parameters estimated, and also because the mean trajectory of both outcomes in 
the CAS-HA sample was roughly linear 
91 If the optimum model included within-group mean trajectories that were stable over time and 
differentiated only by their intercept, predicting group membership as an outcome would offer little 
additional insight in to the data than was gained from the growth/GEE models shown in Chapter 6 
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a linear and quadratic component within it (irrespective as to whether these terms were 

significant in the model or not). Therefore, in the results section, “the quadratic model” 

refers to a model with both a linear and quadratic term in it for all trajectory groups, and 

“the cubic model” refers to a model with a linear, quadratic and cubic term in it for all 

trajectory groups.   

Sensitivity analysis 

The strategy described above was applied to all participants irrespective of the amount of 

AUSCAN data they had present and was considered the primary analysis as the amount 

of information to estimate each model parameter was maximised. However, before a 

model could be concluded as optimal at any stage of analysis, a sensitivity analysis was 

carried out using only those participants that had AUSCAN data at all time-points, to test if 

a model derived from participants with complete data gave similar trajectory shapes, and if 

participants with complete data were allocated to the same trajectory groups. In addition, it 

was checked if the whole decision making process (i.e. the search for the optimum 

number of groups and polynomial form) would have been the same had only participants 

with complete-case data been analysed.  

8.2.2 Growth mixture modelling  

GMM was used to test how clearly group membership was defined within the optimal 

LCGM derived in Section 8.2.1. This was explored by testing whether model fit improved if 

the optimal LCGM was re-defined as a GMM with the same number of groups and 

polynomial form as the optimal LCGM. If model fit was shown to improve using the GMM, 

the GMM was then considered as the optimal model for the remaining analysis in this 

chapter.  

8.2.3 Describing and predicting trajectory subgroup membership 

After the optimum number of latent groups and polynomial form were identified using the 

strategy described in Sections 8.2.1 to 8.2.2, descriptive statistics were used to describe 
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the baseline characteristics of participants in each subgroup, i.e. using count and 

percentage data (for categorical outcomes), means and standard deviations (for 

continuous, normally distributed data) and median and interquartile range (for continuous, 

skewed data). The baseline characteristics used for this analysis were those listed in 

Table 3-1 of Chapter 3 and the analysis was conducted separately for hand pain and 

function.  

Multinomial logistic regression, as described in Appendix 25, was then used to explore 

whether there were any specific combinations of baseline characteristics that predicted 

trajectory group membership well. This analysis technique was used as the outcome of 

interest (trajectory group membership) was measured on a nominal scale, however if only 

two trajectory groups were identified from the previous analysis, logistic regression would 

be used as a simpler alternative. The potential predictors of interest were selected using 

forward-stepwise selection modelling techniques only after taking into account the number 

of events observed per regression coefficient estimated (see Section 8.3.9 for further 

details). Likelihood ratio tests were used to compare the log likelihoods of the models with 

and without the predictor in them to identify variables that were statistically significant 

predictors of the outcome of interest (Long et al. 2006) (cut-offs of p <0.05 were used for 

entry of the predictor into the model and p >0.10 for removal)92.   

 

                                                 
92 It is possible to simultaneously model predictors of trajectory group membership within an LCGM 
using a one-step or three-step maximum likelihood approach (Vermunt 2010, Asparouhov 2014a). 
The one-step approach was not used in this thesis as trajectory group membership can change 
depending on which specific predictors are included in the model, hence making the definition of a 
single optimum LCGM difficult. The three-step approach was preferred to the one-step approach, 
as uncertainty in class membership allocation can be included in the multinomial model and 
estimated without changes to trajectory group membership, but it was not possible to apply this 
method to this analysis problem as a model would not run whereby a key predictor of interest i.e. 
the baseline in the outcome of interest, was also included as a key variable to define the trajectory 
groups. It therefore remains a limitation of the multinomial logistic regression presented that perfect 
class allocation is assumed.    
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8.2.4 Assessing model goodness-of-fit and predictive validity for 

multinomial/logistic regression 

Goodness of fit 

Model goodness of fit93 was assessed using both Nagelkerke’s pseudo R-squared value 

(range 0 to 1 (Hu et al. 2006)) and the Brier score (range 0 to 2 for a multinomial logistic 

regression (Biesheuvel et al. 2008)) (see Appendix 26 for details). The Nagelkerke’s94 

pseudo R-square was chosen from a range of potential pseudo R-square statistics 

available in the literature (e.g. Cox and Snell, McFadden’s, Effron’s pseudo R-square 

(Institute for Digital Research and Education 2011)) as this measure is commonly used 

(Hu et al. 2006) and, as it is measured on a scale from 0 to 1, is intuitively appealing as an 

approximation to an R-square statistic derived from linear regression95 (Institute for Digital 

Research and Education 2011). A higher value of the Nagelkerke’s pseudo R-square, and 

a lower value on the Brier score, indicated better model fit.     

Along with goodness-of-fit, the following concepts were also considered to assess the 

predictive validity of the model: model discrimination (i.e. can the model discriminate 

between participants belonging to, or not belonging to, each trajectory group (Steyerberg 

et al. 2010)), model calibration (i.e. is there agreement between observed outcomes and 

the predictions made from a model (Steyerberg et al. 2010)), and model accuracy (i.e. is 

there agreement between trajectory group membership derived from the LCGM and that 

based on the predicted probabilities from the multinomial/logistic model (i.e. the 

                                                 
93 Goodness of fit is defined as the distance between the predicted outcome and the actual 
outcome of interest (Steyerberg et al. 2010) 
94 This is the same as the Cragg and Uhler pseudo statistic that is calculated in STATA version 
13.0 (Institute for Digital Research and Education 2011) 
95 The percentage of variance explained by the model (R-square) cannot be directly calculated for 
a multinomial logistic regression model as estimates are derived using maximum likelihood (an 
iterative technique) rather than ordinary least squares as used for linear regression (Institute for 
Digital Research and Education 2011). Several pseudo R-square statistics have therefore been 
proposed to approximate to a true R-square value, but they themselves are approximations, and 
not exact measures of the percentage of variance explained by the model (University of Strathclyde 
Humanities and Social Sciences)      
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“predicted” group membership). The methods used to test each concept are explained 

further below. 

Model discrimination  

Model discrimination was assessed by generating box-plots of the predicted probabilities 

obtained from the multinomial/logistic model stratified by observed trajectory group 

membership (i.e. the trajectory group that the participant was assigned to from the 

LCGM). If the model discriminated well between trajectory groups, the predicted 

probabilities would be higher for those in the trajectory group that directly related to the 

predicted probabilities that were plotted. In addition, a set of C-statistics were also 

calculated to explore how well each trajectory group could discriminate from a reference 

trajectory group that was defined after the number and form of the trajectory groups was 

determined96. The C-statistic used in binary logistic regression (defined as the area under 

the ROC curve97) was extended to the multinomial model using the ‘conditional risk 

method’, as recommended by Van Calster et al. (2012a) and was used to overcome the 

difficulty that predicted probabilities do not sum to one if only two categories are 

considered from the multinomial logistic model when calculating the C-statistic. An 

example of how the ‘conditional risk method’ was applied is shown in Appendix 27.  

Calibration 

Model calibration was assessed separately for each predicted probability generated from 

the multinomial/logistic model98 and was calculated by grouping the predicted values into 

                                                 
96 It was considered whether to test (using C-statistics) how well the model discriminated each 
trajectory group from all others, but this approach was not used as it would blur information about 
which particular trajectory groups were well discriminated in the model and which were not  
97 The ROC curve is generated using the methodology described in Chapter 4 and is calculated by 
comparing the true outcome (measured as 0 and 1) to multiple cut-offs on the predicted probability 
scale. The area under the ROC curve is interpreted as the probability that the model gives a higher 
probability if the participant has the event than a non-event (Van Calster et al. 2012a) 
98 For model calibration, the predicted probabilities were calculated directly from the multinomial 
model rather than those generated from the conditional risk method to explore model discrimination  
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deciles99 and counting (for each decile) the number of people in the trajectory group with 

the same label as given for the predicted probability, e.g. if the predicted probability of 

being in trajectory group one was categorised, it would be the number of people in 

trajectory group one from the LCGM that would be counted. This data was plotted on a 

graph and the data points inspected to see how closely they lay to a straight 45o line from 

the origin (a 45o line would indicate a perfectly calibrated model)100. To quantify the 

calibration of the model, a linear regression model was also fitted to the data points to see 

how far the intercept and slope estimates were from the perfectly calibrated values of 0 for 

the intercept and 1 for the slope.  

Accuracy    

Model accuracy was assessed by calculating the percentage of agreement between 

trajectory group membership derived from the LCGM and that based on the predicted 

probabilities from the model101. Although the accuracy of the model was reported, it was 

not considered in great detail, as model accuracy has the conflict that it can be improved 

even when the usefulness of the model as a prediction tool is degraded (see Appendix 28 

for details on the accuracy paradox).     

8.3 Results 

8.3.1 Identifying the optimum number of trajectory groups and polynomial form 

For both hand pain and function the optimum number of latent groups was not consistent 

across (a) the different goodness of fit indices considered, (b) the polynomial form 
                                                 
99 Ten equally spaced groups along the probability continuum i.e. 0 to 0.1, 0.1 to 0.2, 0.2 to 0.3 etc 
100 The Hosmer-Lemeshow goodness-of-fit test was not used to statistically compare the observed 
and expected proportions from the calibration plot (with expected numbers calculated by summing 
the probabilities for all participants in the decile) as it produces a p-value sensitive to sample size 
i.e. any small differences between observed and expected frequencies will be statistically 
significant if the sample size is large (University of Strathclyde Humanities and Social Sciences). It 
also provides limited information as to where (i.e. for what range of predicted probabilities) the 
model does, or does not, fit the data well (Afifi et al. 1996) and has the potential to depend on the 
number of groups used to stratify the data prior to calculating the observed and expected counts 
(Allison 2013)    
101 The “predicted” group membership was derived by assigning participants to the trajectory group 
that they had highest predicted probability for across their individual probabilities derived from the 
multinomial model 



240 
 

modelled and (c) between an unrestricted and a complete case analysis. Consequently, 

the considerations described in Table 8-1 were used to determine an optimal model for 

hand pain, and function, respectively.  
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Table 8-1: Decision process used to select the optimal LCGM for hand pain and function 

Hand pain Hand function 
Stage 1: Optimal linear model 
 
5-, 6- and 7-group models 
 
7-group model potentially optimal from the AIC and sample size 
adjusted BIC (Table 8-2). Reject as optimal as nearly half of all groups 
have a small N (<5%) and one posterior probability is less than 0.7.   
 
5-group model preferred over the 6-group model from three fit indices: 
the BIC, the VLMR LRT and the LMR LRT, although the BIC value is 
tied for the 5- and 6-group models. Reject as optimal as trajectory plot 
gave virtually parallel lines so lacked clinical usefulness (Figure 28).  
 
6-group model considered potentially optimal at the end of stage 1 
(Figure 28) 
 

 Stage 1: Optimal linear model 
 
5- 6- and 7-group models 
 
7-group model potentially optimal from the AIC, BIC and sample size 
adjusted BIC (Table 8-3). Reject as optimal as one group with small N 
(<5%).   
 
5-group model preferred over the 6-group model as the VLMR LRT and 
adjusted LMR LRT are only significant for the 5-group model. 5-group 
model rejected as optimal though as trajectory plot gave virtually 
parallel lines so lacked clinical usefulness (Figure 29). 
 
 
6-group model considered potentially optimal at the end of stage 1 
(Figure 29) 
  

Stage 2: Addition of quadratic and cubic terms 
 
6-group model: quadratic term significant (p < 0.05) for four out of the 
six groups. Cubic term significant in one group when cubic term added 
to the quadratic model (Figure 28).  
 
6-group cubic model considered potentially optimal at the end of stage 
2 as cubic term significant in one group 
 

Stage 2: Addition of quadratic and cubic terms 
 
6-group model: quadratic term significant (p < 0.05) for one out of the 
six groups (Figure 29). Cubic term significant in one group when cubic 
term added to the quadratic model (Figure 29). 
 
6-group cubic model considered potentially optimal at the end of stage 
2 as cubic term significant in one group 
 

Stage 3: Sensitivity analysis using the complete data set 
 
6-group cubic model was not robust in the complete data (Figure 28).  
6-group cubic model rejected as optimal.  

Stage 3: Sensitivity analysis using the complete data set 
 
6-group cubic model was not robust in the complete case data (Figure 
29). 
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6-group quadratic model considered 
6-group quadratic model rejected as optimal as not robust in the 
complete data (Figure 28) 
6-group linear model rejected as optimal as not robust in the complete 
data (Figure 28) 
 
5-group model re-considered 
 

6-group cubic model rejected as optimal. 
6-group quadratic model considered 
6-group quadratic model was robust in the complete case data (Figure 
29) and gave reasonable agreement in group membership for those 
with complete-case data. 
 
Group 1 = Moderate (agreement = 98%) 
Group 2 = Severe (agreement = 83%) 
Group 3 = Improving (agreement = 94%) 
Group 4 = Progressively deteriorating (agreement = 92%) 
Group 5 = Mild/moderate (agreement = 99%) 
Group 6 = Mild (agreement = 79%) 
 
 
6-group quadratic model considered optimal at the end of stage 3 
 

Stage 4: Reconsidering the 5-group model 
 
Adding a quadratic term to the 5-group model gave trajectory groups 
with virtually parallel lines (Figure 28) – reject as lacking clinical 
usefulness 
 
5-group cubic model gave clinically useful groups and the cubic term 
was significant in one of the five groups (p=0.001). Model robust in the 
complete case data and gave reasonable agreement in group 
membership for those with complete-case data (Figure 28). 
 
Group 1 = Severe (agreement = 100%) 
Group 2 = Mild deterioration (agreement = 81%) 
Group 3 = Moderate (agreement = 88%) 
Group 4 = Mild (agreement = 91%) 
Group 5 = Episodic (agreement = 92%) 
 

Stage 4: Reconsidering the 5-group model 
 
Adding quadratic and cubic terms to the 5-group model gave trajectory 
groups with virtually parallel lines (Figure 29) – reject as lacking clinical 
usefulness 
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Stage 5: Fitting a 5-group cubic GMM 
 
Unreliable model estimates - implausible negative estimates of variance 
around each of the fixed polynomial estimates. Global model solution 
not achieved. Robust model solution also not obtained in the complete 
case data  
 

Stage 5: Fitting a 6-group quadratic GMM  
 
Unreliable model estimates - implausible correlation estimates between 
the latent intercept, slope and quadratic terms that were greater than 
one. Robust model solution also not obtained in the complete case data  
 

Optimal model: LCGM 5-group cubic  Optimal model: LCGM 6-group quadratic 
 The complete dataset was defined as the group of participants with AUSCAN pain/function data at all time-points. The decision on the optimal model would 
not have differed had the complete case data been initially used and the test for replication applied to all study participants. For a full list of fit indices on the 
complete dataset see Appendix 29 and Appendix 30.    
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Table 8-2: Goodness-of-fit Statistics for LCGM fitted to AUSCAN Pain (N=621α) 

Model 
type 

AIC BIC ABIC Entropy
VLMR 
LRT 

Adjusted 
LMR 
LRT 

PB LRT Group N Average posterior probability 

Linear          
1 11125 11156 11134 N/A N/A N/A N/A 621 1.0 
2 10231 10276 10244 0.80 p<0.001 p<0.001 p<0.001 343, 278 0.95, 0.94 
3 9958 10016 9974 0.78 p<0.001 p<0.001 p<0.001 286, 120, 215 0.88, 0.90, 0.92 
4 9885 9956 9905 0.72 p=0.001 p=0.001 p<0.001 165, 72, 187, 197 0.87, 0.88, 0.81, 0.81 
5 9866 9950 9890 0.74 p=0.009 p=0.012 p<0.001 189, 85, 7, 155, 185 0.78, 0.83, 0.91, 0.87, 0.80 
6 9852 9950 9880 0.73 p=0.315 p=0.330 p<0.001 7, 186, 177, 152, 14, 85 0.92, 0.80, 0.74, 0.85, 0.75, 0.84 
7 9846 9956 9877 0.75 p=0.607 p=0.616 p=0.020 173, 88, 10, 182, 7, 154, 7 0.76, 0.83, 0.81, 0.81, 0.92, 0.85, 0.69 

Quadratic          
5 9863 9969 9893 0.74 p=0.030 p=0.034 p<0.001 86, 185, 189, 8, 153 0.84, 0.80, 0.79, 0.89, 0.87 
6 9842 9966 9877 0.73 p=0.060 p=0.068 p<0.001 8, 158, 167, 27, 87, 174 0.89, 0.86, 0.73, 0.74, 0.84, 0.81 

Cubic          
5 9859 9987 9895 0.71 p=0.137 p=0.145 p<0.001 81, 159, 198, 144, 39 0.88, 0.73, 0.83, 0.87, 0.72 
6 9835 9985 9877 0.73 p=0.106 p=0.113 p<0.001 140, 90, 8, 49, 198, 136 0.86, 0.85, 0.94, 0.72, 0.80, 0.73 

For the linear model, highlighting indicates models with the lowest AIC, BIC, ABIC values, models with one group less than the model with a non-significant LRT p-
value, group frequencies less than 5% of the sample (i.e. N <30) and posterior probabilities <0.7. All models achieved a global solution as in each model the largest log-
likelihood was replicated for more than two random starting values. For a full list of fit indices for groups 1 to 4 and 7 for the quadratic and cubic models for hand pain 
see Appendix 31.  = two participants were excluded from the analysis as they had no data at all time-points. AIC = Akaike Information Criteria, BIC = Bayesian 
Information Criteria, ABIC = Sample-size adjusted BIC, VLMR LRT = Vuong-Lo-Mendell-Rubin likelihood ratio test, LMR LRT = Lo-Mendell-Rubin likelihood ratio test, 
PBLRT = parametric bootstrapped likelihood ratio test, N/A = not applicable, p = p-value. 
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Figure 28: Trajectory plots explored whilst searching for an optimal hand pain model 
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Table 8-3: Goodness-of-fit Statistics for LCGM fitted to AUSCAN Function (N=621α) 

Model 
type 

AIC BIC ABIC Entropy
VLMR 
LRT 

Adjusted 
LMR 
LRT 

PB LRT Group N Average posterior probability 

Linear          
1 11519 11550 11528 N/A N/A N/A N/A 621 1.0 
2 10059 10104 10072 0.89 p<0.001 p<0.001 p<0.001 247, 374 0.96, 0.97 
3 9588 9646 9604 0.86 p=0.077 p=0.084 p<0.001 123, 201, 297 0.94, 0.90, 0.96 
4 9415 9486 9435 0.84 p<0.001 P=0.001 p<0.001 258, 171, 128, 64 0.95, 0.87, 0.90, 0.91 
5 9346 9430 9370 0.78 p=0.008 p=0.010 p<0.001 129, 60, 173, 117, 142 0.84, 0.91, 0.88, 0.88, 0.78 
6 9307 9404 9335 0.77 p=0.243 p=0.258 p<0.001 139, 119, 65, 72, 59, 167 0.78, 0.87, 0.74, 0.73, 0.91, 0.87 
7 9278 9388 9309 0.78 p=0.026 p=0.030 p<0.001 70, 67, 114, 6, 59, 138, 167 0.74, 0.74, 0.86, 0.92, 0.88, 0.79, 0.87 

Quadratic          
5 9339 9446 9370 0.79 p=0.101 p=0.109 p<0.001 118, 61, 137, 177, 128 0.88, 0.90, 0.79, 0.88, 0.84 
6 9302 9427 9338 0.77 p=0.589 p=0.598 p<0.001 121, 58, 70, 64, 138, 170 0.86, 0.91, 0.73, 0.74, 0.78, 0.87 

Cubic          
5 9335 9464 9372 0.79 p=0.017 p=0.019 p<0.001 128, 137, 177, 61, 118 0.84, 0.79, 0.88, 0.91, 0.88 
6 9299 9450 9342 0.81 p=0.440 p=0.450 p<0.001 131, 118, 60, 175, 124, 13 0.79, 0.84, 0.92, 0.87, 0.87, 0.86 

For the linear model, highlighting indicates models with the lowest AIC, BIC, ABIC values, models with one group less than the model with a non-significant LRT p-value, 
group frequencies less than 5% of the sample (i.e. N <30) and posterior probabilities <0.7. All models achieved a global solution as in each model the largest log-likelihood 
was replicated for more than two random starting values. For a full list of fit indices for groups 1 to 4 and 7 for the quadratic and cubic models for hand pain see Appendix 32. 
 = two participants were excluded from the analysis as they had no data at all time-points. AIC = Akaike Information Criteria, BIC = Bayesian Information Criteria, ABIC = 
Sample-size adjusted BIC, VLMR LRT = Vuong-Lo-Mendell-Rubin likelihood ratio test, LMR LRT = Lo-Mendell-Rubin likelihood ratio test, PBLRT = parametric bootstrapped 
likelihood ratio test, N/A = not applicable, p = p-value. 
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Figure 29: Trajectory plots explored whilst searching for an optimal hand function model 
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8.3.2 Strategies explored to investigate why GMM could not be fitted to the data   

As described in Table 8-1, GMM did not produce reliable estimates when fitted to either 

the hand pain or function data. By inspecting the model solutions, it was considered 

whether model convergence could be achieved if it were assumed that any negative 

estimates of variance were zero, and, any correlations greater than one were one (i.e. by 

fixing the variance and correlation estimates in the model to be at these pre-defined 

values). This suggestion was rejected however, as the variance estimates were not close 

to zero and the correlation estimates were considerably higher than one. Also, as some of 

the negative estimates of variance related to the intercept term, it seemed unrealistic, 

given the plots in Figure 30 and Figure 31, that the estimate of variance for the intercept 

would be precisely zero.   

It was also considered whether the GMM could be fitted to the data if the models were 

simplified to only include a random effect term for the model intercept and slope, rather 

than for all the higher order polynomial terms included in the model. This was not an 

option however as negative estimates of variance continued to be produced for the hand 

pain model and estimates in the hand function model were implausible for one group 

derived (i.e. average hand function was estimated to be -4 and -38 at the latter two time 

points so included values out of the range of the 0-10 hand function scale).    

Conversely, increasing the complexity of the model, by relaxing the assumption that the 

variance estimates around each polynomial term were equal in each group, also did not 

produce plausible model results, possibly because the model was too complex to be fitted 

to the data resulting in a local implausible solution being obtained. The GMM approach 

was therefore not used further in this thesis.    

8.3.3 The optimal models for hand pain and function 

The optimal LCGM for hand pain was a five-group cubic model with groups labelled as 

shown in Figure 30. The corresponding graph for the complete-case analysis is in 
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Appendix 33102. The group with the highest prevalence was the “Moderate” group (N = 

198; 32%), but this was only slightly higher than the “Mild deterioration” and “Mild groups” 

(26% and 23% respectively). Participants in the “Severe” group and the “Episodic” groups 

were less prevalent, making up 13 and 6% of the CAS-HA sample, respectively. In all 

groups however, there is considerable variation around the mean trajectory curves 

plotted.   

Figure 30: Trajectory plots for hand pain from a 5-group cubic LCGM 

 

 

                                                 
102 The labels were chosen as group descriptors, but it is acknowledged that the labels refer to 
group mean trajectories rather than to all possible individual trajectories in that group.    
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The optimal LCGM for hand function was a 6-group quadratic model as shown in Figure 

31. The corresponding graph for the complete-case analysis is in Appendix 34103. The 

“Mild” and “Mild/moderate” groups were the groups with the highest prevalence 

constituting 27% and 22% of the sample, respectively. Only 10% of the sample was in the 

“Progressively deteriorating” group in the hand function model. Although all groups 

showed variation in the individual trajectories around the mean curve, this variation was 

smaller in the “Mild” group than for the other groups presented.   

Figure 31: Trajectory plots for hand function from a 6-group quadratic LCGM 

 

                                                 
103 The labels were chosen as group descriptors, but it is acknowledged that the labels refer to 
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A key similarity between the models for hand pain and function is that both contain a 

group of participants with relatively low levels of hand pain severity/functional difficulty at 

study entry, which is maintained at this relatively low level throughout the 7.5 year follow-

up period (constituting 23% and 27% of the hand pain and function samples, respectively) 

and a contrasting group of participants where the majority enter the study with an 

AUSCAN score >= 5 that does not resolve to a level lower than 5 at any point during the 

study follow-up (constituting 13% and 9% of the samples, respectively). 

A key difference between the two outcomes however, is that a single “progressively 

deteriorating” group was only evident in the hand function model (i.e. a group showing, on 

average, a continual increase in functional difficulty over time). This group however was 

relatively small, making up only 10% of the total sample size. Although no equivalent 

group was found in the hand pain data, two groups showing potential deterioration did 

emerge: the first showing deterioration between the baseline and the 18-month follow-up 

followed by improvement in the remaining follow-up periods (Episodic N = 39, 6%), and 

the second showing mild deterioration in the second part of the follow-up period (i.e. 3-

years to 7.5-years) (N = 159, 26%)104. Only the hand function model contained a small 

group of participants whose hand function improved (on average) over the 7.5 year follow-

up (N = 70, 11%).  

8.3.4 Baseline descriptive characteristics of the trajectory groups 

The potential predictors listed in Chapter 3 were used to describe the characteristics of 

participants in each trajectory group. As the focus of the analysis was to describe the 

groups, no statistical tests were undertaken to test whether such differences were 

statistically significant. However, to facilitate a description of the groups especially as the 

number of predictors and groups were large, two key comparisons were made in the data, 

                                                 
104 Evidence for deterioration was less strong in the “Mild deterioration” group than the “Episodic” 
group as the average rate of deterioration in the “Mild deterioration” group is small over time 
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with only the largest between-group differences reported105. The first was to contrast those 

in the “Mild” and “Severe” trajectory groups so that the magnitude of any differences 

between the two most extreme trajectory groups could be quantified. The second was to 

contrast those with a similar range of baseline scores but with differing trajectories over 

time to potentially identify important predictors of future outcome, i.e. to compare the “Mild 

deterioration”, “Mild” and “Episodic” trajectory groups for hand pain and the “Progressively 

deteriorating” and “Mild/Moderate” groups for hand function. The results from these 

comparisons are described in Sections 8.3.5 to 8.3.7 below and relate to Table 8-4 and 

Table 8-5. In addition, the rates of missing data at the 6-year follow-up time-point were 

also used to explore if there was any differential loss to follow-up between the trajectory 

groups derived (Section 8.3.8).   

8.3.5 Comparing participants in the “Severe” and “Mild” trajectory groups for 

hand pain and function       

Participants in the “Severe” group for hand pain (when compared to those in the “Mild” 

group) had worse baseline hand-related characteristics as evidenced by having a longer 

duration of symptoms, worse hand function (measured by the AUSCAN, GAT, grip and 

pinch strength), worse hand pain (measured by the AUSCAN), both hands affected, and a 

greater likelihood of having either OA (measured by the ACR criteria on clinical 

examination and increased number of joints with OA on x-ray), carpal tunnel syndrome, 

De Quervain’s tenosynovitis or trigger finger. Looking at psychological measures of 

health, participants in the “Severe” group experience greater levels of anxiety and 

depression (as measured by the HADS, the emotional representation subscale of the 

IPQR and mental component score of the SF-12), more frustration with their hand 

condition and experienced a condition with greater impact on their life. They also have 

                                                 
105 For categorical characteristics this was defined as difference of greater than 15% and for 
continuous outcomes as those differences greater than 15% on the range of the scale if no clinical 
information was available to judge if differences were clinically significant  
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poorer general health (measured by self-reported and the physical component score of 

the SF-12), more likely to report pain in other areas of the body, and are less likely to drink 

on a regular basis. Demographically, participants in this group are more likely to be 

female, not in current employment and have to be careful with money to manage on the 

income they have.  

The characteristics described above were also the main characteristics that differentiated 

the “Severe” and “Mild” trajectory groups in the hand function model.     

8.3.6 Exploring potential predictors from the hand pain model 

Compared to participants in the “Mild” group, participants in the “Mild deterioration” and 

“Episodic” groups were more likely to a) report worse general health (poorer self-rated 

health, lower SF-12 physical component score), b) have higher rates of pain elsewhere 

(regional or widespread), and c) have hand problems that appear to be of longer duration, 

have a gradual rather than acute onset, and report more days where they were frustrated 

by their hand problem. A small number of characteristics differentiated between the “Mild 

deterioration” and “Episodic” groups: those in the “Mild deterioration” group were more 

likely to have both hands affected and more joints with radiographic hand OA, but less 

likely to be married or cohabiting.  

8.3.7 Exploring potential predictors from the hand function model 

For hand function, differences in baseline characteristics between the “Progressively 

deteriorating” and “Mild/Moderate” trajectory groups were generally smaller than those for 

hand pain. The largest differences observed were that participants in the “Progressively 

deteriorating” group were more likely to have widespread pain and carpal tunnel 

syndrome than those in the “Mild/Moderate” group. 

8.3.8 Differential missing data rates 

The percentage of participants with missing data at the 6-year follow-up differed 

depending on trajectory group membership, with participants in the “Severe” and 
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“Moderate” trajectory groups being more likely to have data missing at the 6-year follow-

up than those in trajectory groups with less extreme symptom severity.   
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Table 8-4: Key baseline characteristics by trajectory group membership for hand pain 

 Hand pain 
Baseline characteristics Severe 

 
N=81 

Mild 
deterioration 

N=159 

Moderate 
 

N=198 

Mild 
 

N=144 

Episodic 
 

N=39 
Percentage of missing data for AUSCAN pain at 
the 6-year follow-up 

49% 33% 43% 34% 26% 

Age 64 (58, 71) 64 (58, 70) 64 (58, 71) 61 (57, 71) 60 (55, 66) 
Female gender 57 (70) 99 (62) 131 (66) 76 (53) 22 (56) 
Married/cohabiting 62 (78) 120 (76) 154 (78) 115 (80) 36 (92) 
Manual occupation  40 (58) 73 (49) 93 (50) 77 (56) 21 (54) 
Currently employed 11 (14) 44 (29) 41 (22) 53 (38) 16 (42) 
Age when left school (years) 15 (15, 16) 15 (15, 16) 15 (15, 16) 15 (15, 16) 15 (15, 15) 
Go from school to full time education  11 (14) 22 (14) 30 (15) 31 (22) 3 (8) 
Income      
 Find it a strain to get by from week to week 5 (6) 6 (4) 11 (6) 1 (1) 0 (0) 
 Have to be careful  with money 35 (44) 54 (35) 85 (43) 39 (27) 14 (37) 
 Able to manage without much difficulty 30 (38) 66 (42) 71 (36) 68 (48) 16 (42) 
 Quite comfortably off 9 (11) 30 (19) 29 (15) 35 (24) 8 (21) 
Alcohol consumption      
 Daily or most days 12 (15) 40 (25) 36 (18) 39 (27) 9 (23) 
 Once or twice a week, 23 (29) 56 (35) 76 (39) 43 (30) 19 (49) 
 Once or twice a month 12 (15) 29 (18) 35 (18) 32 (22) 7 (18) 
 Once or twice a year 19 (24) 26 (16) 29 (15) 21 (15) 2 (5) 
 Never 14 (18) 7 (4) 21 (11) 8 (6) 2 (5) 
Smoking status      
 Never 34 (42) 78 (49) 102 (52) 80 (57) 20 (51) 
 Previously smoked 36 (44) 68 (43) 81 (41) 57 (40) 15 (38) 
 Currently smoke 11 (14) 12 (8) 14 (7) 4 (3) 4 (10) 
Lives alone 17 (22) 30 (20) 35 (18) 23 (17) 3 (8) 
General Health      
 Excellent 0 11 (7) 2 (1) 11 (8) 5 (13) 
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 Very good 8 (10) 38 (24) 24 (12) 53 (37) 9 (23) 
 Good 15 (19) 76 (48) 85 (44) 66 (46) 14 (36) 
 Fair 38 (47) 31 (20) 67 (35) 13 (9) 8 (21) 
 Poor 20 (25) 3 (2) 16 (8) 1 (1) 3 (8) 
Physical component score of the SF-12 26.9 (23.0, 33.8) 44.3 (31.9, 51.4) 34.6 (27.3, 45.0) 51.4 (41.7, 55.3) 46.0 (33.0, 51.7) 
Number of comorbidities 1.0 (0.0, 2.0) 1.0 (0.0, 2.0) 1.0 (0.0, 2.0) 0.5 (0.0, 1.0) 0.0 (0.0, 1.0) 
Pain in other body areas      
 No other pain  3 (4) 21 (13) 26 (13) 45 (31) 6 (15) 
 Regional pain 35 (43) 110 (69) 98 (49) 88 (61) 25 (64) 
 Widespread pain 43 (53) 28 (18) 74 (37) 11 (8) 8 (21) 
AUSCAN pain 6.5 (6.0, 7.0) 2.0 (1.1, 3.0) 4.0 (3.0, 5.0) 0.5 (0.0, 2.0) 2.5 (1.5, 3.0) 
Number of days in the last 12-months with hand 
pain  

     

 less than 7-days 2 (3) 8 (6) 13 (7) 15 (15) 2 (5) 
 1-4 weeks 0 (0) 24 (17) 13 (7) 23 (22) 6 (16) 
 >1-mth but <3-mths 1 (1) 29 (20) 24 (13) 27 (26) 4 (11) 
 3-mths or more 77 (96) 82 (57) 140 (74) 38 (37) 26 (68) 
AUSCAN function 6.4 (5.0, 7.5) 1.4 (0.6, 2.5) 3.9 (2.5, 5.0) 0.6 (0.0, 1.1) 1.1 (0.6, 1.9) 
Side affected      
 Dominant hand only 2 (2) 13 (8) 17 (9) 34 (24) 9 (23) 
 Non-dominant hand only 1 (1) 8 (5) 5 (3) 11 (8) 3 (8) 
 One hand affected but participant ambidextrous 0 (0) 2(1) 2 (1) 3 (2) 0 (0) 
 Both hands affected 78 (96) 136 (86) 174 (88) 96 (67) 27 (69) 
Time since hand problem onset (years) 11 (5, 20) 5 (3, 10) 6 (3, 15) 3 (1, 8) 6 (2, 10) 
At least one hand of sudden onset 19 (23) 31 (20) 38 (19) 54 (38) 8 (21) 
At least one hand onset following accident or injury 9 (11) 20 (13) 19 (10) 14 (10) 3 (8) 
Past or present job, hobbies or pastimes involved 
excessive hand use 

70 (89) 121 (80) 163 (84) 94 (72) 32 (84) 

HADS - Anxiety 8.0 (6.0, 10.0) 5.0 (3.0, 7.0) 7.0 (4.0, 10.0) 5.0 (2.0, 8.0) 6.0 (4.0, 9.0) 
HADS - Depression 6.0 (3.0, 8.0) 3.0 (1.0, 5.0) 5.0 (3.0, 7.0) 2.0 (1.0, 4.0) 3.0 (2.0, 6.0) 
Mental component score of the SF-12 42.6 (34.7, 57.8) 55.2 (49.4, 59.5) 52.4 (41.2, 58.2) 55.4 (48.1, 57.9) 54.0 (46.9, 58.7) 
Illness perceptions      
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 Long disease time course 25.0 (24.0, 29.0) 24.0 (21.0, 26.0) 24.0 (22.0, 27.0) 22.0 (17.0, 24.0) 23.0 (21.0, 25.0) 
 Consequences 20.0 (17.0, 23.0) 12.0 (9.0, 15.0) 15.0 (13.0, 18.0) 12.0 (9.0, 13.2) 12.0 (10.0, 15.0) 
 Personal Controlα 16.6 (4.2) 18.4 (4.2) 17.9 (3.9) 18.2 (4.6) 18.0 (4.5) 
 Treatment Controlα 13.0 (3.4) 14.9 (3.1) 14.4 (3.2) 15.4 (3.3) 14.3 (3.3) 
 Illness coherence 12.0 (10.0, 16.0) 11.0 (10.0, 15.0) 11.0 (10.0, 14.0) 12.0 (10.0, 15.0) 11.0 (10.0, 15.0) 
 Cyclical time course 11.0 (8.0, 14.0) 12.0 (8.5, 14.0) 12.0 (9.0, 15.0) 12.0 (8.0, 14.0) 10.7 (8.0, 15.0) 
 Emotional representationα  17.4 (5.1) 12.1 (3.7) 14.5 (4.3) 11.8 (3.9) 12.9 (3.8) 
Frustration with hand condition in the last month      
 All days 23 (29) 2 (1) 13 (7) 2 (2) 0 (0) 
 Most days 29 (37) 12 (8) 27 (14) 5 (4) 2 (5) 
 Some days 16 (20) 23 (15) 57 (30) 4 (3) 7 (18) 
 Few days 6 (8) 33 (22) 48 (26) 19 (15) 11 (29) 
 No days 5 (6) 82 (54) 43 (23) 94 (76) 18 (47) 
Body-mass indexα 28.6 (5.0) 28.7 (5.0) 28.7 (5.3) 27.2 (3.6) 27.2 (3.7) 
Hand grip-ability (GAT) 37.3 (31.3, 49.8) 27.1 (23.7, 33.6) 31.2 (25.0, 38.1) 24.3 (21.8, 28.6) 26.4 (22.8, 30.5) 
Grip strengthα 30.8 (20.9) 53.3 (24.4) 42.4 (22.3) 62.5 (26.1) 54.5 (25.6) 
Pinch strengthα 7.4 (3.7) 10.9 (3.8) 9.3 (3.7) 12.8 (4.5) 11.4 (4.9) 
Meets the ACR criteria for hand OA 53 (65) 34 (21) 77 (39) 18 (13) 9 (23) 
Has carpal tunnel syndrome 56 (75) 58 (37) 106 (57) 41 (29) 12 (32) 
Has Dupuytren’s contracture 22 (27) 37 (23) 55 (28) 38 (26) 13 (33) 
Has De Quervain’s tenosynovitis 30 (46) 30 (19) 51 (28) 19 (14) 7 (18) 
Has trigger finger 30 (37) 28 (18) 42 (21) 15 (10) 8 (21) 
Number of joints with Kellgren-Lawrence x-ray 
grade >=2 

5.0 (2.0, 9.0) 4.0 (1.0, 8.5) 4.0 (2.0, 8.0) 2.0 (1.0, 5.0) 2.0 (0.0, 5.0) 

Figures are numbers and percentages unless otherwise stated. α = Mean (standard deviation),  = Median (inter-quartile range),  = Dichotomised as 
Married/Cohabiting versus Separated/Divorced/Widowed/Single due to small N,  = Manual occupation (i.e. Lower supervisory/technical, Semi-routine occupations 
or Routine occupation categories of the SOC 2000 coding (Office for National Statistics (ONS) 2002)). SF-12 = Short-form 12, AUSCAN = Australian/Canadian 
Hand Osteoarthritis Index, HADS = Hospital Anxiety and Depression Scale, ACR = American College of Rheumatology, OA = Osteoarthritis 
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Table 8-5: Key baseline characteristics by trajectory group membership for hand function 

 Hand function 

Baseline characteristics 
Moderate 

N=121 

Severe 

N=58 

Improving 

N=70 

Progressively 

Deteriorating 

N=64 

Mild/Moderate 

N=138 

Mild 

N=170 

Percentage of missing data for 
AUSCAN function at the 6-year 
follow-up  

48% 62% 34% 28% 32% 34% 

Age 66 (59, 73) 64 (58, 72) 62 (57, 68) 66 (58, 73) 62 (58, 70) 61 (56, 67) 
Female gender 92 (76) 44 (76) 49 (70) 41 (64) 92 (67) 67 (39) 
Married/cohabiting 87 (73) 43 (74) 57 (81) 51 (80) 114 (84) 135 (80) 
Manual occupation  56 (51) 27 (55) 30 (45) 30 (52) 73 (55) 88 (54) 
Currently employed 14 (12) 2 (4) 23 (34) 15 (25) 45 (34) 66 (40) 
Age when left school (years) 15 (14, 15) 15 (14, 16) 15 (15, 16) 15 (15, 16) 15 (15, 16) 15 (15, 16) 
Go from school to full time 
education  

14 (12) 8 (15) 16 (23) 8 (13) 21 (16) 30 (18) 

Income       
 Find it a strain to get by from 
 week to week 

5 (4) 5 (9) 2 (3) 4 (6) 6 (4) 1 (1) 

 Have to be careful  with money 51 (43) 27 (49) 26 (38) 19 (30) 54 (40) 50 (30) 
 Able to manage without much 
 difficulty 

48 (40) 19 (35) 31 (45) 29 (45) 46 (34) 78 (46) 

 Quite comfortably  off 16 (13) 4 (7) 10 (14) 12 (19) 30 (22) 39 (23) 
Alcohol consumption       
 Daily or most days 17 (14) 7 (12) 13 (19) 13 (21) 37 (27) 49 (29) 
 Once or twice a week, 36 (30) 14 (25) 33 (47) 26 (41) 47 (34) 61 (36) 
 Once or twice a month 31 (26) 9 (16) 9 (13) 10 (16) 21 (15) 35 (21) 
 Once or twice a year 23 (19) 15 (26) 8 (11) 9 (14) 23 (17) 19 (11) 



259 
 

 Never 14 (12) 12 (21) 7 (10) 5 (8) 9 (7) 5 (3) 
Smoking status       
 Never 58 (48) 29 (50) 42 (60) 34 (53) 74 (54) 77 (46) 
 Previously smoked 51 (42) 23 (40) 22 (31) 26 (41) 54 (40) 81 (49) 
 Currently smoke 12 (10) 6 (10) 6 (9) 4 (6) 8 (6) 9 (5) 
Lives alone 26 (22) 14 (26) 11 (16) 11 (18) 17 (13) 29 (18) 
General Health       
 Excellent 0 (0) 0 (0) 4 (6) 2 (3) 7 (5) 16 (9) 
 Very good 15 (13) 1 (2) 10 (14) 11 (17) 36 (26) 59 (35) 
 Good 37 (31) 12 (21) 37 (54) 30 (48) 63 (46) 77 (45) 
 Fair 54 (45) 25 (43) 14 (20) 19 (30) 28 (20) 17 (10) 
 Poor 14 (12) 20 (34) 4 (6) 1 (2) 3 (2) 1 (1) 
Physical component score of the 
SF-12 

30.0 (23.5, 37.1) 25.2 (21.7, 31.9) 41.4 (31.9, 52.1) 40.4 (31.3, 49.2) 43.9 (34.5, 50.9) 51.0 (40.8, 55.5) 

Number of comorbidities 1.0 (0.0, 2.0) 2.0 (1.0, 3.0) 1.0 (0.0, 2.0) 1.0 (0.0, 2.0) 1.0 (0.0, 2.0) 1.0 (0.0, 1.0) 
Pain in other body areas       
 No other pain  13 (11) 4 (7) 8 (11) 7 (11) 23 (17) 46 (27) 
 Regional pain 61 (50) 19 (33) 44 (63) 33 (52) 88 (64) 111 (65) 
 Widespread pain 47 (39) 35 (60) 18 (26) 24 (38) 27 (20) 13 (8) 
AUSCAN pain 4.5 (3.5, 5.5) 6.5 (5.5, 7.5) 3.5 (3.0, 4.5) 3.0 (2.5, 4.5) 2.0 (1.0, 3.0) 1.0 (0.0, 2.5) 
Number of days in the last 12-
months with hand pain  

     
 

 less than 7-days 5 (4) 3 (5) 4 (6) 6 (10) 7 (6) 15 (11) 
 1-4 weeks 7 (6) 0 (0) 6 (9) 5 (8) 20 (17) 28 (21) 
 >1-mth but <3-mths 9 (8) 1 (2) 11 (16) 10 (16) 26 (22) 28 (21) 
 3-mths or more 92 (81) 53 (93) 46 (69) 41 (66) 66 (55) 65 (48) 
AUSCAN function 5.0 (4.2, 5.6) 6.9 (6.1, 8.1) 3.6 (3.1, 4.7) 1.9 (1.4, 3.1) 1.4 (0.8, 2.2) 0.3 (0.0, 0.8) 
Side affected       
 Dominant hand only 7 (6) 3 (5) 7 (10) 3 (5) 20 (14) 35 (21) 
 Non-dominant hand only 3 (2) 0 (0) 2 (3) 4 (6) 9 (7) 10 (6) 
 One hand affected but 
 participant ambidextrous 

0 (0) 0 (0) 1 (1) 1 (2) 3 (2) 
2 (1) 

 Both hands affected 111 (92) 55 (95) 60 (86) 56 (88) 106 (77) 123 (72) 
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Time since hand problem onset 
(years) 

9.0 (3.0, 18.0) 12.0 (6.0, 20.0) 6.0 (4.0, 15.0) 5.0 (2.0, 10.0) 5.0 (2.0, 10.0) 4.0 (2.0, 10.0) 

At least one hand of sudden onset 27 (22) 17 (29) 12 (17) 10 (16) 34 (25) 50 (29) 
At least one hand onset following 
accident or injury 

12 (10) 9 (16) 5 (7) 8 (13) 14 (10) 17 (10) 

Past or present job, hobbies or 
pastimes involved excessive hand 
use 

96 (82) 49 (88) 57 (83) 50 (79) 106 (83) 
122 (77) 

HADS - Anxiety 7.0 (5.0, 10.0) 8.0 (6.0, 12.0) 7.0 (4.0, 9.0) 7.0 (4.0, 9.0) 6.0 (4.0, 8.0) 5.0 (2.0, 7.0) 
HADS - Depression 5.0 (3.0, 8.0) 6.5 (4.0, 9.0) 3.5 (1.0, 6.0) 3.0 (2.0, 7.0) 3.0 (2.0, 5.0) 2.0 (1.0, 4.0) 
Mental component score of the 
SF-12 

52.3 (40.5, 59.1) 42.4 (33.9, 56.6) 55.5 (48.0, 58.8) 52.6 (40.6, 57.6)  53.5 (47.4,58.7) 56.0 (49.0, 58.8) 

Illness perceptions       
 Long disease time course 24.0 (22.0, 28.0) 25.0 (24.0, 29.0) 24.0 (22.0, 26.0) 24.0 (22.0, 27.0) 24.0 (20.0, 25.0) 23.0 (18.0, 24.0) 
 Consequences 16.0 (14.0, 20.0) 21.0 (17.0, 24.0) 15.0 (12.0, 18.0) 13.0 (11.5, 15.0) 12.0 (9.0, 15.0) 12.0 (9.0, 14.0) 
 Personal Controlα 17.9 (4.0) 16.1 (4.0) 18.3 (3.8) 18.1 (4.3) 17.8 (4.6) 18.5 (4.2) 
 Treatment Controlα 14.1 (3.4) 13.0 (3.2) 14.5 (2.9) 14.2 (3.3) 14.8 (3.3) 15.3 (3.2) 
 Illness coherence 12.0 (10.0, 14.0) 12.5 (10.0, 17.0) 10.0 (10.0, 15.0) 12.0 (10.0, 15.0) 11.0 (10.0, 15.0) 11.0 (10.0, 15.0) 
 Cyclical time course 12.0 (8.0, 14.0) 11.5 (8.0, 14.0) 12.0 (9.0, 14.0) 12.0 (8.0, 15.0) 12.0 (8.0, 15.0) 12.0 (8.0, 14.0) 
 Emotional representationα  15.3 (4.3) 18.3 (4.7) 13.8 (3.8) 13.2 (4.0) 12.5 (3.8) 11.6 (4.2) 
Frustration with hand condition in 
the last month 

     
 

 All days 16 (14) 21 (38) 0 (0) 1 (2) 1 (1) 1 (1) 
 Most days 31 (27) 20 (36) 6 (9) 2 (3) 10 (8) 6 (4) 
 Some days 39 (34) 6 (11) 19 (29) 15 (24) 18 (14) 10 (6) 
 Few days 18 (16) 5 (9) 22 (33) 18 (29) 30 (24) 24 (15) 
 No days 11 (10) 4 (7) 19 (29) 27 (43) 66 (53) 115 (74) 
Body-mass indexα 29.4 (5.6) 28.7 (5.5) 28.1 (4.0) 27.8 (4.7) 28.3 (4.9) 27.4 (3.9) 
Hand grip-ability (GAT) 35.3 (28.8, 45.1) 44.4 (33.5, 62.0) 30.3 (25.1, 35.9) 27.0 (22.8, 32.6) 26.3 (23.0, 31.1) 24.5 (21.5, 29.6) 
Grip strengthα 34.4 (19.9) 25.7 (15.6) 43.1 (20.8) 48.7 (22.0) 50.5 (20.5) 69.0 (25.2) 
Pinch strengthα 8.1 (3.3) 6.8 (3.4) 8.9 (3.7) 10.1 (3.2) 10.9 (4.1) 13.5 (4.0) 
Meets the ACR criteria for hand 56 (46) 36 (62) 27 (39) 16 (25) 39 (28) 17 (10) 
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OA 
Has carpal tunnel syndrome 56 (50) 46 (88) 44 (64) 33 (52) 47 (36) 47 (28) 
Has Dupuytren’s contracture 38 (31) 12 (21) 21 (30) 14 (22) 34 (25) 46 (27) 
Has De Quervain’s tenosynovitis 37 (34) 17 (43) 17 (26) 16 (26) 25 (18) 25 (15) 
Has trigger finger 32 (26) 20 (34) 14 (20) 16 (25) 24 (17) 17 (10) 
Number of joints with kellgren-
Lawrence x-ray grade >=2 

4.5 (2.0, 9.0) 5.0 (2.0, 9.0) 4.0 (1.0, 7.0) 4.0 (2.0, 7.0) 3.0 (1.0, 8.0) 3.0 (1.0, 6.0) 

Figures are numbers and percentages unless otherwise stated. α = Mean (standard deviation),  = Median (inter-quartile range),  = Dichotomised as 
Married/Cohabiting versus Separated/Divorced/Widowed/Single due to small N,  = Manual occupation (i.e. Lower supervisory/technical, Semi-routine occupations or 
Routine occupation categories of the SOC 2000 coding (Office for National Statistics (ONS) 2002)). SF-12 = Short-form 12, AUSCAN = Australian/Canadian Hand 
Osteoarthritis Index, HADS = Hospital Anxiety and Depression Scale, ACR = American College of Rheumatology, OA = Osteoarthritis 
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8.3.9  Predicting trajectory subgroup membership 

The number of groups in the optimal models for hand pain and function influenced how 

feasible it was to apply the modelling strategy to predict trajectory group membership. In 

particular, as the number of groups was relatively large in each model this resulted in 

some groups containing only a small number of participants (the smallest group size for 

hand pain was 39, and for hand function, 58). As it is recommended for multinomial 

logistic regression that at least 10 events are needed per regression coefficient estimated 

(Biesheuvel et al. 2008), this implies that a minimum of 40 or 50 people are needed in 

each outcome category per regression coefficient estimated for hand pain and function 

respectively to avoid over-fitting the data106. This suggests that with the group sizes given 

only a single predictor with one degree of freedom could be reliably estimated as a 

predictor in the model.  

Although not ideal, to go some way to address this, the following three steps were taken: 

(1) to restrict the number of predictors that could potentially enter the model, (2) to simplify 

the number of response options that the potential predictors are measured on and (3) to 

bootstrap the model estimates derived. These steps are described below and the 

limitations of this discussed further in Section 8.4.3.  

Restricting the number of predictors included in the model 

It was initially stated in the introduction to this chapter that the objective of this analysis 

was to find the “best” combination of predictors to predict trajectory group membership. 

This objective was modified by restricting the number of predictors included in any single 

model to no more than three predictors over and above the baseline value for the 

outcome of interest. The baseline value was automatically included in all models 

considered as it is clearly an important predictor of trajectory group membership given the 

                                                 
106 Minimum values of 40 and 50 were derived as 4 or 5 parameters are estimated in a 5- and 6-
group multinomial logistic regression model respectively for hand pain and function when a 
predictor with one degree of freedom is fitted to the data. This is because the reference category 
for the parameter estimate is fixed at zero.  



263 
 

trajectory plots in Figure 30 and Figure 31. The limit of three additional predictors was 

chosen for practical reasons to give scope for additional information to be added to the 

model over and above baseline, but not so much that the model is greatly over-fitted and 

unlikely to fit well in another data set; an approach needed due to a lack of evidence in the 

literature and clinical a priori knowledge to define a small set of predictors to include in the 

analysis.  

Simplification of the response categories 

The pool of potential predictors listed in Table 3-1 in Chapter 3 were reconsidered to see if 

any of the categorical predictor variables with more than two response options could be 

simplified by dichotomising them or trichotomising them if dichotomisation was not an 

option. As far as possible the cut-off points were chosen to be clinically meaningful, 

though in some instances the amount of clinical knowledge to choose the cut-point was 

limited. The response frequency in each category was also considered; if this was small in 

one particular category then this guided the decision that this category could be merged 

with an adjacent response category. The categorisation of the potential predictors that 

was applied to the data prior to analysis is shown in Table 8-6. 
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Table 8-6: Categorisation of potential baseline predictors if they were measured on a categorical scale 

Concept Full response categories Simplified response categories 

Marital status Married, Separated, Divorced, Widowed, 

Cohabiting, Single 

1= Married/Cohabiting; 2 = All other categories 

Occupation/Social Class Higher managerial, Higher professional, Lower 

managerial/professional, Intermediate 

occupations, Self-employed, Lower 

supervisory/technical, Semi-routine 

occupations, Routine occupations 

1= Non-manual (all categories listed before 

self-employed); 2=Self-employed; 3=Manual 

(all categories listed after self-employed) 

Employment status Employed, Not working due to ill health, 

Retired, Unemployed, Housewife, Other 

1= Employed; 2 = All other categories 

Income Find it a strain to get by from week to week, 

Have to be careful with money, Able to 

manage without much difficulty, Quite 

comfortably off 

1= Find it a strain to get by from week to 

week/have to be careful with money; 2=All 

other categories 

 

Alcohol consumption Daily or most days, Once or twice a week, 

Once or twice a month, Once or twice a year,  

Never 

1=Daily or most days; 2= All other categories 

Smoking status Never, Previously smoked, Currently smoke 1=Never; 2=Previously or currently smoke 

Self-rated health General health: Excellent, Very good, Good, 

Fair, Poor 

1= Excellent, Very good, Good; 2=Fair, Poor 
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Number of comorbidities 0-7 1 = No comorbidities, 2 = One comorbidity, 3 = 

2 or more comorbidities 

Pain in other body areas Manchester definition of regional pain  

(Macfarlane et al. 1996): No other pain, 

Regional pain, Widespread pain 

1=No other pain; 2 =Regional or widespread 

pain 

Hand pain severity   Number of days in the last 12-months with 

hand pain: less than 7-days, 1-4 weeks, >1-

month but <3-months, 3-months or more 

1= < 3-mths of pain in last 12-mths; 

 2= >=3-mths of pain in the last 12-mths 

Side affected Dominant hand only, Non-dominant hand only, 

One hand affected but participant 

ambidextrous, both hands affected  

1=One hand affected; 2=Both hands affected 

Sudden onset of hand problem Both hands sudden onset, One hand sudden 

onset, Neither hand sudden onset   

1=One or both hands of sudden onset; 2 = 

Neither hand of sudden onset 

Onset of hand condition following 

accident or injury to the hand  

Both hands onset following accident or injury, 

One hand onset following accident or injury∞, 

Neither hand onset following accident or injury  

1=One or both hands onset following accident 

or injury; 2=Neither hand of onset following 

accident or injury 

Frustration with hand condition All days, most days, some days, few days, no 

days 

1 = All days or most days; 2 = Some, few or no 

days 
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Bootstrapping of model regression estimates 

Bootstrapping was used to explore the stability of the relative risk ratios (RRRs) that were 

generated from the “final” multinomial model (see Appendix 25 for details of the 

multinomial logistic model) and to explore the impact that a small sample size may have 

on the reliability of RRRs obtained. The aim of the bootstrapping procedure was to explore 

the stability of the model estimates rather than to adjust for any over-estimation in model 

fit due to the lack of an external data set used to test the performance of the model (see 

Appendix 36 for an example of how bootstrapping could be used to adjust the C-statistic 

for over-estimation). The bootstrapping procedure was undertaken by sampling, with 

replacement, 5000 random data sets that were the same size as the dataset of interest 

(i.e. after participants with missing data for any of the predictor variables of interest had 

been excluded). In each of the bootstrapped samples (N=5000), the multinomial logistic 

regression models for hand pain and function were applied and the relative risk ratios 

recorded.  

The distribution of each RRR was then examined, and from this, 95% normal-based 

bootstrapped confidence intervals were calculated, defined as the RRR in the original 

sample107 +/- 1.96 x standard deviation of the RRR across all bootstrapped samples (with 

the standard deviation used to estimate the standard error of the RRR distribution). If the 

lower and upper limit of the bootstrapped confidence interval were both above one, or 

both below one, this added to the evidence that the predictor was an important predictor 

of the outcome of interest.  It was also checked that the conclusions from the analysis 

would not change if percentile based, or bias corrected confidence intervals were used to 

calculate the bootstrap confidence intervals108. 

                                                 
107 The RRR in the original sample is used as the point estimate for calculating the confidence 
interval (rather than the mean of the RRR across the bootstrap samples), as any bias in the original 
estimate will only be exaggerated when the data are bootstrapped (StataCorp 2013e) 
108 95% percentile based confidence intervals were calculated as the 2.5th and 97.5th percentiles of 
the RRR bootstrapped distribution. Bias-corrected confidence intervals adjust these percentile 
values to account for any difference between the RRR estimate in the original sample and the 
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8.3.10 Selection of model predictors 

The “Mild” group was chosen as the reference category for all multinomial logistic 

regression models. A reference category was needed so that the model could be 

estimated, but its choice was somewhat arbitrary, as it only influenced which between 

group comparisons could be inferred from the model, rather than the p-values derived 

from the likelihood ratio tests to assess predictors to include in the model.  

An automated forward stepwise procedure was applied for multinomial logistic regression 

using STATA version 13.0, but this was problematic. Although the aim of the model was to 

search for only three additional predictors, so any model itself would only include up to 

four predictors including baseline level of the outcome, a full list of potential predictors 

needed to be specified before the model could be run. The model ran when 35 predictors 

were defined, but not when the 36 predictors considered here were listed suggesting that 

a maximum number of variables (35 variables) had been reached in STATA’s stepwise 

command109.      

A forward stepwise procedure was therefore conducted “by hand” and was used to 

identify the three strongest predictors of trajectory group membership for each outcome, 

over and above the baseline measure. As the objective of this model was to identify a 

small set of strong predictors, the p-value cut-off used to remove predictors from the 

model was reduced from 0.10 as originally specified, to 0.05 to select only strong 

predictors rather than develop an all-inclusive model containing predictors of borderline 

significance. In addition, the item domain structure used to group the predictors in Chapter 

3 was not used to restrict the order that predictors were added to the model.   

                                                                                                                                                 
mean of the RRR estimate across the bootstrapped samples (i.e. adjust for bias) (StataCorp 
2013e). Accelerated bias-corrected 95% confidence intervals (i.e. that adjust the percentile values 
for both bias and skewness in the bootstrapped distribution (Frangos 1990)) could not be 
calculated as the multinomial logistic regression model could not be fitted for a small number of 
bootstrapped samples (<0.4%) due to no participants being selected in that bootstrap sample who 
were in the trajectory group with the smallest group size  
109 This also occurred when forward selection, rather than forward stepwise, was used as the 
method for model selection  
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This approach, although practical, was not ideal as it restricted the range of bootstrapping 

options available to test the stability of the parameter estimates initially derived (i.e. only 

the model with a fixed set of predictors in it could be bootstrapped, rather than re-selecting 

the three most important predictors separately for each bootstrap sample)110. It was 

preferred, however, over restricting the analysis to only those predictors that showed clear 

differences between trajectory groups in the descriptive data as this could mask potential 

predictors that may become significant when assessed alongside other predictors in the 

model. 

8.3.11 Multinomial logistic regression – model results 

The three strongest predictors of the hand pain trajectory group, over and above baseline 

hand pain, were: AUSCAN hand function, pinch strength and sudden symptom onset 

(Table 8-7). As an illustration of the RRR’s in Table 8-7, the RRR of 6.6 for the predictor of 

sudden onset in the “Severe” trajectory group shows that the relative risk of being in the 

“Severe” group compared to the “Mild group was 6.6 times higher for those who did not 

have a sudden onset of symptoms (i.e. had a gradual onset) compared to those reporting 

a sudden onset. The RRRs were statistically significant for all predictors when compared 

to the “Mild” group, with the exception of AUSCAN function. For this predictor the relative 

risk was not significantly inflated for a one-unit increase in AUSCAN functional difficulties 

for the “Mild deterioration” and “Episodic” categories when compared to the “Mild” group. 

The magnitude of the RRRs were comparable across trajectory groups for pinch strength, 

however for AUSCAN pain, function and sudden onset of symptoms the RRRs were 

larger for the “Severe” and “Moderate” groups compared to the remaining within-predictor 

trajectory groups of interest. 

 

                                                 
110 It was explored whether the stepwise command could be used in the statistical software SPSS 
to achieve a model that fitted the data well. This was a possibility, but as a Centre, we did not have 
a subscription for the SPSS bootstrap add-in module, so the bootstrapping aspect of the analysis 
could not be applied in SPSS 
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Table 8-7: Multinomial logistic regression results for hand pain with the “Mild” group as the reference category (N=577) 

 
Predictor 

Relative risk ratio (RRR) 
(95% CI) 

Relative risk ratio (RRR) 
(95% normal-based bootstrapped CI) 

Severe   
AUSCAN pain 13.8 (8.5, 22.4) 13.8 (7.7, 24.6) 
AUSCAN function 2.0 (1.4, 2.9) 2.0 (1.4, 3.1) 
Average pinch strength (lbs) 0.8 (0.7, 0.9) 0.8 (0.7. 0.9) 
Sudden onset of hand condition   
 One or both hands of sudden onset Ref Ref 
 Neither hand of sudden onset 6.6 (2.1, 20.6) 6.6 (2.0, 22.2) 
Mild deterioration   
AUSCAN pain 2.1 (1.6, 2.7) 2.1 (1.6, 2.7) 
AUSCAN function 1.0 (0.8, 1.2) 1.0 (0.8, 1.3) 
Average pinch strength (lbs) 0.9 (0.8, 0.9) 0.9 (0.8, 0.9) 
Sudden onset of hand condition   
 One or both hands of sudden onset Ref Ref 
 Neither hand of sudden onset 3.4 (1.9, 6.4) 3.4 (1.9, 6.4) 
Moderate    
AUSCAN pain 4.6 (3.4, 6.2) 4.6 (3.4, 6.1) 
AUSCAN function 1.5 (1.2, 1.9) 1.5 (1.1, 2.0) 
Average pinch strength (lbs) 0.9 (0.8, 0.9) 0.9 (0.8, 0.9) 
Sudden onset of hand condition   
 One or both hands of sudden onset Ref Ref 
 Neither hand of sudden onset 6.6 (3.0, 14.6) 6.6 (2.8, 15.3) 
Mild (reference group) 1 1 
Episodic   
AUSCAN pain 2.5 (1.8, 3.6) 2.5 (1.8, 3.5) 
AUSCAN function 0.9 (0.6, 1.2) 0.9 (0.6, 1.3) 
Average pinch strength (lbs) 0.9 (0.8, 1.0) 0.9 (0.8, 1.0) 
Sudden onset of hand condition   
 One or both hands of sudden onset Ref Ref 
 Neither hand of sudden onset 3.2 (1.3, 8.0) 3.2 (1.2, 8.7) 
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When hand function was considered as an outcome, the key predictors were: the physical 

component score of the SF-12, frustration with the hand condition and grip strength, along 

with baseline hand function (Table 8-8). The predictor, frustration with your hand 

condition, although included in the model overall, could only discriminate between 

subgroups developing “Mild” and “Improving” trajectories (when the “Mild” group was used 

as the reference category in the model). Removal of this predictor from the model did not 

greatly change estimates of the RRR for other predictors in the model (Table 8-8). The 

RRRs for the physical component score of the SF-12 and grip strength were similar for all 

within-predictor trajectory groups. The RRRs for AUSCAN function however were higher 

for the “Moderate” and “Severe” trajectory groups compared to the other RRRs for that 

predictor. In particular, the RRR of belonging to the “Severe” trajectory group compared to 

the “Mild” was excessively large for a one-unit change in baseline hand function, but this 

could be plausible given that there is no overlap in the baseline levels of hand function 

between these two groups (Figure 31).   

Bootstrapping the 95% confidence intervals did not change the confidence limits greatly 

from those generated directly for the hand pain model, however for hand function, there 

were several instances where the range of the 95% confidence intervals was wider when 

bootstrapping was applied, e.g. for the coefficients associated with the variable “frustration 

with their hand condition”. 
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Table 8-8: Multinomial logistic regression results for hand function with the “Mild” group as the reference category (N=526 for the 
model with “Frustration” in it; N = 543 for the model with “Frustration” omitted) 

 Hand function 
 
Predictor 

Relative risk ratio (RRR) 
(95% CI) 

Relative risk ratio (RRR) 
(95% normal-based 

bootstrapped CI) 

Relative risk ratio (RRR) 
omitting frustration with hand 

condition 
(95% normal-based 

bootstrapped CI) 
Moderate    
AUSCAN function 40.3 (20.8, 78.0) 40.3 (17.6, 92.0) 39.9 (18.4, 86.5) 
Physical component score of the SF-12 (0-100) 0.9 (0.8, 0.9) 0.9 (0.8, 0.9) 0.9 (0.8, 0.9) 
Average grip strength (lbs) 0.9 (0.9, 1.0) 0.9 (0.9, 1.0) 0.9 (0.9, 1.0) 
Frustration with hand condition    
 All days or most days Ref Ref N/A 
 Some, few or no days 2.1 (0.3, 13.1) 2.1 (0.2, 22.4) N/A 
Severe    
AUSCAN function 212.9 (86.5, 523.9) 212.9 (70.9, 638.9) 206.9 (74.0, 578.2) 
Physical component score of the SF-12 (0-100) 0.8 (0.8, 0.9) 0.8 (0.8, 0.9) 0.8 (0.8, 0.9) 
Average grip strength (lbs) 0.9 (0.9, 1.0) 0.9 (0.9, 1.0) 0.9 (0.9, 1.0) 
Frustration with hand condition    
 All days or most days Ref Ref N/A 
 Some, few or no days 2.6 (0.3, 21.9) 2.6 (0.2, 38.4) N/A 
Improving    
AUSCAN function 25.0 (13.5, 46.3) 25.0 (12.5, 50.2) 20.5 (10.9, 38.6) 
Physical component score of the SF-12 (0-100) 1.0 (0.9, 1.0) 1.0 (0.9, 1.0) 1.0 (0.9, 1.0) 
Average grip strength (lbs) 1.0 (1.0, 1.0) 1.0 (0.9, 1.0) 1.0 (0.9, 1.0) 
Frustration with hand condition    
 All days or most days Ref Ref N/A 
 Some, few or no days 11.8 (1.6, 85.6) 11.8 (0.4, 385.3) N/A 
Progressively deteriorating    
AUSCAN function 6.3 (4.0, 10.2) 6.3 (3.9, 10.5) 6.0 (3.7, 9.6) 
Physical component score of the SF-12 (0-100) 0.9 (0.9, 1.0) 0.9 (0.9, 1.0) 0.9 (0.9, 1.0) 



272 
 

Average grip strength (lbs) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 
Frustration with hand condition    
 All days or most days Ref Ref N/A 
 Some, few or no days 3.6 (0.6, 22.4) 3.6 (0.0, 2519.5) N/A 
Mild/Moderate    
AUSCAN function 3.0 (2.0, 4.5) 3.0 (2.0, 4.6) 3.2 (2.1, 4.9) 
Physical component score of the SF-12 (0-100) 1.0 (0.9, 1.0) 1.0 (0.9, 1.0) 1.0 (0.9, 1.0) 
Average grip strength (lbs) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 
Frustration with hand condition    
 All days or most days Ref Ref N/A 
 Some, few or no days 0.7 (0.2, 2.7) 0.7 (0.2, 3.4) N/A 
Mild (reference group) 1 1 1 
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8.3.12 Model goodness-of-fit and model performance 

The Nagelkerke’s pseudo R-square and the Brier scores for the hand pain and function 

models suggest that the models are a reasonable fit to the data (Table 8-9) and 

discriminate well between the respective “Mild” reference categories and each trajectory 

group, as determined by high C-statistics (Table 8-9) and median predicted probabilities 

that are consistently higher in the observed group related to the predicted probability (i.e. 

the box shown in green on Figure 32 and Figure 33). As expected, the model is better 

able to discriminate between “extreme” groups, i.e. between the “Severe” and “Mild” 

groups than those that are more in the middle range, for example, ability of the model to 

discriminate those in the “Episodic” group for the hand pain model and the “Progressively 

deteriorating” group for the hand function model, is less apparent on the plots presented 

(Figure 32, panel 5; Figure 33, panel 4).  High C-statistics also reflect this as they are 

each calculated relative to the “Mild” reference group so discrimination is likely to be high 

for those trajectory groups with baseline scores (especially) that differ greatly from the 

“Mild” reference group.   
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Table 8-9: Overall model goodness of fit and C-statistics comparing each trajectory group to the “Mild” reference category 

 Nagelkerke’s pseudo R-square Brier score C-statistic 
(95% confidence interval) 

Hand pain    
 Mild (reference group) 

0.70 0.51 

 
 Severe 0.99 (0.98, 1.00) 
 Mild deterioration   0.78 (0.73, 0.84) 
 Moderate 0.97 (0.95, 0.98) 
 Episodic 0.79 (0.72, 0.87) 
Hand function 

0.83 0.49 

 
 Mild (reference group)  
 Moderate 1.00 (0.99, 1.00) 
 Severe  1.00 (1.00, 1.00) 
 Improving 0.99 (0.98, 1.00) 
 Progressively deteriorating 0.93 (0.89, 0.96) 
 Mild/Moderate 0.83 (0.78, 0.88) 
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Figure 32: Discrimination box plots for the trajectory groups derived from the 5-group LCGM for hand pain 
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Figure 33: Discrimination box plots for the trajectory groups derived from the 6-group LCGM for hand function 
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Reasonable model calibration was also achieved for both hand pain and function with 

data points lying close to the 45 degree line (Figure 34 and Figure 35). Exceptions were 

the “Episodic” group for hand pain and the “Improving” and “Progressively deteriorating” 

groups for hand function (where some points deviated from the 45 degree line), but this 

could be due to a small sample size in the group for which the observed probability was 

calculated. Model accuracy was also reasonable, although only 61% of participants 

belonged to the same trajectory group as given in the LCGM when a maximum probability 

rule was used to assign participants to groups based on the predicted probabilites from 

the multinomial model i.e. (354/577 for hand pain and 320/526 for hand function) (Table 

8-10 and Table 8-11). It was also observed that in the hand pain model, no participants 

were assigned to the “Episodic” group suggesting that when a “maximum probability” rule 

is used to assign participants to groups, the “Episodic” group is not clearly identified.    
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Figure 34: Calibration plots for each trajectory group derived from the 5-group LCGM for hand pain 
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Figure 35: Calibration plots for each trajectory group derived from the 6-group LCGM for hand function 
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Table 8-10: Model Accuracy from the hand pain model 

Trajectory 
group from 
the LCGM 

Trajectory group membership predicted from the 
multinomial logistic regression 

Total 

 Severe Mild 
deterioration 

Moderate Mild Episodic  

Severe 54 0 19 1 0 74 
Mild 
deterioration 
  

1 77 36 37 0 151 

Moderate 12 30 139 2 0 183 
Mild 0 40 6 84 0 130 
Episodic 1 15 9 14 0 39 
Total 68 162 209 138 0 577 
 

Table 8-11: Model Accuracy from the hand function model 

Trajectory 
group from the 

LCGM 

Trajectory group membership predicted from the multinomial logistic 
regression 

Total

 Moderate Severe Improving Progressively 
Deteriorating 

Mild/ 
Moderate 

Mild  

Moderate 80 9 9 5 2 1 106 
Severe  15 28 0 0 0 0 43 
Improving 21 1 26 4 8 1 61 
Progressively 
Deteriorating 

5 0 8 7 32 6 58 

Mild/Moderate 6 0 3 3 62 38 112 
Mild 0 0 1 1 27 117 146 
Total 127 38 47 20 131 163 526 
 

A key finding from the results of the LCGM is that for both hand pain and function, the 

baseline measure in the outcome of interest is a strong predictor of trajectory group 

membership, so the question arises: by how much does model goodness of fit and 

predictive validity improve by including the extra predictors in the model? This was tested 

by repeating the assessment of model goodness of fit and predictive validity for the model 

where only the baseline value for the outcome of interest was included as a predictor. This 

analysis showed that the fit and performance of the model was not greatly degraded by 

removing the additional predictors from the model (data given in Appendix 35).      
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8.4 Discussion 

8.4.1 Summary of the key findings 

In this chapter, LCGM have been used to identify groups of participants that, between 

groups, have differing trajectory shapes over time for hand pain and function, with a 5-

group cubic model found to be optimal for hand pain and a 6-group quadratic model for 

hand function. For both hand pain and function, groups of participants were identified with 

“Mild” and “Severe” problems that were maintained at a similar level throughout the 

course of the study, with the “Severe” group characterised at baseline as being more likely 

to be female, to have worse hand-related characteristics, more psychological difficulties, 

poorer general health, to not be in current employment, to be less likely to drink on a 

regular basis and have to be careful with money to manage on the income they have than 

those in the “Mild” group.  

Progressively deteriorating groups were shown for each outcome however the pattern of 

deterioration depended on the outcome considered. Progressively deteriorating groups 

were characterised by having poorer general health, higher rates of pain elsewhere in the 

body, longer duration of symptoms, gradual rather than acute onset, more frustration with 

their hand problem, having a bilateral problem, having more joints with radiographic OA, 

not being married or co-habiting, and having carpal tunnel syndrome. A group of 

participants showing improvement over time was identified in the hand function model 

only. 

When the predictors were assessed in combination to explore those that predicted 

trajectory group membership, the key predictors emerging for hand pain were: AUSCAN 

hand function, pinch strength and sudden onset of symptoms (over and above baseline 

hand pain) and for hand function: the physical component score of the SF-12, frustration 

with the hand condition and grip strength (over and above baseline hand function). 

Although the models are limited in their derivation (as discussed earlier), they each show 
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a reasonable fit to the data, however, this goodness of fit is not greatly improved by 

having the additional predictors in the model over and above the baseline value for the 

outcome of interest.     

8.4.2 Comparison with the literature 

As discussed in the previous chapter, there is a lack of evidence around the likely course 

of hand pain and function in older adults so consequently, no studies have been found 

that use LCGM to explore whether subgroups of trajectories of pain and function exist in a 

similar population to CAS-HA. LCGM, however, have been used to explore symptom 

course in other musculoskeletal populations and although based in other body sites, there 

are some parallels to the findings for hand pain and function presented in this chapter. For 

example, both Collins at al. (2014) and Holla et al. (2014) have shown groups of 

participants with (on average) stable trajectories over a 6- and 5-year time frame for knee 

pain and activity limitations respectively, whereas, along with groups of participants that 

remained stable over time, Verkleij et al. (2012) also showed two groups of participants 

with regularly and highly progressively symptom deterioration in participants with hip OA 

over a period of 2-years. A further study explored replication of trajectory groups in two 

cohorts of patients with knee pain that were sampled to each have matching baseline 

characteristics. They showed three groups of participants with stable trajectories over time 

(“Mild, non-progressive”, “Moderate” and “Severe, non-improving”), and two further groups 

showing “Improving” and “Progressing” symptoms, that although identified, were more 

difficult to replicate in an external (matched) data sample (Nicholls et al. 2014).    

When the baseline characteristics of the trajectory groups were explored the findings were 

plausible and in line with several cross-sectional studies of pain and function, albeit in 

differing populations to CAS-HA111. Examples include cross-sectional evidence for the 

relationship between pain severity and depression (Denkinger et al. 2014), anxiety (Swain 

                                                 
111 Cross-sectional studies are relevant here as a key factor that distinguishes several trajectory 
groups is their baseline starting value 



283 
 

et al. 2014), and grip and pinch strength for hand pain specifically (Dominick et al. 2005). 

Differences in baseline characteristics therefore support the rationale for grouping 

participants based on their trajectories over time as, although not possible to show reliably 

in this data, it can then be explored whether combinations of these variables can then be 

used to give helpful information to participants on the course of their problem over time.    

8.4.3 Strengths and limitations   

Choice on the number of groups to include in the LCGM 

A multi-stage and multi-criteria approach was used to select the optimum number of 

groups for the LCGM in this chapter, which highlights the exploratory nature of this type of 

analysis. Using a different emphasis to balance the multiple model selection criteria could 

have produced differing optimal models than those presented (e.g. if statistical fit indices 

were used in isolation then this may have indicated that a different model be regarded as 

optimal). Both statistical fit and clinical interpretability were considered in this chapter to 

choose the optimal model, to try and gain further understanding of the data over and 

above what had been gained in the analysis of the data using growth modelling in Chapter 

6112.  

The plots of the trajectories within each latent group show that although each trajectory 

group is characterised by a mean trajectory over time, there is still a lot of variation of the 

trajectories around each mean trajectory curve. Ideally this variation would have been 

modelled using GMM, however, these models failed to produce interpretable results when 

they were applied. This therefore highlights the difficulties and limitation of considering the 

groups as distinct entities as it needs to be recognised that not all participants in the group 

exactly follow the average trajectory line as given for the group, however, they have been 

allocated to the group that most likely represents their trajectory, thus providing a useful 

                                                 
112 It was recognised that if optimal models were chosen whose groups were only differentiated by 
their intercept then this would offer little more understanding of the data than could be gained by 
including a random intercept term in a growth model. 
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descriptive technique to view the data and explore the range of trajectory shapes 

contained within it.     

In this chapter clinical interpretability was evident if there was at least one group in the 

model that showed a trajectory shape that changed over time. Alternative definitions of 

clinical interpretability could have been used, such as defining groups that differ by the 

treatment options available or potentially suitable to them. In this population-based 

sample, where not all participants have sought healthcare for their hand problems, a 

prognostic definition was considered useful in order to define and characterise a group of 

participants whose hand pain and function are likely to remain at a low level over a long 

time course, to offer them information about their prognosis, in contrast to others with 

more severe problems where onward referral for help and support may be needed.  

Sample size may also influence decisions regarding the optimal model. For example, with 

a sample size of around 600 participants there will only be a finite number of times that 

the sample can be split before one group is extracted that has a small sample size. It is 

therefore likely that given the sample size there is a maximum number of groups that can 

be extracted from that data before within-group sample sizes become too small to be 

reliable. This is a plausible problem, however as multiple indices are used to select the 

optimal model (not just the sample sizes in the groups of interest) it could still be that a 

model with 2-4 groups could be optimal. In addition, the criteria on sample size is 

regarding the percentage of participants in each group not falling below 1-5%, rather than 

the actual number of participants in each group per se so it is less likely to depend on the 

actual size of the sample analysed.   

Defining the polynomial form in the data 

In the analysis presented, when higher order polynomials were included in the model they 

were included in all groups irrespective as to whether they were non-significant in some 

groups (even though this was counter to the approach taken in Chapter 7 where all terms 
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were removed from the model if they are non-significant). This approach was taken as 

programming difficulties were encountered in Mplus when it was attempted to fit a model 

with a different form of polynomial in each group113. It was also highlighted on the 

discussion board associated with the Mplus software that it was often simpler to leave 

non-significant polynomial terms in the model unless there was a strong theoretical reason 

why a lower order model needs to be assumed for a particular trajectory group of interest 

(Muthen 2008b) and hence this approach was followed.    

The use of multinomial logistic regression to predict the outcome of interest 

Multinomial logistic regression was used in this chapter to model trajectory group 

membership and has the advantage over the models fitted in Chapter 7 that model 

performance can more easily be tested when participants are divided into groups of 

interest. The results of this model also have greater clinical applicability as it is plausible 

that model results could be used to predict how likely it is that a particular patient would 

have an unfavourable clinical course given their key characteristics that are in the model 

at baseline; a model that could either be applied in a consultation setting or possibly as a 

web-based tool for patients to complete online to provide guidance regarding self-

management or consulting healthcare. Although this is the ultimate goal for analysis, this 

was limited by difficulties that arose when applying the multinomial model to the data.    

Firstly, as previously mentioned, a small sample size in some of the trajectory groups is a 

severe limitation to the number of predictors that can be explored in the data. Although 

bootstrapping was used as a potential way to address this issue, the only true way to 

                                                 
113 It was difficult to program different polynomial forms for each group in Mplus as when the 
polynomial term was set to 0, the variance term associated with it was still modelled in the data. It 
was not intuitive how to remove it from the model, and also it was hard to specify code such as “if 
group = 1 then x2 = 0 because group 1 isn’t always group 1 when a new model is run with a 
different random start i.e. the order that groups are extracted from the data can change depending 
on what random start is used. The proctraj program (available in the SAS computer program and 
with conversion code to STATA) was explored as an alternative analysis program as it was 
straightforward to program different polynomials for each group using this program. This wasn’t an 
option however as the Satorra-Bentler Scaled Chi-square test was not available using this program 
and this was needed to analyse the skewed outcome 
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address this problem is to run the model on a larger data set with a larger number of 

participants than those in the CAS-HA study. An alternative solution would be to try and 

reduce the number of trajectory groups that are modelled, e.g. by pooling some of the 

groups together, however, it would be difficult to justify which groups are similar to each 

other to be pooled when they had previously be shown to be distinct using LCGM.  

Using stepwise-regression is also a limitation of the analysis for reasons similar to those 

described in Chapter 7. One option for the multinomial analysis could have been to use 

the descriptive data in Table 8-4 and Table 8-5 to pre-select important predictors of 

interest to then take forward as a subset of variables to the multinomial logistic regression 

stage. This approach however was not pursued as some predictors may become 

significant/non-significant when assessed in the presence of other predictors of interest.    

In addition, as previously alluded to, a further difficulty with this analysis is in the variation 

that occurs within the trajectory groupings and also the potential for overlap between 

participants at “the edges” of each trajectory group. In the multinomial model participants 

are assumed to either be “in the group” or “not in the group”, but the data show that even 

when participants are “in the group” there is still variability of trajectory shapes that occur 

even though they have all been given the same label of being “in the group”. This issue 

will always occur however, when a measure that is essentially continuous, is made into a 

categorical variable for the purpose of being a useful variable to aid clinical decision 

making.  

A further limitation could be around the reliability of some of the estimates that have been 

produced. It is clear, even without using a multinomial model, that the baseline level of the 

outcome of interest is a clear predictor of trajectory group membership. As the baseline in 

the outcome of interest is such a strong predictor it may be overly dominating the model 

so that other predictors were not reliably estimated after such a strong predictor is 
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considered114. The baseline was included in the model however, as it clearly is a predictor 

of trajectory group membership and, if it were not included, then the predictors selected to 

be in the model were more likely to be those that were markers of the baseline starting 

value, i.e. variables that are highly correlated with the baseline in the outcome of interest, 

rather than those that were predictive of the course of the outcome over time. 

A further limitation to the analysis presented is that the performance of the model has 

been tested on the same data that was used to develop it, which is a key limitation of the 

findings. The performance of the model is likely to be over-optimistic than if it were tested 

on an external dataset. It was considered whether to use bootstrapping to adjust for over-

optimism as per the procedure outlined in Appendix 36, but this approach was not used as 

it would be computationally difficult to write a program to apply this method to a 

multinomial model115. 

Despite the comprehensive discussion of the limitations of this analysis, the results have 

been included in this thesis as the process of developing and testing a prognostic model 

has provided useful training and professional development during the course of writing 

this thesis. It also demonstrates research skills that can be applied in future research 

projects. A fuller description of the predictive ability of the model is therefore needed in an 

external data set with a larger sample size to test for replication of the trajectory groups 

and where a fuller exploration of potential predictors, with reliable parameter estimates 

can be conducted.  Consequently the assessment of goodness of fit and predictive validity 
                                                 
114 An example of this is that the estimate for baseline hand function for the “Severe” group, 
compared to the “Mild” group in the hand function model is 212.9 (95% confidence interval: 86.5, 
523.9). This is interpreted as the factor by which the relative risk increases for a one point increase 
in the AUSCAN. This is very large, but somewhat understood, as it is observed that virtually 
everyone in the “Severe” group has a baseline AUSCAN function score > 5 and everyone in the 
“Mild” group a score <=5. Baseline hand function is therefore acting as a near-perfect predictor of 
trajectory group membership for the “Severe” group compared to the “Mild” group, which may be 
leading to unreliable parameter estimates especially when the confidence intervals around the 
RRRs are also very large 
115 It would be computationally difficult to adjust model fit for overestimation as the conditional risk 
method would need to be applied to generate multiple C-indexes, and, in the context of this model, 
a forward stepwise process could only be applied “by hand”. This would make automation of the 
process difficult to apply to a large set of bootstrapped samples        
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of the model has been kept brief, so other, newer, or more complex measures of model fit 

have not been explored, e.g. using the polychotomous C-index which aims to combine the 

information across all of the pairwise C-indexes presented in this chapter into an overall 

index of model fit (Van Calster et al. 2012b).  

A final potential limitation of the work presented in this chapter (and also that presented in 

Chapters 6 and 7) is that it assumes that hand pain and hand function are two separate 

independent outcomes, whereas in reality these outcomes are likely to be related within 

any individual. It is this concept that is therefore explored further in the next chapter 

(Chapter 9).  
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9 Joint trajectory modelling 

9.1 Introduction 

In the previous results (Chapters 6 - 8), hand pain and function were modelled as two 

separate (independent) outcomes. However, given knowledge of the constructs, and 

several cross-sectional studies that have shown that these two outcome measures are 

related at a single time-point (Baron et al. 1987, Dahaghin et al. 2005b), it is plausible that 

the trajectories over time of these outcomes are associated. To explore this further, two 

objectives are addressed in this chapter:  

Objective 1: To quantify the strength of the relationship between the trajectory curves for 

hand pain and function and to specifically explore whether the cross-sectional 

associations previously reported extend to an association between the longitudinal 

trajectories for these outcomes over time.   

Objective 2: To explore whether groups of participants can be identified that have differing 

trajectories of hand pain and function over time, and, if so, whether characteristics of such 

participants can be identified that explain why the trajectories for pain and function differ 

within each participant identified.      

9.2 Methods  

9.2.1 Objective 1 – association between the trajectory curves for hand pain and 

function 

To address Objective 1, parallel process growth models (as described in Chapter 5) were 

fitted to the data to quantify the magnitude of the association between the random 

coefficients included in the individual growth models for hand pain and function. Initially a 

linear model was fitted to the data (i.e. to explore the associations between the random 

intercepts and random slope terms for hand pain and function respectively). The linear 

model was then extended to include two quadratic terms (one for hand pain and one for 
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hand function) and was used to explore whether the findings from the linear model were 

replicated when a quadratic (rather than linear) trajectory was assumed for each outcome 

of interest. In addition, it was also explored whether there was a relationship between the 

quadratic term for hand pain and the quadratic term for hand function. 

9.2.2 Objective 2 – can distinct groups of participants be identified with similar 

trajectories of hand pain and function over time? 

Parallel process latent class growth models (PPLCGM) were used to identify an optimum 

number of latent groups to describe the joint trajectory of hand pain and function over 

time116. Initially a linear model was assumed for both hand pain and function and a search 

for the optimum number of groups undertaken using the strategies described for LCGM in 

Chapter 5. It was then tested whether the addition of a quadratic or cubic term improved 

model fit and also whether the choice of the optimum number of groups was the same 

irrespective of the polynomial form used to model the data.  

9.3 Results 

9.3.1 Objective 1 - association between the trajectory curves for hand pain and 

function 

When a linear parallel process growth model was fitted to the data it did not produce 

plausible estimates as the correlation between the random slope for hand pain and the 

random slope for hand function was greater than 1 (correlation = 1.231; 95% confidence 

interval: 1.03, 1.43). A personal communication with one of the developers of the Mplus 

software (Linda Muthen) suggested that this type of problem often happens if it is 

incorrectly assumed that the correlation between two outcomes at a single time-point is 

zero (i.e. the correlation between hand pain and function at each time point is zero).  

As it is plausible that hand pain and function would be correlated at each time point these 

additional correlations were added to the model. The results of this additional analysis are 
                                                 
116 PPLCGM was used rather than a parallel process growth mixture model (PPGMM) as the 
PPGMM produced models with correlations greater than one that were implausible   
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shown in column 2 of Table 9-1 and, where relevant, are presented as variances and co-

variances as this is the primary output given in the Mplus software. Only the key 

coefficients of interest from the model are converted into correlation coefficients for ease 

of interpretation, giving an estimated correlation between the random intercept for hand 

pain and function of 0.88 (95% confidence interval: 0.84, 0.93) and a correlation between 

the random slopes as 0.78 (0.52, 1.04).  

The results of this model were stable when a quadratic term was included in the model 

(Table 9-1, column 3), with correlations of: 0.88 (95% confidence interval: 0.82, 0.94) 

between the random intercept terms, 0.88 (0.58, 1.19) between the random slopes and 

0.76 (0.36, 1.16) between the random quadratic terms. However, the confidence intervals 

associated with slope and quadratic terms were wide and their upper bound exceeded 

one (see Appendix 37 for details on the process used to define the quadratic model used 

in the analysis).  
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Table 9-1: Parallel process model of hand pain and functional difficulty trajectories over time 

 Column 1 Column 2 Column 3 
 

Linear model 
Linear model with 

correlation between 
concurrent time points 

Quadratic model with 
correlation between 

concurrent time points 
    
Relationship between hand pain and function     
    
Prediction    
 Hand pain intercept → hand function slope -0.01 (-0.03, -0.00) 0.02 (-0.00, 0.03) 0.01 (-0.06, 0.09) 
 Hand function intercept → hand pain slope  -0.02 (-0.03, -0.00) 0.01 (-0.01, 0.02) 0.02 (-0.03, 0.08) 
 Hand pain intercept → hand function quadratic N/A N/A -0.00 (-0.01, 0.01) 
 Hand function intercept → hand pain quadratic N/A N/A -0.00 (-0.01, 0.00) 
    
Covarianceα between polynomial model terms    
    
 Hand pain intercept and hand function intercept 3.76 (3.29, 4.22)     3.26 (2.75, 3.77) 3.23 (2.56, 3.90) 
 Hand pain slope and hand function slope 0.04 (0.03, 0.05)    0.01 (-0.00, 0.02) 0.09 (-0.03, 0.20) 
 Hand pain quadratic and hand function quadratic N/A N/A 0.00 (-0.00, 0.00) 
 Hand pain slope and hand function quadratic N/A N/A -0.01 (-0.02, 0.00) 
 Hand function slope and hand pain quadratic N/A N/A -0.01 (-0.02, 0.00) 
 Hand pain slope and hand pain quadratic N/A N/A -0.01 (-0.03, 0.00) 
 Hand function slope and hand function quadratic N/A N/A -0.01 (-0.02, 0.01) 
    
Covarianceα between concurrent time-points    
    
 Baseline hand pain and baseline hand function  N/A 0.84 (0.55, 1.13) 0.72 (0.27, 1.17) 
 18-month hand pain and 18-month hand function N/A 1.62 (1.25, 2.00) 1.63 (1.25, 2.02) 
 3-year hand pain and 3-year hand function N/A 0.67 (0.47, 0.87) 0.55 (0.33, 0.76) 
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 5-year hand pain and 5-year hand function  N/A 0.74 (0.53, 0.95) 0.71 (0.49, 0.93) 
 7.5 year hand pain and 7.5-year hand function N/A 0.73 (0.43, 1.03) 0.61 (-0.02, 1.23) 
 
Hand pain model 
 
Fixed estimates 

   

 Intercept (αZ) 3.12 (2.96, 3.29) 3.14 (2.98, 3.31) 3.10 (2.93, 3.27) 
 Time (βZ1) 0.10 (0.06, 0.14) 0.03 (-0.02, 0.08) 0.05 (-0.11, 0.21) 
 Time squared (βZ2) N/A N/A -0.00 (-0.02, 0.02) 
    
Variance    
 Intercept (ߪఈ௭ଶ ሻ 3.52 (3.07, 3.97)   3.13 (2.67, 3.59) 3.05 (2.49, 3.60) 
 Slope ሺߪఉ௭ଵ

ଶ ) 0.03 (0.02, 0.04) 0.01 (0.00, 0.03) 0.10 (-0.01, 0.21) 

 Quadratic ሺߪఉ௭ଶ
ଶ ) N/A N/A 0.00 (0.00, 0.00) 

    
Residual – variance (	ߪఌ௭௧

ଶ ሻ    
 Baseline 1.43 (1.15, 1.70) 1.80 (1.48, 2.12) 1.72 (1.31, 2.14) 
 18-months 2.27 (1.85, 2.70) 2.42 (1.99, 2.84) 2.38 (1.93, 2.82) 
 3-years 1.61 (1.34, 1.88) 1.63 (1.36, 1.90) 1.47 (1.17, 1.77) 
 5-years 1.33 (1.09, 1.57) 1.39 (1.13, 1.64) 1.40 (1.12, 1.68) 
 7.5-years 1.30 (0.98, 1.62) 1.49 (1.11, 1.87) 0.96 (0.17, 1.75) 
    
Hand function model    
    
Fixed estimates    
 Intercept (αY) 2.79 (2.61, 2.98) 2.80 (2.61, 2.98) 2.73 (2.55, 2.92) 
 Time (βY1) 0.12 (0.08, 0.16) 0.03 (-0.03, 0.08) 0.11 (-0.10, 0.33) 
 Time squared (βY2) N/A N/A -0.01 (-0.03, 0.02) 
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Variance    
 Intercept (ߪఈ௒

ଶ ሻ 4.79 (4.26, 5.31) 4.36 (3.83, 4.90) 4.42 (3.70, 5.13) 
 Slope ሺߪఉ௒ଵ

ଶ ) 0.03 (0.02, 0.04) 0.01 (0.00, 0.03) 0.09 (-0.03, 0.21) 

 Quadratic ሺߪఉ௒ଶ
ଶ ) N/A N/A 0.00 (-0.00, 0.00) 

    
Residual – variance (	ߪఌ௧

ଶ ሻ    
 Baseline 0.91 (0.67, 1.14) 1.17 (0.85, 1.48) 1.02 (0.53, 1.50) 
 18-months 1.72 (1.35, 2.09) 1.85 (1.46, 2.23) 1.87 (1.47, 2.26) 
 3-years 1.00 (0.79, 1.20) 0.96 (0.75, 1.18) 0.86 (0.62, 1.09) 
 5-years 0.96 (0.74, 1.18) 0.99 (0.74, 1.24) 0.94 (0.70, 1.19) 
 7.5-years 0.91 (0.62, 1.19) 1.06 (0.72, 1.40) 0.97 (0.29, 1.65) 
    
SB scaled chi-square test    
    
Model 1 vs Model 2 2  = 566.06 (d.f. = 5); p < 0.001  
Model 2 vs Model 3  2  = 20.15 (d.f. = 11); p = 0.043 
   
Model fit    
    
Akaike (AIC) 18341 17520 17519 
Bayesian (BIC) 18439 17639 17688 
Sample-size adjusted Bayesian (BIC) 18369 17554 17567 
Unless otherwise stated, figures are parameter estimates and 95% confidence intervals (based on robust standard errors) in brackets. α Note that co-variances are 
given in the table rather than correlations, so it’s not appropriate to test whether the correlation is significant by assessing whether the 95% confidence interval for the 
covariance spans zero. Z = hand pain process, Y = Hand function process, p = p-value, N/A = not applicable, SB = Satorra-Bentler, → = predicts. 
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9.3.2 Objective 2 – can groups of participants be identified with similar trajectories 

of hand pain and function over time? 

The optimum number of latent groups was not clear from the goodness-of-fit statistics 

presented in Table 9-2. Both the unadjusted and adjusted VLMR LRTs suggested that a 

2-group model was optimal whereas the AIC, BIC and ABIC did not reach a minimum 

value when models with up to seven groups were considered (models with greater than 

seven groups were not considered as this resulted in several groups containing <5% of 

the total sample size). All entropy values and posterior probabilities were greater than 0.8 

and 0.7, respectively, so this did not give clear guidance as to the optimal model.  

However, inspection of the trajectory plots from all models revealed a consistent pattern 

as within all trajectory groups, in all models, the trajectory shape for hand pain and 

function was similar, e.g. no trajectory groups were identified that contained participants 

whose hand pain increased over time but where their hand function had remained stable, 

nor those with increasing hand pain followed by an increase in functional difficulty (see 

Figure 36 and Figure 37 for a graphical display of the linear model). Although some 

groups were defined by having slightly higher hand pain than functional difficulty and vice 

versa, this is a tentative comparison as although the two outcomes are measured on a 

scale of 0-10, the content of the questions that make up each scale still differs between 

the outcomes. It was therefore not possible to select an optimal PPLCGM in the data that 

could be used to identify groups of participants with differing trajectories of hand pain and 

function over time; a result that did not change when a quadratic or cubic curve was 

assumed in the data (data not shown).   
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Table 9-2: Goodness-of-fit Statistics for PPLCGM fitted to AUSCAN Pain and function (N=621α) 

Model 
type 

AIC BIC ABIC Entropy
VLMR 
LRT 

Adjusted 
LMR 
LRT 

PB LRT Group N Average posterior probability 

Linear          
1 22644 22706 22662 N/A N/A N/A N/A 621 1.0 
2 19896 19980 19920 0.93 p<0.001 p<0.001 p<0.001 359, 262 0.98, 0.97 
3 19070 19177 19100 0.90 p=0.079 p=0.083 p<0.001 122, 284, 215 0.94, 0.98, 0.93 
4 18730 18859 18767 0.86 p=0.021 p=0.022 p<0.001 176, 178, 183, 84 0.92, 0.92, 0.89, 0.96 
5 18577 18728 18620 0.84 p=0.212 p=0.218 p<0.001 142, 58, 113, 185, 123 0.88, 0.93, 0.89, 0.88, 0.91 
6 18507 18680 18556 0.83 p=0.109 p=0.113 p<0.001 125, 103, 178, 25, 67, 123 0.85, 0.83, 0.88, 0.88, 0.87, 0.90 
7 18435 18630 18490 0.82 p=0.278 P=0.287 p<0.001 122, 93, 109, 21, 173,76, 27 0.89, 0.82, 0.81, 0.89, 0.87, 0.84, 0.89 

Quadratic          
1 22645 22716 22665 N/A N/A N/A N/A 621 1.0 
2 19892 19994 19921 0.93 p<0.001 p<0.001 p<0.001 356, 265 0.98, 0.97 
3 19065 19198 19102 0.90 p=0.097 p=0.100 p<0.001 286, 121, 214 0.97, 0.94, 0.93 
4 18720 18884 18767 0.86 p=0.022 p=0.023 p<0.001 179, 86, 182, 174 0.92, 0.96, 0.89, 0.92 
5 18569 18764 18624 0.84 p=0.437 p=0.441 p<0.001 58, 113, 126, 138, 186 0.92, 0.89, 0.91, 0.89, 0.87 
6 18499 18725 18563 0.83 p=0.268 p=0.271 p<0.001 174, 117, 64, 119, 24, 123 0.84, 0.90, 0.93, 0.87, 0.90, 0.90 
7 18421 18678 18494 0.82 p=0.131 p=0.134 p<0.001 95, 123, 25, 107, 172, 71, 28 0.83, 0.90, 0.91, 0.83, 0.84, 0.86, 0.89 

Cubic          
1 22648 22728 22671 N/A N/A N/A N/A 621 1.0 
2 19896 20015 19930 0.93 p<0.001 p<0.001 p<0.001 356, 265 0.98, 0.97 
3 19074 19234 19119 0.90 p=0.110 p=0.113 p<0.001 120, 215, 286 0.95, 0.93, 0.97 
4 18720 18920 18777 0.86 p=0.036 p=0.037 p<0.001 182, 87, 175, 177 0.91, 0.95, 0.92, 0.90 
5 18575 18814 18642 0.84 p=0.664 p=0.665 p<0.001 178, 137, 145, 53, 108 0.89, 0.90, 0.89, 0.91, 0.89 
6 18488 18767 18567 0.84 p=0.331 p=0.332 p<0.001 152, 40, 114, 63, 100, 152 0.91, 0.91, 0.84, 0.82, 0.89, 0.91 
7 18403 18722 18493 0.84 p=0.215 p=0.216 p<0.001 43, 122, 125, 146, 38, 52, 95 0.91, 0.86, 0.86, 0.91, 0.90, 0.81, 0.89 

Highlighting indicates models with the lowest AIC, BIC, ABIC values, models with one group less than the model with a non-significant LRT p-value, group frequencies less than 5% of the 
sample (i.e. N <30) and posterior probabilities <0.7. All models achieved a global solution as in each model the largest log-likelihood was replicated for more than two random starting 
values  Two participants were excluded from the analysis as they had no data at all time-points. AIC = Akaike Information Criteria, BIC = Bayesian Information Criteria, ABIC = Sample-
size adjusted BIC, VLMR LRT = Vuong-Lo-Mendell-Rubin likelihood ratio test, LMR LRT = Lo-Mendell-Rubin likelihood ratio test, PBLRT = parametric bootstrapped likelihood ratio test, 
N/A = not applicable, p = p-value 
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Figure 36: Linear PPLCGM for AUSCAN Pain (blue) and function (green) stratified by the number of trajectory groups in the model 
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Figure 37: Linear PPLCGM for AUSCAN Pain (blue) and function (green) stratified by the number of trajectory groups in the model 
(continued)   
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9.4 Discussion  

9.4.1 Summary of the key findings 

It has been shown in this chapter that there is a close relationship between the course of 

hand pain and function over time; however, when expressed in a longitudinal model, there 

is more certainty around the strength of the relationship between the model’s intercepts 

(severity of pain & limitations at baseline) than their slope or quadratic terms (changes 

over time), with the 95% confidence intervals for the latter associations being wide and 

with an upper limit slightly above one. The association between the model intercepts is 

plausible given that previous cross-sectional studies have shown that hand pain and 

function are associated at a single time point (Baron et al. 1987, Dahaghin et al. 2005b). 

As no groups of participants were identified in the PPLCGM that had differing trajectories 

of hand pain and function over time, this gives further support that hand pain and function 

are closely related at baseline and over time.  

9.4.2 Comparison with the literature       

No other studies were found that have used PPGM or PPLCGM to model the relationship 

between hand pain and function over time, however PPGM have been used in a study of 

knee OA to explore the relationship between statin use and knee pain, knee function and 

OA structural progression (Riddle et al. 2013). This is therefore a relatively new statistical 

technique applied in this field so comparisons with other studies in the literature are 

limited. 

A comparison can however be made to other data in this thesis by questioning why it is 

that different baseline predictors are selected in Chapter 7 as predictors of the trajectory 

of hand pain and function over time when it has been shown in this chapter that the two 

trajectories are highly correlated. This could occur as it is plausible that there could be 

several competing models, each with different predictors in them that could be equally 

good at predicting the outcome. However, another alternative explanation could be that 
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even though the point estimate for the correlations are high, the 95% confidence intervals 

around these correlation estimates are particularly wide, especially for the model slope 

and quadratic terms, so within these models there is still uncertainty in the data as to the 

true estimate of the correlations between the trajectory parameters of interest for hand 

pain and function. This lack of certainty in the correlation could therefore express itself by 

selection of differing sets of predictors for hand pain and function.     

9.4.3 Strengths and weaknesses 

A key strength of the analysis in this chapter is that data from all time-points have been 

included in the model to explore the relationship between hand pain and functional 

difficulty over time. This is preferred over looking at the correlation (for example) between 

change scores for hand pain and function (when measured between two arbitrary points in 

time) as in this model more information is used to estimate the “true” symptom course 

over time. In addition, PPGM are preferred over choosing one measure to be the outcome 

of interest and then fitting the other outcome as a time-varying covariate as it avoids 

having to choose which outcome is the “primary” measure and also allows both outcomes 

to be modelled as having a trajectory of interest over time, which is more in line with how 

the outcomes are measured and the research question that is being addressed. This 

method also allows parameter estimates to be modelled simultaneously, limiting the 

problem of multiple testing in a single dataset and the number of models that need to be 

fitted to the data to address specific research questions around potential predictors of 

each trajectory over time.   

A weakness of the analysis presented is that the estimates from the model have not been 

adjusted for other covariates that may influence the trajectory of hand pain and function 

over time (e.g. age and gender). Although it is plausible to add such predictors to the 

model, this may produce unstable model estimates if the number of model predictors is 

large given the sample size available for analysis. A further weakness of the data from the 

PPLCGM is that it does not provide a useful tool with which to explore the characteristics 
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of participants with clearly differing trajectories of hand pain and function over time as, 

given the analysis technique used, such groups were not clearly identified in the data.   

9.4.4 Clinical Applicability  

The models in this chapter provide data to test whether the hypothesised associations 

between levels of, and change in, hand pain and function are observed, with a view to 

identifying a group of patients, who, despite an increasing level of pain, continue to 

maintain a good level of hand function. Identification of such patients could be useful to 

explore whether there is a particular coping strategy that such patients are using to 

maintain good hand function, and if so to explore whether this could be included in a 

treatment package for future patients. As it was not possible for a group of such patients 

to be identified in the analysis, the clinical applicability of the models presented is limited. 

They do, however, provide evidence for an association between hand pain and function 

that is supported by data (rather than simply hypothesised) and have the potential to be 

used in further work that efficiently explores predictors of hand pain and function 

simultaneously in one model rather than considering hand pain and function as completely 

separate outcomes.        
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10 Discussion and conclusions 

The aim of this chapter is to provide a summary of the main findings presented in this 

thesis (Section 10.1) and to discuss further the strengths and weakness of the 

methodologies used that are applicable to all results presented in this thesis (Section 

10.2). Further sections will also be presented to discuss further work and alternative 

analysis approaches (Sections 10.3 - 10.5).   

10.1 Summary of the main findings 

It has been shown that there is a lack of longitudinal studies exploring the course of hand 

pain and function over time in community-dwelling older adults, which is important to 

address, as both pain and functional difficulties are key consequences of having a hand 

condition, like OA, and are potential drivers of healthcare utilisation. Longitudinal data has 

therefore been collected and analysed in the Clinical Assessment Study of the Hand (the 

CAS-HA cohort study), and showed that, on average, hand pain and functional difficulty 

did not greatly change when assessed over a 7.5 year follow-up period in a sample of 

participants reporting hand pain in the last 12-months. This finding is also reflected by 

showing that the majority of participants had relatively stable trajectories of hand pain and 

functional difficulty over the 7.5 year follow-up period, with 68% and 78% of participants 

having trajectories that fluctuated around mean levels described as “Severe”, “Mild” and 

“Moderate” for hand pain and “Severe”, “Mild” and “Moderate” and “Mild/Moderate” for 

hand function respectively, hence clinical deterioration of symptoms is not always 

inevitable for all older people reporting hand pain and functional difficulty.  

When individual trajectories were considered, key baseline factors to predict those 

individuals at greater risk of symptom deterioration were: hand pain; physical function, 

number of days with hand pain in the last 12-months, hand function, pinch strength, and 

the number of joints with radiographic hand OA, and for hand function; age, physical 

function, number of co-morbidities, hand pain and the grip-ability test. It was recognised 
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however, that such models, although suitable for predicting individual risk of deterioration, 

were limited in their ability to predict overall outcome course over a 7.5 year follow-up 

time-period. When predictors of the overall outcome course were explored using 

multinomial logistic regression to predict trajectory group membership it was found that 

the strongest predictor of overall trajectory course was the baseline measure in the 

outcome of interest, hence this may be the single strongest predictor of future symptom 

course.      

10.2 Strengths and weakness 

As described in Chapter 3, participants were recruited to the CAS-HA study from two 

general practices in North Staffordshire and were recruited from those reporting hand pain 

or problems in the last 12-months on a postal survey questionnaire. The design of the 

study raises several issues to be discussed in relation to the results presented, as below: 

Recruitment of a population-based sample   

A key strength of the study design is that participants in CAS-HA were recruited 

irrespective of their consultation patterns with a general practitioner for their hand problem 

as the study research questions, e.g. the population prevalence of a range of hand 

conditions, the prognosis of hand pain and function over time, the causes and 

consequences of this, could be addressed in the widest population possible and not 

depend on consultation behaviour117. As general practice (GP) records cover a large 

proportion of the UK population, they were therefore used as the sampling frame.  

A key advantage of this recruitment method is that it allows the course of symptoms to be 

described for the population as a whole so it may be more reflective of “true” symptom 

course in the population, rather than in only a subset of participants that have consulted. 

As participants were recruited based on whether they reported hand pain in the last 12-
                                                 
117 Recruitment based on previous consultation with a general practitioner is practically possible (as 
illustrated in previous trials conducted in our research centre (e.g the APEX trial (Hay et al. 2004)), 
however this also relies on accurate recording of the consultation for a hand problem in the GP 
medical records  
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months on a survey questionnaire, they were only required to have hand pain rather than 

to be diagnosed with a specific hand condition. This approach was used as pain and 

functional difficulty are often the key reason for health care consultation rather than other 

clinical aspects of disease severity (e.g. x-ray evidence of hand OA).  

Symptom onset  

As participants have been recruited from a population survey they are not necessarily 

recruited at the point of symptom onset so little is known about the course of participants’ 

symptoms prior to study enrolment other than a self-report question on the length of time 

the participant had a hand condition prior to baseline (a question that in itself may be 

subject to recall bias as participants with recent symptom onset may be more able to 

accurately report their time of onset than those whose symptoms first occurred a long time 

ago). It is therefore assumed in the modelling in Chapters 6, 8 and 9 that the rate of 

symptom change from baseline is the same for someone who has had their condition for a 

long time as for someone who has only had it for a short time, which may not be plausible.  

This assumption is considered using data from Chapter 8 that shows that participants in 

the “Severe” trajectory groups for hand pain and function report, on average, having their 

hand problem for longer than for participants in all other trajectory groups. Participants 

may therefore be in this group because they have had more time to develop more severe 

symptoms rather than necessarily implying that the participants in this group developed 

severe symptoms more quickly. Evidence in Chapter 7 also supports this, as the predictor 

“length of time with a hand condition” did not predict the model slope for hand pain or 

function (i.e. the rate of change over time), albeit this is interpreted in light of the other 

variables in the model.  

This is a limitation of the study design: that symptom severity data is not collected at 

regular intervals from the point of symptom onset. It would however be methodologically 

difficult to construct a “symptom onset”, i.e. inception, cohort, as it would be difficult to 
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identify participants at the point of symptom onset. Another option would be to define the 

inception cohort based on the point of first consultation for a hand problem. This would be 

limited, however, as the decision to consult is not always motivated by symptom duration 

or severity. Alternatively, using repeated surveys to regularly monitor all adults at age 50-

years onwards to define their point of symptom onset is unlikely to be feasible.  

The analysis in this thesis therefore leaves unanswered questions around whether the 

trajectory groups in Chapter 8 simply represent groups with different levels of symptom 

severity or whether they reflect different stages along the long term progression of hand 

pain and function over time. For example, it remains unclear whether it would be possible 

for participants in the “Mild” trajectory group to remain in a “Mild” group for the rest of their 

lives, or whether progression beyond 7.5 years is inevitable for participants in this group.  

This could only be explored by extending the length of follow-up for each participant to be 

beyond 7.5 years. 

Regression to the mean 

Regression to the mean118 potentially could have occurred in the CAS-HA study if 

participants were more motivated to attend the clinical assessment when their symptoms 

were severe, relative to their usual symptom level. There is slight evidence of this in 

Chapter 3 as participants attending the clinical assessment have slightly raised levels of 

AUSCAN pain and functional difficulty compared to those that did not attend. This would 

impact on the study findings if, for example, participants’ symptoms are fluctuating 

between an upper and lower bound prior to, and between, the baseline and 18-month 

follow-up time points, and if the baseline measure is recorded at the upper bound of the 

fluctuating symptoms. It is then likely that the measure taken at 18-months is lower than at 

baseline, indicating that improvement over time has occurred, when in reality this reflects 

fluctuation of symptoms around a mean value that is stable over time. Regression to the 
                                                 
118 This is a bias that occurs when participants are recruited at a time when their symptoms are 
most severe so are more likely to have readings closer to the mean when measured on a second 
occasion (Everitt et al. 2005) 
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mean is less likely in the CAS-HA cohort however as participants are not recruited at the 

point of consultation with a general practitioner when it is more likely that symptoms of 

pain or functional difficulty are more severe than usual.  

Follow-up time periods  

The timing of measurements in the CAS-HA study was planned to be at regular 18-month 

intervals over a 6-year follow-up time period. A 6-year follow-up period was chosen so it 

could be explored how symptoms change over a relatively long time-period as, at the time 

of applying for study funding, there was a lack of studies with longer term follow-up (>3-

years) for conditions such as osteoarthritis that were likely to be chronic and last for 

several years (Jordan et al. 2009). Although the relatively long follow-up time period is a 

key strength of this study, it is also acknowledged that results can only apply to this follow-

up time window so it cannot be inferred from the data how participants’ symptoms 

changed beyond the last follow-up time point. A longer term follow-up beyond 6-years 

would be of interest in this cohort however, to examine whether the rates of symptom 

change over time increase if participants are observed for longer. This is especially 

relevant as, overall, the rate of symptom change over time in this study is small (Chapter 

6).  

Also, when considering the time frame for the study, regular 18-month follow-up time-

periods were chosen to balance the cost of data collection over a long follow-up time-

period, however, it is acknowledged that with a relatively long time period between two 

follow-up time points, the ability to identify participants whose symptoms are rapidly 

fluctuating on a regular basis, between weeks or between months, is limited. There is also 

the potential for changes over time to remain undetected in the data if they occur in 

periods of time that are not covered by the time-frames used in the questions on the 

questionnaires.     
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Related to the spacing of the time points, an “average” time was calculated to define the 

time-point for analysis. This was needed especially for the latter two time points as there 

was a delay in the mailing so an appropriate follow-up time needed to be estimated. 

Although an “average” time is commonly used for chronic diseases, a variable for the 

“exact” time since baseline can be included as a predictor in the growth models (i.e. by 

calculating a value for time for each participant that could potentially differ between 

participants at each time point rather than coding time as 0, 1.5, 3, 5.25 and 7.417 years). 

This approach was not used throughout this thesis due to the complexity of using the 

“exact” time variable in LCGM and PPGMM, however, when the “final” prediction models 

in Chapter 7 were re-run using the “exact” time approach, the results did not differ greatly 

from those that have been presented (data not shown).      

Selection bias  

The issue of selection bias was explored in Chapter 3 and it was shown that despite only 

29% of participants attending the clinical assessment, the key characteristics of those in 

the CAS-HA cohort differed only slightly from those in the wider sample of interest. This is 

a key strength of the study design, and hence, the analysis presented in this thesis, 

especially that the AUSCAN (as the outcome of interest), is representative of the wider 

sample of participants with hand pain who completed the Regional Pain questionnaire.  

In addition, the follow-up rates in CAS-HA were high at the first two time follow-up time 

points (>90%), and, despite this dropping to 71 and 66% at the latter two time-points, 

there is still evidence that participants’ baseline characteristics at the 7.5-year follow-up 

are only slightly different from those recruited at baseline. Although slight, it is 

acknowledged, however that those remaining in the cohort at the 7.5-year follow-up had 

less severe hand problems at baseline compared to all those who attended the baseline 

clinical assessment. This is a limitation of the study, and could have occurred if older 

members of the cohort were those who had more severe hand problems and were also 
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more likely to drop out of the cohort due to frailty, other serious health conditions, or 

death.   

Suitability of the outcome measure 

In Chapter 4, it was shown that the AUSCAN is a reliable and valid measure of hand pain 

and functional difficulty. However, it is acknowledged that the AUSCAN is a self-reported 

measure of hand pain and functional difficultly, and evaluates hand pain and functional 

difficulty in light of any adaptations that participants are using to manage their hand 

condition, e.g. taking medication, avoiding activities or using gadgets to help with tasks of 

daily living (Bellamy et al. 2002a). Throughout this thesis, it therefore cannot simply be 

assumed that when no change occurs it is because there has been no deterioration in 

symptoms. It could be that people have adapted to their pain problem and perceive 

symptoms differently (response shift (Streiner 2003)) or are using alternative strategies 

that help them to adapt and manage their hand pain or functional difficulty more effectively 

(Johnson et al. 2007, Nicholls et al. 2014).  

One alternative approach to measuring functional difficulty could be to ask participants to 

identify their worst functional problem at baseline (e.g. picking up pans, doing up buttons) 

and for participants to rate the severity of this problem at each time point (Dziedzic et al. 

2011, Beurskens et al. 1995). By holding the functional task “constant” in the measure, 

this would avoid people reporting that they had no functional difficulty with the task when 

the reason for this was because they had stopped doing the task specified in the closed 

form question. This alternative measure of hand function was not used in the CAS-HA 

study however as it is difficult to compare outcomes between groups of participants when 

the form of the outcome measure also differs between those participants being compared.   

In addition, objective measures of grip and pinch strength and the grip-ability test were 

only included at baseline and the 6-year follow-up time-point as participants only came for 

a clinical assessment at these time-points, so it was not possible to test whether the 



309 
 

findings in this thesis are replicated using objective measures of hand function. The 

outcome measures used in this thesis focussed on hand pain and functional difficulty 

rather than using direct measures of the clinical features of specific hand conditions (e.g. 

x-ray evidence of hand OA, nerve conduction tests for carpal tunnel) as it is predominantly 

hand pain and functional difficulty that motivates consultation (Bijsterbosch et al. 2011, 

Peat, G., personal communication) and, for OA in particular, the course of symptoms often 

differs from that of structural progression of the disease (Haugen et al. 2013). 

Accuracy of the outcome measure 

In Chapter 6 it was highlighted that there exists an excess of participants with no hand 

pain or functional difficulty at the 18-month follow-up relative to the other time-points. This 

could have occurred due to an inconsistency in the instruction on the 18-month 

questionnaire compared to other time points. On the 18-month questionnaire participants 

were guided to complete the AUSCAN only if they had hand problems, whereas at all 

other time points participants completed the AUSCAN irrespective of whether they had a 

hand problem or not. To correct for this in the analysis, where participants had indicated 

that they had no hand problems their AUSCAN score was replaced from a missing value 

to be zero. Considering the data alongside the other time-points, this may have been too 

conservative as it may be that even when participants report no hand problems, their 

average AUSCAN score is greater than zero. The effect of this inconsistency on the 

questionnaire is a potential limitation of the findings of this study.    

Measurement of the predictors 

In Chapter 7, several potentially important predictors were excluded from the analysis 

because they had low prevalence and would not provide reliable estimates when analysed 

(e.g. ethnicity, previous stroke, Parkinson’s disease, or rheumatoid arthritis). Although it is 

a strength of the CAS-HA study that participants have been recruited irrespective of their 
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clinical diagnosis and non-hand-specific characteristics119 (to gain more accurate rates of 

prevalence), it limits the ability to explore the course of hand pain and functional difficulty 

in particular clinical subgroups of the population where the condition of interest is 

uncommon in the population.  

For this, condition-specific cohorts would be needed to identify participants over a wider 

geographical area and from secondary care. That said though, the presence of five 

common clinical conditions were determined from the clinical assessment data (OA, 

carpal tunnel syndrome, Dupuytren’s contracture, De Quervain’s tenosynovitis and trigger 

finger) and were used in Chapters 7 and 8 to test whether the course of hand pain and 

functional difficulty differed depending on clinical cause. These results were interpreted, 

however, with the complexity that several participants have multiple potential causes for 

their hand problems (see Appendix 38). It is acknowledged however, that although 

multiple causes of hand pain have been included in this cohort, the majority of participants 

have hand OA (82% of participants have at least one hand joint with evidence of 

radiographic hand OA defined as Kellgren and Lawrence grade >=2) and that the 

proportion of people with the other conditions is similar for those with and without 

radiographic hand OA (Appendix 39).            

Generalisability of study findings 

The sampling frame for the CAS-HA study was selected from general practice records 

which is appropriate in the UK as 98% of the UK population are registered with a general 

practitioner (Bowling 2014). However as both practices are located in the North 

Staffordshire area of the UK, this may mean that results do not generalise to other areas 

of the UK or other countries. Although this is a limitation of the study, this was 

                                                 
119 Recruiting participants based on diagnosis (either self-reported by the participant or based on 
medical records) could be problematic as it assumes that a previous consultation has occurred for 
a diagnosis to be obtained and that all medical records are accurate and reliable. Knowing a 
diagnosis may also be less useful if this will not change how the participant is managed in clinical 
practice and largely restricts people to be in a dichotomy of having the condition or not (Hemingway 
et al. 2013). This may not be appropriate for diseases that include a range of clinical presentations 
and severities e.g. OA   
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unavoidable, due to the practicalities of running the research clinics to collect the study 

data. However, to try and minimise this bias, when the general practices were chosen, 

they were purposely chosen so that one was urban and one a semi-rural practice. The 

findings in this study also only apply to the health care system in the UK as it has been 

provided over the time course of the study so do not generalise to other health care 

settings where service provisions may not reflect that given in the UK.   

10.3 Further work 

The analyses presented in this thesis are largely exploratory so represent only a first step 

in exploring trajectories of hand pain and function in this population. Several areas of 

further work therefore emerge, that could potentially be explored, both in terms of further 

research questions, but also in terms of differing methodological approaches that could be 

applied to the data. 

Extending the pool of potential predictors 

In Chapter 2, the process that was undertaken to select the pool of predictors of interest 

was described and it was highlighted that predictors could only be explored if they had 

been measured in the CAS-HA study with a low percentage of missing data. The pool of 

variables tested was therefore not exhaustive. For example, a measure of somatization120 

was not included in the analysis, although measured in the study, as the identity subscale 

of the IPQ-R had a high percentage of missing data in the CAS-HA baseline cohort, but 

this could be a potentially important predictor, as found in another study (Spies-Dorgelo et 

al. 2008), and other variables, perhaps less relevant to primary care, have not be explored 

(e.g. genetic variables relating to the underlying cause of the disease (Hamalainen et al. 

2014)). It is acknowledged however, that when selecting a pool of predictors for testing in 

a prediction model that a small set of clinically plausible variables may be preferable, 

                                                 
120 Somatization is defined as the unconscious process by which psychological distress is 
expressed as physical symptoms (MedicineNet 2012) 
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rather than being over inclusive to include all variables that could possibly be measured in 

a dataset.   

In addition, when the role of radiographic hand OA was explored, only a simple definition 

of radiographic severity was used (number of hand joints with Kellgren-Lawrence grade 

>=2). Further work could be conducted to explore whether more complex definitions of 

radiographic hand OA, such as those based on joint location e.g. nodal OA, and type of 

OA, e.g. erosive OA, are more predictive of the outcomes of interest. This analysis has 

been completed in the CAS-HA cohort exploring the predictive ability of hand OA subsets 

from baseline to the 3-year follow-up (Marshall et al. 2013), but to date, this has not been 

completed using all of the time points in the study and explored alongside other potential 

model predictors.         

Mechanisms for explaining changes in hand pain and function  

The research questions in this thesis have been focussed on describing and predicting the 

course of hand pain and functional difficulty over time from baseline predictors without 

regard to the mechanism through which the variables might explain outcome. Further 

work could therefore be undertaken to explore more hypothesis-driven research questions 

around why, and how, factors explain the outcomes of interest. For example, by 

introducing time-varying covariates and time-lagged predictors into the prediction models 

in Chapter 7, it could be explored whether current and previous levels of anxiety and 

depression lead to an increase in hand pain and functional limitations over time, or models 

based on change scores could be used to test whether increasing participants’ control 

over their condition improves future symptom course (e.g. to inform the content of a future 

intervention package). In addition, considering alternative outcomes in a parallel process 

growth model (e.g. body mass index, number of affected joints with hand OA) offers an 

alternative way to explore the relationship of each time-varying outcome with hand pain or 

hand function over time.   
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Adding time-varying or time-lagged covariates into the models in Chapter 7 could also be 

used to explore if their addition improves model fit. This would be useful as currently the 

models in Chapter 7 assume that the course of hand pain and function is solely governed 

by baseline variables (Curran et al. 2003). This latter assumption was made in Chapter 7 

as the aim of the models was to identify baseline factors to predict the course of the 

outcome over time, with a view to providing information that could potentially allow the 

identification of people at increased risk of more severe or progressive trajectories. This 

assumption may not be appropriate, however, if the aim is to develop a model that 

provides an optimal explanation of the course of the outcome overall.  

Although it would be useful to address the research questions such as those above, one 

possible limitation around testing for time-lag in the CAS-HA data would be the long time 

period between follow-up data collection points (as several other factors could also be 

simultaneously changing between the time points). Other sources of data, such as that 

arising from clinical trials or other epidemiological studies with a shorter time-period 

between follow-ups, may therefore be more appropriate to test more complex questions 

around predictor time-lag and the outcome of interest.   

Trajectory groups as predictor variables 

LCGM and GMM can be extended to model, simultaneously, not only the trajectory of the 

outcome of interest, but also how that trajectory predicts an external outcome of interest, 

when the external outcome is measured either at the last, or at a later time-point to the 

outcome variable (Wang et al. 2007). This model extension could be useful to explore 

further research questions such as how the long term trajectories of hand pain and 

function predict long-term progression of x-ray evidence of hand OA over time. This could 

extend work previously published by Bijsterbosch et al. (2011) who explored whether 

mean change in the AUSCAN from baseline to a 6-year follow-up differed between those 

having, or not having, radiographic progression over the same time period. This extension 
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of the analysis would allow data from all follow-up time points to be used in the analysis 

rather than defining a single time point to anchor how change in the AUSCAN is 

calculated over time.   

Outcome of interest 

In Chapter 9 it was shown that there is a relationship between hand pain and hand 

function, so it may be possible that further analysis could repeat the prediction models in 

Chapter 7, but using a total score for hand pain and function as the outcome of interest, 

rather than using separate scores for hand pain and function. This would enable the 

analysis to focus on an overall summary score of the participants’ problem and to identify 

the predictors that predict an overall summary score rather than having different predictors 

for hand pain and function. This may be useful if the aim is to identify a small list of 

predictors that could be put forward as potentially useful for clinical practice where the 

problems of the whole person are taken into account.   

Regression to the mean 

It has been discussed earlier in this chapter that regression to the mean is less of a 

concern in the CAS-HA study than for studies measuring outcomes using very short time 

windows, e.g. on a single day. However, one way to explore the possible influence of 

regression to the mean could be to repeat the analysis excluding data at baseline (e.g. to 

explore whether the predictors measured at the 18-month follow-up predict the outcome 

across the subsequent time points). This may be a useful sensitivity analysis to conduct, 

as participants in CAS-HA were recruited at an arbitrary time point along their symptom 

trajectory, so using a different time point as the starting point for the analysis could be a 

partial test of model replication. It could also be useful to extend this model into a time-lag 

model to explore the predictive value of a previous measure of hand pain and functional 

difficulty, as in the models as presented, the only way to test whether baseline levels of 
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hand pain and function predicted the rate of progression over time was to examine the 

correlation between the model intercept and model slope. 

Health care use 

A key aim of this thesis was to model the course of hand pain and function irrespective of 

consultation patterns and the treatments that participants are currently using to treat their 

hand pain and functional difficulty. No descriptive information has therefore been given on 

the type and frequency of treatments that people were using or received over the course 

of the study. This information could be obtained, however, using a combination of data 

from the follow-up questionnaires in the CAS-HA study and also information from a review 

of the general practice medical records of participants that gave consent, and could be 

used to explore if the types of treatments that participants are currently using, or have 

previously used, differ between the trajectory groups.  

Although this may be an interesting issue to explore, it is complicated by the wide range of 

treatments that participants could be trying for their hand condition and also by whether 

the option to use each treatment was equally available or offered to all participants. This 

could be influenced by whether a healthcare practitioner had been consulted, previous 

treatment experience, treatment preferences, access to services, or other treatments that 

are being used for other health conditions. Also, as this is not a randomised trial, analysis 

of questions exploring the effectiveness of a particular treatment would need to address 

the high risk of selection bias and confounding.  

Predicting treatment response 

A further area of work could also consider whether the factors identified in this thesis are 

also predictive of effective response to treatment; it cannot be concluded that factors that 

predict prognosis are necessarily those that predict response to a specific type of 

treatment (Hingorani et al. 2013, Riley et al. 2013). Moreover, an examination of which 

factors are potentially modifiable and could be targeted by treatment may be undertaken 
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however this would require analysis of data from a large clinical trial with a potentially 

effective treatment.    

10.4 Alternative analysis approaches 

A key feature of the outcomes modelled in this thesis is their skewed distribution which 

has been accounted for by estimating the model parameters using maximum likelihood 

with robust standard errors. Alternative approaches to deal with the analysis of a skewed 

outcome are possible, e.g. generalised growth models could be fitted to the data using a 

gamma link function to relate the linear predictor to the outcome of interest (Azuero et al. 

2010). Although this approach is possible for growth models, it would be complex to 

extend this to LCGM and PPGMM and the software to do this is not currently available in 

Mplus, so this approach was not used throughout this thesis.  

An alternative approach to the analysis of skewed outcomes in the SEM framework has 

been proposed by Asparouhov et al. (2014b) and is currently under development in Mplus 

version 7.2. This approach aims to model the data using a skew t-distribution to estimate 

not only the mean and covariance structure in the data, but also the higher order moments 

of skew and kurtosis. This approach is promising as an alternative analysis technique as 

all of the SEM models described in this thesis could potentially be fitted in this framework. 

It was not used in this thesis however as the approach is still under development and at 

the time of analysis, only version 7.11 of the Mplus software was available.    

Along with a skewed distribution, a further feature of the outcomes modelled is that they 

are derived by summing together scores for the individual items on the questionnaire. This 

therefore makes the assumption that the items are measured on an interval-level scale 

and are additive (e.g. that the difference between a score of 1 and 2 is the same as the 

difference between a score of 3 and 4) and that the factor structure of the AUSCAN items 

remains constant over time, which may not be appropriate. An alternative analysis 

approach could be to use Rasch analysis (Rasch 1960, Fischer 1995) to develop a truly 
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interval-level score from the AUSCAN items and use these revised scales as the outcome 

of interest as has been carried out for other self-completed measures, e.g. Muller et al. 

(2009).  

Such scale development has been conducted by Haugen et al (2011b) for the AUSCAN 

measure using data from the Oslo Hand OA cohort where it was found that the AUSCAN 

may be improved by dropping the item “pain at rest” and splitting the function scale into 

two: one for high precision and one for grip strength tasks. A revised version of the 

AUSCAN scoring could be developed using Rasch modelling techniques in the CAS-HA 

data and then explored whether the results presented in this thesis are dependent on how 

the AUSCAN is scored. This, however, has the limitation that between-study comparisons 

are more complex when several different scoring methods have been used to scale the 

AUSCAN items into a total score.  

In addition, an alternative analysis could be to include the AUSCAN in the SEM framework 

as a continuous latent variable that is marked by the items that make up each sub-scale to 

form a multiple indicator latent growth curve model (Curran et al. 2003). In this model, a 

separate estimate would be obtained at each time point to express the relationship 

between each AUSCAN item and its underlying latent variable, which could be compared 

at each time point to explore whether the factor structure of the AUSCAN was constant 

over time. However, as the number of time points and the number of items in the 

AUSCAN would be large for this analysis to be applied in this thesis, this approach was 

not used to reduce the number of estimates required of the data.   

The outcome used in this thesis aimed to incorporate all of the data at all of the follow-up 

time points to fully characterise participants’ patterns of symptom change over time and to 

make best use of the longitudinal data collected. It was therefore difficult to implement 

some of the standard approaches to prediction modelling that involve defining a clear 

start- and end-point in the data and then using data collected at the start point to predict 
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data at the future endpoint (Steyerberg et al. 2013). An alternative analysis could be to 

define key endpoints in the CAS-HA data (possibly those that represent a short, medium, 

or long-term follow-up), and then use standard multivariable regression models to predict 

the outcome at these key points in time (with the outcome analysed either as a continuous 

measure or categorised to define a group of participants meeting a pre-defined threshold 

for minimum clinically important symptom deterioration).  It could therefore be explored 

whether the same set of predictor variables are identified using this approach to those in 

this thesis, as this could offer a simpler approach to communicate information on 

prognosis to participants and clinicians than when prediction scores are derived by 

simultaneously estimating likely prognosis using all of the longitudinal data collected within 

a study.       

10.5 Model replication and future use 

The models in this thesis have been developed to provide descriptive information on how 

participants’ hand symptoms change over time and to provide preliminary evidence on 

factors that may be important to consider when predicting how participants’ hand pain and 

functional difficulty change over time. The evidence in this thesis is preliminary, so before 

predictors can be used for the identification of high risk groups a separate test of 

replication in an external cohort would be required, either in participants who have been 

recruited using methods similar to those in CAS-HA or in participants where the data is 

collected at the point of GP consultation121. It is therefore acknowledged that the analysis 

that has been presented in this thesis represents only the first stage of the full process 

needed to develop a full prediction model, and has focussed largely on model 

development rather than testing fully the internal and external validity of the models and 

                                                 
121 It was considered whether to re-run the models in this thesis on a sub-group of CAS-HA 
participants that were defined if they had a recent consultation with their GP to test for model 
replication. This analysis was not conducted as the baseline variables would not have been 
collected directly at the point of consultation and the sub-group would not be an independent 
sample from the participants in CAS-HA so this was not an ideal sample with which to test for 
model replication   



319 
 

evaluating the impact that such models can have on clinical practice (Steyerberg et al. 

2013).     

In addition, before any prediction models could be applied, the feasibility of the 

measurement of the predictors would need to be considered. For example, the physical 

component score of the SF-12 was included in the models for both hand pain and 

functional difficulty but is measured using 12 questions, which may not be practical to 

apply, in practice. It could first be tested whether model fit is greatly inferior if only one or 

two questions from this measure were included in the model. This could then lead to the 

development and testing of a model that could be more practical to apply to a “real life” 

clinical setting.  
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Appendix 2: Quality assessment tool: QUIPS: QUality In 

Prognosis Studies - QUIPS) – version adapted from (Hayden et al. 

2006) and used in the review 

Domain: Study Participation 

Goal: To synthesize the ‘Considerations’ (below) to judge the risk of selection bias. 

Considerations 

Source  Population 

A clear description of who the source population is (the source population for studies 

in this review is older adults in the general population) a), when (time period of study), 

where (location), how (description of recruitment strategy) and why the population was 

chosen, to allow the reader to determine if the source population was captured.  

Specific characteristics of the population described will vary according to the study 

objectives, however a comprehensive description would include characteristics of: 

individual (e.g.  age, gender ), characteristics of hand condition (e.g. history of 

hand problem, current pain and functioning), and treatment (type and extent of care 

received)  

Sampling Frame 

The sampling frame and procedures used to sample subjects (e.g. newspaper 

advertisement, presentation to a health clinic, or captured from a claims database) 

should not lead to selection of participants that are systematically different from 

eligible non-participants. 

Inclusion criteria 

The inclusion and exclusion criteria used should define a discreet group of older 

adults from the general population. Inclusion/exclusion criteria should not select 
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participants that are systematically different from eligible non-participants. 

Baseline Study Population 

A clear description of who ends up in the study, sufficient to allow the reader to judge 

potential selection bias relative to the target population. 

Specific characteristics of the population will vary according to the study objectives, 

however a comprehensive description would include characteristics of: individual (for 

example, age,  gender), characteristics of hand condition (e,g. history of hand 

problem, current pain and functioning), and treatment (type and extent of care 

received)  

Adequate study participation 

It is important for studies to clearly report the proportion of eligible subjects who 

participate in the study, although it is not possible to set a criteria for an ‘adequate’ 

(or inadequate) participation rate.  

Studies should report factors associated with non-response, quantify and interpret 

these associations to determine if it is a selective sample. For example, a low 

participation raises suspicion that there may be a barrier to participating that may also 

influence outcomes. 

Alternative data sources for this information may be necessary to build into the study 

design. 

 

Study Participation Summary question:  

After thorough reflection on all considerations, how would you describe the judgment 

about the risk of selection bias (i.e. distortion due to relationship between the prognostic 

factor and outcome being different for participants and eligible non-participants)?    
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 Low risk of bias   Moderate risk of bias   High risk of bias 

Low risk of selection bias – due to: 

 Complete participation by those eligible to participate 
 Incomplete participation, but there is evidence that participation was not likely to 

be related to the prognostic factor and outcome. 
 

Domain: Study Attrition  

Goal: To synthesize the ‘Considerations’ (below) to judge the risk of attrition bias. 

Considerations 

Proportion of Population Available for Analysis 

Proportion of the study population available for follow-up analysis should be clearly 

presented, including those with complete data for prognostic factors, potential 

confounders and outcomes at time-point(s) of interest.  

The use of criteria or cut-points to assess the adequacy of follow-up less than 100% 

can give false security and should not be used. Imputed values for missing data should 

only be used if it is clear that data are missing at random, and even then with caution. 

Outcome and prognostic factor information on those lost to follow-up 

For studies with subjects lost to follow-up data, differences in prognostic factors, 

potential confounders, and outcomes between responders and non-responders 

should be assessed to determine if the data is missing systematically. This should be 

done by presenting a table comparing responders and non-responders at each follow-

up and, if available, using another source of data to capture information on missing 

outcomes. 

Reasons and potential impact of subjects lost to follow-up 

For studies with subjects lost to follow-up, reasons for loss suggest subjects should be 
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presented and assessed for possible systematic attrition. The potential implications of 

loss to follow-up should be considered with respect to the objectives of the study in 

question. 

 

Study Attrition Summary question:  

After thorough reflection on all considerations, how would you describe the judgment 

about the risk of attrition bias (i.e. distortion in study results due to relationship between 

the prognostic factor and outcome being different for completing and non-completing 

participants)?  

 Low risk of bias   Moderate risk of bias   High risk of bias 

Low risk – due to: 

 There was no loss to follow-up,  
 There is some loss to follow-up, but there is evidence that follow-up was not likely 

to be related to the prognostic factor and outcome. 
 

List reasons for rating: 

Domain: Factor Measurement 

For this review, a prognostic factor is defined as any variable tested for its association with 

the level or progression of hand pain or functional difficulty  

Goal: To synthesize the ‘Considerations’ (below) to judge the risk of measurement bias 

related to the PF. 

Considerations 

Definition of the factor 

The factors of interest fits with the conceptual framework (is there a clear 
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justification for  examining the association of this variable with level of hand pain 

and functional difficulty) . The explicitness of the definition depends on the factor (for 

example, little description is necessary for factors such as gender or race, however a 

clear operationalization is required for more complex constructs such as depression or 

coping).  

A comprehensive description should include dose, level and duration of the factor 

described adequately to allow easy reproduction of measurements. Continuous variables 

should be kept as continuous whenever possible; if variables are categorized, the 

categorization should be based on clear theoretical assumptions.  

Valid and Reliable Measurement of factor 

Factors are described in a valid, reliable way that allows you to assess the opportunity 

for misclassification or mis-reporting bias (e.g are data records accurate and complete, 

have study questions been understood by participants, if measures have been taken by 

different observers, has quality control been undertaken?) . Measures that are 

uncommon or have been modified should provide evidence of reliability and validity. 

Whenever possible, validated instruments should be used and there should be limited 

reliance on recall. 

Method and Setting of factor Measurement 

The measurement approach, timing, and setting of assessment should be 

standardized across subjects from all prognostic groups, or conducted in a way that 

limits systematically different measurement. If there are differences, the implications 

should be considered. 
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Prognostic Factor Measurement Summary question:  

After thorough reflection on all considerations, how would you describe the judgment 

about the overall risk of measurement bias due to the prognostic factor(s) of interest (i.e. 

distortion due to differential measurement of the factors related to the value of the 

outcome)?  

 Low risk of bias   Moderate risk of bias   High risk of bias 

Low risk – due to: 

 Measurement of the factors are valid, reliable and similar for all subjects 
 There are differences or uncertainties in measurement but there is evidence that it 

is not likely to be related to the outcome.  
 

For studies that contain multiple prognostic factors, where some factors are low risk and 

others are high risk, such studies are scored as “moderate risk of bias”,      

Domain: Outcome Measurement 

Goal: To synthesize the ‘Considerations’ (below) to judge the risk of measurement bias 

related to the outcome. 

The outcome for this review is any measure of the level of self-reported hand pain or 

functional difficulty 

 

Considerations 

Definition of the Outcome 

There is a clear operationalization of the outcome of interest, including how it is 

assessed and when (time points), related to the conceptual framework. Is the outcome 

measure assessing the level of self-reported hand pain or functional difficulty? 
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Valid and Reliable Measurement of Outcome 

Outcomes are measured in a valid, reliable way that allows you to assess the 

opportunity for misclassification of individuals (e.g are data records accurate and 

complete, have study questions been understood by participants?). Measures that are 

uncommon or have been modified should provide evidence of reliability and validity. 

Whenever possible, validated instruments should be used,  

Method and Setting of Outcome Measurement 

The measurement approach, timing, and setting of assessment should be 

standardized across subjects from all prognostic groups, or conducted in a way that 

limits systematically different measurement. If there are differences, this should be 

reported and the implications should be considered.  

 

Outcome Measurement Summary question:  

After thorough reflection on all considerations, how would you describe the judgment 

about the overall risk of measurement bias due to the outcome measure (i.e. distortion 

due to differential measurement of the outcome related to the value of the PF)? 

 Low risk of bias   Moderate risk of bias   High risk of bias 

Low risk – due to: 

 Measurement of the outcome is valid, reliable and similar for all subjects 
 There are differences or uncertainty in measurement but there is evidence that it is 

not likely to be related to the PF.  
 

For studies that contain outcome measures, where some outcomes are low risk and 

others are high risk, such studies are scored as “moderate risk of bias”, 

Domain: Study Confounding 
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Goal: To synthesize the ‘Considerations’ (below) to judge the risk of bias due to 

confounding. 

Only complete this section for exploratory studies concerning a small number of specific 

prognostic factors and their association with outcome. Section not relevant for predictive 

studies looking at combinations of factors to predict outcome 

Considerations 

Important Confounders Measured 

Important confounders, based on a conceptual framework, are clearly defined and all 

confounders mentioned in the model are measured. If a conceptual framework was not 

included a reasonably comprehensive set of factors should be assessed from the 

domains: individual factors (e.g age, gender)   factors related to hand problem e.g length 

of time with condition,  healthcare related factors, and factors related to the social context 

(e.g. social class).  

The availability of data on important confounders may be a limitation of the study setting 

(for example, administrative or medical records). The authors should discuss the 

implications of missing potential confounders and the reviewer satisfied that bias was 

unlikely. 

Valid and Reliable Measurement of Confounders 

Confounders are described in a valid, reliable way that allows you to assess the 

opportunity for misclassification or mis-reporting (e.g are data records accurate and 

complete, have study questions been understood by participants, if measures have been 

taken by different observers, has quality control been undertaken?).. Measures that are 

uncommon or have been modified should provide evidence of reliability and validity. 

Whenever possible, validated instruments should be used, with limited reliance on recall. 
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The measurement approach, timing, and setting of assessment should be standardized 

across subjects from all confounding factor groups, or conducted in a way that limits 

systematically different measurement. If there are differences, this should be reported 

and the implications should be considered. 

Appropriate Accounting for Confounding 

Accounting for confounding can be done in the study design and/or the analysis. In the 

design, matching for key characteristics, stratification, or initial assembly of comparable 

groups could be used.  

Identification of important confounders in a dataset should be guided by a conceptual 

framework, and tested systematically. This includes providing data on potential 

confounders stratified by the prognostic factor of interest. Crude and adjusted estimates 

for prognostic factors, and a measure of precision should be presented. If the impact of 

confounding is systematically investigated without importantly affecting the estimates 

(they are stable), they are less likely to be confounded. 

Multiple regression modelling can be used to control for confounding. Stepwise 

regression techniques do not allow specific testing of confounding and may lead to bias 

in studies with the objective of causal understanding. 

 

Study Confounding Summary question:  

After thorough reflection on all considerations, how would you describe the judgment 

about the overall risk of bias due to confounding (i.e. the effect of the PF(s) is distorted by 

another factor that is related to both the PF and the outcome)? 

 Low risk of bias   Moderate risk of bias   High risk of bias 
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Low risk – due to: 

 Inclusion and assessment of confounding was planned by theory, included valid 
and reliable measures and were appropriately controlled in the design and/or 
analysis. 

 

For studies that contain outcome measures, where some associations are low risk and 

others are high risk, such studies are scored as “moderate risk of bias”, 

Domain: Statistical Analysis and Presentation 

Goal: To synthesize the ‘Considerations’ (below) to judge the risk of bias due to analysis 

and presentation. 

Considerations 

Presentation of analytical strategy 

Sufficient presentation of data to assess the analysis and findings. This includes a clear 

and exhaustive ‘Table 1’ providing data on potential confounders stratified by the 

prognostic factor of interest, including number of subjects available; crude and adjusted 

estimates for predictive factors, with a measure of precision should be presented with 

the effect estimates presented consistently in the same direction (i.e. so that an 

increased risk is presented as a positive coefficient). The clinical importance of the 

results should be considered and the findings not overstated. 

Model development strategy 

The strategy for model building (i.e. inclusion of variables) is appropriate and based on 

a conceptual framework or model  

The selected model is adequate for the design of the study. 

Reporting of results 

Selective reporting of results is avoided. 



376 
 

Statistical Analysis and Presentation Summary:  

After thorough reflection on all considerations, how would you describe the judgment 

about the overall risk of bias due to the statistical analysis? 

 Low risk of bias   Moderate risk of bias   High risk of bias 

Low risk – due to: 

 Analysis reflects the study’s objectives and the design of the study. 
 The authors’ explanation for analysis employed is sensible and clear. For a study 

with a causal understanding approach, a conceptual framework guides a 
thoughtful analysis.  
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Appendix 3: Potential baseline prognostic factors excluded from analysis 

Factor Exclusion reason 

Exclusion – data frequency and reliability   

Race/ethnicity >90% of participants report their ethnicity to be “White” 

Rheumatoid Arthritis (RA) Low prevalence 

Diabetes Low prevalence 

Stroke Low prevalence 

Parkinson’s disease Low prevalence 

Thyroid disease Low prevalence 

Gout Low prevalence 

Severe visual impairment 
Low prevalence. All participants had to attend and complete the baseline clinical assessment so 
severe visual impairment was uncommon - construct largely relevant to hand function only  

Cognitive impairment 
Highly skewed distribution (as measured by the SIP alertness scale (Bergner et al. 1981)). Majority of 
participants report no cognitive impairment 

Illness perceptions – symptom count High missing data rate of 29% 

Exclusion – clinical opinion  

Consulting a GP or hospital doctor about 
hand problem 

Construct will not be asked in a GP consultation setting  

Self-reported diagnosis (OA, RA, other) 
GP’s are more likely to be seeking to give a diagnosis than to ask for participants’ perception on the 
cause of their condition   

Taking medication for hand condition 

Construct addressed as a future research question. The role of treatment has the potential to be 
complex as influenced by the type of medication, dosage, and whether the treatment is working well. 
Medication use could also be susceptible to confounding by indication (Grobbee et al. 1997)) as 
participants on treatment, although demonstrating fewer symptoms, may have more severe problems 
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Footnote: Low prevalence is indicated if <10% of participants in CAS-HA have the factor of interest 

 

 

 

 

that indicated them to receive treatment at the outset 

Surgery for hand condition 
Construct addressed as a future research question as could depend on complex issues e.g. the type 
of surgery undertaken, length of time since the surgery occurred etc.  

Hand/wrist fracture in the last 5-years 
Represent this concept as “onset of hand problem following hand injury”. Hand/wrist fracture in the last 
5-years are of low prevalence at baseline and this generic question on  hand/wrist fracture does not 
relate the injury to the current hand problem 
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Appendix 4: Extended information on methods of measurement 

(the AUSCAN is excluded from this list as it is described in detail 

in chapter 4) 

Physical and mental component scores of the Short-form 12 (SF-12) (Ware et al. 

1996) 

The twelve questions below were used to construct the physical and mental component 

scores for the SF-12. Responses to the questions were summed together to make a total 

score, with higher weights given to the physical health items in the physical component 

score and higher weights given to the emotional health items in the mental component 

score. Details of the weighting scheme and scoring are available from the authors of the 

tool.  

1) In general how would you say your health is? 

2) Does your health limit moderate activities e.g. moving a table, pushing a vacuum 

cleaner, bowling or playing golf? 

3) Does your health limit you climbing several flights of stairs? 

4) As a result of your physical health have you accomplished less than you would like 

in the last 4 weeks? 

5) As a result of your physical health were you limited in the kind of work or other 

activities in the last 4 weeks? 

6) As a result of any emotional problems have you accomplished less than you would 

like?  

7) As a result of any emotional problems did you not do work or other activities as 

carefully as usual? 

8) During the past 4 weeks, how much did pain interfere with your normal work 

(including both work outside the home and housework)? 

9) How much of the time during the past 4 weeks have you felt calm and peaceful? 

10) How much of the time during the past 4 weeks did you have a lot of energy? 

11) How much of the time during the past 4 weeks have you felt downhearted and 

depressed?  
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12) During the past 4 weeks, how much of the time has your physical health or 

emotional problems interfered with social activities (like visiting friends, relatives, 

etc.)?   

Manchester definition of widespread pain (MacFarlane et al. 1996, Croft et al. 2001, 

Birrell et al. 2000, Papageorgiou et al. 1995) 

The Manchester definition of widespread pain was scored from a body manikin that was 

included in the questionnaire. Participants were asked to shade on a body manikin any 

areas where they had experienced pain or aching, lasting for a day or longer, over the last 

month, but not to include pain due to feverish illness e.g. flu. The body manikin was 

scored by overlaying a template onto the completed manikin to split the body into distinct 

regions (see diagram below). Participants were scored with a value of one if they had 

indicated pain in that region and zero otherwise. It was this data that was used to derive 

the Manchester definition of widespread pain  

Widespread pain was indicated if participants had axial pain (i.e. pain in regions 2 or 48 of 

the manikin) and pain in at least two regions of two contralateral limbs (i.e. the right upper 

limb and the left lower limb; or the left upper limb and the right lower limb). The right upper 

limb was defined as regions 7, 8, 9, 10, 24, 25, 26 and 27 of the body manikin and the 

right lower limb as regions 18, 19, 20, 21, 35, 36, 37 and 38, with equivalent regions on 

the left side defined for analysis. 

For the analysis, participants were classified into those with widespread pain, those with 

no pain in their body other than in their hands. Participants not meeting either of these 

criteria formed a third group which was labelled as “Regional pain”.     
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Template for the body manikin  

  

 

14a

15  
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Hospital Anxiety and Depression scale (HADS) (Zigmond et al. 1983) 

Responses to questions 1, 3, 5, 7, 9, 11 and 13 are totalled to give a score for anxiety 

Response to questions 2, 4, 6, 8, 10, 12 and 14 are totalled to give a score for depression 

The response options for each question vary but all are measured on a 4 point scale as 

reported in Zigmond et al. 1983. 

1) Past week, I feel tense or wound up 

2) Past week, I still enjoy the things I used to enjoy 

3) Past week, I get a sort of frightened feeling as if something awful is about to 

happen 

4) Past week, I can laugh and see the funny side of things 

5) Past week, worrying thoughts go through my mind 

6) Past week, I feel cheerful 

7) Past week, I can sit at ease and feel relaxed 

8) Past week, I feel as if I am slowed down 

9) Past week, I get a sort of frightened feeling like butterflies in my stomach 

10) Past week, I have lost interest in my appearance 

11) Past week, I feel restless as if I have to be on the move 

12) Past week, I look forward with enjoyment to things 

13) Past week, I get sudden feelings of panic 

14) Past week, I can enjoy a good book or radio or television programme 

 

Illness perceptions questionnaire – revised (IPQ-R) (Moss-Morris et al. 2002) 

The questions that form the seven IPQ-R sub-scales used in this thesis are listed below. 

Each question is rated on a 5-point Likert scale ranging from “Strongly disagree” to 

“Strongly agree”. Sub-scale scores are constructed by adding together the response 

options for each question after the items indicate by a * have been reverse coded.  

Timeline 

1) My hand problem will last a short time* 



383 
 

2) My hand problem is likely to be permanent rather than temporary 

3) My hand problem will last for a long time 

4) This hand problem will pass quickly* 

5) I expect to have this hand problem for the rest of my life 

6) My hand problem will improve in time*  

Consequences  

1) My hand problem is a serious condition 

2) My hand problem has major consequences on my life 

3) My hand problem does not have much effect on my life* 

4) My hand problem strongly affects the way others see me 

5) My hand problem has serious financial consequences 

6) My hand problem causes difficulties for those who are close to me 

Personal control 

1) There is a lot I can do to control my hand symptoms 

2) What I do can determine whether my hand problem gets better or worse 

3) The course of my hand problem depends on me 

4) Nothing I do will affect my hand problem* 

5) I have the power to influence my hand problem 

6) My actions will have no effect on the outcome of my hand problem* 

Treatment control 

1) There is very little that can be done to improve my hand problem* 

2) My treatment will be effective in curing my hand problem 

3) The negative effects of my hand problem can be prevented (avoided) by my 

treatment 

4) My treatment can control my hand problem 
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5) There is nothing that can help my hand problem* 

Illness coherence 

1) The symptoms of my hand problem are puzzling to me 

2) My hand problem is a mystery to me 

3) I don’t understand my hand problem 

4) My hand problem doesn’t make any sense to me 

5) I have a clear picture or understanding of my hand problem* 

Timeline cyclical 

1) The symptoms of my hand problem change a great deal from day to day 

2) My symptoms come and go in cycles 

3) My hand problem is very unpredictable 

4) I go through cycles in which my hand problem gets better or worse 

Emotional representation 

1) I get depressed when I think about my hand problem 

2) When I think about my hand problem I get upset 

3) My hand problem makes me feel angry 

4) My hand problem does not worry me* 

5) Having this hand problem makes me feel anxious 

6) My hand problem makes me feel afraid 

Grip-ability test (GAT) (Dellhag et al. 1995) 

The GAT score is calculated as a weighted average of three timed tests (in seconds): 

putting on a tubigrip, picking up a paper clip, pouring a jug of water (with weights 1.8, 1 

and 1.8).  
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American College of Rheumatology (ACR) criteria for hand osteoarthritis (OA) 

(Altman et al. 1990) 

Osteoarthritis occurs when cartilage covering the ends of the bones gradually roughens 

and becomes thin and the bone underneath thickens (Arthritis Research UK 2013). For 

hand OA, this can be painful and result in firm knobbly swellings on the finger joints 

(Arthritis Research UK 2013). Presence of clinical hand OA was measured in this thesis 

using the American College of Rheumatology (ACR) criteria for hand OA defined below:  

Hand pain, aching, or stiffness and 3 or 4 of the following features: 

 Hard tissue enlargement of 2 or more of 10 selected jointsβ 

 Hard tissue enlargement of 2 or more DIP joints 

 Fewer than 3 swollen MCP joints 

 Deformity of at least 1 of 10 selected jointsβ 

 Hand pain, aching or stiffness was defined as present if it occurred on all or most days in 

the previous month; β The 10 selected joints are the second and third distal 

interphalangeal (DIP), the second and third proximal interphalangeal, and the first 

carpometacarpal joints of both hands. MCP = metacarpophalangeal.  

Carpal tunnel syndrome (Palmer et al. 2000) 

Carpal tunnel syndrome occurs when there is excessive pressure on the median nerve i.e. 

a nerve in the wrist that allows feeling and movement to parts of the hand (American 

Accreditation HealthCare Commission 2014a). It can lead to pain, numbness, tingling, 

weakness or muscle damage in the hand and fingers (American Accreditation HealthCare 

Commission 2014a). Presence of carpal tunnel syndrome is measured in this thesis using 

an adapted version of the definition by Palmer et al. 2000. The version was adapted by 
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excluding both Tinel’s and nerve conduction tests as these two components were not 

measured in the CAS-HA study.   

Carpal tunnel definition by Palmer et al. 2000 

Pain or paraesthesia or sensory loss in the median nerve distribution and one of:  

o Tinel’s test positive (excluded as not measured in CAS-HA) 

o Phalen’s test positive (positive if numbness, tingling or weakness occurred 

when wrist bent forward)  

o nocturnal exacerbation of symptoms 

o motor loss with wasting of abductor pollicis brevis (muscle at the base of 

the thumb) 

o abnormal nerve conduction time (excluded as not measured in CAS-HA) 

Dupuytren’s contracture 

Dupuytren’s contracture is relatively painless (Adebajo 2010) and occurs through 

thickening of tissue under the skin in the palm of the hand causing the fingers to stiffen 

and bend (Medline Plus: Finger injuries and disorders). Unlike other hand conditions, it is 

more common in men than women (Adebajo 2010).  Presence of Dupuytren’s contracture 

was measured in the CAS-HA study by examination of the hand by a clinical assessor. 

Presence of the condition was recorded dichotomously as present yes/no.    

De Quervain’s tenosynovitis 

De Quervain’s tenosynovitis occurs when tendons running from the back of the thumb 

down the side of the wrist become swollen and irritated (American Accreditation 

HealthCare Commission 2014b). In the CAS-HA study, presence of De Quervain’s 

tenosynovitis was measured as present if the participant had a positive Finkelstein’s test, 

which was defined as positive if pain increased when the thumb was pushed into the palm 

of the hand (Adebajo 2010) 
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Trigger finger 

Trigger finger occurs when a nodule catches at the pulley that overlies the 

metacarpophalangeal joint in the palm (Adebajo 2010). This causes the affected fingers to 

lock in a bent position, which may or may not be painful to release (Adebajo 2010). In 

CAS-HA, participants were defined as having trigger finger if they answered “yes” to both 

of the following questions: Do your fingers ever lock, trigger or catch? If so, do you have to 

release them yourself?  
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Appendix 5: Conceptual differences between reliability and 

agreement parameters  

The diagram below, reproduced from de Vet et al. 2006a122, is a useful way to illustrate 

the difference between reliability and agreement parameters. It describes a scenario 

where three patients (represented by the circles, squares and triangles, respectively) are 

measured repeatedly on five occasions when no change in symptom state has occurred. 

Although absolute agreement between all five measures is not obtained, if the study aim 

is to compare differences between patients, this can be done more reliably for patients 

that differ greatly in symptom severity (i.e., the patients represented by the circle and 

squares) than for those with a similar level of symptoms (i.e., the patients represented by 

the squares and triangles). Information on the reliability of a measurement tool (when 

derived from similar patient populations to those under study) is therefore informative for 

studies whose primary aim is to distinguish between patients with different outcomes. In 

contrast, agreement parameters are useful when the study aim is to evaluate the 

magnitude of the outcome differences in a patient population, e.g. to assess the precise 

degree of change in an outcome over time (de Vet et al. 2006a). As the aim of the CAS-

HA study includes both these aims, both reliability and agreement parameters were 

presented.  

Descriptive diagram to illustrate differences between reliability and agreement 

parameters ((reproduced from (de Vet et al. 2006a)) 

 

 

 

 

                                                 
122 Reprinted from Journal of Clinical Epidemiology, 59 (10), De Vet et al., When to use agreement 
versus reliability measures, 1033-1039, Copyright (2006), with permission from Elsevier  

0 20 Symptom severity 
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Appendix 6: The Clinical Assessment Study of the Hand (CAS-

HA) – pilot study 

A pilot study was conducted prior to the main CAS-HA study to determine the reliability of 

the clinical and self-report measures used in the main study (Myers et al. 2011). 

Participants in the pilot study were aged 50 years and over and were purposively sampled 

from participants in a survey of hand problems in North Staffordshire (Thomas et al. 

2004b). Purposive sampling was used so that participants in the pilot study represented 

the full range of symptom severity likely to present for a clinical assessment in the main 

study.     

A total of 201 participants were sent a postal invite to attend the pilot study and 55 replied, 

giving consent to attend two research assessments, on average, one-month apart. The 

time frame between assessments was chosen to be sufficiently long to prevent recall bias 

but short enough for limited change in symptoms to occur (Streiner 2003). Full ethical 

approval was given for the study from the North Staffordshire Ethics Committee (ref = 

1430). 

Data from the CAS-HA pilot study were used to assess the reproducibility of the AUSCAN 

and to derive a range of possible values for minimum important change. Interpretation of 

these analyses, however, depended on the amount of variability in the AUSCAN between 

participants. A descriptive comparison was therefore conducted to compare the key 

characteristics of participants in the CAS-HA main and pilot studies and to explore 

whether the amount of variability in the AUSCAN was similar between participants in each 

study, i.e. to explore whether evidence on the reproducibility of the AUSCAN and 

minimum important change can generalise from the pilot to the main CAS-HA cohort.  

In general, participants in the CAS-HA pilot study were older than those in the main study. 

They were of better general health and had slightly higher levels of hand pain and 

functional difficulty. The interquartile ranges of the AUSCAN scores, however, as a marker 
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of variability, were similar between the two studies, along with the proportion of females 

that participated. This gives some support that the findings from the CAS-HA pilot study 

generalise to the main study data although these key differences are present in the data.    

 Descriptive data to compare the CAS-HA pilot study to the main CAS-HA cohort 

 CAS-HA pilot studyα CAS-HA main study 

N 55 623 
Age (years) 
 
  

67 (60, 74) 
 
 

63 (58, 71) 

Gender 
 
 Female  
 

 
 

33 (60) 

 
 

385 (62) 

General Health 
 
 Excellent 
 Very Good 
 Good  
 Fair  
 Poor 
 

 
 

  5 (  9) 
18 (33) 
21 (38) 
 10 (18) 
 1 (  2) 

 
 

  29 (  5) 
132 (21) 
256 (41) 
158 (26) 
   44 (  7) 

AUSCAN  
 Hand pain 
 Hand function   

 
8.0 (4.0, 11.0) 

10.0 (3.0, 19.0) 

 
6.0 (3.0, 9.0) 

8.0 (3.0, 17.0) 
Figures are numbers and percentages unless otherwise stated. α = data taken from the first data 
collection point in the CAS-HA pilot study,  = data taken from the first data collection point in the 
main CAS-HA study i.e. baseline,  = Median (inter-quartile range) 
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Appendix 7: The Arthritis Impact Measurement Scales 2 (AIMS2) 

The AIMS2 is a self-reported questionnaire, developed by Meenan et al. 1992, to measure 

outcome for patients with arthritis. The questionnaire covers nine domains of outcome 

(mobility; physical activity; dexterity; household activities; activities of daily living; anxiety; 

depression; social activity; pain), however, only the specific subscales of ‘hand and finger 

function’ and ‘hand pain’ are used in this thesis.  

The AIMS2 questions were only included at baseline and 18-month follow-up in CAS-HA 

so this measure was not used as the primary measure of hand pain and function in this 

thesis. The AIMS2 questions for hand pain and function are below along with a description 

of how they were combined to give total scores for analysis (Meenan et al. 1992).   

Hand pain subscale 

During the last month…. 

o How would you describe the hand pain you usually had? 

o How often did you have severe pain in your hands? 

o How often did you have pain in two or more hand joints at the same time? 

o How often did the morning stiffness in your hands last of more than one hour from 

the time you woke up? 

o How often did your hand problems make it difficult for you to sleep? 

Hand and finger function subscale 

During the last month…. 

o Could you easily write with a pen or pencil? 

o Could you easily button a shirt or blouse? 

o Could you easily turn a key in a lock? 

o Could you easily tie a knot or a bow? 
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o Could you easily open a new jar of food? 

The items in each subscale were rated using a five point scale: 0 = ‘All days’, 1 = ‘Most 

days’, 2 = ‘Some days’, 3 = ‘Few days’, 4 = ‘No days’. Items in each subscale were 

summed together and transformed to a 0-10 scale. Participants with a single item missing 

on the subscale had their missing value imputed with the mean of the remaining items in 

the subscale.     
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Appendix 8: The SMOotH study - Self Management in 

Osteoarthritis of the Hand 

The SMOotH study was a 2x2 factorial clinical trial exploring the clinical and cost 

effectiveness of hand exercises and joint protection for participants with hand OA 

(Dziedzic et al. 2011, Dziedzic et al. 2013). The primary aim of the study was to compare 

changes in hand pain and functional difficulty between the intervention groups. Prior to 

data collection, the study was given full ethical approval from the North West 7 Research 

Ethics Committee UK (rec reference: 07/H1008/235). 

Participants were recruited to the study using a postal survey mailed to all adults aged 50 

years and over registered with five general practices in North Staffordshire and Cheshire. 

Responders to the postal survey were assessed for trial eligibility and were eligible if they 

met the following criteria   

1) Reported hand pain or problems in the last 12-months 

2) Reported hand pain, aching or stiffness on more than a few days in the last month 

3) Had an minimum level of hand pain and/or functional difficulty as measured by the 

AUSCAN (pain score >=5 or function score >=9) 

4) Had not seen an OT or physiotherapist in the last 6 months for their hand problem 

5) Had not had a joint injection (wrist, fingers or thumbs) in the last 6 months 

6) Had not had fractures or hand injury in the last 6-months 

7) Another person in the household was not already taking part in the study 

  

Those eligible at the postal survey stage were invited to attend a clinical assessment with 

a research nurse held at a local hospital or in the participants’ GP practice. The aim of the 

assessment was to further determine trial eligibility. Participants were eligible if they met 

the following criteria: 

1) Gave informed consent to trial 

2) Did not have any clinical red flags or abnormalities e.g. swollen joints indicating 

rheumatoid arthritis 
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3) Met the American College of Rheumatology Criteria for hand OA (Altman, Alarcon 

et al. 1990) or had unilateral or bilateral thumb base OA 

4) Criteria 5,6, and 7 above had not changed since returning the postal survey  

5) Able to attend treatment classes in the 3-month period after randomisation  

 

Individuals eligible at the clinical assessment stage and providing written informed 

consent were then randomised to one of four treatment arms (leaflet & advice, joint 

projection, hand exercises or both joint protection and hand exercises). The treatments 

were delivered by occupational therapists specifically trained to deliver each intervention 

and participants were followed up by postal questionnaire at 3-, 6- and 12-months post-

randomisation. 

For the SMOotH study, 12,090 surveys were mailed and 6972 were returned. Of these, 

1309 met the eligibility criteria and were invited for a clinical assessment. The clinical 

assessment was attended by 344 participants, of which, 75% were randomised (N=252). 

Follow-up rates for the trial were high (N=232; N=218, and N= 219 for 3- 6- and 12-month 

follow-up respectively).   

Participants in the SMOotH study were similar to those in the CAS-HA main study for age, 

gender, and general health. As expected, given there was a minimal value on the 

AUSCAN for hand pain and functional difficulty to be eligible for SMOotH, participants in 

this study had more severe levels of hand pain and functional difficulty than those in the 

CAS-HA cohort. This is an advantage however of this data set that it can be used to 

explore whether results from the CAS-HA cohort generalise to other data sets where the 

profile of participants may differ from the sample they were originally derived, e.g. by 

symptom severity or by other socio-demographic variables.   
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Descriptive data to compare the SMOotH study to the main CAS-HA cohort 

 SMOotH studyα CAS-HA main studyα 

N 257 623 
Age (years) 
 
  

65 (59, 73) 63 (58, 71) 

Gender 
 
 Female  
 

 
 

170 (66) 

 
 

385 (62) 

General Health 
 
 Excellent 
 Very Good 
 Good  
 Fair  
 Poor 
 

 
 

6 (2) 
50 (20) 

128 (50) 
62 (24) 

8 (3) 

 
 

  29 (  5) 
132 (21) 
256 (41) 
158 (26) 
   44 (  7) 

AUSCAN  
 Hand pain 
 Hand function   

 
9.5 (7.0, 12.0) 

15.0 (9.0, 21.0) 

 
6.0 (3.0, 9.0) 

8.0 (3.0, 17.0) 
Figures are numbers and percentages unless otherwise stated. α = Data collected at baseline,  = 
Median (inter-quartile range) 
 



396 
 

Appendix 9: Distribution and correlation of three global assessment of change questions included in the 

SMOotH clinical trial (N=257) 

 Compared to when you were first seen by our research nurse, 
how is your….. 

 hand problem now? 
 
 

N(%) 

hand pain now? 
 
 

N(%) 

ability to use 
hands? 

 
N(%) 

 

Completely recovered 0(0) 0 (0) 0(0) 

Much Better 17 (8) 17 (8) 13 (6) 

Better 57 (25) 54 (24) 58 (26) 

No change 115 (50) 114 (51) 125 (56) 

Worse  36 (16) 34 (15) 26 (12) 

Much worse 3 (1) 3 (1) 2 (1) 

Total  228 222 224 

Spearman’s rank 
correlation 

 0.91 0.81  
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Appendix 10: Receiver Operating Characteristic (ROC) curves  

 

ROC curves (Silman 1995) were generated for AUSCAN hand pain and function by 

plotting (sensitivity) versus (1-specificity) for all possible cut-points on the AUSCAN 

change score. The values for sensitivity and specificity were calculated using the formulae 

below when applied to all possible cut-points on the AUSCAN change score.  

Calculation of sensitivity and specificity:  

The example below demonstrates how sensitivity and specificity values were calculated 

for the analysis of symptom deterioration if a cut-point of two on the AUSCAN function 

subscale were chosen to represent minimum important change.   

 

  
AUSCAN function 

(baseline – follow-up) 
  

 

Global 
assessment of 

change 
 

‘Worse’ 
<2 

‘No change’ 
>=2 

Total 
  

 No change a b a+b  

 Worse to some 
degree 

c d c+d  

 Total a+c b+d a+b+c+d  

 

Sensitivity = percentage in the “no change” group correctly identified by the AUSCAN 

function scale. Sensitivity = b/a+b  

Specificity = percentage in the “worse to some degree” group correctly identified by the 

AUSCAN function scale. Specificity = c/c+d 
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Appendix 11: Correlation between the global assessment of 

change question and the AUSCAN pain and function measures at 

baseline and first follow-up   

 
Data sample CAS-HA main study SMOotH clinical trial 

 Baseline 18-month 

follow-up 

Baseline 3-month 

follow-up 

AUSCAN pain 0.21 0.52 0.09 0.37 

AUSCAN function 0.24 0.47 0.06 0.28 

Figures in the table are Spearman’s rank correlations  
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Appendix 12: Sensitivity to change and responsiveness of the AIMS2 and pain numerical rating scale in 

the main CAS-HA study 

 

Sensitivity to 
change/responsiveness 

All participants 
(N= 586) 

Participants reporting symptom 
improvementα 

(N= 92) 

Participants reporting symptom 
deterioration 

(N = 248) 

 
AIMS2 
pain 

AIMS2 
hand and 

finger 
function 

Pain 
numerical 

rating 

AIMS2 
pain 

AIMS2 
hand and 

finger 
function 

Pain 
numerical 

rating 

AIMS2 
pain 

AIMS2 
hand and 

finger 
function 

Pain 
numerical 

rating 

Effect Size 0.28 -0.05 0.26 0.94 0.41 0.66 -0.06 -0.25 -0.17 

Standardised response 
mean (SRM) 

0.30 -0.06 0.25 1.07 0.51 0.83 -0.07 -0.34 -0.20 

Guyatt’s responsiveness 
statistic 

 
 

 1.11 0.54 0.77 -0.07 -0.36 -0.20 

Analysis was not completed for the SMOotH study as the AIMS2 was not collected in this study and the time scale for the numerical pain rating was ‘in the 
last the 3 days’ rather than ‘in the last month’ making comparisons between data sets difficult. α  = defined as “better”, “much better” or “completely 
recovered” on the global assessment of change question,  = defined as “worse” or “much worse” on the global assessment of change question,  = defined 
as “Pain severity in the last month” and measured on a 0-10 numerical rating scale.  
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Appendix 13:  AIMS2 pain and hand and finger function change scores (baseline to 18-month follow-up)  
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Change in AIMS2 pain score 

(baseline – 18 months) 

Change in AIMS2 hand and finger function score 
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F
re

qu
en

cy
 

Mean = 2.23  
SD = 2.08 
 N = 85 

Mean = 0.88 
SD = 2.01 
N = 222 

Mean = -0.14 
SD = 2.10 
N = 227 

Mean = 0.96 
SD = 1.90 
 N = 89 

Mean = -0.03 
SD = 1.79 
N = 233 

Mean = -0.65 
SD = 1.93 
N = 239 
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Appendix 14: Plot of change in pain severity (baseline to 18-

month follow-up) stratified by global assessment of change 

category  
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Mean = 1.98 
 SD = 2.39 
 N = 87 

Mean = 1.31 
 SD = 2.57 
 N = 234 
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completely 

recovered, much 
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“No change” 
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(to include worse 
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Mean = -0.52 
SD = 2.55 
 N = 233 
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Footnote: In the SEM framework, circles (or ellipses) represent unobserved factors (latent variables), squares (or rectangles) represent observed 
variables, single-headed arrows represent the impact of one variable on another, double-headed arrows represent co-variances or correlations between 
pairs of variables (Byrne & Crombie, 2003). In this diagram, the mean of the latent variables pooled over all participants in the sample represent fixed 
effects; the random effects are characterised by the variance of each latent factor (Curran & Hussong, 2003). 

Appendix 15: Quadratic growth model fitted in a structural equation modelling framework for a study 

with data collected at four time points (Curran et al. 2003) 

 

 

 

 

 

  

 
Intercept = αi  

 
Linear = β1i  

Y0 Y1 Y2 Y3 

λα0	 ൌ 1 

λα1	 ൌ 1 λα2	 ൌ 1 

λα3	 ൌ 1 

λβ1	 ൌ 1 

λβ2	 ൌ 2 

λβ3	 ൌ 3 λβ0	 ൌ 0 

 ε0  ε1  ε2  ε3 

Quadratic= β2i 
 

λβ0	
ଶ ൌ 0 

λβ1	
ଶ ൌ 1 

λβ2	
ଶ ൌ 4 

λβ2	
ଶ ൌ 9 
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Appendix 16: Linear growth model fitted in a structural equation modelling framework for a study with 

data collected at four time points and including one time-invariant predictor of interest (Curran et al. 

2003) 

 

 

 

 

λα0	 ൌ 1 

λα1	 ൌ 1 λα2	 ൌ 1 

λα3	 ൌ 1 

λβ1	 ൌ 1 λβ2	 ൌ 2 

λβ3	 ൌ 3 
λβ0	 ൌ 0 

ε0 ε1 ε2 ε3 

Y0 Y1 Y2 Y3 

    

Time-invariant predictor 
e.g. gender 

Multiple time invariant predictors can be included in the model. Categorical variables can be incorporated by entering dummy variables into the model (Curran & 
Hussong, 2003) 

Intercept Slope 

ଵ ଶ 
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Appendix 17: Key assumptions for growth modelling  

Sampling assumptions 

 Participants are selected at random from the population of interest (Byrne et al. 

2003) 

 Participants have the potential to be sampled at three or more time points so 

trajectories, over and above change between two time points, can be 

considered123 (Byrne et al. 2003) 

 No sampling outliers exist that could bias the analysis (Byrne et al. 2003) 

Normality assumptions for data to be estimated using maximum likelihood 

 Multivariate normality is required for: 

o the repeated measures of interest (Hox et al. 2005) 

o the latent growth factors used to model the trajectory of interest i.e ߙ௜ and 

 ௜ for the linear model shown in Box 10  (Byrne et al. 2003)ߚ

o the random effects are normally distributed with a mean of 0 and variance 

as estimated from the data (Singer et al. 2003) 

Linearity  

 For linear growth, the rate of change per unit of time is assumed to be equal and 

change in a linear fashion 

 Linearity of the relationship between the predictors and each growth factor in the 

model  if a linear relationship is assumed for this  

 

 

                                                 
123 Participants should have the potential to complete at least three time points for the linear model 
to be over-identified. Similarly, at least four time points for a quadratic model, and so on for higher 
order polynomials. Over-identification occurs when there is more observed than estimated 
information (Curran et al. 2003) 
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Measurement error (εit) 124 

Measurement errors are…… 

 Multi-variately normally distributed with a mean of zero (Curran et al. 2003) 

 Independent between the time points (Byrne et al. 2003) 

 Independent for time points within an individual i.e. (cov (εit εit') = 0 (Hox et al. 

2005) 

 Independent of intercept or shape parameters in the model (e.g. cov (εit ߙi) = 0, 

cov (εit ߚi) = 0 for a linear trajectory over time) (Hox et al. 2005).  

 Shown to have homoscedastic variance, i.e. have the same variance at each time 

point (if time is the only term in the model) (Byrne et al. 2003) and for each level of 

any categorical predictors included in the model 

  

                                                 
124 If these assumptions are not met, the model may need to be redefined (e.g. adding additional 
predictors or model correlations) to improve model specification (Kahn 2011)  
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Appendix 18: Types of missing data mechanisms     

Three definitions have been proposed in the literature to describe the types of missing 

data mechanisms that can occur in a study (Little et al. 1987). They describe data that are 

(a) missing completely at random (MCAR) i.e. the probability of having missing data is 

independent of observed and unobserved data (b) missing at random (MAR) i.e. the 

missing data probability is dependent on observed data but independent of unobserved 

data and (c) missing not at random (MNAR) i.e. missing data is dependent on unobserved 

data (Twisk et al. 2013). These missing data mechanisms can best be illustrated by 

examples. For example, if data were missing due to participants moving from the study 

geographical area, this data would be MCAR if the decision to move did not depend on 

study outcomes. This data is MCAR as removal of such missing data from the analysis 

would not lead to bias, just a less efficient analysis (StataCorp, 2013c).  In contrast, if 

outcome data in a clinical trial were more likely to be missing for participants in a particular 

treatment arm this data would be MAR as it is related to an observed study variable (i.e. 

treatment arm). This is then contrasted to data that are MNAR that could occur if 

participants with a particularly high value on the outcome of interest are more likely to 

drop out of the study than those with a low value on the outcome. This data is MNAR as 

the probability of missing data is related to a variable that has not been observed for 

participants with missing data (StataCorp, 2013c). For data that are MAR or MNAR, 

deletion of such missing data may lead to biased results (StataCorp, 2013c). 
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Appendix 19: Descriptive statistics of the AUSCAN distributions  

 AUSCAN pain AUSCAN function 

 N Mean (SD) Median (IQR) N Mean (SD) Median (IQR) 

All participants       

Baseline 589 3.1 (2.2) 3.0 (1.5, 4.5) 593 2.8 (2.4) 2.2 (0.8, 4.7) 

18-months 577 3.2 (2.4) 3.5 (0.5, 5.0) 576 2.8 (2.4) 2.5 (0.3, 4.7) 

3-years 523 3.3 (2.3) 3.5 (1.5, 5.0) 537 3.1 (2.4) 2.5 (1.1, 5.0) 

5-years 417 3.3 (2.2) 3.5 (1.5, 5.0) 418 3.0 (2.4) 2.8 (0.8, 5.0) 

7.5-years 384 3.2 (2.2) 3.0 (1.5, 5.0) 384 2.9 (2.3) 2.5 (0.8, 4.7) 

Participants with AUSCAN pain and function data at all time-points 

Baseline 301 2.9 (2.1) 2.5 (1.5, 4.5) 301 2.4 (2.1) 1.9 (0.6, 3.9) 

18-months 301 2.9 (2.1) 3.0 (0.5, 4.5) 301 2.5 (2.1) 2.5 (0.3, 4.4) 

3-years 301 3.0 (2.1) 2.5 (1.5, 4.5) 301 2.6 (2.2) 2.2 (0.8, 4.2) 

5-years 301 3.2 (2.2) 3.0 (1.5, 4.5) 301 2.8 (2.3) 2.5 (0.8, 4.4) 

7.5-years 301 3.2 (2.3) 3.0 (1.5, 5.0) 301 2.9 (2.3) 2.2 (0.8, 4.7) 

SD = standard deviation; IQR = inter-quartile range.  
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Appendix 20: Growth models - modelling strategy 

Growth models were fitted separately for hand pain and function and were progressively 

increased in complexity according to the stages listed below. As a suitable transformation 

could not be found to approximate the AUSCAN scores to a normal distribution 

(transformations tried included the natural log + 1, square root, square and cubic), 

estimates were calculated using robust standard errors and the Satorra-Bentler Scaled 

Chi-square Test (SBSCT) was used to test whether the extra level of complexity was 

needed at each modelling stage.   

List of growth models fitted to the hand pain and function data 

 

1) Fixed and random intercept  

2) Fixed and random intercept and slope 

3) Fixed intercept, slope and quadratic term, but only a random intercept and slope 

4) Fixed and random intercept, slope and quadratic term 

5) Fixed intercept, slope and quadratic and cubic term, but only a random intercept 

and slope 
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Appendix 21: Correlation matrices of AUSCAN hand pain and 

function by study time point 

 
AUSCAN pain 

 Baseline 18-months 3-years 5-years 7.5-years 

Baseline 
1.00 

(N=589) 
    

18-months 
0.58 

(N=546) 

1.00 

(N=577) 
   

3-years 
0.64 

(N=494) 

0.65 

(N=509) 

1.00 

(N=523) 
  

5-years 
0.62 

(N=394) 

0.56 

(N=405) 

0.70 

(N=402) 

1.00 

(N=417) 
 

7.5 years 
0.57 

(N=362) 

0.59 

(N=375) 

0.64 

(N=371) 

0.70 

(N=350) 

1.00 

(N=384) 

 AUSCAN function 

 Baseline 18-months 3-years 5-years 7.5-years 

Baseline 
1.00 

(N=593) 
    

18-months 
0.74 

(N=550) 

1.00 

(N=576) 
   

3-years 
0.80 

(N=510) 

0.76 

(N=522) 

1.00 

(N=537) 
  

5-years 
0.78 

(N=397) 

0.71 

(N=407) 

0.85 

(N=416) 

1.00 

(N=418) 
 

7.5 years 
0.74 

(N=365) 

0.71 

(N=375) 

0.78 

(N=381) 

0.81 

(N=348) 

1.00 

(N=384) 
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Appendix 22: Missing data patterns for AUSCAN function 

Footnote: 52%, 19%, 14%, 9% and 5% of participants had data at 5, 4, 3, 2, 1 time points 

respectively 

  

 

Missing data pattern (X=data present) 

Number of 

time points 

with non-

missing data 

 Baseline 18-months 3-years 5-years 7.5-years  

 N=593 N=576 N=537 N=418 N=384  

N (%)       

322 (52) X X X X X 5 

78 (13) X X X   3 

64 (10) X X X X  4 

49 (8) X X    2 

33 (5) X X X  X 4 

 30 (5) X     1 

 17 (3)  X X X X 4 

 6 (<1) X  X X X 4 

6 (<1)  X X   2 

3 (<1) X  X   2 

3 (<1) X  X X  3 

2 (<1)   X X X 3 

2 (<1)  X X X  3 

2 (<1) X X   X 3 

2 (<1)      0 

1 (<1) X  X  X 3 

1 (<1) X X  X  3 

1 (<1) X X  X X 4 

1 (<1)  X    1 
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Appendix 23: Alternative modelling strategies that could have 

been used to select the predictors of interest in the growth 

models  

Alternative modelling strategies could include those that do not consider the block 

structure that was imposed on the predictors of interest. For backwards deletion this 

would involve fitting a model with all predictors in it, so parameter estimates could be 

unreliable due to data drop-out. For forward selection, this would not have considered that 

some predictors are less costly and easier to collect than others.  

A full stepwise model procedure could have been applied, but this was not practical given 

that the number of predictors was large and model comparisons were done “by hand”.  

Forward or backwards selection could have been used to select the strongest predictors 

in each block before combining these into a single model. This would be simpler than the 

modelling strategy chosen as it does not consider the order that the blocks are analysed, 

but the method is not in keeping with the objective of the analysis to see if predictors with 

more complex forms of measurement are needed in the model.  

Testing whether a factor of importance is a predictor of the model intercept first, prior to 

then testing whether it is also a predictor of the model slope could have been used, 

although this strategy may miss predictors that strongly predict the model slope but not 

the intercept. This method would have proved problematic if the objective of the analysis 

was to explore factors that predict how the outcomes change over time.  
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Appendix 24: Illustrative examples of how the coefficients in a 

growth model can vary depending on other predictors included in 

the model  

Both of the examples below illustrate that the factor coefficients in a growth model should 

only be interpreted in light of other predictors in the model and, for prediction models that 

the main emphasis is on model fit and performance of the optimal combination of factors, 

rather than on the interpretation of the individual predictors per se. To explore the 

association of individual factors, an explanatory model would need to be built based on 

clear hypotheses regarding potential confounders, which was not the aim of the models in 

this thesis.   

Example 1: Gender 

In Chapter 7, the intercept coefficient for gender was positive in the hand pain model and 

negative in the hand function model. This was further explored, by re-running the model 

without adjusting for all other predictors in the model. The intercept coefficient for male 

gender changed to be negative for both hand pain and function (-0.45 for hand pain and -

1.14 for hand function with 95% confidence intervals of -0.77, -0.13 and -1.49, -0.79 

respectively). These unadjusted models therefore indicate that both hand pain and 

function are less severe for women than men, which is more in line with previous studies 

reporting that women tend to experience worse hand pain and functional difficulty than 

men (Dahaghin et al. 2005b), and illustrates a different conclusion than if the coefficients 

were interpreted from the combined model.  

Example 2: SF-12 Physical function score (PCS) 

The figure below shows interaction plots for PCS from the hand pain model. They are 

plots of the relationship between time and the predicted value of the hand pain outcome 

for 12 different values of PCS. The values of PCS are equally spaced from 10 to 65, with 
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such limits chosen to encompass the minimum and maximum values of PCS in the data. It 

shows that the magnitude of the slope depends on the value of baseline PCS, but that the 

strength and nature of this relationship depends very much on whether all of the other 

baseline predictors are included in the model alongside PCS, or not.  
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Appendix 25: Multinomial logistic regression 

Multinomial logistic regression is used to model outcomes with two or more unordered 

categories. It works by simultaneously estimating a set of logistic regression equations 

that predict the log of the probability of being in each outcome group relative to a 

reference group (Biesheuvel et al. 2008). For an outcome with three possible groups (1, 2, 

and 3), where group 1 is the reference category, and a single (dichotomous or continuous) 

predictor (X) the logistic regression equations are:  

݃݋݈ ൬
ܲሺ݃݌ݑ݋ݎ	2ሻ
ܲሺ݃݌ݑ݋ݎ	1	ሻ

൰ ൌ ଶଵߚ	 ൅	ߚଶଶܺ ൌ  	ଶ݌݈

݃݋݈ ൬
ܲሺ݃݌ݑ݋ݎ	3ሻ
ܲሺ݃݌ݑ݋ݎ	1	ሻ

൰ ൌ ଷଵߚ	 ൅	ߚଷଶܺ ൌ  ଷ݌݈

Only two equations are needed as only two probabilities need to be estimated (the third 

probability can be calculated by knowing that the sum of all three probabilities is one). The 

logistic regression equations can be re-written (using algebra) to make the probability 

values the subject of the regression equations  

ܲ	ሺ݃݌ݑ݋ݎ	2ሻ ൌ 	
expሺ݈݌ଶሻ

1 ൅ ଶሻ݌ሺ݈݌ݔ݁ ൅ ଷሻ݌ሺ݈݌ݔ݁
 

ܲሺ݃݌ݑ݋ݎ	3ሻ ൌ 	
expሺ݈݌ଷሻ

1 ൅ ଶሻ݌ሺ݈݌ݔ݁ ൅ ଷሻ݌ሺ݈݌ݔ݁
 

The probability of being in the reference group is then calculated from the above two 

probabilities as:  
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ܲሺ݃݌ݑ݋ݎ	1ሻ ൌ 1 െ ܲሺ݃݌ݑ݋ݎ	2ሻ െ ܲሺ݃݌ݑ݋ݎ	3ሻ 

A set of three probabilities are then estimated for each individual in the dataset. The 

model can be extended to outcomes that contain more than three categories and to 

models with multiple predictors using the principals outlined here.  

The regression coefficients from the model (i.e. ߚଶଶ	and	ߚଷଶ) can be transformed, by taking 

their exponential, to calculate a relative risk ratio (RRR)125. This value is the factor by 

which the relative risk (i.e. the probability of being in a group relative to the probability of 

being in the reference category) would change if there was a unit increase in the predictor 

of interest (holding all other variables in the model constant) (Long et al. 2006).    

                                                 
125 Some authors refer to this value in the literature as an odds ratio rather than a relative risk ratio 
(RRR). The term RRR is used here as this is the convention used in STATA (i.e. the software used 
for analysis). The STATA community highlight that the term odds ratio is misleading (as the 
denominator in the outcome modelled is not measured as (1 – the probability of being in the 
group); it is the probability of being in the reference group, which is not the same quantity. They 
also highlight that the term relative-risk ratio is misleading too. In epidemiology, relative-risk 
generally refers to the probability of having an outcome if you have the predictor of interest (e.g. an 
exposed group) compared to not having the predictor of interest (e.g. an unexposed group), 
however here, the term “relative risk” refers to the probability of being in the outcome group of 
interest compared to the reference group so it doesn’t directly refer to an exposed/unexposed 
predictor variable until the ratio part is calculated from the model (Gutierrez 2005)  
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Appendix 26: Calculation of Nagelkerke’s pseudo R-square and 

the Brier score 

Nagelkerke’s pseudo R-square 

The Nagelkerke’s pseudo R-square is calculated by comparing the model likelihood for 

the model without the predictors in it ((ܮሺ0ሻ), to a model with the predictors in it	ሺ	ܮ൫ߠ෨൯ሻ. 

The numerator in the equation is the Cox and Snell pseudo R-square, which is rescaled 

by the denominator in the formula to a 0 to 1 scale, to give the Nagelkerke’s R-square 

value (Hu et al. 2006). 

ଶܴ	݋݀ݑ݁ݏ݌	ݏᇱ݁݇ݎ݈݁݇݁݃ܽܰ ൌ 	

1 െ ቆ
ሺ0ሻܮ
෨൯ߠ൫ܮ

ቇ

ଶ
௡

1 െ	൫ܮሺ0ሻ൯
ଶ
௡

 

Brier score 

The Brier score is an aggregate measure of disagreement between the observed outcome 

and a prediction (StataCorp 2013d) and is calculated for a multinomial model using the 

formula below (Brier 1950). The formula is expressed in the context of the models fitted in 

this chapter and illustrates that the Brier score is essentially measuring the average 

squared error difference (StataCorp 2013d) between the predicted and observed data. 

݁ݎ݋ܿݏ	ݎ݁݅ݎܤ ൌ 	
1
݊
෍෍൫݌௜௝ െ	ܧ௜௝൯

ଶ
௡

௜ୀଵ

௥

௝ୀଵ
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where i = participant number, j= trajectory group number from the multinomial logistic 

regression model (ranging from 1 to r), p = predicted probability, and E = 1 if the 

participant is in the trajectory group from the LCGM, 0 otherwise and n = total number of 

participants in the sample. 
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Appendix 27: Using the ‘Conditional risk method’ to transform the 

predicted probabilities from a multinomial logistic regression 

model prior to calculating a set of C-statistics (Van Calster et al. 

2012a) 

Consider a multinomial model with three outcome categories (A, B, and C). Define A as 

the reference group and B as the group with which to test discrimination. 

Rescale the predicted values to be on a scale of 0 to 1, by defining a new probability 

variable for each person as: 

New probability = P(B)/P(A) +P(B)  

This new probability is then used in an ROC curve analysis to compare model 

discrimination between groups A and B and to calculate a C-statistic for that pairwise 

comparison. 

A similar approach can then be used to compare category A to category C 
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Appendix 28: The accuracy paradox 

This example is taken from http://en.wikipedia.org/wiki/Accuracy_paradox and illustrates 

that although model 2 has a higher level of accuracy, it is less useful than model 1. In 

model 2 there is no need for a model to be used as all participants are assigned to having 

the condition of interest in the sample. 

Model 1 

 Predict “Yes” Predict “No” Total  

True “yes” 9700 150 9850 Accuracy = 

98% 

True “No” 50 100 150  

 

Model 2 

 Predict “Yes” Predict “No” Total  

True “yes” 9850 0 9850 Accuracy = 

98.5% 

True “No” 150 0 150  
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Appendix 29: Goodness-of-fit for LCGM fitted to AUSCAN Pain (N=311) – complete case analysis 

Model 
type  

AIC BIC ABIC Entropy VLMR 
LRT 

Adjusted 
LMR 
LRT 

PB LRT Group N Average posterior probability 

Linear          
1 6821 6847 6825 N/A N/A N/A N/A 311 1.0 
2 6244 6281 6250 0.85 p<0.001 p<0.001 p<0.001 124, 187 0.97, 0.95 
3 6070 6118 6077 0.83 p<0.001 p<0.001 p<0.001 56, 146, 109 0.94, 0.90, 0.95 
4 6031 6090 6040 0.77 p=0.037 p=0.043 p<0.001 89, 72, 43, 107 0.87, 0.88, 0.91, 0.83 
5 6020 6091 6031 0.79 p=0.540 p=0.550 p<0.001 109, 40, 9, 70, 83 0.83, 0.94, 0.79, 0.89, 0.86 
6 6014 6097 6027 0.81 p=0.510 p=0.516 p=0.013 76, 103, 7, 81, 40, 4 0.89, 0.83, 0.88, 0.86, 0.93, 0.85 
7 6011 6105 6025 0.81 p=0.053 p=0.055 p=0.058 86, 10, 68, 5, 39, 102, 1 0.86, 0.80, 0.89, 0.81, 0.90, 0.81, 1.00 
Quadratic          
1 6823 6853 6827 N/A N/A N/A N/A 311 1.0 
2 6246 6291 6253 0.85 p<0.001 p<0.001 p<0.001 130, 181 0.95, 0.96 
3 6072 6132 6081 0.83 p<0.001 p<0.001 p<0.001 108, 147, 56 0.95, 0.90, 0.94 
4 6032 6107 6044 0.78 p=0.019 p=0.022 p<0.001 43, 64, 97, 107 0.93, 0.90, 0.87, 0.83 
5 6024 6113 6037 0.79 p=0.268 p=0.283 p=0.050 91, 101, 41, 68, 10 0.86, 0.81, 0.94, 0.89, 0.83 
6 6014 6118 6030 0.81 p=0.230 p=0.242 p<0.001 92, 62, 39, 102, 6, 10 0.86, 0.91, 0.93, 0.80, 0.77, 0.84 
7 6012 6131 6030 0.82 p=0.698 p=0.706 p=0.162 105, 10, 38, 77, 65, 6, 10 0.81, 0.69, 0.94, 0.87, 0.90, 0.79, 0.83 
Cubic          
1 6825 6858 6830 N/A N/A N/A N/A 311 1.0 
2 6250 6302 6258 0.85 p<0.001 p<0.001 p<0.001 182, 129 0.96, 0.95 
3 6076 6147 6086 0.84 p<0.001 p<0.001 p<0.001 56, 108, 147 0.94, 0.95, 0.90 
4 6038 6128 6052 0.77 p=0.140 p=0.148 p<0.001 69, 103, 96, 43 0.90, 0.82, 0.85, 0.93 
5 6021 6130 6038 0.78 p=0.142 p=0.149 p<0.001 93, 68, 25, 81, 44 0.88, 0.91, 0.72, 0.79, 0.93 
6 6013 6140 6033 0.81 p=0.586 p=0.594 p<0.001 9, 42, 91, 62, 20, 87 0.79, 0.95, 0.86, 0.92, 0.79, 0.79 
7 6007 6153 6029 0.82 p=0.163 p=0.168 p=0.030 79, 25, 6, 57, 23, 26, 95 0.83, 0.81, 0.89, 0.93, 0.87, 0.79, 0.87 

Abbreviations: AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; ABIC, Sample-size adjusted BIC; VLMR LRT, Vuong-Lo-Mendell-Rubin likelihood ratio test; LMR LRT, Lo-
Mendell-Rubin likelihood ratio test; PBLRT, parametric bootstrapped likelihood ratio test; N/A, not applicable; p = p-value. Highlighting indicates models with the lowest AIC, BIC, ABIC values, 
models with one group less than the model with a non-significant LRT p-value, group frequencies less than 5% of the sample (i.e. N <15) and posterior probabilities <0.7. All models achieved 
a global solution as in each model the largest log-likelihood was replicated for more than two random starting values.  
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Appendix 30: Goodness-of-fit for LCGM fitted to AUSCAN Function (N=322) – complete case analysis 

Model type  AIC BIC ABIC Entropy VLMR 
LRT 

Adjusted 
LMR 
LRT 

PB LRT Group N Average posterior probability 

Linear          
1 7149 7175 7153 N/A N/A N/A N/A 322 1.0 
2 6160 6198 6166 0.92 p<0.001 p<0.001 p<0.001 124, 198 0.96, 0.98 
3 5845 5894 5853 0.90 p=0.001 p=0.002 p<0.001 153, 101, 68 0.96, 0.94, 0.95 
4 5737 5797 5747 0.88 p=0.027 p=0.031 p<0.001 121, 30, 98, 73 0.95, 0.96, 0.90, 0.94 
5 5678 5749 5689 0.86 p=0.035 p=0.041 p<0.001 53, 19, 82, 98, 70 0.94, 0.93, 0.87, 0.91, 0.91 
6 5624 5707 5637 0.87 p=0.045 p=0.052 p<0.001 94, 46, 52, 18, 29, 83 0.92, 0.88, 0.95, 0.96, 0.86, 0.89 
7 Global solution not obtained (largest log likelihood not replicated in two or more model solutions) 
Quadratic          
1 7150 7180 7155 N/A N/A N/A N/A 322 1.0 
2 6163 6208 6170 0.92 p<0.001 p<0.001 p<0.001 198, 124 0.98, 0.96 
3 5846 5907 5856 0.90 p=0.001 p=0.001 p<0.001 150, 103, 69 0.97, 0.93, 0.95 
4 5739 5814 5751 0.88 p=0.037 p=0.040 p<0.001 99, 120, 73, 30 0.90, 0.96, 0.94, 0.96 
5 5682 5772 5696 0.86 p=0.153 p=0.163 p<0.001 19, 70, 53, 98, 82 0.93, 0.91, 0.94, 0.92, 0.86 
6 5628 5733 5645 0.87 p=0.169 p=0.178 p<0.001 52, 18, 84, 26, 94, 48 0.95, 0.96, 0.87, 0.88, 0.93, 0.87 
7 Global solution not obtained (largest log likelihood not replicated in two or more model solutions) 
Cubic          
1 7152 7186 7158 N/A N/A N/A N/A 322 1.0 
2 6166 6219 6175 0.92 p<0.001 p<0.001 p<0.001 198, 124 0.98, 0.96 
3 5852 5923 5863 0.90 p=0.002 p=0.002 p<0.001 150, 103, 69 0.97, 0.93, 0.96 
4 5743 5834 5758 0.88 p=0.026 p=0.029 p<0.001 99, 120, 73, 30 0.90, 0.96, 0.93, 0.97 
5 5682 5791 5699 0.87 p=0.045 p=0.049 p<0.001 82, 97, 56, 18, 69 0.88, 0.93, 0.92, 0.96, 0.92 
6 5628 5756 5648 0.87 p=0.191 p=0.201 p<0.001 95, 18, 28, 81, 52, 48 0.93, 0.98, 0.87, 0.89, 0.96, 0.88 
7 Global solution not obtained (largest log likelihood not replicated in two or more model solutions) 

Abbreviations: AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; ABIC, Sample-size adjusted BIC; VLMR LRT, Vuong-Lo-Mendell-Rubin likelihood ratio test; LMR LRT, 
Lo-Mendell-Rubin likelihood ratio test; PBLRT, parametric bootstrapped likelihood ratio test; N/A, not applicable; p = p-value. Highlighting indicates models with the lowest AIC, BIC, ABIC 
values, models with one group less than the model with a non-significant LRT p-value, group frequencies less than 5% of the sample (i.e. N <15) and posterior probabilities <0.7.   
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Appendix 31: Goodness-of-fit Statistics for a LCGM fitted to AUSCAN Pain (N=621) 

Model 
type 

AIC BIC ABIC Entropy
VLMR 
LRT 

Adjusted 
LMR 
LRT 

PB LRT Group N Average posterior probability 

Linear          
1 11125 11156 11134 N/A N/A N/A N/A 621 1.0 
2 10231 10276 10244 0.80 p<0.001 p<0.001 p<0.001 343, 278 0.95, 0.94 
3 9958 10016 9974 0.78 p<0.001 p<0.001 p<0.001 286, 120, 215 0.88, 0.90, 0.92 
4 9885 9956 9905 0.72 p=0.001 p=0.001 p<0.001 165, 72, 187, 197 0.87, 0.88, 0.81, 0.81 
5 9866 9950 9890 0.74 p=0.009 p=0.012 p<0.001 189, 85, 7, 155, 185 0.78, 0.83, 0.91, 0.87, 0.80 
6 9852 9950 9880 0.73 p=0.315 p=0.330 p<0.001 7, 186, 177, 152, 14, 85 0.92, 0.80, 0.74, 0.85, 0.75, 0.84 
7 9846 9956 9877 0.75 p=0.607 p=0.616 p=0.020 173, 88, 10, 182, 7, 154, 7 0.76, 0.83, 0.81, 0.81, 0.92, 0.85, 0.69 

Quadratic          
1 11126 11162 11136 N/A N/A N/A N/A 621 1.0 
2 10231 10284 10246 0.80 p<0.001 p<0.001 p<0.001 343, 278 0.95, 0.94 
3 9954 10025 9974 0.78 p<0.001 p<0.001 p<0.001 116, 288, 217 0.91, 0.87, 0.92 
4 9881 9970 9906 0.72 p=0.001 p=0.001 p<0.001 158, 194, 74, 195 0.88, 0.82, 0.88, 0.80 
5 9863 9969 9893 0.74 p=0.030 p=0.034 p<0.001 86, 185, 189, 8, 153 0.84, 0.80, 0.79, 0.89, 0.87 
6 9842 9966 9877 0.73 p=0.060 p=0.068 p<0.001 8, 158, 167, 27, 87, 174 0.89, 0.86, 0.73, 0.74, 0.84, 0.81 
7 9830 9972 9870 0.75 p=0.251 p=0.266 p<0.001 167, 7, 179, 8, 26, 154, 80 0.74, 0.81, 0.81, 0.87, 0.76, 0.86, 0.84 

Cubic          
1 11128 11168 11140 N/A N/A N/A N/A 621 1.0 
2 10235 10297 10253 0.80 p<0.001 p<0.001 p<0.001 343, 278 0.95, 0.94 
3 9958 10042 9982 0.78 p<0.001 p<0.001 p<0.001 119, 287, 215 0.91, 0.88, 0.92 
4 9886 9992 9916 0.73 p=0.002 p=0.002 p<0.001 197, 71, 188, 165 0.80, 0.89, 0.82, 0.88 
5 9859 9987 9895 0.71 p=0.137 p=0.145 p<0.001 81, 159, 198, 144, 39 0.88, 0.73, 0.83, 0.87, 0.72 
6 9835 9985 9877 0.73 p=0.106 p=0.113 p<0.001 140, 90, 8, 49, 198, 136 0.86, 0.85, 0.94, 0.72, 0.80, 0.73 
7 9824 9997 9873 0.75 p=0.393 p=0.404 p<0.001 84, 144, 194, 9, 138, 8, 44 0.85, 0.75, 0.80, 0.74, 0.86, 0.93, 0.72 

Abbreviations: AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; ABIC, Sample-size adjusted BIC; VLMR LRT, Vuong-Lo-Mendell-Rubin likelihood ratio 
test; LMR LRT, Lo-Mendell-Rubin likelihood ratio test; PBLRT, parametric bootstrapped likelihood ratio test; N/A, not applicable; p = p-value. Highlighting indicates 
models with the lowest AIC, BIC, ABIC values, models with one group less than the model with a non-significant LRT p-value, group frequencies less than 5% of the 
sample (i.e. N <30) and posterior probabilities <0.7. All models achieved a global solution as in each model the largest log-likelihood was replicated for more than two 
random starting values  Two participants were excluded from the analysis as they had no data at all time-points.  
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Appendix 32: Goodness-of-fit Statistics for a LCGM fitted to AUSCAN Function (N=621) 

Model 
type 

AIC BIC ABIC Entropy
VLMR 
LRT 

Adjusted 
LMR 
LRT 

PB LRT Group N Average posterior probability 

Linear          
1 11519 11550 11528 N/A N/A N/A N/A 621 1.0 
2 10059 10104 10072 0.89 p<0.001 p<0.001 p<0.001 247, 374 0.96, 0.97 
3 9588 9646 9604 0.86 p=0.077 p=0.084 p<0.001 123, 201, 297 0.94, 0.90, 0.96 
4 9415 9486 9435 0.84 p<0.001 P=0.001 p<0.001 258, 171, 128, 64 0.95, 0.87, 0.90, 0.91 
5 9346 9430 9370 0.78 p=0.008 p=0.010 p<0.001 129, 60, 173, 117, 142 0.84, 0.91, 0.88, 0.88, 0.78 
6 9307 9404 9335 0.77 p=0.243 p=0.258 p<0.001 139, 119, 65, 72, 59, 167 0.78, 0.87, 0.74, 0.73, 0.91, 0.87 
7 9278 9388 9309 0.78 p=0.026 p=0.030 p<0.001 70, 67, 114, 6, 59, 138, 167 0.74, 0.74, 0.86, 0.92, 0.88, 0.79, 0.87 

Quadratic          
1 11519 11554 11529 N/A N/A N/A N/A 621 1.0 
2 10056 10109 10071 0.89 p<0.001 p<0.001 p<0.001 246, 375 0.96, 0.97 
3 9585 9656 9605 0.86 p=0.093 p=0.099 p<0.001 291, 129, 201 0.96, 0.93, 0.90 
4 9408 9496 9433 0.84 p=0.002 p=0.002 p<0.001 258, 64, 167, 132 0.94, 0.91, 0.88, 0.89 
5 9339 9446 9370 0.79 p=0.101 p=0.109 p<0.001 118, 61, 137, 177, 128 0.88, 0.90, 0.79, 0.88, 0.84 
6 9302 9427 9338 0.77 p=0.589 p=0.598 p<0.001 121, 58, 70, 64, 138, 170 0.86, 0.91, 0.73, 0.74, 0.78, 0.87 
7 9274 9416 9314 0.79 p=0.761 p=0.764 p<0.001 137, 62, 169, 7, 114, 74, 58 0.78, 0.75, 0.88, 0.88, 0.87, 0.74, 0.89 

Cubic          
1 11520 11560 11531 N/A N/A N/A N/A 621 1.0 
2 10056 10118 10073 0.89 p<0.001 p<0.001 p<0.001 375, 246 0.97, 0.96 
3 9586 9670 9610 0.86 p=0.070 p=0.074 p<0.001 202, 293, 126 0.90, 0.96, 0.93 
4 9409 9516 9439 0.84 p=0.017 p=0.018 p<0.001 64, 165, 258, 134 0.91, 0.88, 0.94, 0.89 
5 9335 9464 9372 0.79 p=0.017 p=0.019 p<0.001 128, 137, 177, 61, 118 0.84, 0.79, 0.88, 0.91, 0.88 
6 9299 9450 9342 0.81 p=0.440 p=0.450 p<0.001 131, 118, 60, 175, 124, 13 0.79, 0.84, 0.92, 0.87, 0.87, 0.86 
7 9271 9444 9320 0.82 p=0.232 p=0.238 p<0.001 22, 7, 117, 58, 113, 127, 177 0.80, 0.88, 0.88, 0.89, 0.83, 0.80, 0.88 

Abbreviations: AIC, Akaike Information Criteria; BIC, Bayesian Information Criteria; ABIC, Sample-size adjusted BIC; VLMR LRT, Vuong-Lo-Mendell-Rubin likelihood ratio 
test; LMR LRT, Lo-Mendell-Rubin likelihood ratio test; PBLRT, parametric bootstrapped likelihood ratio test; N/A, not applicable; p = p-value. Highlighting indicates models 
with the lowest AIC, BIC, ABIC values, models with one group less than the model with a non-significant LRT p-value, group frequencies less than 5% of the sample (i.e. N 
<30) and posterior probabilities <0.7. All models achieved a global solution as in each model the largest log-likelihood was replicated for more than two random starting 
values  Two participants were excluded from the analysis as they had no data at all time-points.  
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Appendix 33: Trajectory plots for AUSCAN pain based on 

participants with complete-case data only (N=311)  
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Appendix 34: Trajectory plots for AUSCAN function based on 

participants with complete-case data only (N=322) 
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Appendix 35: Model goodness-of-fit and performance statistics for a prediction model of trajectory 

group membership that only contains the baseline for the outcome of interest as a predictor in the 

model  

Goodness-of-fit measures and the C-statistic 

 Nagelkerke’s pseudo R-square  Brier Score C-statistic 
(95% confidence interval) 

Hand pain 

0.64 0.55 

 
Mild (reference group)  
 Severe 0.99 (0.97, 1.0) 
 Mild deterioration   0.72 (0.66, 0.78) 
 Moderate 0.95 (0.93, 0.97) 
 Episodic 0.77 (0.69, 0.85) 
Hand function  
Mild (reference group) 

0.80 0.53 

 
 Moderate 1.00 (0.99, 1.00) 
 Severe  1.00 (1.00, 1.00) 
 Improving 0.99 (0.98, 1.00) 
 Progressively Deteriorating 0.91 (0.87, 0.96) 
 Mild/Moderate 0.80 (0.74, 0.85) 
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Discrimination plots 
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Hand function 
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Calibration plots 
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Hand Function  
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Model accuracy 

 

Hand pain 

Trajectory group 

from the LCGM 

Trajectory group membership predicted from the multinomial logistic regression Total 

 Severe Mild deterioration Moderate Mild Episodic  

Severe 61 0 18 2 0 81 

Mild deterioration  1 72 40 39 0 152 

Moderate 17 31 138 1 0 187 

Mild 0 37 12 81 0 130 

Episodic 1 20 10 8 0 39 

Total 80 160 218 131 0 589 

Percentage of participants accurately assigned by the model = 60%  
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Hand function 

Trajectory group from the 

LCGM 

Trajectory group membership predicted from the multinomial logistic regression Total 

 Moderate Severe Improving Progressively 

Deteriorating 

Mild/Moderate Mild  

Moderate 88 12 7 0 8 1 116 

Severe  15 39 0 0 0 0 54 

Improving 32 2 21 0 13 1 69 

Progressively Deteriorating 2 0 14 0 41 6 63 

Mild/Moderate 9 0 5 0 75 42 131 

Mild 0 0 1 0 34 125 160 

Total 146 53 48 0 171 175 593 

Percentage of participants accurately assigned by the model = 59%  
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Sample with replacement from the 

original data to generate a new data 

set of size N1 (i.e. a bootstrapped 

sample) 

Phase 1: Sampling  

Fit prediction model to the 

bootstrapped sample, selecting 

variables for inclusion using forward 

stepwise2  

Phase 2: Prediction  

Evaluate model performance (i.e. the 
C-statistic) in 

a) The original data sample 
b) The bootstrapped sample 

Calculate the difference in model 
performance between a) and b) as 
an estimate of “over-optimism”

Phase 3: Model performance  

a) Calculate an overall estimate of “over optimism” by taking estimates of 
over optimism at phase 3 and averaging then across all 500 
bootstrapped samples 
 

b) Calculate internal validated performance as:  Model performance in the 
original data sample – estimate of “over optimism” from phase 4 stage a) 

Phase 4: Overall evaluation of model performance  

Repeat 500 times 

Appendix 36: Using bootstrapping to estimate model over-optimism (method suggested by (Steyerberg 

et al. 2001)) 

Footnotes 

1: N = the total number of people classified 
into a trajectory group  

2: Using forward stepwise selection implies 
that variables in the prediction model will 
not necessarily be the same in each 
bootstrapped sample  
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Appendix 37: Extending a linear parallel process model to include 

quadratic trajectories over time  

Several quadratic models were fitted to the data as it was not clear (initially) which 

correlation terms between the growth factors should be included in the model. The 

confusion arose as there was a discrepancy between the correlations included in the 

model by default in Mplus (when the model was naturally extended to include a quadratic 

term), to those included in a study with an example of how to include a quadratic term into 

a parallel process growth model (Cole 2008).  

Models one and two (below) describe the nature of the discrepancy, with model one 

showing the correlations that were automatically included by default in Mplus, and model 

two, the correlations suggested for inclusion by Cole (Cole 2008). In model two, the 

correlations in red are the additional correlations that are added to model one, and the 

correlations highlighted in yellow are those that are excluded from model one to give the 

model by Cole126.  

A personal communication with the developers of the Mplus software suggested that the 

choice of which correlations to include in the model should be driven by the research 

question of interest. This raises two questions: 

1) Is it plausible that the additional correlations in the model 2 are non-zero in the 

data? If so, they should be included in the model. 

2) Is it plausible that the correlations that have been excluded from model one are 

non-zero? If so, they should be included in the model (as excluding a correlation 

term from the model is the same as saying it has a correlation of zero) 

                                                 
126 The models in this appendix have been simplified to only show the growth factor of interest as 
there is no ambiguity around how the outcomes of interest should be included in the model – they 
are included as per the description given in Chapter 5 
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The initial plan was to test this in the data by producing a third model (model three) that 

included all of the correlations in models one or two, which could be used to test whether 

any of the correlations shown in green in model three were statistically significant. It 

transpired, however, that this approach was not possible as linear dependencies between 

the latent variables caused the estimated covariance matrix to be non-positive definite and 

model estimates to be unreliable127. The cause of the linear dependency surrounded the 

inclusion of the additional correlations shown in red in model two. These correlations were 

therefore removed (from model three) and the model re-run (the correlations highlighted in 

yellow in model two remained in the model as they were not the cause of the linear 

dependency between the latent variables)128. This model produced plausible estimates 

and is “the quadratic model” reported in chapter 9 (it is identical to the default model in 

Mplus and the correlations highlighted in yellow in model two are included to explore 

whether these correlations are statistically significant in the data)129.   

  

                                                 
127 A non-positive definite covariance matrix means that at least one eigenvalue in the covariance 
matrix is <=0. This causes estimation problems for the model (for further details see (Rigdon 1997)) 
128 Linear dependencies still occurred between the latent variables if only the correlations 
highlighted in yellow in model two were removed from model three 
129 It was possible to eradicate the linear dependency between the latent growth factors by 
removing only one of the correlations shown in red in model 2, but this caused other estimates 
problems, namely correlations that were greater than one. All correlations in red in model 2 were 
therefore removed from the model, as it had previously been shown that the correlation between 
the random intercept and the random growth factors were not strong when the outcomes were 
modelled separately, thus supporting the removal of these correlations from the analysis  
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Model One: the “default” model in Mplus  

Hand pain 
intercept 

Hand pain 
slope 

Hand pain 
quadratic 

Hand function 
intercept 

Hand function 
slope 

Hand function 
quadratic 

Curved arrows indicate correlations, dashed lines represent predictive relationships. The predictive 

relationships remain the same across models one to three 
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Model Two: the model by Cole (Cole 2008)  
 

 

 

 

 

 

 

 

 

 

Model Three: The combined model 

 

 

 

 

 

 

 

 

Hand pain 
intercept 

Hand pain 
slope 

Hand pain 
quadratic 

Hand function 
intercept 

Hand function 
slope 

Hand function 
quadratic 

Curved arrows indicate correlations, dashed lines represent predictive relationships. The 

predictive relationships remain the same across models one to three 

   Hand pain 
intercept 

Hand pain 
slope 

Hand pain 
quadratic 

   Hand function 
intercept 

Hand function 
slope 

Hand function 
quadratic 

Curved arrows indicate correlations, dashed lines represent predictive relationships. The 

predictive relationships remain the same across models one to three 
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Appendix 38: Combinations of clinical conditions 

Combination 
of conditions 

OA – meets the 
ACR criteria Carpal tunnel 

Dupuytren’s 
contractuture 

De Quervain’s 
tenosynovitis Trigger finger 

Number of 
participants  

1 No No No No No 127 
2 No Yes No No No 68 
3 No No Yes No No 42 
4 Yes Yes No No No 38 
5 Yes No No No No 32 
6 No Yes No Yes No 26 
7 No Yes Yes No No 25 
8 No No No Yes No 24 
9 No No No No Yes 24 

10 Yes Yes No Yes No 19 
11 Yes Yes No No Yes 17 
12 Yes No No Yes No 16 
13 No Yes No No Yes 13 
14 No No Yes No Yes 12 
15 No Yes Yes Yes No 10 
16 No No Yes Yes No 8 
17 Yes No Yes No No 8 
18 No Yes Yes No Yes 8 
19 Yes Yes Yes Yes No 8 
20 Yes No No No Yes 6 
21 Yes Yes Yes No No 6 
22 Yes Yes Yes No Yes 6 
23 No Yes No Yes Yes 5 
24 No Yes No Missing No 5 
25 No Missing No No No 4 
26 Yes Yes No Missing No 4 
27 Yes No Yes Yes No 4 
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28 Yes Yes No Yes Yes 4 
29 Yes Yes Yes Missing Yes 4 
30 Yes Missing No No No 3 
31 No No No Missing No 3 
32 Yes No Yes No Yes 3 
33 No No No Yes Yes 3 
34 No Missing No Missing No 2 
35 No Yes No Missing Yes 2 
36 Yes No Yes Missing Yes 2 
37 No Missing Yes No Yes 2 
38 No Missing No Yes No 2 
39 Yes Missing Yes Missing No 2 
40 No Missing Yes Missing No 2 
41 Yes No No Missing No 2 
42 No Missing Yes No No 2 
43 No No Yes Yes Yes 2 
44 No No Yes Missing No 2 
45 Yes Yes Yes Yes Yes 1 
46 No Missing Yes Yes Yes 1 
47 No Missing Yes Yes No 1 
48 Missing Yes No Missing No 1 
49 Yes Yes No Missing Yes 1 
50 No Yes Yes Yes Yes 1 
51 Yes Missing No Yes Yes 1 
52 Yes Yes Yes Missing No 1 
53 No No No No Missing 1 
54 Yes No No Missing Yes 1 
55 Yes Missing No Missing No 1 
56 Yes No No Yes Yes 1 
57 No Missing No Missing Yes 1 
58 No Yes Yes Missing No 1 
59 No Yes Yes Missing Yes 1 
60 No No No Missing Yes 1 
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Appendix 39: Proportion of participants with each clinical condition stratified by presence of 

radiographic hand OA 

Clinical condition No joints with radiographic OAα 

N(%) 

At least one joint with radiographic OAα 

N(%) 

Carpal tunnel syndrome 43 (43) 216 (46) 

Dupuytren’s contracture 23 (22) 130 (27) 

De Quervain’s tenosynovitis 19 (18) 113 (24) 

Trigger finger 19 (18) 95 (20) 

α = Radiographic hand OA defined if at least one hand joint has a Kellgren and Lawrence (KL) grade >=2 
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