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Abstract 

 

One of the severe complications of a Plasmodium falciparum infection is cerebral malaria 

(CM). CM is characterised by the accumulation of mature infected red blood cells (RBC) in 

the brain microvasculature. One of the consistent detrimental effects of sequestration is the 

breakdown of the blood-brain barrier (BBB), often with a fatal outcome in children in 

endemic areas. This study investigates the mechanisms underlying BBB breakdown 

secondary to sequestration, using immortalised human brain microvascular endothelial cells 

(tHBEC) as an in-vitro model of BBB and ITG-strain Plasmodium falciparum. 

 

 First, the tHBEC monolayer was co-cultured with Plasmodium falciparum infected 

red blood cell (PRBC) or uninfected red blood cells (uRBC) control for 20 hours and the 

supernatant was recovered for subsequent analysis. The co-culture supernatants showed 

upregulation of inflammatory mediators (MCP-1 and IL-8) and a member of 

metalloproteases (ADAMTS-1, ADAMTS-4, MMP-2 and MMP-9) in the PRBC-tHBEC co-

culture supernatants. The PRBC-tHBEC co-culture supernatants induced loss of endothelial 

cell monolayer integrity, represented by real time reduction in the transendothelial electrical 

resistance, measured using Electrical Cell-Substrate Impedance Sensing (ECIS™). The 

same supernatants also increased the permeability of tHBEC monolayer to the fluorescently 

labelled 40 kDa dextran showing leakage across the tHBEC monolayer. Interestingly, the 

loss of barrier function of tHBEC monolayer is partially inhibited by the addition of protease 

inhibitors GM6001 and rhTIMP-3. Prolonged exposure to PRBC-tHBEC co-culture 

supernatants reduced the level of vinculin.  
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 This study demonstrates that the interactions between PRBC and tHBEC induces 

activation of tHBEC and the release of proteases that contribute to BBB breakdown in CM, 

and could be a potential drug target for adjunct therapy in CM.  
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1 Chapter 1: Introduction 

1.1 General background 

1.1.1 Malaria at glance 

Malaria is a life threatening infectious disease caused by Plasmodium parasite. The disease 

is transmitted from person to person through the bite of infected Anopheles mosquitoes. 

Malaria not only affects human, but also animal such as birds, monkey and other vertebrates 

(Perkins, 2009). There are over 100 species of Plasmodium but only 5 species-infecting 

human with the remaining only causing zoonotic malaria (Garnham, 1966, Conlan et al., 

2011). These five species are (i) Plasmodium falciparum, (ii) Plasmodium vivax, (iii) 

Plasmodium malariae, (iv) Plasmodium ovale and (v) Plasmodium knowlesi. From these, 

only the first four species were known to cause human to human malaria, while the fifth 

which was known to infect monkey was recently detected in human (Singh et al., 2004, Cox-

Singh et al., 2008, Figtree et al., 2010, Marchand et al., 2011). Among these, Plasmodium 

falciparum is the most virulent and lethal to human and is the focus of this thesis. 

 

Distribution of malaria infection is geographically defined (Figure 1-1). All of the 

countries with high prevalence in malaria are located near the equatorial line region (World 

Health Organisation, 2012). Tropical and subtropical climate in these countries serve as a 

good ecological environment to support the life cycle of the mosquito vector of malaria.  

  

In 2013 alone, nearly 200 million cases were recorded. From this figure, 600 000 

people were killed with the majority being children living in Africa (WHO, 2014). It is 

estimated that each minute, an African children dies due to this deadly disease. All efforts in 

malaria eradication and patient management have shown some positive results and more 

than 25% reduction in mortality rate was observed (O'Meara et al., 2008, WHO, 2013). This 
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however, cannot be a total relief to stop further research to eliminate the disease. Recently, 

a study showed the increasing trend in the incidence of malaria caused by artemisinin 

resistant Plasmodium falciparum variant especially in Thailand-Cambodia and Thailand-

Myanmar border (Jambou et al., 2005, Phyo et al., 2012). Further, Nwane et al. (2011) has 

found the insecticide resistant Anopheles mosquitoes in at least 45 endemic countries. 

 

The negative impact of malaria is not limited to human health alone, but also to the 

economic growth of the affected country. Coincidentally, nearly all of the malaria endemic 

country are categorised as low economic income country. This situation limits the maximal 

efforts in combating malaria including vector control and patient management (Gallup and 

Sachs, 2001).  

 

 

Figure 1-1: The distribution of malaria in 2010 (World Health Organisation, 2012) 

Countries or areas where malaria transmission occurs 

Countries or areas with limited risk of malaria transmissions 



4 | P a g e  

 

1.1.2 The causative agent and vector 

Malaria is not a new disease. It is believed that malaria has existed since the ancient era. The 

earliest records on malaria-like symptoms was revealed in the old Chinese medical treatise, 

known as Nei Ching (2700 B.C) (CDC, 2010). Similar records were also found in Egyptian 

medical books (1570 B.C) and ancient Ayurveda of surgery textbook (500 B.C). These 

however need an update by utilising the modern science techniques to investigate the more 

detailed and specific aspect of the disease. 

 

There were many presumptions on the transmitting agent of malaria until Ronald 

Ross in 1897, discovered mosquitoes carrying the parasite of avian malaria. In 1899, 

Anopheles mosquito was identified to be the transmission agent of human malaria by a group 

of Italian researchers led by Giovanni Batista Grassi (McGregor, 1992). This genus of 

mosquito consists of approximately 450 species but only 50 to 60 of them are able to transmit 

human malaria parasites (reviewed in Cohuet et al. (2010)). In fact, only female Anopheles 

mosquitoes are responsible for malaria transmission to human.  

 

The idea of causative agent for malaria was only proved in the 1880’s. Results from 

the work of Charles Alphonse Laveran demonstrated that malaria is caused by the parasite 

residing in human red blood cells. The parasites however, were only properly named in the 

1880’s when Giovanni Batisti and Raimondo Fileti from Italy proposed the name of 

Plasmodium vivax and Plasmodium malariae. Laverans’s finding has disproved the early 

assumption of Greek society that the disease was caused by the fetid smell from swamp area 

hence the name mala-aria (bad-air) was given. The discovery has also been a paradigm shift 

in malaria research with more new findings. 
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Plasmodium is a member of the phylum apicomplexa. This intracellular obligate 

protozoon resides in two different hosts, poikilothermic Anopheles mosquito vector and 

homoeothermic human host for its complete life cycle (figure 1-2). It transits in mosquito 

mid-gut cells while in human it resides in hepatic cells and red blood cells (RBC).  

 

 

 

Figure 1-2: The Plasmodium falciparum life cycle. 

 The parasite development in mosquito (left hand side), and in human hepatocyte and 

erythrocyte (on right hand side). Figure was obtained from John Hopkins University 

(2012) last accessed on 22nd July 2013. 
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1.1.2.1 Plasmodium falciparum life cycle 

In mosquito, the sporogony cycle starts after a female Anopheles mosquito takes a blood 

meal containing gametocytes from an infected human. Both male and female gametocytes 

start the mating process and form a zygote before entering the midgut cells.  The zygote then 

matures to form an ookinete before turning into oocyst. Matured oocysts then burst and 

release sporozoites. Later, these sporozoites migrate into the salivary gland ready to be 

transferred into human blood stream upon the next blood meal.  

 

The sporozoites travel within the blood circulation, quickly infecting hepatocytes 

through the Kupffer cells (reviewed in Prudêncio et al. (2006)). This series of events involves 

a complex molecular interaction between the sporozoite and host cells. Circumsporozoite 

protein (CSP) and thrombospondin-related adhesive protein (TRAP) on the sporozoites are 

the molecules that mediate the binding to heparan sulphate proteoglycans of host cell 

(Frevert et al., 1993, Robson et al., 1995, Kappe et al., 2003). This binding has been 

characterised to be blocked by serine protease which induce the shedding of TRAP on the 

sporozoite (Silvie et al., 2004). Once in the hepatocyte, the sporozoites undergo 

differentiation and mitotic replication to form merozoites (liver schizont). 

 

The merozoites then burst out from hepatocytes and start the asexual erythrocytic 

cycle. The merozoite is expressing the merozoite surface protein (MSP-1) that interacts and 

binds to the band-3 receptor on red blood cells (RBC) (Goel et al., 2003). Following the 

successful binding, the merozoite reorients itself to attach its apical end to the RBC via apical 

membrane antigen (AMA-1) (Triglia et al., 2000). This is a very rapid process and helps the 

parasite to evade the host immune response (as reviewed in Tilley et al. (2011)). The invasion 

of merozoites into RBC has been extensively reviewed by Cowman and Crabb (2006).   
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Erythrocytic schizogony of the Plasmodium falciparum life cycle is important for the 

clinical symptoms and diagnosis. In the RBC, the merozoite develops into early trophozoite 

and appears as a ring shape within RBC under the microscope. The maturation of early 

trophozoite into late trophozoite involves active ingestion of haemoglobin, which is 

converted into non-toxic haemozoin (Egan et al., 2002). The parasite also modifies the RBC 

to help its survival in the RBC, a cell that is lacking in protein synthesis machinery. This 

forces the parasite to utilise the RBC tubovesicular membrane to import the nucleosides and 

amino acids (Lauer et al., 1997). The modification of red blood cell by parasite exported 

protein results in an increase in PRBC rigidity and adhesiveness (Suwanarusk et al., 2004, 

Maier et al., 2008). Most of these proteins contains PEXEL/VTF motif and are exported via 

Plasmodium falciparum translocon of exported protein (PTEX) and Maurer’s cleft (de 

Koning-Ward et al., 2009). The exported proteins also alter the structure and stiffness of 

PRBC surface with the formation of ‘knobs’ (figure 1-3) which developed when the parasite 

turns into late trophozoites (Zhang et al., 2015). One of the best-studied knob proteins is 

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1). PfEMP-1 serves as a 

ligand and is important for the cytoadherence of PRBC to microvascular endothelial cells 

(sequestration) and red blood cells (rosetting) (Baruch et al., 1995, Crabb et al., 1997, Hviid 

and Jensen, 2015). The increase in cytoadherence of the mature parasite to the endothelial 

cells helps the parasite escape from clearance by the host immune system. This interaction 

is believed to have significant role in the severity of Plasmodium falciparum malaria 

pathogenesis. 

 

The final stage of Plasmodium falciparum life cycle in the RBC is the maturation 

into schizont. Each schizont can produce between 16 to 32 new merozoites, which then 

invade more red blood cells. This synchronised event of schizont rupture coincides with the 
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febrile episodes and is believed to be responsible for the paroxysm in an infected human (As 

reviewed in Kwiatkowski (1989), Oakley et al. (2011)). Small fraction of merozoites may 

then undergo differentiation into gametocyte but the majority will continue to the new 

erythrocytic cycle (Kuehn and Pradel, 2010). 

 

 

 

 

Figure 1-3: Plasmodium falciparum modifies the infected RBC. 

 Once in the red blood cell, the Plasmodium falciparum starts its intra-erythrocytic life 

cycles, which includes the export of parasite protein to the RBC surface, especially the 

knobs proteins. These modifications increase the adhesiveness and rigidity of RBC (Image 

was modified from Reiff and Striepen (2009)). 

 

Knob  
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1.1.3 The pathogenesis of malaria 

The clinical outcome of malaria is varied. It can be as simple as asymptomatic uncomplicated 

malaria or a more severe complication leading to death. There are three main factors that can 

influence the clinical outcome of malaria; parasite factors, host factors and, geographic and 

social factors (Figure 1-4) (Reyburn et al., 2005). According to the WHO classification, 

based on the clinical and laboratory investigation, there are two main categories of malaria; 

mild malaria and severe-malaria. The classical symptom of mild malaria is the cyclical 

pattern of high fever, which lasts for 6-10 hours every 48 hours (tertian paroxysm). This 

mild malaria, however, if not properly treated can progress to severe complications which 

are lethal. 

 

 

 

Figure 1-4: The factors that contribute to the variation of clinical outcome of malaria.  

There are three main group factor that have been outlined; parasite factor, host factor and 

demographic factor. 
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1.1.4 Severe complication of malaria 

Severe malaria is a complication of malaria infection with organ failure or anomalies in the 

blood or metabolism. It is characterised by the existence of Plasmodium falciparum in the 

blood stream with the additional symptoms listed in the table 1-1 without any other known 

cause (World Health Organisation, 2012). Examples of severe complication of malaria are 

acidosis leading to respiratory distress, placental malaria and cerebral malaria. 

 

Table 1-1: The occurrence of clinical manifestation and laboratory findings in adult and 

children during severe malaria (data taken from World Health Organisation (2012)). 

Clinical manifestations or laboratory findings 
Frequency 

Children Adult 

Prostration High High 

Impaired consciousness High Medium 

Multiple convulsion High Less 

Acidosis High Less 

Severe anaemia High Less 

Circulatory collapse Less Less 

Pulmonary oedema Rare  Less 

Abnormal bleeding Rare Less 

Jaundice Less High 

Haemoglobinuria Rare  Less 

 

Acidosis is one of the manifestation of severe malaria due to the dysfunction in 

metabolic, circulatory or renal function (Taylor et al., 1993, English et al., 1997a, English et 

al., 1997b). In children, the acidosis is commonly associated with hyperlactemia (English et 

al., 1997b) and normally manifested as respiratory distress. In Asia, acidosis increases the 

risk of death by seven fold among malaria patients compared to malaria without acidosis 

(Dondorp et al., 2008b). 
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Another major contributor towards severe malaria mortality is respiratory distress. It 

is estimated that 20% of death among malaria patients in Asia is due to this complication 

(Marsh et al., 1995). Respiratory distress is manifested by the high respiratory rate and 

increased effort for breathing. Post-mortem study on the malaria patients who died due to 

malaria respiratory distress revealed that there is sequestration of PRBC in the alveolar-

capillaries of the lung (as reviewed in Haldar et al. (2007)). Animal models have shown that 

the acute lung injury in mice is due to the ability of Plasmodium berghei ANKA to adhere 

to the lung endothelial cells CD36 which were protected in Cd36-/- mice (Lovegrove et al., 

2008).  

 

1.2 Cerebral malaria 

Cerebral malaria (CM) is defined by the manifestation of deep coma with a Blantyre Coma 

Scale (BCS) less than 5 in children or, 2 or less in adult, positive with PRBC in blood smear, 

seizures and respiratory distress, which is not caused by any other known reason for 

encephalopathy (World Health Organisation, 2012). It is estimated that up to 30% of CM 

patients die with majority of them dying within 24 hours of hospital admission especially in 

the Sub-Saharan African region where the multiple infection are common (Newton and 

Krishna, 1998, WHO, 2014). Children and immunocompromised adults are most susceptible 

to develop this complication than adults from endemic countries (Reyburn et al., 2005). The 

coma is reversible but it might leave long-term neurological sequelae including cognitive 

impairment in the survivors (Idro et al., 2005, Boivin et al., 2007). Although several attempts 

in the adjunct therapy for CM, including the use of albumin and saline (Maitland et al., 

2005), there is no specific treatment for cerebral malaria besides the usual anti-malarial drugs 
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recommended in the region and supportive therapies to control the fever (antipyretics), 

seizures (anticonvulsants) and anaemia (blood transfusion) (John et al., 2010).  

 

The clinical feature of cerebral malaria varies between children and adults. For 

instance, the onset of coma starts rapidly after a seizures in African children (Boivin et al., 

2007) , while delayed two to three days in adults (Kochar et al., 2002). In addition, coma in 

children often recovered between 24-48 hours while slightly slower in adults (Idro et al., 

2005). Interestingly, the neurological sequelae are more common in children (11%) than 

adults (less than 5 %) (Newton and Krishna, 1998, Kochar et al., 2002). It is unclear whether 

these differences are associated with age, immunity or different parasite strain.  

 

It is generally acknowledged that the clinical features of cerebral malaria are complex 

and are centralised to the outcomes of the dysfunction in the central nervous system. 

Interestingly, these effects are caused by the parasite that remains within the brain 

microvascular space. Not only in cerebral malaria, but in almost all of the severe 

complications of malaria are associated with the sequestration of PRBC in the small vessels 

of organs including kidney and lung (Pongponratn et al., 1991, Nguansangiam et al., 2007, 

Ponsford et al., 2011). In cerebral malaria, the sequestration of PRBC in the brain 

microvasculature may play a central role in causing the complication. Interaction between 

PRBC and endothelial cells can directly and indirectly modulate the local inflammatory 

responses of the endothelium as demonstrated in human umbilical vein endothelial cells 

(HUVEC) (Chakravorty et al., 2007, Chakravorty et al., 2008).  

 

Although the mechanism of pathogenesis is unclear, the characteristic feature of 

cerebral malaria is that the strictly impermeable endothelial cells of the blood-brain barrier 
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(BBB) lose their normal function and become leaky as seen in post-mortem studies. Brown 

et al. (1999) and Dorovini-Zis et al. (2011), through immunohistochemical analysis of the 

post-mortem brain sections of cerebral malaria patients found positive staining for 

fibrinogen. Fibrinogen is a large serum protein that is normally maintained in the intact BBB, 

was found in the perivascular space of brain microvessels containing sequestered PRBC.  

 

The incidence of deep coma among cerebral malaria patients shows a positive 

relationship with the altered structure and functions of BBB in both animal model studies 

(de Souza and Riley, 2002) and clinical-pathological data (Brown et al., 2000, Brown et al., 

2001). These observations have led to several hypotheses being proposed with clear 

emphasis on the BBB environment and its components. There are two major models that 

postulate the pathogenesis of CM: (1) sequestration hypothesis and, (2) inflammation 

hypothesis. Besides these two main models, there is also a model that combines these 

hypotheses with the additional involvement of platelets in hemostasis (van der Heyde et al., 

2006). Although these three hypotheses may explain some of the events in CM development, 

none of them can completely describe how the sequestered parasites in brain 

microvasculature, which do not infiltrate into brain parenchyma can cause the neurological 

disturbances. 

 

1.2.1 Sequestration hypothesis 

The central dogma in cerebral malaria pathogenesis is the interaction of brain 

microvascular endothelial cells with the Plasmodium falciparum infected red blood cells. 

This assumption was firstly proposed by Marchiafava and Bignami in 1894 (as reviewed in 

van der Heyde et al. (2006). This idea was then strengthened after several post-mortem 

observations on cerebral malaria patients showing a consistent appearance of the sequestered 
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PRBC in the brain vasculature (MacPherson et al., 1985, Pongponratn et al., 1991, Silamut 

et al., 1999). Sequestration is a term to describe the process of localization of matured PRBC 

on the endothelial bed of specific organ microvasculature and their disappearance from the 

peripheral circulation. Sequestration of PRBC can occur in any organ such as heart, lung, 

intestine and kidney, but is significantly high in the brain vasculature especially in the 

capillary and post-capillary venules (MacPherson et al., 1985, Pongponratn et al., 1991, 

Taylor et al., 2004).  

 

The key component of this hypothesis is the vascular obstruction. This event occurs 

as a result from the modification of PRBC by the parasite proteins. The modification 

increases the rigidity of the PRBC which may reduce the ability of the PRBC to move along 

the brain microvessel (Maier et al., 2008). The obstruction of the brain microvessel is also 

caused by the ability of the PRBC to form rosettes, where the PRBC adhere with two or 

more uninfected red blood cells (uRBC). In vitro, only pigmented trophozoites are able to 

form rosettes (Hasler et al., 1990) . Interestingly, most of the PRBC isolates from the severe 

malaria patients in Africa have a high rosetting frequency (Rowe et al., 1995, Rowe et al., 

2009, Doumbo et al., 2009). Auto-agglutination of PRBC, the ability of PRBC to adhere to 

another PRBC is another contributing factor for the microvessel obstruction (Wassmer et al., 

2008). Both, rosetting and auto-agglutination of PRBC forms a clump and blocks the blood 

flow in the microvessel.  

 

Another mechanism for the obstruction of microvessel blood flow is the 

cytoadhesion of PRBC to the vessel endothelial cells. The cytoadherence of PRBC to 

endothelial cells in small vessels facilitate the sequestration of mature PRBC. The 

sequestration of PRBC was first reported by Machiafava in 1894. Since then, several 
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molecules involved in the interaction between PRBC and endothelial cells have been 

investigated.  

 

The cytoadherence of PRBC in microvessels is facilitated by the remodelling of the 

RBC membrane by the exported parasite proteins (Maier et al., 2008). One of the main 

cytoadhesion molecules on PRBC, which is well characterised is the Plasmodium falciparum 

erythrocyte membrane protein-1 (PfEMP-1). This large protein containing several Duffy-

binding like (DBL) domains is encoded by var genes. It was hypothesized that, out of 60 var 

genes, only one is transcribed at a time during ring stage giving rise to only one type of 

PfEMP-1 in the mature stage (Chen et al., 1998, Scherf et al., 1998, Horrocks et al., 2004). 

This antigenic variation is a known strategy for Plasmodium falciparum to avoid the host 

adaptive immune responses (Kyes et al., 2001). The PRBC surface molecules which are 

responsible for the cytoadhesion were found to be sensitive to trypsin digestion as the ability 

of ITG strain Plasmodium falciparum to bind to ICAM-1 under flow condition was stopped 

following trypsin digestion of PRBC (Chakravorty et al., 2007). Although PfEMP-1 is 

important for cytoadhesion through endothelial ICAM-1, this PRBC surface molecule may 

not be the key player for the endothelial cells activation where the upregulation of ICAM-1 

in HUVEC is not altered when co-cultured with trypsinised PRBC (Chakravorty et al., 

2007). 

 

 The cytoadhesion of PRBC to the endothelial cells was suggested to be mediated by 

over 14 adhesion molecules on the endothelial cell. These include the intercellular adhesion 

molecule-1 (ICAM-1) (Berendt et al., 1989), CD36 (Barnwell et al., 1989), thrombospondin 

(Roberts et al., 1985), vascular cell adhesion molecule-1 (VCAM-1) (Ockenhouse et al., 

1992b), platelet-endothelial cell adhesion molecule-1 (PECAM-1) (Treutiger et al., 1997), 
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neural cell adhesion molecule-1 (NCAM-1) (CD56) (Pouvelle et al., 2007), P-selectin 

(Udomsangpetch et al., 1997), E-selectin, (i) integrin alpha (v) beta 3 (Integrin αVβ3) (Siano 

et al., 1998), (j) gC1qR , (k) HABP1 (Biswas et al., 2007), p32 (Biswas et al., 2007), 

chondroitin sulphate A (CSA) (Fried and Duffy, 1996) and hyaluronic acid (HA) (Beeson 

and Brown, 2004).  All of these molecules are either expressed constitutively or inducible 

on endothelial cell, but some may not be expressed by endothelial cells at all locations of the 

body. Of these endothelial cell adhesion molecules, ICAM-1, has been proposed to play a 

significant role in sequestration of PRBC and cerebral malaria pathogenesis. 

 

 CD36 is one of the well-known adhesion receptor for PRBC, however the 

involvement of this receptor in the malaria pathogenesis remains debatable (Serghides et al., 

2003). In vitro study shows that the CIDR1α domain of PfEMP-1 is the ligand for CD36 

(Miller et al., 2002). Additionally, field isolate parasites were found to adhere to CD36 

(Newbold et al., 1997). There is however, no difference in the ability to adhere to CD36 

between the parasites isolated from cerebral malaria and uncomplicated malaria patients in 

Africa (Newbold et al., 1997, Heddini et al., 2001). Further, CD36 is not expressed by the 

brain microvascular endothelial cells, thus initially denoted as less important in the 

mechanism of blood-brain barrier damage in cerebral malaria (MacPherson et al., 1985, 

Turner et al., 1994, Silamut et al., 1999, Seydel et al., 2006). More recently, a role for CD36 

in cytoadhesion in CM has been proposed where platelets as a bridge to present CD36 on 

the endothelial cell surface (Hollestelle et al., 2006). 

 

 The adhesion of PRBC to ICAM-1 (CD54) was firstly seen in vitro using ICAM-1 

transfected COS cell line (Berendt et al., 1989). Since then, the involvement of ICAM-1 

became the main attention in malaria research. The adhesion of PRBC to ICAM-1 not only 
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seen in the static in vitro models, but also in the flow models of cytoadhesion (Chakravorty 

and Craig, 2005). ICAM-1 is a 70-120 kDa sialylated glycoprotein belonging to the 

immunoglobulin supergene family (Simmons et al., 1988). The expression of ICAM-1 by 

endothelial cells was increased upon the activation by the high level of tumour necrosis 

factor (TNF) cytokines, which was a consistent observation in both post-mortem and in vitro 

studies (Turner et al., 1994, Silamut et al., 1999, Wassmer et al., 2005, Tripathi et al., 2006). 

In addition, the sequestration of PRBC was found to be higher in the vessel with high level 

of ICAM-1 (Turner et al., 1994). This however is unclear whether the upregulation of ICAM-

1 in the sequestered vessel occurs prior to sequestration of PRBC or as the effect of the 

sequestration, as the level of ICAM-1 can be upregulated by TNF-α as well as interaction 

with PRBC, as seen in HUVEC (Viebig et al., 2005, Chakravorty et al., 2007).  In contrast 

to CD36, ICAM-1 is found to be expressed by BBB endothelial cells and this adhesion 

molecule may have a significant role in cerebral malaria pathogenesis. However,parasite 

isolates from Africa do not show significant association between ICAM-1 binding and 

severe malaria (Newbold et al., 1997, Heddini et al., 2001).  

 

 P-selectin (CD62P) is expressed by endothelial cells and activated platelets, a 

glycoprotein of cellular adhesion molecules responsible in priming the binding of leukocytes 

to endothelial lining (Alón et al., 1995). P-selectin expressed in transfected cells or 

immobilised on a coverslip can initiate the tethering and rolling of the field isolate of PRBC 

(Udomsangpetch et al., 1997, Ho and White, 1999). The importance of P-selectin in the 

pathogenesis of cerebral malaria in human is still unclear, however P-selectin knock-out 

mice shows protection from the experimental cerebral malaria (Combes et al., 2004). 

 



18 | P a g e  

 

 The involvement of E-selectin (ELAM-1, CD62E) in the PRBC sequestration is 

considered as minimal, if any, due to the inability of the field isolate PRBC to adhere to the 

immobilised E-selectin under flow conditions (Udomsangpetch et al., 1997). VCAM-1 

(CD106) is an adhesion molecules expressed by the endothelial cells upon activation by 

cytokines. Under the flow condition, field isolates of PRBC were able to tether and roll on 

VCAM-1, however no significant binding was recorded (Udomsangpetch et al., 1997). 

 

 Sequestration, resulting from the interaction of PRBC with these adhesion molecules 

was proposed to be the main pathway for the breakdown in the BBB structure and function. 

The infiltration of serum fibrinogen from vessel lumen to the brain parenchyma is frequently 

co-localised with the sequestered PRBC (Turner et al., 1994, Brown et al., 1999, Brown et 

al., 2001, Dorovini-Zis et al., 2011). Although the sequestration of PRBC in the brain 

microvessels is a common feature of cerebral malaria, the sequestration can also be found in 

other organ such as kidney, heart, lung and skin (MacPherson et al., 1985, Pongponratn et 

al., 1991, Seydel et al., 2006). Thus, the sequestration of PRBC may be necessary but not 

the ultimate cause of cerebral malaria.  

 

 In this hypothesis, obstruction of the brain microvessels by PRBC reduces blood flow 

(Dondorp et al., 2008a), alters the fluid exchange (Brown et al., 1999) and removal of 

metabolites (as reviewed in Adams et al. (2002)). The obstruction also decreases the number 

of functional capillaries which potentially leads to localised hypoxia (Dondorp et al., 2000). 

Another important component in this hypothesis is the increase in lactic acid in the blood 

due to  anaerobic respiration in the tissue has been shown to have significant association 

with CM pathogenesis (Marsh et al., 1995). 
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Indirectly, this hypothesis assumes that the vascular obstruction is proportional to the 

level of parasitaemia but the clinical evidence show only limited low relationship between 

parasitaemia and mortality (as reviewed in Clark and Cowden (2003)). However, there are 

some observations that cannot be explained by this hypothesis alone. First, sequestration can 

be observed in both asymptomatic person (Pongponratn et al., 1991) and non CM patients 

(Silamut et al., 1999) and there are a few cases of fatal CM in non-sequestering Plasmodium 

vivax (Rogerson and Carter, 2008). Second, there is no clear evidence for irreversible 

hypoxic damage in fatal CM (Medana et al., 2001). Third, it seems that whilst sequestration 

occurs in all CM patient, only approximately 30% ended in death and the survivors recover 

without, or with only limited number of known neurological consequence. Interestingly, the 

sequestration did not occur in all vessels but the activation of EC has been observed in 

majority of EC throughout the human body (Turner et al., 1994). Although there are 

technical explanations on this issue such as the degradation of samples prior to microscopic 

examination and the sampling was done from a vessel that had PRBC clearance, it is possible 

that the pathogenesis of CM may be multifactorial induced by local factor as well as 

generalised systemic factors. 

  

1.2.2 Inflammation model 

In contrast to the sequestration model, the inflammation model emphasises the de-regulated 

humoral responses against Plasmodium falciparum infection. The basic idea of this 

hypothesis was suggested more than 60 years ago by Maegraith with the assumption that the 

infection will trigger the systemic inflammatory response, which subsequently causes 

multiple organ failure and death (as reviewed in van der Heyde et al. (2006)).  
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This series of events start when the erythrocytic schizont ruptures and releases its 

soluble toxin (most likely glycosylphosphatidylinositol (GPI) or haemazoin) into the human 

blood stream (Nebl et al., 2005). The toxin then activates both monocytes and neutrophils 

via toll-like receptors which secrete pro-inflammatory cytokines including tumour necrosis 

factor-alpha (TNF-α), interferon gamma (IFN-γ), interleukin-1 (IL-1), IL-6, nitric oxide 

(NO) and lymphotoxin (LT-α) (Gazzinelli and Denkers, 2006). Of these, IL-1β, IL-6 and IL-

8 show some degree of relationship with the severity of malaria disease at least among 

Malian children (Lyke et al., 2004b). TNF-α is proposed to up-regulate the ICAM-1 

expression in most endothelial cells by Garcia et al. (1999) and a basal level of TNF-α is 

required for maintaining optimal levels of ICAM-1 on HBEC to support cytoadhesion in 

vitro (Tripathi et al., 2006). Low concentration of TNF-α is also needed to enhance the 

upregulation of ICAM-1 on HUVEC by PRBC (Chakravorty et al., 2007).  

 

The involvement of inflammation hypothesis of cerebral malaria can be seen in many 

cerebral malaria clinical studies. For instance, Malian children suffering cerebral malaria 

shows increased levels of IL-6 (proinflammatory) and IL-10 (anti-inflammatory) compared 

to those with non-cerebral malaria (Lyke et al., 2004a). These children however show no 

significant alteration in the level of IL-1, IL-8, IL-10 and TNF-α. In another study, the levels 

of serum and cerebrospinal fluid (CSF) IL-8 from Ghanaian children dying of cerebral 

malaria are markedly increased compared to the children with severe malarial anaemia and 

non-malaria control (Armah et al., 2007). In contrast, the concentration of TNF-α and TNF-

α receptor in Ghanaian and Gambian children with cerebral malaria were higher compared 

to the uncomplicated malaria (Kwiatkowski et al., 1990). However, the upregulation of IL-

6, IL-10 and TNF-α cannot be the best indicator for cerebral malaria as the level of these 
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cytokines are lower in Vietnamese adult with cerebral malaria only, compared to the patients 

with multi organ diseases (Day et al., 1999).  

 

Another cytokine that was found to be upregulated in cerebral malaria is the 

monocyte chemoattactant protein-1 (MCP-1). MCP-1 is involved in the inflammatory 

responses by attracting monocyte to the inflammation site (Patnaik et al., 1994). In the brain, 

MCP-1 act as the initiator for leukocyte extravasation across BBB (Stamatovic et al., 2003b), 

which indirectly increase the BBB permeability. MCP-1 upregulation was also found in the 

neuroinflammatory diseases such as multiple sclerosis and cerebral ischaemia (Yamagami 

et al., 1999). Interestingly, increased levels of MCP-1 was reported in the post-mortem serum 

and CSF of Ghanaian children dying of CM and severe malaria anaemia, compared to non-

malaria cases (Armah et al., 2007), even though leukocyte extravasation is not a 

characteristic feature of CM in human.   

 

Elevated levels of cytokines may also upregulate the inducible nitric oxide synthase 

(iNOS) which increase the nitric oxide (NO) production. Nitric oxide is important in the 

maintenance of vascular status, neurotransmission and killing the intracellular organisms. 

Despite that, NO also inhibits TNF-α synthesis (Iuvone et al., 1996) and ICAM-1 and 

VCAM-1 receptor expression (Serirom et al., 2003). The increased level of NO may leak 

into brain tissue and disrupt its normal function (Clark et al., 1992). The importance of NO 

in the cerebral malaria pathogenesis remains unclear. This hypothesis also cannot be the 

absolute model for CM pathogenesis as some contradictory issues are raised such as the 

heterogeneous responses in different individuals and the levels of TNF-α in CM patient is 

far less than in patients with non-neurological, asymptomatic Plasmodium vivax malaria 

(Karunaweera et al., 1992). 
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Both models mentioned above failed to show concrete evidence to be an absolute 

model, but combination of both models, unveils a possible story behind the scene. The 

unification of both hypotheses including the involvement of haemostasis as proposed by van 

der Heyde et al. (2006) triggers another stage of understanding on this complex mechanism 

of disease. Unfortunately, this combination of different possible CM mechanisms is still 

unable to describe the sequence of events, i.e., which one is the primary event and which 

one is the secondary event.  

 

1.3 Blood-brain barrier 

Both hypotheses on the cerebral malaria pathogenesis clearly focussed on the breakdown of 

blood-brain barrier (BBB) either functionally or structurally. Blood-brain barrier is a 

terminology for the anatomical and functional barrier between the blood stream and brain 

environment. This neurovascular unit is important in maintaining the normal function of the 

brain.  

 

 Blood-brain barrier function was firstly observed by Paul Erlich in 1885. In an 

experiment, Erlich injected a water-soluble dye, Evan’s blue into the peripheral vein of mice. 

Following the injection, he dissected the mice and found that the dye stained all organs 

except the brain and spinal cord. He proposed that the finding might be due to the inability 

of the dye to bind to the nervous tissue. 

 

 To prove the hypothesis, Erlich’s student, Edwin Goldman in 1913 injecting trypan-

blue reagent directly into the CSF. Interestingly in this experiment, the trypan-blue does stain 

all the cells in the brain, but not the other organs. This experiment shows the existence of a 



23 | P a g e  

 

functional barrier between central nervous system (CNS) and blood stream, which restricts 

the movements of both dyes from and into the brain environment. 

 

1.3.1 Anatomical structure of BBB 

Both experiments described in the section above failed to explain the structure that is 

responsible for restricting the movement of the dyes between the blood circulation and CNS. 

It was only in 1941 that Broman identified two types of barrier in the brain; first, the blood-

cerebropinal fluid barrier and second, the blood-brain barrier. Blood-cerebrospinal fluid 

barrier is located at the choroid plexus while blood-brain barrier is the capillaries in the brain. 

The ultrastructure of BBB was proposed by Reese and Karnovsky in 1967, where he found 

that the mouse BBB was formed by endothelial cells that restrict the migration of horseradish 

peroxidase (HRP) to the luminal side of intercellular junction. 

 

 The BBB is made up of at least three cellular components, the innermost layer is 

brain endothelial cells, peripheral to it is the pericytes and the outermost is covered by the 

astrocyte end feet (Figure 1-5). The restricted permeability of the BBB is mainly due to the 

specialised brain endothelial cells with its tight junction proteins, which is discussed in 

section 1.4. 

 

Pericytes are believed to gives structural support and vasodynamic properties to the 

microvasculature. Pericytes may be actively involved in cerebral autoregulation where 

receptors to various chemical mediators including catecholamine, angiotensin II (Healy and 

Wilk, 1993), endothelin-1 and vasopressin (Dehouck et al., 1997) were found. 
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The importance of astrocytes in the BBB neurovascular unit was demonstrated by 

the in-vitro culture of bovine brain endothelial cells with rat astrocyte which increased the 

BBB integrity (Neuhaus et al., 1991). The astrocytes were believed to signall between 

neurons and BBB and also to act as the “house-keeper” in the event of biochemical intrusions 

via BBB (Ballabh et al., 2004).  

 

This thesis focuses on the brain endothelial cells of the BBB whichis the interface 

for the interaction of the PRBC with the BBB. 

 

 

 

Figure 1-5: A schematic diagram of the components of BBB neurovascular unit. 
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1.4 Endothelial cells 

Although the interior surface of blood vessels in the human body is covered with a single 

layer of cells called endothelial cells, the brain microvascular endothelial cell is very distinct. 

Unlike the endothelial cells in the rest of the bodies, brain endothelial cells are a specialised 

cell that forms a barrier in the brain microvasculature. Brain endothelial cell can be 

characterised by its glucose transporter (Virgintino et al., 2000), zonula occluden-1 (ZO-1) 

and occludin (Liebner et al., 2000). The comparison between brain endothelial cells and 

peripheral vascular endothelial cells has been summarised in table 1-2. 

 

Table 1-2: The differences in selected properties of brain endothelial cells in camparison to 

the human umbilical vein endothelial cells. The information was gathered from various 

articles (Kniesel and Wolburg, 2000, Lo et al., 2001, Weksler et al., 2005, Abbott et al., 

2006, Nag, 2011). 

Properties Brain endothelial cells Peripheral vascular 

endothelial cells 

Tight junction Dense and continuous Rarely observed  

Vesicular transport Rare Abundant 

Fenestration Rare Abundant  

Transendothelial electrical 

resistance 

High (>1500 Ω.cm2) Low (< 100 Ω.cm2)  

ɣ-Glutamyltranspeptidase Present Absent   

Glucose transporter Present Absent  

Light microscopy 

appearance 

  

(www.promocell.com) 
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Endothelial cell lining is known as the endothelium. In an adult, it is estimated to be 

compose of about 1 kg or nearly 1 to 6 x 1013 of endothelial cells which covers a surface 

area of 7 m2 (as reviewed in Cines et al. (1998)). Endothelial cells are differentiated from the 

mesoderm. Histologically, the average dimension of an endothelial cell is 3 µm thick, 30 µm 

long and 10 µm wide. The in-vitro culture of endothelial cells has a very characteristic 

cobblestone appearance when confluent (Figure 1-6).   

 

 

Figure 1-6: The in-vitro culture of human brain endothelial cells on a flat surface coated 

with collagen matrix, in absence of the shear flow, in the confluency state, appears as a 

‘cobblestone’ structure. 

 

Originally, the endothelium was viewed as an inert lining in the vessel. This however 

changed when Palade in 1953 and Gowan in 1959 showed the dynamicity of the 

endothelium. Endothelial cells served many functions in health and disease including, 

forming a barrier, indirect role in blood clotting mechanism and vasoregulation (for review 
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see Cines et al. (1998)). Several molecules including proteins (e.g.; growth factor, adhesion 

molecules), lipid transporter (e.g.; low-density lipoprotein), metabolites (e.g.; nitric oxide), 

and hormones (e.g.; endothelin-1) either on the surface or inside the endothelial cell, 

contribute to its function. 

 

Besides the specific characteristics of brain endothelial cell as mentioned previously, 

endothelial cells can generally characterised by their morphology and the expression of 

specific markers (e.g., von Willerbrand factor (vWF), angiopoietin-1, vascular endothelial 

growth factor-B (VEGF-B), and platelet-endothelial cell adhesion molecule-1 (PECAM-1)) 

(Hewett, 2009). However, endothelial cells from different parts of the body have different 

ultrastructural characteristics. For instance, endothelial cells from brain microvasculature are 

lacking in fenestrae (Weksler et al., 2005). 

 

One of the main features of the endothelial cell that will be focused on is its barrier 

capability and its involvement in inflammatory responses. The pericellular migration of 

solute between the brain endothelial cells is highly regulated by the presence of junction 

proteins at the intercellular junction between adjacent endothelial cells. There are two major 

classes of intercellular junction proteins, tight junction proteins (TJP) and adherens junction 

proteins (AJP). Adherens junction proteins can be found in endothelial cells from various 

organs while an intense strand of tight junction proteins can only be found in the BBB 

neurovascular unit. This might reflect the importance of TJP in the normal function of the 

BBB. It is also well established that loss in occludin, claudin-5, ZO-1 and vinculin are 

associated with the increase in the BBB permeability which allow serum fibrinogen to 

infiltrate into brain parenchyma, which consistently seen in many post-mortem study of CM 

(Turner et al., 1994, Brown et al., 1999, Brown et al., 2001, Dorovini-Zis et al., 2011). 
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1.4.1 Tight junction proteins (TJPs) 

There are four main tight junction proteins that have been identified in the brain endothelial 

cell intercellular junctions (Kniesel and Wolburg, 2000). It can be divided into two main 

groups depending on its position in the cell; integral membrane protein and cytoplasmic 

accessory protein. Occludin, claudins and junctional adhesion molecule (JAM) are 

categorised as transmembrane tight junction proteins, while zonula occludens (ZO) are the 

members of cytoplasmic tight junction accessory proteins. Tight junction proteins (TJPs) 

appear as a continuous fusion site between the adjacent endothelial cells when observed 

under the electron microscope (Kniesel and Wolburg, 2000). Alterations in these junction 

proteins are frequently observed in either acute or chronic diseases reflecting its importance 

in maintaining normal functions of brain endothelial cells (Wolburg, 2007).  The molecular 

arrangement of TJP and AJP of endothelial cells is illustrated as in figure 1-7. 

 

  In general, occludin and claudin has four transmembrane domains, two extracellular 

loop domain and one short N-terminal intracellular domain (see figure 1-8). In addition to 

the number of domains in occludin, claudin poses a PDZ-binding motif in its C-terminal end. 

In comparison, junctional adhesion molecule (JAM) has only one transmembrane domain 

and two loops made of disulphide bond in the extracellular loop region. The extracellular 

loop domains are important for the homophilic interaction of these TJP at the intercellular 

junction. 
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Figure 1-7: Schematic diagram of the arrangement of BBB endothelium intercellular 

junctions (Modified from Hawkins and Davis (2005)) 
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Figure 1-8: The arrangement of domains of occludin, claudin and JAM. 
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Occludin was the first membrane anchored protein localised at tight junctions of rat 

endothelial cells (Furuse et al., 1993). N-terminal and the extracellular domain of this TJP 

are important for a barrier function endothelium (Bamforth et al., 1999). The importance of 

occludin in an organism was demonstrated by the altered phenotype and postnatal growth 

retardation in occludin deficient mice (Saitou et al., 2000). Interestingly, occludin is not 

observed in normal new-born and foetal brain suggesting that it only synthesized in the 

developed brain (Papadopoulos et al., 2001).  

 

Claudins are another family of transmembrane TJP found at the site of tight junctions 

between endothelial cells. 24 members of this protein family have been identified in mouse 

and human (Furuse et al., 1998, Morita et al., 1999). However, only three members, claudin-

5, claudin-3 and claudin-12 were found at the site of the BBB (Nitta et al., 2003). Claudin is 

identified by the highly conserved PDZ-binding motif on its C-terminal, which serves as a 

binding site for PDZ-domain containing protein including ZO-1, ZO-2 and ZO-3 (Itoh et al., 

1999).  

 

Loss in both occludin and claudin-5 has been observed in a number of BBB 

pathologies including brain tumour, stroke and neural inflammation (Liebner et al., 2000, 

Lippoldt et al., 2000). The expression of occludin and claudin-5 in mice are also affected by 

the exposure to the human immunodeficiency virus type-1 (HIV-1) Tat protein, which may 

contribute to the breakdown of the blood-brain barrier in a HIV-1 infected patient (Pu et al., 

2007, András et al., 2005). In addition, both of these TJP can be degraded by matrix 

metalloprotease-2 (MMP-2) which inhibited by the addition of broad spectrum MMP 

inhibitor BB1101, as seen in rat model of stroke (Rosenberg and Yang, 2007). 

.  
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The cytoplasmic accessory tight junction proteins are made up of zonula occludens 

proteins and cingulin. Zonula occludens (ZO) is a member of the membrane-associated 

guanylate kinase-like (MAGUK) homolog family (Hawkins and Davis, 2005). It provides 

linkage between transmembrane TJ to the cytoskeletal actin. Three members of zonula 

occludens family have been identified, ZO-1, ZO-2, and ZO-3. Experimental diabetes in rat 

showed a significant reduction of ZO-1 and occludin in the compromised BBB suggesting 

that the reduction in ZO-1 and occludin at the BBB may affect the tightness and permeability 

of the BBB (Hawkins et al., 2007).  

 

1.4.2 Adherens Junction Proteins (AJPs) 

Like TJP, adherens junction proteins (AJP) also play a functional role in maintaining cell-

cell adhesion by its molecular interaction. There are three AJP associated with brain 

microvascular endothelial cells which are VE-cadherin, catenin and vinculin (as reviewed in 

Stamatovic et al. (2008)). 

 

Cadherin is a Ca2+ dependent transmembrane glycoprotein. To date 80 proteins have 

been identified in this protein family (Angst et al., 2001). Cadherins can be found in the brain 

endothelial cells, peripheral blood vessel endothelial cells (Bazzoni and Dejana, 2004), 

epithelial cells (E-cadherin) and neuronal cells (N-cadherin). In the brain endothelial cells, 

it is called vascular endothelial (VE)-cadherin. The involvement of cadherin in BBB is not 

clear since it is found in all endothelial cells. At the inter-endothelial junction, the 

cytoplasmic end of VE-cadherin is linked to the cytoskeleton with the help of catenin and 

vinculin, which can also be found at intercellular junction of cultured brain endothelial cells.  
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Vinculin is homologous to catenin and is regarded as adhesion junctional accessory 

protein located in the endothelial cytoplasm. It is a 116 kDa protein and provides a site of 

interaction between VE-cadherin and F-actin (Abe and Takeichi, 2008). The actual function 

of vinculin remains unclear, but when coupled with VE-cadherin, it may be involved in 

junction remodelling by distributing mechanical force between the cytoskeleton and the cell 

membrane to protect the endothelial cell junction (Huveneers et al., 2012). Rodríguez 

Fernández et al. (1993) demonstrates that the attachment of epithelial 3T3 cell line to the 

semi-solid culture surface and the attachments between neighbouring cells were significantly 

reduced when the vinculin expression was compromised, suggesting the involvement of 

vinculin in cell-cell and cell-matrix adhesion. 

 

1.5 Breakdown of BBB in cerebral malaria 

There are various way was used to assess the BBB function in human including; 

immunohistochemical analysis of the post-mortem brain section for a sign of BBB 

alterations, measurement of the ratio of IgG or albumin between cerebrospinal fluid (CSF) 

and plasma for permeability assessment, and recently the brain imaging for the detection of 

physical damage in the brain.  

 

 The association between P.falciparum infection and BBB damage in CM has been 

evidenced in a number of studies to date. The CSF/serum ratio of albumin in adult CM 

patients in Thailand showed a slight increase compared to the non-CM control patients, 

indicating the increase in the BBB permeability to allow serum albumin to infiltrated into 

CSF (Polimeni and Prato, 2014). Similarly, the CSF/plasma ratio of IgG among Vietnamese 

adults increased in CM compared to control (Brown et al., 2000).  This however was found 
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not significant among Zairean children (as reviewed in Polimeni and Prato (2014)) 

suggesting that the impairment of BBB function was varies between adults and children. 

 

Examination of post-mortem brain tissue, demonstrated three major patterns of BBB 

breakdown (Dorovini-Zis et al., 2011, MacCormick et al., 2014).  The first is the fibrinogen 

extravasation that co-localised with ring haemorrhages (RH), second is the fibrinogen 

leakage around the blocked microvessels by fibrin thrombi, and the third is the deposition of 

fibrinogen around sequestered vessel but without fibrin thrombi.  RH frequently occurs in 

the paediatric CM in the developing brain while the other two patterns of BBB damage are 

more frequent in adult CM, where the leakage is associated with the loss in the TJP.  

Immunohistochemical analysis of post-mortem brain section from Malawian children and 

Vietnamese adults for fibrinogen, a large serum protein that normally maintained within 

blood vessels, was showed leaked out into perivascular space indicating the leakage of BBB 

(Brown et al., 2001, Dorovini-Zis et al., 2011). This study also revealed reduction in BBB 

tight junction proteins (occludin, claudin, ZO-1) and adherens junction protein (vinculin) co-

localised with the sequestered PRBC.  

 

 Evidence for BBB disruption also comes from a number of animal model studies. 

However, since P.falciparum only causes malaria in human a different Plasmodium spp. was 

used to study the effect of CM in mouse.  It is well established that only Plasmodium berghei 

(ANKA) can induce cerebral malaria in mice with the similar symptoms as in human such 

as convulsion and coma (Rénia et al., 2012). Similar to the human CM, induction of CM in 

mouse results in BBB damage with severe impairment of BBB function. Although the mouse 

model shows similar evidence in BBB damage as seen in human, however, the mechanism 

contributing to this detrimental effect remains unclear because of the inability of the 
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Plasmodium berghei (ANKA) to sequester in the brain microvessel, which is a characteristic 

feature of human Plasmodium falciparum-mediated CM. 

 

 In line with the post-mortem study, an in vitro study demonstrated reduction in 

occludin, ZO-1 and vinculin mRNA in HUVEC when co-cultured with peripheral blood 

PRBC isolated from adult CM patients in Thailand (Susomboon et al., 2006). Interestingly, 

in the same study, no significant changes in the occludin, ZO-1 and vinculin mRNA were 

observed when the HUVEC was co-cultured with PRBC from non-CM patients. This 

suggests a potential strain specific effect that differentiates between the CM and non-CM 

causing P.falciparum.  

 

Since the TJP have a relatively high correlation with endothelial barrier permeability, 

measurement of trans-endothelial electrical resistance (TEER) is popular in vitro for the 

assessment of BBB integrity (Treeratanapiboon et al., 2005, Tripathi et al., 2007). The 

electrical resistance of human brain microvascular endothelial cell (HBMEC) monolayer 

was decreased with time, peaking at within 5 hours when co-cultured with PRBC but not 

when co-cultured with uninfected RBC (Tripathi et al., 2007).  The TEER proceeded to 

increase after the initial 5 hours, suggesting recovery of BBB integrity occurs after the 

damage, which was also seen in the post-mortem brain tissue of CM patients (Brown et al., 

1999). Treeratanapiboon et al. (2005) also using TEER measurements, demonstrated 

reduction in the integrity of porcine brain endothelial cells monolayer in vitro, when co-

cultured with malaria parasite-activated peripheral blood mononuclear cells. Although the 

loss of BBB integrity was observed in CM patients and in the in vitro model of BBB, the 

question on the possible mechanisms underlying the depletion of TJP leading to BBB 

leakage is still unanswered and open for exploration.  
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Previous studies demonstrated that contact between PRBC and endothelial cells is 

essential at low parasitaemia for the induction of ICAM-1 upregulation in HUVEC, which 

was not seen when the contact was inhibited by using a transwell to separate the PRBC and 

HUVEC monolayer but permits the passive diffusion of soluble factors between them 

(Chakravorty et al., 2007). This study also suggested that at low parasitaemia, the soluble 

factors from PRBC are unable to caused HUVEC activation. However, in a different system, 

Tripathi et al. (2007) suggested that parasite derived soluble proteins may be responsible for 

the loss of BBB integrity. In this study, HBMEC co-cultured with PRBC culture supernatant 

resulted in reduction in HBMEC monolayer TEER. In separate experiments, the investigator 

found that partial reduction of HBMEC electrical resistance could be induced by addition of 

artemisinin-treated PRBC, demonstrating that disruption of the BBB can also be induced by 

molecules on the surface of inactivated intact PRBC. Since the study only shows the TEER 

data, with no further examination on junctional complex composition and cell morphology, 

or characterisation of the possible soluble proteins released by PRBC, no further explanation 

can be made. 

 

These collective evidences show that the leakage is mainly due to the loss of function 

of the endothelial cells monolayer making up the BBB; either directly due to the 

sequestration, inflammatory mediators or other soluble components.  

 

1.6 Proteases and BBB damage in cerebral malaria 

This thesis explores potential mechanisms for the loss of BBB integrity in CM. There is 

some evidence to suggest a potential role of proteases in a number of neurological disorders. 

Proteases are a superfamily of enzymes that are able to degrade a polypeptide by the 
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hydrolysis of peptide bonds between amino acids. There are several classes of proteases, 

categorised according to substrate specificity, molecular characteristics, and functions. A 

variety of proteases are expressed by endothelial cells either constitutively or due to 

activation including urokinase-type plasminogen activator (uPA) and the metalloproteases, 

collagenases, gelatinases and stromelysin (Menashi et al., 1993). This thesis focuses mainly 

on metalloproteases. Metalloproteases are a group of proteases containing divalent metal 

(metallo) ion at its active site. There are three closely similar metalloprotease families: 

matrix-metalloproteases (MMPs), a disintegrin and metalloproteases (ADAMs) and a 

disintegrin and metalloprotease with thrombospondin motifs (ADAMTS). A number of 

metalloproteases have been associated with the neurological disorders where the BBB is 

compromised such as multiple sclerosis, Alzheimer’s disease and brain ischaemia.   

 

1.6.1 Matrix metalloproteases (MMP). 

Matrix-metalloproteases (MMP) or matrixins are a group of metalloproteases that function 

in the degradation of both extracellular matrix and non-matrix protein (Nagase et al., 2006). 

MMP are secreted in an inactive form (Sternlicht and Werb, 2001), and activated either by 

autocatalytic or non-proteolytic compounds such as reactive oxygen and denaturants 

(Springman et al., 1990, Van Wart and Birkedal-Hansen, 1990, Ogata et al., 1992, Nagase 

and Woessner, 1999). MMPs are secreted by various cells including endothelial cells. There 

are more than 23 members of the MMPs family which are categorised into 8 different sub-

groups, according to their domain structures (Egeblad and Werb, 2002, Nagase et al., 2006). 

Of these subgroups, this thesis will focus mainly on the MMPs from gelatinase subgroup, of 

which there are two, MMP-2 (Gelatinase A) and MMP-9 (Gelatinase B). Both MMP-2 and 

MMP-9 show a high association with many vascular and neurodegenerative disorders 

(Gijbels et al., 1992, Wee Yong et al., 1998, Nakaji et al., 2006).  MMP-2 is encoded by a 
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single copy gene (Collier et al., 1988) and regulated by various transcription factors such as 

AP-1, AP-2 and SP-1 (Qin et al., 1999). It is expressed and secreted as an inactive 70-72 

kDa proMMP-2 molecule which is cleaved to form the 62-65 kDa active MMP-2 (Baramova 

et al., 1997). The main substrate for MMP-2 is collagen and fibronectin, which are 

extracellular matrix (ECM) proteins (Collier et al., 2001). Similarly,  MMP-9 is secreted as 

a 92 kDa inactive proteases and undergoes proteolytic activation to form the 84 kDa active 

MMP-9 (Ogata et al., 1992). The expression of MMP-9 can be up-regulated by inflammatory 

cytokines namely IL-1α and TNF-α, as seen in fibroblast cells (Bond et al., 1998).  Active 

MMP-9 may exist as a monomer or a homodimer (Van den Steen et al., 2002) and primarily 

hydrolyses ECM proteins, collagen and elastin (Murphy et al., 1991). Both MMP-2 and 

MMP-9 are secreted by various cell types including endothelial cells. 

 

Involvement of MMP-2 and MMP-9 in the BBB damage in cerebral malaria has also 

been speculated in a number of studies. The level of MMP-9 in CSF from CM patient with 

minimal BBB breakdown was similar to the control, but significantly higher in the CSF from 

meningitis group which positive for the sign of BBB breakdown (Brown et al., 2000). 

Genomewide analysis of Kenyan children with malaria using microarray shows the 

upregulated level of MMP-9 compared to non-malaria control (Griffiths et al., 2005). 

Interestingly, significant relationship between upregulation of MMP and loss of ZO-1 and 

claudin has been observed in damaged BBB caused by West-Nile virus (Verma et al., 

2010b). The involvement of matrix metalloproteases (MMP) in the breakdown of BBB also 

has been discussed by using mice model of CM with Plasmodium berghei ANKA (Van den 

Steen et al., 2006). Van den Steen et al. (2006) demonstrated the upregulation of MMP-2 

and MMP-9 in the mice brain tissue following eight days of infection with Plasmodium 

berghei (ANKA), however further investigation using MMP-9 knock-out mouse showed no 
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difference in the mortality compared to wild-type mice, suggesting the minimal role of 

MMP-9 in CM pathogenesis in mice.  

 

In multiple sclerosis (MS), the microglia and astrocyte isolated from the active brain 

lesions from MS patients show significant upregulation of MMP-1, -2, -3 and -9 compared 

to non-MS control (Cuzner et al., 1996). Interestingly, the breakdown of BBB in rat with 

MS is inhibited with the administration of GM6001, a synthetic hydroxamate inhibitor of 

MMP (Gijbels et al., 1994). In AD, MMP-2 and MMP-9 were localised highly in the region 

with elevated deposition of amyloid-β protein (Miyazaki et al., 1993). Additionally, these 

MMP including MMP-3 has the capability to degrade the amyloid-β proteins (Yoshiyama et 

al., 2000). The involvement of MMP in Alzheimer’s disease (AD) however is unclear. 

 

1.6.2 ADAMTS 

There are at least 19 ADAMTS genes that have been identified in human (reviewed in Porter 

et al. (2005)). ADAMTS is differentiated from ADAM, another metalloprotease family by 

carrying the thrombospondin 1-like motifs near its C-terminal. Interestingly, in contrast to 

ADAM, all ADAMTS lack the transmembrane domain suggesting that the ADAMTS are a 

non-membrane bound protease. ADAMTS contains a signal peptide at N-terminal, which is 

cleaved during maturation process inside the cytoplasm before being secreted out of the cell 

as mature ADAMTS (Porter et al., 2005).  

 

ADAMTS-1, -4 and -5 may be involved in the BBB damage and remodelling due to their 

ability to degrade extracellular matrix (ECM) proteins aggrecan (Tortorella et al., 1999) and 

versican (ADAMTS-1 and ADAMTS-4) (Matthews et al., 2000, Westling et al., 2004) which 

are the components of the BBB extracellular matrix (ECM). Additionally, the level of 
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ADAMTS-4 was found to be upregulated in MS plaques in MS post-mortem brain tissue 

where the BBB function is compromised, compared to control. Both ADAMTS-1 and 

ADAMTS-4 mRNA are upregulated in the brain tissue of the mice following induction of 

cerebral ischaemia (Cross et al., 2006). The upregulation of these ADAMTS was also shown 

in the brain tissue of monkeys with retroviral encephalitis (Medina-Flores et al., 2004). 

Additionally, activity of ADAMTS-4 from injured spinal cord tissue are increased after 7 

days from the onset of injury, suggesting the involvement of ADAMTS-4 in the recovery of 

rat spinal cord following injury (Tauchi et al., 2012). Of interest, ADAMTS-1 and 

ADAMTS-4 inhibited endothelial cells proliferation and able to inhibit the VEGF-induced 

angiogenesis through its thrombospondin-1 motif (Vázquez et al., 1999) and, these proteases 

may also involves in the breakdown of BBB in cerebral malaria. This accumulating evidence 

on ADAMTS proteases may have significant roles in tissue damage in the CNS.  

 

The gene encoding ADAMTS-1 was firstly identified in mouse (Kuno et al., 1997). 

In that study, ADAMTS-1 mRNA was demonstrated to be upregulated by the addition of 

pro-inflammatory cytokines such IL-1. ADAMTS-1 are secreted as 87 kDa proform which 

activated by proteolytic processing to the 65 kDa active form. ADAMTS-1 is found to be 

partially inhibited by TIMP-2 and TIMP-3 but not TIMP-1 (Carlos Rodrı́guez-Manzaneque 

et al., 2002). ADAMTS-4 activation involves the cleavage of the C-terminal protein, which 

reduces the size of inactive 75 kDa ADAMTS-4 into 60-50 kDa active form. The proteolytic 

function of ADAMTS-4 can be inhibited with very low concentration of TIMP-3 (Kashiwagi 

et al., 2001).   

 

 The potential involvement of MMP-2 and MMP-9 in CM pathogenesis was 

demonstrated in many malaria studies either using samples from malaria patients or 
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appropriate animal model of CM as previously mentioned, however only limited data on the 

potential association of both ADAMTS-1 and ADAMTS-4 with BBB damage in CM can be 

retrieved. Since ADAMTS-1 and ADAMTS-4 shares the majority of their substrates with 

MMPs (Fosang et al., 1996) and the link between the upregulation of these proteases and 

BBB damage in several neurological disorders as mentioned before, it is desirable to 

investigate their involvements in the mechanism of BBB damage in CM. This thesis 

hypothesized that the interaction between PRBC and HBEC induces the release of a group 

of soluble mediators including proteases, which may contribute to the BBB breakdown in 

Cerebral Malaria. 

 

1.7 Aim of the thesis 

Utilising tHBEC as an in vitro model of BBB, this thesis aims to: 

1. Investigate the effect of co-culture between PRBC and tHBEC to the 

expression of inflammatory mediators including cytokines and proteases 

(MCP-1, IL-8, MMP-2, MMP-9, ADAMTS-1 and ADAMTS-4) by ELISA 

and Western blotting. 

2. Investigate the effect of co-culture supernatant on the tHBEC integrity by 

TEER measurement in the absence and presence of protease inhibitors. 

3. Investigate the effect of co-culture supernatant on the tHBEC permeability 

using FITC-dextran permeability assay the absence and presence of protease 

inhibitors. 

4. Investigate the effect of co-culture supernatant on the expression of key TJP 

(Claudin-5, Occludin, ZO-1 and Vinculin) using cell-based ELISA. 
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2 Chapter 2: General Materials and Methods 

 

2.1 Introduction 

Throughout the experiments in this study, few methods were frequently used. This chapter 

will cover the methodology used in the maintenance of tHBEC and Plasmodium falciparum, 

the identification of tHBEC and the co-culture experiment. The specific material and 

methods for each other experiment can be found in each specific chapter. All kits, chemical 

and reagents, antibodies, materials and, equipment are listed in this chapter.  

 

2.2 Endothelial cell culture 

The transformed human brain endothelial cell (tHBEC) used in this study was kindly 

supplied by Dr. Monique F. Stins of John Hopkins University, Baltimore, USA. The brain 

endothelial cells were originally isolated from human and immortalised via transformation 

with the SV40 large T antigen. The cells were also thoroughly characterised by other 

research group (Stins et al., 1997, Callahan et al., 2004). However, the responsiveness of the 

tHBEC in to TNF-α, IL-1β and the uptake of Dil-Ac-LDL we regularly checked in this study. 

In this study, tHBEC from passage 20 to 30 was used as an in vitro model of human blood-

brain barrier. 

 

2.2.1 Endothelial cell growth medium  

The tHBEC growth medium was formulated for the optimal growth of tHBEC. It comprised 

RPMI-1640 containing 10% (v/v) foetal bovine serum, 5% (v/v) new born-calf serum, 2 mM 

L-glutamine, 100 unit/ml penicillin and 100 µg/ml streptomycin. 
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2.2.2 Quiescent medium (Q-medium) 

The tHBEC quiescent medium was formulated for culturing the tHBEC under resting 

condition for the co-culture experiments. It was a RPMI-1640 supplemented with 1% (v/v) 

foetal bovine serum, 2 mM L-glutamine, and 100 unit/ml penicillin and 100 µg/ml 

streptomycin, referred to as Q1% FBS-medium. For the transendothelial electrical resistance 

(TEER) and permeability studies, the quiescent medium was supplemented with 5% (v/v) 

foetal bovine serum (referred to as Q5% FBS-medium) in order to optimise the monolayer 

integrity. 

 

2.2.3 Seeding endothelial cells from frozen stabilate 

The tHBEC stabilates were kept at -80°C or liquid nitrogen storage in the cryopreservation 

medium (Cryo-SFM). Each vial contains 1 ml of cell suspension at the density between 2.0 

to 3.5 x 106 cell/ml. To reconstitute the tHBEC, a stabilate was thawed in 37°C water bath. 

The cell suspension was then resuspended in 2 ml of pre-warmed growth medium before 

being transferred into three 25 cm2 cell culture flasks containing 2 ml of pre-warmed growth 

medium. The flask was pre-coated with 1% (v/v) gelatine solution prepared in 1X sterile 

phosphate buffered saline (PBS), pre-incubated at 37°C for a minimum of 20 minutes before 

the cells were plated. The flask with the cells were incubated at 37°C and 5% CO2 

atmosphere, for a minimum of 2 hours to allow viable cells to adhere. After that, the initial 

growth medium in each flasks containing non-adherent and non-viable cells were replaced 

with 4 ml of pre-warmed growth medium and incubated until confluence, monitored every 

48 hours using an inverted light microscope at a magnification of 10X objective. 
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2.2.4 Passaging the tHBEC 

Each flask containing confluent tHBEC were passaged into new flask or plate (summarised 

in figure 2-1) for the cell culture continuation or subsequent experiment. First, the culture 

medium in the flask with confluent tHBEC monolayer was removed using a pump aspirator. 

Then, the cells monolayer was quickly washed in 1.5 ml of sterile phosphate buffered saline 

(PBS). To detach the cells from each other and from the culture surface, 1.5 ml of 0.25% 

(w/v) trypsin-EDTA solution was added evenly onto the cells monolayer and incubated at 

room temperature for 1 minute. To assist the cell detachment, gentle mechanical force was 

applied by tapping the side of the flask with the palm. The detached cells were observed 

under the inverted microscope as free-floating round cells. After that, 1.5 ml of pre-warmed 

growth medium was added into the flask to stop the trypsin digestion by a substrate 

competition mechanism. The detached cells were transferred into a 15 ml centrifuge tube 

and centrifuged at 480 x g (1500 rpm) for 3 minutes. The cell pellet was recovered by 

removing the supernatant using a pump aspirator. The pellet then suspended in 0.5 ml pre-

warmed growth medium before being diluted with an additional volume of pre-warmed 

growth medium, depending on the culture plate required for the subsequent study (See figure 

2-1). Once plated onto a gelatine coated plate, they were cultured as described in section 

2.2.3. 
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  Confluent tHBEC 

from a 25 cm2 flask 

(T25) 

 

    

 

 
 

 

 

 

 

New culture plate: Three T25 flask One 24 well plate One 96 well plate 

Cell density: 1.5x106 cell/flask 1.0x105 cells/well 20 000 cell/well 

Seeding volume 

(for 2 hour 

incubation): 

3000 µl/flask 500 µl/well 100 µl/well 

Culture volume  

(1-2 days culture): 

4000 µl/flask 1000 µl/well 200 µl/well 

 

Figure 2-1: The ratio of endothelial cell passage from single 25 cm2 Flask. 

Cell density referring to the number of cells seeded in each flask or plate. Seeding volume 

is lower than the culturing volume to facilitate the quicker endothelial cell attachment to 

the culture surface. 
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2.2.5 Cell counting 

To count the cells, the cells need to be trypsinised as in section 2.2.4. Following trypsin 

treatment, the cells pellet was first suspended in 0.5 ml of pre-warmed growth medium. 10 

µl of cell suspension was then diluted 1:10 in fresh growth medium and counted using a 

haemocytometer. All cells in the regions marked 1 to 4 in figure 2-2 were counted and 

averaged. The formula for cells count is as below. The cells were resuspended in appropriate 

volume of growth medium depending on the cell culture plate used for subsequent 

experiments (Figure 2-1). 

 

Cell count formula: 

 

Cell density (cells ml⁄ )=average number of cells ×10
4
 ×dilution factor 

Where dilution factor = 10 

 

 

 

Figure 2-2: The layout of haemocytometer for cells counting.  

Only cells in region 1 to 4 were counted, averaged and multiplied with dilution factor to 

give the approximate number of cells. The image taken from www.hawksley.co.uk/cell-

count_glassware (last accessed on 03 March 2014) 

1 2 

3 4 
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2.2.5.1 Detection of ICAM-1 expression 

The up regulation of tHBEC ICAM-1 in response to TNF-α and IL-1β was measured using 

cell-based ELISA on the fixed confluent culture (figure 2-3). First, the tHBEC was cultured 

in 96 well plate and maintained until confluent. After 24 hours, the medium was changed to 

Q5% FBS-medium to bring the tHBEC into resting condition for another 24 hours. This step is 

important to reduce the noise of the basal value due to active replicating cells. After that, 

100 µl/well of 10 ng/ml TNF-α or 1 ng/ml IL-1β that was prepared in Q5% FBS-medium was 

added to the cells and incubated for 24 hours. Following the incubation, the supernatant was 

removed and the cells were gently washed in 150 µl cold PBS containing 0.1% (v/v) bovine 

serum albumin (BSA) per well. The cells then fixed with ice-cold methanol 100% (v/v), for 

five minutes at room temperature before being washed in 0.1% (v/v) BSA in PBS. To reduce 

the non-specific binding of the antibodies, the cells were blocked with 50 µl of 1% (v/v) 

BSA in PBS per well for 1 hour at room temperature. After that, the blocking solution was 

aspirated and 50 µl/well of anti-human ICAM-1 antibody was added to the cell at the 

concentration of 1 µg/ml prepared in 0.1% (v/v) BSA/PBS and incubated for two hours at 

room temperature on a rocking platform. Then, the cells were washed three times with PBS 

before the secondary antibody, horseradish peroxidase (HRP) conjugated- goat anti-mouse 

IgG at dilution of 1:3000 in 0.1% (v/v) BSA/PBS was added to the wells. At this stage, the 

plate was wrapped in tin foil to reduce the light exposure and incubated for 1 hour at room 

temperature on a rocking platform. After that, the cells were washed three times using PBS 

and in the low light condition and 100 µl of TMB (tetramethylbenzidine) substrate was added 

to each well. The substrate changes its colour from clear to blue, demonstrating a positive 

reaction. The magnitude of the blue colour correlates with the concentration of ICAM-1. 

Then, 100 µl concentrated sulphuric acid was added into each well to stop the reaction and 

change the blue colour of reaction product to yellow. The absorbance was measured at the 
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wavelength of 450 nm using an ELISA plate reader (GLOMAX™ Multi+ detection system, 

Promega). The measurement of the yellow colour correlated with the concentration of 

ICAM-1. 

 

 

 

   

Endothelial cells fixed in the 

well 

Probing with primary antibody Detection using HRP-

conjugated secondary antibody 

 

Figure 2-3: The principle of cell-based ELISA. 

In cell based ELISA, the detection of an antigen is done directly on the fixed cells. First the 

probing of an antigen by specific antibody and then detected using HRP-conjugated 

secondary antibody. HRP on the secondary antibody is responsible for the colour change 

reaction of the TMB substrate. 

 

 

 

2.2.5.2 Von Willebrand factor (vWF) 

The endothelial nature of the tHBEC was confirmed by assessing the appearance of the von 

Willebrand Factor (vWF) using immunocytochemistry technique. First, the tHBEC were 

cultured to confluent on sterile round thermanox coverslips pre-coated with 1% (v/v) 

gelatine in a 24 well culture plate as in section 2.2.4. Once confluent, the cells were washed 

with pre-warmed PBS containing 1% (v/v) BSA. After that, the cells were fixed with 1% 
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(v/v) gluteraldehyde. To allow the antibody to reach the vWF in the cell cytoplasm, the 

tHBEC were permeabilised using 250 µl/well of 0.2% (v/v) triton X-100 prepared in 0.1% 

(v/v) BSA/PBS for 10 minutes at room temperature. Then, the cells were washed twice with 

250 µl/well of 0.1% (v/v) BSA/PBS before been blocked with 250 µl/well of 1% (v/v) 

BSA/PBS for 1 hour at room temperature. After that, 1 µg/ml of monoclonal mouse anti-

human vWF were applied on to the cells and incubated at room temperature for 2 hours on 

a rocking platform. After the incubation, the cells were washed twice with 250ul/well of 

0.1% (v/v) BSA/PBS and incubated in the dark for 1 hour at room temperature with the 

secondary antibody, FITC-labelled goat anti-mouse IgG at a dilution of 1:250. The cells on 

the coverslip were washed twice with PBS. In control wells, the tHBEC were also stained 

with primary antibody only and secondary antibody only. Finally, the coverslip with the 

stained tHBEC were carefully transferred onto a microscope glass slide with the surface 

containing cells facing up. The nucleus of the cells were counterstained with fluorescent blue 

4',6-diamidino-2-phenylindole (DAPI) in mounting reagent, Vectashield ™. The cells then 

covered with a rectangular glass coverslip and sealed with nail varnish to restrict the 

movement of the assembly when visualising under a fluorescent microscope. To image the 

vWF and cell’s nucleus, sets of fluorescent filter as in table 2-1 were used.  

 

Table 2-1: The list of the fluorochrome and its appropriate filter set used in the 

immunocytochemistry experiment for the detection of endothelial cell vWF. 

Molecule and 

Fluorochrome 
Filter set (Leica) 

Wavelength (nm) 

Excitation Emission 

vWF (FITC) Green 467-498 513-556 

Nucleus (DAPI) Blue 352-402 417-477 
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Endothelial cells fixed on the 

round coverslip 

Probing with primary antibody Detection using FITC-

conjugated secondary antibody 

 

Figure 2-4: The principle in the immunofluorescence technique. 

The primary antibody probing the antigen on the fixed cells, followed by the detection 

using fluorescence conjugated secondary antibody. The localisation of the fluorescein can 

be visualised using fluorescence microscope with appropriate filter set. 

 

 

 

2.2.5.3 Dil-Ac-LDL uptake 

The endothelial nature of the tHBEC was also confirmed by cytochemistry for its ability to 

uptake the acetylated-low density lipoprotein (Ac-LDL). For this assay, Ac-LDL labelled 

with fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (Dil-

Ac-LDL) was used.  First, the tHBEC was cultured in a sterile flat bottom 96-well culture 

plate as section 2.2.4 to confluent. Once the tHBEC reached more than 90% confluency, the 

growth medium was replaced with Q5% FBS-medium and cultured for another 24 hours. After 

that, the medium was replaced with growth medium containing 10 µg/ml of Dil-Ac-LDL 

and incubated for 4 hours in culture condition. Then, the media containing Dil-Ac-LDL were 

removed and the cells monolayer was washed three times with Q5% FBS-medium. By using a 

fluorescence microscope set at Rhodamine filter with excitation wavelength range between 
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515 nm and 560 nm, and emission at 590 nm, the tHBEC that is able to uptake the Dil-Ac-

LDL appeared as red in its cytoplasm. The cells were imaged using Leica FW4000 imaging 

software. 

 

2.3 Plasmodium falciparum culture 

In this study, the Plasmodium falciparum ItG strain was used. This strain was derived from 

Brazilian line IT4/25/5 (Ockenhouse et al., 1992a). The Plasmodium falciparum were 

cultured in the laboratory according to the in-vitro Plasmodium falciparum culture method 

(Trager and Jensen, 1976). This strain has been characterised to have strong binding 

capability to ICAM-1 molecule on the endothelial cell surface, which may have significant 

role in PRBC sequestration in severe malaria (Ockenhouse et al., 1991, Gray et al., 2003, 

Chakravorty et al., 2007). Cultures were supplemented regularly with freshly isolated red 

blood cells every 48 hours and maintained in 96% N2, 3% CO2, and 1% O2 at 37°C. 

Plasmodium falciparum was kept frozen at -80°C for long-term storage at the ring stage. 

The Plasmodium falciparum culture was performed in the CAT III cell culture suite which 

is a Health and Safety Executive approved facility for the use of Plasmodium falciparum 

according to local rules as laid out in the CAT III suite code of practice. The provision of 

screened leukocyte-depleted blood and serum by the National Blood and Transfusion service 

(NBTS) UK for Plasmodium falciparum culture is approved in this facility. All storage and 

disposal of blood was done in accordance with the Human Tissue Authority (HTA) licence 

held by Keele University. Detailed protocol for the culture of Plasmodium falciparum from 

frozen is described below in section 2.3.3. 
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2.3.1 Preparation of Plasmodium falciparum culture medium. 

Plasmodium falciparum growth medium was prepared by modifying RPMI-1640 to contain 

37.5 mM HEPES, 7 mM Glucose (Filter sterilised), 6 mM NaOH (Filter sterilised), 2 mM 

L-glutamine, 25 µg/ml gentamicin solution and 10% (v/v) pooled human serum. This 

medium is hereafter referred as Pf G-medium. Similar to this, serum free medium was 

prepared but without the addition of human serum and referred as Pf G-SF, which was used 

for all washes in PRBC culture.  

 

2.3.2 Preparation of 50% (v/v) washed red blood cells (50% WRBC). 

Plasmodium falciparum require red blood cells for its intra-erythrocytic life cycle. To fulfil 

this requirement, the parasite cultures were supplemented with red blood cells. To prepare 

50% (v/v) washed red blood cells, 5 ml of leukocyte-depleted red blood cells (Type O) was 

mixed with an equal volume of Pf G-SF in a sterile tube. After that, the mixture was carefully 

layered onto 5 ml of histopaque (at a density of 1.077 g/ml) in a new 50 ml centrifuge tube 

(Figure 2-5). The tube was then centrifuged at 2000 x g (3000 rpm), for 15 minutes at room 

temperature. The supernatant (containing plasma, lymphocytes, monocytes and histopaque) 

was then removed by aspiration and leaving the red blood cells pellet (see figure 2-5). 25 ml 

of Pf G-SF was added to the pellet, mixed well and centrifuged at 2500 x g (3500 rpm) to 

remove any redual histopaque which is toxic to the cells. Finally, the volume of the red blood 

cells pellet was estimated and an equal volume of Pf G-SF was added to it to prepare a 50% 

(v/v) washed red blood cell suspension, and stored at 4°C for no longer than one week. This 

was referred as 50% WRBC in this thesis. 
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Plasma layer 

 

Residual lymphocytes, 

monocytes 

 

Histopaque  

 

Red blood cells pellet 

 

Before centrifugation  After centrifugation 
 

Figure 2-5: Preparation of 50% WRBC. 

The process of layering the red blood cells on the histopaque in a 50 ml centrifuge tube. 

This process need to be very carefully done where the red blood cells were added slowly 

on the slanting wall of the tube to avoid them to form a mixture of histopaque and the red 

blood cells which can reduce the quality of the product.  

 

 

2.3.3 Reconstitution of frozen Plasmodium falciparum stabilates 

To start a fresh Plasmodium falciparum culture, the frozen stabilate was slowly thawed at 

37°C. This was followed by addition of decreasing concentration of salt solutions from 12% 

to 0.9%. The salt solutions were filter sterilised (0.2 µm pore size). All solutions and medium 

used were pre-warmed at 37°C prior to use. Once the stabilate was completely thawed in a 

37°C incubator, it was then transferred to a new 50 ml centrifuge tube. Then, 12% (w/v) 

NaCl was added drop wise into it with the ratio of 1 part of 12% (w/v) NaCl for every 5 part 

of starting stabilate volume and incubated at room temperature for 5 minutes. After that, pre-

Leukocyte-depleted 

blood 
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warmed 1.8% (w/v) NaCl was added drop wise at the same ratio and incubated at room 

temperature for another 5 minutes. Next, the final salt solution at the concentration of 0.9% 

(w/v) NaCl in 0.2% (w/v) glucose was added to the parasite as before. The parasite 

suspension was then centrifuged at 1200 x g (2800 rpm) for 5 minutes and the supernatant 

was removed. The parasite suspension was washed with excess volume of Pf G-SF and 

centrifuged as above to remove any excess salt.  After the supernatant was removed, the 

parasite pellet then suspended in 3 ml of Pf G-medium and transferred into a fresh non-

vented 25cm2 culture flask. The total volume of the parasite culture in the flask was adjusted 

to 5 ml before gassed with 96% N2, 3% CO2, and 1% O2. The culture was incubated at 37°C 

for at least 24 hours and the progress monitored by preparing a smear and examine by light 

microscopy. Parasites at the trophozoites stage were expected. 

 

The parasite was maintained for its optimal growth at a haematocrit of 1-2% and 

examined every 48 hours, reflecting the complete intra-erythrocytic cycle of Plasmodium 

falciparum. In this study, Plasmodium falciparum at the trophozoites stage was used for all 

experiments. The maintenance of Plasmodium falciparum involves preparation of a smear 

to estimate the parasitaemia, changing the medium and addition of fresh red blood cell 

supply for continued invasion by the parasite. 

 

To prepare the smear, firstly, 100 µl of Plasmodium falciparum culture was 

transferred into a 1.5 ml micro centrifuge tube and centrifuged for 1 minute using a small 

bench top centrifuge (maximum 14 500 rpm). After that, the supernatant was removed and 

the pellet was suspended in 200 µl of Pf G-SF. Then, 10 µl of the parasite suspension was 

transferred onto a clean glass slide and a thin smear was prepared by using another clean 

glass slide to function as spreader. The smear was air dried before being fixed using 100% 
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(v/v) methanol for 1 minute. As soon as the methanol evaporated, the smear was stained with 

10% (v/v) Giemsa for 5 minutes. Finally, the excess stain was removed by rinsing the smear 

using tap water and dried using hair a dryer. The appearance of life stage was observed under 

a compound microscope with the 100X objective oil immersion lens. The parasitaemia was 

calculated by counting the number of Plasmodium falciparum infected red blood cell 

(PRBC) out of 200 total cells using the following equation: 

 

 

Parasitemia (% P)=
number of PRBC

number of total cell count 

(PRBC+uRBC)

 

 

 

To change the Plasmodium falciparum culture medium, first, the culture was 

transferred into appropriate size of sterile centrifuge tube. The culture then centrifuged at 

room temperature with the speed of 1200 x g (2800 rpm) to separate the red blood cells 

(RBC) and Plasmodium falciparum infected red blood cells (PRBC) from the Pf G-medium. 

After that, the supernatant was aspirated and leaving the mixture of RBC and PRBC pellet. 

The pellet was then resuspended in appropriate volume of pre-warmed Pf G-medium. The 

volume of fresh Pf G-medium added was determined according to the percentage of 

parasitaemia. After that, the parasite was transferred into a sterile non-vented culture 25 cm2 

flask. The parasitaemia of the culture was maintained at 5 to 10% in 1000 µl pack cell volume 

(PCV) for co-culture experiments. The parasitaemia was adjusted by adding an appropriate 

volume of 50% (v/v) washed RBC. Finally, the culture were re-gassed for 20 seconds and 

incubated at 37°C for another cycle. 
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2.3.4 Trophozoite enrichment by plasmagel floatation. 

For the co-culture experiments, the mature trophozoite stage of Plasmodium falciparum was 

harvested from the culture by using the plasmagel floatation technique. This technique 

selects the less dense trophozoite stage and knob positive PRBC. To obtain more than 50% 

parasitemia after the enrichment, the Plasmodium falciparum culture was expanded to 10-

15% parasitemia at trophozoite stage in 1000 µl packed cell volume (PCV), prior to 

plasmogel floatation. 

 

First, the culture was transferred into a centrifuge tube and centrifuged at 1430 x g 

(2000 rpm) for 5 minutes. The pellet was recovered by aspirating the supernatant and washed 

with 20 ml of pre-warmed Pf G-SF. Then, the parasite suspension was centrifuged at 1430 

x g for five minutes. The pellet was suspended in 6 ml of Pf G-SF and divided into two 

sterile 15 ml centrifuge tube. The tubes were then centrifuged at 1430 x g for 5 minutes and 

the PCV of PRBC was estimated. After removing the supernatant, 1.5 ml of pre-warmed Pf 

G-SF and 2.5 ml of pre-warmed plasmagel was added per one millilitre PCV of PRBC. The 

mixture was thoroughly mixed to form a homogeneous suspension and incubated for 1 hour 

at 37°C in upright standing position. During this step, the suspension will form a clear 

demarcation between the top and bottom layer.  Top layer containing trophozoites was 

carefully transferred into a sterile 15 ml centrifuge tube and centrifuged at 1430 x g for 5 

minutes. To remove any plasmagel carryover, the pellet was washed twice in Pf G-SF. To 

wash, the pellet was suspended in 10 ml Pf G-SF and centrifuged at 1430 x g for 5 minutes. 

Finally, the parasitaemia and the development stage of parasite were assessed under the light 

microscopy as in section 2.3.3. 
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2.4 The co-culture experiment 

Co-culture experiment is an experiment where the tHBEC were co-cultured either with 

Plasmodium falciparum infected red blood cells (PRBC) or uninfected red blood cells 

(uRBC), as control. 

 

For the co-culture experiment, the tHBEC was cultured in a 25 cm2 cell culture flask 

for 48 hours to reach confluence. The medium was replaced with Q1% FBS-medium for a 

minimum of four hours prior to the start of the co-culture. 

 

The enriched trophozoite suspension at a minimum of 50% parasitemia was diluted 

in an appropriate volume of Q1% FBS-medium to give a final haematocrit of 1%. All co-culture 

experiments were done in 3 ml of the prepared PRBC suspension of more than 50% and 

haematocrit of 1% for 20 hours. 

 

To be a consistent control to the experiment, uRBC was prepared with the same 

procedure as PRBC. First, the uRBC suspension was cultured as in section 2.3.3 and 

subjected to the plasmagel floatation step as in section 2.3.4. The uRBC was diluted in Q1% 

FBS-medium to give a final of 1% haematocrit. 

 

2.4.1 The co-culture condition 

The resting tHBEC was co-cultured with either PRBC or uRBC for 20 hours at 37°C with 

5% CO2 supply. To serve as an activation control, the tHBEC was cultured in Q1% FBS-

medium containing 10 ng/ml of TNF-α. For the experiment control, the PRBC and uRBC 

was cultured in the same condition but without tHBEC. The co-culture conditions in each 

experiment are summarised in table 2-2. 
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Table 2-2: The co-culture condition in this study.  

Five co-culture experiments were done in this study to yielding 10 sets of co-culture supernatant and lysate. The uninfected red blood 

cells (uRBC) only and the Plasmodium falciparum infected red blood cell (PRBC) only culture experiment was only done twice. 

 

C
o
m

p
o
n
en

ts
 

Co-culture condition 

Control 

(Negative) 

tHBEC/ uRBC 

control 

tHBEC/ PRBC tHBEC/ TNF-α 

activation 

uRBC only 

control 

PRBC only 

control 

      

tHBEC       

uRBC       

PRBC       

TNF-α       

Legend: 

 

 

The tHBEC 

 
The uninfected red blood cells (uRBC) 

 
The Plasmodium falciparum infected red blood cell (PRBC) 

TNF-α Tumour necrosis factor – alpha 
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2.4.2 Harvesting the cell lysate and co-culture supernatants 

Following 20 hours incubation, the supernatant and endothelial cell lysates were harvested. 

First, the supernatant from the flask was transferred into a sterile 15 ml centrifuge tube and 

was kept on ice for processing later. As soon as the supernatant was transferred, the cell in 

the flask was washed twice with cold cell wash buffer (RPMI1640 containing 2 mM L-

glutamine, and 100 unit/ml penicillin and 100 µg/ml streptomycin). To assist the adhered 

PRBC to detach from the tHBEC, the flask was gently rocked ten times while in cell wash 

buffer. After that, the cell wash buffer was removed by aspiration and 100 µl of ice cold 

RIPA was added dropwise onto the cell monolayer and incubated at 4°C for 3 minutes. The 

cells were observed under light microscope with the appearance of tHBEC nucleus in round 

shape indicating the tHBEC were lysed. Then, the cells were scraped from the flask using 

clean cell scraper and the lysate was transferred into a sterile centrifuge tube. The nucleic 

acid, which appears as a cloudy white sticky clump, was removed from the lysate before 

being stored at -20°C for later use. 

 

The co-culture supernatant that was kept on ice earlier was centrifuged at 478 x g 

(1500 rpm) for 3 minutes to clarify the co-culture supernatant from uRBC, PRBC and any 

cell debris. The co-culture supernatant then recovered from the pellet into three sterile 1.5 

ml centrifuge tubes, with one ml in each tube. 
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2.5  List of kits 

Table 2-3: The list of kits used in the study. 

No. Name 
Catalogue 

Number 
Manufacturer 

1 
DuoSet® ELISA human ADAMTS-

1 
DY2197 R&D Systems 

2 ELISA IL-8 Eli-pair Ab48481 Abcam 

3 Human MCP-1 ELISA 650 110 096 Diaclone 

4 Quantikine ® ELISA MMP-2 DMP2FO R&D Systems 

5 Quantikine ® ELISA MMP-9 DMP900 R&D Systems 
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2.6 List of chemicals and reagents 

Table 2-4: The list of chemicals and reagents used in the study. 

No. Name Catalogue Number Manufacturer 

1 
10% (w/v) Sodium Dodecyl 

Sulphate 
BP2436 Fisher Scientific 

2 10x Blocking Buffer B6429 Sigma-Aldrich 

3 2-Mercaptoethanol M7154 Sigma-Aldrich 

4 Acetic acid A/0360/PB17 Fisher Scientific 

5 Acrylamide solution BP1408 Fisher Scientific 

6 
Albumin solution from bovine 

serum 
A7284 Sigma-Aldrich 

7 Ammonium persulfate A/P470/46 Fisher Scientific 

8 Brij 35.30 % (w/v) 3.3E+08 Acros Organics 

9 Bromophenol Blue 114391 Sigma-Aldrich 

10 Calcium Chloride BP510 Fisher Scientific 

11 
Cyro-SFM (Endothelial 

cryopreservative) 
C-29910 Promocell 

12 
Dextran-FITC conjugate (MW 70 

000) 
FD70S Sigma-Aldrich 

13 D-Glucose G/0500/61 Fisher Scientific 

14 Dil-Ac-LDL  BT-902 
Biomedical 

technologies 

15 
Dulbecco’s Phosphate buffered 

saline 
D8537 Sigma-Aldrich 

16 ECL Western blotting substrate 32209 Thermo Scientific 

17 Foetal Bovine Serum F9665 Sigma-Aldrich 

18 Gelatine solution (Type-B) G1393 Sigma-Aldrich 

19 Giemsa stain  295595000 Acros Organics  

20 Glycerol BPE229 Fisher Scientific 

21 Glycine BP381 Fisher Scientific 

22 GM6001  364206 Calbiochem  
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No. Name Catalogue Number Manufacturer 

23 HEPES buffer solution  H0887 Sigma-Aldrich  

24 Histopaque ® 10771  Sigma-Aldrich  

25 Hydrogen Peroxide solution H1009 Sigma-Aldrich 

26 IL-1β (Human, Recombinant) 201-LB  R&D System  

27 L-Glutamine G7513 Sigma-Aldrich 

28 Methanol BP110 Sigma-Aldrich 

29 New born-calf serum (Bovine) N4762 Sigma-Aldrich 

30 Paraformaldehyde P6148 Sigma-Aldrich 

31 Penicillin-streptomicine P0781 Sigma-Aldrich 

32 Plasmagel    Sigma-Aldrich 

33 Ponceau S 81462 Fluka 

34 Precision Plus ™ Protein Ladder 161-0375 Bio Rad 

35 Protein Assay Reagent 500-0006 Bio Rad 

36 Protein assay standard (II) 500-0007 Bio Rad 

37 
Restore plus Western blot stripping 

buffer 
46430 Thermo Scientific 

38 RIPA buffer R0278 Sigma-Aldrich 

39 RPMI-1640 R0883 Sigma-Aldrich 

40 Sodium Chloride BPE358 Fisher Scientific 

41 Sulphuric acid J/8420/17 Fisher Scientific 

42 TEMED T9281 Sigma-Aldrich 

43 TIMP-3 (Human, Recombinant)  973-TM R&D System  

44 TMB peroxidase substrate 172-1068 Bio Rad 

45 TNF-α (Human, Recombinant)  PHC3015 Life Technology  

46 Tris Base BP152 Fisher Scientific 

47 Tris Hydrochloric BP153 Fisher Scientific 

48 Triton X-100 BP151 Fisher Scientific 

49 Trypsin-EDTA solution T4049 Sigma-Aldrich 

50 Tween 20 BPE337 Fisher Scientific 

51 X-ray film developer P7042 Sigma-Aldrich 

52 X-ray film fixer P7167 Sigma-Aldrich 
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2.7 List of antibodies 

Table 2-5: List of the primary and secondary antibodies used in the study. 

No. Name Catalogue No. Manufacturer 

1 Anti-ADAMTS-1 (C-13) sc-5463 Santa Cruz 

Biotechnology 

2 Anti-ADAMTS-4 (K-20) sc-16533 Santa Cruz 

Biotechnology 

3 Anti-CD54 Mouse mAb (8.4A6) 217677 Calbiochem 

4 Anti-human CD31 FITC conjugate  852.561.010 Diaclone 

5 Anti-mouse-FITC F7512 Sigma-Aldich 

6 Anti-rabbit-FITC conjugate F0257 Sigma-Aldich 

7 Anti-β-actin  A2228 Sigma-Aldich 

8 Anti-Claudin-5 (H-52) sc-28670 Santa Cruz 

Biotechnology 

9 Donkey anti-goat IgG-HRP sc-2020 Santa Cruz 

Biotechnology 

10 Goat anti-mouse-HRP conjugate 170-6516 Bio-Rad 

11 Goat anti-rabbit-HRP conjugate 172-1019 Bio-Rad 

12 Anti-human MMP-2 antibody MAB903 R&D System 

13 Anti-human MMP-9 antibody MAB936 R&D System 

14 Anti-vinculin antibody V9264 Sigma-Aldich 

15 Anti-PECAM-1 antibody (E-8) Sc-133091 Santa Cruz 

Biotechnology 

16 Rabbit anti-goat-HRP conjugate 172-1034 Bio-Rad 

17 Rabbit anti-occludin 71-1500 Invitrogen 

18 Anti-vWF antibody (G-11) Sc-271409 Santa Cruz 

Biotechnology 

19 Anti-ZO-1antibody (C-19) Sc-8146 Santa Cruz 

Biotechnology 
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2.8 List of materials 

Table 2-6: The list of materials used in the study. 

No. Name Manufacturer 

1 24 well culture plate Sarstedt 

2 25 cm2  culture flask (non-vented cap) Sarstedt 

3 25 cm2  culture flask (vented cap) Sarstedt 

4 6 well culture plate Sarstedt 

5 96 well culture plate (Flat bottom, cell-culture) Sarstedt 

6 96 well plate (Flat bottom, ELISA) NUNC 

7 96 well plate (Flat bottom, solid black) Sarstedt 

8 Blot paper Bio-Rad 

9 Cells scraper Star Lab 

10 Centifuge tubes (15 ml and 50 ml) Scientific lab 

11 ECIS 8 wells array Applied Biophysics 

12 Hanging cell culture insert  Millipore 

13 Microcentrifuge tube (500 µl and 1500 µl) Star lab 

14 Micropipette tips (various sizes) StarLab 

15 Micropippettes (various sizes) BioPette 

16 Multichannel pipette CAPP Denmark 

17 Nitrocellulose membrane GE Healthcare 

18 Pump pipette StarLab 

19 Pump pipettes tips (various sizes) Sarstedt 

20 Round glass coverslip VWR 

21 Round thermanox cover slip NUNC 
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2.9 List of equipment 

Table 2-7: The list of equipment and instrument used in the study. 

No. Name Manufacturer 

1 37°C Incubator (P.falciparum culture) Thermo Scientific 

2 Benchtop centrifuge(Endothelial culture) SiGMA  

3 Benchtop centrifuge, Midispin (P.falciparum 

culture) 

Eppendorf 

4 Benchtop centrifuge, Minispin (P.falciparum 

culture) 

Eppendorf 

5 Biosafety cabinet (Endothelial culture) SterilGard 

6 Biosafety cabinet, Category III (P.falciparum 

culture) 

NuAIRE 

7 CO2  Incubator (Endothelial culture) Galaxy R 

8 Compound microscope CETI 

9 Deionised water system ELGA 

10 ECIS Zθ™ Applied Biophysics 

11 EVOM Precesion instrument 

12 FluorChem M Protein simple 

13 Glomax Multi+ Detection System Promega 

14 Heat block Grant 

15 Inverted fluorescence microscope (FW4000) Leica  

16 Inverted microscope Motic 

17 Mini Protein Plus tetra cell Bio-Rad 

18 pH meter Denver instrument 

19 Rocking platform Luckham 

20 Western Blot Scanning system Bio-Rad 

21 Wet protein transfer system Bio-Rad 
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Figure 2-6: The flow chart of the methodology used to achieve the aim of the thesis. 
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3 Chapter 3: The activation of endothelial cells by PRBC  

3.1 Introduction 

 

In many in vitro cerebral malaria studies, PRBC was found to upregulate the expression of 

ICAM-1 in various endothelial cells including HUVEC (Viebig et al., 2005, Chakravorty et 

al., 2007) and human brain microvascular endothelial cells (HBMEC) (Tripathi et al., 2006). 

The upregulation of ICAM-1 by endothelial cells is one of the signs of endothelial cell 

activation. The activation of BBB endothelial cells was consistently seen in the post mortem 

study of CM patients (see section 1.2). Further, the activation of endothelial cells may also 

cause the alteration in the regulation of other molecules especially those that are important 

in an inflammatory response. 

 

 In this study, tHBEC monolayer was used to represent the endothelial cells of the 

BBB.  This immortalised human brain endothelial cell line is more stable and display 

consistent properties compared to the primary cell line.  Additionally, the tHBEC has been 

widely characterized in various in vitro studies of the BBB (Callahan et al., 2004, Tripathi 

et al., 2006, Tripathi et al., 2007). Primary cell lines are difficult to isolate and can be 

maintained for a very short number of passages for the multiple assay, which is also 

compromising the consistencies between isolates. The other popular option in examining the 

alteration in BBB structure and function is the use of an animal model, especially mice. It is 

however, generally known that the CM in the animal model is not the same pathology as in 

human as the major event in human is the sequestration of P.falciparum in the brain 

microvessels which the animal model lacks (Van den Steen et al., 2006, van der Heyde et 

al., 2006).  

 



70 | P a g e  

 

 

To elucidate the activation of tHBEC in cerebral malaria, the tHBEC was co-cultured 

with PRBC to mimic sequestration in CM. Following co-culture, the supernatants and the 

endothelial cell lysates were harvested, and analysed for ICAM-1 expression, to determine 

endothelial cell activation. The supernatants were also analysed for MCP-1 and IL-8 to 

elucidate any inflammatory responses to the PRBC. In addition, supernatants were also 

analysed for the presence of candidate proteases (ADAMTS-1, ADAMTS-4, MMP-2 and 

MMP-9) to elucidate their potential role in alteration to the BBB during sequestration. 
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3.2 Material and methods 

3.2.1 Sandwich ELISA 

Enzyme-linked immunosorbent assay (ELISA) for the detection of cytokines and some 

proteases was done by using commercially available kits. The kits used for these experiments 

were summarised in chapter 2, table 2-3. All sandwich ELISA were done according to the 

manufacturer’s instructions. In principle, the antigen of interest was firstly immobilised by 

the capture antibody attached to the well (Figure 3-1). This was then detected by the 

detection antibody. There were two detection systems used in these studies, the direct 

detection by a HRP-conjugated antibody (for MCP-1, MMP-2 and MMP-9) and detection 

using biotinylated antibody which later interacted with HRP-conjugated streptavidin (for IL-

8 and ADAMTS-1). In all cases, 100 µl TMB was added into each well as the substrate for 

HRP and the plate was incubated in the dark for 10 minutes.  The colour change from the 

catalytic conversion of TMB substrate by HRP was stopped by the addition of 50 µl of either 

stop solution (supplied with kit) or concentrated sulphuric acid. The colour change was 

measured using 96 well plate reader (GloMax Multi+ system, Promega) at a wavelength of 

450 nm. The absorbance of the standard solution (provided in the kit) was plotted against 

concentration to give an assay standard curve. The standard curve generated for each test 

antigen was used to calculate the concentration of each antigen in the samples assayed. 
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Figure 3-1: The detection systems of sandwich ELISA. 
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For MCP-1, the ELISA was done using Human MCP-1 ELISA kit (Diaclone). The 

96 well ELISA plate was pre-coated with mouse monoclonal anti-human MCP-1 capture 

antibody by the manufacturer. All buffers and reagents were supplied with the kit. For the 

assay standards, a series of serial dilution of MCP-1 standard reagent from 16 pg/ml to 1000 

pg/ml in assay buffer was prepared in duplicate. The samples were also prepared in duplicate 

but at a 1:5 dilution in assay buffer to avoid over saturation of the samples. Once all standards 

and samples were pipetted into the plate (20 µl/well), 50 µl of HRP-conjugate anti-MCP-1 

(1:100) were added into each well and incubated in dark for 2 hours at room temperature. 

After that, the wells were emptied rapid flipping of the plate and washed three times by the 

addition of 150 µl wash buffer in each well. For the final wash, the plate was dried by 

dabbing it onto a clean paper towel. The colour development was done as mentioned before. 

  

The interleukin 8 (IL-8) was detected using IL-8 Eli-pair kit (Diaclone). Only capture 

antibody, biotinylated detection antibody, IL-8 standard and Streptavidin-HRP was supplied 

in the kit. First, the 96 well ELISA plate was coated with 100 µl/well of capture antibody 

prepared in coating buffer (PBS, pH 7.4), and incubated at 4°C for overnight. After that, the 

plate was washed two times with wash buffer (0.05% (v/v) Tween 20 in PBS) and blocked 

with 250 µl/well of saturation buffer (5% (w/v) BSA in PBS) for two hours at room 

temperature. For the assay, IL-8 standard ranging from 62.5 pg/ml to 2 000 pg/ml in standard 

diluent buffer (1% (v/v) BSA in PBS) was prepared by serial dilution and all co-culture 

supernatant samples were diluted 1:4 in standard diluent buffer. After these standards and 

samples were transferred into ELISA plate at 50 µl/well, 50 µl of biotinylated detection 

antibody was added into each well. This set up was incubated for one hour at room 

temperature. After that, the plate was washed three times with 150 µl wash buffer per well 

and properly dried before the 100 µl of streptavidin-HRP was added into each well and 
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incubated for 20 minutes. The unbound streptavidin-HRP was removed by washing as 

before. The plate then subjected for colour development as mentioned before. 

 

The MMP-2 and MMP-9 ELISA was done using the Quantikine® ELISA kit (R&D 

systems). These kits came with a pre-coated ELISA plate and all the reagents and buffers 

required. First, standards and samples were prepared in duplicate in assay diluent buffer. 

Standards for MMP-2 were ranging from 0.78 ng/ml to 50 ng/ml and MMP-9 from 0.312 

ng/ml to 10 ng/ml. All samples were diluted in the ratio of 1:2 with assay diluent. These 

standards and samples were transferred into the ELISA plate at 50 µl in each well. The set-

up was incubated at room temperature for two hours before being washed four times with 

150 µl per well of wash buffer. After that, the plate was dried by dabbing it onto a clean 

paper towel and incubated for two hours with the HRP-conjugated detection antibody. Once 

the incubation finished, the plate was washed again as before, followed by colour 

development. 

 

The concentration of ADAMTS-1 in co-culture supernatant was measured using 

DuoSet® ELISA for human ADAMTS-1 (R&D Systems). First, the 96 well ELISA plate 

was coated with 100 µl per well of 1µg/ml of capture antibody and incubated at room 

temperature overnight. Then, the unbound capture antibody was removed by four washes 

with wash buffer. The plate was then blocked with 200 µl of reagent diluent in each well for 

1 hour. For the assay, first, the ADAMTS-1 standards were prepared by serial dilution in 

reagent diluent over a range of 93.75 pg/ml to 6 000 pg/ml. Then, the co-culture supernatant 

was diluted 1:1 in reagent diluent. These standards and samples were then pipetted into 

respective wells and incubated at room temperature for two hours. Once finished, the plate 

was washed three times to remove the unbound proteins. After that, 100 µl of biotinylated 
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detection antibody (200 ng/ml) was added into each well and incubated in the dark for 

another two hours. The unbound antibodies were removed by washing three times as before. 

Next, 100 µl of streptavidin-HRP was added into each well and incubated for 20 minutes in 

the dark before continuing with the colour development steps.  

 

3.2.2 Sample preparation for SDS-PAGE and Western blot 

The total protein of the tHBEC lysate harvested from the co-culture experiment was 

determined using Bradford’s protein assay (Bio-Rad) and equally load into each well of 

SDS-PAGE gel. First, a series of BSA standards ranging from 0.05 mg/ml to 0.50 mg/ml 

were prepared by serial dilution. Then, the cell lysate samples were prepared in 1:10 and 

1:25 dilution to avoid the absorbance reading exceeding the standard range. After that, 10 µl 

of standards and samples were transferred in triplicate into 96 well plate. 200 µl of diluted 

dye reagent was then added to each well. The mixture was thoroughly mixed using the 

mixing function of 96 well plate reader before being incubated in the dark for five minutes. 

The colour change was measured at 595 nm. Absorbance of the BSA standards was plotted 

against concentration and a standard curve was prepared to determine the total protein 

concentration in each cell lysate sample. 

 

All samples for SDS-PAGE were prepared as following. For cell lysate sample, 30 

µg of protein was loaded into each well after mixing the sample with equal volume of 2x 

sample buffer (1% (w/v) SDS, 20 % (v/v) glycerol, 0.01 % (w/v) bromophenol blue in 120 

mM Tris buffer (pH 6.8)) and boiled for 5 minutes. All co-culture supernatants were 

analysed by loading equal volumes into each well. To achieve this, 15 µl of each sample was 

mixed with 15 µl of 2x sample buffer and boiled for five minutes. 30 ml of each mix was 

loaded into each well. In each gel set up, 5 µl of a protein marker was added into one well 
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to allow determination of molecular weight of any positive bands. The samples were 

electrophoresed by amperage constant at 35 mA for each gel. 

 

3.2.3 SDS-PAGE and Western Blot 

The samples (cell lysate or co-culture supernatant) harvested previously was electrophoresed 

using SDS-PAGE (Sodium dodecyl sulphate-polyacrylamide gel electrophoresis), 

transferred onto a nitrocellulose membrane and then specific proteins detected using 

antibodies. 

 

3.2.3.1 SDS-PAGE 

The polyacrylamide gel was prepared using the gel cast apparatus (Tetra cell, Bio-Rad). To 

prepare the gel, first, the thick and thin glass plates with the 1.0 mm spacer were aligned 

using the glass plate clamp. The bottom part of the assembly was then sealed by the rubber 

pad on the glass plate assembly stand. After that, the resolving gel mixture as table 3-1 was 

prepared and slowly filled into the space between the two glass plates assembly until 1.5cm 

from the top. The mixture was layered with water to level the top edge and to remove any 

bubbles. The gels were left to set for about 30 to 45 minutes. As soon as the gel was set, the 

water was removed by pouring and the stacking gel mixture as table 3-2 was prepared and 

added into the top part of the assembly. The gel combs were placed into the stacking gel 

while the mixture is still in the liquid form to allow wells to form when the gel set. Stacking 

gel took approximately 30 minutes to set. After the gel was set, the glass plate with gel was 

taken out from the clamp and transferred into the gel holder in the tank. Then, the comb was 

removed and SDS-PAGE running buffer added. 
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Table 3-1: The recipe for the preparation of 10% resolving gel for SDS-PAGE using the Bio-

Rad mini gel system. 

Component Concentration Volume (ml) 

Acrylamide: Bis-acrylamide (29:1) 40% solution 10 % (v/v) 5 

1.5 M Tris-Cl (pH 8.8) 375 mM 5 

dH2O - 9.59 

10% (w/v) SDS 2.5 % (w/v) 0.2 

10% (w/v) APS 2.5 % (w/v) 0.2 

TEMED  - 0.013 

TOTAL volume 20 

 

Table 3-2: The recipe for the preparation of 5% stacking gel for SDS-PAGE using the Bio-

Rad mini gel system. 

Component Volume (ml) 

Acrylamide: Bis-acrylamide (29:1) 40% solution 1.25 

1.0 M Tris-Cl (pH 6.8) 1.25 

dH2O 7.3 

10% (w/v) SDS 0.1 

10% (w/v) APS 0.1 

TEMED  0.007 

Total volume 10 

 

 

3.2.3.2 Western blot 

As soon as the electrophoresis was completed, the gels were removed from SDS-PAGE 

assembly and transferred onto a nitrocellulose membrane for Western transfer as figure 3-2, 

using wet transfer system (Bio-Rad) in Western transfer buffer (25 mM Tris-Base, 192 mM 

Glycine in 10% (v/v) methanol). The transfer was performed at 300 mA for 60 minutes. 



78 | P a g e  

 

After that, the blot was stained with Ponceau S to check for optimal transfer and equal 

loading in each well. Next, the blot was washed with water and blocked with 1x blocking 

solution (Sigma) for one hour on a rocking platform at room temperature. After that, the blot 

was incubated with the primary antibody (Table 3-3) overnight. Then, the blot was washed 

three times with 10 ml wash buffer (20 mM Tris-base, 150 mM NaCl in 0.001% (v/v) Tween-

20 at pH 7.6) to remove any weakly or unbound primary antibody. After the third wash, the 

blot was incubated with the HRP-conjugated secondary antibody for two hours. The blot 

was then washed again as previous and transferred onto a clean cling film with the protein 

side facing upward (figure 3-3). The enhanced chemiluminescence (ECL) reagent was mixed 

as per manufacturer’s instructions. 750 µl of the mixed ECL reagent was then added onto 

each blot before being imaged using blot imager (FluorChem M, Protein Simple) or exposed 

to an x-ray film. In all Western blot analysis of cell lysate, the blots were stripped and 

reprobed with β-actin, a housekeeping protein. The ratio between densities of the β-actin 

band and the band of test antigen (e.g. ICAM-1) was used to derive semi-quantitative 

measurement of expression of each antigen tested. 
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Figure 3-2: The positioning of the western transfer system.  

The negatively charged proteins in the gel were moved to the positive terminal and 

transferred onto the nitrocellulose membrane by the electrophoresis. These layers of filter 

paper, nitrocellulose membrane and gel were carefully layered and aligned between each 

other to avoid the formation of trapped air in between them. 
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Table 3-3: Antibodies used in Western blot. 

Antigen 
Sample tested Primary antibody Secondary antibody 

Name Dilution Name Dilution 

ADAMTS-1 Supernatant 

Anti- 

ADAMTS-1 (C-

13) 

1:250 
Rabbit anti-

goat 
1:1000 

ADAMTS-4 Supernatant 

Anti- 

ADAMTS-4 (K-

20) 

1:250 
Donkey anti-

rabbit 
1:1000 

MMP-2 Supernatant 
Anti-human 

MMP-2 
1:500 

Goat anti-

mouse 
1:1000 

MMP-9 Supernatant 
Anti-human 

MMP-2 
1:500 

Goat anti-

mouse 
1:1000 

ICAM-1 
Supernatant* 

and lysate 
Anti-CD54 1:1000 

Goat anti-

mouse 
1:1000 

β-actin Lysate Anti- β-actin 1:1000 
Goat anti-

mouse 
1:1000 

Note: * from previous studies in the lab (not shown). 

 

 

Figure 3-3: The set up for the addition of ECL reagent onto the blot. 
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3.2.3.3 Densitometric analysis of the western blot images. 

The density of the bands of interest from western blot experiments were analysed using a 

specialised computer software (AlphaView, Protein simple). First, the image captured by 

FluorChem was cropped to the size of one blot. Then, the rectangular tools were utilised to 

mark the band of interest. To maintain the same size of selected area, multiple plot tools 

were used. Since the blot was captured with some background, the density of the background 

was deducted from the density of each band value by the background analysis tools. The 

value from these normalisation were recorded in excel and GraphPad (Prism) for statistical 

analysis. 

 

3.2.4 Zymography for the MMP-2 and MMP-9 in the co-culture supernatant 

Zymography was used to screen the gelatinase activity of the MMP-2 and MMP-9 in the co-

culture supernatant. The gel was called zymogram. The gelatine zymogram was prepared 

similar to the SDS-PAGE gel as in section 3.2.3.1 with some modification. In zymography, 

2 mg/ml of gelatine was added to the resolving gel mix in table 3-1. After the gel was set, 

supernatant samples were treated as before with an equal volume of 2X sample buffer. In 

this assay, the sample mix was not boiled to preserve the gelatinase activity. The samples 

were then pipetted into respective wells and electrophoresed at 35 mA for each gel until the 

lowest molecular weight marker reached the bottom edge of the gel. Following 

electrophoresis, the gel was transferred into a clean container and soaked in renaturation 

buffer (2.5% (v/v) Triton X-100) for 30 minutes, with the buffer change in every ten minutes. 

To allow the digestion of gelatine, the zymogram was incubated at 37°C in developing buffer 

(50 mM Tris-HCl, 10 mM CaCl2.H2O, 0.05% (v/v) Brij 35 and pH adjusted to 7.6) for 

overnight with gentle shaking. To visualise the area with digested gelatine from the activities 

of active MMP-2 and MMP-9, the zymogram was stained for 15 minutes with Coomassie 
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blue staining solution (5% (w/v) Coomassie R-250, 40% (v/v) methanol and 10% (v/v) acetic 

acid) on a rocking platform. The area with the undigested gelatine was stained blue and the 

area with the digested gelatine appeared as clear band after being destained in destaining 

solution (40% (v/v) methanol and 10% (v/v) acetic acid). 
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3.2.5 Results 

3.2.6 Activation of tHBEC in response to PRBC. 

Following the co-culture experiment the tHBEC lysates were analysed using western 

blotting technique for the cell associated ICAM-1 (ICAM-1), one of the endothelial cell 

activation markers. A best representative western blot image is shown in figure 3-4. A 

number of bands were detected for each lane with the biggest band at 80 kDa (approximate). 

The size of full length ICAM-1 is between 80-114 kDa and depending on the glycosylation 

of its structure (Van de Stolpe and Van der Saag, 1996).  Western blot analysis showed that 

ICAM-1 was constitutively expressed by tHBEC (as the positive band for ICAM-1 in the 

resting tHBEC lysate).  However, there was no significant upregulation of ICAM-1 

expression when co-cultured with either PRBC or URBC, in these studies (1 way ANOVA, 

P > 0.05). The densitometry data on the immunoblot images of lysates from five different 

co-culture experiments is shown in figure 3-5.  . 
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Figure 3-4: Western blot of post co-culture endothelial lysate for ICAM-1. 

Top panel shows the ICAM-1expression from the tHBEC lysate after the co-culture 

experiment. The total amount of proteins loaded in each well is 30 µg. The first lane is 

protein marker (Bio-Rad), followed left to right by, control lysate, uRBC-tHBEC co-

culture lysate and PRBC-tHBEC co-culture lysate. Lysate of the tHBEC co-cultured with 

PRBC shows a darker band at 80 kDa compared to control and uRBC-tHBEC lysate. As 

the loading control, the same blot was stripped and re-probed with anti-β-actin antibody, 

which gave a band at 40 kDa. 
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Figure 3-5: Densitometry of ICAM-1. 

The graph shows the average of density ratio between the bands of the 80 kDa ICAM-1 to 

the 40 kDa β-actin from five separate co-culture experiments. Level of ICAM-1 was 

slightly higher in the tHBEC co-cultured with PRBC compared to the activation by 10 

ng/ml TNF-α. The level of ICAM-1 from control was similar to the tHBEC co-cultured 

with uRBC, which was lower than the PRBC-tHBEC lysate (N.S. is for not significant, 1 

way ANOVA, error bar is at 1 S.E.M) 
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3.2.7 PRBC mediated increase in secretion of MCP-1 and IL-8 by tHBEC. 

Supernatants from ten separate co-culture experiments were analysed for MCP-1 and IL-8. 

The level of MCP-1 in the PRBC-tHBEC co-culture supernatant was twofold higher 

compared to control supernatant (Figure 3-6). Exposure to uRBC for 20 hours, however, did 

not increase the secretion of MCP-1 by tHBEC. In resting condition, the tHBEC was found 

to secrete a basal level of MCP-1 (800 pg/ml) into supernatant indicating that the MCP-1 is 

produced constitutively by tHBEC. Activation of tHBEC by 10 ng/ml TNF-α also 

upregulated MCP-1 production by tHBEC.  

 

 The level of IL-8 was found to be significantly increased by ten fold in the PRBC-

tHBEC co-culture supernatant (2916.6 pg/ml) compared to control (272.6 pg/ml), indicating 

the activation of tHBEC in response to PRBC (Figure 3-7). The co-culture with uRBC for 

20 hours was unable to change the basal secretion of IL-8 by tHBEC showing that interaction 

between tHBEC and uRBC did not cause endothelial activation, as expected. 10 ng/ml TNF-

α caused a slight increase in the level of IL-8 compared to the activation by PRBC. These 

data demonstrate that upregulation and releases of MCP-1 and IL-8 by tHBEC, is a specific 

response to PRBC. 

 

 

 

 

 

 

 

 



87 | P a g e  

 

 

MCP-1

Control uRBC-tHBEC PRBC-tHBEC 10 ng/ml TNF-
0

500

1000

1500

2000

2500

**

*

 

 

 

Figure 3-6: ELISA of MCP-1 in co-culture supernatant. 

The graph shows the average concentration of MCP-1 secreted by tHBEC from ten 

separate co-culture experiments. Bars represent 1 S.E.M. and the significant difference 

between treatments was analysed using 1 way ANOVA with Turkey’s multiple 

comparison test. (n=10, * is P ≤ 0.05 and ** is P ≤ 0.01). 
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Figure 3-7: ELISA of IL-8 in co-culture supernatant. 

The graph shows the average concentration of the IL-8 from 10 separate co-culture 

experiments. Bars represent 1 S.E.M. and the significance difference between treatments 

was analysed using 1 way ANOVA with Turkey’s multiple comparison test. (n=10, and 

*** is P ≤ 0.001). 
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3.2.8 PRBC mediated regulation of ADAMTS-1 and ADAMTS-4 of tHBEC. 

Western blot analysis of the co-culture supernatant for ADAMTS-1 gives three bands at 

different size; 110 kDa, 60 kDa and 30 kDa (Figure 3-8A). Visually, there are no major 

differences in the densities of these bands between different co-culture conditions. Across 

supernatants from five different co-culture experiments, there were variations in the pattern 

of regulation of ADAMTS-1. Semiquantitative analysis of the western blot by densitometry 

for all three different bands was done. The 30 kDa band of ADAMTS-1 is markedly 

upregulated in the PRBC-tHBEC co-culture supernatant compared to uRBC-tHBEC co-

culture supernatant (Figure 3-8B).  In contrast, the 60 kDa (figure 3-8C) and 110 kDa (figure 

3-8D) bands showed no significant difference between co-culture conditions. Activation of 

tHBEC by TNF-α also increased the release of 30 kDa ADAMTS-1 into supernatant 

compared to resting tHBEC, but this was not different compared to uRBC-tHBEC co-culture 

supernatant. 

 

Further analysis of the co-culture supernatant using sandwich ELISA showed that 

the release of ADAMTS-1 was slightly upregulated in uRBC-tHBEC co-culture supernatant 

but markedly upregulated in PRBC-tHBEC co-culture supernatant, compared to resting 

tHBEC (Figure 3-9). These changes were statistically tested using 1 way ANOVA with 

Turkey post-hoc test however shows no significant difference (P> 0.05) was apparent. In 

line with the western blot data, ADAMTS-1 was constitutively released by tHBEC and not 

upregulated by TNF-α.  
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Figure 3-8: Western blot and densitometry of co-culture supernatants ADAMTS-1. 

A: A representative western blot image for ADAMTS-1. From left protein marker (M), 

control supernatant (Ctrl), uRBC-tHBEC co-culture supernatant, PRBC-tHBEC co-culture 

supernatant and TNF-α activation supernatant. The graph shows the relative density of the 

30 kDa band (B), 60 kDa (C) and 110 kDa (D) of the ADAMTS-1 blots (n = 5).  
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Figure 3-9: ADAMTS-1 ELISA. 

The graph shows the mean concentration of ADAMTS-1 in the co-culture supernatant 

from ten separate experiments. Error bar is 1 S.E.M. The significant differences between 

co-culture treatments was tested using 1 way ANOVA with Turkey’s multiple comparison 

test (n = 10, *** is P ≤ 0.001). 
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ADAMTS-4 in co-culture supernatants were screened using western blot (Figure 3-10A). 

Two main bands were detected in the uRBC-tHBEC and PRB-tHBEC co-culture 

supernatants, at 60 kDa and at 30 kDa. Interestingly, the 30 kDa band was absent in control 

supernatant and is markedly upregulated in PRBC co-culture supernatant tested from seven 

different experiments. The densitometric analysis of this band shows the upregulation of 

ADAMTS-4 is statistically significant compared to control co-culture supernatant (P ≤ 0.05), 

but not significant compared to uRBC-tHBEC co-culture supernatant (P > 0.05) (Figure 3-

10B). Analysis of the 60 kDa band (figure 3-10C) shows no significant difference between 

the co-culture condition, analysed using 1 way-ANOVA with Turkey’s multiple comparison 

post hoc test.  
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Figure 3-10: Western blot and densitometry of ADAMTS-4. 

A: A representative western blot image for ADAMTS-4. From left protein marker (M), 

control supernatant (Ctrl), uRBC-tHBEC co-culture supernatant, PRBC-tHBEC co-culture 

supernatant and TNF-α activation supernatant. The graph shows the relative density of the 

30 kDa (B) and 60 kDa (C) of the ADAMTS-1 blots. Error bars represent 1 SEM. The 

significant differences were tested using 1 way ANOVA with Turkey’s post hoc test. (n = 

7, * is P ≤ 0.05).  
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3.2.9 PRBC cause differential regulation of tHBEC MMP-2 and MMP-9. 

The level of MMP2 in the co-culture supernatants was detected using western blotting and 

measured using sandwich ELISA. Western blotting of the co-culture supernatant for MMP-

2 showed a major band at 60 kDa (Figure 3-11A). Densitometry analysis on the 60 kDa 

bands of MMP-2 from five different co-culture experiment did not show any significant 

difference between the co-culture conditions (Figure 3-11B). This was tested using 1 way 

ANOVA with Turkey’s multiple comparison test. In contrast, the measurement of MMP-2 

concentration using a commercial ELISA kit gave a very different finding (Figure 3-12). 

Interestingly, the level of MMP-2 in the PRBC-tHBEC co-culture supernatant (17.9 ng/ml) 

was significantly increased (P ≤ 0.001) compared to the resting tHBEC control (0.45 ng/ml). 

The concentration of MMP-2 in the uRBC-tHBEC co-culture supernatant was slightly higher 

than in the control co-culture supernatant, however this was not significant. Similarly, the 

activation by 10 ng/ml TNF-α only cause slight increase in the concentration of MMP-2 in 

the co-culture supernatant compared to the resting tHBEC control. 
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Figure 3-11: Western blotting of MMP-2 in the co-culture supernatant. 

A: A best western blot image for MMP-2. From left protein marker (M), control 

supernatant (Ctrl), uRBC-tHBEC co-culture supernatant, PRBC-tHBEC co-culture 

supernatant and TNF-α activation supernatant. B: The graph shows the relative density of 

the 60 kDa band of the MMP-2 blot (n = 5, N.S. is for not significant).  
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Figure 3-12: ELISA of MMP-2 in the co-culture supernatant. 

The graph shows the averaged concentration of MMP-2 in the co-culture supernatant from 

ten separate experiments. Error bar is +1 SEM. The significant differences between co-

culture treatments was tested using 1 way ANOVA with Turkey’s multiple comparison test 

(n = 10, *** is P ≤ 0.001). 
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The western blot for MMP-9 in co-culture supernatant gives two different sizes of bands; 60 

kDa and 30 kDa (Figure 3-13A). The biggest band was at 60 kDa and the band intensities 

were inconsistent in every supernatant tested. Interestingly, the 30 kDa band was found only 

in the lane for uRBC-tHBEC co-culture supernatant and PRBC-tHBEC co-culture 

supernatant. The densitometric analysis shows that 30 kDa MMP-9 significantly upregulated 

in the PRBC-tHBEC co-culture supernatants (P ≤ 0.001) compared to control co-culture 

supernatant, however this was not significant compared to the uRBC-tHBEC co-culture 

supernatants (P > 0.05) (Figure 3-13 B). The densitometry of the 60 kDa band shows there 

are no significant differences between the co-culture conditions. These statistics were tested 

using 1 way-ANOVA with Turkey’s multiple comparison test. 

 

Further analysis using sandwich ELISA (Figure 3-14) showed that the concentration 

of MMP-9 was significantly higher in the PRBC-tHBEC co-culture supernatants compared 

to the concentration of MMP-9 in resting tHBEC supernatants (P≤ 0.01). The secretion of 

MMP-9 into supernatant was also increased by the tHBEC when co-cultured with uRBC. 

The regulation pattern in the ELISA quantitation was similar to the regulation pattern seen 

in the densitometry of 30 kDa MMP-9. 
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Figure 3-13: Western blotting of MMP-9 in co-culture supernatant. 

A: A representative western blot image for MMP-9. From left, protein marker (M), control 

supernatant (Ctrl), uRBC-tHBEC co-culture supernatant, PRBC-tHBEC co-culture 

supernatant and TNF-α activation supernatant. The graph shows the relative density of the 

30 kDa band (B) and 60 kDa (C) of the MMP-9 blot (n = 9).  
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Figure 3-14: ELISA of MMP-9 in co-culture supernatants. 

The graph shows the averaged concentration of MMP-9 in the co-culture supernatant from 

ten separate experiments. Error bar is 1 S.E.M. The significant differences between co-

culture treatments was tested using 1 way ANOVA with Turkey’s multiple comparison test 

(n = 10, *** is P ≤ 0.001). 
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3.2.10 The gelatinase activity of co-culture supernatant. 

The gelatinase activity of the co-culture supernatant was examined using gelatine 

zymography (Figure 3-15). Two main bands were visualised using this method; 90 kDa and 

60 kDa. The 90 kDa band is the MMP-9 and the 60 kDa is the MMP-2. In co-culture 

supernatant tested from four separate experiments, there were consistently no differences in 

the band intensities between the different co-culture conditions. There are no gelatinase 

activities were observed from 30 kDa MMP-9, a band which appears in western blots (figure 

3-13A). 

 

 

 

 

Figure 3-15: MMP-2 and MMP-9 gelatine zymography. 

A representative zymogram shows the MMP-2 (60 kDa) and MMP-9 (90 kDa) in the co-

culture supernatant are function and active in degrading gelatine substrate.   
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3.3 Chapter discussion 

 

In this study, western blot analysis did not demonstrate clear and significant upregulation of 

ICAM-1 in tHBEC following direct exposure to the trophozoite stage of PRBC at a high 

parasitemia for a prolonged period (20 hours). Although the western blot analysis 

consistently shows the largest band for ICAM-1 in the endothelial cell lysate treated with 

PRBC and the densitometry analysis shows a tendency towards an increase in ICAM-1 

expression (figure 3-5), this was not significant. This may be a reflection of the quality of 

the western blot images and background noise. This data is contrary to previously reported 

effect of PRBC activation on HUVEC (Viebig et al., 2005) and Human brain endothelial 

cells (Tripathi et al., 2006), under conditions of high parasitaemia.  In comparison, 

Chakravorty et al. (2007) found that when parasitaemia is low (i.e. 3% in these studies) the 

up-regulation of ICAM-1 by HUVEC can only be seen when the HUVEC were co-cultured 

with PRBC in the presence of a basal concentration of TNF-α. This difference may also be 

due to the difference in the endothelial cell line, Plasmodium falciparum’s strain, culture 

medium as well as the parasitaemia. However, all these studies demonstrate the ability of 

PRBC to activate endothelial cells which is in line with the observed activation of the 

endothelial lining of the brain vessels in cerebral malaria post-mortem studies (Turner et al., 

1994). 

 

 Although the increase in ICAM-1 was not apparent in the  cell lysate (this study) 

additional analysis of the PRBC-tHBEC co-culture supernatant demonstrated significant 

upregulation of soluble ICAM-1 (sICAM-1) compared to control tHBEC supernatant using 

a R&D Systems ELISA kit (performed by  undergraduate placement student; data not 

shown).  This finding represents the release of sICAM-1 from tHBEC in response to PRBC 
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which is also observed in the plasma of children with cerebral malaria (Conroy et al., 2010). 

In addition, the concentration of sICAM-1 in the plasma and CSF of  Vietnamese adults with 

CM was found to be significantly higher than the concentration of sICAM-1 in the control 

(Adults from UK) (Brown et al., 2000). This upregulation of sICAM-1 is however not unique 

to CM, but is also apparent in other neurological condition where the consciousness was 

decreased, indicating the disturbance in the normal function of CNS. It is also noteworthy 

that result from this study may not represent the sICAM-1 in the brain vessels as the study 

assessed sICAM-1 in the plasma of peripheral vessel.  

 

Generally, all candidate proteases were analysed by 2 different methods, western 

blotting and ELISA. In contrast to the clear ELISA data, only minimal upregulation of all 

protease candidates are observed in western blotting analysis. This is due to the insensitivity 

of western blotting compared to the ELISA, especially in the detection step. Additionally, 

the protein sample may undergo further processing that gives several sizes of products which 

are later separated by SDS-PAGE, thus resulting in different intensities of different sizes of 

the same protein.  This was overcome by the use of ELISA, where the colour change 

represents the total protease content, irrespective of any breakdown products. 

 

 These studies demonstrated significant increase in MCP-1 and IL-8 release 

from tHBEC in response to PRBC. MCP-1 is released by endothelial cells during 

inflammatory responses, including the activation by cytokine such as IL-1β, IFN-ɣ, TNF-α 

and angiotensin II (Rollins et al., 1990, Szmitko et al., 2003). During inflammation, MCP-1 

is involved in monocyte transmigration via CCR2 receptors on monocytes (Boring et al., 

1998). Both MCP-1 and IL-8 was found to be markedly elevated in the serum and  

cerebrospinal fluid of children who died due to cerebral malaria compared to the children 
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who died due to severe malarial anaemia or other causes (Armah et al., 2007). Additionally, 

serum IL-8 was also increased in children with severe malaria in a clinical study in Mali 

(Lyke et al., 2004a). Interestingly, level of IL-8 in the serum of non-survival cerebral malaria 

was significantly higher than the patients who survived in a study in India (Jain et al., 2008), 

suggesting the severity of the inflammation caused by Plasmodium falciparum in the non-

survival CM cases. In an in vitro study, Chakravorty et al. (2007) demonstrated that direct 

exposure of HUVEC to PRBC for 20 hours not only increase the expression of endothelial 

ICAM-1 but also IL-8, which can be synergistically increased by the addition of low 

concentration TNF-α. Although this study is in line with the in vivo data, it is important to 

note that measurement of serum and CSF MCP-1 and IL-8 can represent non-specific 

generalised inflammation as opposed to being a reflection to the effect of sequestration of 

PRBC in the brain microvasculatures. 

 

ADAMTS-1 and ADAMTS-4, which are aggrecanases were upregulated in PRBC-

tHBEC co-culture supernatant. ADAMTS-1 is believed to be secreted as inactive 

aggrecanase at 110 kDa and the activation involves proteolytic digestion of a 25 kDa peptide 

to yield an active 85 kDa ADAMTS-1. Smaller than ADAMTS-1, ADAMTS- 4 is a 90 kDa 

protein which subjected to proteolytic activation to forms 60 kDa mature ADAMTS-4. 

Western blot of co-culture supernatant for ADAMTS-4 visualised bands at 60 and 30 kDa, 

relecting the cleavage products, however the full size 90 kDa band was not detectable 

showing that most of the ADAMTS-4 released by tHBEC is in the active form. Interestingly, 

all of the western blots consistently showed that the 30 kDa band of ADAMTS-4 was absent 

in resting tHBEC, and only detectable in uRBC-tHBEC and PRBC-tHBEC co-culture 

supernatants. To confirm that the 30 kDa ADAMTS-4 bands were not derived from either 

uRBC or PRBC, western blot for ADAMTS-4 was also done on supernatant from uRBC 
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alone and PRBC alone cultures. Both supernatants were negative for ADAMTS-4 (not 

shown). The blot was also probed with secondary antibody alone to confirm that the 30 kDa 

ADAMTS-4 band was not due to cross reactivity. A significant increase in both ADAMTS-

1 and ADAMTS-4 was demonstrated in the brain section of a rat induced with stroke (Cross 

et al., 2006), suggesting the involvement of these proteases in the BBB damage, a 

characteristic of stroke. Additionally, both aggrecanases were also suggested to have strong 

association with the degradation of aggrecan and versican, a major ECM component at BBB, 

which was seen in Alzheimer’s disease (Rauch, 2004). These data suggest the potential 

involvement of these aggrecanases in mediating BBB damage in CM. 

 

Analysis of the co-culture supernatant for MMP-2 and MMP-9 showed a clear 

upregulation of both matrix metalloproteases in PRBC-tHBEC co-culture supernatant, 

although this was only observed in the ELISA data, which quantifies the total concentration 

of the proteins. These proteases may be involved in the pathogenesis of CM as activated 

MMP-9 in the brain tissue was found to be strongly upregulated in the mouse model of CM, 

infected with Plasmodium berghei ANKA, which shows similar neurological disturbances 

as in human CM (Van den Steen et al., 2006). The potential involvement of these proteases 

in the CM pathogenesis was discussed in chapter 1 (section 1.6). 

 

 In conclusion, the activation of tHBEC by direct exposure to PRBC for 20 hours 

increases the release of MCP-1, IL-8, ADAMTS-4, ADAMTS-1, MMP-2 and MMP-9 by 

tHBEC into supernatant while the expression of tHBEC ICAM-1 was not modified 

significantly in the western blot analysis in this thesis.  
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CHAPTER FOUR: ALTERATION IN THE INTEGRITY OF 

THE ENDOTHELIAL CELL MONOLAYER IN THE 

RESPONSE TO THE CO-CULTURE SUPERNATANT. 
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4 Chapter 4: Alteration in the integrity of the endothelial cell monolayer 

in response to the co-culture supernatants. 

4.1 Introduction  

Many post mortem studies on patients who died due to CM show association between 

sequestration and activation of endothelial cells of BBB, which usually co-localised with the 

site of the BBB leakage. Interestingly, the same damage can also be seen in some of the 

vessels that do not have sequestered PRBC (Brown et al., 1999, Brown et al., 2000, Brown 

et al., 2001). There is some suggestion that the damage of the BBB in CM occurs due to the 

soluble factors released during malaria infection, although sufficient evidence to prove this 

assumption is still lacking (Hunt and Grau, 2003, Idro et al., 2005, Medana and Turner, 2006, 

Clark and Alleva, 2009).  

 

Results from post-mortem brain sections of patients who died due to CM also 

demonstrate that the PRBC could not be seen in the brain perivascular space. However, 

serum fibrinogen, one of the serum protein molecules which are normally maintained in the 

vessel lumen, was consistently observed to have leaked out of the brain microvessel into the 

brain parenchyma in cerebral malaria (Brown et al., 2001, Dorovini-Zis et al., 2011). This 

suggests that the BBB disruption is sufficient for the 250 kDa fibrinogen to move across the 

barrier. 

 

The pathogenesis of cerebral malaria in human is still poorly understood which is 

mainly due to the limitation of the models that can be used. As Plasmodium falciparum is 

unable to cause malaria in rodent models, there is no specific in vivo model that can be used 

to study the mechanisms involved in human cerebral malaria (Hunt and Grau, 2003). As an 

alternative, in vitro models of BBB consisting of primary or immortalised human brain 
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endothelial cells has been widely used to study the interactions between PRBC and BBB 

(Wassmer et al., 2005, Tripathi et al., 2007). The properties of primary and immortalised 

brain endothelial cells were described in chapter 1. 

 

By using such in vitro models, several methods can be used to assess the barrier 

function of the in vitro model of BBB.  The changes in integrity of the intercellular junction 

can be assessed by measuring electrical resistance across a confluent monolayer. The 

measurement of transendothelial electrical resistance (TEER) utilises the concept that a 

confluent endothelial monolayer imposes a resistance to electrical current between 

electrodes and the current (at specific frequency) flows through the intercellular junction 

(Figure 4-1). With this concept, any reduction in the “tightness” of the intercellular junctions 

will reduce the resistance and increase the current flow, which can be measured by an 

amperage meter. 

 

 

 

Figure 4-1: The concept of endothelial cells monolayer TEER. 

The confluent brain endothelial cell poses an intense tight junction that imposes a high 

impedance towards conductance of an electrical current. At frequencies below 2000 Hertz, 

the current flows through intercellular junction (Red arrow) but not through the cell 

cytoplasm (Image was modified from http://www.biophysics.com/ecis-theory.php, last 

assed in 9th September 2014) 
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An important element of cerebral malaria is the interaction of PRBC with the brain 

endothelial cells. It was shown using TEER measurements that the integrity of the 

endothelial cells is decreased when co-cultured with PRBC (Tripathi et al., 2007). In the 

same study, it was demonstrated that soluble factors that can be precipitated using 

ammonium sulphate cause the reduction in endothelial cells monolayer integrity.  

 

Results in the previous chapter demonstrated that the PRBC were able to induce an 

upregulation of release of MCP-1, IL-8, collagenases (MMP) and aggrecanases (ADAMTS) 

from tHBEC. To study the potential involvement of the proteases in causing alterations in 

tHBEC integrity, the co-culture supernatants harvested previously, were applied onto fresh 

tHBEC monolayers and the TEER measured. To determine the potential role of candidate 

proteases detected in the co-culture supernatants (chapter 3), specific inhibitors were used in 

this study. GM6001, a synthetic potent inhibitor for MMP while the ADAMTS and MMP-2 

activities were inhibited using recombinant human TIMP-3 (rhTIMP-3). Previous studies 

demonstrated that 25 µM, GM6001 was able to inhibit the loss of endothelial cells tight 

junction proteins caused by MMP (Verma et al., 2010a).  Similarly, rhTIMP-3 at 0.9 ng/ml 

efficiently inhibited ADAMTS activity, especially ADAMTS-4 (Wayne et al., 2007).  

Therefore, these concentrations were used in all the inhibition studies in this thesis. 
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4.2 Materials and methods 

4.2.1 The electrical cell-substrate impedance sensing (ECIS™) equipment setting 

The ECIS™ Zθ equipment was loaned from Applied BioPhysics, USA. The equipment set 

consists of a computer, a station controller and a station (figure 4-2). The computer was 

installed with the proprietary software for data acquisition and manipulation. The software 

used was from version 1.2.141.O PC. The computer is linked to the station controller and 

both of these components are located outside, but adjacent to the incubator. The station, 

which can hold a maximum of 2 arrays was placed inside the cell incubator and connected 

to the station controller by a cable through the door opening. Due to the thickness of the 

cable used, the incubator glass door’s needed additional support to maintain the CO2 and 

temperature inside the incubator. For noise reduction and statistical relevance of the 

transendothelial electrical resistance (TEER), 8 well arrays containing 40 electrodes in each 

well was used (8W10E+, Applied BioPhysics) (figure 4-3). Once the equipment was set up, 

it was calibrated using the test array as per manufacturer’s instructions. The unit of the 

measured TEER is ohm (Ω). 
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Figure 4-2: The components of the ECIS™ Zθ equipment.  

The computer and the station controller are placed adjacent to the CO2 incubator, while the 

station and the array are placed inside the CO2 incubator. The image was taken from 

http://www.biophysics.com/products-ecisz0.php (Last accessed on 03 June 2014) 

 

 

Figure 4-3: The appearance of the 8W10E+.  

The small round image shows the arrangement of the electrodes on the gold plated array 

surface. The image was taken from http://www.biophysics.com/cultureware.php (Last 

accessed on 03 June 2014) 
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software 

ECIS™ Zθ station controller 

16W station 

8W10E+ array 
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4.2.2 Seeding of tHBEC on the ECIS array. 

First, the array was coated with 1% (v/v) gelatine prepared in sterile water and incubated for 

a minimum of 20 minutes. After that, the trypsin treated tHBEC were seeded at the density 

of 40 000 cell/ 400 µl of growth medium in each well of the 8 well array. The cells were 

maintained in growth medium for 24 hours. When a confluent monolayer was formed, the 

medium was replaced with 400 µl Q5% FBS-medium per well and the culture was maintained 

for another 20 hours. The timeline of the experiment is summarised in table 4-1. 

 

Table 4-1: The typical timeline in the tHBEC maintenance for the ECIS experiment 

Day 1 2 3 4 

Morning Seed cells   Change the 

Q5% FBS-

medium. Start 

the ECIS for 4 

hours 

stabilisation 

Stop the ECIS 

measurement 

after 20 hours 

Afternoon Change the 

growth 

medium after 2 

hours 

Replace 

medium with 

Q5% FBS-

medium  

Add co-culture 

supernatant and 

treatments 

 

 

 

4.2.3 The measurement of HBEC monolayer TEER in response to the co-culture 

supernatant and selected protease inhibitors. 

Before starting the TEER measurement, the medium in each well was replaced with 400 µl 

of pre-warmed Q5%FBS-medium. Two 8 well arrays were used for each experiment. The 

arrays were carefully reconnected to the station unit in the incubator and the connectivity 
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checked using the ECIS™ software. The station controller was set to record the time course 

measurement at 8 second intervals in the 16 wells, at 4000 Hz. To reduce the spike of 

unstable current following the medium change, the array was allowed to stabilise for 4 hours 

before the co-culture supernatant was added to the HBEC.  

 

 After the 4 hour stabilisation period, with the arrays still connected to the station, 80 

µl of medium was removed from each well. This was carefully replaced with 40 µl of the 

pre-warmed co-culture supernatant and 40 µl of protease inhibitor respectively to achieve a 

1:10 dilution. In the control wells, 40 µl of the inhibitor diluent control was added instead of 

the inhibitor. The inhibitor diluent controls were prepared as in table 4-2. The GM6001 was 

prepared in DMSO and TIMP-3 was prepared in dH2O, thus the same dilution of DMSO or 

dH2O in Q5% FBS-medium was used as the respective treatment control. A typical layout of 

the array for this experiment is shown in figure 4-4. Finally, the cells were incubated for 20 

hours at 37°C, with 5% CO2.  

 

Table 4-2: The summary of concentration of the inhibitors and its diluent. 

Inhibitor/ Diluent 

control 

Dilution for 

experiment 

Volume 

added (µl) 

Final concentration 

(In each well) 

GM6001 (10 mM) 250 nM 40 25 nM 

DMSO  

(control for GM6001) 

Equivalent to 

GM6001 dilution 

40 Equivalent to 

GM6001 dilution 

rhTIMP-3 (100 µg/ml) 0.4 nM (9 ng/ml) 40 0.04 nM (0.9 ng/ml) 

dH2O   

(control for rhTIMP-3) 

Equivalent to 

rhTIMP-3 dilution 

40 Equivalent to 

rhTIMP-3 dilution 
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Figure 4-4: The typical layout of 8 well ECIS ™ array. 

 The wells are numbered from top to bottom. The top of the array is where the gold plated 

connection terminal is located. The correct positioning of array is crucial for the accurate 

reading of the TEER. 

 

 

  

+ inhibitor - inhibitor 

Connection terminal 

Control co-culture 

supernatant 

uRBC-HBEC co-

culture supernatant 

ITG-HBEC co-

culture supernatant 

ITG-HBEC co-

culture supernatant 
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4.2.4 Acquiring the ECIS data 

The TEER value during the time interval measurement was recorded using the ECIS™ 

software provided. The data was then exported to the Microsoft ® Excel spreadsheet for 

further calculation. 

 

4.2.5 The calculation of TEER change 

The raw data exported from ECIS™ software was calculated to determine the relative 

change in TEER from the treatment compared to control. First, the first five time point values 

from each well were averaged to give the baseline value. Then, the differences in TEER 

from the baseline were calculated by subtracting the baseline value from the TEER values 

of each time point. Finally, this TEER value was normalised to the value for the control at 

each time point.  
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4.3 Results  

4.3.1 The optimal TEER of the confluent tHBEC. 

In this study, the TEER of the tHBEC was measured and recorded in real-time by using the 

ECIS™, from two hours after seeding the cells until a confluent monolayer was formed as 

mentioned in section 4.4.1. The TEER measured from 16 wells of 2 different array were 

averaged and plotted against time in hour as shown in figure 4-5. The arrays were viewed 

by light microscopy through the transparent part of the array in each well prior to connecting 

the arrays to the ECIS station. The starting TEER was 310 Ω, which was recorded in the first 

TEER measurement, 24 hours after seeding. The TEER gradually increased to an average 

resistance of 553Ω after 23hours and the cells were more than 85% confluent at this time. 

The array was then disconnected from the station and the tHBEC growth medium was 

replaced with Q5% FBS-medium. The TEER then rapidly increased during the following 12 

hours after the addition of Q5% FBS-medium, and started to plateau after that. The maximum 

TEER recorded by the confluent tHBEC was 1231Ω, which was achieved 48 hours after the 

cells were plated.  
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Figure 4-5: TEER of tHBEC. 

The graph shows the increase in the transendothelial electrical resistance of tHBEC monolayer in 48 hours after inoculation. The graph 

represents the average of TEER measured from 16 wells of two different array. The error bars represent ± 1 S.E.M. 
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4.3.2 Alterations in tHBEC transendothelial electrical resistance in response to the 

co-culture supernatants. 

 

The alteration in transendothelial electrical resistance (TEER) of the resting tHBEC 

monolayer in response to the co-culture supernatants was measured over 20 hours. These 

experiements were only performed when the TEER of the tHBEC monolayer reached 

average of 1000 Ω or above. To investigate the role of GM6001 sensitive proteases, the co-

culture supernatants were assessed by measuring TEER in the absence and presence 25 nM 

GM6001. 

 

The mean normalised TEER from 6 different experiments using supernatants from 6 

different co-culture experiment was plotted (figure 4-6). In general, the TEER reading during 

the first 4 hours gives huge variation between experiments. These TEER spikes were a result 

of the medium change and the addition of treatment. This shows that TEER measurement 

using ECIS is sensitive to the disturbances on its array. TEER value from the tHBEC treated 

with control co-culture supernatant was used as a baseline control. 

 

PRBC-tHBEC co-culture supernatant was found to cause reduction in TEER 

compared to control co-culture supernatant after 3 hours of treatment. The TEER then 

steadily decreased and was lower than the TEER value from tHBEC treated with uRBC-

tHBEC co-culture supernatant after 8 hours of treatment. After 20 hours of treatment, the 

TEER in response to PRBC-tHBEC co-culture supernatant was 2 fold lower than that with 

uRBC-tHBEC co-culture supernatant (P ≤ 0.005, n=6). Treatment with uRBC-tHBEC co-

culture supernatant only caused a slight reduction in TEER, which was lower than control 
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co-culture supernatant treatment throughout the ECIS experiments, however, there was no 

statistical difference between these two treatments as tested by 2 way ANOVA. 

 

In adjacent wells, the experiment was with the addition of protease inhibitor GM6001 

(dashed lines, Figure 4-6). Interestingly, the steady reduction in the TEER caused by the 

PRBC-tHBEC co-culture supernatant, was inhibited in the tHBEC treated with the same co-

culture supernatant in the presence of GM6001. This inhibition was not significant from 0 

hour to 12 hour (P > 0.05, n=6), however became more significant after 13 hour with the 

maximum of 2-fold inhibition at 18 to 20 hours (P ≤ 0.001, paired t-test at the selected time 

point, n=6). The addition of GM6001 however, did not have any significant effect in the 

small TEER changes in response to by uRBC-tHBEC co-culture supernatant. For clarity, 

TEER data for the tHBEC treated with PRBC-tHBEC co-culture supernatant in the presence 

and absence of GM6001, was extracted and presented in figure 4-7. 

Similarly, inhibition studies were performed using TIMP-3.  TIMP-3 did not inhibit 

the effect of the PRBC-tHBEC co-culture supernatant.  The data from these studies was 

difficult to interpret conclusively since, the distilled water, which was the diluent for the 

TIMP-3 and was added as a control to the wells without the inhibitor in these studies, 

appeared to interfere with the effect of the co-culture supernatants.  Both the URBC-tHBEC 

co-culture supernatant and the PRBC-tHBEC co-culture supernatant caused an increase in 

TEER (Fig 4-8).  For clarity, TEER data for the tHBEC treated with URBC-tHBEC co-

culture supernatant and PRBC-tHBEC co-culture supernatant, was extracted and presented 

in Fig 4-9.  These observations were contrary to previous experiments, where PRBC-tHBEC 

co-culture supernatant produced a significant reduction in TEER in studies where the 

supernatant was used with DMSO as in the GM6001 studies (Fig 4-6 & Fig 4-7) or without 

DMSO in preliminary experiments (data not shown).  However, it was interesting to note, 
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that there was a smaller increase in TEER with PRBC-tHBEC co-culture supernatant than 

with URBC-tHBEC co-culture supernatant (Fig 4-9).  It is possible that the disparate effect 

of the PRBC-tHBEC co-culture supernatant, compared to the other experiments is related to 

the addition of distilled water.   
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Figure 4-6: The line graph shows the alteration in tHBEC monolayer TEER treated with co-culture supernatants in the presence and absence of 

GM6001 over 20 hours. The error bars represent ± 1 S.E.M from 6 separate experiments. 
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Figure 4-7: TEER data for the tHBEC treated with PRBC-tHBEC co-culture supernatant in the presence and absence of GM6001 (extracted 

from figure 4-6 for clarity). The error bars represent ± 1 S.E.M from 6 experiments. 
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Figure 4-8: The line graph shows the alteration in tHBEC monolayer TEER treated with co-culture supernatants in the presence and absence of 

rhTIMP-3 over 20 hours. The error bars represent ± 1 S.E.M from 4 separate experiments. 
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Figure 4-9: The graph shows the alteration in tHBEC monolayer TEER treated with uRBC-tHBEC co-culture supernatants and PRBC-tHBEC 

co-culture supernatants with the rhTIMP-3 diluent, dH2O over 20 hours (extracted from figure 4-8 for clarity). The error bars represent ± 1 

S.E.M from 4 separate experiments. 
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4.4 Discussion 

In this chapter, it was demonstrated that the tHBEC could achieve a high TEER that suits an 

in vitro model of the blood-brain barrier. The tHBEC at passage between 19 and 28 was able 

to form a barrier of high integrity at 1000 to 1300 Ω after 48 hours of seeding, which was 

continuously measured using ECIS. This value is comparable to the primary brain 

endothelial cells monolayer (1500 Ω; (Tripathi et al., 2007)), and other immortalised brain 

endothelial cells used as an in vitro BBB model such as HBEC-5i (Wassmer et al., 2006), 

hCMEC/D3 (Weksler et al., 2013)  and HBMEC-3 (Chaitanya et al., 2011). 

 

The measurement of TEER using ECIS™ is sensitive and convenient as it can 

continuously measure the changes in endothelial cell monolayer TEER without the need to 

remove the cells set up from the incubator. This allows a stable endothelial cell growth to be 

maintained and reduces disturbances in CO2 supply and the temperature compared to the 

measurement of TEER using the EndOhm-EVOM system. 

 

By using the ECIS and tHBEC monolayer as an in-vitro BBB model, the data 

demonstrate that the PRBC-tHBEC co-culture supernatant at a dilution of 1: 10 has the 

ability to cause a 2- fold decrease in monolayer electrical resistance compared to the uRBC-

tHBEC co-culture supernatant. The loss in the tHBEC electrical resistance by the PRBC-

tHBEC co-culture supernatant can be seen clearly within 4 hours of treatment with the co-

culture supernatant. 

 

This shows that the endothelial monolayer integrity can not only be reduced directly 

by PRBC (Tripathi et al., 2007), or PRBC in the presence of platelets (Wassmer et al., 2006), 

but also indirectly by soluble factors produced during interaction between tHBEC and 
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PRBC. Interestingly, the ability of PRBC-tHBEC co-culture supernatant to reduce the TEER 

of endothelial cells monolayer is inhibited by the addition of 25 nM GM6001. GM6001 is a 

potent inhibitor of MMP and can inhibit different MMP at different concentrations.  

 

The effect of rhTIMP-3 on the reduction of tHBEC monolayer TEER was also tested, 

however it is not conclusive (figure 4-8). In contrast to the pattern seen in figure 4-6, the 

addition of rhTIMP-3 caused a slight increase in TEER of tHBEC monolayer treated with 

uRBC-tHBEC co-culture supernatant and PRBC-tHBEC co-culture supernatant compared 

to control. Surprisingly, the average TEER of tHBEC monolayer treated with uRBC-tHBEC 

co-culture supernatant is slightly higher than the treatment with PRBC-tHBEC co-culture 

supernatant. However, there are no significant difference in TEER between the presence and 

absence of rhTIMP-3 on the same co-culture supernatant treatments. This effect however, 

varies between experiments, which can be seen by the bigger size of error bars. 

 

In conclusion, the tHBEC forms a tight barrier with a high electrical resistance, 

suitable for monitoring changes in TEER. The integrity of tHBEC monolayer is 

compromised by the addition of PRBC-tHBEC co-culture supernatant, represented by a 

significant reduction in electrical resistance. This can be inhibited by the addition of 25 nM 

GM6001, thus protecting the barrier integrity.  These studies suggest the involvement of 

proteases in the MMP family in mediating loss of BBB integrity seen in CM brain tissue. 
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CHAPTER FIVE: ALTERATION IN ENDOTHELIAL CELL 

MONOLAYER PERMEABILITY IN RESPONSE TO THE 

CO-CULTURE SUPERNATANTS.  
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5 Chapter 5: The alterations in endothelial cell monolayer permeability 

in response to the co-culture supernatants. 

 

5.1 Introduction 

BBB leakage in cerebral malaria is still not fully understood. Many hypotheses link the BBB 

damage in cerebral malaria with the activation of endothelial cells either directly by PRBC 

or indirectly by the activated platelet and up-regulation of pro-inflammatory cytokines. BBB 

damage not only occurs in CM, but also in other diseases such as multiple sclerosis and 

Alzheimer’s disease (AD) (Lou et al., 1997, Minagar et al., 2002). In these non-infectious 

neuropathologies, the damage is believed to be caused by dysregulation of endothelial 

function due to over-activation of astrocytes and macrophages (For review see Ballabh et al. 

(2004)). This damage can increase the permeability of BBB, which can in turn have a 

negative impact on the normal function of the human brain. 

 

In chapter 3, it was demonstrated that PRBC have the ability to induce endothelial 

cell activation and alter the expression of a member of pro-inflammatory cytokines and 

proteases that may mediates BBB damage. The soluble factors produced as a result of 

interaction between endothelial cells and PRBC were shown to be able to induce the 

reduction in the tHBEC monolayer integrity measured via the trans-endothelial electrical 

resistance (chapter 4). Thus, it is important to determine if the loss in the tHBEC integrity 

as suggested by the loss in electrical resistance is sufficient to cause leakage of molecules 

through the intercellular junctions, between endothelial cells, from the vessel lumen into the 

brain parenchyma as seen in CM. 
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There are several different methods that can be used to determine the permeability 

of an endothelial cells monolayer. One of the most widely used techniques is the culture of 

endothelial cells in a cell culture insert (transwell) which forms two different compartments, 

apical and basolateral. The permeability is then assessed by measuring the migration of 

molecules from the apical to the basolateral chamber. The solute must be water-soluble, 

cannot be actively transported by endothelial cells and must not be toxic to the cells. 

Examples include albumin or dextran labelled with a fluorescent tracer such as fluorescein 

isothiocyanate (FITC) or tetramethyl rhodamine iso-thiocyanate (TRITC) (Yuan and Rigor, 

2010).   

 

In this chapter, the permeability of the tHBEC cultured in a cell culture insert 

following treatment with co-culture supernatant was investigated using FITC labelled 

dextran. As in chapter 4, the inhibitory effect of GM6001 and rhTIMP-3 on the tHBEC 

permeability was also determined. 
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5.2 Material and methods 

5.2.1 Preparations of cell culture insert and cells plating. 

The cell culture inserts (Millipore) were arranged in a 24 well plate as in figure 5-1 by using 

sterile pointed tip forceps. The culturing surface (0.4 µm pore polyethylene terephthalate 

membrane) of the inserts was coated with 100 µl of 1% (v/v) gelatine and incubated at 37°C 

for the minimum of 20 minutes. After that, confluent tHBEC from a 25 cm2 culture flask 

was trypsinised, counted and diluted to give a final concentration of 1 x 105 cells/ml as in 

section 2.7.4 and 2.7.5. Excess gelatine were removed from the insert (apical) by aspiration 

and replaced with 2 x 104 cells in 200 µl of tHBEC growth medium in each insert. The 

bottom chamber (basolateral) was filled with 1 300 µl of growth medium and the set up was 

incubated for a minimum of 2 hours to allow the cells to adhere on the culturing surface. The 

volume of medium used in apical and basolateral part of the culture was recommended by 

the manufacturer (Figure 5-2), to avoid non-specific diffusion due to change in hydrostatic 

pressure. 
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Figure 5-1: The figure shows the typical arrangement of insert in a 24 well plate. 

 The first and third row of well were used for culturing and assay while the second and 

fourth row were used to hold the insert during medium change and assay sampling. 

 

 

 

 

Figure 5-2: The diagram shows the side view of the hanging cell culture insert set up. 

 The culture medium in apical was level to the culture medium in the basolateral to 

maintain its hydrostatic pressure.  

 

 

  

24 well plate 
Cell culture insert 

tHBEC 

Cell culture insert 

24 well plate 

Apical 

Basolateral 
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5.2.2 The maintenance of tHBEC in the hanging culture insert. 

After the cells were plated in the insert, the cells were maintained for 5 days before the assay 

was performed. The medium was changed after two hours of cell plating, then on day 3, day 

5 and day 6 as summarised in table 5-1. To change the medium, the culture insert was firstly 

transferred into the adjacent empty well. Then, the medium in the basolateral chamber was 

aspirated and replaced with 1 300 µl of either tHBEC growth medium or Q5% FBS-medium, 

depending on the stage of the culture (see table 5-1). After that, the medium in the apical 

chamber were carefully aspirated and replaced with 200 µl of the same medium. This 

sequence of medium change is important to preserve the positive pressure in the apical 

chamber. Finally, the insert was moved back to the culturing well and the set up was returned 

to the CO2 incubator. 

 

Table 5-1: The summary of the typical timeline in tHBEC maintenance for the FITC-dextran 

permeability assay. 

Day 1 3 5 6 

Morning Seed cells   Change to the 

Q5% FBS-

medium  2 

hours before 

treatments 

Afternoon Change the 

growth medium 

after 2 hours 

Change the 

growth medium 

after 48 hours 

Change to the 

Q5% FBS-

medium 
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5.2.3 The permeability assay. 

The permeability of the tHBEC monolayer as in vitro BBB model in response to the co-

culture supernatant was assessed by measuring the accumulation of fluoresceinated dextran 

(Fluorescein isothiocyanate-conjugated dextran, referred to as FITC-dextran in this thesis) 

in the basolateral chamber. On day 6, the cells were stabilised in the fresh Q5% FBS-medium 

for 2 hours before the treatments were performed. The co-culture supernatants were added 

in 1:10 dilution to the medium in the apical chamber. 24 µl of the Q5% FBS-medium from the 

apical chamber was removed and replaced with 20 µl of the co-culture supernatant to achieve 

a 1:10 dilution and 4 µl of 20 mg/ml FITC-dextran to achieve a final concentration of 0.4 

mg/ml. For the permeability assay with the addition of protease inhibitor GM6001 and 

rhTIMP-3, additional 20 µl of the Q5% FBS-medium from the apical chamber was removed 

and replaced with 20 µl of inhibitor. The final concentration of inhibitors used for this assay 

was 25 nM for GM6001 and 0.04 nM for rhTIMP-3 as in transendothelial electrical 

resistance experiment (chapter 4) (see table 4-2). As soon as the treatments were added, the 

insert was carefully removed to the adjacent well and 50 µl of the medium from basolateral 

chamber was removed and transferred into a flat bottom black 96 well plate. This was taken 

as the basal time zero sample for the experiment. To compensate for the loss of volume in 

the bottom chamber, 50 µl of pre-warmed Q5% FBS-medium was added into the basolateral 

chamber. Finally, the insert was carefully placed back into the culturing well and the set up 

was returned to the CO2 incubator. The sampling was repeated every hour for 6 hours. 
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Table 5-2: The summary of concentration of the inhibitors and its diluent. 

Inhibitor/ Diluent 

control 

Dilution for 

experiment 

Volume added (µl) Final concentration 

(In each well) 

GM6001 (10 mM) 250 nM 20 25 nM 

DMSO (control for 

GM6001) 

Equivalent to 

GM6001 dilution 

20 Equivalent to 

GM6001 dilution 

rhTIMP-3 (100 

µg/ml) 

0.4 nM (9 ng/ml) 20 0.04 nM (0.9 ng/ml) 

dH2O  (control for 

rhTIMP-3) 

Equivalent to 

rhTIMP-3 dilution 

20 Equivalent to 

rhTIMP-3 dilution 

 

 

5.2.4 Measuring the fluorescence intensity and associate calculation. 

The fluorescence intensity of the collected samples from the basolateral chamber in 

permeability assay was quantitatively measured using a fluorescence reader (Glomax multi+ 

detection system, Promega). First, the fluorescence reader was set to measure the 

fluorescence from the FITC-dextran using a filter to 490 nm wavelength for excitation and 

between 510 nm and 570 nm for emission. To get normalised fluorescence change against 

time, the raw data was firstly normalised to the zero time point fluorescence for each 

respective treatment, which then normalised to the fluorescence value of the respective 

control. The normalised data was plotted against time.  

 

5.2.5 Measurement of the tHBEC electrical resistance using EVOM reader. 

The TEER of tHBEC cultured in the hanging culture insert system was measured to 

determine the optimal TEER, reflecting the confluent state of the tHBEC. First, the cells 

were cultured in the hanging cell culture insert as mentioned above (section 5.2.1). After 24 

hours in culture, the first TEER measurement was taken using the EVOM and EndOhm-6 
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instrument. To measure the TEER, the culture insert containing the confluent tHBEC 

monolayer was placed inside the chamber of the EndOhm cup filled with 1.5 ml tHBEC 

growth medium. Then, the EndOhm cap containing top electrode was placed onto the insert 

and the electrical resistance was calculated by the EVOM voltohmmeter. The unit of the 

resistance given by this method is Ω/cm2.  

 

 

Figure 5-3: The EVOM voltohmeter and the EndOhm-6 measurement chamber are 

demonstrated in picture.  
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5.3 Results. 

5.3.1 The integrity and permeability of the tHBEC monolayer in cell culture insert 

system 

The culture surface of the cell culture insert used in this study was translucent and the 

confluency of the tHBEC cultured in it cannot be seen by light microscopy. Thus, TEER 

measurement using EVOM voltohmeter was used to determine the optimal electrical 

resistance of the tHBEC, which represents the integrity of a resting tHBEC monolayer. 

Electrical resistance from nine culture inserts from two different experiments was measured 

on day 2, 3, 4, 5 and 6 of culture (Figure 5-4). Electrical resistance of the culture insert only 

was measured as control and found to be consistent at 81 Ω cm2 over the 6 days of the 

experiment. The lowest electrical resistance of the tHBEC monolayer was recorded in day 2 

of culture with only 4.2 Ω cm2 higher than the insert only control. The electrical resistance 

however gradually increased over time and reached a maximum resistance of 124 Ω cm2 on 

day 5 of culture. Slight reduction in tHBEC monolayer electrical resistance was measured 

on day 6 (110 Ω cm2). This result shows that the tHBEC cultured in the cell culture insert 

have the highest integrity after 5 days of culture.  
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Figure 5-4: tHBEC TEER over 6 days. 

The line chart shows the electrical resistance of the tHBEC in the culture insert over time 

for six days. Empty insert coated with 1% (v/v) gelatine was used as negative control. 

 

 

To support the finding from EVOM experiment, the permeability of the tHBEC 

monolayer in hanging cell culture insert system was assessed by using FITC labelled dextran 

(FITC-dextran) permeability assay. The fluorescence intensity of the medium in basolateral 

chamber was measured from day 2 until day 5 of culture. The assay was done in duplicate 

wells for each culture day and the average fluorescence intensity was measured (figure 5-5). 

In this assay, the fluorescence intensity of the media in basolateral chamber decreases with 

time suggesting an increase in barrier function of the tHBEC monolayer. Although the 

tHBEC did not form a tight barrier on day two, the monolayer integrity became more 

restricted after that. The movement of 40 kDa FITC-dextran across the tHBEC barrier in day 
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five was reduced up to three fold compared to day two of culture. These assays were 

important to determine when optimal barrier integrity is achieved. Both experiments suggest 

that the optimal barrier function of tHBEC monolayer in the cell culture insert system were 

formed on day four to day five of culture. Thus, all subsequent experiments were done five 

days after seeding into the cell culture insert. 
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Figure 5-5: tHBEC permeability to FITC-dextran. 

The reduction in the migration of the FITC-dextran from apical to basolateral chamber on 

day two to day five of tHBEC culture using cell culture insert. The bar chart represents the 

average from 2 replicate of experiment using 40 kDa FITC-dextran. (Error bars are ± 1 

S.E.M) 
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5.3.2 Co-culture supernatant alters the permeability of the tHBEC monolayer 

The co-culture supernatant together with 40 kDa FITC-dextran was added into the apical 

chamber and the fluorescence intensity of the medium in the basolateral chamber was 

measured every 1 hour for 6 hours. Collected supernatants from 10 separate co-culture 

experiments were analysed (Figure 5-6). Interestingly, the tHBEC monolayer barrier 

function was significantly disrupted after 3 hours of treatment with PRBC-tHBEC co-culture 

supernatant compared to control (P < 0.001, n=10) and uRBC-tHBEC co-culture supernatant 

(P < 0.001, n= 10). uRBC-tHBEC co-culture supernatant was seen to slightly increase the 

permeability of the tHBEC monolayer compared to control however the changes were not 

statistically significant (P > 0.05, n= 10). The increase in the tHBEC monolayer permeability 

then slowly reached a plateau after 5 hours. 
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Figure 5-6: Effect of co-culture on tHBEC permeability of 40 kDa FITC-dextran. 

The line graph shows the changes in the tHBEC permeability when treated with co-culture supernatant. 40 kDa FITC-dextran was used and the 

changes was monitored for over 6 hours (n = 10, Error bars is ±1 SEM, *** is P ≤ 0.001).
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The changes in tHBEC monolayer permeability in response to the co-culture 

supernatant were also assayed using different sizes of FITC-dextran, 10 kDa and 70 kDa 

(Figure 5-7 and Figure 5-8).  

 

When using 10 kDa FITC-dextran, the treatment with PRBC-tHBEC co-culture 

supernatant were caused leakage within one hour but became saturated after that. The 

treatment using uRBC-tHBEC co-culture supernatant also showed the same kinetics, but at 

a lower magnitude.  

 

When using 70 kDa FITC-dextran (Figure 5-8) shows that it is less sensitive than 10 

kDa and 40 kDa FITC-dextran. The leakage caused by PRBC-tHBEC co-culture supernatant 

could only be seen after 6 hours of treatment.  

 

Since the 10 kDa FITC-dextran easily reached saturation state as early as two hours 

after the treatment, and the changes in the tHBEC permeability upon the same treatment 

could not be seen when 70 kDa FITC-dextran was used, all subsequent experiments were 

performed using the 40 kDa FITC-dextran. 
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Figure 5-7:  Effect of co-culture on tHBEC permeability of 10 kDa FITC-dextran 

The changes in the permeability of tHBEC monolayer treated with co-culture supernatant, detected using 10 kDa FITC-dextran over the 6 hours. 

Continuous and dashed line indicates the data are from two separate experiments.
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Figure 5-8: Effect of co-culture on tHBEC permeability of 70 kDa FITC-dextran  

The changes in tHBEC monolayer permeability monitored using 70 kDa FITC-dextran for over 6 hours.  Continuous and dashed line indicates 

the data are from two separate experiments. 
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5.3.3 The reduction in the tHBEC monolayer permeabily caused by co-culture 

supernatant can be inhibited by protease inhibitor. 

 

In the absence of protease inhibitors, PRBC-tHBEC co-culture supernatant was found to 

steadily increase the 40 kDa FITC-dextran that was statistically significant after two hours 

of treatment and reached a maximum after five hours (figure 5-6). In the same experiment, 

uRBC-tHBEC co-culture supernatant only produced a slight negligible change in the tHBEC 

monolayer permeability compared to control co-culture supernatant. As in the ECIS 

experiments, potential inhibitory effect of GM6001 was also investigated in the FITC-

dextran permeability assay. 

 

 In this assay, PRBC-tHBEC co-culture supernatant consistently increased the tHBEC 

monolayer permeability over time compared to control co-culture supernatant, and this was 

statistically significant compared to uRBC-tHBEC co-culture supernatant (P ≤ 0.01 at 3 hour 

and P ≤ 0.001 after that) (continuous line in figure 5-9). As before, uRBC-tHBEC co-culture 

supernatant with DMSO caused slight leakage to the tHBEC monolayer compared to control 

co-culture supernatant, although this was not statistically significant (P > 0.05, 2 way 

ANOVA).  

 

 For clarity, the effect of PRBC-tHBEC co-culture supernatant in the absence and 

presence of GM6001 is also shown in figure 5-10, derived from data in figure 5-9. 

Interestingly, the increase in the tHBEC monolayer permeability caused by PRBC-tHBEC 

co-culture supernatant was significantly reduced at 4 to 6 hours (P ≤ 0.05) when GM6001 

was present. The maximum reduction was at 6 hour with up to 2-fold reduction in 

permeability compared to the DMSO control of the same supernatant. The uRBC-tHBEC 
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co-culture supernatant in the presence of GM6001 produced a small reduction in the 

permeability of monolayer, compared to the DMSO control of the same supernatant, but this 

was not statistically significant (P > 0.05). 
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Figure 5-9: The alterations in the tHBEC monolayer permeability by co-culture supernatant with the addition of DMSO, as control of GM6001. 
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Figure 5-10: Permeability of tHBEC caused by PRBC-tHBEC co-culture supernatant. 

The comparison of the reduction of tHBEC monolayer permeability by PRBC-tHBEC co-culture supernatant in the absence and presence of 

GM6001. The data was extracted from figure 5-9 for clarity (n = 10, ** is P < 0.01 and *** for P < 0.001). 
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The PRBC-tHBEC co-culture supernatant with dH2O control increased the permeability of 

tHBEC monolayer to FITC-dextran within one hour and gradually increased to reach a 

maximum permeability after 6 hours (Figure 5-11). uRBC-tHBEC co-culture supernatant 

did not cause significant changes in tHBEC monolayer permeability compared to control co-

culture supernatant with dH2O treatment.  

 

Similar to the GM6001, the addition of rhTIMP-3 also showed a similar inhibitory 

effect on the increased tHBEC permeability caused by PRBC-tHBEC co-culture supernatant 

(dashed line in figure 5-12). The inhibitory effect by rhTIMP-3 was high highly significant 

(P ≤ 0.001, n= 10) after 3 hours compared to the tHBEC treated with PRBC-tHBEC co-

culture supernatant with dH2O control. The addition of rhTIMP-3 however, did not cause 

any changes to the permeability of tHBEC monolayer treated with uRBC-tHBEC co-culture 

supernatant compared to control co-culture supernatant treatment.  
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Figure 5-11: The alterations in the tHBEC monolayer permeability by co-culture supernatant in the absence and presence of rhTIMP-3. The 

graph was the mean normalised fluorescence intensity from 10 separate experiment, using supernatant from 10 separate co-culture experiments. 
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Figure 5-12: Permeability of tHBEC caused by PRBC-tHBEC co-culture supernatant in the absence and presence of TIMP-3. 

The line chart summarised the changes in the tHBEC monolayer permeability treated with PRBC-tHBEC co-culture supernatant, in the presence 

and absence of rhTIMP-3. The difference between treatments was tested using one-way ANOVA, * is P ≤0.05 and *** for P ≤ 0.001. 
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5.4 Discussion 

In chapter 4, it was demonstrated that the tHBEC monolayer used has comparable electrical 

resistance to other brain endothelial cells monolayer as in-vitro model of BBB. In this 

chapter, by using a different methodology, the tHBEC monolayer electrical resistance was 

measured, to determine time required to achieve maximal electrical resistance in the cell 

culture insert set up. It was important to establish this prior to starting the permeability assay. 

This is because the translucent properties of the PET membrane used in the culture insert 

made it impossible to observe the cells under the light microscopy and determine when a 

confluent monolayer was achieved. Maximal electrical resistance is necessary at the start of 

the experiment to allow reliable assessment of changes in permeability of the tHBEC 

monolayer using the FITC-dextran permeability assay. The TEER of tHBEC cultured in the 

cell culture insert is also directly comparable to the system used by Callahan et al. (2004). 

The permeability of tHBEC monolayer using 40 kDa-FITC dextran on day 2, 3, 4 and 5 was 

also investigated. Both methodologies show that in the cell culture insert, the tHBEC form 

a highly restricted barrier within 4 to 5 days of culture, and the tHBEC monolayer restricted 

the movement of 40 kDa-FITC-dextran. This result also reflects the association between the 

TEER and tHBEC monolayer permeability, where the higher the TEER, the more restricted 

is the tHBEC permeability (Figure 5-13).  
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Figure 5-13: The association between tHBEC monolayer TEER (EVOM) (line) and 

tHBEC permeability to 40 kDa FITC-dextran (bar).  

 

The measurement of endothelial cells permeability using FITC-dextran at continuous 

multi time-point is technically difficult to do. The first attempt to measure the changes in 

FITC-dextran migration from luminal to basolateral chamber at high time resolution, by 

sampling every 15 minutes was not successful. The increase in the sampling interval to every 

30 minutes was also unsuccessful. At these sampling intervals, the migration of FITC-

dextran is not stable and increases the noise of the background with huge variation between 

sampling. This might be due to the effect of frequent movement of the cell culture insert set 

up out of the CO2 incubator for sampling. This can increase the disturbances to the cell 

culture due to fluctuations in (1) pH caused by the lack of CO2 supply, (2) temperature for 

endothelial cell growth, and (3) hydrostatic pressure when lifting the culture insert out of the 

well for sampling. Further optimisation found that stable migration of FITC-dextran with 
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low background noise could be achieved by reducing the sampling time interval to once 

every hour. This optimised method was used in all permeability experiments in this chapter.  

 

 These studies and the ECIS studies (chapter 4) demonstrate that the tHBEC 

monolayer integrity and restricted permeability can be reduced by the soluble factors 

produced by tHBEC in response to the interaction with PRBC, but not with uRBC. This 

might suggest that the infiltration of serum fibrinogen across the non-sequestered vessel as 

seen in the post mortem studies (Brown et al., 2000, Brown et al., 2001, Dorovini-Zis et al., 

2011) was due to the damage in the BBB endothelial cells induced by the soluble factors 

derived from the endothelial cells in vessels following PRBC sequestration.   

 

 Further investigation using inhibitors for the protease candidates which were shown 

to be upregulated in the PRBC-tHBEC co-culture supernatant (chapter 3) was done using 

GM6001 and rhTIMP-3. The addition of GM6001 inhibits the reduction in tHBEC 

monolayer integrity and permeability caused by PRBC-tHBEC co-culture supernatant. The 

inhibition effects of GM6001 in both ECIS and FITC-dextran permeability assay have 

different kinetic. In the FITC-dextran permeability assay, the inhibition could be seen within 

the first hour of treatment, however delayed to 3 hours in ECIS experiment. This might be 

due to the TEER spikes, which increase the background noise of the TEER measurement. 

 

 Interestingly, the addition of rhTIMP-3 was found to inhibit further reduction in the 

restricted barrier permeability caused by PRBC-tHBEC co-culture supernatant, which 

cannot be seen in ECIS experiments. The inability of ECIS experiment to show this 

inhibition effect may be due to the sensitivity of the method to the addition of water, the 
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diluent for rhTIMP-3. As the ECIS utilise electrochemical properties of a fluid, the addition 

of water may interfere these properties. 

 

 Loss in the ability of PRBC-tHBEC co-culture supernatant to reduce the tHBEC 

monolayer integrity and restricted permeability in the presence of GM6001 and rhTIMP-3 

indicates that the damaging effect may be due to the proteases that are sensitive to GM6001 

and rhTIMP-3. GM6001 is a potent inhibitor for the majority of MMP, especially the 

gelatinases family matrix metalloproteases. TIMP-3 is an endogenous regulator for MMP 

and was also found to inhibit ADAMTS group of proteases, especially ADAMTS-1 

(Hashimoto et al., 2001). 

 

In conclusion, the PRBC-tHBEC co-culture supernatant was not only able to induce the 

loss in the tHBEC monolayer integrity (chapter 4), but also increase the permeability to the 

40 kDa FITC-dextran. The increase in permeability waspartially inhibited by GM6001 and 

rhTIMP-3 and could provide a clue to a potential inhibitor that can be used as adjunct therapy 

in cerebral malaria patient management. 
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CHAPTER SIX: ALTERATION IN HUMAN BRAIN 

ENDOTHELIAL INTERCELLULAR JUNCTION PROTEINS 

IN RESPONSE TO CO-CULTURE SUPERNATANTS. 
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6 Chapter 6: The alteration in tHBEC intercellular junction in response 

to co-culture supernatants. 

 

6.1 Introduction 

Majority of patients who died due to CM showed loss of ZO-1, occludin, claudin-5 and 

vinculin in the part of the brain with sequestered PRBC (Dorovini-Zis et al., 2011). Although 

the breakdown of BBB and loss of these junction proteins has been widely studied, the 

molecular mechanisms involved are poorly understood. 

 

Previous chapters have demonstrated the induction or upregulation of inflammatory 

mediators in PRBC-tHBEC co-culture supernatants (chapter 3). Subsequent studies showed 

that soluble elements in these co-culture supernatants could disrupt the integrity of the BBB, 

demonstrated by (1) reduction in electrical resistance (chapter 4) and (2) increase in 

permeability of monolayer to FITC-dextran (chapter 5). Additionally, these effects could be 

partially inhibited using GM6001 and rhTIMP-3. This chapter will explore the hypothesis 

that changes in intercellular junction proteins are mediated by soluble factors in the PRBC-

tHBEC co-culture supernatant. 
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6.2 Material and methods 

6.2.1 Cell based-ELISA for tHBEC ZO-1, Claudin-5, Occludin and Vinculin. 

Cell based-ELISA was used to measure the level of intercellular junction proteins of tHBEC. 

First, the cells were seeded into a 96 well culture plate as before. The cells were maintained 

as table 6-1.  

 

Table 6-1: The summary of tHBEC maintenance for tHBEC intercellular junction cell based-

ELISA. 

Culturing day 1 3 4 

Morning Seeding cells  Change medium and 

add co-culture 

supernatant 

Afternoon Change the growth 

medium after 2 

hours 

Change to 

Q5% FBS-medium 

 

 

 

On day 4, the medium was changed with fresh Q5% FBS-medium. The co-culture supernatant 

was added at a ratio of 1:10 in Q5% FBS-medium. The set up was incubated for either five 

hours or 20 hours in a cell culture incubator.  Following incubation, the cells were washed 

once with 100 µl sterile PBS. After that, the cells were fixed in 4% paraformaldehyde 

prepared in PBS at room temperature for 20 minutes. The cells were then blocked with 

blocking solution (5% serum from species that the secondary antibody was raised) in 0.3% 

Triton X-100/PBS) for 30 minutes to reduce the background from the non-specific binding 

of antibody. Next, the blocking solution was removed by rapid flipping the plate and 50 µl 

of primary antibody prepared in blocker solution was added into each well and incubated for 
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overnight at 4°C. After that, the cells were washed three times with 150 µl PBS in each well 

and blocked as before. Then, 50 µl of HRP-conjugated secondary antibody diluted in 

blocking solution was added into each well and incubated in the dark for two hours at room 

temperature. The antibodies used in this assay are summarised in table 6-2. The cells were 

then washed as previous, before proceeding to colour development (see section 2.2.5.1). 

 

Table 6-2: The summary of the blocking serum, primary andtibody and secondary antibody 

used in tHBEC intercellular junction cell based-ELISA. 

Primary antibody Secondary antibody Blocking serum 

Name Dilution Name Dilution 

Goat anti-

human ZO-1 

1:200 Rabbit anti-

Goat 

1:1000 Rabbit 

Mouse anti-

human vinculin 

1:400 Goat anti-

Mouse 

1:3000 Goat 

Rabbit anti-

human claudin-

5 

1:200 Goat anti-

Rabbit 

1:1000 Goat 

Rabbit anti-

human occludin 

1:200 Goat anti-

Rabbit 

1:1000 Goat 

 

 

6.2.2 Cell based-ELISA for ICAM-1 

In order to determine whether tHBEC were activated by inflammatory mediators released 

by endothelial cells in response to sequestration, ICAM-1 was detected and measured using 

cell based-ELISA. tHBEC in 96 well plate were treated with the co-culture supernatants for 

20 hours as described in section 6.2.1. Following the 20 hours of treatment, the medium was 
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removed by aspiration and the plate were subjected to cell-based ELISA protocol as in 

section 2.2.5.1. 

 

6.2.3 Measurement of tHBEC viability. 

In order to determine whether BBB disruption was a reflection of cell death caused by 

soluble factors in the co-culture supernatants, a viability assay was performed. The tHBEC 

were grown to confluence in a 96 well plate and treated with co-culture supernatants for 20 

hours as described in section 6.2.1. Following the 20-hour incubation, 100 µl of the medium 

were replaced with 20 µl of reagents and incubated for another 2 hour, as per manufacturer 

instruction. The change in the colour of the active reagent, MTS (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to the soluble 

formazan was measured at 490 nm using the MultiScan+ plate reader. 
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6.3 Results. 

6.3.1 Modulation of tHBEC intercellular junction proteins in response to co-culture 

supernatants. 

Changes in the expression of occludin, claudin-5, ZO-1 and vinculin in response to the co-

culture supernatants was measured at two different time points following exposure, 5 hours 

(figure 6-1) and 20 hours (figure 6-2). The treatment with PRBC-tHBEC co-culture 

supernatant for five hours caused a slight reduction of tHBEC occludin, but this was not 

statistically significant compared to control co-culture supernatant (P > 0.05) and uRBC-

tHBEC co-culture supernatant (P > 0.05) (figure 6-1A). Both claudin-5 and ZO-1 expression 

were significantly reduced following treatment with PRBC-tHBEC co-culture supernatant 

for 5 hours, compared to control co-culture supernatant or uRBC-tHBEC co-culture 

supernatant (figure 6-1B and 6-1C). In contrast, vinculin expression was significantly 

increased in response to PRBC-tHBEC co-culture supernatant for five hours compared to 

the treatment with control co-culture supernatant or uRBC-tHBEC co-culture supernatant 

(figure 6-1D). It is important to note that whilst the changes in claudin-5, ZO-1 and Vinculin 

were significant, the changes were small in magnitude. 

 

 The modulation in the level of tHBEC monolayer junction proteins (claudin-5, ZO-

1 and vinculin) in response to the 20 hours incubation with co-culture supernatant were on 

the whole opposite to that observed at 5 hours, in response to PRBC-tHBEC co-culture 

supernatants. Contrary to the data from 5 hours treatment with PRBC-tHBEC co-culture 

supernatant, incubation with the same co-culture supernatants for 20 hours caused slight 

increase to the expression of claudin-5 and ZO-1, but statistically significant compared to 

the treatment with uRBC-tHBEC co-culture supernatant (figure 6-2 B and 6-2C). Unlike the 

other intercellular junction proteins analysed, the expression of occludin was significantly 
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reduced following 20 hours treatment with PRBC-tHBEC co-culture supernatant compared 

to the treatment with control co-culture supernatant (figure 6-2A). The reduction was more 

pronounced than at the 5-hour time point. Vinculin expression was markedly reduced 

following 20 hours treatment with PRBC-tHBEC co-culture supernatant compared to the 

treatment with control co-culture supernatant of uRBC-tHBEC co-culture supernatant 

(figure 6-2D). This was contrary to the effect of the same treatment at 5-hour time point. 

 

 In conclusion, the changes in the expression of intercellular junction proteins 

occludin, claudin-5, ZO-1 and vinculin following treatment of tHBEC with PRBC-tHBEC 

co-culture supernatant was variable and dependent on the treatment period, i.e., acute short 

term vs chronic response. The effects of PRBC-tHBEC co-culture supernatant on the 

expression of these junction proteins are summarised in table 6-3. 

 

Table 6-3: The differential regulation profile of tHBEC junction protein in response to the 

PRBC-tHBEC co-culture supernatant compared to control co-culture supernatant. 

Junctional 

proteins 

Time point 

5 hours Significance to 

control 

20 hours Significance to 

control 

ZO-1 ↓ *** ↑ *** 

Occludin ↓ NS ↓ *** 

Claudin-5 ↓ *** ↑ *** 

Vinculin ↑ *** ↓ *** 
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Occludin

Control uRBC-tHBEC PRBC-tHBEC 10 ng/ml TNF-a
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Figure 6-1:  The modulation in the tHBEC junction proteins following five hours of treatments. 

The mean absorbance from cell-based ELISA for (A) occludin, (B) claudin-5, (C) ZO-1 and (D) vinculin after five hours treatment with 

supernatants from 10 separate co-culture experiments (n = 10, *** is P ≤ 0.001).  
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Figure 6-2: The modulation in the tHBEC junction proteins following twenty hours of treatments. 

The mean absorbance from cell-based ELISA for (A) occludin, (B) claudin-5, (C) ZO-1 and (D) vinculin after twenty hours treatment with 

supernatants from 10 separate co-culture experiments (n = 10, ** is P ≤ 0.01 and *** is P ≤ 0.001). 
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6.3.2 Activation of tHBEC in response to PRBC-tHBEC co-culture supernatant. 

Interestingly, ICAM-1 expression was significantly increased in the tHBEC cultured with 

PRBC-tHBEC co-culture supernatant compared to either uRBC-tHBEC co-culture 

supernatant (P ≤ 0.001), or control co-culture supernatant (P ≤ 0.001) (figure 6-3). This was 

a consistent observation in ten separate co-culture experiments. This suggests that the PRBC-

tHBEC co-culture supernatant contains soluble factors that can activate the fresh tHBEC 

monolayer. 
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Figure 6-3: tHBEC ICAM-1 in response to co-culture supernatant. 

The graph showing means absorbance from cell based-ELISA for ICAM-1 using co-

culture supernatant from 10 separate experiments. The experiment was done in duplicate. 

*** is P ≤ 0.001 compared to control and uRBC-tHBEC co-culture supernatant. 
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6.3.3 The effect of co-culture supernatant on the tHBEC viability 

There was no change in viability of tHBEC following 20 hours incubation with 1:10 dilution 

of co-culture supernatant in Q5% FBS-medium, as measured using the MTS viability assay 

(Figure 6-4). Statistical analysis using 1 way ANOVA showed no significant different 

between the treatments (P> 0.05, n = 15). This suggests that the reduction in the tHBEC 

electrical resistance (chapter 4) and increase in the tHBEC permeability to FITC-dextran 

(chapter 5) is not due to any toxic effect of the co-culture supernatants. 
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Figure 6-4:tHBEC viability in response to co-culture supernatant. 

 The graph shows the average absorbance of viability assay using co-culture supernatant 

from five separate experiment. Each supernatant was tested in duplicate. The differences 

between treatments were statistically analysed using 1 way-ANOVA, with Turkey’s post-

hoc test. 

N.S. 

N.S. 
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6.4 Discussion 

The PRBC-tHBEC co-culture supernatant was shown to cause reduction in the integrity 

(chapter 4) and increase in the permeability (chapter 5) of the tHBEC monolayer. These 

effects were hypothesized to occur as a result to the loss of tHBEC monolayer intercellular 

junction proteins in response to the soluble factors in the PRBC-tHBEC co-culture 

supernatant, as loss in the TJP are the characteristic of the post mortem brain tissue of CM 

(reviewed in chapter 1). In this chapter, the effects of the PRBC-tHBEC co-culture 

supernatant on the tHBEC monolayer intercellular junction proteins were investigated. 

 

 There are variable changes in the intercellular junction proteins expression in 

response to PRBC-tHBEC co-culture supernatant. Changes in the expression of vinculin 

were the most notable, following either short term (5 hour) or long-term exposure (20 hour) 

to PRBC-tHBEC co-culture supernatant. Treatment with PRBC-tHBEC co-culture 

supernatant for 5 hours decrease the expression of TJP (occludin, claudin-5 and ZO-1) but 

increase the expression of AJP vinculin. The expression of vinculin however, markedly 

decreased following 20 hours treatment with PRBC-tHBEC co-culuture supernatant. This 

may suggest the involvement of vinculin in an acute survival response initially when tHBEC 

are exposed to the soluble factors in PRBC-tHBEC co-culture supernatant to maintain the 

BBB integrity but being damaged after prolonged exposure to the PRBC-tHBEC co-culture 

supernatant. 

 

 Increase in the expression of claudin-5 and ZO-1 following 20 hours treatment with 

PRBC-tHBEC co-culture may represent the recovery of tHBEC. Similar observation was 

seen in the immunohistochemical analysis of the post mortem brain section from CM 

patients where the loss in BBB endothelial cell TJP cannot always be seen in the sequestered 
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vessel, suggesting the damage to the BBB are reversible (Brown et al., 1999). Additionally, 

the recovery of these TJP may also explain the partial recovery seen in the previous ECIS 

studies where the TEER increases after 20 hours of treatments with PRBC-tHBEC co-culture 

supernatant (data not shown). 

 

 In conclusion, the PRBC-tHBEC co-culture supernatant is able to activate the 

endothelial cells to increase the expression of ICAM-1 and lead to the variable changes in 

the expression of tHBEC intercellular junction proteins. The cell based ELISA assay 

provides limited information about alteration to intercellular junction proteins. This 

technique only quantifies the total amount of target intercellular junction proteins. Since the 

observed changes in intercellular junction proteins in this experiment are relatively small, it 

would be desirable to extend the study to determine the localisation of the intercellular 

junction proteins in adjacent cells of the tHBEC monolayer, using immunofluorescence 

microscopy. Previous studies in our laboratory by using immunofluorescence assay (data 

not shown), showed that direct exposure of HUVEC to PRBC caused redistribution of 

vinculin away from the intercellular junction suggesting that multiple mechanism are 

involved in TJP regulation. 
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7 Chapter 7: General discussion 

 

Previous studies in our laboratory using HUVEC have demonstrated that endothelial 

cells can be activated by PRBC. The current study, firstly, investigates the effect of PRBC 

on brain endothelial cells, and secondly, elucidates the mechanisms secondary to the initial 

sequestration. It is well established that the endothelium is activated in brain microvessels 

in CM (reviewed in introduction) and has the capability of producing a plethora of 

inflammatory mediators. Our aim was to investigate whether specific inflammation 

mediators are expressed by tHBEC on activation by PRBC, which could contribute directly 

or indirectly to BBB disruption. This is the first study looking at what is released by brain 

endothelial cells in response to PRBC sequestration and its potential role in mediating BBB 

damage. 

 

 The initial studies explored whether the prolonged exposure to PRBC can activate 

tHBEC to upregulate the expression of inflammatory mediators that were reported increased 

in vivo cases of CM. As shown in chapter 3 the activation of tHBEC by PRBC was found to 

upregulate the expression of ICAM-1 and increase the secretion of MCP-1 and IL-8. These 

molecules are denoted as endothelial cell activation markers and although they show non-

specific activation, they have all been demonstrated either in post mortem CM tissue or in 

serum or CSF of CM patients (discussed in chapter 3). Interestingly, besides their significant 

role in inflammatory responses, both MCP-1 and IL-8 can have an effect on vascular 

permeability. High concentration of MCP-1 and IL-8 have been demonstrated to increase 

the brain endothelial cells monolayer permeability by down regulating expression of tight 

junction proteins including occludin, claudin-5 and ZO-1 (Stamatovic et al., 2003a, Yu et 

al., 2013).  
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Additionally, the same activation also increased the level of soluble ICAM-1 

(sICAM-1) (data not shown, courtesy of Attish Patel (Medical School project student)). 

These finding are in line with most of the cerebral malaria studies where the upregulation of 

ICAM-1 is not only seen in the post mortem brain section of CM patients (Brown et al., 

1999, Dorovini-Zis et al., 2011), but also in the serum (Conroy et al., 2010) and CSF (Brown 

et al., 2000). This might suggest that upon infection with malaria the PRBC activates the 

endothelial cells to upregulate both surface ICAM-1 and sICAM-1. It is believed that ICAM-

1 is capable of in amplifying sequestration due to its pro-adhesive properties (Chakravorty 

et al., 2008). Interestingly, in vitro, the level of ICAM-1 was also found to be slightly 

upregulated by tHBEC after co-cultured with PRBC-tHBEC co-culture supernatants 

(Chapter 6). This shows that co-culture supernatant may contain soluble factors that can 

indirectly activate the tHBEC.  

 

Besides the upregulation of inflammatory mediators mentioned above, the activation 

of tHBEC by PRBC also upregulates the release of the proteases namely ADAMTS-4, 

ADAMTS-1, MMP-2 and MMP-9 into the supernatant (chapter 3). These proteases may 

have a potential involvement in BBB damage in CM by either degradation of intercellular 

junction proteins (TJP and AJP) or degradation of extracellular matrix (ECM) proteins. For 

instance, the intercellular junction proteins occludin, claudin-5 and ZO-1 were shown to be 

substrates for MMP-2 and MMP-9 (Feng et al., 2011, Qiu et al., 2011, Liu et al., 2012). Feng 

et al. (2011) demonstrated that the upregulation of the secretion of MMP-2 and MMP-9 by 

leukaemic cells could mediate the degradation of occludin, claudin-5 and ZO-1 on brain 

endothelial cells, thus disrupting the BBB. This BBB damage was inhibited by the MMP 

inhibitor GM6001, protecting mice against CNS leukaemia. In the case of CM, the 
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upregulation of MMP-2 and MMP-9 has been demonstrated in multiple studies including 

the post-mortem examination on serum and CSF from CM patients. The upregulation of 

these MMP also consistently seen in mouse model of CM, although it is well acknowledged 

that leukocyte extravasation which is common in mouse CM are absent in human CM (Van 

den Steen et al., 2006, van der Heyde et al., 2006).  

 

ADAMTS-1 and ADAMTS-4 are interesting proteases, but to date they have not 

been linked to CM. ADAMTS-1 does not only show proteolytic activity, but also 

demonstrates anti-angiogenic activity. This has been demonstrated in a study using chick 

chorioallantoic membrane assays where vascularisation was inhibited with the addition of 

ADAMTS-1 (Vázquez et al., 1999). The study also found that the anti-angiogenic property 

of ADAMTS-1 is more potent than either endostatin or thrombospondin-1 (TSP-1). 

Interestingly, both ADAMTS-1 and ADAMTS-4 has the capability of binding to CD36 on 

endothelial cells through TSP-1 domain (Iruela-Arispe et al., 1999). Although CD36 is not 

expressed by BBB endothelial cells, CD36 was present colocalised with sequestered PRBC 

in CM post-mortem tissue. Thus, both ADAMTS-1 and ADAMTS-4 could potentially be 

localised at the BBB endothelial cells, where damage to BBB could occur. This interaction 

may support the local accumulation of the ADAMTS-1 and ADAMTS-4 proteases on the 

BBB. The damage could be mediated by a combination their proteolytic digestion of ECM 

proteins or maintaining the damage by inhibiting any possibility of vascular repair due to 

their anti-angiogenic effect. The involvement of these proteases in several CNS associated 

diseases was discussed in chapter 1. 

 

 Once it became clear that tHBEC express increased levels of these candidate proteins 

in response to PRBC, we wanted to assess whether these molecules could contribute to BBB 
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disruption, focusing mainly on the proteases mentioned above. The transendothelial 

electrical resistance (integrity) of tHBEC monolayer was decreased by the PRBC-tHBEC 

co-culture supernatants (chapter 4). Permeability studies demonstrated that the reduction in 

electrical resistance translates to increased permeability of the tHBEC monolayer allowing 

the passage of 40 kDa FITC-dextran (chapter 5). Interestingly, this effect was partially 

inhibited by the addition of GM6001. The increase in the tHBEC monolayer permeability to 

FITC-dextran caused by PRBC-tHBEC co-culture supernatant was partially inhibited by the 

addition of rhTIMP-3, the internal regulator for MMP and ADAMTS-4. These studies 

demonstrate that prolonged exposure of tHBEC to PRBC produces several soluble factors 

that can induce the reduction in integrity and increase in the permeability of tHBEC 

monolayer, and these soluble factors are potentially proteases that are sensitive to the 

inhibitors GM6001 and rhTIMP-3. 

 

   These data suggest that the integrity of the endothelial cell monolayer is 

compromised as a secondary response to the interaction between PRBC and endothelial cell. 

This may enhance the BBB damage caused directly by PRBC. Tripathi et al. (2007) 

demonstrated that the integrity of human brain microvascular endothelial cell monolayer is 

decreased when the monolayer is exposed directly to trophozoite stage Plasmodium 

falciparum at a high parasitaemia. This supports the observation of perivascular leakage of 

fibrinogen in vessels containing sequestered PRBC (chapter 1). However, it is important to 

note that this is also seen in vessels that are devoid of sequestered parasites. Thus, the 

impairment of the BBB structure might also be reversible, which could explain the transient 

neurological manifestation among CM patients with a high percentage of recovery (Adams 

et al., 2002). It is, however, important to note that the permeability assay in this thesis was 
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done within 6 hours of the treatment, which may only represent the acute damage caused by 

PRBC-tHBEC co-culture supernatant.  

 

Since the loss in the BBB integrity appears to have a positive association with the 

loss of intercellular junction proteins as demonstrated in majority of CM post-mortem 

studies, we also investigated the effect of the PRBC-tHBEC co-culture supernatant on the 

expression of the tHBEC junctional proteins namely occludin, claudin-5, ZO-1 and vinculin 

(chapter 6). Our data showed differential regulation of these intercellular junction proteins 

following 5 hours and 20 hours treatment with PRBC-tHBEC co-culture supernatant 

(discussed in chapter 6). This suggests that these junctional proteins react differently towards 

soluble factors in the PRBC-tHBEC co-culture supernatant.  

 

Cumulative data from chapters 4 and chapter 5 has provide evidence to support the 

potential involvement of proteases in causing damage to tHBEC monolayer, in particular, 

the candidate proteases found upregulated in the PRBC-tHBEC co-culture supernatant 

(chapter 3). However, the mechanism for the damage is unclear. With more emphasis on the 

candidate proteases, it is generally acknowledged that these proteases can interact with many 

different substrates. Many of the identified substrates for these proteases were found to exist 

in the BBB.  

 

Besides the degradation of the tight junction proteins of the BBB, these proteases 

may also cause damage to the BBB by degrading the ECM proteins, such as neurocan, 

versican and aggrecan as discussed in chapter 1. Although there is no direct evidence for the 

breakdown of the brain ECM in the post-mortem study of CM, it is widely known that the 

ECM forms the basal layer between the BBB endothelium and astrocytes-end-feet. Thus, 
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any degradation of these ECM may alter the integrity of BBB as seen in the remodelling 

process in the brain (Rauch, 2004).Various studies have demonstrated the ability of MMP-

2, MMP-9, ADAMTS-1 and ADAMTS-4 to degrade some of these major brain ECM 

proteins. For instance, MMP-2 and MMP-9 can degrade neurocan and collagen which forms 

a support between brain link proteins to the hyaluronan, a support molecule during brain 

development (Rauch, 2004). ADAMTS-1 and ADAMTS-4 are capable of proteolytically 

cleaving versican, aggrecan and brevican (Rauch, 2004), which are also ECM proteins 

essential to support the structure of the brain. The increase in the proteolytic activity of 

ADAMTS-4 had a positive association with the glioma cells infiltrative activity which was 

inhibited by TIMP-1 and TIMP-2 (Matthews et al., 2000). 

 

Although our data suggest the potential involvement of ADAMTS-4, ADAMTS-1, 

MMP-2 and MMP-9 by the inhibition effect of GM6001 and rhTIMP-3, it is desirable to 

specifically inhibit these proteases individually by means of SiRNA in future studies (the 

use of SiRNA to block the expression of ADAMTS-4 by endothelial cells is currently being 

optimised in our lab). Since these proteases are also regulated internally by physiological 

inhibitors such TIMP-1, TIMP-2 and TIMP-3, the balance between these inhibitors and the 

candidate proteases in should also be considered. It is important to remember that only partial 

inhibition of BBB damage was seen when GM6001 and rhTIMP-3 were used in the 

treatment, suggesting the potential involvement of other soluble factors such as MCP-1 and 

IL-8 as mentioned earlier. Thus, blocking the function of these cytokines in future studies 

may also provide some evidence on the potential role of these cytokines in mediating BBB 

damage in CM.  
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The insight to the involvement of these proteases in the BBB damage mechanism in 

CM may provide some clues for the future development in CM therapeutics. However, some 

of the proteases that were upregulated in the PRBC-tHBEC co-culture supernatant in this 

study are not suitable for drug targetting. For example, MMP-2 and MMP-9 are both 

involved in physiological processes in human such as angiogenesis. The prolonged treatment 

with a MMP inhibitor such as Marimastat may also cause adverse effects to the body 

(Coussens et al., 2002). In addition, the inhibition of MMP-9 may not be the best target as 

there was no protection against CM when the MMP-9 knockout mice were infected with 

Plasmodium berghei ANKA, therefore suggesting that the role of MMP-9 is not essential in 

causing BBB damage (Van den Steen et al., 2006). Thus, the ADAMTS family of proteases 

might be the best target candidate especially due to its narrow spectrum of substrates with 

high specificity compared to MMP (Tortorella et al., 2009). 

 

 In conclusion, this thesis has demonstrated that the breakdown of the BBB might be 

initiated by many factors, which was explained in the three models of cerebral malaria 

pathogenesis (chapter 1). The primary factors for the alteration in BBB structure and 

function is the sequestration of PRBC in the brain microvasculature. This interaction initiates 

subsequent signalling, including an increase in the release of ADAMTS-1, ADAMTS-4, 

MMP-2, MMP-9, IL-8 and MCP-1. All of these soluble factors can potentially compromise 

the normal function of the BBB.  The potential mechanism of damage investigated in this 

thesis is summarised in figure 7-1.
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Figure 7-1: The potential involvement of MMPs and ADAMTS family members in causing BBB damage as the secondary to the sequestration. 

Firstly, the interaction with PRBC activates the brain microvascular endothelial cells to release the inflammatory mediators (MCP-1 and IL-8) 

and proteases (ADAMTS-4, ADAMTS-1, MMP-2 and MMP-9) into luminal space of BBB. These soluble factors subsequently induce the 

activation, reduction of integrity, and increase of permeability of endothelial cells monolayer at vicinity. This event may lead to the breakdown 

of BBB. Our data demonstrates that the leakages could be inhibited by the addition of GM6001 and rhTIMP-3., suggesting the potential 

involvement of upregulated proteases in PRBC-tHBEC co-culture supernatant.
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7.1 Future Studies 

The effects of the co-culture supernatant on the brain microvascular endothelial cell 

monolayer integrity, permeability and intercellular junction proteins was successfully 

examined in this thesis.  Yet, many questions remain unanswered.  This thesis uses a simple 

model of BBB, looking at the tHBEC component of the BBB only.  However, it is important 

to address all the cellular components of the BBB i.e. (i) endothelial cells, (ii) astrocytes and 

(iii) pericytes.  Thus, this study must be developed using a more appropriate model that 

closely represents the BBB. 

 

7.1.1 Which candidate proteases have significant role in causing BBB damage in 

CM? 

To validate the roles of MMP-2, MMP-9, ADAMTS-1 and ADAMTS-4 either alone or in 

combination, it would be desirable to perform some inhibitory studies using siRNA.  This is 

a more specific approach than the chemical inhibitors used in these studies.  Most chemical 

inhibitors of proteases available have more than one substrate making it impossible to 

delineate the role of each individual protease expressed in response to PRBC, in this project. 

 

7.1.2 Are the proteases released luminally or abluminally?  Are astrocytes 

underlying the brain endothelial cells affected by these proteases? 

To answer these question, systematic comparison of the soluble factors in the apical (luminal 

space) and basolateral (perivascular space) chambers of hanging cell culture insert (or 

transwell) is needed.  Additionally, currently it is not known whether the released proteases 

can induce activation of astrocytes.  This is very important, as the activation of astrocyte or 

astrogliois one of the major markers of inflammation in the brain that could lead to the brain 

damage.  This also probably causes the long term neurological impairment in surviving CM 
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patients. To answer this, a three dimensional culture system is desirable (Naik and Cucullo, 

2012).  

 

Finally, this in-vitro characterisation of the potential involvement of proteases in the BBB 

damage needs to be further validated with a systemic model (animal), or supported with 

clinical evidence to get a better understanding of the mechanisms involved. This 

characterisation is also important in providing future direction for alternative adjunct 

therapies for cerebral malaria. 
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Narrated Abu Hurairah (رضي الله عنه) that the Prophet Muhammad ( ) said: 

 

ُ داَءً إِلاه أنَْزَلَ لهَُ شِفاَءً   مَا أنَْزَلَ اللَّه

“There is no disease that Allah has sent down except that He also has sent down its 

treatment.” 

 

[Sahih al-Bukhari 5678; Book 76, Hadith 1] 
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8 Appendices 

8.1 Appendix A: The tHBEC identification 

Image Description 

 

Immunofluorescence of ICAM-1 (Stained 

with FITC conjugated antibody) on tHBEC. 

The nucleus was stained blue with DAPI. 

Image taken under x 100 objective 

magnification.  

 

Immunofluorescence of vWF (Stained with 

FITC conjugated antibody) on tHBEC. 

vWF found in the granule form, inside the 

cytoplasm. The nucleus was stained blue 

with DAPI. Image taken under x 100 

objective magnification. 

 

Immunofluorescence of vinculin (Stained 

with FITC conjugated antibody) on tHBEC. 

The nucleus was stained blue with DAPI. 

Image taken under x 100 objective 

magnification. 

 

Dil-Ac-LDL uptake by tHBEC. Image 

taken using rhodamine filter, at x40 

objective magnification. 
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8.2 Appendix B: Appearance of PRBC 

The microscopy appearance of the uRBC (A1-A3) and PRBC (B1-B3) before and after plasmogel enrichment and, after the co-culture experiments.  

 Before plasmogel enrichment After plasmogel enrichment After co-culture experiment 

A. uRBC 

   

B. PRBC 

   

Note: All images were taken using inverted compound microscope at 100 X objective magnification. The images showed are representation from 

various co-culture experiments.

1 2 3 

1 2 3 
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