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Abstract

This paper addresses a major shortcoming of the current generation of wave models, namely their inability
to describe wave propagation upon ambient currents with vertical shear. The wave action conservation equa-
tion (WAE) for linear waves propagating in horizontally inhomogeneous vertically-sheared currents is derived
following Voronovich (1976). The resulting WAE specifies conservation of a certain depth-averaged quantity,
the wave action, a product of the wave amplitude squared, eigenfunctions and functions of the eigenvalues of
the boundary value problem for water waves upon a vertically sheared current. The formulation of the WAE
is made explicit using known asymptotic solutions of the boundary value problem which exploit the smallness
of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature; the
adopted approximations are shown to be sufficient for most of the conceivable applications. In the limit of
vanishing current shear, the new formulation reduces to that of Bretherton & Garrett (1968) without shear and
the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic
oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently
universal might lead to significant errors in wave amplitude. The new WAE which takes into account the vertical
shear can be better coupled to modern circulation models which resolve the three-dimensional structure of the
uppermost layer of the ocean.
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1. Introduction1

In nature, wind waves and swell almost always2

propagate on vertically sheared currents in a horizon-3

tally inhomogeneous environment. Due to interaction4

with the atmosphere, ocean currents of any origin5

usually have a boundary layer in the uppermost layer6

of the ocean, the layer where most of the surface wave7

motion is localized. In recent years ocean circulation8

models have been significantly improved, especially9

for modelling relatively small areas, often coastal,10

where most of the offshore activities and shipping11

lanes are concentrated, and now have the capability12

to describe dynamics of vertically-sheared currents13

with an increasingly fine vertical and horizontal res-14

olution, e.g. [1]. However, all wave models employed15

in commercial wave forecasting today still only take16

into account vertically-averaged mean flows which,17

as shown below, might lead to significant errors in18

realistic conditions. Minimizing such errors is impor-19

tant for a variety of engineering applications, e.g., for20

calculating the loads and impact on off-shore struc-21

tures, sediment transport, etc. Also, since waves, to22

a large extent, control the exchange of momentum,23

heat and mass exchange between the ocean and at-24

mosphere, capturing more accurately their dynamics25
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and their coupling with currents is also a way towards 26

improvement of the weather prediction and climate 27

models [2]. 28

The primary goal of this work is to put forward 29

an "explicit" closed form of the wave action conser- 30

vation equation (WAE) suitable for operational fore- 31

casting which takes into account the vertical shear of 32

the ambient currents. The seminal work of Brether- 33

ton and Garrett [3] examined linear wavetrains in 34

a moving media and deduced that it is the adia- 35

batic invariant, which they called wave action (not 36

the wave energy) that is conserved. They applied 37

their fundamental idea of the wave action conserva- 38

tion to a large variety of waves, such as, e.g., sound 39

waves, Alfvèn waves, internal gravity waves and iner- 40

tial waves, Rossby waves, etc [3]. For the problem fo- 41

cused upon here, i.e. surface gravity waves propagat- 42

ing on currents, the co-existence of motions of vastly 43

different scales in natural water basins presents a seri- 44

ous challenge for their direct numerical modeling. On 45

the other hand, for water waves on currents in nature, 46

the almost universal vast separation of spatial and 47

temporal scales provides a possibility for developing 48

an asymptotic description of the coupled evolution of 49

waves and currents. To the leading order, the wave 50

dynamics is captured by fast and short linear waves, 51

while the evolution of the currents is devoid of fast 52

and short scales. In the present work we focus en- 53

tirely on the dynamics of such wave fields. Thus, we 54
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are interested in the phase averaged evolution of lin-55

ear wave fields on the time and space scales shorter56

than those where nonlinear interactions become im-57

portant. This range of scales is quite substantial. For58

example, for dominant wind waves this range is typ-59

ically up to tens of minutes and kilometers, for swell60

it is up to tens of kilometers. At these scales inho-61

mogeneities due to currents and topography are the62

dominant factors.63

Here we assume an arbitrary current profile with64

non-uniform vorticity and exploit the scale separa-65

tion. To this end, the WKBJ approach is em-66

ployed following the mostly overlooked work by67

Voronovich [4] (hereafter V76), where the WAE for68

linear surface and internal gravity waves on shear69

flows in a fluid of arbitrary depth was first derived.70

The significance of this work goes beyond the mere71

derivation of the WAE for the generic situation; it72

also demonstrated the role of the equations for low-73

frequency larger scale motions and, hence, the factors74

which might have negligible direct effect on waves,75

but are of importance for the mean flows and through76

this back door, on wave action conservation. In-77

dependently, White [5] arrived at a similar deriva-78

tion of the WAE but confined to deep water waves79

only. Both derivations yield an equation governing80

slow evolution of wave amplitude in space and time81

in an implicit form. To use it the eigenvalues (fre-82

quencies) and eigenfunctions (vertical modes) have83

to be found in each point of a wavepacket trajectory84

in "slow" space, which requires solving the bound-85

ary value problem for waves on a vertically-sheared86

current (the Rayleigh equation and the appropriate87

boundary conditions on the free surface and bottom).88

Then the solutions of the boundary value problem89

have to be used to find the packet trajectory and90

substituted into the WAE. Exact analytical solutions91

of the boundary value problem for an arbitrary cur-92

rent are not known. Probably it is this impediment93

which prevented the adoption of Voronovich’s find-94

ings in practical wave modelling. Here Voronovich’s95

derivation is revisited highlighting the junctions in96

the derivation where taking into account some extra97

effects such as the Earth’s rotation, ambient flow tur-98

bulence, wind forcing, etc., might also be important99

and result in a different WAE. A priori one could100

not rule out a noticeable effect of the Earth’s rotation101

despite the significant scale separation, since the nu-102

merical simulations of turbulent Reynolds’ stresses in103

sheared flow beneath the free surface show a signif-104

icant effect caused by the rotation under the com-105

parable scale separation [6]. In the present work,106

Earth’s rotation is taken into account, while ambi-107

ent flow turbulence and wind forcing are neglected.108

Still, they were discussed in order to outline where109

and how these effects might enter the problem.110

Taking into account the presence of the verti-111

cal shear of the currents also substantially affects112

the nonlinear dynamics of the waves propagating113

on the currents. In particular, the wave’s vertical114

structure differs from that for potential waves [7, 115

8], the timescale of the Benjamin-Feir instability 116

(O((µ2ω)−1), µ is wave steepness, ω is wave fre- 117

quency) changes (e.g. [9]) and triad resonant inter- 118

actions between pairs of surface harmonics and a 119

vorticity wave, which are absent in vertically uni- 120

form flows, become possible [10] on the timescale of 121

O((µω)−1). It should be noted that for short wind 122

waves of typical wavelength ∼ 0.1m, the nonlinear in- 123

teractions can happen quite quickly but in this study 124

we focus on wavelengths in the range 10− 100m and 125

on linear dynamics of water waves on horizontally 126

and vertically varying currents; the nonlinear inter- 127

actions, both triad and cubic only have to be consid- 128

ered when attempting to describe wave evolution on 129

longer timescales. 130

Although for the boundary value problem for waves 131

on a current with an arbitrary vertical profile ex- 132

act analytical solutions have not been found. Fortu- 133

nately, in typical oceanic conditions there are always 134

natural small parameters which can be exploited to 135

get asymptotic solutions for generic profiles. Stew- 136

art and Joy [11] derived an approximate dispersion 137

relation for deep water waves on a depth-dependent 138

current as the leading order term in an asymptotic 139

expansion, the current magnitude normalized by the 140

wave phase velocity being the small parameter. This 141

advance was followed by a finite-depth extension of 142

this approach by Skop [12]. The second order term in 143

this expansion was by found Kirby and Chen (1989). 144

An alternative solution of the deep water boundary 145

value problem in terms of a converging series was de- 146

rived by Shrira [13] by exploiting the presumed small- 147

ness of vorticity and more recent work includes anal- 148

ysis of the boundary value problem for a piecewise 149

linear approximation [14] 150

This paper brings together both lines of inquiry: 151

the implicit WAE formulation of Voronovich [4], here- 152

after V76 and asymptotic solutions of the boundary 153

value problem for waves on a sheared current. The 154

V76 formulation is exact within the framework of the 155

linearised Euler equations and the WKBJ approxi- 156

mation. Here we choose an approximate solution to 157

the boundary value problem, most appropriate in our 158

context, which makes the WAE explicit and balances 159

the accuracy and simplicity. Thus, for an arbitrary 160

vertical profile of the current we put forward a formu- 161

lation of the WAE suitable for operational forecasting 162

with an explicit wave action invariant for waves on a 163

slowly varying current and topography. The discrep- 164

ancies between the predictions of the new WAE and 165

that for the vertically averaged currents, on the one 166

hand, and the "exact" V76, on the other, are exam- 167

ined. We show that for sample realistic situations 168

the adopted approximation indeed works well. The 169

situations, where the discrepancy with the results for 170

vertically averaged currents is significant, are identi- 171

fied. 172

Without any pretence at drawing a comprehensive 173

review it makes sense to outline other lines of enquiry 174
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on water waves on shear currents to provide the con-175

text for this study. Most of the efforts concentrated176

on theoretical studies. As far as the linear theory is177

concerned the reviews by Peregrine [15] and Peregrine178

& Jonsson [16] are still relevant today. Just a few179

developments having relevance to the current study180

have to be specially noted. Although the scale sepa-181

ration underpinning the universally adopted WKBJ182

approach practically always holds in the ocean, the183

caustics do occur. In the vicinity of a caustic the field184

evolution does not result in a singularity predicted by185

the ray theory but needs to be described by a special186

model equation. In the absence of vertical shear in187

the vicinity of a turning point the model equation is188

the standard Airy equation. For waves on a vertically189

sheared current the problem is more complicated but190

it has been solved by McKee [17, 18]. An independent191

derivation of the WAE for unidirectional waves on a192

linearly sheared collinear current was carried out by193

Jonsson et al. [19]. Since for this case it is possible194

to introduce a potential for the wave motion and the195

boundary value problem is straightforward to solve,196

no further approximations are needed, which makes197

it a very attractive toy model. We are not aware of198

it being applied to the modelling of any real situa-199

tion in the ocean. The popularity of considering the200

constant shear currents does not seem to wane even201

in the linear setting; a recent paper by Ellingson and202

Brevik [20] provides an update. The mild-slope equa-203

tion, widely-used in nearshore and coastal regions,204

very recently was extended to include the effects of a205

linearly-sheared current [21].206

However, it is in the area of theoretical studies of207

nonlinear waves where the possibility of introducing208

a potential for waves on linearly sheared currents was209

most heavily exploited: the number of papers is now210

counted in hundreds. Here we mention just a few211

key nonlinear effects and phenomena discovered. In212

the presence of the vertical shear the shape of steady213

nonlinear waves differs from that in the absence of214

shear, often quite significantly (e.g. [7, 22]). This215

change of shape is a generic manifestation of verti-216

cal shear (e.g. [8]), but is much more difficult to217

explore without constant vorticity assumption. The218

presence of vertical shear also makes possible the ex-219

istence of solitary waves on deep water, as was shown220

analytically [23] and numerically [24]. Surprisingly,221

although the steady solutions for periodic nonlinear222

waves on a horizontally uniform current with con-223

stant shear have been known for more than thirty224

years, to our knowledge there has been no attempt225

to derive a nonlinear conservation law and to gener-226

alise the results of Peregrine & Thomas [25] for hor-227

izontally nonuniform currents and varying depth by228

taking into account constant vorticity. A major ad-229

vance concerned with constant vorticity waves has230

been reported in [26], where the method of confor-231

mal mapping was extended to solve numerically fully232

nonlinear Euler equations for two-dimensional invis-233

cid free-surface flows with constant vorticity over ar-234

bitrary nonuniform bottom profile in an extremely 235

efficient and accurate way. 236

For a multitude of reasons the modulational insta- 237

bility of weakly nonlinear waves propagating upon 238

horizontally uniform shear flows was a constant focus 239

of attention for more than forty years and resulted 240

in a large corpus of works. Most of the studies were 241

aimed at deriving the nonlinear Schrödinger (NLS) 242

type equation for the envelope of a weakly nonlin- 243

ear wave train, the first such study by Johnson [27] 244

which moulded the paradigm for all subsequent stud- 245

ies: an ideal fluid, a priori given current which does 246

not evolve, a weakly nonlinear wavetrain, a narrow- 247

band wavetrain, with the narrowness chosen to be 248

balanced by the nonlinearity. Johnson [27] consid- 249

ered strictly one-dimensional wave propagation on an 250

collinear current with an arbitrary shear profile. The 251

cycle of influential works by Benney and co-authors 252

(see e.g. [9] and references therein) extended the con- 253

sideration to two spatial dimensions. It has been 254

established that for an arbitrary profile of the cur- 255

rent the evolution of a weakly nonlinear narrowband 256

wavepacket varying in two horizontal dimensions is 257

governed by the NLS-type equation coupled with el- 258

liptic equations for the induced "mean" flow. The 259

main conclusions of Benney’s group can be briefly 260

summarized as follows: the shear does affect the mod- 261

ulational instability and for a strong shear the effect 262

might be substantial; crucially, for a strong shear the 263

transverse instability is much stronger than the longi- 264

tudinal one. This conclusion was somehow forgotten; 265

the most studied proved to be strictly longitudinal 266

modulations for two-dimensional motions. Again the 267

simplicity of the constant vorticity and piecewise con- 268

stant vorticity models proved to be irresistible, see 269

e.g. Baumstein [28] and Thomas et al. [29] and ref- 270

erences therein. 271

Models with a piece-wise constant vorticity profiles 272

give rise to qualitatively new phenomena totally ab- 273

sent in constant vorticity models and are somewhat 274

hidden in the models with continuous smooth vortic- 275

ity profiles. The jumps of vorticity support interfacial 276

waves, referred to as the vorticity modes, this makes 277

possible resonant triad interactions between the sur- 278

face waves and the vorticity modes, moreover, among 279

these triad interactions there are explosive ones, that 280

is, the interactions resulting in a finite time blow-up 281

[30, 31]. With the notable exception of the last two 282

references all the above works were concerned with 283

deterministic evolution of narrow band weakly non- 284

linear wave trains. Returning to the oceanic waves 285

which are always random, rarely sufficiently narrow 286

band to be described in terms of isolated wavetrains 287

and never (except for laboratory tanks) are strictly 288

one-dimensional, oceanic waves are necessarily de- 289

scribed in terms of their statistical characteristics, 290

primarily spectra. The only attempt we are aware 291

of to incorporate the account of vertical shear into 292

description of wave kinetics was undertaken in [10]. 293

Nonlinear triad interactions between the surface and 294
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vorticity modes are not entirely an artifact of piece-295

wise constant vorticity models. Such interactions296

were shown to be always present for arbitrary smooth297

vorticity profile, the corresponding interaction coeffi-298

cients were derived for typical oceanic situations ex-299

ploiting the weakness of the current with respect to300

the surface wave phase velocities; to describe evo-301

lution of wave spectra subjected to both the triad302

and standard quartic interaction the corresponding303

kinetic equation has been derived [10]. This line304

of inquiry did not get a direct continuation. The305

present work is complementary to it: we take into ac-306

count the horizontal inhomogeneity of the shear cur-307

rents and bottom profile concentrating on the smaller308

time scales. The next step needed is to integrate the309

two approaches, which represents a conceptual chal-310

lenge: the resonant interactions are described in the311

wavevector space, while the effects due to spatial in-312

homogeneity captured by the WAE are naturally de-313

scribed in the coordinate space.314

All mentioned theoretical works are based on the315

idea that there exist either an a priori given vertical316

profile of a current or, as in V76, it is specified by the317

Euler equations for the low-frequency motions upon318

which either linear and nonlinear waves evolve. To319

what extent this split occurs in reality is not known.320

The field measurement show very low vertical shear in321

the layer adjacent to the surface, which is attributed322

to the wave breaking [32]. At the moment it is not323

clear at what time scale the current profile adjusts324

to changes of wave breaking intensity controlled pri-325

marily by wave steepness. If/when the blow-ups pre-326

dicted by Voronovich et al [31] does occur, it would327

locally destroy the shear flow vorticity profile, is also328

not clear what effect this will have on wave propaga-329

tion and how long it takes for the profile to recover.330

Breaking of dominant waves, although rare, certainly331

temporarily destroys the vertical structure of the flow332

in a way poorly understood so far [33]. Sufficiently333

accurate field observations of wave evolution on hori-334

zontally and vertically varying currents with simulta-335

neous high resolution measurements of the currents336

are beyond the reach of the existing techniques. Al-337

though in the laboratory the measuring capabilities338

are much better, the laboratory tanks rarely allow339

for two-dimensional wave propagation desirable for340

the effects of we are interested in to be pronounced.341

Hence, at present neither the field observations nor342

even the best tank experiments (e.g. [34]) can resolve343

the fundamental open questions of wave-current in-344

teractions. Being fully aware of these open questions345

we adopt the following approach, we focus on lin-346

ear phase averaged dynamics of water waves on hori-347

zontally and vertically varying currents presumed to348

be given; the nonlinear interactions, both triad and349

quartic are neglected.350

The layout of the paper is as follows: In §2, the sep-351

arate dynamical equations are derived for the mean352

flow and the wave field. Under the standard separa-353

tion of scales WKBJ assumptions, the derivation of354

the Rayleigh equation together with the invariant and 355

group velocity of the WAE is revisited in §3 taking 356

into account the Earth rotation. The derivation for 357

the invariant and group velocity, which takes into ac- 358

count vertical shear is detailed in §4. In §5 the results 359

are analysed to assess the improvement to the usual 360

WAE due to taking into account vertical shear for a 361

family of realistic-type vertical velocity profiles. The 362

dynamics of the wave action is determined to large 363

extent by the ray trajectories of the wave packets. 364

The effect of the vertical shear on the wave ray paths 365

and, hence, wave amplitudes is examined in §6. We 366

briefly discuss the results and implications in §7. 367

2. Governing equations 368

Our starting point is the Euler equations of mo- 369

tions for an incompressible fluid of constant density 370

ρ0 on a rotating frame with f as the varying Corio- 371

lis parameter and a free-surface under the action of 372

gravity. In the Cartesian frame x, y, z with zero of the 373

vertical coordinate z on the unperturbed water sur- 374

face, the motions are characterized by the horizontal 375

velocity field ū = (ū, v̄), the vertical velocity field w̄ 376

and the free surface elevation η̄(x, y, t). 377

Dū

Dt
+ fẑ × ū +

1

ρ0
∇p = 0 (2.1a) 378

Dw̄

Dt
+ g +

1

ρ0

∂p̄

∂z
= 0 (2.1b) 379

∇ · ū +
∂w̄

∂z
= 0 (2.1c) 380

where D/Dt = ∂/∂t + ū · ∇ + w̄ ∂/∂z, ∇· = 381

(∂/∂x, ∂/∂y) is the horizontal derivatives vector, f is 382

the Coriolis parameter. The neglect of surface tension 383

implies that we are interested in wavelengths longer 384

than a few centimeters while the neglect of bottom 385

friction assumes that for linear theory, the turbulence 386

generated by the bottom friction remains local and is 387

not transported into the main flow. As a first approx- 388

imation to reality we consider inviscid fluid, which is a 389

fair assumption since our main interest is in the wave 390

motion at relatively short timescales. These basic 391

equations are supplemented with the usual kinematic 392

and dynamic boundary conditions at the surface and 393

the dynamic boundary condition at the bottom which 394

are respectively, 395

∂η̄

∂t
+ ū · ∇η̄ − w̄ = 0 , z = η̄ (2.2a) 396

p̄ = 0 , z = η̄ (2.2b) 397

w̄ + ū · ∇h = 0 z = −h (2.2c) 398

at the free surface z = η̄(x, y, t) and at the bottom 399

z = −h (ε1x, ε1y). 400

In nature, the problem under consideration has a 401

number of small parameters. Slowness of the horizon- 402

tal spatial variation of the main flow compared to the 403

characteristic wave scale, is characterised by a small 404
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parameter ε1, while the slowness of the ambient cur-405

rent temporal variability compared to the character-406

istic wave period is characterised by an independent407

parameter ε2. Note that ε2 � ε1. Variation in the408

vertical is characterised by an independent parame-409

ter δ0 and its scaling is left unspecified for now.410

All flow variables can be split into two components:411

the fast oscillating part ( ˜ ) and the slow non-wave412

motion ((0)). Thus a generic field variable ζ̄ can be413

presented as the sum414

ζ̄ = ζ(0) + ζ̃. (2.3)415

By inserting ansatz (2.3) into both the governing416

equations (2.1) and boundary conditions in (2.2) and417

retaining terms to the lowest order, the dynamics of418

the ambient current can be considered as the average419

or the overall motion. Ordering for the mean flow420

part is421

ζ(0) = ζ(0) (ε1x, ε1y, δ0z, ε2t) (2.4)422

and the resulting mean flow equations and boundary423

conditions (are expanded in a Taylor series to attain424

the mean and oscillatory parts on the free surface) are425

equivalent to those in Eq. (6) of V76 except here the426

Coriolis term enters into the horizontal momentum427

equations.428

The time scales of the oscillatory dynamics are429

much shorter than that of the mean flow even in the430

case of a long swell. A typical wave celerity for dom-431

inant wind waves and swell is of O(10ms−1). The432

Coriolis frequency is small and we characterise this433

smallness by an independent small parameter ε3. To434

see what might be affected by rotation, we, for the435

time being , assume ε3 ∼ ε1, then the linearized equa-436

tions to first order take the form:437

dũ

dt
+ ε1ũi

∂u(0)

∂xi
+ δ0w̃

∂u(0)

∂z
438

+ε3fẑ × ũ +
1

ρ0
∇p̃ = 0 (2.5a)439

dw̃

dt
+ ε1δ0w̃

∂w(0)

∂z
+

1

ρ0

∂p̃

∂z
= 0 (2.5b)440

∇ · ũ +
∂w̃

∂z
= 0 (2.5c)441

with corresponding boundary conditions442

dη̃

dt
+ ũ · ∇η(0) − w̃ − ∂w(0)

∂z
η̃ = 0 , z = η(0) (2.6a)443

p̃ = −∂p
(0)

∂z
η̃ , z = η(0) (2.6b)444

w̃ + ε1ũ · ∇h = 0, z = −h . (2.6c)445

The bottom boundary condition (2.6c) follows by as-446

suming the viscosity to be negligible for the wave447

dynamics and so becomes the free-slip condition in448

which mild-slope changes of the bottom have been449

incorporated.450

3. Wave action equation (WAE) with account 451

of vertical shear 452

Exploiting the naturally occurring separation of 453

scales - "short" and "fast" waves vs "slowly" vary- 454

ing environment- the WKBJ asymptotic approach is 455

employed, e.g. [35]. Seeking solutions as an asymp- 456

totic series 457

ζ̃ = <e
{[
ζ(1) + ε1ζ

(2) + . . .
]
eiS(x,y,t) + . . .

}
, (3.1) 458

where 459

∂S

∂t
= −Ω = f(k,x, t), ∇S = k (3.2) 460

the local wavevector k = (kx, ky)
T , k = |k| is related 461

to the local wavelength λ, by the standard relation 462

λ = 2π
k , S is the wave phase and Ω is the local angular 463

frequency. 464

Substituting Eq. (3.1) into Eqs. (2.5) and (2.6) and 465

retaining lowest order terms yields (with superscript 466

1 omitted): 467

−iσu + δ0w
∂u(0)

∂z
+

ik
ρ0
p = 0 (3.3a) 468

−iσw +
1

ρ0

∂p

∂z
= 0 (3.3b) 469

ik · u +
∂w

∂z
= 0 (3.3c) 470

where σ is the Doppler-shifted, depth-dependent fre- 471

quency, defined as 472

σ(z) = Ω− k · u(0) . (3.4) 473

The quantity U is introduced to characterise the pro- 474

jection of the velocity onto the wavevector direction 475

and C for the wave celerity, defined as, 476

U(k, z) =
k · u(0)

k
, C =

Ω

k
. (3.5) 477

Standard manipulations of Eqs. (3.3) yield the 478

Rayleigh equation for the vertical component of ve- 479

locity (see e.g. [36]) 480

∂2w

∂z2
−
(
k2 − δ20

C − U
∂2U
∂z2

)
w = 0. (3.6) 481

From Eqs. (3.3) and (3.6) all other components of 482

velocity, u and pressure p can be easily expressed in 483

terms of w as in Eq. (10) of V76. The corresponding 484

boundary conditions are 485

−iση − w = 0, z = η(0) (3.7a) 486

p = ρgη, z = η(0) (3.7b) 487

w = 0, z = −h (3.7c) 488

which allow the boundary condition at the free sur- 489

face, z = η(0) to be expressed in terms of w as 490

∂w

∂z
+

(
δ0

(C − U)

∂U
∂z
− g

(C − U)
2

)
w = 0 . (3.8) 491
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The local boundary value problem comprised of the492

Rayleigh Eq. (3.6) and the boundary condition (3.8)493

specifies the eigenvalues C as functions of k and the494

local vertical mode structure w(k, z). The pressure495

and the horizontal velocities can then be expressed in496

terms of w according to Eq. (10) of V76.497

The phase of the wave S by the Hamilton-Jacobi498

equation is499

∂S

∂t
+ f(∇S,x, t) = 0 (3.9)500

whose characteristics are the ray equations specifying501

positions of a wavepacket x and its wavevector k502

∂t x = ∇k, ∂t k = −∇Ω .503

Hence, solutions of these equations prescribe ray tra-504

jectories, that is evolution in time of the position of a505

wavepacket and its central wavevector for given ini-506

tial conditions, x(0), k(0). We recall that at each507

point of the trajectory the vertical distributions of w508

and local dispersion relation Ω(k) are given by the509

boundary value problem (Eqs. (3.6) and (3.8)).510

To determine the evolution of wave amplitudes one511

must proceed to the next order. It is straightforward512

to derive similar equations for the next order (for de-513

tails see Appendix B). To eliminate secular growth514

of the solutions of this second-order linear inhomoge-515

neous boundary value problem it is necessary to im-516

pose a solvability condition, supplemented with the517

lowest-order mean flow equations, which yields the518

wave action conservation equation we are looking for519

520

∂Ivs
∂t

+∇ · (CgIvs) = 0, (3.10)521

where522

Ivs = −
∫ η(0)

−h

1

2σ2k2
∂2σ

∂z2
w2dz523

+

[(
g

σ3
+

1

2σ2k2
∂σ

∂z

)
w2

]
z=η(0)

(3.11)524

CgIvs = −
∫ η(0)

−h

(
1

2σ2k2
∂2σ

∂z2
u(0) (3.12)525

− 1

2σk2
∂2u(0)

∂z2
+

k

k2

)
w2 dz526

+

[((
g

σ3
+

1

2σ2k2
∂σ

∂z

)
u(0)

527

− 1

2σk2
∂u(0)

∂z
+

gk

σ2k2

)
w2

]
z=η(0)

(3.13)528

and the subscript "vs" is for vertical shear, denot-529

ing the exact invariant and group velocity. Dividing530

Eq. (3.13) by Eq. (3.11) gives an expression for the531

group velocity Cgvs. Note that under adopted scal-532

ing of the Earth’s rotation f , i.e. the inverse Rossby533

number ε3 ε1 � 1, the taking into account of rotation534

in the Euler equations did not change the wave action535

equation of V76, although it has to be stressed that536

it enters the problem implicitly through equations for 537

the mean flow Eqs. (2). 538

Thus, the problem of describing linear water waves 539

on a slowly varying current with vertical shear has 540

been reduced to finding the first-order variables p, u, 541

C and w, the wave phase S and the wave amplitudes 542

from the WAE. 543

4. Explicit formulation of the WAE 544

In its current form, the WAE (3.10) is difficult to 545

apply to operational wave models as it is too com- 546

putationally intensive: it is required to solve the 547

Rayleigh equation for every node, frequency, direc- 548

tion, etc. at every timestep. A simplification is 549

required for it to be of practical use. To this end 550

an asymptotic approximation to the WAE (3.10) will 551

be detailed here and its accuracy subsequently com- 552

pared with the exact adiabatic invariant and group 553

velocity specified by Eqs. (3.11) and (3.13). This 554

approximation takes into account vertically-varying 555

currents and assumes a current to be weak compared 556

to the wave phase velocity, which is a realistic as- 557

sumption since dominant wind waves and swell have 558

phase velocities which far exceed the speed of the 559

current. The weak current approximation also im- 560

plicitly assumes the smallness of the current gradient 561

and curvature; in generic situations when the cur- 562

rent profile is smooth, the smallness of the current 563

magnitude also ensures sufficiently small gradient and 564

curvature. It is convenient to characterize weakness 565

of the current by a new nondimensional small pa- 566

rameter ξ = U/C. The nondimensional parame- 567

ter κ = U ′/Ω denotes the smallness of gradient and 568

ε5 = O(U ′′/Ωk) denotes the smallness of curvature. 569

For generic smooth profiles all these small parame- 570

ters are small and comparable and therefore could be 571

denoted by ε5. For the situations with very sharp 572

gradients and large curvatures where U ′′/Ωk � 1 the 573

expansion in ξ is no longer valid, although as a rule it 574

works well beyond the range of its asymptotic validity 575

often even when U ′′/Ωk � 1. The reasons why are 576

not clear and require a special consideration, which 577

goes beyond the scope of this work. For a more de- 578

tailed discussion of the nondimensional scaling, refer 579

to [13]. 580

An approximate dispersion relation for water waves 581

on a generic depth-dependent current was first put 582

forward by Stewart and Joy [11], which exploited pre- 583

sumed weakness of the current. Its extension to wa- 584

ter of finite depth by Skop [12] was then continued 585

to higher orders by Kirby and Chen [37]. Note that 586

while these authors applied the multiscale expansion 587

to the Rayleigh equation, which is just an element of 588

the WAE, here it is applied to the WAE as a whole. 589

An alternative solution to the deep water boundary 590

value problem in terms of a converging series was de- 591

rived by Shrira [13] by exploiting the presumed small- 592

ness of vorticity. In each case the choice of the best 593

specific approximation is dictated by the context. 594
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Without loss of generality we assume a weak595

smooth current and solve approximately the Rayleigh596

boundary value problem Eqs. (3.6), (3.7b) and (3.7c)597

by expanding the wave celerity C, vertical velocity w598

and the dispersion σ in Eq. (D.12), the relation be-599

tween the amplitude of the surface elevation a and600

the amplitude of the vertical velocity A as follows601

σ

k
= C0 + ε5 (C1 − U) + ε25c2 + ... (4.1a)602

w = A
(
w0 + ε5w1 + ε25w2 + ...

)
. (4.1b)603

A2 = k2 (C0 + ε5 (C1 − U) + ...)
2
a2 . (4.1c)604

The expressions for C0 and C1, w0, w1 and σ0 are605

equivalent to those found by Kirby and Chen [37] and606

are given in Appendix C. On applying these formulae607

to Eqs. (3.11)-(3.13), retaining terms to the lowest or-608

der and after some algebra, we find the approximated609

wave action and its flux,610

I =

{
a2 g

σ
(1 + ε5R1)

}
z=η(0)

(4.2)611

CgI =

{
a2 g

σ

[
Cgnvs

k

k
+ ε5(u(0) + R2)

]}
z=η(0)

(4.3)612

where Cgnvs is the usual group velocity under the no-613

shear approximation specified in Eq. (D.10), while614

the O(ε5) corrections are615

R1 = −2I2 sinh kh̄− 1

C0

(
2I3csch 2kh̄+ C1

)
616

R2 =
C1 − U
C0

Cgnvs
k

k
+ I3 k h̄ sech2kh̄617

+
k

k
C0

(
2I1 cosh kh̄− I2 sinh kh̄(2− sinh kh̄)

)
618

+ tanh kh̄

(
I4 + I5 −

k

k
I3 − kh̄C0I2619

−k

k
C0I1 sinh2 kh̄− 1

2 k
u(0)

)
,620

which contain the terms,621

C0 =

√
g

k
tanh kh̄ , h̄ = h+ η(0)622

I1(z) =

∫ z

−h

U(ζ)′′

kC0
sinh2 k(ζ + h)dζ623

I2(z) =

∫ z

−h

U(ζ)′′

2kC0
sinh 2k(ζ + h)dζ624

I3(z) =

∫ z

−h
k U(ζ) cosh 2k(ζ + h)dζ625

I4(z) =

∫ z

−h
2 kU(ζ) sinh2 k(ζ + h)dζ626

I5(z) =

∫ z

−h

u(0)′′

2k
sinh2 k(ζ + h)dζ . (4.4)627

Note that the leading terms in the expressions for628

the wave action and its flux coincide with those for629

the case of no vertical shear (see Appendix D). This630

shows that the commonly-used WAE models based631

on Bretherton and Garrett [3] are actually the lead- 632

ing order approximations for currents with a vertical 633

structure, and may be improved when the above ap- 634

proximation applies with no cost by using the value 635

of the current at the surface rather than the depth- 636

averaged velocity. 637

The main outcome of this paper can be summarised 638

as follows: The WAE 639

∂I

∂t
+∇ · (CgI) = 0 (4.5) 640

where its main terms are: 641

I =

{
a2g

σ
(1 + ε5R1)

}
z=η(0)

(4.6) 642

Cg =

{(
Cgnvs

k

k
+ u(0)

)
(1− ε5R1) + ε5R2

}
z=η(0)

.(4.7) 643

Here, the group velocity accurate to O(ε5) was easily 644

found using a Taylor series on the division of Eq. (4.3) 645

by Eq. (4.2). Eqs. (4.5)-(4.7) are the main findings 646

of this paper; they provide an explicit WAE formu- 647

lation for surface waves propagating in the presence 648

of vertical shear, under assumptions (the same as in 649

Skop [12]) of a weak current, gradient and curvature 650

of the vertical structure of the current. We stress that 651

even small discrepancies in the expressions for group 652

velocities accumulate in the course of wave propaga- 653

tion, which, as we demonstrate below, might grow 654

into significant discrepancy in wave amplitude pre- 655

dictions. 656

5. Examples 657

Here we consider an example of a characteristic 658

current profile to examine the accuracy for local val- 659

ues of the wave action and group velocity provided 660

by the new wave action formulation. A numerical 661

code to solve exactly the problem and thus provide 662

the reference has been written in Mathematica ver- 663

sion 9.0.1.0. The Rayleigh equation has been solved 664

with NDSolve with the Shooting Method. The re- 665

sulting eigenfunction profile is used to calculate the 666

exact values of the invariant and group velocity using 667

Eqs. (3.11) and (3.13). We examine the discrepancies 668

between the no-shear (Eqs. (D.7) and (D.10)) and the 669

new approximation (Eqs. (4.2) and (4.7)) to the exact 670

vertical shear formulation (Eqs. (3.11) and (3.13)). 671

An ambient current profile which has been shown 672

to be typical of wind-induced currents in channels [38] 673

is the wind-driven current at the surface and with 674

an opposing current at larger depths, as shown in 675

Fig. 1(a). This particular profile given by the was 676

derived analytically [38] and tested numerically and 677

experimentally for a steady, shear-induced turbulent 678

flow typical of wind-induced currents. The analytical 679

expression for this profile reads, 680

U(z) = Au∗ ln [1 +
z

zs
] +Bu∗ ln [1− (

z

zb
+ h)] (5.1) 681
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where u∗ is the surface friction velocity, h is the wa-682

ter depth, A = q2
p1q2−q1p2 , B = − q1

p1q2−q1p2 , p1 =683

γ zsh , p2 = γ zszb , q1 = (1 + zs
h ) ln [1 + h

zs
] − 1, q2 =684

zs
h ln [1 + h

zb
]− 1, zb and zs are characteristic viscous685

sublayer thicknesses at the bottom and surface re-686

spectively and γ is a constant characterising the in-687

tensity of the turbulence. We will denote the velocity688

at the surface as U(0).689

Fig. 1(a) shows the profile with the parameters690

zs = 3.3× 10−4h, zb = 1.0× 10−3h, γ = 1.0, kh = 1.,691

u∗ = −1.0×10−3ms−1, which gives a top layer thick-692

ness δs ≈ 0.34h (marked with arrows) and the surface693

velocity U(0) = 1.0ms−1. The parameters of the cur-694

rent were deliberately chosen to violate the smallness695

of gradient and curvature assumptions to show that696

the adopted approximations work very well far be-697

yond the range of their asymptotic validity. The plot698

of the vertical velocity structure in Fig. 1(b) indeed699

shows that, for the approximation of taking into ac-700

count the vertical shear, the vertical velocity w0 +w1701

is now in excellent agreement with the exact (numeri-702

cal) solution. The discrepancy with the exact solution703

is less than 1%, whereas the typically-used no verti-704

cal shear approximation gives an error of 10% for the705

same current profile.706

∆s

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

UHzL

z h

HaL

wexact

w0

w0+w1

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
-0.20

-0.15

-0.10

-0.05

0.00

w HzL
w H0L

z h

HbL

Figure 1: (a) Countercurrent flow profile derived by Wu &
Tsanis [38] defined in Eq. (5.1). (b) Comparison of the vertical
velocity structure for the countercurrent profile for parameters
u∗ = −1.0×10−3, zs = 3.3×10−4h, zb = 1.0×10−3h, γ = 1.0,
kh = 1 which gives a surface velocity of u(0) = 1.0ms−1. The
thickness of the upper layer is δs and the mean velocity in this
upper layer is Um = 0.143ms−1.

The presented results demonstrate the substantial707

gain in accuracy provided by the approximate solu-708

tions compared to the widely used no-shear approx-709

imation. The no-shear group velocity Cgnvs is spec-710

ified by Eq. (D.10) in Appendix D. u(0) is taken711

at the surface z = η(0), however we will also ex-712

amine numerically whether this simple formulation713

shows an increase in accuracy over using a depth-714

averaged value of the current Um = 1/h
∫ 0

−h U(z)dz.715

Figures 2, 3, 4 and F.8 show contours of %-errors716

of (a) the approximated group velocity Cg, defined717

in Eq. (4.7), (b) our derived no-shear group velocity718

Cgnvs defined in Eq. (D.10) with the surface value719

of the current u(0)(η(0)) and (c) the no-shear group720

velocity but now calculated with Um, all compared721

to the exact group velocity Cgvs, which is calculated722

by dividing Eq. (3.13) by Eq. (3.11). The remaining723

panels are %-errors of (d) the approximated invariant724

I, defined in Eq. (4.2) and (e) our derived no-shear725

invariant Invs, defined in Eq. (D.7) over the exact in- 726

variant Ivs defined in Eq. (3.11). The current term 727

u(0)(z) does not appear in the expression for Invs. 728

The errors for the group velocity and the invari- 729

ant are shown in Figs. 2(a)-(e) for co-propagating 730

waves and ambient current. For very weak currents, 731

U/C0 . 0.02 for all wavelengths, the errors for the 732

group velocity are around 1% with this error increas- 733

ing for stronger currents. This was to be expected 734

since the approximation assumes a small current. 735

Comparing Figs. 2(b) and (c) shows that by calcu- 736

lating the no-shear approximation with the surface 737

value of the current velocity, rather than the depth- 738

averaged current value, actually increases the errors 739

over the exact solution for this particular vertical pro- 740

file. A larger parameter space was studied than is 741

shown here but the errors continue to grow with in- 742

creasing current strength. 743
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Figure 2: Wu & Tsanis [38] countercurrent flow profile with co-
propagating waves. Contours of : (a) errors of the approximate
group velocity to the exact group velocity, Cg/Cgvs − 1 in %,
(b) the no-shear group velocity to the exact group velocity
Cgnvs/Cgvs−1 in %, (c) the no-shear group velocity calculated
with the depth-averaged velocity to the exact group velocity
(Cgnvs |Um)/Cgvs − 1, (d) I/Ivs − 1 and (e) Invs/Ivs − 1, for
parameters zs = 2.2 × 10−4h, zb = 1.4 × 10−4h, γ = 0.35,
h = 100m and variation in k and u∗. U(0) is the velocity at
the free surface. δs is the thickness of the upper layer ≈ 0.34h.

Figs. 3(d)-(e) show the errors for the invariant. 744

Comparison of (d) and (e) clearly shows the gain ac- 745

curacy provided by the adopted approximation com- 746

pared to the no-shear one, especially for longer waves 747
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Figure 3: Wu & Tsanis [38] countercurrent flow profile with
co-propagating waves. Contours of (a) errors of the approxi-
mate group velocity to the exact group velocity Cg/Cgvs − 1
in %, (b) the no-shear group velocity to the exact group ve-
locity Cgnvs/Cgvs − 1 in %, (c) the no-shear group velocity
calculated with the depth-averaged velocity to the exact group
velocity (Cgnvs |Um)/Cgvs − 1 in %, (d) I/Ivs − 1 (in %) and
(e) Invs/Ivs − 1 (in %), for parameters zs = 2.2 × 10−4h,
zb = 1.4 × 10−4h, γ = 0.35, h = 20m and variation in k and
u∗. U(0) is the velocity at the free surface. δs is the thickness
of the upper layer ≈ 0.34h.

where the error of the approximation almost disap-748

pears for all current strengths. Expectedly, the errors749

also increase for stronger currents.750

When the waves are opposing the surface current,751

Fig. 4(a) shows that the errors for the group velocity752

with the adopted approximation are similar to those753

of the co-propagating waves in Fig. 3(a). However754

a comparison of Fig. 4(b) and Fig. 3(b) shows that755

the errors for the group velocity with the no-shear756

approximation are slightly larger for the waves are757

opposing the surface current than following it. The758

likely explanation of this asymmetry is that since our759

asymptotic expansion exploits smallness of current760

to wave celerity ratio, for the opposing current the761

effective phase velocity is a bit larger.762

Another example, an idealized two-layer current763

profile, is examined in Appendix F. It should be764

noted that in this section, the focus of the exami-765

nation was on local characteristics of the wave field766

such as the group velocity and the local adiabatic767

invariant. The examples of shear flows we analysed768
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Figure 4: Wu & Tsanis [38] countercurrent flow profile with
opposing waves. Contours of (a) %-errors of the approxi-
mated group velocity to the exact group velocity Cg/Cgvs,
(b) the no-shear group velocity to the exact group veloc-
ity Cgnvs/Cgvs, (c) the no-shear group velocity calculated
with the depth-averaged velocity to the exact group velocity
(Cgnvs |Um)/Cgvs, (d) I/Ivs and (e) Invs/Ivs, for parameters
zs = 2.2 × 10−4h, zb = 1.4 × 10−4h, γ = 0.35, h = 20m and
variation in k and u∗. U(0) is the velocity at the free surface.
δs is the thickness of the upper layer ≈ 0.34h. The contours
are at the same levels for each panel.

showed a noticeable gain in accuracy provided by the 769

adopted approximation as compared to the no-shear 770

approximation. Crucially, even small discrepancies 771

can significantly affect the nonlocal properties of the 772

solutions (e.g. envelope amplitude, ray trajectories, 773

etc), which would cause the discrepancies to accu- 774

mulate over distances and become much more signif- 775

icant. This is the subject of the next section where 776

we show that the new formulation better predicts also 777

these nonlocal properties with smaller errors from the 778

exact solution. 779

6. Wave rays and amplitudes 780

Consider a model situation when both the current 781

and wave field are steady in time and the horizontal 782

current varies in one direction only, then Eq. (3.10) 783

can be significantly simplified. By setting the y-axis 784

as the lateral direction of no changes in the medium, 785

the WAE takes the form 786

∂

∂x
(CgxI) + Cgy

∂I

∂y
= 0, (6.1) 787
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where the x and y subscripts denote the x and y com-788

ponents respectively of the appropriate group veloc-789

ity. For no blocking currents, i.e. under condition790

Cgx 6= 0, Eq. (6.1) can be solved using the method of791

characteristics to yield,792

I =
F(s)

Cgx
(6.2)793

with the characteristics given in quadratures as794

y(x) =

∫ x

x0

Cgy
Cgx

dξ + s, (6.3)795

from the initial y-position s. The so far unspecified796

function F(·) is then found using the boundary con-797

dition at x = x0 as798

F(y) = CgxI|x=x0
. (6.4)799

When there is no lateral dependence in the boundary800

condition, F becomes a constant and the regular 1D801

solution of the WAE is retained. This applies for all802

three cases, the "exact" vertical shear, the new ver-803

tical shear approximation and the no-shear approxi-804

mation, using of course the appropriate expression for805

the group velocity and invariant as detailed in § 3, § 4806

and Appendix D respectively. The amplitude of the807

vertical velocity A can be calculated from the solution808

of the WAE for the exact vertical shear formulation809

by dividing the solution by the wave action as defined810

in Eq. (3.11). From this, the wave elevation a can be811

determined from Eq. (D.12).812

Wave rays were studied in detail for a Gaussian813

surface current profile with no vertical shear by Mei814

et al. [39] although the group velocity and current815

velocity terms u(0)1 , u
(0)
2 were omitted from the inte-816

grand. Three different scenarios were detailed where817

the ray either passed through the current after a de-818

flection, it was reflected back by the current or be-819

came trapped inside the surface current [39]. Here, it820

was demonstrated that for a given set of parameters821

the exact and approximate shear and formulations822

allow the ray to pass through the current, while un-823

der the no shear formulation the hits the theoretical824

caustics. Thus, the no-shear formulation predicts a825

rough guess of the path only, which might dramati-826

cally differ from the true path captured well by the827

adopted vertical shear formulation.Within the frame-828

work of geometrical ray theory the amplitude of the829

refracted wave along the ray is determined [40] from830

A(x) =

[
J(x0)

J(x)

]1/2
A(x0) (6.5)831

where J is the Jacobian of the transformation of rect-832

angular coordinates to the ray coordinates. Here, it833

can be interpreted as being equivalent to the refrac-834

tion index. For this particular case, which only has835

changes in the x-direction, this reduces to836

A(x) =

[
y′(x0)

y′(x)

]1/2
A(x0) . (6.6)837

Obviously, an incorrect ratio of the gradients will in- 838

correctly predict the final significant wave height. 839

An example of qualitative differences in behaviour 840

of wave rays and amplitudes as predicted under differ- 841

ent approximations is illustrated by Fig. 5. The figure 842

depicts a wave of constant initial amplitude, initial 843

angle of 72◦ to the x-axis and period of T = 12.5s 844

starting from the point (4,−4) following a current. 845

The surface current is a simple tanh-profile in the 846

horizontal plane, it is a function of x only and paral- 847

lel to the y-axis as shown by the arrows in Fig. 5 (a). 848

As such, ky remains constant across the domain. In 849

Fig. 5 (a), the solid black line depicts the surface cur- 850

rent (it is not drawn to scale). The exact vertical 851

shear formulation (solid) and the new approximation 852

(dotted) predict the wave amplitude to increase by 853

10% (or amplitude squared, which relates to wave 854

energy by ∼ 20%) and have very similar wave paths. 855

The no shear formulation with U = U(0) predicts 856

that the ray reaches a caustics (dashed ray stops at 857

x ≈ −0.5 because kx = (k(x)2 − k2y)1/2 ceases to be 858

real) and therefore the wave amplitudes in this ap- 859

proximation become infinite. This is equivalent to 860

the case reported by Mei, Stiassnie and Yue [39], 861

where the ray is reflected back at a caustic when 862

k0 > ky > kmin where k0 is the initial wavenumber 863

and kmin is the minimum wavenumber. In this situa- 864

tion, using a depth-averaged current in the WAE (i.e., 865

U = Ū), the wave would travel along the ray path 866

with its amplitude unaltered as the vertical profile of 867

the current averages to zero. 868

In Fig. 6, a further example is shown for a initial 869

y-independent wave with initial angle of 80◦ to the x- 870

axis and a period of T = 12.5s starting from the point 871

(4,−4) opposing the current. The no shear formula- 872

tion predicts a ∼ 55% decrease in the wave energy as 873

the ray meets the opposing current. In contrast, the 874

adopted approximation accounting for vertical shear, 875

shows in this case nearly a 20% decrease in the wave 876

energy (or ∼ 10% decrease in the amplitude). We 877

stress, that the ray trajectory and amplitude calcu- 878

lated using the new approximation are validated by 879

direct comparison with the exact shear formulation. 880

In such a situation, using either a depth averaged or 881

surface current value would fail to capture both the 882

ray paths and the wave amplitudes. These two exam- 883

ples clearly show that the WAE with either the depth 884

averaged current value or the surface current can fail 885

dramatically in predicting ray paths and wave ampli- 886

tudes/energies, while the predictions of the proposed 887

manageable version of the WAE accounting for verti- 888

cal shear approximately are very close to the "exact" 889

predictions. 890

7. Conclusion and discussion 891

In this study we revisited the classical problem of 892

describing linear evolution of water waves riding on 893

a horizontally inhomogeneous vertically sheared cur- 894

rent over varying topography. Making use of the ex- 895
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Figure 5: (a) Plan view sketch (solid black line with arrows, not
to scale) of tanh current profile (U(x, z) = −0.9(1+tanh[2(x+
1)])U(z) at the surface z = 0. U(z) is the Wu and Tsanis
vertical profile (see Eq. (5.1)) for a depth of h = 20m with
parameters zs = 2.2 × 10−4h, zb = 1.4 × 10−4h, γ = 0.35,
u∗ = 0.09ms−1 giving the maximum surface current U(0) ≈
1.0ms−1 and an depth averaged velocity, Um = 0.126ms−1,
in the upper layer. Wave rays under different approximations
for the same initial wave prescribed at x = 4: wavelength of
≈ 160m uniform in y incident obliquely (the angle θ = 72◦ to
the x-axis. The approximations plotted: exact shear formula-
tion (solid lines), no-shear approximation (dashed lines) and
the adopted approximation (dotted lines). (b) Variations of
the components of wavevector (kx, ky , |k|) across the horizon-
tal plane. (c) the evolution of wave energy along the respective
wave ray paths under different models of accounting shear (the
same code as panel (a)). The wave is following the current.

isting wide separation of spatial and temporal scales896

between waves and currents we employ the standard897

WKB approximation. The derivation of the WAE898

follows V76 with the following new elements. We899

took into account the effect of Earth’s rotation and900

examined its role, it has been found that for realis-901

tic assumptions on the values of rotation and wave902

periods, the Coriolis effect does not alter the WAE903

of Voronovich [4] (V76), although it does enter into904

the problem implicitly through the mean flow equa-905

tions. In the process of derivation we also highlighted906

the junctions where taking into account the eddy vis-907

cosity, wind input and bottom friction (if necessary)908

would modify expression for the adiabatic invariant909

– the wave action.910

The key difference with the V76 results is as fol-911
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Figure 6: (a) Plan view sketch (solid black line with ar-
rows, not to scale) of tanh current profile (U(x, z) = 0.9(1 +
tanh[2(x + 1)])U(z)) at the surface z = 0. U(z) is the
Wu and Tsanis vertical profile (see Eq. (5.1)) for a depth of
h = 20m with parameters zs = 2.2×10−4h, zb = 1.4×10−4h,
γ = 0.35, u∗ = 0.09ms−1 giving the maximum surface
current U(0) ≈ −1.0ms−1 and an depth averaged velocity,
Um = −0.126ms−1, in the upper layer. Wave rays under dif-
ferent approximations for the same initial wave prescribed at
x = 4: wavelength of ≈ 160m uniform in y incident obliquely
(the angle θ = 80◦ to the x-axis. The approximations plotted:
exact shear formulation (solid lines), no-shear approximation
(dashed lines) and the adopted approximation (dotted lines).
(b) Variations of the components of wavevector (kx, ky , |k|)
across the horizontal plane. (c) the evolution of wave energy
along the respective wave ray paths under different models of
accounting shear (the same code as panel (a)). The wave is
opposing the current.

lows: the V76 expression for the wave action is im- 912

plicit, it requires solving the Rayleigh boundary value 913

problem for water waves at each point of the wave tra- 914

jectory and calculating their cumulative effect over 915

the depth. Here, we use explicit solutions to the 916

boundary value problem provided by the leading or- 917

der of an asymptotic expansion utilising smallness of 918

the oceanic currents compared to wave phase velocity. 919

The main conclusions of the work can be summarised 920

as follows: (i) For dominant wind waves and swell and 921

all conceivable currents the approximate formulae we 922

put forward are providing good accuracy, which has 923

been verified by direct comparison with the "exact" 924

(under the WKBJ approximation) V76 results. (ii) 925

The account of the vertical shear might lead to a sig- 926

nificant departure in wave trajectories, wave lengths 927

11



and amplitudes compared to the predictions of the928

currently employed "no shear" wave action model.929

Even for the situations where the underlying assump-930

tions for the adopted approximation are violated, the931

formulae proved to be robust: there is a little loss of932

accuracy and a significant improvement for the group933

velocity and the invariant compared to the standard934

no-shear formulation of Bretherton and Garrett [3].935

Implementation of this sheared-current approxima-936

tion to existing wave models should be as simple as937

adjusting the expressions for the group velocity and938

the invariant. This should not lead to much higher939

computational costs since the weighted integrals of940

the vertical profile can be calculated at each point,941

while each node is independent and does not depend942

on neighboring nodes and therefore can be paral-943

lelized. Usually the starting point for the simulation944

are the data on incoming wave spectra at the outer945

boundary of the computational domain provided by946

either a buoy or a large scale wave forecasting model.947

The spectrum has to be discretized in the wavevector948

space and then for each Fourier harmonics the for-949

mulae, which we put forward, enable us to find the950

trajectory and evolution of wave parameters.951

Here we very briefly discuss the range of the ap-952

plicability of the results, then their implications and,953

finally, the perspectives of further studies. The main954

limitation on the WAE range of validity is due to the955

restrictive assumption of wave linear dynamics: the956

WAE describes phase averaged evolution of wave field957

until nonlinear interactions become essential, this in-958

terval is primarily determined by wave characteristic959

nonlinearity µ - the integral steepness of the wave960

spectrum. The waves propagating on a vertically961

sheared current are participating in two types of non-962

linear resonant interactions: quartet interactions be-963

tween the surface waves and triad interactions be-964

tween a pair of surface waves and a vorticity wave965

supported by the inhomogeneity in the vertical dis-966

tribution of vorticity (e.g., [41]). The characteristic967

timescale Tnl of wave evolution due to quartet inter-968

actions is ω−10 µ−4, where ω0 is the frequency of the969

wave of interest. The scale of validity of the WAE970

is restricted from above T_nl; it should be much971

smaller than Tnl, the time scale of the Hasselmann ki-972

netic equation. It is the kinetic (rather than dynamic973

ω−10 µ−2) timescale which is relevant here since both974

the WAE and the Hasselmann equation describe a975

phase-averaged evolution of wave field. Although the976

time scale of triad interactions is scaled as µ−2, the977

interaction coefficient has additional smallness due to978

the smallness of the current compared to wave celer-979

ity; this yields the time scale of triad interactions980

comparable or exceeding that of the standard four981

wave interactions (for details see [10]). For domi-982

nant wind waves the typical angular frequencies of983

the spectral peak, ωpeak, are ∼ 1rad/s, while the984

characteristic steepness is ≈ 0.1, this gives the esti-985

mate of the nonlinear time scale as ∼ 104s. Hence,986

for wind waves 103s is a conservative estimate of the987

time scale of the WAE validity. For swell, the typ- 988

ical steepness is ∼ 5 · 10−2 and characteristic peri- 989

ods are ∼ 10s, which gives the time scale of validity 990

∼ 103s. A conversion of the time scales into the spa- 991

tial scales depends on the specific bathymetry of the 992

area under consideration, a rough estimate would be 993

∼ 10km, that is the scale of great interest in the con- 994

text of coastal studies applications. Hence, there is 995

a room for a nested small scale linear model based 996

on the explicit WAE integrated with a local circula- 997

tion model and, when possible, assimilating data on 998

the shear currents provided by operational HF radars 999

(e.g., [42]). There are numerous potential applica- 1000

tions and implications of the explicit WAE coupled 1001

with the circulation model, here we mention just a 1002

few. As we already discussed the account of vertical 1003

shear might result in order one effect in predicting 1004

the wave amplitude and wavelength. Employing the 1005

explicit WAE it is straightforward to find also the set- 1006

up and set-down of wave field which are quadratic in 1007

amplitude, hence, the discrepancies with the no shear 1008

formulation will be even more pronounced. This is 1009

important for sediment transport, ship routing, vari- 1010

ous off shore activities. 1011

There is a potential for further development of 1012

the proposed WAE. First, although the employed 1013

explicit solution of the boundary value problem by 1014

Skop [12] provides sufficient accuracy for the fore- 1015

seeable applications, the experience of practical us- 1016

age might require an improvement of the WAE accu- 1017

racy, which can be achieved by taking the next or- 1018

der in the asymptotic expansion using [37]. The 1019

error caused by adopting the WKBJ approximation 1020

is negligible everywhere except the narrow vicini- 1021

ties of the caustics, even near the caustics integra- 1022

tion over the spectrum in wavevector space will make 1023

the caustics contribution insignificant since for each 1024

Fourier components the caustics is in a different lo- 1025

cation. It might be possible to improve the accu- 1026

racy of the WAE by taking into account simultane- 1027

ously the quadratic nonlinearity responsible for triad 1028

interactions with the vorticity modes and the eddy 1029

viscosity: if the eddy viscosity is strong enough to 1030

treat the vorticity waves as forced rather than free 1031

modes, then it is in principle straightforward to in- 1032

troduce a change of field variables which would elim- 1033

inate quadratic nonlinearity similar to the procedure 1034

employed for potential surface waves [43]. However, 1035

at present the eddy viscosity (or more sophisticated 1036

description of the effect of subsurface turbulence) is 1037

not reliably known yet, while the procedure being 1038

straightforward in principle, is technically quite in- 1039

volved. Hence it would be prudent to wait until the 1040

needed advance in understanding the effect of sub- 1041

surface turbulence happens. The final destination of 1042

the activity centered on the WAE is to combine the 1043

account of vertical shear in the linear part of the equa- 1044

tion (as it has been done in the present work) with 1045

the nonlinear part of the kinetic equation (the colli- 1046

sion integral). At present it is not clear how this goal 1047
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can be achieved, since there are irreconcilable con-1048

ceptual difficulties: the collision integral operates in1049

the wavevector space, while the linear WAE acts in1050

the x-space. This challenge requires deep thinking.1051

Appendix A. Second-order equations1052

On substituting Eq. (3.1) into Eqs. (2.5), (2.6) and1053

retaining second-order terms in aε in the WKB ex-1054

pansion we obtain equations for the next order veloc-1055

ity terms,1056

iσu(2) − w(2) ∂u(0)

∂z
− ik
ρ0
p(2) = r1 (A.1a)1057

iσw(2) − 1

ρ0

∂p(2)

∂z
= r2 (A.1b)1058

ik · u(2) +
∂w(2)

∂z
= −∇ · u(1) (A.1c)1059

r1 ≡ ∂u(1)

∂t
+ u

(0)
i

∂u(1)

∂xi
1060

+w(0) ∂u(1)

∂z
+ u

(1)
i

∂u(0)

∂xi
1061

+fẑ × u(1) +
1

ρ0
∇p(1) (A.1d)1062

r2 ≡ dw(1)

dt
+ w(1) ∂w

(0)

∂z
. (A.1e)1063

Taking the vertical derivatives of Eqs. (A.1a)1064

and (A.1c) together with Eq. (A.1b) yields a forced1065

Rayleigh equation1066

∂2w(2)

∂z2
−
(
k2 − δ20

C − U
∂2U
∂z2

)
w(2) = Q1 (A.2a)1067

Q1 ≡ −
k

σ
· ∂r1
∂z

+
ik2

σ
r2 (A.2b)1068

In a manner similar to the analysis of first order equa-1069

tions, we express the pressure p(2) in terms of w(2)
1070

from Eqs. (A.1b) and (A.2)1071

p(2) =
iρ0
k2

(k · r1) +
iρ0σ
k2
∇ · u(1) +

iρ0σ2

k2
∂

∂z

(
w(2)

σ

)
.(A.3)1072

The corresponding boundary conditions for the1073

second-order equations are1074

iση(2) + w(2) = r3 z = η(0) (A.4a)1075

p(2) = ρ0gη
(2) z = η(0) (A.4b)1076

w(2) = Q2 z = −h. (A.4c)1077

where1078

Q2 ≡ −u(1) · ∇h (A.5a)1079

r3 ≡ dη(1)

dt
+ u(1) · ∇η(0)1080

+

(
∂u(0)

∂z
· ∇η(0) − ∂w(0)

∂z

)
η(1). (A.5b)1081

Using Eqs. (A.3), (A.4a) and (A.4b) we derive the1082

following free surface boundary condition for w21083

∂w(2)

∂z
+

(
δ0

(C − U)

∂U
∂z
− g

(C − U)
2

)
w(2) = Q3(A.6)1084

on z = η(0), where 1085

Q3 ≡ −
k

σ
· r1 −

gk2

σ2
r3 −∇ · u(1). (A.7) 1086

By virtue of (3.7a) r3 can be written in terms of the 1087

first-order vertical velocity 1088

r3 = i
d

dt

(
w(1)

σ

)
+ u · ∇η(0) 1089

+
iw(1)

σ

(
∂u(0)

∂z
· ∇η(0) − ∂w(0)

∂z

)
. (A.8) 1090

Appendix B. The solvability condition for the 1091

system 1092

The solvability condition of the inhomoge- 1093

neous linear boundary-value problem given by 1094

Eqs. (A.2), (A.4c) and (A.6) allows for the construc- 1095

tion of the wave action conservation equation by fol- 1096

lowing the general derivation for second order ordi- 1097

nary differential equations [see 44, section 15.4] (al- 1098

beit with a different family of boundary conditions 1099

where here, ∆12 6= 0 rather than ∆13 6= 0, in their 1100

notation). For brevity w(2) ≡ w2 the equation system 1101

is written as 1102

w′′2 + Γw2 = Q1, −h < z < η0, (B.1a) 1103

w2 = Q2, z = −h, (B.1b) 1104

w′2 + Λw2 = Q3, z = η(0), (B.1c) 1105

where 1106

Γ = −k2 +
δ20

C − U
∂2U
∂z2

, (B.2a) 1107

Λ =
δ0

(C − U)

∂U
∂z
− g

(C − U)
2 . (B.2b) 1108

The adjoint system and the solvability equation 1109

can be found by multiplying Eq. (B.1a) by the ad- 1110

joint function w∗ and integrating from z = −h to 1111

z = η(0), 1112∫ η(0)

−h
(w′′2 + Γw2)w∗dz =

∫ η(0)

−h
Q1w

∗dz . (B.3) 1113

Integrating by parts this equation is given by [see 44, 1114

equation 15.73] 1115∫ η(0)

−h

(
w∗′′ + Γw∗

)
w2dz +

[
w∗w′2 − w∗

′w2

]η0
−h 1116

=

∫ η(0)

−h
Q1 w

∗dz . (B.4) 1117

The homogeneous equation of the adjoint system is 1118

written by setting the integrand of the left hand side 1119

of equation (B.4) to zero. This shows that it coincides 1120

with the homogeneous part of Eqs. (A.2) 1121

w∗′′ + Γw∗ = 0 , −h < z < η(0) . (B.5) 1122

By setting Q1,2,3 = 0, the boundary conditions of the 1123

adjoint system are be defined from (B.4), 1124[
w∗w′2 − w∗

′w2

]
η0
−
[
w∗w′2 − w∗

′w2

]
−h = 0 (B.6) 1125
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and by substituting Eqs. (B.1b) and (B.1c) to1126

Eq. (B.6) results in1127

w∗ = 0, z = −h, (B.7a)1128

w∗′ + Λw∗ = 0, z = η(0). (B.7b)1129

By inspecting the homogeneous boundary value prob-1130

lem given in Eqs. (3.6), (3.7c) and (3.8), it is appar-1131

ent that these two systems are self-adjoint systems,1132

and w(1) is the adjoint solution of the inhomogeneous1133

boundary-value problem. Hence, w(1) can be substi-1134

tuted for w∗, i.e.1135

w∗ = w(1) . (B.8)1136

The solvability condition is formulated upon sub-1137

stitution of Eqs. (B.1), (B.5), (B.7) and (B.8) into1138

Eq. (B.4), which yields1139 ∫ η(0)

−h
Q1w

(1)dz − w(1)Q3

∣∣∣
z=η(0)
−Q2

∂w(1)

∂z

∣∣∣∣
z=−h

=0. (B.9)1140

This condition can be reduced to a conservation law1141

under the following steps. Substitute back in the ex-1142

pressions for Q1, Q2 and Q3 from Eqs. (A.2b), (A.5a)1143

and (A.7) respectively, multiply by i/k2 and then col-1144

lect all the terms that contain a time derivative which1145

will duly define the adiabatic invariant,1146

T1 =

∫ η(0)

−h

i

k2

(
−k

σ
· ∂

2u(1)

∂z∂t
+
ik2

σ

∂w(1)

∂t

)
w(1)dz1147

+

[
ig

σ2
w(1) ∂η

(1)

∂t
+
iw(1)

σk2
k · ∂u(1)

∂t

]
z=η(0)

(B.10)1148

From the continuity equation, ik · u(1) = −∂w(1)/∂z1149

and by using the horizontal and vertical momentum1150

fluxes of the mean flow T1 reduces to the adiabatic1151

invariant I and the solvability condition, Eq. (B.9)1152

reduces to1153

∂I

∂t
+∇ · (CgI) = 0 (B.11)1154

where1155

I = −
∫ η(0)

−h

1

2σ2k2
∂2σ

∂z2
w2dz1156

+

[(
g

σ3
+

1

2σ2k2
∂σ

∂z

)
w2

]
z=η(0)

(B.12)1157

1158

CgI = −
∫ η(0)

−h

{
1

2σ2k2
∂2σ

∂z2
u(0)

1159

− 1

2σk2
∂2u(0)

∂z2
+

k

k2

}
w2dz1160

+

[((
g

σ3
+

1

2σ2k2
∂σ

∂z

)
u(0)

1161

− 1

2σk2
∂u(0)

∂z
+

gk

σ2k2

)
w2

]
z=η(0)

(B.13)1162

and the superscript 1 has now been dropped from1163

the w for clarity of notation. Dividing Eq. (3.13)1164

by Eq. (3.11) gives an expression for the group ve- 1165

locity. In the absence of the vertical derivatives, it 1166

is clear that Eqs. (3.11) and (3.13) reduce to the 1167

usual expressions for the wave action invariant and 1168

its product with the wave group velocity. These are 1169

the expressions which are used in the spatial and time 1170

discretization of wave models. To improve the wave 1171

models to take into account the vertical variability of 1172

the flow, these extra vertical derivative terms must be 1173

added to the models. In addition, it can be seen that 1174

the inclusion of Earth’s rotation f , to the flow did not 1175

change the wave action equation of Voronovich [4]. 1176

Appendix C. The solution of the homoge- 1177

neous Rayleigh equation 1178

Since the current U(z) is now a function of the ver- 1179

tical coordinate, the group velocity cannot be defined 1180

a priori which is obviously problematic for the WAE 1181

which is solved for wave models. Consequently, the 1182

perturbation method of Stewart & Joy [11], Skop [12] 1183

and Kirby & Chen [37] can be employed, in a similar 1184

manner to previous literature [13] to determine vari- 1185

ous approximations to the dispersion relation σ and 1186

the vertical velocity w so that analytical perturbation 1187

solutions can be used in the WAE. 1188

By assumption of small currents, U(z) = ε4U(z), 1189

small current gradients U ′(z) = ε4U ′(z), and small 1190

current vertical curvature, U ′′(z) = ε4U ′′(z), δ20 ≤ 1191

O(1), Eq. (3.6) can be ordered with the small param- 1192

eter ε4 as 1193

O

(
δ20

C − U
∂2U
∂z2

)
= O

(
δ20

∂2

∂z2

(
U
C

))
1194

= O

(
δ0

C − U
∂U
∂z

)
∼ ε4 � 1 . 1195

By inserting the perturbation series in Eqs. (4.1) 1196

into the Rayleigh Eq. (3.6) and boundary conditions 1197

(3.7c) and (3.8), equations to various orders in ε4 are 1198

obtained, which can subsequently be solved for the 1199

corresponding C and w. 1200

Appendix C.1. Solution of the zeroth-order 1201

To O(ε0) the zeroth-order equations and boundary 1202

conditions are: 1203

C0

(
∂2w0

∂z2
− k2w0

)
= 0 , −h ≤ z ≤ η(0) (C.1a) 1204

C2
0

∂w0

∂z
− gw0 = 0, z = η(0) (C.1b) 1205

w0 = 0, z = −h. (C.1c) 1206

Solving the zeroth-order Rayleigh Eq. (C.1a) with the 1207

bottom boundary condition (C.1c) yields 1208

w0 = A (ε1x) sinh k (z + h) . (C.2) 1209

Substituting (C.2) to the surface boundary condition 1210

results in 1211

C0 =

√
g

k
tanh kh̄ (C.3) 1212
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with h̄ = h + η(0), U(η(0)) and U ′(η(0)) defined1213

as U(ε1x, η
(0)) and ∂U(ε1x, z)/∂z|z=η(0) respectively.1214

Using definitions (3.4) and (3.5), Eq. (C.3) enables1215

us also to find the zeroth-order Doppler shifted fre-1216

quency as1217

σ0 = k (C0 − U) =

√
gk tanh kh̄− k · u(0) (C.4)1218

which is equivalent to the known linear solution for1219

waves on a depth-independent current.1220

Appendix C.2. Solution of the first-order1221

To O(ε1) the first-order equations and boundary1222

conditions are:1223

∂2w1

∂z2
− k2w1 = − (C1 − U)

C0

∂2w0

∂z2
1224

+

(
k2 (C1 − U)

C0
+
δ20
C0

∂2U
∂z2

)
w0 (C.5a)1225

C2
0

∂w1

∂z
+ C0

∂U
∂z

w0 − gw11226

+ 2C0 (C1 − U)
∂w0

∂z
= 0, z = η(0)(C.5b)1227

w1 = 0, z = −h. (C.5c)1228

The homogeneous solution for Eq. (C.5a) with the1229

bottom boundary condition (C.5c) yields the same so-1230

lution as the zeroth-order problem and can therefore1231

be neglected. The particular solution can be found1232

using the variation of parameters method, which re-1233

sults in1234

w1 = A (cosh k(h+ z)I1(z)− sinh k(h+ z)I2(z))(C.6)1235

where I1 and I2 are defined in Eq. (4.4). Here U1236

and U ′′ in the integrands are defined as U(ε1x, ζ) and1237

∂2U(ε1x, ζ)/∂ζ2 respectively. Eq. (C.6) can be now1238

substituted to Eq. (C.5b) to produce the first-order1239

correction to the wave celerity as1240

C1 =
C0

sinh 2kh̄
I1(η(0)) + U(η(0)))− C2

0

2g
U ′(η(0))) .(C.7)1241

The first-order Doppler shifted frequency is given1242

simply as1243

σ1 = kC1. (C.8)1244

Appendix D. Wave Action Equation for cur-1245

rents with no vertical shear1246

Currents with no vertical shear imply that all the1247

vertical derivatives in Eqs. (3.11) and (3.13) are set1248

to zero and the conservation law in the case of no1249

vertical shear takes the form1250

∂Invs

∂t
+∇ · (CgInvs) = 0, (D.1)1251

where1252

Invs =
[ g
σ3
w2
]
z=η(0)

(D.2)1253

1254

CgInvs = −
∫ η0

−h

k

k2
w2dz1255

+

[(
g

σ3
u(0) +

gk

σ2k2

)
w2

]
z=η(0)

. (D.3)1256

The solution for the Rayleigh Eq. (3.6) with the 1257

boundary conditions (3.7c) and (3.8) without vertical 1258

shear takes the form 1259

wnvs = A (ε1x)
sinh k (z + h)

sinh kh̄
(D.4) 1260

Cnvs =
1

k

√
gk tanh kh̄ (D.5) 1261

σnvs =

√
gk tanh kh̄ . (D.6) 1262

It can be easily seen that for no-vertical-shear con- 1263

ditions the perturbation solution presented in §Ap- 1264

pendix C degenerates to the above accurate solution. 1265

Substituting Eqs. (D.4) and (D.5) into Eqs. (D.2) and 1266

(D.3) yields 1267

Invs = A2
{ g

σ3

}
z=η(0)

(D.7) 1268

CgInvs = A2

{
g

σ3

[
1

2
Cdnvs

(
1 +

2kh̄

sinh 2kh̄

)
k

k
1269

+u(0)
]}

z=η(0)
. (D.8) 1270

Upon division by g, the conservation law takes the 1271

form 1272

∂

∂t

[
A2

σ3

]
z=η(0)
+∇ ·

[(
Cgnvs

k

k
+ u(0)

)
A2

σ3

]
z=η(0)
= 0 (D.9) 1273

where 1274

Cgnvs =
1

2
Cdnvs

(
1 +

2kh̄

sinh 2kh̄

)
+ u(0)(z) . (D.10) 1275

Furthermore, multiplying Eq. (3.7a) by its complex 1276

conjugate 1277

|η|2 σ2
∣∣
z=η(0)

= w2
∣∣
z=η(0)

, (D.11) 1278

yields the relation between the amplitude of the sur- 1279

face elevation (a) and the amplitude of the vertical 1280

velocity (A): 1281

A2 = a2 σ2
∣∣
z=η(0)

. (D.12) 1282

Substituting Eq. (D.12) to Eq. (D.9) allows writing 1283

the conservation law using the common surface ele- 1284

vation amplitude wave action formulation 1285

∂

∂t
Nnvs +∇ ·

{[
Cgnvs

k

k
+ u(0)

]
z=η(0)
Nnvs

}
= 0(D.13) 1286

with the wave action defined as 1287

Nnvs =

[
a2

σ

]
z=η(0)

. (D.14) 1288

Appendix E. Linear vertical shear current 1289

profile 1290

Assuming a linear vertical current profile provides 1291

an exact analytical solution. Take a profile of the 1292

form U(z) = pz + q where p and q are constants, 1293

the gradient U ′(z) = p and curvature U ′′(z) = 0. 1294

The solution to the Rayleigh Eq. (3.6) is the same as 1295
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the case for no-shear given by Eq. (D.4). The wave1296

dispersion becomes,1297

Ω = kq ±
√
gk tanhhk − 1

2
p tanhhk(1∓ 1) . (E.1)1298

Substitution of the velocity, dispersion and their1299

derivatives into the WAE defined in Eqs. (3.11)1300

and (3.13), gives exact analytical expressions for the1301

invariant and group velocity1302

I = a2
[
g

σs
− p

2k

]
z=η(0)

(E.2)1303

Cg =

[
pη(0)+q +

2kσ
(
g − (h+ η(0))σ2

)
− pσ2

k(2gk − pσ)

]
z=η(0)

.(E.3)1304

where Eq. (E.3) is equivalent to that of Jonsson et1305

al. [19].1306

Appendix F. Two-layer current profile1307

An idealized analytical velocity profile describing1308

situations common in the upper ocean and in estuar-1309

ies when there is a density jump, is a two-layer profile1310

in which the top layer has a constant velocity and the1311

bottom layer has zero velocity, such as that shown in1312

Fig. F.7(a) where the current velocity profile is de-1313

fined as1314

U(z) = m(1 + tanh[n(z + b)]) ,1315

where b is the depth of the upper layer and n deter-1316

mines the sharpness of the transition between layers1317

and m determines the magnitude of the velocity at1318

the surface. The profile is often used for the mod-1319

eling of mixing in stratified flows [45]. We will use1320

this model with deliberately chosen very sharp tran-1321

sition to demonstrate that the adopted approxima-1322

tion works well even when assumptions of smallness1323

of gradients and curvature are violated.1324

Fig. F.7(a) is the profile with the parameters kh =1325

2.5, U = 2.0ms−1 in the top layer and zero in the1326

lower layer, b = 0.2h, m = 1, n = 20. Again, even1327

for this extremely simplified profile, the vertical veloc-1328

ity structure provided by the adopted approximation1329

is greatly improved, as is evident in Fig. F.7(b). It1330

can be seen that the w0 +w1 approximation is much1331

closer to the exact vertical structure: the errors are1332

reduced to within 4% whereas for the w0 term only,1333

the maximum error is about 10%.1334

Results shown in Fig. F.8 are errors for the group1335

velocity and the invariant for a variation of wave-1336

length and current velocity and a fixed b/h = 0.1.1337

Fig. F.8(a) shows that for increasing U/C0, the errors1338

to the group velocity from the new approximation1339

over the exact vertical shear approximation are typi-1340

cally half in comparison to the no-shear formulation1341

in Fig. F.8(b) for small values of k b. For U/C0 < 0.1,1342

the errors are typically below 5% for longer waves.1343

Fig. F.8(b) shows that using the surface value of the1344
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Figure F.7: (a) Two-layer profile U(z) = m(1+ tanh[n(z+ b)])
where b is the depth of the upper layer and n determines the
sharpness of the transition between the layers and m specifies
the magnitude of the velocity at the surface. (b) comparison of
vertical velocity structure for the two-layer profile, kh = 2.5,
U = 2.0ms−1, b = 0.2h, m = 1, n = 20.

current for the no shear approximation is more accu- 1345

rate than using the value of the depth-averaged cur- 1346

rent velocity as shown in Fig. F.8(c). 1347

For all wavelengths and a weak current, the ap- 1348

proximation to the invariant I is excellent, but also 1349

for shorter waves on a relatively strong current, as 1350

evident from Fig. F.8(d). The errors do become large 1351

however for long waves on a thin top layer and a 1352

strong current. This is an improvement over the no- 1353

shear formulation in Fig. F.8(e) which gives sizable 1354

errors at all wave numbers for all current strengths. 1355

Fig. F.8(f) shows the error for the invariant for the 1356

no-shear formulation but calculated with the mean 1357

velocity. The no-shear expression for the invariant, 1358

Eq. (D.7) does not contain the velocity so the no- 1359

shear invariant will be the same regardless of whether 1360

the surface or mean velocity value is used. 1361

For a fixed value of a strong current (U ∼ 1362

1.5ms−1), Fig. F.9(a) shows that under the new 1363

adopted approximation, for thin layers the errors for 1364

the group velocity are reduced to about 10%, which 1365

is noticeably better than the no-shear formulation 1366

shown in Fig. F.9(b). As expected, both formula- 1367

tions tend to the exact solution as the thickness of 1368

the top layer tends to h as evident in Figs. F.9(a) 1369

and (b). Again the no-shear formulation works bet- 1370

ter in most of the parameter space when the surface 1371

value of the current is used rather than the mean 1372

value as evident in Figs. F.9(b) and (c). For the in- 1373

variant, Figs. F.9(d) and (e) show that in nearly all 1374

of the parameter space, the adopted approximation is 1375

very accurate. There is a small region of the parame- 1376

ter space, for thin top layers and medium to shallow 1377

water, kh < 2, for which there are some errors com- 1378

pared to more widely-distributed errors in the tradi- 1379

tional no-shear formulation for all water depths on 1380

thin top layers kb . 0.1. 1381

As expected, for weaker currents, the same trends 1382

are observed as mentioned already but the errors be- 1383

come smaller for weaker currents. 1384
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Figure F.8: Co-propagating waves with idealised two-layer
vertical profile. Contours of (a) %-errors of the approxi-
mated group velocity to the exact group velocity Cg/Cgvs,
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with the depth-averaged velocity to the exact group velocity
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b/h = 0.1 and a variation of k and U .

[3] F. P. Bretherton and C. J. R. Garrett. Wavetrains in in-1391

homogeneous moving media. Proc. Roy. Soc. A, 302:529–1392

1969, 1968.1393

[4] A. G. Voronovich. Propagation of internal and surface1394

gravity waves in the approximation of geometrical optics.1395

Atmospheric and Oceanic Physics, 12:850–857, 1976.1396

[5] B. S. White. Wave action on currents with vorticity. J.1397

of Fluid Mech., 386:329–344, 1999.1398

[6] O. Zikanov, D. N. Slinn, and M. R. Dhanak. Large–eddy1399

simulations of the wind–induced turbulent Ekman layer.1400

J. Fluid Mech., 495:343–368, 2003.1401

[7] J. A. Simmen and P. G. Saffman. Steady deep water waves1402

on a linear shear current. Stud. Appl. Maths, 73:35–57,1403

1985.1404

[8] A. A. Abrashkin and D. A. Zen’kovich. Vortex steady-1405

state waves on a shear flow. Fiz. Atmos. Okeana,1406

26(1):35–45, 1990.1407

[9] M. Oikawa, K. Chow, and D. J. Benney. Propagation of1408

nonlinear wave packets in a shear flow with a free surface.1409

Stud. Appl. Math., 76:69–92, 1987.1410

[10] V. E. Zakharov and V. I. Shrira. Formation of the angular1411

spectrum of wind waves. Sov. Phys. JETP, 71:1091–1100,1412

1990.1413

[11] R. H. Stewart and J. W. Joy. HF radio measurements of1414

surface currents. Deep-Sea Res., 21:1039–1049, 1974.1415

[12] R. A. Skop. Approximate dispersion relation for wave-1416

current interactions. J. Waterway, Port, Coastal Eng.,1417

113:1013–1027, 1987.1418

[13] V. I. Shrira. Surface waves on shear currents: solution1419

of the boundary-value problem. J. Fluid Mech., 252:565–1420

4 4

6

810

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

k b

k
h

HaL

4

6

68

10

10

12

16

18

20

22

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

k b

k
h

HbL

4

8

12

16

18

20

22

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

k b

k
h

HcL

4

44

4

6

6
8

8
10 10
12 1214 1416 1618 1822

22
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

k b

kh

HdL

4

6

8

10

12
16

20

22

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

k b

k
h

HeL

Figure F.9: Co-propagating waves with idealised two-layer
vertical profile. Contours of (a) %-errors of the approxi-
mated group velocity to the exact group velocity Cg/Cgvs,
(b) the no-shear group velocity to the exact group veloc-
ity Cgnvs/Cgvs, (c) the no-shear group velocity calculated
with the depth-averaged velocity to the exact group veloc-
ity (Cgnvs |Um)/Cgvs, (d) I/Ivs and (e) Invs/Ivs, for U(0) =
1.5ms−1, h = 20m and a variation of b and k. The contours
are at the same levels for each panel.

584, 1993. 1421

[14] X. Zhang. Short surface waves on surface shear. J. Fluid 1422

Mech., 541:345–370, 2005. 1423

[15] D. H. Peregrine. Interaction of Water Waves and Cur- 1424

rents. Adv. Appl. Mech., 16:9–117, 1976. 1425

[16] D. H. Peregrine and I. G. Jonsson. Interaction of waves 1426

and currents, pages Misc. Rep. 83–6. Coastal Eng. Res. 1427

Center. US Army Corps of Engs, Fort Belvoir, Virginia, 1428

1983. 1429

[17] W. D. McKee. Waves on a shearing current: a uni- 1430

formly valid asymptotic solution. Proc. Camb. Phil. Soc., 1431

75:295–301, 1974. 1432

[18] W. D. McKee. The reflection of water waves by shear 1433

currents. PAGEOPH, 115:937, 1977. 1434

[19] I.. G. Jonsson, O. Brink-Kjær, and G.P. Thomas. Wave 1435

action and set-down for waves on a shear current. J. Fluid 1436

Mech., pages 401–416, 1978. 1437

[20] S. Å. Ellingson and I. Brevik. How linear surface waves 1438

are affected by a current with constant vorticity. Eur. J. 1439

Phys., 35:025005, 2014. 1440

[21] J. Touboul, J. Charland, V. Rey, and K. Belibassakis. Ex- 1441

tended mild-slope equation for surface waves interacting 1442

with a vertically sheared current. Coast. Eng., 116:77–88, 1443

2016. 1444

[22] A. F. Teles Da Silva and Peregrine D. H. Steep, steady 1445

surface waves on water of finite depth with constant vor- 1446

ticity. J. Fluid Mech., 195:281–302, 1988. 1447

[23] V. I. Shrira. Nonlinear waves at the surface of a liquid 1448

17



layer with a constant vorticity. Sov. Phys. Dokl., 31:107–1449

109, 1986.1450

[24] J. M. Vanden-Broeck. Steep solitary waves in water1451

of finite depth with constant vorticity. J. Fluid Mech.,1452

274:339–348, 1994.1453

[25] D. H. Peregrine and G. P. Thomas. Finite-Amplitude1454

Deep-Water Waves on Currents. Proc. R. Soc. Lond., A.1455

292:371–390, 1979.1456

[26] V. P. Ruban. Explicit equations for two-dimensional1457

water waves with constant vorticity. Phys. Rev. E,1458

77:037302, 2008.1459

[27] R. S. Johnson. On the modulation of water waves on shear1460

flows. Proc. R. Soc. Lond., A. 347:537–546, 1976.1461

[28] A. I. Baumstein. Modulation of Gravity Waves with Shear1462

in Water. Stud. Appl. Math., 100:365–390, 1998.1463

[29] R. Thomas, C. Kharif, and M. Manna. A nonlinear1464

Schrödinger equation for water waves on finite depth with1465

constant vorticity. Phys. Fluids, 24:127102, 2012.1466

[30] AG Voronovich and SA Rybak. Explosive instability of1467

stratified flows. DOKLADY AKADEMII NAUK SSSR,1468

239(6):1457–1460, 1978.1469

[31] AG Voronovich, ED Lobanov, and SA Rybak. On the1470

stability of gravitational-capillary waves in the presence1471

of a vertically nonuniform current. Izv. Atmos. Ocean1472

Phys, 16:220–222, 1980.1473

[32] Vladimir Kudryavtsev, Victor Shrira, Vladimir Dulov,1474

and Vladimir Malinovsky. On the vertical structure of1475

wind-driven sea currents. Journal of Physical Oceanogra-1476

phy, 38(10):2121–2144, 2008.1477

[33] Alexander Babanin. Breaking and dissipation of ocean1478

surface waves. Cambridge University Press, 2011.1479

[34] C. Swan and R. L. Cummins, I. P.and James. An ex-1480

perimental study of two-dimensional surface water waves1481

propagating on depth-varying currents. Part 1. Regular1482

waves. J. Fluid Mech., 428:273–304, 2001.1483

[35] C. M. Bender and S. A. Orszag. Advanced Mathemati-1484

cal Methods for Scientists and Engineers I. Asymptotic1485

Methods and Perturbation Theory. McGraw Hill, 1978.1486

[36] P. J. Schmid and D. S. Henningson. Stability and Tran-1487

sition in Shear Flows. Springer-Verlag, 2001.1488

[37] J. T. Kirby and T.-M. Chen. Surface waves on vertically1489

sheared flows: approximate dispersion relations. J. Geo-1490

phys. Res., 94:1013–1027, 1989.1491

[38] J. Wu and I. K. Tsanis. Numerical study of wind-induced1492

water currents. J. Hydraul. Eng., 121:388–395, 1995.1493

[39] C. C. Mei, M. Stiassnie, and D. K. P. Yue. Theory and1494

Applications of ocean surface waves. Part 1: Linear as-1495

pects. World Scientific, 2005.1496

[40] L. M. Brekhovskikh and O. A. Godin. Acoustics of Lay-1497

ered Media II. Springer–Verlag, 1992.1498

[41] Victor I Shrira and Igor A Sazonov. Quasi-modes1499

in boundary-layer-type flows. part 1. inviscid two-1500

dimensional spatially harmonic perturbations. Journal of1501

Fluid Mechanics, 446:133–171, 2001.1502

[42] Jennifer Waters, Lucy R. Wyatt, Judith Wolf, and Adrian1503

Hines. Data assimilation of partitioned {HF} radar wave1504

data into wavewatch {III}. Ocean Modelling, 72:17 – 31,1505

2013.1506

[43] VP Krasitskii. On reduced hamiltonian equations in the1507

nonlinear theory of water surface waves. J. Fluid Mech,1508

272:1–20, 1994.1509

[44] A. H. Nayfeh. Introduction to Perturbation Techniques.1510

Wiley-Interscience, 1993.1511

[45] J. S. Turner. Buoyancy effects in fluids. Cambridge Uni-1512

versity Press, 1973.1513

18


