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Abstract

The observed correlations between the masses of supermassive black holes (SMBH),

MBH, with a gravitational influence on parsec scales, and properties of the host galaxy,

measured on kiloparsec scales, strongly suggest that the SMBH and galaxy co-evolve.

These correlations are likely to be a reflection of a more fundamental connection be-

tween MBH and the depth of the potential wells that just fail to prevent gas blow-out,

due to feedback from rapid accretion during a quasar-phase. The potential wells in

question were dominated by dark matter, and a general method is lacking to con-

nect the stellar properties at z = 0 to properties of their dark matter halos, both at

z = 0 and higher redshifts. The work presented here develops a method to make these

connections self-consistently.

Models of two-component spherical galaxies are used to establish scaling relations

linking properties of spheroids at z = 0 (stellar masses, effective radii and velocity dis-

persions) to properties of the dark matter halo (virial masses and circular speeds), also

at z = 0. These models are constrained by combining results from the literature con-

necting the masses and radii of dark matter halos to each other and stellar masses, with

data samples for large, early-type galaxies. The z = 0 properties are then connected

to dark matter properties at z > 0 by accounting for the halo redshift evolution. A

critical SMBH mass prediction, with dependence on the maximum circular-speed in a

protogalactic dark matter halo (MBH ∝ V 4
d,pk), is considered. Combining this with the

scaling relations between z = 0 properties and halo properties at z > 0 transforms this

theoretical relation into predictions for the observable SMBH correlations.

A new prediction is also derived, extending on the MBH ∝ V 4
d,pk relation expected

from momentum-driven outflows, allowing for the presence of stars and gas not tracing

the dark matter. This new prediction is also compared to the observed correlations at

z = 0.
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1 Introduction

Ever since galaxies were first observed, a key question for many astronomers has been

how do they form and evolve. Initially, the research field of galaxy formation was

mainly driven by the long-standing desire to explain the formation and evolution of

the Universe. However, it has since become an area of much interest in its own right.

The discovery of quasars was a major breakthrough for astronomers (Schmidt

1963). Originally described as “quasi-stellar” due to their star-like appearance, their

high redshifts identified them as being incredibly luminous objects. Quasars are high

redshift members of the family of galaxies with active galactic nuclei, more commonly

known as AGN. A large fraction of the luminosity of an active galaxy is produced in

the central regions (i.e., the nucleus), hence the name. All observed AGN share several

common properties; they are all very compact (in some cases, < 1 pc), extremely

energetic and have similar variability time scales (typically of order 1 day). This led

to the idea that a similar mechanism was the source of the large luminosities in all of

these objects.

It became widely accepted that the power source in AGN is primarily gravi-

tational. Salpeter (1964) was the first to suggest that Super-Massive Black Holes

(SMBHs) were present in these objects. The idea that quasars are powered by the

conversion of gravitational energy into radiation when matter accretes onto an SMBH

soon became established (Lynden-Bell 1969; Lynden-Bell & Rees 1971). This quasar-

phase is now understood to account for the majority of SMBH growth (≥ 70%–80%:

Soltan 1982; Yu & Tremaine 2002). It has also been shown, from observations and

simulations, that there is a peak in quasar number, quasar activity and SMBH accre-

tion rate densities in the Universe, at redshifts z ∼ 2–4 (Richards et al. 2006; Hopkins

et al. 2007; Delvecchio et al. 2014; also Sijacki et al. 2007, 2015; Di Matteo 2008).

Normal, quiescent galaxies at z = 0 have evolved through cosmic time, most

likely from some more active stage (quasar activity, powered by SMBH accretion). It

is now generally accepted that early-type galaxies and galaxy bulges host SMBHs at
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their centres, with masses MBH ∼ 106–1010M⊙. Observations show that these black

hole masses correlate with various galaxy properties. These include MBH correlating

with bulge luminosities, Lbulge, in various band passes (Magorrian et al. 1998; Marconi

& Hunt 2003; Gültekin et al. 2009; McConnell & Ma 2013; Kormendy & Ho 2013),

bulge mass (stellar or dynamical), Mbulge (Magorrian et al 1998; Marconi & Hunt

2003; Häring & Rix 2004; McConnell & Ma 2013; Kormendy & Ho 2013), and stellar

velocity dispersion of the host bulge, σ (Ferrarese & Merritt 2000; Gebhardt et al. 2000;

Ferrarese & Ford 2005; Gültekin et al. 2009; McConnell & Ma 2013; Kormendy & Ho

2013). There is also evidence for a bivariate dependence of MBH on a combination of σ

and Mbulge or stellar effective radius, Re (Hopkins et al. 2007a; Hopkins et al. 2007b).

These connections between the SMBH, with a sphere of influence radius of tens of

parsecs, and global properties of the host galaxy on kiloparsec scales strongly suggest

that the evolution of the SMBH and galaxy are closely related. This idea was suggested,

in part, due to the relatively small intrinsic scatter in the observed correlations, with

typical values of 0.2–0.4 dex (Ferrarese & Ford 2005; Hopkins et al. 2007a; Kormendy

& Ho 2013). However, the intrinsic scatter has always been calculated around best-

fits, normally assumed to be single power-laws (linear in log–log space), with generally

no physical justification. A prediction based on a physical model will not necessarily

lead to linear model curves for the SMBH relations. How the data scatters around such

model curves could shed some light on whether any one of the observed correlations are

more fundamental than the others, or if they reflect a more significant connection. The

initial challenge for this is to know the “correct” trends, based on a physical model, for

MBH versus galaxy properties at z = 0, around which the scatter should be calculated.

The co-evolution between the black hole and galaxy likely involved some form of

self-regulated feedback. As mentioned above, most of the SMBH mass is grown in a

quasar phase, when the black hole accretes at, or near, the Eddington rate. This results

in significant momentum and energy being deposited back into the gas supply, and can

lead to a blow-out, halting further SMBH growth. In this context, one would then

expect a connection between the black hole mass, and the depth of the potential well

which the SMBH feedback had to overcome to expel the gas. The observed correlations
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in z = 0 galaxies will therefore reflect this fundamental connection.

However, it is not clear in detail how the stellar properties in normal galaxies at

z = 0 relate to the protogalactic potential wells when any putative blow-out occurred

and the main phase of accretion-driven SMBH growth came to an end. For most

systems, this was presumably around z ∼ 2–4, when quasar activity in the Universe

was at a peak. The potential wells in question are dominated by dark matter, and a

general method is lacking to connect stellar σap or M∗,tot in spheroids to the properties

of their dark matter halos, not only at z = 0, but at higher redshift as well. Moreover,

it is not necessarily obvious what specific property (or properties) of dark matter halos

provides the key measure of potential-well depth in the context of a condition for

accretion-driven blow-out. Different simulations of galaxy and SMBH co-evolution

with different recipes for quasar-mode feedback appear equally able (with appropriate

tuning of their free parameters) to reproduce the observed SMBH correlations.

Under the assumption that accretion feedback is momentum-conserving and takes

the form of a spherical shell driven outwards by an SMBH wind with momentum

flux dpwind/dt = LEdd/c, McQuillin & McLaughlin (2012) derive a minimum SMBH

mass sufficient to expel an initially static and virialised gaseous medium from any

protogalaxy consisting of dark matter and gas only. This critical mass is approximately

MBH ≃ f0κ

πG2

V 4
d,pk

4

≃ 1.14 × 108M⊙

(
f0

0.2

) (
Vd,pk

200 km s−1

)4

, (1.1)

where κ is the Thomson-scattering opacity and f0 is the (spatially constant) gas-to-dark

matter mass fraction in the protogalaxy. The velocity scale Vd,pk refers to the peak-

value of the circular speed V 2
d (r) = GMd(r)/r in a dark matter halo with mass profile

Md(r). Equation (1.1) holds for any form of the mass profile, so long as the associated

circular-speed curve has a single, global maximum — as all realistic descriptions of the

halos formed in cosmological N-body simulations do.

The goals of this thesis are two-fold: (1) to develop a general method for self-

consistently comparing theoretical predictions between SMBH mass and properties of
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the dark matter halo that measure the depth of the potential well, established at

z > 0 via quasar-mode feedback, to the observed MBH–bulge property correlations

observed at z = 0; (2) to derive a new critical SMBH mass required to clear gas out

of a protogalaxy after quasar-mode accretion. Ultimately, model predictions for the

SMBH correlations are obtained based on the physical model introduced above from

McQuillin & McLaughlin (2012). There is inevitable intrinsic scatter around these

model predictions, and this is important and contains physical information. However,

the main focus here is establishing the “correct” trends for the SMBH correlations,

around which the intrinsic scatter should be calculated, and not to characterise the

scatter itself.

First of all, it is necessary to consider stellar and dark matter properties of

z = 0 galaxies. This is the focus of Chapter 2, where simple models of two-component

spherical galaxies are considered. In §2.1, results from cosmological simulations that

connect the radii and masses of dark matter halos to each other and to total stellar

masses are brought together, along with details of stellar and dark matter distributions.

Combining these with data from the literature for early-type galaxies, average trends

between various galaxy properties at z = 0 are obtained in §2.2. Properties that are

considered include: total stellar masses, M∗,tot; stellar effective radii, Re; virial radii,

rvir; halo virial masses, Md,vir; peak halo circular speeds, Vd,pk; stellar mass fractions,

f∗(r); stellar velocity dispersions, σap(Re) and total (stars and dark matter) circular

speeds, Vc(r). The focal point is on stellar masses in the range 1010M⊙ . M∗,tot .

1012M⊙, encompassing the SMBH data.

The next step involves relating the dark matter halo properties at z = 0, such as

halo mass, Md,vir, and the maximum of the circular speed, Vd,pk, to the corresponding

properties at z > 0. Chapter 3 considers this in detail, making use of the halo progenitor

evolution with redshift in §3.1. §3.2 considers how both Md,vir and Vd,pk at z > 0

relate to the stellar properties at z = 0, with particular emphasis on stellar velocity

dispersions and total stellar masses. Folding in a theoretical relation between MBH

and Vd,pk at z > 0, §3.3 details how to compare such a prediction to the observed

correlations. Relations between SMBH mass and stellar velocity dispersion, total stellar
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mass, total halo mass and combinations of velocity dispersion and effective radius, are

all discussed in detail.

All current predictions for a critical SMBH mass required for gas blow-out make

several simplifying assumptions (cf. §1.4.7). After establishing a general method for

comparing such predictions to the observed MBH–bulge property correlations, it makes

sense to derive new predictions with some of the assumptions relaxed. This is the

main focus in Chapter 4, where a spherical three-component protogalaxy is considered.

This allows for the presence of stars in the protogalaxy that contribute to the gravity

containing the outflow, as well as a non-virialised gas. Neither of these have been con-

sidered before in detail. The full mathematical derivation of the new prediction is given

in §4.1. This is then compared to previous results in §4.2, along with pulling together

results from cosmological simulations and data that relate masses and radii of the three

different components to each other. This enables the models to be constrained, which

is useful for the examples used to illustrate the new result in §4.3. The focus of these

examples is to show how different assumptions about the gas distribution are likely to

influence the critical SMBH mass. The new prediction is also folded in with the general

method devised in Chapters 2 and 3, so that it can be compared to the MBH–σap(Re)

relation. Throughout Chapter 4, the new prediction is compared to equation (1.1).

Before getting into the details of this new work, a review of the current literature

is given. Chapters 2 and 3 in particular bring together several different parts of the

literature, as outlined above, so a comprehensive overview of all of this is essential.

This is the purpose for the remainder of Chapter 1. §1.1 discusses the key ideas behind

galaxy formation, including galaxy classifications, formation processes, cosmological

parameters, dark matter distributions, halo concentrations and halo progenitors. §1.2

focuses on baryons in galaxies, with particular emphasis on the stars. Stellar distri-

butions, mass ratios, scaling relations of stellar properties and population synthesis

models are all discussed. The observational evidence of SMBHs and the correlations

between MBH and galaxy properties are reviewed in §1.3. Finally, §1.4 reviews the key

physical concepts behind the theoretical models used to explain how the MBH–bulge

relations are established.
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1.1 Galaxy Formation

1.1.1 Galaxy classifications

Broadly speaking, there are three different types of galaxies; elliptical, spiral and ir-

regular. Spirals and ellipticals are often further divided into subgroups, known as the

Hubble (1926) sequence, shown in Figure 1.1 (also known as the tuning fork diagram).

Elliptical galaxies are denoted En, with n ≡ 10[1 − (b/a)] representing the degree of

ellipticity (higher n −→ flatter galaxy). In this expression, b/a is the ratio of minor-to-

major axis length. The spirals are then split into two branches; those with (SB) and

without (S) bar-like structures in their central regions. The lower case letters indicate

how tightly wound the spiral arms appear to be and the bulge-to-disk luminosity ratio,

B/D. Moving from left to right in Figure 1.1, B/D decreases. Lenticular galaxies,

denoted S0, are very similar to ellipticals in appearance, but also have an extended

disk-like structure. Hubble initially proposed this as an evolutionary sequence, with

ellipticals flattening out and evolving into spirals. This is now known to be incorrect.

The Hubble sequence classifies galaxies purely based on their appearance. This

morphological classification system can also be used to split galaxies into two cate-

gories: early-types and late-types. The early-types, consisting of elliptical and lenticu-

lar galaxies, generally contain little gas and dust, have no spiral arms and show little or

no signs of star formation. On the other hand, late-type galaxies (spiral and irregular)

show significant star formation, are generally made up of younger stars and have clear

disk-like features.

The physical mechanisms of forming the central components may be different for

early- and late-type galaxies. For example, Kormendy & Kennicutt (2004) argue that

spirals could be classified by splitting into two groups; those with classical bulges and

those with pseudo-bulges. They define classical bulges as being ellipticals living at the

centre of disks. They define a pseudo-bulge based on the following characteristics:

• if the apparent flattening of the bulge is similar to that of the outer disk;
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• if it has a Sérsic index (cf. §1.2.1) n . 2;

• if it is rotation-dominated, requiring Vmax/σ > 1, where Vmax is the maximum

rotation velocity and σ is the stellar velocity dispersion.

If any of these are evident, Kormendy & Kennicutt (2004) identify the central

component as a pseudo-bulge. The more of the characteristics that apply, the more

secure the classification becomes. More recently, Kormendy (2012) and Fisher & Drory

(2015) have provided further classification criteria. These include constraints on the

velocity dispersion, σ, and the bulge-to-total luminosity ratio, B/T : if σ > 130 km s−1

(Fisher & Drory 2015) and/or B/T & 0.5 (Kormendy 2012), then the bulge is definitely

classical, otherwise it could be a pseudo-bulge. Classifying the galaxies in this way has

implications for the black hole–bulge scaling relations discussed in §1.3.

Kormendy & Kennicutt (2004) suggest that classical bulges and pseudo-bulges

have different formation histories. They say that pseudo-bulges are a product of the

slow, secular evolution of galaxy disks, whereas classical bulges form in the same way

as ellipticals, via major galaxy mergers. Despite these justifications from Kormendy

& Kenicutt for classifying spirals in this way, it has been argued that many of the

selection criteria do not require an alternative formation mechanism to be explained

(Graham & Scott 2013; Graham & Scott 2015). From a kinematical view point, mergers

between galaxies can form bulges with larger than average Vmax/σ values (Bekki 2010;

Keselman & Nusser 2012). It is also possible for bars to spin-up bulges, through

exchange of angular momentum between the bar and the spheroid (Saha, Martinez-

Valpuesta & Gerhard 2012). Both of these suggest that galaxy rotation might not

necessarily indicate how the central component formed, as suggested by Kormendy &

Kennicutt (2004).

Furthermore, the presence of inner spiral arms in the central regions does not

necessarily require the presence of a pseudo-bulge (Eliche-Moral, Gonzalez-Garcia &

Balcells 2011; dosAnjos & daSilva 2013). There is no doubt that bulges exist that

exhibit various properties outlined above. However, it is unclear whether or not such

bulges are formed in a different way or not.
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Figure 1.1: The Hubble (1926) sequence for classifying galaxies, also known as the
tuning fork diagram. Elliptical galaxies are denoted by En, where n ≡ 10[1 − (b/a)],
represents the degree of ellipticity. The spirals are then split into two branches; the
lower branch are spirals with bars (SB) and the upper branch are galaxies without bar-
like structure (S). The lower case letters indicate how tightly wound the spiral arms
are. Lenticular galaxies, similar in appearance to ellipticals, are denoted S0. Image
source: pics-about-space.com/hubble-s-tuning-fork-diagram
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1.1.2 Initial structure formation and feedback

Zwicky (1933) was the first to realise that galaxies and galaxy clusters were surrounded

by large amounts of non-luminous matter, when he compared the mass-to-light ratio

of the Coma cluster to the mass-to-light ratios in luminous parts of individual galaxies.

These non-luminous components are now referred to as dark matter halos. As the

name suggests, dark matter does not emit or interact with electromagnetic radiation.

Although it cannot be observed directly, the gravitational effects on baryonic matter

can be detected.

It is widely accepted that dark matter constitutes approximately 85% of all mat-

ter in the Universe (Planck Collaboration 2014). Astronomers generally favour the idea

of Cold Dark Matter (CDM) — the dark matter particles move slowly compared to

the speed of light — as simulations of galaxy formation with this form of dark matter

generally show good agreement with observations, although hot dark matter is able

to form structure too. The most recent observational results (Planck Collaboration

2014) yield cosmological parameters where the energy density of the Universe is shared

between dark energy, ΩΛ, 0 = 0.68, dark matter, Ωd, 0 = 0.271 and baryonic matter,

Ωb, 0 = 0.049, with a Hubble parameter of H0 = 67.1 km s−1 Mpc−1.

The large scale structures observed in the Universe all initially formed in the

same way. In such a scenario, the early smooth Universe contains random density

fluctuations (Harrison 1970; Zel’dovich 1972). These initial perturbations are evidenced

by images of the cosmic microwave background (Smoot, Bennett & Kogut 1992). By

resolving the structures of the density fluctuations, it was found that the CMB maps

were consistent with predictions from Harrison (1970) and Zel’dovich (1972), that the

distribution of the perturbations is Gaussian. These results have since been confirmed

and refined by subsequent observations from the WMAP (Bennett, Halpern & Hinshaw

2003; Hinshaw, Nolta & Bennett 2007) and the Planck Collaboration (2014).

Once these perturbations become non-linear, their evolution is significantly more

complicated. Empirical methods determining the statistical distribution of matter in

the non-linear regime (Peacock & Dodds 1996; Heitmann et al. 2009), together with N-
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body simulations (Klypin & Shandarin 1983; Springel, Di Matteo & Hernquist 2005),

show a network of halos strung along walls and filaments forms, creating a cosmic web.

To connect the initial density fluctuations to the non-linear structure observed in the

Universe today, non-linear evolution needs to be considered.

Gunn & Gott (1972) and Gunn (1977) consider a simple, spherical model de-

scribing the growth and collapse of an initial perturbation. Gunn & Gott (1972)

demonstrate that material surrounding a density perturbation in the early Universe

can be bound to the perturbation and will fall into it. Gunn (1977) extends this by

considering the equilibrium spatial distribution of the in-fallen material. Gunn demon-

strates that dissipationless collapse (that is, the collapse of non-interacting particles)

results in a quasi-equilibrium system, therefore linking the initial perturbation directly

to an equilibrium state. This simple argument is more commonly referred to as the

spherical top-hat collapse model.

The favoured theory for initial structure formation from density perturbations in

the early Universe involves CDM (Peebles 1982; Bond, Szalay & Turner 1982; Blumen-

thal, Pagels & Primack 1982; Blumenthal et al. 1984). If it is cold, the dark matter

component of the initial perturbation will have no pressure support, and therefore must

undergo gravitational collapse, and hence the perturbations will grow. The collapsed

objects lead to potential wells dominated by dark matter (the initial dark matter ha-

los). A dark matter halo is supported against its own self-gravity by random motions

of the constituent particles. In a hierarchical Universe, the first halos form from the

initial, small-scale density fluctuations. Larger halos then form from the merging of

these early generation halos. This is known as bottom-up formation: the smallest

objects form first, and these merge to form the largest objects at later times.

Press & Schechter (1974) associated the dark matter halos with peaks in a Gaus-

sian density field of dark matter in the early Universe. By using statistics of random

Gaussian fields, they were able to derive a halo mass distribution. This distribution

is such that the number of halos per unit volume in the mass range M to M + dM is
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δM(dn/dM), where:

dn

dM
(M, t) =

(
2

π

)1/2
ρ0

M2

δc(t)

σ(M)

[
d lnσ

d lnM

]
exp

[
− δ2

c (t)

2σ2(M)

]
. (1.2)

Here, ρ0 is the mean density of the Universe, σ(M) quantifies the variance in the density

field, smoothed using a top-hat filter that contains, on average, a mass M , and δc(t)

is the critical overdensity for a spherical top-hat collapse at time t. An extension of

the Press-Schechter theory allows for a statistical description of the formation of dark

matter halos (Lacey & Cole 1993). Specifically, the sequence of merging events, and

the halo masses involved in those events, can be extracted. This relates the distribution

of halo masses at two different redshifts, z1 and z2, that is then interpreted as a merger

rate.

At the same time that initial dark matter halos are forming and merging, gaseous

baryons fall into the halos. Unlike dark matter, baryons can emit radiation and cool

down, settling toward the centre of the dark matter halos. As they do so, they form

cool dense clouds, ultimately leading to star formation and hence small galaxies. This

is the two-stage theory proposed by White & Rees (1978), containing many of the basic

ideas behind modern galaxy formation theory. White & Rees (1978) realised that star

formation (and hence galaxy formation) could not proceed with 100% efficiency in all

dark matter halos. Observations provide evidence of this, in particular the total mass

density in stars, Ω∗,0 = (2.3 ± 0.34) × 10−3 (Cole et al. 2001), is much less than the

total baryonic mass density of the Universe, with Ω∗,0/Ωb,0 ≃ 0.047.

More evidence is provided by the disagreement between the distribution of galaxy

luminosities and the distribution of halo masses (Benson et al. 2003). There are many

results from observations (Hudson et al. 1998; Guzik & Seljak 2002; Sheldon et al.

2004; Madelbaum et al. 2006) and simulations (Moster et al. 2010; Moster, Naab &

White 2013; Behroozi, Conroy & Wechsler 2010; Behroozi, Wechsler & Conroy 2013)

which indicate that star formation efficiency depends strongly upon halo mass. This

is usually quantified by considering the global ratio of stellar-to-dark matter mass

in central galaxies as a function of dark matter halo mass. Figure 1.2, taken from

Berhoozi et al. (2013), compares several derivations from the literature of this function
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at z ≈ 0. Clearly there is good agreement over the non-monotonic shape, with a peak

in M∗/Md ≃ 0.01–0.05 at Md ≃ 3 × 1011M⊙–1012M⊙. This implies that in both low-

and high-mass halos, star formation is extremely inefficient.

Clearly a process is required that suppresses the formation of stars in both the

smallest and largest galaxies. Such a process therefore needs to reheat the gas to pre-

vent it from cooling. One way of doing this is for an ongoing physical process to inject

significant quantities of energy and/or momentum into the gas, known as feedback.

There are various flavours of feedback that span a range of processes including; re-

ionization at very high redshifts, supernova explosions and input from active galactic

nuclei (AGN). White & Rees (1978) invoked supernova feedback in dwarfs to explain

the low efficiency of star formation in dwarf galaxies.

Supernovae can heat gas to temperatures T & 106 K, at which it can escape from

halos with circular speeds . 100 km s−1 (Dekel & Silk 1986), corresponding to halo

masses Md . 1011M⊙. Such feedback is therefore able to heat the gas to the extent

that it escapes from the galaxy, suppressing star formation, in low-mass systems. As

mass increases, the depth of the potential well increases, and less gas will escape. This

will lead to more stars being formed, and hence a larger value of M∗/Md. However,

for massive galaxies, star formation is again inefficient and hence M∗/Md is peaked.

Supernova feedback has little effect on the formation for the largest systems, so this

cannot explain the low efficiencies.

One popular idea for a feedback process in the most massive galaxies involves

AGN, and more specifically their high redshift counterparts, quasars. The idea is that

during the peak of quasar activity, at redshifts z ∼ 2–4 (Richards et al. 2006; Hopkins,

Richards & Hernquist 2007), powerful feedback from a central Super Massive Black

Hole (SMBH) clears the gas out of a galaxy, preventing any further star formation.

This ties in with the SMBH – bulge correlations and black hole feedback ideas that

are discussed in §1.3. Most of the SMBH mass in large galaxies is grown during this

quasar phase of Eddington (cf. §1.4.1) rate accretion (Soltan 1982; Yu & Tremaine

2002), at these high redshifts. Such accretion can lead to gas blow-out, halting further

accretion onto the SMBH. This SMBH feedback is able to suppress star formation
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Figure 1.2: The global stellar-to-dark matter mass ratio as a function of dark matter
halo mass. This Figure is taken from Behroozi et al. (2013), showing the results
from several authors. There are different methods used to obtain M∗/Md, including
abundance matching, clustering constraints, halo occupation distribution modelling,
conditional luminosity function and various results on galaxy clusters.



14

in the largest galaxies and entire clusters 1013M⊙ . Md . 1015M⊙. Simulations of

galaxy formation using different recipes for this so called quasar-mode feedback appear

equally able to reproduce observed correlations and consistently yield z = 0 galaxies

with M∗,tot . 1012M)⊙. The quasar-phase of galaxy formation is therefore essential for

limiting the stellar masses of early-type galaxies that are observed at z = 0.

The main point in the context of the work presented here is that dark matter

halos dominate the gravity (M∗/Md ≪ 1 for all halo masses). Hence, they are key

to the containment (or not) of black hole feedback and determining the SMBH mass.

Understanding the various properties of the dark matter halos is therefore essential to

interpreting the present-day correlations between SMBH mass and stars.

Many simulations have investigated properties of CDM halos, using both analyt-

ical and N-body methods. These properties include halo density profiles (cf. §1.1.4;

Dubinski & Carlberg 1991; Navarro et al. 1996, 1997; Dehnen & McLaughlin 2005),

halo concentrations (cf. §1.1.5; Bullock et al. 2001; Zhao et al. 2009; Dutton & Maccio

2014) and merger histories (cf. §1.1.6; Lacey & cole 1993; van den Bosch 2002; Zhao

et al. 2009; Giocoli et al. 2012; van den Bosch et al. 2014).

1.1.3 Virial radii and cosmological parameters

The virial radius, rvir, is often used to define the total extent of a dark matter halo.

A spherical dark matter halo is said to be in virial equilibrium for r ≤ rvir, where the

virial theorem

2EK = −EP , (1.3)

relating the kinetic energy, EK , and the gravitational potential energy, EP , is applica-

ble. Given that EK ∝ V 2 and EP ∝ M/R, and folding in the Hubble law, V = H0R,

where H0 is the Hubble constant, leads to the scaling H2
0 ∝ M/R3 ∝ ρ. This can be

used to determine the virial radius by relating the density, ρd(r), of the dark matter

halo, to the critical density of the Universe, ρc — if ρd(r) is ∆vir times ρc, the halo is
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in virial equilibrium. For a halo at z = 0, this requires

ρd(rvir) ≡
3Md,vir

4πr3
vir

= ∆virρc = ∆vir
3H2

0

8πG
. (1.4)

The constant of proportionality, ∆vir, is referred to as the overdensity of a viri-

alised sphere. For a matter dominated Universe (Ωm = 1 with no cosmological con-

stant), the overdensity can be found approximated analytically, with ∆vir ≃ 18π2 ∼ 178

(Bertschinger 1987). This classic result is why the radius r200 is commonly referred to in

the literature as a virial radius (cf. §1.1.5), although strictly speaking, r200 corresponds

to an overdensity of ∆ = 200.

For a (Λ)CDM Universe, calculating ∆vir is somewhat more complicated, and

depends on the cosmological parameters chosen. Bryan & Norman (1998) provide a

fitting formula for the overdensity in a Universe dominated by a cosmological constant.

Assuming a flat Universe, with a cosmological constant (Ωm + ΩΛ = 1), the Bryan &

Norman (1998) formalism gives ∆vir as a function of redshift:

∆vir(z) ≡ 2GM(rvir)

H2(z) r3
vir

= 18π2 + 82[Ωm(z) − 1] − 39[Ωm(z) − 1]2, (1.5)

with

Ωm(z) =
Ωm,0(1 + z)3

[H(z)/H0]2
and

H(z)

H0
= [Ωm,0(1 + z)3 + ΩΛ,0]

1/2. (1.6)

The cosmological parameters from the Planck 2013 results (Planck Collaboration

2014) are h0 = 0.67 with Ωm,0 = 0.32 (which includes a baryon density of Ωb,0 = 0.049)

and ΩΛ,0 = 0.68. The virial overdensity from equation (1.5) is then ∆vir(0) ≃ 104 at

z = 0, increasing to higher redshift with an upper limit of ∆vir(z) < 18π2 ≃ 178.

1.1.4 Dark matter density distributions

Ostriker, Peebles & Yahil (1974) tabulated galaxy masses for local giant spirals as a

function of radius, and found that the masses increase linearly with r up to tens and

hundreds of kiloparsecs. Observations show that the total circular speed curves of
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many galaxies remain flat out to large radii, beyond the extent of the luminous matter

(Rubin, Ford & Thonnard 1980; Burstein 1982). By definition, the circular speed for

a spherical distribution is V 2
c (r) = GM(r)/r, where M(r) is the total gravitating mass

enclosed within a radius r, so this observation is consistent with the findings of Ostriker

et al. (1974).

Given the observation that M(r) ∝ r (approximately), a good zeroth-order ap-

proximation for describing galaxies including dark matter is the Singular Isothermal

Sphere (SIS). The density and mass profiles for an SIS distribution are given by

ρ(r) =
σ2

0

2πGr2
and M(r) ≡

∫ r

0

4πu2ρ(u)du =
2σ2

0r

G
, (1.7)

where σ0 is the velocity dispersion of the halo. The circular speed profile of an SIS

halo is therefore constant at all radii:

V 2
c (r) =

GM(r)

r
= 2σ2

0. (1.8)

For such a simple model, this shows remarkable agreement with observations of real

halos (Rubin et al. 1980; Burstein 1982).

However, the SIS has ρ(r) ∝ r−2 everywhere, so the mass increases linearly with

r out to infinitely large radii. In analytical calculations, a truncated SIS is used by

observers, where outside some radius (e.g. the virial radius), the mass is taken to be

zero. It is also true that the SIS is only a good approximation for the total gravitational

matter (baryonic and dark matter). As will be discussed further in §1.2, the baryons in

galaxies are not distributed isothermally. Thus, the dark matter halos themselves can

not be isothermal either. Indeed, simulated dark matter halos generally have density

profiles that are shallower than isothermal at small radii, and steeper at large radii.

Fitting functions used to describe simulated non-isothermal dark matter density

profiles are generally two parameter models (normally a scale radius and mass enclosed

within a scale radius), with a double power-law behaviour, in the sense that ρd(r) ∼ r−γ

for small radii and ρd(r) ∼ r−β for large radii. In general, simulated halos are best

fitted when γ < 2, and β > 2. In this context, there will be a single, well defined radius

in a fitting function at which the logarithmic slope of the density is d ln ρ/d ln r ≡ −2.
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This radius is denoted here as r−2. Non-isothermal halos described by functions of this

nature also lead to circular speed curves, Vc(r), that are peaked (at a radius rpk 6= r−2).

Asymptotically, V 2
c → r2−γ at small radii, and V 2

c → r2−β at large radii. Given the

limits of γ < 2 and β > 2, this naturally leads to a function with a maximum.

Figure 1.3 shows the density (top panel), mass (middle panel) and circular speed

(bottom panel) profiles for a variety of functions used to fit simulated cold dark matter

halos. These are all normalised to values at the scale radius, r−2, with ρ−2 ≡ ρd(r−2),

M−2 ≡Md(r−2) and V−2 ≡ Vc,d(r−2). For comparison, the SIS profiles are also included,

shown by the dotted black line in each panel.

The solid red line in each of the panels corresponds to a model developed by

Hernquist (1990) for describing the light distributions in early-type galaxies. Dubinski

& Carlberg (1991) used this profile as a fit to their simulated dark matter halos. The

density of the Hernquist (1990) profile is given by

ρd(r) =
Mtot

2πr3
0

(
r

r0

)−1 (
1 +

r

r0

)−3

, (1.9)

where Mtot is the total mass, r0 is a scale radius and r−2 = r0/2. The mass profile,

given by

Md(r) ≡
∫ r/r0

0

4πu2ρd(u)du = Mtot

(
r/r0

1 + r/r0

)2

, (1.10)

leads to a circular speed profile that, unlike the SIS, varies with radius;

V 2
c,d(r) ≡

GMd(r)

r
=
GMtot

r0

r/r0
(1 + r/r0)2

. (1.11)

This clearly leads to a peaked circular-speed curve, at a radius rpk/r0 = 1. Equation

(1.11) is shown by the solid red line in the bottom panel of Figure 1.3.

Navarro, Frenk & White (1996) performed high resolution simulations to inves-

tigate dark matter halo formation for a range of halo masses. They identified halos

as collapsed spheres, with the radius of each sphere encompassing an overdensity of

∆ = 200. They found that the density profiles were well fitted down to 0.01r200 by the

same model, for halo masses 1011M⊙ . M200 . 1015M⊙. The dark matter profile of

Navarro, Frenk & White (1996, 1997, NFW), shown by the solid black line in Figure
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Figure 1.3: Density, ρd(r) [top panel], mass, Md(r) [middle panel], and circular speed,
Vc,d(r) [bottom panel] profiles for SIS (dotted black line), Hernquist (solid red line),
Dehnen & McLaughlin (solid blue line), NFW (solid black line), and Burkert (dot-
dash magenta line) models for dark matter halos. The x axis is normalised to the
scale radius, r−2 [the radius at which the logarithmic slope of the density profile is
d ln ρ/d ln r = −2], and the profiles are normalised to their values at this scale radius.



19

1.3, is given by

ρd(r) = 4ρ0

(
r

r0

)−1 (
1 +

r

r0

)−2

, (1.12)

where r0 is a scale radius, ρ0 ≡ ρ(r0) and r−2 = r0. This profile has the same slope as

a Hernquist (1990) profile at small radii, but is shallower at large radii, as shown in

the top panel of Figure 1.3. The NFW profile is as good a fit to simulated halos from

Dubinski & Carlberg (1991) as the Hernquist (1990) profile.

The mass distribution for an NFW profile is given by

Md(r) = 16πρ0r
3
0

[
ln

(
1 +

r

r0

)
− r/r0

1 + r/r0

]
, (1.13)

leading to the circular speed profile

V 2
c,d(r) =

16πρ0r
2
0

r/r0

[
ln

(
1 +

r

r0

)
− r/r0

1 + r/r0

]
. (1.14)

At large radii, the mass profile for an NFW halo increases logarithmically to infinity.

The circular speed once again has a singular peak, at rpk/r0 ≃ 2.16258, shown in the

bottom panel of Figure 1.3 (solid black line).

Dehnen & McLaughlin (2005) developed a family of halo models, motivated by

the fact that ρd(r)/σ
3
r(r) is a power-law in radius for simulated dark matter halos

ρd(r)

σ3
r(r)

∝ r−α, (1.15)

over the full numerically resolved range. Taylor & Navarro (2001) were the first to

notice this, finding α = 1.875. Other studies have confirmed that ρd(r)/σ
3
r(r) is a

power-law in radius, with an exponent α ≃ 1.9±0.05 (Diemand, Moore & Stadel 2004;

Rasia, Tormen & Moscardini 2004; Ascasibar et al. 2004).

Combining the constraint on ρd(r)/σ
3
r(r) with the anisotropic Jeans equation [cf.

§1.3.2; equation (1.49)], the general density profile is given by

ρd(r) =
(40/9) − 2β0

8π

Mtot

r3
0

(
r

r0

)−(7+10β0)/9
[
1 +

(
r

r0

)2(2−β0)/9
]−3(2+β0)

, (1.16)
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where β0 is the central velocity anisotropy. For β0 = 0 (velocity isotropy at r = 0), the

density profile becomes

ρd(r) =
5

9π

Mtot

r3
0

(
r

r0

)−7/9
[
1 +

(
r

r0

)4/9
]−6

, (1.17)

such that r−2 = (11/13)9/4r0 ≃ 0.68669r0. Integrating this leads to the mass distribu-

tion

Md(r) = Mtot

[
(r/r0)

4/9

1 + (r/r0)
4/9

]5

, (1.18)

and the circular speed profile

V 2
c,d(r) = GMtotr0

(r/r0)
11/9

[
1 + (r/r0)

4/9
]5 . (1.19)

This peaks at rpk/r0 = (11/9)9/4 ≃ 1.57068.

The Dehnen & McLaughlin (2005) profiles are represented by the solid blue lines

in Figure 1.3. At small radii, ρd(r) ∝ r−7/9, shallower than both the Hernquist (1990)

and NFW profiles, and at large radii, ρd(r) ∝ r−31/9, intermediate between the other

two. However, the (4/9)ths power of radius leads to a more gradual roll-over around the

scale radius, hence the Dehnen & McLaughlin (2005) halo sits above the other two in

the top panel of Figure 1.3. This is also seen in the circular-speed curve (bottom panel),

where the smoother roll-over leads to a broader peak for the Dehnen & McLaughlin

(2005) circular speed.

The three halos described above are all quite similar. They all have cuspy centres,

so the dark matter density rises without limit to the centre, and have large radii density

slopes, d ln ρd/d ln r = 3–4. The central cusps are consistent with simulated halos, but

these have limitations. Even the highest resolution simulations can only resolve halo

structure to approximately 0.1% of the virial radius. It is therefore possible that halo

densities become even shallower at unresolved radii.

The Einasto (1965) density profile, first advocated in the context of dark matter

density distributions by Graham et al. (2006), is

ρ(r) = ρ−2 exp

{
− 2

α

[(
r

r−2

)α

− 1

]}
, (1.20)
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where r−2 is a scale radius, and ρ−2 ≡ ρ(r−2). The third parameter, α (the Einasto

shape parameter), depends weakly on total halo mass (Dutton & Macció 2014). For

halo masses in the range ∼ 1010–1015M⊙, the shape parameter has values α ∼ 0.15–

0.25. Due to this extra free parameter, the mass profile involves an incomplete gamma

function, dependent on r/r−2 and α [see Retana-Montenegro et al. (2012) for more

details]. The Einasto density profile tends to a constant value as r −→ 0, a result

that is allowed by the resolution of the cosmological simulations. In the context of

fitting dark matter halo distributions, the Einasto profile performs no better than the

Dehnen & McLaughlin profile, when β0 (the central velocity anisotropy) is used as a

third parameter (Dehnen & McLaughlin 2005; Graham et al. 2006).

Burkert (1995) investigated the mass and circular-speed profiles in four dwarf

galaxies. He found that the observed mass profiles are well fitted over the whole

observed radius range by the phenomenological density distribution:

ρd(r) = ρ0

[
1 +

r

r0

]−1 [
1 +

r2

r2
0

]−1

, (1.21)

where r0 is a scale radius, ρ0 ≡ ρd(r0) and r−2 ≃ 1.52138r0. Therefore, the mass profile

is

Md(r) = 2πρ0r
3
0

[
ln(1 + r/r0) +

1

2
ln(1 + r2/r2

0) − tan−1(r/r0)

]
, (1.22)

and the circular speed is

V 2
c,d(r) =

2πGρ0r
2
0

r/r0

[
ln(1 + r/r0) +

1

2
ln(1 + r2/r2

0) − tan−1(r/r0)

]
. (1.23)

The Burkert (1995) halo, shown by the dot-dash magenta line in Figure 1.3, has a

central density core (for large radii, ρd(r) ∝ r−3, the same as the NFW halo). Burkert

& Silk (1997) propose that the halos of dwarf galaxies could well be cored. Modelling a

dwarf galaxy with luminous and non-luminous baryonic matter, along with an extended

dark matter halo, they suggest that the halo could undergo adiabatic contraction within

a “core” radius, rc, if the non-luminous baryonic component has comparable mass

inside rc. More recently, Pontzen & Governato (2012) suggest that initially steep

density cusps in low-mass systems could be flattened to shallower profiles via galactic
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winds from stellar feedback. As with the cuspy halos, the circular speed curve is again

peaked, at rpk/r0 ≃ 3.24713 [see Figure 1.3, bottom panel].

From the four halos introduced, Hernquist, NFW and Burkert profiles are all two

parameter models, defined by a scale radius, and a mass within the scale radius.

1.1.5 Halo concentrations

The dark matter halo concentration is generally defined as the ratio of some over density

radius (e.g. rvir or r200) to some scale radius (e.g. rs or r−2). It therefore connects

the environment of a dark matter halo (i.e., ρvir, rvir) to the internal structure. In

the context of the work presented here, it provides a way to calculate the scale radius,

r−2, if the virial radius is known. N -body simulations of CDM structure formation

consistently show that the concentration depends on halo mass, with more massive

halos having lower concentrations on average (Navarro, Frenk & White 1996; Navarro,

Frenk & White 1997; Bullock et al. 2001; Eke, Navarro & Steinmetz 2001; Macció,

Dutton & van denBosch 2008; Dutton & Macció 2014). This mass dependence is

typically found to be weak; most results are consistent with cvir ≡ rvir/rs ∝ M−0.1
d,vir ,

with significant intrinsic scatter around this average trend. The redshift evolution has

also been investigated by several authors (Bullock et al. 2001; Zhao et al. 2003b; Prada

et al. 2012; Dutton & Macció 2014), with general agreement that at higher redshift,

the mass dependence of cvir becomes even weaker. Most of these simulations are only

reliable for z . 4–5 and it is unclear how the concentration depends onMvir for redshifts

greater than this.

One way to calculate the concentration is by fitting a model (e.g. NFW) to the

spherically averaged density profile of a halo. As discussed in the previous Section,

the model dark matter halos are specified by two parameters: rs and the mass within

this radius, Md(rs). Both of these are linked to the total halo mass, defined to be the

virial mass [or Md(r200)]. Given this, the ratio cvir ≡ rvir/rs (or c200 = r200/rs) is then

calculated. However, the fitting process can be difficult, leading to underestimates of

the halo concentration (Prada et al. 2012). This will occur if the fitting starts too
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close to the centre, where the resolution is insufficient. The central density will be

underestimated, leading to concentration values that are too low.

An alternative method considers the ratio of the peak of the circular-speed curve,

Vd,pk ≡ Vd(rpk), to the virial circular-speed, Vd,vir or Vd,200. Considering the circular-

speed profiles in the bottom panel of Figure 1.3, where the radii are normalised to r−2,

this ratio can be written as
[
Vd,pk

Vd,vir

]2

=

[
Md(rpk/r−2)

Md(rvir/r−2)

]
rvir/r−2

rpk/r−2
. (1.24)

The value of rpk/r−2 is known for any specified dark matter halo (cf. §2.1.5). If the

ratio Vd,pk/Vd,vir is known, then the ratio rvir/r−2 can be found numerically.

Dutton & Macció (2014) also consider the halo dependence of their derived con-

centrations. They compare NFW halo models to Einasto (1965) profiles, calculating

r200/r−2 for both. They find that concentration values do depend systematically on the

choice of halo model, but only at the ∼ 10% level at z = 0. In the context of the work

presented here, the concentration dependence on both redshift and halo mass needs to

be considered. This needs to be accounted for when connecting the dark matter halo

properties in protogalaxies at z > 0 to the SMBHs at the same redshifts and to the

observed z = 0 properties of galaxies.

1.1.6 Halo progenitors

If an SMBH at the centre of a protogalaxy ended its main quasar phase of growth by

accretion at a redshift z > 0, with a mass determined by some global property of the

dark matter halo at that time, then it is necessary to consider halos at higher redshifts.

This makes it possible to relate any property at that earlier redshift to the property in

the galaxy at z = 0 (which is what the observed BH–bulge relations will reflect).

The formation history of any given dark matter halo is characterised by its merger

tree, describing how the progenitors merge and accrete over cosmic time. Merger trees

can be constructed in one of two ways; from N-body simulations or from repeated re-

alisations based on the extended Press-Schechter formalism (Press & Schechter 1974;
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Bond et al. 1991; Bower 1991; Lacey & Cole 1993). As discussed in §1.1.2, the Press-

Schechter formalism allows the dark matter halo mass distribution to be estimated. An

extension of this allows for calculations of other properties of dark matter halo popu-

lations, including progenitor mass distribution, merger rates and clustering properties.

The analytical nature of the Press-Schechter formalism leads to a better understanding

of how properties of halo population relate to the cosmological framework. However,

it is a non-rigorous method, hence why repeated realisations are required and why it

is often used along side N-body simulations.

Tracing a merger tree back in time, each halo splits into progenitor halos, which

themselves break up into progenitors and so on. There are different ways to define the

“main” progenitor of a given halo. Some studies define it as the most massive progen-

itor (at a particular redshift) of the descendant halo (van den Bosch 2002; McBride,

Fakhouri & Ma 2009; Fakhouri, Ma & Boylan-Kolchin 2010; Behroozi & Silk 2015;

van den Bosch et al. 2014a), whereas others define it as the progenitor that contributes

the most mass to the descendant halo (Wechsler et al. 2002; Zhao et al. 2003b; Zhao

et al. 2003a; Zhao et al. 2009; Giocoli, Tormen & Sheth 2012). In the analytical EPS

formalism, these definitions are assumed to be identical, but in numerical simulations

this is not always true. To illustrate this, van den Bosch et al. (2014) give an example

scenario. Consider two progenitors of a descendant halo with mass M : progenitor A

with mass MA = 0.53M and progenitor B with mass MB = 0.51M . Suppose B con-

tributes all of its mass to the descendant, whereas A only contributes 0.49M (with the

remaining 0.04M outside the boundary of the descendant halo). In such a situation,

A is the most massive progenitor, whereas B is the most contributing progenitor of

the descendant halo. With respect to using the most massive progenitor, the most

contributing progenitor under-predicts halo masses for z & 1.5, with differences of

∆ log〈M(z)/M0〉 ≃ 0.1–0.2 (Zhao et al. 2009; Giocoli, Tormen & Sheth 2012; van den

Bosch et al. 2014a). The main branch of the merger tree is identified as the one con-

taining the main progenitors. This main branch is referred to as the Mass Accretion

History (MAH) of a dark matter halo and is used to define halo formation times.

There have been numerous studies of the MAHs of dark matter halos, revealing
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several trends. One of these is that MAHs generally consist of two distinct phases:

an initial rapid growth phase, followed by a later phase of slower growth (Zhao et al.

2003b; Zhao et al. 2003a; Tasitsiomi et al. 2004; Li et al. 2007). The early, rapid

growth is characterised by major mergers, whereas the halo growth in the slower phase

is primarily due to minor mergers. Studies also consistently find that more massive

halos assemble their mass at later times, as a result of hierarchical structure formation

in CDM cosmology (van den Bosch 2002; Maulbetsch et al. 2007; Zhao et al. 2009;

Fakhouri, Ma & Boylan-Kolchin 2010; Giocoli, Tormen & Sheth 2012; van den Bosch

et al. 2014a).

van den Bosch et al. (2014a) compare results from N-body simulations and EPS

merger trees and find the two to be consistent. This is demonstrated in Figure 1.4, taken

from the van den Bosch et al. paper. They have extracted halo assembly redshifts,

zf , defined as the redshift at which the most massive progenitor of a halo (with mass

M0 at z = 0) has a mass fM0. The Figure shows results for f = 0.5 and f = 0.04

as indicated, with the red circles representing the median results obtained for the

merger trees and the solid blue line show the results from the N-body simulations. For

z = 0 halo masses 1015M⊙ & M0/h
−1 & 1011M⊙, van den Bosch et al. (2014a) find

z0.5 ∼ 0.5–1.5 and z0.04 ∼ 2–5. They also compare their results to the prediction of

Giocoli, Tormen & Sheth (2012), shown by the dashed green line. Different definitions

of the main progenitor halo are used, with van den Bosch et al. using the most massive,

and Giocoli et al. using the most contributing. The two agree very well for the f = 0.5

case, but the Giocoli et al. result somewhat under-predicts the f = 0.04 result from

van den Bosch et al. The fact that zf is a decreasing function of halo mass at z = 0

reflects the bottom-up nature of structure formation in ΛCDM cosmology — the largest

structures form most recently.

In the context of SMBH feedback, it is the depth of the potential well, measured

by the maximum circular-speed of the dark matter halo, Vd,pk, that determines the

critical SMBH mass that is required for quasar-mode blow-out. It is therefore the

redshift evolution of Vd,pk that needs to be considered here.
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Figure 1.4: Figure taken from van den Bosch et al. (2014), showing halo formation
redshifts, zf , as a function of halo mass, M0, for f = 0.04 and f = 0.5 as indicated in
the Figure. The solid blue line indicates the median value from the simulations used by
the authors, with the shaded blue region indicating the 68 percent confidence intervals.
The red open circles are the median formation redshifts obtained for the EPS merger
trees, the error bars reflecting the 68% range. The green dashed lines are the model
predictions of Giocoli et al. (2012). This Figure demonstrates the good agreement
between the merger tree and simulation results from van den Bosch et al.
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1.2 Baryons in galaxies

Although the dark matter halos dominate the gravity of extra-galactic systems, it

is baryonic matter in galaxies that is directly observed. In particular, the observed

SMBH correlations in z = 0 quiescent galaxies involve stars, rather than the dark

matter. In this context, the details of the stellar distribution, the amount of stars and

interdependences between stellar properties all need to be considered. Ultimately, the

stellar properties of z = 0 early-type galaxies need to be connected to properties of

the dark matter halos at z = 0 and higher redshifts, to allow a critical SMBH mass

prediction to be compared to the observed SMBH correlations at z = 0.

1.2.1 Stellar distributions

The distribution of light in early-type galaxies has been studied in great detail over the

years. de Vaucouleurs (1948) proposed the classic R1/4 law to fit the surface brightness

profiles for three giant ellipticals:

I(R/Re) = Ie exp
{
−7.669

[
(R/Re)

1/4 − 1
]}

. (1.25)

Here, Re is the effective radius, the projected radius from within which half of the

light of the system is emitted and Ie is the surface brightness at Re. Kormendy (2012)

suggested that this law provided the best fit for surface brightness profiles in all early-

type galaxies. However, as more data became available, it was eventually realised

that the R1/4 law was only applicable for an intermediate range of surface brightness

(Schombert 1986; Graham et al. 1996; Graham & Colless 1997).

A more flexible model is the Sérsic (1968) profile:

I(R/Re) = Ie exp
{
−bn

[
(R/Re)

1/n − 1
]}

. (1.26)

n is the Sérsic index and the constant bn is chosen to satisfy the definition of the

effective radius: ∫ Re

0

2πRI(R)dR =
1

2

∫
∞

0

2πRI(R)dR. (1.27)
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Generally, this must be determined numerically, but is approximated with error less

than ≃ 10−6 by

b(n) = 2n− 1

3
+

4

405n
+

46

25515n2
, (1.28)

over the range 1 ≤ n ≤ 10 (Ciotti & Bertin 1999).

Figure 1.5 shows surface brightness profiles for different values of the Sérsic index

[n = 1, 3, 4, 5 and 7 respectively, with line colours indicated in the Figure], as a function

of projected radius, R, normalised to Re. For n = 1, equation (1.26) reduces to

the exponential profile, used to describe the surface brightness distribution of dwarf

galaxies. The n = 4 case is the classic de Vaucouleurs law. Makino, Akiyama &

Sugimoto (1990) found that, for the range of radii usually investigated in observations

— approximately 0.1 ≤ R/Re ≤ 100 (Ciotti 1991) — it is difficult to distinguish

between de Vaucouleurs law and equation (1.26) for 3 ≤ n ≤ 7.

Introducing n as a free parameter to move from the R1/4 law to a generalised

de Vaucouleurs law [equation (1.26)], had the unsurprising consequence of improved

fits for surface brightness profiles. Caon, Capaccioli & D’Onofrio (1993) were the first

to investigate correlations between the Sérsic n and global photometric parameters,

namely the effective radius and total luminosity. Such correlations have implications

for the connections between other stellar properties in early-type galaxies, discussed

further in §1.2.3.

1.2.2 Stellar-to-dark matter mass ratios

The “global” baryon-to-dark matter mass ratio in a galaxy is often defined at the virial

(or some nearby overdensity) radius. One might naively assume that this would be at

or close to the cosmic average baryon fraction, fb ≡ Ωb,0/Ωm,0 (≃ 0.15 for Planck

2013 cosmology). However, there is a well-documented “missing baryons” problem

(McGaugh et al. 2010), the global mass ratios only reach cosmic values on cluster

size scales. The mass ratio then decreases systematically with decreasing halo mass

(McGaugh et al. 2010; Zhang et al. 2011; Gonzalez et al. 2013).
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Figure 1.5: Surface brightness, described by Sérsic (1968) profiles [equation (1.26)],
as a function of projected radius, R. I(R) is normalised to the value at the effective
radius, Ie ≡ I(Re). Four different values for the Sérsic index are shown; n = 1 (black
line), n = 3 (dark blue line), n = 4 (light blue line), n = 5 (green line) and n = 7
(magenta line).
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There have been several studies that attempt to quantify the missing baryons, in

particular regarding the global ratio of stellar-to-dark matter mass in galaxies, discussed

earlier in the context of galaxy formation efficiencies. Behroozi et al. (2013) compare

several derivations of this function at z ≈ 0 (Figure 1.2). The overall shape now has

a well understood physical explanation, and was discussed in the context of feedback.

For the smallest halos, supernova feedback and stellar winds are able to push gas out of

the potential well of the galaxy (Dekel & Silk 1986), preventing further star formation,

thus leading to low values of M∗(rvir)/Md(rvir). For larger halos, feedback from AGN

leads to inefficient star formation. The feedback becomes more effective at preventing

stars forming for higher mass halos, hence the stellar mass ratio decreases (Sijacki et al.

2015).

There are several different methods applied in the literature to derive the stellar-

to-dark matter mass ratio as a function of halo mass. Some of these attempt to directly

measure the halo mass through weak lensing (Hudson et al. 1998; Guzik 2002; Sheldon

et al. 2004; Madelbaum et al. 2006; Hudson et al. 2015) or using satellite galaxies

and/or stellar velocities as tracers of the halo potential well (Ashman, Salucci & Persic

1993; Zaritsky & White 1994; Prada et al. 2003; van den Bosch et al. 2004; Conroy

et al. 2007). Identifying clusters through optical or X-ray selected cluster catalogs and

directly measuring the galaxy content is another technique often used (Lin & Mohr

2004; Yang et al. 2007; Hansen et al. 2009). However, this technique is limited as it

can clearly only be applied for cluster-size systems (halo masses of ∼ 1013–1015M⊙).

Several studies have made use of the Abundance Matching technique (AM; Guo

et al. 2009; Moster et al. 2010; Behroozi, Conroy & Wechsler 2010; Moster et al.

2013; Behroozi, Conroy & Wechsler 2013). This involves assigning one central galaxy

to each virialised halo in ΛCDM simulations of structure formation. The stellar mass

is then determined by the virial mass of each parent halo, according to a prescription

that is ultimately required to give agreement between the simulations and the observed

galaxy luminosity function (or stellar mass function) at z = 0. Moster et al. (2010)

give a useful parametrisation of the results they obtained via this method. They fit
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their results with a double power-law function of the form,

M∗(rvir)

Md(rvir)
= 2

(
M∗

Md

)

0

{[
Md(rvir)

M1

]−γ

+

[
Md(rvir)

M1

]β
}−1

. (1.29)

In this equation, (M∗/Md)0 is a normalisation, M1 is a characteristic mass scale and γ

and β are the slope of the stellar mass ratio for small and large halos respectively.

The redshift evolution of the stellar-to-dark matter mass ratio has been considered

in cosmological simulations for 0 . z . 4 (Behroozi et al. 2010, 2013; Moster et al.

2010, 2013) and observations for 0 . z . 1 (Hudson et al. 2015; Coupon et al. 2015).

Moster et al. (2013) use the AM technique applied at multiple epochs to derive their

results. They allow the four free parameters in equation (1.29) [(M∗/Md)0, M1, β and

γ] to evolve, assuming a linear dependence on the expansion parameter, a = (1 + z)−1.

For each free parameter, Moster, Naab & White (2013) give an equation for the redshift

dependence of the form

Y (z) = Y0 + Y1
z

1 + z
. (1.30)

In this equation, Y = (M∗/Md)0, M1, β or γ and a subscript of 0 gives the value for

z = 0. The eight parameters are then constrained by fitting the model to a set of Stellar

Mass Functions at different redshifts. Moster et al. (2013) find that as z gets larger,

the maximum value of f∗,vir decreases and the corresponding halo mass increases. This

evolution slows down towards the higher redshifts they consider (z ∼ 4), due to the

(1 + z)−1 dependence.

The most recent weak lensing studies (Hudson et al. 2015; Coupon et al. 2015)

yield halo mass measurements over a range of stellar masses (∼ 5 × 108–2 × 1011M⊙)

and redshifts (0.2 < z < 0.8). At redshifts z ∼ 0.5, Hudson et al. (2015) report a

maximum in the stellar-to-dark matter mass ratio of ∼ 0.04, at Md,vir ≃ 2 × 1012M⊙.

They also find that M∗(rvir)/Md(rvir) evolves with redshift, in such a way that the

maximum value and corresponding halo mass both increase as z gets larger. This is

consistent with the findings of Behroozi, Wechsler & Conroy (2013), who find the same

qualitative result for redshifts 0 . z . 1.

For redshifts > 1, Behroozi, Wechsler & Conroy (2013) find that the maximum
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value of the mass ratio begins to decrease for increasing z. For 1 . z . 3, the

corresponding halo mass continues to increase, but then decreases for larger redshift.

However, Behroozi, Wechsler & Conroy (2013) urge caution in over-interpretation of

their results for z > 4, due to concerns about the reliability of the galaxy luminosity

functions at these redshifts.

1.2.3 Scaling relations of stellar properties

There are many connections and interdependences between the stellar properties of

early-type galaxies. Before obtaining average trends between stellar and dark matter

properties, these interdependencies need to be considered. The stellar properties that

are connected include the total luminosity, L, the velocity dispersion, σ, effective radius,

Re, stellar mass, M∗, mass-to-light ratios, M/L, mean surface brightness inside Re,

〈Ie〉 ≡ Ltot/2πR
2
e, and Sérsic index, n. It is essential to understand how the stellar

properties are related before connecting them to dark matter halo properties.

A key step in this field was the discovery by Faber & Jackson (1976) of a relation

between luminosity and velocity dispersion — L ∝ σα with α ≃ 4 — the so called

Faber-Jackson relation. This is now expressed in various forms (e.g. with M∗ instead

of L, through a mass-to-light ratio) and is analogous to the Tully-Fisher relation for

spirals (Tully & Fisher 1977). The Tully-Fisher relation connects the luminosity to the

width of the HI 21-cm emission line, which is broadened due to different Doppler shifts

at the opposite ends of the galaxy, caused by a rotating disk. The width of the 21-cm

emission line is approximately twice the maximum of the rotation curve, Vmax. This is

related to the luminosity through L ∝ V a
max, with a ≃ 2.5–4.

Pre-dating the Faber-Jackson relation, Gudehus (1973) noted that larger galaxies

have fainter effective surface brightnesses (i.e. Re is inversely proportional to 〈Ie〉).
Many years later, Djorgovski & Davis (1987) reported Re ∝ 〈Ie〉−0.83±0.08. At the same

time, Djorgovski & Davis (1987) and, in an independent study Dressler et al. (1987),

realised that these relations are projections of what is now called the Fundamental
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Plane (FP) of ellipticals, relating Re, 〈Ie〉 and σ. Given that

L = 2π〈Ie〉R2
e , (1.31)

the FP can equivalently be expressed as a relation between L, σ and 〈Ie〉 or between

Re, L and σ. By combining the stellar properties in such a way (i.e. through bivariate

correlations), it is possible to significantly reduce the scatter, due to interdependencies

between some of the properties. For example, the scatter around Re and σ (for a

given L or M∗) is anti-correlated. Therefore, certain combinations of σ and Re plotted

against luminosity (or stellar mass), have much smaller intrinsic scatter around them.

For early-type galaxies with σ > 130 km s−1, Djorgovski & Davis (1987) found a

tight correlation between the effective radius and a combination of the velocity disper-

sion and the mean effective surface brightness:

log[Re] = (1.39 ± 0.14) log[σ] − (0.90 ± 0.1) log[〈Ie〉] + const. (1.32)

They found the scatter around the FP to be characterised by the measurement errors,

implying very small intrinsic scatter. Dressler et al. (1987) obtained a very similar

result as this, for both elliptical and S0 galaxies. Both of these authors also suggested

that the FP may be curved at the lower-mass end, and hence not linear.

For early-type galaxies at z = 0 with σ > 130 km s−1, the ATLAS3D survey

(Cappellari et al. 2011; Cappellari et al. 2013b; Cappellari et al. 2013a) found

log[Re] = (1.37 ± 0.09) log[σ] − (0.86 ± 0.03) log[〈Ie〉] + (0.13 ± 0.01), (1.33)

consistent with Djorgovski & Davis (1987). However, for their entire sample of 258

elliptical galaxies, Cappellari et al. (2013a) find

log[Re] = (1.06 ± 0.04) log[σ] − (0.77 ± 0.02) log[〈Ie〉] + (0.19 ± 0.01), (1.34)

significantly different from the Djorgovski & Davis (1987), Dressler et al. (1987) and

other results in the literature (Bernardi et al. 2003). The difference between equation

(1.33) and (1.34) illustrates the importance of sample selection and that the parameters

of the FP depend on the region of surface included (i.e., there is curvature in the FP).
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To interpret the empirical FP relation, the observables above (i.e. Re, 〈Ie〉, σ)

need to be related to physical quantities. Djorgovski, de Carvalho & Han (1988)

outlined the following argument, based on the virial theorem. For a bound, virialised

system, −EP = 2EK , where EP and EK are the global potential and kinetic energy

respectively. Defining a mean radius, 〈R〉, and a mean square velocity, 〈V 2〉, that enter

the expressions for the two energies, then

GM

〈R〉 = 〈V 2〉. (1.35)

The observables are then related to the physical quantities through simple pro-

portionalities; Re = kR < R >, σ2 = kV 〈V 2〉 and L = 2π〈Ie〉R2
e. The parameters kR

and kV represent the density and kinematical structure of a given galaxy. Combining

these with equation (1.35) and re-arranging for Re yields a theoretical expression for

the FP:

Re = kS

(
M

L

)−1

σ2 〈Ie〉−1, (1.36)

where kS = (2πGkRkV )−1 combines the structural parameters. The observed FP [equa-

tion (1.33)] can also be expressed in this form;

Re ≃ 1.55 σ1.37 〈Ie〉−0.86. (1.37)

By comparing equations (1.36) and (1.37), it follows that kS(M/L)−1 cannot be

constant if the virial theorem argument is to reproduce the observed tilt of the FP.

Either the structure or the mass-to-light ratio (or both) must vary in a systematic

way. There are many studies in the literature that investigate this (Bender, Burstein

& Faber 1992; Bender, Burstein & Faber 1993; Guzman, Lucey & Bower 1993; Bender,

Saglia & Gerhard 1994; Graham et al. 1996; Graham & Colless 1997; Trujillo, Burkert

& Bell 2004; Cappellari et al. 2006; Chen et al. 2010; Cappellari et al. 2011; Cappellari

et al. 2013b; Cappellari et al. 2013a).

One extreme is to assume that elliptical galaxies all have the same density dis-

tributions, meaning they are homologous. If ellipticals are homologous, then kS is con-

stant and the tilt of the FP is entirely due to systematic variations in the mass-to-light
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ratios. Under this assumption, where the virial theorem gives M ∝ σ2Re, mass-to-light

ratios (inferred from how the observed FP deviates from L ∝ σ2Re) have consistently

been found to vary with luminosity (or stellar mass); a power-law of (M/L) ∝ L0.1−0.4

[(M/L) ∝ M0.1−0.3] is commonly reported (Dressler et al. 1987; Recillas-Cruz et al.

1990; Djorgovski & Santiago 1993; Magorrian et al. 1998; Cappellari et al. 2013b).

More recently, Cappellari et al. (2013b) derived a relation between M/L and velocity

dispersion, finding M/L ∝ σ0.72.

Another extreme is to assume a constant mass-to-light ratio for all ellipticals, with

the entire tilt due to non-homology. The structural homology has been investigated

by fitting the light profiles of ellipticals with Sérsic profiles, allowing for variable n. It

has been shown that the Sérsic n does indeed depend on various observed properties

of the galaxy including L (or M∗) and Re, with more massive galaxies implying larger

n (Graham et al. 1996; Graham & Colless 1997; Trujillo, Burkert & Bell 2004; Chen

et al. 2010). This is shown in Figure 1.6, taken from the Graham & Colless (1997)

paper, with total stellar mass plotted as a function of Sérsic index, n.

1.2.4 Population synthesis models

There are many correlations between stellar properties and the total stellar mass, M∗,tot,

as well as the MBH–M∗,tot relation. However, M∗,tot cannot be measured directly. One

possible way of calculating M∗,tot is to combine an integrated luminosity with a stellar

mass-to-light ratio, M∗/L. These can be obtained from stellar population synthesis

models, used to interpret the integrated light that is observed from galaxies. Population

synthesis models are vast, and have many applications. The focus here is the mass-

to-light ratios, in-particular for the normal, quiescent galaxies at z = 0 that are used

to define the SMBH–bulge property correlations. Early-type galaxies at z = 0 with

stellar masses in the range 1010M⊙ . M∗,tot . 1012M⊙, typically have mean stellar

ages of a few (7–11) Gyr, and metallicities −1.7 . [Z/H ] . 0.3. This metallicity range

corresponds to colours 0.5 . (g−r) . 1. The mean stellar age corresponds to the time

in Gyrs since the galaxy formed. For Planck (2014) cosmology, an age range of 7–11



36

Figure 1.6: Taken from the Graham & Colless (1997) paper, with total stellar mass,
Mtot, as a function of Sérsic index, n. This appears to show a correlation between
M∗,tot and n, although with a lot of scatter.
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Gyr corresponds to redshifts 0.8 . z . 2.3.

The integrated light includes information regarding mass-to-light ratios, line in-

dices and colours. These quantities allow for some understanding regarding the mix of

stars that give rise to the observed light. The most commonly used stellar population

models are the single burst models, also referred to as Simple Stellar Populations (SSP;

Maraston 1998, 2005; Bruzual & Charlot 2003). For these, all stars are assumed to

form at the same time, with identical chemical composition and a chosen initial mass

function (IMF). More advanced models take into account other physical factors such as

ongoing star formation, and are called Composite Stellar Populations (CSP; Bruzual &

Charlot 2003). However, these additional processes are not well understood in detail,

so CSP models should be used with caution.

There are a few steps required to obtain the model predictions for either an

SSP or CSP. Firstly, a set of theoretical stellar isochrones are needed, representing

a population of stars of some age and metallicity, two of the input parameters. The

isochrones include the physics of stellar evolution, including opacities and a recipe for

dealing with convection. The next step requires transforming the theoretical properties

of the isochrones (e.g. effective temperature, Teff , and luminosity, L) into observable

quantities (e.g. colours, line indices and mass-to-light ratios).

Most population synthesis models give various outputs for mass-to-light ratios,

with values for “alive” stars only, including remnants (white dwarves, neutron stars and

stellar black holes) and/or including stellar ejecta. It is the normalisation of the mass-

to-light ratios that changes depending on whether remnants and ejecta are included or

not.

1.2.4.1 Initial Mass Functions (IMFs)

An initial mass function (IMF) is an empirical function that describes the distribution

of the initial mass for a given population of stars. It is often given as a probability

distribution function for the mass at which a star begins its evolution along the main

sequence. Various forms exist in the literature and it is usually presented as φ(m) dm
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(or similar). By definition, φ(m) dm is the number of stars with masses in the range

m to m+ dm: φ(m) ≡ dN/dm.

The IMF in our Galaxy was quantified by Salpeter (1955), who found

φ(m) ∝
(
m

M⊙

)−2.35

. (1.38)

However this is now known to largely over-estimate the number of stars with masses

< 1M⊙. More recent determinations suggest that the IMF deviates from a pure power

law, becoming flatter at lower masses (Miller & Scalo 1979; Scalo 1986). IMFs in the

form of broken power laws have been proposed by several authors (Scalo 1986; Kroupa

2001). Broadly speaking, these have the form

φ(m) ∝





(
m

M⊙

)−α1

for m1 ≤ m < m2

(
m

M⊙

)−α2

for m2 ≤ m ≤ m3

(
m

M⊙

)−α3

for m3 < m.

(1.39)

For a Scalo (1986) IMF, the slopes are α1 = 1.8, α2 = 3.25 and α3 = 2.45, with

m1 = 0.2M⊙, m2 = 1M⊙ and m3 = 10M⊙. This is shown by the dotted green line

in Figure 1.7. The Kroupa (2001) IMF, shown by the broken red line in Figure 1.7,

has slopes α1 = 0.3, α2 = 1.3 and α3 = 2.3, with m1 = 0.01M⊙, m2 = 0.08M⊙ and

m3 = 0.5M⊙.

Finally, Chabrier (2003) gives a log-normal form of the IMF;

φ(m) ∝





1

m
exp

{−[(logm)2 + 2.194 logm]

0.95

}
for m < 1M⊙

(
m

M⊙

)−2.3

for m > 1M⊙,

(1.40)

shown by the solid blue line in Figure 1.7. For m & 1M⊙, all of these IMFs roughly

follow a power law, similar to the original Salpeter IMF. However, at smaller masses

there are significant differences, with the most recent models predicting more realistic

values for the number of lower mass stars.
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Figure 1.7: Initial Mass Function (IMF), φ(m)/φ0, versus stellar mass, m/M⊙ for four
different models. For each, the IMF is normalised such that φ(m)/φ0 = 1 at m = 1M⊙.
The dashed black line is the Salpeter (1955) IMF, the dotted green line the Scalo (1986)
IMF, the broken red line is for the Kroupa (2001) IMF and the solid blue line represents
the Chabrier (2003) IMF. The differences between these three IMFs are discussed in
detail in the main text.
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1.2.4.2 Mass-to-light ratios

Figure 1.8 shows mass-to-light ratios as a function metallicity, [Z/H ]. The curves are

all from the Maraston (1998) population synthesis models, with a mean stellar of 9 Gyr

assumed. The different line colours are for the M/L values in different band-passes;

the K-(red lines), V-(cyan lines) and B- (black lines) band. The dashed lines are for an

assumed Salpeter IMF and the solid lines assume a Kroupa IMF. For a Salpeter IMF,

the mass-to-light ratios are systematically higher, by a factor of ∼ 1.5- 2, depending

on bandpass and metallicity. This is due to the over-prediction of the number of stars

that the Salpeter IMF makes.

Figure 1.9 shows the stellar mass-to-light ratios as a function of age (in years)

for six different band-passes. These are again from the Maraston (2005) population

synthesis models, assuming a Kroupa (2001) IMF and a solar metallicity, [Z/H ] = 0.

From the shortest wavelength, the filters considered are the B−(black line), g′−(blue),

V−(cyan), r′−(green), z′−(magenta) and K−(red) band. The Figure shows M/L

values for ages between 1 Gyr and 20 Gyr. Over this range, the mass-to-light ratios for

the shortest wavelengths change quite dramatically, from M/L ∼ 1 to M/L ∼ 5.5–6.5.

For the longer wavelengths, most notably in the K−band, the M/L values vary much

less.

Figure 1.10 demonstrates two things: how the mass-to-light ratios from popula-

tion synthesis models vary as a function of colour (and hence metallicity) in the various

band-passes, and how including stellar ejecta effects the normalisation. These are once

again taken from Maraston’s models, with the stellar age assumed to be 9 Gyr and for

a Kroupa IMF. The left panel shows the total mass-to-light ratios (including remnants

and ejecta) and the right panel shows the stellar mass-to-light ratios (including rem-

nants but not ejecta). In both panels, the mass-to-light ratios are shown as a function

of (g − r) colour. M/L values corresponding to the shorter wavelengths (i.e. B-band,

g-band and V-band) are more sensitive to changes in colour than the redder (longer)

wavelengths. The K-band mass-to-light ratios are approximately constant over the

(g − r) colour range shown in the Figure. This is true more generally — the K-band
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Figure 1.8: Stellar mass-to-light ratios, M∗/L, as a function of metallicity, [Z/H ], as-
suming a stellar age of 9 Gyr, from Maraston’s population synthesis models (Maraston
1998, 2005). The broken lines are for an assumed Salpeter (1955) IMF and the solid
lines assume a Kroupa (2001) IMF. The different line colours represent M/L values in
the K-(red lines), V-(cyan lines) and B-(black lines) band-passes.
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Figure 1.9: Stellar mass-to-light ratios, M∗/L, as a function of age (in years), assuming
a Kroupa (2001) IMF and a solar metallicity, [Z/H ] = 0, from Maraston’s population
synthesis models (Maraston 1998, 2005). The six curves correspond to M∗/L values in
various bandpasses, with the different line colours indicated in the Figure.
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Figure 1.10: Left panel: Total(including remnants and stellar ejecta) mass-to-light
ratios, Mtot/L, as a function of (g − r) colour, assuming a Kroupa (2001) IMF and
a stellar age of 9 Gyr, from Maraston (2005). Line colours represent different band
passes, as for the previous two Figures. Right panel: Same as above, but for stellar
(remnants but no ejecta) mass-to-light ratios, M∗/L.
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mass-to-light ratios do not show much variation as a function of colour/metallicity.

The difference between the two panels is the normalisation of the M/L values.

Normalising masses to 1 solar mass (M⊙), Maraston’s population synthesis models yield

a stellar mass (including remnants), M∗ ≃ 0.58 for a Kroupa IMF and a stellar age of 9

Gyr. It is worth noting that this value varies by less than 1% for −2.25 ≤ [Z/H ] ≤ 0.67

and by no more than ∼ 5% for ages between 5 and 15 Gyr. Assuming that the remaining

baryonic mass in these models is stellar ejecta, Mej, thenMtot ≡ Mej+M∗ = 1 (since the

mass is normalised to M⊙). To re-normalise the stellar mass-to-light ratios to include

the stellar ejecta, M∗/L needs to be multiplied by (Mej + M∗)/M∗ = 1M∗ ≃ 1.72.

This also yields another useful number, the ratio of stellar ejecta mass to mass in

stars, Fej ≡ Mej/M∗ ≃ 0.72. In the context of the work presented here, stellar ejecta

(particularly Fej) are important for calculations of stellar velocity dispersions.

1.2.4.3 Composite stellar populations

Star formation is not instantaneous in reality and potentially lasts for several Gyrs. It is

therefore necessary to compare output quantities from SSPs and models with different

star formation histories (e.g. Bruzual & Charlot 2003). In the context of this work, the

important quantities to consider are the mass-to-light ratios and the amount of stellar

ejecta. The GALAXEV library of stellar population synthesis models, computed from

the isochrone synthesis code of Bruzual & Charlot (2003), allows for comparisons of

both of these for different star formation histories. Mass-to-light ratios are calculated

in various band passes, considering three scenarios for the star formation:

1. Single, instantaneous burst of star formation (SSP)

2. Star formation at a constant rate, up until some cut-off time, tcut

3. An exponentially declining star formation rate, with an e-folding time, τ and

cut-off, tcut.

In order to make a comparison, a consistent definition of mean stellar age, T , is

required. For the SSP case, this is straight forward — the time since the instantaneous
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burst. For extended star formation, the mean stellar age is defined as

T (t) = t− 〈tform〉, (1.41)

where

〈tform〉 =

∫ t

0
t′ψ(t′)dt′

∫ t

0
ψ(t′)dt′

(1.42)

is a mean formation time. In equation (1.42), ψ(t) is the star formation rate. For

the SSP case, ψ(t) = 0, so T = t since t = 0 is defined as the time of formation for

single-burst synthesis models.

For a constant star formation rate, ψ(t) = 1/tcut for t ≤ tcut and is equal to zero

otherwise. From equations (1.41) and (1.42), this yields

T (t) =

{
t− 1

2
t if t ≤ tcut

t− 1
2
tcut if t > tcut.

(1.43)

On the other hand, an exponentially declining star formation rate, with ψ(t) = e−t/τ/τ

for t ≤ tcut (again zero otherwise), leads to

T (t) =





t− τ [et/τ − (1 + t/τ)]

et/τ − 1
if t ≤ tcut

t− τ [etcut/τ − (1 + tcut/τ)]

etcut/τ − 1
if t > tcut.

(1.44)

The top two rows of Figure 1.11 show V-band (cyan lines) and K-band (red lines)

mass-to-light ratios versus mean stellar age for a few values of tcut and τ (see labels in

Figure). A solar metallicity was assumed for these calculations. For the four panels

in the top two rows, the dot-dash lines are for an SSP model, the solid lines are for

a constant star formation rate and the dotted lines are for an exponentially declining

star formation rate. The bottom row shows the ratio of (M/L) from the constant star

formation model to (M/L) from the SSP model, for tcut = 2 Gyr (left) and tcut = 4

Gyr (right). For a mean stellar ages & 7 Gyr, the M/L values are the same, to within

< 5%, for all three scenarios with star formation lasting up to 6 Gyr. Allowing for an

extended star formation history therefore has little effect on the mass-to-light ratios

required for calculating the total stellar masses of early-type galaxies at z = 0.
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Figure 1.11: Top two rows: Mass-to-light ratios as a function of T = t−〈tform〉 (defined
in the text), for different values of two star formation rate parameters: cut-off time,
tcut and e-folding time, τ . In all four panels, the cyan lines are V-band and red lines
are K-band mass-to-light ratios. The dot-dash lines are for stars formed from a single,
instantaneous burst (SSP), the solid lines are for a constant star formation rate and the
dotted lines are for an exponentially declining star formation rate. Bottom row: The
ratio of M/L from the constant star formation model, to M/L from the SSP model,
for tcut = 2 Gyr (left) and tcut = 4 Gyr. Line colours are the same as for the panels
above.
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As for the mass-to-light ratios, the effects of allowing for extended star formation

on the value of Fej are considered. The top two rows in Figure 1.12 shows Fej as a

function of the mean stellar age, T , as defined by equations (1.41) and (1.42). The

three star formation histories (single burst, constant star formation rate, exponentially

declining star formation rate) are compared, with a few different values for the cut-off

time, tcut, and the e-folding time, τ (see labels in Figure 1.12). The bottom row shows

the ratio Fej calculated from a constant star formation model to Fej from an SSP model.

For mean stellar ages & 7 Gyr, the value of Fej is very robust to any changes in the

star formation history, with a < 2% increase for extended star formation.

1.3 Supermassive Black Holes (SMBH)

Dark matter halos, and the baryonic matter within them, are the two main components

of galaxies. The final piece of the puzzle to discuss is the Supermassive Black Holes

(SMBHs) residing at the centre of galactic nuclei, and in particular their masses. As

well as AGN and quasars, most early-type galaxies and bulges harbour a supermassive

black hole (SMBH) in their centre, with masses MBH = 106–1010M⊙. The Milky Way,

a typical large spiral galaxy, hosts a SMBH with MBH ≃ (4.41± 0.43)× 106M⊙ (Ghez

et al. 2008; Meyer et al. 2012). The Andromeda galaxy (also known as M31), one of the

closest galaxies to the Milky Way, is also a spiral galaxy with MBH ≃ (1.4+0.9
−0.3)×108M⊙

(Bender et al. 2005).

The idea of SMBHs originates from the study of quasars. The discovery of the

first quasars (Schmidt 1963; Oke 1963; Oke & Schmidt 1963; Burbridge, Burbridge

& Sandage 1963; Sandage 1963) was a significant step forward for extra-galactic as-

tronomy. These extremely luminous, high redshift objects are easily detected due to

being many times brighter than normal, quiescent galaxies. Observations of small but

extremely bright objects with similar variability time scales (of approximately 1 day)

hinted at the prospect of a similar mechanism producing the large luminosities. It was

soon realised that this mechanism would be powered by some central engine, inside
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Figure 1.12: Top two rows: Stellar ejecta mass fraction, Fej ≡ Mej/M∗, versus mean
stellar age for the three different star formation scenarios considered here. In all four
panels, dot-dash lines are for SSP models, solid lines for a constant star formation rate
and dotted lines an exponentially declining star formation rate. The values for the
cut-off time, tcut, and e-folding time, τ , are shown in each individual panel. Bottom

row: The ratio of Fej calculated from the constant star formation model to Fej from
the SSP model, for tcut = 2 Gyr (left) and tcut = 4 Gyr (right).
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Active Galactic Nuclei (AGN). The existence of SMBHs in AGN was first postulated

by Salpeter (1964), with the hypothesis of an AGN powered by conversion of gravi-

tational energy into radiation via matter accretion onto an SMBH quickly becoming

the accepted theory (Lynden-Bell 1969; Lynden-Bell & Rees 1971). This only gained

wider acceptance when Rees (1978) showed that there are multiple ways for an SMBH

to form at the centre of a galactic nucleus, making it highly probable to happen.

1.3.1 SMBH formation

Rees (1978) postulated several methods for the initial formation of SMBHs, generally

involving some seed black hole at redshifts z > 0 (Volonteri 2010). These then grow

to the SMBH detected in galaxies at z = 0 via rapid accretion of gas. It is this rapid

accretion that gives rise to quasar activity. However, the growth of the initial SMBHs

remains a major challenge for theoretical models.

One scenario for the formation of the initial black hole seed is that they are

remnants of the first generation of stars (Population III stars), formed out of zero

metallicity gas. These first stars are expected to form in small (∼ 106M⊙) halos at

high redshifts (z ∼ 20–50). Simulations of the collapse of primordial molecular clouds

suggest that many first generation stars have masses > 100M⊙ (Bromm, Coppi &

Larson 1999; Bromm, Coppi & Larson 2002; Bromm & Loeb 2003; Yoshida et al.

2006). Such massive, low metallicity stars will directly form black holes, with masses

approximately half the star’s mass. However, there are problems with this formation

scenario. If the remnant black hole is too light, it will not be dynamically stable (i.e.,

stationary) within the centre of the galaxy. Remnants with masses > 150M⊙, formed

from stars with masses exceeding 250M⊙, would be required to prevent the remnant

from experiencing significant Brownian motion. It remains unclear if Population III

stars would have been massive enough (Volonteri 2010).

Another theory is the heavy seed model. In this scenario, the initial black holes

formed when massive gas clouds collapse to form supermassive stars with masses M ∼
105 (Volonteri 2010; Valiante et al. 2016). Such a star would only last a few million
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years, before collapsing into a black hole. However, instead of a supernova explosion,

the remaining matter puffs out, not dis-similar to a red giant. This leads to a seed

black hole, with MBH ∼ 105M⊙, that is able to grow to the masses that are measured

today by rapidly accreting the surrounding matter.

1.3.2 Observational evidence

In order to dynamically detect an SMBH, the gravitational sphere of influence radius,

rinf needs to be resolved. Within this radius, the gravitational potential of an SMBH

has a significant effect on the dynamics of stars (or gas) in the host galaxy. This radius

is defined by

rinf ≡
GMBH

σ2
≃ 10.8

(
MBH

108M⊙

) ( σ

200 km s−1

)−2

pc. (1.45)

For the sphere of influence to be resolved, the angular size, θinf , needs to be greater

than the resolution of a telescope. Denoting the distance to a galaxy as D, the angular

size is

θinf ≡
rinf

D
≃ 0.2

(
MBH

108M⊙

) ( σ

200 km s−1

)−2
(

D

10 Mpc

)−1

arcsec. (1.46)

For nearby galaxies at distances of D = 1–20Mpc, and for rinf ∼ 10 pc, equation (1.46)

corresponds to angular sizes in the range 2 & θinf & 0.1 arcsec. This is right at the

limit of telescope angular resolutions — a characteristic resolution limit for space-based

observations (e.g. the Hubble space telescope) is θ = 0.1.

1.3.2.1 Proper stellar motions

By far the most secure SMBH detection is the one at the centre of the Milky Way.

Due to the close proximity of the Galactic centre, with D ≃ 8.28 ± 0.33 kpc (Genzel,

Eisenhauer & Gillessen 2010), the motion of individual stars can be followed through

their orbits. One of the shortest orbital periods observed so far is approximately 15.8

years. More than one complete orbit of this star has already been observed, yielding
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MBH ≃ (4.30 ± 0.36) × 106M⊙ (Genzel et al. 2010). Dozens of other stars in close

orbit around the centre are being tracked, each of which will eventually provide an

independent measure of MBH.

If the orbit of a star is observed to be closed (within errors), then essentially all

of the attracting mass is located inside its pericentre radius. For the star mentioned

above with more than one observed complete orbit, the pericentre radius is ≃ 0.00059

pc ≃ 122 AU (Kormendy & Ho 2013). This is the “effective” spatial resolution of the

SMBH mass measurement in the Milky Way. The pericentre velocity of this star is

& 6000 km s−1 ≃ 0.02c (Kormendy & Ho 2013). These observations set the standard

for how close to the SMBH observations can get that provide estimates for MBH.

These results establish the existence and mass of the central dark object beyond

any reasonable doubt. They also eliminate astrophysical plausible alternatives to an

SMBH, including brown dwarfs, stellar remnants and even fermion balls (Ghez et al.

2005). The conclusion is that SMBHs are being detected, at the very least at the centre

of the Milky Way.

1.3.2.2 Stellar dynamics

For normal, quiescent galaxies, SMBH detections are secure if the mass of the SMBH,

MBH, can be estimated. The sphere of influence needs to be resolved in order to obtain

an accurate estimate for MBH. If rinf is resolved, then stellar and ionised gas dynamics

can be used to estimate BH mass (Ferrarese & Ford 2005; Merritt 2013). Such estimates

are based on velocities affected by the gravitational forces from mass within the galaxy

nucleus (stars, gas), as well as the SMBH.

The following is a summary of the detailed discussion from Binney & Tremaine

(2008) on distribution functions and the collisionless Boltzmann equation. To very

good approximation, galaxies can be treated as collisionless stellar systems — each

star moves through the combined gravitational potential, Φ(x, t), of the other stars.

The system can therefore be described analytically by a distribution function, f(x,v, t),

defined as the number of stars occupying a given six-dimensional phase-space volume,
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d3xd3v. The distribution function has to obey a continuity equation, i.e. the rate of

change of the number of stars in a given phase-space volume is equal to the amount of

inflow minus the amount of outflow:

∂f

∂t
+ v.∇f −∇Φ(x, t).

∂f

∂v
= 0. (1.47)

This is known as the Collisionless Boltzmann Equation (CBE), with the potential Φ

connected to the total mass density, ρ, by the Poisson equation:

∇2Φ(x, t) = 4πGρ(x, t). (1.48)

Generally speaking, the mass density and the six components of velocity and ve-

locity dispersion are required. However, observational data only contain information on

the surface brightness profile and the line of sight velocity and velocity dispersion only.

Assuming the system is in a steady-state (time independent) and spherical symmetry,

the first velocity moment of the CBE yields

1

ρ(r)

d[ρ(r)σ2
r(r)]

dr
+ 2β(r)

σ2
r(r)

r
= −dΦ(r)

dr
. (1.49)

This is the spherical, anisotropic Jeans equation, where σ2
r (r) is the radial velocity

dispersion and β(r) quantifies the degree of radial anisotropy. This is defined as:

β(r) = 1 − σ2
θ(r)

σ2
r(r)

, (1.50)

where σ2
θ(r) is the tangential velocity dispersion. If σ2

r = σ2
θ so that β(r) = 0, the

system is isotropic. For an isotropic stellar system, the Jeans equation is the same as

the hydrostatic equilibrium equation for collisional fluids, with ρσ2 analogous to the

pressure.

An application of the spherical Jeans equation is for estimating SMBH masses.

For spherical distributions, dΦ/dr = GM(r)/r2, where M(r) is the total (stars, dark

matter and SMBH) mass inside radius r. Given this, equation (1.49) can be written as

M(r) =
r σ2

r(r)

G

[
−d ln ρ(r)

d ln r
− d lnσ2

r(r)

d ln r
− 2β(r)

]
. (1.51)
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The first evidence for an SMBH in a quiescent galaxy was provided by Sargent et al.

(1978) and Young et al. (1978), for the elliptical galaxy, M87, based on equation (1.51).

They assumed isotropy, β(r) = 0, and did not include dark matter in their modelling.

They analysed both the velocity dispersion and mass density (obtained from a lu-

minosity density and an assumed mass-to-light ratio varying with r) as functions of

radius. Sargent et al. found that the nucleus of M87 contains a compact mass of

M ∼ 5 × 109M⊙, within r < 100pc.

Although it is reasonable to assume spherical symmetry (at least in the case of

M87), there is no guarantee that β = 0 is accurate. Both Binney & Mamon (1982)

and Richstone & Tremaine (1985) re-analysed the Sargent et al. (1978) data, with the

assumption of isotropy relaxed. For M87, the mass-to-light ratio was constrained to

be constant across the entire galaxy. With β allowed to be a free function of radius,

a wide variety of mass profiles are consistent with the given dispersion and surface

brightness profiles. For example, a model with M/LV ≃ 7.6 and a highly anisotropic

velocity dispersion for the inner 300 pc (Binney & Mamon 1982), fits the data equally

as well as the Sargent et al. (1978) model. However, this anisotropic model (and

other anisotropic models) has not been tested for dynamical stability (Ferrarese &

Ford 2005). The problems encountered for M87 illustrates just how difficult modelling

stellar kinematical data can be in general.

Given the observables, it is a non-trivial task to root out these difficulties. The

degeneracy between a radially varying M/L and β, referred to as the “mass-anisotropy

degeneracy”, can be partly broken by analysing the line of sight velocity distribution

(LOSVD). The LOSVD gives the fraction, F (vLOS)dvLOS, of stars with line of sight

velocities between vLOS and vLOS +dvLOS. The second moment of the LOSVD, which is

reflected in the shape of the absorption line profiles, depends on the level of anisotropy

of the system (Gerhard 1993). For example, a radially anisotropic system (β > 0) corre-

sponds to an LOSVD that is “cuspy” (lies above the isotropic case), and a tangentially

anisotropic system (β < 0) has a “flat-topped” LOSVD (lies below the isotropic case).

The presence of an SMBH stretches the wings of the LOSVD, due to stars orbiting in a

Keplerian potential with high velocities (van der Marel 1994; Ferrarese & Ford 2005).
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Accounting for anisotropy makes estimating SMBH masses based on stellar kine-

matics much more complex. The distribution function for a spherical, isotropic system

requires only one integral of motion, the total energy of the system. This makes it

possible to have a one-to-one correspondence between ρ(r) and f , and hence the ve-

locity dispersion can be determined once the distribution function is known. However,

if the velocity dispersion is anisotropic, the distribution function depends on at least

two integrals of motion. In the simplest case, the second is taken to be the square of

the angular momentum, L2.

Two-integral models require relating the second order velocity moments to the

potential and density of the stellar system, and are handled by the Jeans equation in

the following way. First, the observed surface brightness profile is de-projected and

translated to a mass density by assuming a ( generally spatially constant) M/L value

and a central point mass (i.e., MBH). From this the gravitational potential can be

calculated, and then the Jeans equation can be solved for the mean square velocities.

These are projected onto the plane of the sky to obtain the line of sight velocity and

velocity dispersion, then compared to the observed velocities. This process is repeated

until the values of M/L and MBH which produce the best fit to the data are found.

Unfortunately, 2 integrals of motion are not sufficient in most cases. However,

Schwarzschild (1979) devised a method to construct model galaxies without any ex-

plicit knowledge of the integrals of motion. This requires defining the gravitational

potential as the sum of the central point mass and the stellar density. “All possible

orbits” in this mass distribution are then calculated as functions of energy and an-

gular momentum, and integrated over many periods to give time-averaged densities,

velocities and velocity dispersions (Kormendy & Ho 2013). The optimal combination

of these orbital distributions is calculated to give the best fits to the light and veloc-

ity dispersion profiles. This method is widely applied in BH detection codes, i.e., the

Nuker code (Gebhardt et al. 2000; Gebhardt et al. 2003). The Schwarzschild method

still has drawbacks. For example, the inclination angle, i, is always assumed a priori.

If i is not assumed, then there is an extra degree of freedom that cannot be constrained

by observables. Despite the complexity of allowing for anisotropic velocity dispersions,
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MBH estimates through stellar kinematics are in reasonable agreement with estimates

made from different methods.

1.3.2.3 Gas dynamics

As well as a stellar dynamical detection, M87 is also the closest galaxy for which MBH

has been estimated through gas dynamics (Macchetto et al. 1997). This analysis is

based on the rotation of the ionised gas disk near the centre of M87, with Macchetto et

al. (1997) finding MBH ≃ (3.2±0.9)×109M⊙. Ferrarese & Ford (2005) summarise the

steps involved in estimating SMBH masses through gas dynamical data. In general,

this involves calculating the contribution to the circular velocity at a given radius,

from the stars and gas disk, by determining the mass of each component within that

radius. An additional contribution from a central point mass, MBH, also needs to be

considered, and this is left as a free parameter in the models.

The circular velocity is then projected along the line of sight, which requires an

inclination angle of the disk, normally assumed a priori. The model is then compared

to the observations, and the free parameters are tweaked until the best fit to the data is

obtained. When possible, the free parameters are left as: MBH; the disk inclination; the

mass-to-light ratio for the stars; the systematic velocity of the disk and the projected

position of the centre of the slit relative to the kinematical centre of the disk.

Estimates ofMBH based on gas motions are generally easier than stellar-dynamically

estimates for a number of reasons. Firstly, the enclosed mass can be obtained directly

from the circular velocity of the gas

v2
c (r) =

G[M∗(r) +MBH]

r
. (1.52)

For stars, the velocities measured near the SMBH are “contaminated” by stars that

orbit to much greater distances. Finally, the motion of the gas is characterised by one

velocity at every radius. Hence, there is no anisotropy, as is potentially the case for

stars.
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1.3.2.4 Reverberation mapping

A useful method for SMBH detection in AGN is reverberation mapping (Blandford &

McKee 1982; Netzer & Peterson 1997). Spectra of AGN exhibit broad emission lines at

certain wavelengths, usually optical and ultraviolet. The widths of these emission lines

are assumed to reflect Doppler broadening, with inferred velocity widths 500 km s−1 .

∆V . 104 km s−1 (∆V is the full width half maximum of the velocity broadening

function). The emission line fluxes vary strongly with changes in the continuum (the

light from the accretion disk near the SMBH), implying that they are due to ionising

photons from the central source.

The response of the emission lines is also found to be delayed with respect to

changes in the continuum, so associating these delays with light travel time, the size of

the broad line emission region, RBLR, can be estimated (found to be RBLR ∼ 0.01–0.1

pc). Since the emission line gas is located well inside the SMBH sphere of influence,

this leads directly to an estimate for the SMBH mass:

MBH =
f RBLR (∆V )2

G
, (1.53)

where f is a constant of order unity. The actual value for f depends on unknowns

such as the geometry of the broad emission region and the radial emissivity of the gas.

In spite of these unknowns, reverberation mapping mass estimates hold an important

advantage over stellar dynamical detections. The ∆V term in equation (1.53) is due

almost entirely due to the gravitational force of the SMBH, so the sphere of influence

does not need to be resolved.

1.3.3 Correlations between SMBHs and galaxy properties

Observations of quiescent z = 0 galaxies show that the masses of the SMBH correlate

with global properties of the host galaxy. These properties include bulge luminosity,

Lbulge (Magorrian et al. 1998; Marconi & Hunt 2003; Gültekin et al. 2009; McConnell &

Ma 2013; Kormendy & Ho 2013), bulge mass, Mbulge (Magorrian et al. 1998; Häring &
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Rix 2004; McConnell & Ma 2013; Kormendy & Ho 2013), and stellar aperture velocity

dispersion, σap (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Ferrarese & Ford 2005;

Gültekin et al. 2009; McConnell & Ma 2013; Kormendy & Ho 2013), measured inside

specific fractions of the stellar effective radius, Re. The definition of Mbulge varies

between authors (e.g. stellar or dynamical mass), as does the fraction of Re chosen to

measure the aperture velocity dispersion.

The black hole–galaxy correlations are often fitted by power-laws of the form

log

(
MBH

M⊙

)
= α+ β log(X), (1.54)

where X is the galaxy property in question. This is done as a first-order character-

isation, allowing investigation of the intrinsic scatter: indeed it is the relatively low

scatter around such fits that make these scaling relations interesting. However, there

is generally no physical reason given for these relations to be power laws.

Figures 1.13–1.15 illustrate these correlations, using the data set compiled by

Kormendy & Ho (2013), along with their best fitting power-laws. For z = 0 galaxies,

Kormendy & Ho (2013) have collected together reliable black hole mass estimates for

35 elliptical and 41 bulges (at the centre of disk galaxies), along with absolute K-band

magnitudes and aperture stellar velocity dispersions, σap. They also calculate bulge

masses for each galaxy (cf. §1.3.3.2). Kormendy & Ho (2013) split their bulge sample

into classical bulges and pseudo-bulges.

Kormendy & Ho (2013) claim that properties of classical bulges and ellipticals

indeed correlate closely with MBH, but pseudo-bulges do not. For their best fitting

power laws, they include only the classical bulges (red points in Figures 1.13 – 1.15)

and ellipticals (black points), excluding pseudo-bulges (cyan points) and any mergers in

process (green points). They also exclude three outlying systems one elliptical and two

classical bulges, shown by black and red open squares respectively. The main reason

for leaving out pseudo-bulges and the outliers was to reduce the amount of intrinsic

scatter around a line of best fit. It is not clear whether they should be omitted when

considering an actual physical model.
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1.3.3.1 The MBH–Lbulge relation

Figure 1.13 shows the MBH–LK,bulge data from Kormendy & Ho (2013). The dashed

line shows their best fitting power-law, given by

log

(
MBH

M⊙

)
= (8.734 ± 0.069) + (1.21 ± 0.09) log

(
LK,bulge

1011L⊙

)
. (1.55)

This fit is to the ellipticals (black points) and classical bulges (red points), excluding

pseudo-bulges (cyan points), mergers in process (green points) and the three outliers

(open squares). They find intrinsic scatter of ∼ 0.31 dex, assuming typical errors in

the absolute K-band magnitude of ±0.2mag.

Other authors have considered the MBH–Lbulge relation in various band passes

(Marconi & Hunt 2003; Gültekin et al. 2009; Sani et al. 2011; McConnell & Ma 2013),

with similar best fitting power-laws (α ∼ 8.2–9.4 and β ∼ 0.9–1.2). However, the

intrinsic scatter found by Kormendy & Ho (2013) is lower than these previous studies

(typically 0.35–0.5 dex depending on band pass). The reason for this decrease in scatter

is partly because using K-band magnitudes minimizes the effects of internal absorption

and young stars.

1.3.3.2 The MBH–Mbulge relation

Different methods for estimating Mbulge exist in the literature. Many authors use

luminosities in a given band pass and multiply by a dynamical (dark matter included)

or stellar mass-to-light ratio (Magorrian et al. 1998; Häring & Rix 2004; McConnell

& Ma 2013). It is usually assumed that mass follows light (spatially constant M/L)

when this method is applied, and/or that any contribution from dark matter is small

in the central regions (i.e. inside the bulge). Other authors have also considered virial

bulge mass estimates, calculated using

Mbulge = k
σ2Re

G
, (1.56)

where k is related to the Fundamental Plane of ellipticals discussed in §1.2.3, with

k = (M/L)2(kRkV )−1 in equation (1.56). When calculating virial bulge masses, it is
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Figure 1.13: The MBH–LK,bulge relation for early-type galaxies and bulges from the
Kormendy & Ho (2013) sample. The different samples from their data are ellip-
ticals (black points), classical bulges (red points) and pseudo-bulges (cyan points).
They also identify mergers in process (green points) and BH monsters (squares).
The black dashed line is a power-law fit to the ellipticals and classical bulges only:
log(MBH/M⊙) = 8.734 + 1.21 log(LK,bulge/1011LK,⊙).
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often assumed that k is constant, with k ∼ 3–8 (Marconi & Hunt 2003; Häring & Rix

2004; Cappellari et al. 2006; Wolf et al. 2010). However, the non-homology seen in

galaxies (i.e. the density and/or kinematical structure are not constant with galaxy

mass/luminosity) suggests that k in equation (1.56) is not constant. It will also depend

on which velocity dispersion is used (i.e., inside Re or the central value).

Figure 1.14 shows MBH–Mbulge data from Kormendy & Ho (2013), with the same

point colours as Figure 1.13. The bulge masses have been calculated by Kormendy &

Ho (2013) using the K-band luminosities combined with the mean of two, independent

estimates of the mass-to-light ratio, M/LK. The first of these uses a dynamically

measured correlation between M/LK and the aperture velocity dispersion, measured

inside Re (Cappellari et al. 2006; Williams, Bureau & Cappellari 2009):

log

(
M

LK

)
= 0.2871 logσap(Re) − 0.6375. (1.57)

The other K-band mass-to-light ratio comes from the galaxy’s (B−V )0 colour, through

stellar population models (Into & Portinari 2013):

log

(
M

LK

)
= 1.055(B − V ) − 0.9402. (1.58)

The dashed black line is the best fit from Kormendy & Ho (2013) to the elliptical

and classical bulge data:

log

(
MBH

M⊙

)
= (8.69 ± 0.06) + (1.16 ± 0.08) log

(
Mbulge

1011M⊙

)
. (1.59)

The similarity between this and theMBH–LK,bulge relation in Figure 1.13 is unsurprising.

Both the K-band mass-to-light ratios used by Kormendy & Ho (2013) depend weakly

on velocity dispersion and colour respectively. This is consistent with the K-band

mass-to-light ratios discussed earlier in the context of population synthesis models.

Given the Faber-Jackson relation, L ∝ σ4, M/LK is therefore approximately constant

as a function of LK,bulge, with a “typical” value of M/LK ∼ 1 for the luminosity range

109L⊙ . LK . 1012L⊙.

Despite the different methods for calculating Mbulge, best fitting power-laws from

previous work are broadly consistent with Kormendy & Ho (2013), with α ∼ 8–9
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and β ∼ 0.96–1.16. It is worth noting that a (weakly varying) ratio MBH/Mbulge ≃
(1.4−6)×10−3 follows from this (Magorrian et al. 1998; H́’aring & Rix 2004; McConnell

& Ma 2013).

1.3.3.3 The MBH–σap relation

The stellar velocity dispersion used to define the MBH–σ relation is the aperture dis-

persion, σap. This is a line of sight velocity dispersion, averaged over an aperture with

a radius that is some fraction of the stellar effective radius, Re. This fraction varies

from group to group; many authors choose to work with σap(Re) (Gebhardt et al. 2000;

Gültekin et al. 2009; McConnell & Ma 2013), whereas Ferrarese & Merritt (2000) mea-

sure inside Re/8. Ferrarese & Merritt choose this fraction as it is a closer representation

of the central velocity dispersion, used in the earliest studies of the fundamental plane

of ellipticals (cf. §1.2.3).

Figure 1.15 shows MBH–σ data from Kormendy & Ho (2013), with the same point

colours as the previous two Figures. The dashed line corresponds to the best fit from

Kormendy & Ho (2013):

log

(
MBH

M⊙

)
= (8.49 ± 0.049) + (4.38 ± 0.29) log

( σ

200 km s−1

)
. (1.60)

This best-fitting power law is consistent with previous studies, with other authors

generally finding a slope of β ≃ 4–5, and an intercept α ≃ 8–9 (Ferrarese & Merritt

2000; Gebhardt et al. 2000; Ferrarese & Ford 2005; Gültekin et al. 2009).

More recently than these, McConnell & Ma (2013) found an MBH–σ relation with

a slope of β ≃ 5.57, significantly steeper than previous results. This is mainly due to

the inclusion of new MBH measurements in NGC 3842 and NGC 4889, two of the largest

black hole masses that have been measured to date (McConnell et al. 2011; McConnell

et al. 2012). Furthermore, McConnell & Ma (2013) do not distinguish between classical

and pseudo bulges. Kormendy & Ho (2013) exclude pseudo bulges and the two largest

black hole masses (NGC 3842 and NGC 4889) from their best fits, and hint that this

is the reason for their shallower slope compared to McConnell & Ma (2013). This is
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Figure 1.14: The MBH–Mbulge relation for galaxies from the Kormendy & Ho (2013)
sample. The different point colours are indicated in the Figure, and are the same as
for Figure 1.13. The black dashed line is their best fitting power-law (for ellipticals
and classical bulges), given by log(MBH/M⊙) = 8.69 + 1.16 log(Mbulge/1011M⊙). The
bulge masses were calculated using the K-band absolute magnitudes, combined with
an average of two K-band mass to light ratios (see text).
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problematic and suggests that a single power law isn’t appropriate if the slope depends

so heavily on the inclusion (or not) of one or two points.

Log-quadratic fits to the MBH–σ relation have also been attempted (Wyithe

2006a; Wyithe 2006b; McConnell & Ma 2013) of the form

log

(
MBH

M⊙

)
= α + β log(σ/200km s−1) + γ

[
log(σ/200km s−1)

]2
. (1.61)

McConnell & Ma (2013) claim that such a fit does not decrease the intrinsic scatter, but

they do find γ > 0 with 82% confidence, consistent with the results of Wyithe (2006a,b).

The dot-dash line in Figure 1.15 shows the log-quadratic fit obtained by McConnell &

Ma, with α = 8.28± 0.07, β = 5.76± 0.34 and γ = 1.68± 1.82 in equation (1.61). It is

important to once again stress that there is no physical motivation for fitting a single

power law, or indeed a log-quadratic fit, to any of the BH – galaxy correlations. These

best fits take no account of any of the physics involved in establishing the observed

correlations (cf. §1.4). It is more interesting to compare an actual physical model to the

observed SMBH correlations, rather than fitting arbitrary curves chosen for simplicity.

The work presented in Chapters 2 and 3 is the first attempt at doing this in a fully

self-consistent way.

One reason for fitting power laws is to investigate how tight the relations are. If

the scatter is small enough, then the correlation can be used to estimate (without direct

measurement) SMBH masses. All of Lbulge, σap and Mbulge are easier to measure than

MBH. Although it has previously been argued that the MBH–σ relation exhibits less

scatter (consistent with zero; Ferrarese & Ford 2005), Kormendy & Ho (2013) suggest

that all three correlations have very similar intrinsic scatter, approximately 0.3 dex.

Either way, correlations between SMBH masses, significant on scales of rinf (less than

a few tens of parsecs), and global properties of the galaxy, usually measured on scales

of Re (few kiloparsecs), are strong evidence of a connection between their formation

and evolution.
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Figure 1.15: The MBH–σap relation for z = 0 galaxies and galaxy bulges, with data
from Kormendy & Ho (2013). Point colours are the same as previous Figures. The
dashed line is again the best-fitting power law (ellipticals and classical bulges), given
by log(MBH/M⊙) = 8.49 + 4.38 log(σ/200 kms−1). The dash-dot line corresponds to
the log-quadratic fit obtained by McConnell & Ma (2013): log(MBH/M⊙) = 8.28 +
5.76 log(σ/200 kms−1) + 1.68[log(σ/200 kms−1)]2.
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1.3.3.4 Other bulge property correlations

There are several other correlations between MBH and other galaxy properties that

have been proposed. Sani et al. (2011) explored a relation between black hole mass

and stellar effective radius, Re. They found that such a relation exhibits much more

scatter than the three relations discussed above. Graham & Driver (2007) found a tight

correlation between MBH and the bulge Sérsic index, n, with similar scatter to the other

correlations (Savorgnan et al. 2013; Savorgnan 2016). However, several authors have

suggested that such a correlation is not as tight (Beifiori et al. 2012; Vika et al. 2012;

Kormendy & Ho 2013). It is unclear whether a correlation between black hole mass

and n is simply a result of a more fundamental MBH–bulge property relation, or if

MBH–n is itself the main correlation (Graham & Driver 2007).

Beyond this, it has been suggested that correlations between MBH and two of

Re, σ and Mbulge (or Lbulge) are slightly tighter (∼ 0.2 dex intrinsic scatter) than any

single parameter correlation (Hopkins et al. 2007a,b). Such correlations are referred to

(by Hopkins et al.) as the Black Hole Fundamental Plane (BHFP), and are analogous

to the fundamental plane of ellipticals. The combination of velocity dispersion and

effective radius proposed by Hopkins et al (2007a) is MBH ∝ σ3±0.30
ap R0.43±0.19

e . This is

not dissimilar to the MBH–Mdyn relationship considered by Marconi & Hunt (2003),

who considered a MBH–Mdyn correlation, with Mdyn ∝ σ2Re (Häring & Rix 2004;

McConnell & Ma 2013). Marconi & Hunt also found that this relation is slightly

tighter (∼ 0.25 dex intrinsic scatter) than either MBH–σap or MBH–L. It remains an

open question whether any one correlation, or the BHFP, is more significant than the

others, but as said above, collectively they are interpreted as evidence for co-evolution

between SMBHs and host galaxies.

1.3.3.5 Correlations with the dark matter halo

The possibility of a correlation between MBH and the virial mass of the dark matter

halo, MDM, at z = 0, has been proposed by several authors (Ferrarese 2002; Baes et al.
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2003; Croton 2009; Bandara, Crampton & Simard 2009; Dutton et al. 2010; Bogdán

& Goulding 2015). For a sample of 20 elliptical galaxies (Kronawitter et al. 2000) and

16 spiral galaxies (Gebhardt et al. 2001), Ferrarese (2002) investigated an MBH–MDM

correlation. First of all, Ferrarese finds a tight correlation between σap(Re/8), and the

galaxy’s large scale circular velocity, Vc (Kronawitter et al. 2000 measure Vc at “the

radius of the last kinematic data point.” This is ∼ Re for most of their galaxies). For

both samples combined (ellipticals and spirals), Ferrarese concludes that

log Vc = (0.84 ± 0.09) logσap + (0.55 ± 0.19). (1.62)

She then combines this Vc–σap relation with the MBH–σap relation from Ferrarese &

Merritt (2000), given by

log

(
MBH

M⊙

)
= (8.15 ± 1.3) + (4.80 ± 0.54) log

( σap

200 km s−1

)
, (1.63)

to give an MBH–Vc relation.

Ferrarese (2002) then estimates a relation between the masses of the SMBH and

the dark matter halo, by combining this with the CDM simulations of Bullock et al.

(2001) to connect Vc to Md,200 (dark matter mass inside the r200 radius). This radius

defines a sphere within which the density is ∆ = 200 times the critical density of the

Universe. Given this, and by virtue of the virial theorem, Md,200 ∝ V 3
200. Assuming an

NFW model for the dark matter halo, and that Vc is flat out to the scale radius, rs [so

Vc = Vc(rs)], Ferrarese then calculates the ratio Vc(rs)/V200, making use of the relation

between halo concentration and halo mass from Bullock et al. (2001). Given all this,

the MBH–Md,200 relation obtained by Ferrarese (2002) is

MBH

108M⊙

≃ 0.10

(
Md,200

1012M⊙

)1.65

. (1.64)

Baes et al. (2003) performed an identical analysis (with the same assumptions and

method) for 12 additional spiral galaxies, and found results consistent with Ferrarese

(2002). Both authors point out that the uncertainties in the conversion from Vc–σap to

MBH–Md,200 (or indeed Md,vir) can be quite large. The assumption that the circular-

speed curves are flat out to such large radii is incorrect in detail. The “true” difference
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between the measured Vc and V200 will therefore be even greater. There is also model

dependence to be aware of when calculating Vc/V200 to relate Vc to Md,200. For these

reasons, equation (1.64) should be considered as a rough guideline only. The work

in Chapters 2 and 3 allow for a more detailed analysis of how to relate total circular

speeds, halo masses and SMBH masses.

For a sample of 792 galaxies, spanning a range of Hubble types, Ho (2007) found

the Vc–σap relation to exhibit much more scatter than previously shown. Ho also

suggests that the zero point depends on galaxy morphology, bulge-to-disk ratio and

light concentration. Part of the problem here is that for late-type galaxies with little

or no bulge, Ho (2007) used the velocity dispersion of the central star cluster. This is

a self-gravitating system and distinct from galaxy bulges. The larger scatter found by

Ho (2007) was mainly due to these late-type galaxies.

More recently, there have been arguments both for (Volonteri, Natarajan &

Gültekin 2011) and against (Kormendy & Bender 2011; Kormendy & Ho 2013) corre-

lations between SMBHs and dark matter halos. Kormendy & Bender (2011) suggest

that correlations between MBH and Md,vir (or indeed any other property of the dark

matter halo) implies that it is the dark matter that supplies the material for growing

the black hole, through exotic physics. They propose that there is no relation between

Vc and σ, although the outliers in their relation are the late-types that use the velocity

dispersion of the central star cluster.

Volonteri et al. (2011) found that MBH is connected to Vc measured at large radii,

suggesting MBH ∝ V p
c , with p ≈ 4. At such large radii, the dark matter dominates the

mass of the system. Volonteri et al. (2011) suggest that the MBH–Vc and MBH–σap

relations have similar slope and scatter.

It is important to note that a fundamental correlation between SMBH and dark

matter halo properties does not in any way imply that dark matter is feeding the

growth of the black hole, as suggested by Kormendy & Bender (2011). The stellar

velocity dispersion is of course connected to the dark matter halo which dominates the

potential of the galaxy. How the stellar properties and dark matter halo properties are

connected is considered in detail in Chapter 2.
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When considering a physical model (rather than assuming a best fit), there is

no reason to expect any of the MBH–galaxy property relations to be linear in log–log

space. The majority of what has been discussed regarding these correlations is about

best-fitting power-laws, generally with no physical motivation. Therefore, assuming

the actual relation to be linear, based on such a fit, does not necessarily make it more

fundamental than any other relation. This was suggested by Kormendy & Ho (2013),

who argued that the correlations between SMBHs and baryonic components (Mbulge

and σap) are more fundamental than any correlation between SMBH and the dark

matter halo.

Kormendy & Ho (2013) assume that correlations between MBH and either bulge

properties or dark matter halo properties, should be linear. They suggested that com-

bining a MBH–Mbulge relation, assumed to be linear, with the non-linear M∗–Md,vir

relation (see §1.2.2) yields a correlation between MBH and Md,vir that cannot be lin-

ear. However, the MBH–Mbulge relation is not linear when considering a physical model

(rather than assuming a best fit). This is discussed further in §3.3.3.

1.4 Physics of the MBH–bulge relations

The existence of correlations between the SMBH imply co-evolution between the black

hole and galaxy. Galaxy formation models therefore need to reproduce the observed

correlations. There have been several attempts at a theoretical explanation of how

these correlations were established, with varying degrees of success.

The co-evolution most likely involved some form of self-regulated feedback. Most

of the SMBH mass in large galaxies is grown in a quasar phase of Eddington (cf. §1.4.1)

rate accretion (Yu & Tremaine 2002), at some high redshift. Such accretion deposits

significant amounts of momentum and energy back into the gas supply, leading to

possible blow out, halting further accretion onto the SMBH. In terms of the BH —

bulge correlations, the stellar velocity dispersion holds particular significance, as it

should reflect the depth of the potential well that the SMBH feedback had to overcome
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to expel the gas from the protogalaxy. Galaxy formation simulations now routinely

include prescriptions for halting SMBH growth via “quasar-mode” feedback (Springel,

Di Matteo & Hernquist 2005; Di Matteo, Springel & Hernquist 2005; Sijacki et al. 2007;

Di Matteo et al. 2008; DeGraf et al. 2012; Sijacki et al. 2015; DeGraf et al. 2015).

Two early works considering the quenching of SMBH accretion via feedback are

Silk & Rees (1998) and Fabian (1999). These authors assumed an initial seed black

hole at the centre of an isothermal protogalaxy, containing both dark matter and hot

gas. Accretion of gas onto the black hole converts gravitational energy into radiation.

Given that the total energy, ET ≡ EK + EP = EP/2, then half of the change in

gravitational potential energy is radiated away. If this radiation is able to couple to

the surrounding matter, this produces an outflow, sweeping the gas into a shell and

driving it outwards. Silk & Rees argued that this leads to MBH ∝ σ5, whereas Fabian

found that MBH ∝ σ4. Both of these are compatible with observations; the differences

in the two results are due to different assumptions about the thermal physics driving

the shell.

King & Pounds (2003) provide a simplified description for SMBH feedback, based

on a Compton-thick wind resulting from accretion at or above the Eddington rate.

Their analysis shows that the momentum flux is simply dpwind/dt = LEdd/c, implying

high wind speeds of up to ∼ 0.1c. The SMBH wind provides an outward force, sweeping

up the ambient gas into a thin, radiative shell. If the outward thrust exceeds the

gravitational force, then the gas shell is able to escape the potential well of the galaxy.

This simple idea shows why a correlation is actually expected. When the forces are

equal, there is a driving force proportional to MBH, equal to a gravitational force which

is a function of σ.

Observations of local Active Galactic Nuclei (AGN) lend support to the idea

that dpwind/dt = LEdd/c, with the detection of ultra-fast outflows. Pounds et al.

(2003) was the first of these, observing a high velocity outflow (vw ∼ 0.08c) in the

z ≃ 0 active galaxy, PG1211+143. Subsequent work has shown similarly high velocity

outflows (vw ∼ 0.03c–0.3c) in other galaxies containing AGN (Reeves, O’Brien & Ward

2003; Chartas, Brandt & Gallagher 2003; O’Brien et al. 2005; Krongold et al. 2007;
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Tombesi et al. 2011; Gofford et al. 2013). Observations of galaxy scale outflows also

support this AGN feedback scenario (Tremonti, Moustakas & Diamond-Stanic 2007;

Holt, Tadhunter & Morganti 2008; Bautista et al. 2010; Sturm et al. 2011; Rupke &

Veilleux 2011; Veilleux et al. 2013; Perna et al. 2015) – these large scale outflows cannot

be explained by stellar feedback alone, since the velocities are too high.

Normal, quiescent galaxies have evolved through cosmic time, and are likely

to have experienced a quasar phase powered by SMBH accretion, at some time in

the past. Given that quasars are analogous to local AGN, it is promising that the

observations outlined above are compatible with the King & Pounds (2003) feedback

scenario. Presumably then, it is this kind of self-regulated feedback that defines the

quasar-phase, and ultimately leads to blow-out of the gas, leaving behind a dormant

SMBH and a quiescent galaxy. The King & Pounds (2003) model, although a very

simplified description, utilises some key physical concepts, including the Eddington

luminosity, shock conditions and cooling time scales.

1.4.1 The Eddington luminosity

The Eddington luminosity is the maximum luminosity an object can sustain if radiative

forces (on free electrons) are balanced by gravitational forces. For a fully ionised gas,

the interaction between radiation and the gas is due to photons scattering off free

electrons, known as Thomson scattering. The flux per unit area at a radius r from a

source with luminosity L is given by L/(4πr2). The momentum of a photon is given

by p = E/c, so the radiation force is Frad ≡ ṗ = L/c. Therefore, the force per unit

area (i.e. the radiation pressure) is L/(4πr2c). The effective cross-sectional area of an

electron is given by the Thomson cross-section, σT = κmp, where κ is the scattering

opacity. The radiation force acting on an electron is therefore

Frad = σT
L

4πr2c
. (1.65)

The gravitational force acting on a proton-electron pair by the source of the
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luminosity, with a mass, M , is given by

Fgrav =
GM(mp +me)

r2
≃ GMmp

r2
, (1.66)

because mp ≫ me for the last equality. The Eddington luminosity is found by equating

the radiation force and the gravitational force, giving

LEdd =
4πGmpc

σT
M. (1.67)

As can be seen, LEdd is proportional to the mass of the object providing the luminosity.

If an object exceeds its Eddington luminosity, it is unable to hold on to the material

in the outer layers, resulting in a radiation-driven outflow.

In accretion-powered objects, such as AGN, the luminosity is produced by the

conversion of rest mass, m, into energy, at some efficiency, η: E = ηmc2. The value of

η can be approximated by considering a particle in an accretion disk, moving towards

the innermost circular orbit. For a non-rotating black hole, the radius of this orbit

is RISCO = 3RSch = 6GMBH/c
2, where RSch is the Schwarzschild radius, the radius

inside of which photons cannot escape a black hole. If the particle is initially at

infinity and reaches R = RISCO, then the change in gravitational potential energy, EP

is GMBHm/RISCO = mc2/6. Given that half the change in EP is radiated away, this

leads to E = mc2/12, and hence η ∼ 0.1.

For an object accreting mass at a rate Ṁ , the luminosity is given by L = ηṀc2

(found by differentiating the energy equation). For accretion to occur, L ≤ LEdd is

required, suggesting an upper-limit on the rate of accretion:

ṀEdd =
LEdd

ηc2
=

4πGM

ηκc
, (1.68)

where κ = σT /mp.

1.4.2 Eddington winds

The observed high velocity outflows mentioned above are a generic property of accretion

events occurring at close to the Eddington limit, according to King & Pounds (2003).
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Assuming a radial outflow occupying solid angle 4πb, with a constant speed vw, the

mass conservation equation tells us

Ṁ = 4πbvwr
2ρ(r), (1.69)

where ρ(r) is the mass density. Early observational work (Pounds et al. 2003; Reeves,

O’Brien & Ward 2003) assumed quasi-spherical winds and a value of b ∼ 1. More

recently, the work of Nardini et al. (2015) managed to constrain the value of the solid

angle for the galaxy PDS456, by considering the amount of absorbed ionizing radiation

that is re-emitted across the spectrum. Nardini et al. (2015) found results consistent

with 0.5 < b . 1.

Following King & Pounds (2003), in the single-scattering limit, the electron scat-

tering optical depth through the outflow, observed from infinity down to radius R

is

τ =

∫ ∞

R

κ ρ dr =
κṀ

4πbvwR
. (1.70)

Combining this with the Eddington accretion rate [equation (1.68)] and the Schwarzschild

radius, RSch = 2GMBH/c
2.

τ =
1

2bη

RSch

R

c

vw

Ṁ

ṀEdd

. (1.71)

Defining the photo-spheric radius, Rph as the radius at which τ = 1, it follows from

equation (1.71) that

Rph

RSch

=
1

2bη

c

vw

Ṁ

ṀEdd

. (1.72)

Given that (2bη) < 1 and vw/c < 1, then Rph > RSch for any outflow rate Ṁ of the

order ṀEdd. Such outflows are therefore Compton-thick, and most of the photons will

have scattered. These photons will transfer their momentum, leading to a non-radiative

outflow.

To ensure matter reaches the escape speed, King & Pounds (2003) assume that

Rph is close to the escape radius, Resc:

Rph ∼ Resc ≡
c2

v2
w

RSch. (1.73)
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Combining this with equation (1.71), the wind velocity is approximately

vw

c
∼ 2bη

ṀEdd

Ṁ
. (1.74)

Furthermore, combining equation (1.74) with the definition for the Eddington accretion

rate [equation (1.68)] and assuming v is constant, yields the momentum flux:

Ṁvw ∼ 2b
LEdd

c
. (1.75)

1.4.3 The two-shock wind model

For accretion at rates comparable to the Eddington limit, assuming η ∼ 0.1 and b . 1

leads to winds launched with initial velocities, vw ∼ 0.1c, from the SMBH. This wind

will then interact with the interstellar medium (ISM) via two shocks, similar to the

stellar wind problem (Lamers & Cassinelli 1999; Dopita & Sutherland 2003). Assuming

a smooth and initially static ISM, an inner reverse shock, at a radius RSW, slows the

central wind, as the outflow collides with the ambient ISM. An outer forward shock,

at a radius RS (the radius of the shell), drives into the ISM, sweeping it outwards

ahead of the shocked wind. There is a contact discontinuity at radius Rc between the

two shocks. Figure 1.16 shows a schematic diagram of the wind shock model outlined

above (Faucher-Giguére & Quataert 2012).

The ambient gas is then swept up into a shell. The dynamics of the swept-up

shell are determined by the behaviour of the shocked wind region. If the shocked wind

is able to cool efficiently, it will condense and will be geometrically thin. The shell is

then driven outwards by a direct transfer of momentum from the wind impacting on its

inner side and is referred to as momentum-driven. If the wind cannot cool efficiently,

the shocked wind region will remain hot and expand. The shell is then driven by the

thermal pressure and is referred to as energy-driven.
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Figure 1.16: A schematic diagram of the wind shock from a central SMBH, from
Faucher-Giguére & Quataert (2012). The AGN wind is launched from the nucleus
with velocity, vin ≡ vw. The wind is shocked at RSW, and the ISM is shocked at RS

(radius of the shell). The two shocks are separated by the contact discontinuity, Rc. It
is the cooling of the shocked wind that determines the mechanism driving the outflow.
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1.4.4 Cooling time-scales

The shocked wind region will be extremely hot and energetic. Faucher-Giguére &

Quataert (2012) related the pre- and post-shock variables (pressure, density and veloc-

ity), combined with the equation of state, P = ρkT/(µmp), to calculate the post-shock

gas temperature. In the limit that the shock is strong (vw ≫ cs where cs is the sound

speed) and for a monatomic gas, the post-shock temperature is

T =
3

16

µmp

k
v2

w ∼ 1010
( vw

0.1c

)2

K. (1.76)

The gas is therefore fully ionised, and the only cooling mechanisms are inverse Compton

cooling and free-free emission. Inverse Compton cooling is when low-energy photons

are scattered by relativistic electrons — the photons gain energy at the expense of

the kinetic energy of the electrons, thus cooling the gas. Free-free emission is electro-

magnetic radiation generated when a charged particle decelerates in a plasma, when

deflected by another charged particle. The moving particle loses kinetic energy, which

is then converted into a photon.

For inverse Compton cooling in general, the energy loss rate of a relativistic

electron is (Longair 2011)

dE

dt
=

4

3
κmpc Urad

(ve

c

)2
(

E

mec2

)2

, (1.77)

where ve is the velocity of the electron, Urad is the density of the radiation field and E

is the energy of the electron, in the post-shock wind. The Compton cooling time of an

electron of energy E is then

tComp =
E

dE/dt
=

[
4

3
κmpc Urad

(ve

c

)2 E

(me c2)2

]−1

. (1.78)

In the case of an SMBH wind, the density of the radiation field is given by

Urad = LEdd/4πr
2 c. The electron energy in the post-shock wind gas is E = 3kT ≃

(9/16)mpv
2
w, where vw is the wind velocity. The velocity of the electrons, ve, can be

determined using the electron energy:

Ee,kin = (γ − 1)mec
2 ≃ 9

16
mpv

2
w, (1.79)
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where γ = (1 − v2
e/c

2)−1/2. For wind velocities vw/c ≃ 0.03–0.1, the electrons are very

relativistic, with ve ≃ 0.85–0.99c. Combining the density radiation field, Urad, with the

Eddington luminosity definition [equation (1.67)], along with the electron energy and

velocities, the Compton cooling time for a black hole with mass MBH is then

tComp ≃ 2.7 × 107

(
r

kpc

)2 ( vw

0.1c

)−2 (ve

c

)−1
(

MBH

108M⊙

)−1

yr. (1.80)

On the other hand, the free-free cooling time is approximately given by (Longair 2011)

tff ≃ 2 × 1011

(
r

kpc

)2 (
MBH

108M⊙

)−1

yr. (1.81)

Clearly, inverse Compton cooling is the dominant cooling mechanism of the two

when the electrons are relativistic. To determine how efficiently the shocked wind

cools, it is necessary to compare the cooling time, tcool ≡ tComp, with the dynamical

time of the wind, tdyn ≡ RSW/vw, and the flow time of the shell, tflow ≡ RS/vsh. In

these definitions, RSW and RS are defined in Figure 1.16. vw and vsh are the velocities

of the wind and of the gas shell respectively.

1.4.5 Momentum-driven shell

If tcool < tdyn ≡ RSW/vw, then the shocked wind region has enough time to cool before

more energy is injected. The shell will therefore be geometrically thin, and will be

pushed outwards by the ram pressure of the wind, ρwv
2
w (Koo & McKee 1990; Koo &

McKee 1992). This is the momentum-driven regime, and is expected to always be the

initial case for an SMBH wind, since the shock can cool efficiently via inverse Compton

scattering.

For an initially static ambient medium that is both spherical and smooth, the

shell’s equation of motion is determined by the outward thrust (Frad ≡ LEdd/c), minus

the gravitational effects from the BH and the mass inside the shell. Assuming that

there are no stars, the only form of matter within the shell’s radius will be dark matter,

since the gas originally there has been swept up into the shell itself. The equation of
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motion for a momentum-driven shell is therefore

d

dt
[Mg(r)v] =

LEdd

c
− GMg(r)

r2
[MBH +Md(r)], (1.82)

where Mg(r) is the initial gas mass within radius r and Md(r) is the dark matter mass

within radius r.

McQuillin & McLaughlin (2012) use equation (1.82) as their starting point for

deriving a critical SMBH mass, Mcrit, required for a purely momentum-driven gas shell

to escape a galaxy. They assume that there are no stars in the protogalaxy, and that

the gas initially traces the dark matter. In detail, McQuillin & McLaughlin (2012)

solve the equation of motion for the velocity fields, v2(r), of momentum-conserving

shells driven from galaxy centres. To do this, they made use of the fact that

d[Mg(r)v(r)]

dt
=

1

2Mg(r)

d[M2
g (r)v2(r)]

dr
. (1.83)

Combining this with Ledd/c = 4πGMBH/κ, the equation of motion for a momentum-

driven shell is

d[M2
g (r)v2(r)]

dr
=

8πG

κ
MBHMg(r) −

GM2
g (r)

r2
[Md(r) +MBH] . (1.84)

As mentioned, McQuillin & McLaughlin (2012) assumed that the gas initially traced

the dark matter, so Mg(r) = f0Md(r), where f0 is the gas-to-dark matter mass fraction.

They then specify mass and radius units

Mσ =
f0κσ

4
0

πG2
and rσ =

GMσ

σ2
0

, (1.85)

where κ is the Thomson-scattering opacity and σ0 is a characteristic velocity dispersion,

defined in terms of the peak of the dark matter circular-speed curve, Vd,pk:

σ0 = Vd,pk/
√

2. (1.86)

In order to solve for the velocity fields, McQuillin & McLaughlin (2012) define

dimensionless radii and mass profiles in terms of the location of the peak, rpk:

x =
r

rpk
, md(x) =

Md(x)

Md,pk
and mg(x) =

Mg(x)

Md,pk
. (1.87)
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Defining h(x) = md(x)/f0mg(x) as a function describing how the gas traces the dark

matter [McQuillin & McLaughlin ultimately set h(x) = 1 everywhere], and noting that

M̃ = M/Mσ, the dimensionless equation of motion is

d

dx
[h2m2

dṽ
2(x)] = 4 M̃BHh(x)md(x) − 4

M̃BH

M̃d,pk

h2(x)m2
d(x)

x2
− 4

h2(x)m3
d(x)

x2
. (1.88)

Equation (1.88) can be solved once M̃BH ≡ MBH/Mσ and M̃d,pk ≡ Md(rpk)/Mσ have

been specified, along with initial conditions — namely a value for the square of the

momentum at r = 0, C = [Mg(0)v(0)]2. There are also two free parameters that need

to be specified. McQuillin & McLaughlin (2012) chose these to be M̃BH ≡MBH/Mσ and

M̃d,pk ≡Md(rpk)/Mσ. Figure 1.17 shows examples of the velocity fields for momentum-

conserving shells. In all three panels, a Dehnen & McLaughlin dark matter halo is

assumed, with M̃d,pk = 4000. This corresponds to a Milky-Way sized halo, with rpk ≃
50 kpc, Md(rpk) ≃ 4.7× 1011M⊙ and Vd,pk ≃ 200 km s−1. From left to right, the panels

correspond to M̃BH = 0.3, 1 and 3. In each individual panel, the magenta line is the

solution to equation (1.88) with C = 0. curves lying above this have C > 0, whereas

curves below have C < 0. Unphysical parts of solutions are shown by dotted black

lines.

Solutions to equation (1.88) for v2(r) with C ≥ 0 decelerate with increasing r at

small radii. If at any point v2 < 0 for these solutions, then the corresponding shell has

stalled and will not escape. Solutions with C < 0 will be unphysical, at least to begin

with. However as the Figure shows, it is possible for such solutions that v2(r) ≥ 0 for

some non-zero radius. For these, v2(r) = 0 corresponds to a gas shell being launched

from some r > 0, and will initially accelerate. At small launch radii, these shells will

eventually decelerate with increasing r.

On the other hand, any solution to equation (1.88) will accelerate at large radii,

if the shell is able to get there in the first place. There is therefore a large class of

solutions with local minima in v2(r) at intermediate radii. This fact is the basis used

by McQuillin & McLaughlin (2012) in obtaining a critical SMBH mass required for a

gas shell to escape. Following McQuillin & McLaughlin (2012), if a local minimum
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Figure 1.17: Taken from McQuillin & McLaughlin (2012). Velocity fields, v2(r) for

M̃BH = 0.3, 1 and 3 in a Dehnen & McLaughlin dark matter halo with a spatially
constant gas fraction and M̃d,pk = 4000. The top axis gives the radius in units of
rσ = GMσ/σ

2
0 and the bottom axis in units of rpk. The magenta curve in each panel

represents the solution with C = 0. The physical parts of each solution for C 6= 0 are
shown by the solid lines.
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exists then dv/dr = 0 at a radius rmin, corresponding to v2
min. For the shell to escape,

v2
min > 0 (i.e. it cannot stall), with v2

min = 0 corresponding to the critical case. This

corresponds to an SMBH mass of Mcrit and a radius rcrit. Substituting these conditions

into equation (1.88), the left-hand side becomes zero. Following the definitions from

McQuillin & McLaughlin (2012) that xcrit = rcrit/rpk and md(x) = Md(x)/Md,pk, along

with those introduced above, this leads to

M̃crit =
m2(xcrit)

x2
crit

[
1 − 1

M̃d,pk

m(xcrit)

x2
crit

]−1

. (1.89)

The value of xcrit depends on C and the dark matter halo parameters. The necessary

condition for the escape of a purely momentum-driven shell with a particular value of

C is then M̃BH ≥ M̃crit.

Shells with different C values also have different values of xcrit and M̃crit. To com-

pare these, McQuillin & McLaughlin (2012) differentiate equation (1.89) with respect

to xcrit for a fixed dark matter mass M̃d,pk:

dM̃crit

dxcrit

=
2m2(xcrit)xcrit[

x2
crit −m(xcrit)/M̃d,pk

]2

{ [
d lnm(xcrit)

d lnxcrit

− 1

]
− 1

2M̃d,pk

1

xcrit

dm(xcrit)

dxcrit

}

(1.90)

By definition, d lnmd/d lnx − 1 = d lnV 2
d /d lnx is positive for x < 1 and negative for

x > 1. Hence, for sufficiently small xcrit, dM̃crit/dxcrit < 0 and for sufficiently large xcrit,

dM̃crit/dxcrit > 0. For a given dark matter md(x) and M̃d,pk, setting dM̃crit/dxcrit = 0

therefore gives the momentum-driven shell with the largest SMBH mass required for

escape.

This leads to the sufficient condition for the escape of any momentum-conserving

shell: M̃crit ≥ 1. Combining this with the definition of Mσ leads to

Mcrit =
f0κ

πG2

V 4
d,pk

4
≃ 1.14 × 108 f0.2

(
Vd,pk

200kms−1

)4

M⊙. (1.91)

This equation holds for any halo with an associated circular-speed curve that has a

single, global maximum. This is the case for all realistic descriptions of the halos formed

in cosmological N-body simulations. Defining a characteristic velocity dispersion for
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the dark matter halo as σ0 = Vd,pk/
√

2, equation (1.91) reduces to a result originally

obtained by King (2003, 2005) for an SIS. Again, all of the results in this subsection

are based on the assumption that the outflow is always momentum-driven.

1.4.6 Energy-driven shell

If tcool > tflow ≡ RS/vsh, the shocked wind region can expand significantly before

it cools. The shocked wind remains hot, and occupies the majority of the volume

between RSW and RS (see Figure 1.16). This is expected to be the eventual outcome

for high velocity winds from AGN (Faucher-Giguére & Quataert 2012; Zubovas & King

2012; McQuillin & McLaughlin 2013; Zubovas & Nayakshin 2014). This is the energy-

driven regime, when the shell is pushed outwards by the thermal pressure from the hot,

expanding wind. By equating the Compton cooling time to the flow time, McQuillin

& McLaughlin (2013) show that Compton cooling is inefficient beyond r ∼ 11pc. This

implies that observed large scale outflows (Tremonti, Moustakas & Diamond-Stanic

2007; Holt, Tadhunter & Morganti 2008; Bautista et al. 2010; Sturm et al. 2011;

Rupke & Veilleux 2011) must be energy-driven.

The equation of motion for an energy-driven shell is similar to the momentum-

driven shell case [equation (1.82)]. The difference is the outward thrust term, so LEdd/c

is replaced by 4πr2P , where P is the thermal pressure in the shocked region. Explicitly,

the equation of motion is now given by

d

dt
[Mg(r)v] = 4πr2P − GMg(r)

r2
[MBH +Md(r)]. (1.92)

For an energy-driven shell, the pressure also has to satisfy the energy equation,

d

dt

[
4

3
πr3 P

γ − 1

]
= Ė − P

d

dt

[
4

3
πr3

]
− GMg(r)v(r)

r2
[MBH +Md(r)], (1.93)

where γ is the ratio of specific heats. The last three terms on the right-hand side give

the rates of work done on the expanding shell (both PdV work and the work against

the gravity of the SMBH and the dark matter behind the shell).
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The first term on the right-hand side of equation (1.93) is the rate of energy

input, which is given by the kinetic energy flux of the wind:

Ė = Ṁ
v2

w

2
= 2b

vw

c

LEdd

2
. (1.94)

As pointed out by McQuillin & McLaughlin (2013), this differs slightly from previous

works (e.g. King 2005, 2010), where it is stated that Ė = ηLEdd/2. However, this is

based on the additional assumptions that Ṁ = ṀEdd and 2b ≃ 1, so that vw/c = η.

McQuillin & McLaughlin (2013) do not assume either in their analysis, and hence vw/c

remains as an explicit parameter.

Combining equations (1.92) and (1.93), an equation of motion can be derived

with P eliminated. McQuillin & McLaughlin (2013) solve this for an SIS distribution

of matter [i.e., Md(r) = 2σ2
0r/G and Mg(r) = f0Md(r)]. With the criterion that the

feedback escapes if the coasting speed of the shell at large radius exceeds the escape

velocity of the SIS [v∞ ≥ vesc = 2σ0], they find a critical value for the product of SMBH

mass and wind speed, vw:

[MBH vw]crit =
1

2b

4(4γ − 3)

(γ − 1)

κf0

πG2
σ5

0. (1.95)

Setting γ ≃ 5/3, this critical condition for the escape of any energy-driven shell is
(

MBH

108M⊙

) (vw

c

)
≃ 6.68 × 10−2 1

2b

(
f0

0.2

) ( σ0

200 km s−1

)5

. (1.96)

Therefore, the relation MBHvw ∝ σ5
0 is locked in for a purely energy-driven shell in an

SIS halo. This is consistent with previous theoretical work (Silk & Rees 1998; King

2005), assuming vw is uncorrelated to SMBH mass or halo velocity dispersion. If, say,

vw ∝ My
BH, then MBH ∝ σ

5/(1+y)
0 , a measurable difference from a power of 5, even for

relatively small y.

1.4.7 Establishing the MBH–bulge relations

In §1.4.5 and §1.4.6, the critical SMBH mass condition for purely momentum-driven

[equation (1.91)] and purely energy-driven [equation (1.96)] outflows, derived by Mc-

Quillin & McLaughlin (2012) and McQuillin & McLaughlin (2013) respectively, were
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discussed. There are several caveats surrounding both predictions, based on necessary

assumptions made in order to obtain the results. Some of these assumptions, such

as spherical symmetry and a smooth ambient medium, are not fatal flaws (Zubovas &

Nayakshin 2014). However, there are many that could affect the functional dependence

of MBH on a characteristic halo velocity scale (e.g., Vd,pk or σ0 = Vd,pk/
√

2).

In reality, the outflows will not be purely momentum- or energy-driven through-

out the entire process. Both regimes are likely to manifest at some stage. As discussed,

Compton cooling is initially efficient, so the outflow will be momentum-conserving

(King 2003). However, after this initial radiative stage, the outflow is expected to

become energy-driven (Zubovas & King 2012; McQuillin & McLaughlin 2013), as cool-

ing becomes inefficient (when the outflow reaches r ∼ 11 pc according to McQuillin

& McLaughlin 2013). It is unclear how this switch changes the critical SMBH mass

required to clear the gas out of a galaxy. McQuillin & McLaughlin (2013) find that for

an energy-driven outflow in an SIS, the velocity scale enters the SMBH prediction as

σ5 (rather than σ4 for the momentum-driven outflow). However, their energy-driven

result also depends on the wind velocity, vw, which could alter this dependence if vw is

correlated to MBH somehow.

On the other hand, Zubovas & Nayakshin (2014) consider an initially elliptical

distribution of isothermal gas, directly tracing the dark matter. They show that the

initial non-radiative (momentum-driven) outflow opens up a wide “escape route”, al-

lowing most of the outflow energy to escape. At the same time, in directions where an

“escape route” hasn’t been opened up, the ambient gas is affected mainly by momen-

tum transferred from the outflow. To prevent the SMBH from growing, the momentum

needs to be sufficient to stop the remaining ambient gas from falling inwards, towards

the black hole. It is therefore the momentum of the outflow that limits SMBH growth.

Zubovas & Nayakshin (2014) find that the SMBH mass required to drive out the am-

bient gas is MBH & λ−1Mσ, where λ = 1/3b and Mσ is given by equation (1.85),

independent of whether the outflow is momentum- or energy-driven. Given that b . 1

(§1.4.2), the Zubovas & Nayakshin (2014) result is similar to the momentum-conserving

prediction from McQuillin & McLaughlin (2012).
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Beyond the effects of distinguishing between momentum- and energy-conserving

outflows, both predictions assume a wind moving into an initially static ambient

medium, ignoring the ram pressure (Faucher-Gigúere & Quataert 2012). Related to

this, cosmological infall of gas is also neglected. More recently, the simulations of

Costa et al. (2014) have confirmed that for an isolated halo (with no infalling gas),

momentum-driven outflows (with an input rate of ∼ LEdd/c) can establish an MBH–

σ relation similar to observations. However, these simulations also show that in full

cosmological simulations, a larger momentum input rate is required to drive efficient

outflows, due to infalling gas. Costa et al. show that the observed large scale out-

flows, driven by AGN, are likely to be energy-driven, and that such outflows can reach

momentum fluxes of up to 10LEdd/c.

Both predictions also neglect the presence of stars in the protogalaxy, which

could contribute both to the feedback driving gaseous outflows (Murray, Quataert &

Thomson 2005; Power et al. 2011) and to the gravity containing them. It is also

assumed that the gas is virialised (traces the dark matter) in both cases, and that MBH

remains constant, corresponding to a steady wind. In reality, the SMBH will increase

in mass during an accretion event. In addition, the energy-driven prediction is for an

SIS distribution only (the momentum-driven prediction is for non-isothermal halos).

In Chapter 3, where such predictions are compared to the observed SMBH – bulge

correlations at z = 0, the momentum-conserving prediction is used since it is a more

general result. In Chapter 4, the assumptions of having a virialised gas and no stars are

relaxed, with a momentum-driven outflow into a static ambient medium still assumed.

This allows non-isothermal halos to still be considered, and allows a direct comparison

between equation (1.91) and the new prediction, in order to see the effects of relaxing

the assumptions mentioned.

1.4.8 Matching predictions to data

Predictions like equations (1.91) and (1.96) connect the black hole mass to the potential

wells of the protogalaxy, when blow-out occurred and accretion-driven SMBH growth
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was halted. The observed correlations are in z = 0 galaxies, for early-types and bulges

of late-type, and involve stars (not the dark matter or gas directly) in most cases. In

order to compare the predictions to the data, it is necessary to connect the stellar

properties at z = 0 to the global property of the protogalaxy that best measures the

depth of the potential well, at some z > 0.

As a point of reference, Figure 1.18 shows the MBH–σap relation for ellipticals

(black points) and classical bulges (red points) at z = 0, with data from Kormendy

& Ho (2013). The dashed line corresponds to the momentum-driven critical SMBH

mass, with a gas to dark matter mass ratio f0 = 0.18 (the cosmic average; Planck

Collaboration 2014), and the naive substitution Vd,pk =
√

2σap, applicable if the stars

and dark matter are both distributed as isothermal spheres. The dotted line is for

the energy-driven critical SMBH mass with f0 = 0.18, a typical SMBH wind speed

of vw = 0.035 (McQuillin & McLaughlin 2013) and the substitution σ0 = σap. It is

promising how close both predictions lie to the data, and certainly encourages taking

seriously some of the simple physical ideas behind them, if not all the details.

Nevertheless, setting Vd,pk =
√

2σap (and σ0 = σap) is problematic. It is only

appropriate if all galaxies are modelled as isothermal spheres (The
√

2 proportionality),

and if stars always trace the dark matter – neither of these are true in reality. This

substitution also assumes that the Vd,pk in equation (1.91), referring to the protogalactic

halo at some z > 0, is equal to Vd,pk at z = 0 — in reality, this is again not true.

More sophisticated modelling is required to relate the dark matter circular speed

peak, Vd,pk, to the stellar velocity dispersion, σap(Re). More generally, to compare a

theoretical prediction established at z > 0 (between BH and dark matter) to an ob-

served relation at z = 0 (between BH and stars), a proper translation between the

dark matter halo property and stellar property in question is required. This Chapter

has given an overview of some of the key physical concepts involved in galaxy forma-

tion, along with the necessary tools to translate between dark matter halo and stellar

properties in a self-consistent manner.

Chapter 2 focusses on establishing average trends between stellar and dark mat-

ter properties at z = 0. This involves bringing together results from cosmological
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Figure 1.18: The MBH–σ relation for ellipticals (filled circles) and classical bulges (open
circles) at z = 0, with data from Kormendy & Ho (2013). The dashed line corresponds
to equation (1.91), assuming Vd,pk =

√
2σap(Re) and a spatial constant gas-to-dark

matter mass ratio, f0 ≃ 0.18. This is only appropriate if all galaxies are isothermal
spheres, stars always trace the dark matter and that Vd,pk in the prediction (established
at some z > 0) is equal to Vd,pk in the halo at z = 0. The dotted line is for equation
(1.96), with f0 − 0.18, vw = 0.035 and assumes σ0 = σap(Re).
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simulations for virial properties, dark matter halo concentrations and for stellar-to-

dark matter mass ratios. These then need to be combined with data samples from the

literature for early-type galaxies at z = 0, covering stellar mass ranges that encompass

the MBH–bulge property correlations (1010M⊙ . M∗,tot . 1012M⊙). This allows for

trend lines relating any two of M∗,tot, Re, Md,vir, rvir, f∗,vir, rpk, Vd,pk and σap(Re) at

z = 0 to be obtained.

Chapter 3 combines the scalings from Chapter 2 with halo progenitor evolu-

tion, thus relating the dark matter properties [Md,vir(z) and Vd,pk(z)]at z > 0 to the

dark matter and stellar properties at z = 0. Ultimately, this is combined with the

momentum-driven SMBH critical mass prediction (MBH ∝ V 4
d,pk), leading to model

predictions for the MBH–galaxy property relations (σap(Re), M∗,tot, Md,vir and combi-

nations of σap(Re) and Re) at z = 0. These model predictions are all highly non-linear

in log–log space, due to taking into consideration the non-monotonic relation between

f∗,vir and halo mass, and accounting for the way dark matter halo masses grow through

hierarchical merging in a ΛCDM cosmology, after MBH is set by feedback and the

halo properties at z > 0. Nevertheless, the model predictions all describe the data

reasonably well for redshifts z ∼ 2–4.

The SMBH prediction used in Chapter 3 has several caveats and simplifying

assumptions surrounding it. Chapter 4 focusses on relaxing two of these assumptions:

(1) allowing for the presence of stars in the protogalaxy that can contribute to the

gravity containing the outflow; (2) allowing for a non-virialised gas (so the gas doesn’t

have to trace the dark matter). The other assumptions are kept the same, so that the

effects of changing these two can be investigated in detail. Given the constraints on

f∗,vir as a function of both halo mass and redshift, the presence of stars has little impact

on the critical SMBH mass. It is also found that the details of the gas distribution

only changes the McQuillin & McLaughlin (2012) results by factors of 3–4, even in the

most physically extreme cases. Chapter 5 summarises the work presented here, and

discusses possible areas for future work based on these results.
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2 Galaxy and dark matter halo scalings at
z = 0

It is widely accepted that accretion-driven growth of supermassive black holes (SMBHs)

is limited by quasar-mode feedback, and eventual gas blow-out in protogalaxies. The

SMBH masses, MBH, are therefore connected to the depths of the dark matter potential

wells at the point of blow-out, at redshifts z > 0. The observed MBH–bulge relations

in z = 0 ellipticals and bulges are then presumably a reflection of this fundamental

connection.

In order to relate a prediction relating MBH to the depth of the protogalactic

potential well at some redshift z > 0 to the observed correlations in z = 0 galaxies,

it is first necessary to relate the stellar bulge properties to dark matter properties

at z = 0. It is then possible to relate these to the dark matter properties in halo

progenitors at z > 0, and hence to MBH. McQuillin & McLaughlin (2012) have derived

a critical black hole mass required for blow-out, related to this global property of the

dark matter halo, with MBH ∝ V 4
d,pk [see equation (1.91)]. Despite several caveats, it

contains enough relevant feedback physics to be interesting, and is a good test case for

the general methods developed in Chapters 2 and 3.

The focus of the current Chapter is to establish scaling relations between galaxy

properties at z = 0. §2.1 provides details of the distributions that are assumed for the

stars and dark matter, along with pulling together results from cosmological simulations

relating dark matter virial masses to virial radii and stellar masses. The data sets used

for early-type galaxies at z = 0 are discussed at the beginning of §2.2. The rest of the

Section provides details of how the average trends are obtained for stellar [M∗,tot, Re,

σap(Re), M∗(r)/Md(r)] and dark matter halo [Md,vir, rvir, rd,pk, Vd,pk] properties.

Some of the results from the literature represent average trends with significant

scatter around them. The scaling relations obtained in §2.2 are also representative

trend lines between various stellar and halo properties. Scatter around these trends

is inevitable, and it can contain physical information. Although this is important,
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the goal here is to simply establish the average trends. The tasks of explaining and

characterising any of the scatter in detail, or predicting the net scatter around any

scaling that come from combining others, are set aside. A discussion of the scatter is

left for Chapter 5 when discussing future work.

2.1 Model setup

A simple, two-component model for early-type galaxies is assumed: spherical distribu-

tions of stars at the centres of spherical distributions of dark matter. These models are

constrained by results from the literature regarding the global structure and baryon

content of dark matter halos.

2.1.1 Stellar distribution

Giant elliptical galaxies with total stellar masses of approximately 1010–1012M⊙, have

brightness profiles that are well fitted by Sérsic (1968) profiles, with Sérsic index, n ≈
3− 7 (Graham & Colless 1997). These masses correspond to the range spanned by the

z = 0 galaxies that define empirical MBH–bulge correlations. A useful approximation

to Sérsic profiles for this range of n is provided by the 3-D Hernquist (1990) profile,

projected along the line of sight. The 3-D Hernquist density profile is expressed in

terms of a total stellar mass, M∗,tot, and a scale radius, a∗:

ρ∗(r) =
M∗,tot

2πa3
∗

(
r

a∗

)−1 (
1 +

r

a∗

)−3

. (2.1)

To connect with data, it is more convenient to normalise to M∗,tot and the stellar

effective radius, Re:

ρ∗(r)

M∗,tot/R3
e

=

[
(Re/a∗)

2

2π

](
r

Re

)−1 [
1 +

Re

a∗

(
r

Re

)]−3

, (2.2)

where Re/a∗ ≃ 1.81527 for a Hernquist (1990) profile. The mass profile is then

M∗(r/Re) =

∫ r/Re

0

4πu2ρ∗(u)du = M∗,tot

[
r/Re

r/Re + a∗/Re

]2

. (2.3)
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Equation (2.2) gives a 3-D density profile as a function of 3-D radius, r. This

radius is related to the 2-D projected (onto the plane of the sky) radius, R, with

r =
√
R2 + z2, where z is the line of sight of the observer. The mass density is then

related to the surface density, Σ(R), through the projection integral:

Σ(R) = 2

∫ ∞

0

ρ(r)dz = 2

∫ ∞

R

ρ(r)
rdr√
r2 − R2

. (2.4)

The top panel of Figure 2.1 shows surface density profiles, Σ(R), as a function of R.

The solid red line shows the Hernquist surface density profile, obtained by projecting

ρ∗(r) along the line of sight. The other lines are for Sérsic (1968) profiles, which start

from Σ(R) ∼ exp[−(R/Re)
1/n] rather than ρ(r), for n = 1 (black line), n = 3 (blue),

n = 4 (cyan), n = 5 (green) and n = 7 (magenta).

It is also possible to de-project a surface density profile, such as one of the Sérsic

profiles, by using an Abel integral equation (Binney & Tremaine 2008):

ρ(r) = −1

π

∫
∞

r

dΣ

dR

dR√
R2 − r2

. (2.5)

The bottom panel of Figure 2.1 shows 3-D mass density profiles, ρ(r)/[M∗,tot/R
3
e ] as

a function of r/Re. The solid red line is the Hernquist density profile, equation (2.2).

The other lines are the de-projected Sérsic profiles for the same Sérsic indices as the

top panel.

As the top panel of Figure 2.1 shows, projecting the Hernquist (1990) ρ∗(r)

along the line of sight gives a surface density profile that approximates a Sérsic profile

with n = 3, 4 (the classic R1/4 law) or 5 reasonably well. The same is true for the

de-projections of these Sérsic profiles to ρ(r), when compared to the Hernquist mass

distribution [Figure 2.1, bottom panel]. The Hernquist profile therefore adequately

represents the light distributions for the galaxies used to define the SMBH–bulge re-

lations. The consequences of assuming a Hernquist (1990) stellar distribution, instead

of the more general Sérsic (1968) profiles, are considered for all of the scaling relations

likely to be affected. In general, it exposes the models to possible errors at the ∼ 10%

level or less.
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Figure 2.1: Top panel: Surface density profiles, Σ(R) versus projected radius R/Re.
The solid red line represents the Hernquist (1990) density profile projected along the
line of sight. The other lines are for the Sérsic profiles with Sérsic indices, n = 1 (black
line), n = 3 (blue line), n = 4 (cyan line), n = 5 (green line) and n = 7 (magenta
line). Bottom panel: Mass density profiles, ρ(r), as a function of r/Re. The red line
corresponds to the Hernquist profile, given by equation (2.2). The other lines are the
de-projected Sérsic profiles, with the same line colours as the top panel.
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2.1.2 Dark matter distributions

The maximum of the dark matter circular speed, Vd,pk, enters the critical SMBH mass

prediction through a high power. It is therefore essential to consider the sensitivity

of any scaling relations to details of the dark matter distribution. Four dark matter

density profiles are considered (cf. §1.1.4): Three with central density cusps (Hern-

quist 1990; Navarro, Frenk & White 1996; Dehnen & McLaughlin 2005), as in N-body

simulations of cluster-sized halos, and the other with a constant density core, perhaps

more appropriate to dwarf-spheroidal sized systems (Burkert 1995).

To treat them uniformly, it is actually more convenient to normalise all radii to

r−2, where the logarithmic slope of the dark matter density profile is d ln ρd/d ln r =

−2, and masses to Md(r−2). For the NFW density profile, these are the standard

normalisations used in the original papers (i.e., r−2 = r0):

ρd(r) ∝
(

r

r−2

)−1 (
1 +

r

r−2

)−2

. (2.6)

Given the definition

Md(r) =

∫ r

0

4πu2ρd(u)du, (2.7)

the NFW mass profile is

Md(r)

Md(r−2)
=

ln(1 + r/r−2) − (r/r−2)(1 + r/r−2)
−1

ln(2) − 1/2
. (2.8)

The circular speed of the dark matter halo, i.e., V 2
d (r) = GMd(r)/r, is then given by

V 2
d (r)

V 2
d (r−2)

=
ln(1 + r/r−2) − (r/r−2)(1 + r/r−2)

−1

(r/r−2)[ln(2) − 1/2]
, (2.9)

which peaks at
rpk

r−2

≃ 2.16258. (2.10)

The Hernquist (1990) profile, first fitted to simulated dark matter halos by Du-

binski & Carlberg (1991), has the same central density cusp (ρd ∼ r−1) as an NFW

halo, but a steeper large-radius slope (ρd ∼ r−4 instead of r−3). The standard form of
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the Hernquist density profile is given in equation (2.1). Given that r−2/a∗ = 1/2, the

density and mass profiles in terms of r−2 and Md(r−2) are

ρd(r) ∝
(

r

r−2

)−1 (
1 +

1

2

r

r−2

)−3

(2.11)

and
Md(r)

Md(r−2)
= 9

(
r/r−2

2 + r/r−2

)2

. (2.12)

This leads to a circular-speed curve,

V 2
d (r)

V 2
d (r−2)

=
9r/r−2

(2 + r/r−2)2
, (2.13)

peaking at
rpk

r−2

= 2. (2.14)

The third halo with a central density cusp is from the family developed by Dehnen

& McLaughlin (2005), based on ρd(r)/σ
3
d(r) being a power-law function of r (see dis-

cussion in §1.1.4). Assuming velocity isotropy at r = 0, and using the fact that for this

profile, r−2/r0 = (11/13)9/4 ≃ 0.68669, the density profile is

ρd(r) ∝
(

r

r−2

)−7/9
[
1 +

11

13

(
r

r−2

)4/9
]−6

. (2.15)

This has a slightly shallower central cusp than the Hernquist or NFW models, and a

large radius fall off, ρd ∼ r−31/9, that is between the two. The mass and circular-speed

profiles are then

Md(r)

Md(r−2)
=

[
24(r/r−2)

4/9

13 + 11(r/r−2)4/9

]5

(2.16)

and

V 2
d (r)

V 2
d (r−2)

=

[
24(r/r−2)

11/45

13 + 11(r/r−2)4/9

]5

, (2.17)

which peaks at

rpk

r−2

=

(
13

9

)9/4

≃ 2.28732. (2.18)
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The Burkert (1995) profile has a constant density core and therefore is signifi-

cantly different from the other three halos in the central regions. Normalising to r−2,

with R = r−2/r0 ≃ 1.52138, the Burkert density profile is

ρd(r) ∝
(

1 + R r

r−2

)−1 (
1 + R2 r

2

r2
−2

)−1

. (2.19)

The corresponding mass profile is

Md(r)

Md(r−2)
=

ln
[
(1 + Rr/r−2)

√
1 + R2(r/r−2)2

]
− tan−1(Rr/r−2)

ln[(1 + R)
√

1 + R2] − tan−1(R)
, (2.20)

with a circular-speed,

V 2
d (r)

V 2
d (r−2)

=
ln

[
(1 + Rr/r−2)

√
1 + R2(r/r−2)2

]
− tan−1(Rr/r−2)

(r/r−2) ln[(1 + R)
√

1 + R2] − tan−1(R)
, (2.21)

peaking at

rpk

r−2
≃ 2.13433. (2.22)

Figure 2.2 shows the circular-speed profiles for each halo, as given by equations

(2.9), (2.13), (2.17) and (2.21). Relative to the NFW profile (black line), the Hernquist

circular-speed (red line) has a narrower width due to a steeper decline beyond the peak.

This is because of the steeper density profile, and hence convergent mass, as r → ∞.

The constant density core of the Burkert (1995) profile (broken magenta line) leads to a

sharp increase in Vd(r) from small r, and therefore a much narrower profile, relative to

both Hernquist and NFW. The Dehnen & McLaughlin halo (blue line) has the broadest

circular-speed curve considered here. This is largely due to how slowly the density

profile, dependent on r4/9 instead of r, rolls over from the central density cusp with

ρd(r) ∝ r−7/9, to its large radius power-law behaviour, ρd(r) ∝ r−31/9. These features

of the dark matter halos are important for the scaling relations involving the peak of

the dark matter circular speed, Vd,pk. Broken vertical lines show the concentrations

rvir/r−2 of halos with virial masses Md(rvir) = 1015M⊙ and 1011M⊙ at z = 0.
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Figure 2.2: Circular-speed curves, V 2
d (r) = GMd(r)

/
r versus r, normalised to the

radius r−2 where d ln ρd

/
d ln r = −2, for the four dark-matter halo models considered

here. These curves are also shown in the bottom panel of Figure 1.3. The peaks in
Vd(r) occur at radii near rpk/r−2 ≈ 2 in all cases (see text). Broken vertical lines show
the concentrations rvir/r−2 of halos with virial masses Md(rvir) = 1015 M⊙ and 1011 M⊙

at z = 0 (see §2.1.5).
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2.1.3 Virial radii and cosmological parameters

The virial theorem is applicable to a dark matter halo if, inside the virial radius rvir,

the halo density is ∆vir times the critical density of the Universe: ρd(rvir) = ∆vir ρc (cf.

§1.1.3). Bryan & Norman (1998) give a fitting formulae to calculate the overdensity,

∆vir, relative to the critical density, at any redshift z. Assuming a flat Universe, with

a cosmological constant (Ωm + ΩΛ = 1), this can be written as:

∆vir(z) ≡ 2GM(rvir)

H2(z) r3
vir

≃ 18π2 − 82
1 − Ωm,0[
H(z)

/
H0

]2 − 39
(1 − Ωm,0)

2

[
H(z)

/
H0

]4 , (2.23)

with

[
H(z)

H0

]2

= 1 + Ωm,0

[
(1 + z)3 − 1

]
. (2.24)

Rearranging the definition of ∆vir yields a convenient relationship between virial

radius and virial mass at arbitrary redshift:

[
M(rvir)

M⊙

] [
rvir

kpc

]−3

= 1166.1 h2
0 ∆vir(z)

[
H(z)

H0

]2

, (2.25)

where h0 ≡ H0/
(
100 km s−1 Mpc−1

)
as usual. This form is also useful for calculating

M/r3 of spheres with other overdensities ∆ besides the virial value (e.g., setting ∆(z) ≡
200 on the right-hand side gives another standard point of reference).

The value for ∆vir will depend on the chosen cosmology because of the Ωm,0 term

appearing in equations (2.23) and (2.24). For example, the cosmological parameters

from the Planck 2013 results (Planck-Collaboration 2014) are h0 = 0.67, with Ωm,0 =

0.32 and ΩΛ,0 = 0.68. The virial overdensity from equation (2.23) is then ∆vir(0) ≃ 104

at z = 0. However, using the WMAP5 (Spergel et al. 2003; Spergel et al. 2007)

parameters (h0 = 0.72,, Ωm,0 = 0.26 and ΩΛ,0 = 0.74) yields ∆vir(0) ≃ 96. In both

cases, the overdensity increases with redshift, with an upper limit of ∆vir(z) ≤ 18π2 ≃
178 (Bertschinger 1987).
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Whenever applying equations (2.23) – (2.25), the Planck 2013 cosmological pa-

rameters are assumed. Some of the results from the literature are derived assuming

the WMAP5 cosmology (e.g. see §2.1.4). When this is the case the result from the

literature is taken as it is given, with no attempt of any alterations to account for the

small changes to the cosmology.

2.1.4 Stellar-to-dark matter mass ratios

Moster et al. (2010) give a useful parametrisation of the stellar-to-dark matter mass

ratio. They assign one central galaxy to each virialised halo in ΛCDM simulations

of structure formation, assuming WMAP5 cosmology (Ωm,0 = 0.26, ΩΛ,0 = 0.74 and

H0 = 72 km s−1 Mpc−1). Moster et al. use the abundance matching technique (cf.

§1.2.2) to determine the stellar mass of any central galaxy from the virial mass of its

parent halo according to a prescription that is required ultimately to give agreement

between the simulations and the observed galaxy luminosity function. They fit their

results for the central-galaxy mass fraction M∗/Md within the virial radius rvir at z = 0

with a double power-law function,

f∗,vir ≡
M∗(rvir)

Md(rvir)
= 0.0564

{[
Md(rvir)

7.66 × 1011 M⊙

]−1.06

+

[
Md(rvir)

7.66 × 1011 M⊙

]+0.556
}−1

.

(2.26)

Equation (2.26) again represents a mean trend, and scatter around it is to be expected

as a result of differences in the global properties (concentration, spin, etc.) and the

merger histories between any two dark-matter halos with the same mass at z = 0

(Moster et al. 2010; Behroozi, Wechsler & Conroy 2013).

The solid black line in Figure 2.3 shows the parametrisation given in equa-

tion (2.26). The broken blue line represents the cosmic average baryon fraction,

f0 ≡ Ωb,0/(Ωm,0 − Ωb,0) ≃ 0.18 (Planck-Collaboration 2014). The peak in f∗,vir at

intermediate halo masses Md,vir ∼ 1012M⊙ is worth noting. For the smallest halos

(Md,vir ≤ 1011M⊙), the stellar-to-dark matter mass ratio is low due to supernova feed-

back clearing out gas from the dwarf galaxies, preventing any further stars from being
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formed (Dekel & Silk 1986). As the halo mass increases, the potential well depths of

the halos become too large for supernova feedback to clear gas out of the galaxy, and

hence f∗,vir increases. In the larger systems, it is AGN feedback that drives out gas

from the central galaxies, and explains why f∗,vir decreases for larger halo mass (Sijacki

et al. 2015).

Both Moster et al. (2010) and Behroozi, Wechsler & Conroy (2013) show that

equation (2.26) is in good agreement with other theoretical work and/or with data, for

halo virial masses 1011M⊙ ≤ Md(rvir) ≤ 1015M⊙ (see §1.2.2, Figure 1.2, taken from

Behroozi et al. 2013). This corresponds to stellar masses M∗(rvir) ∼ 5 × 108 M⊙–

1012 M⊙ for the central galaxies. This range encompasses galaxies that are used to

define the observed M–σ relation.

Equation (2.26) does not attempt to account for the total baryonic mass within

the virial radius of any halo; it is only for stellar mass, and only that concentrated at

the centre. There will be significantly more baryonic mass in large (cluster-sized) halos

especially, in the form of intracluster light and X-ray gas, and in the stars of galaxies

inside virialised, off-centre sub-halos. The implications of these additional baryons are

discussed in §2.2.3 and §2.2.6.

2.1.5 Halo concentrations

N-body simulations of ΛCDM structure formation consistently show that cvir (or indeed

c200 = r200/r−2) correlates with halo mass (Md,vir or Md,200), with larger halos having

lower concentrations, at least at low redshifts (Navarro, Frenk & White 1996; Navarro,

Frenk & White 1997; Bullock et al. 2001; Dutton & Macció 2014). This needs to be

accounted for in the model galaxies in order to calculate the location and value of the

dark matter circular-speed peak (or any other property of the dark matter halo that

is not at rvir), for any dark matter halo with a given virial mass and radius and an

assumed density profile (with an associated rpk/r−2).

Dutton & Macció (2014) give a fitting formula for the concentrations rvir/r−2 of

simulated halos with masses Md,vir ∼ 1011M⊙–1015M⊙, at redshifts 0 ≤ z . 5 in a



99

Figure 2.3: The global stellar-to-dark matter mass ratio, f∗,vir, as a function of dark
matter viral mass, Md,vir. The solid black line is the relation arrived at by Moster et
al. (2010) in an abundance-matching analysis [equation (2.26)]. The broken blue line
is the cosmic average baryon fraction according to Planck cosmology: f0 ≃ 0.18.
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Planck cosmology. Specifically,

log

[
rvir

r−2

]
≃ a − b log

[
Md(rvir)

1012 h−1
0 M⊙

]
(2.27)

with

a = 0.537 + 0.488 exp
(
−0.718 z1.08

)

b = 0.097 − 0.024 z . (2.28)

This represents an average trend — there is intrinsic scatter around it, at the level of a

few tens of percent in rvir/r−2 for a fixed virial mass (Dutton & Maccio 2014; see also

Bullock et al. 2001).

The top panel of Figure 2.4 shows the concentration, cvir, as a function of halo

mass, Md,vir, as given by Dutton & Maccio (2014). The different curves correspond

to redshifts z = 0 (black line), z = 1 (blue) z = 2 (cyan), z = 3 (green) and z = 4

(red). Clearly as the redshift increases, the correlation between cvir and the halo mass

becomes shallower, eventually flattening at around z ∼ 4.

Dutton & Macció (2014) obtain equation (2.27) by fitting Navarro, Frenk & White

(1997) density profiles to their simulated halos in order to measure the radius r−2. They

also investigate the use of Einasto (1965) profiles instead to fit for r−2 in estimating

the alternative concentration, r200/r−2. In order to make a direct comparison, they

calculate r200/r−2 for the NFW halo as well.

The bottom panel of Figure 2.4 shows the ratio (r200/r−2)Ein

/
(r200/r−2)NFW ver-

sus Md,200, for redshifts z = 0 (black line), z = 2 (cyan line) and z = 4 (red line). The

concentration values depend systematically on the choice of model for the dark-matter

density profile at the ∼ 10–15% level. For halos with Md,200 ≃ 1012M⊙ (Corresponding

to M∗,tot ∼ 1010M⊙) at z = 0, the difference in the Einasto and NFW concentrations is

∼ 20%. This decreases systematically as halo mass increases. The same trend is also

evident for the higher redshifts. The differences between the c200 values for NFW and

Einasto profiles are less than the typical scatter in the data around the mean trend

[e.g. equation (2.27)], which is ∼ 30% (Dutton & Maccio 2014).
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Figure 2.4: Top panel: Halo concentration, rvir/r−2, as a function of dark matter
virial mass, Md,vir. These curves are from the fitting function from Dutton & Macció
(2014), given here in equation (2.27), assuming an NFW halo. The lines correspond
to equation (2.27) evaluated at z = 0 (black line), z = 1 (blue line), z = 2 (cyan line),
z = 3 (green line) and z = 4 (red line). Bottom panel: The ratio (Einasto-to-NFW)
of the alternative concentration, c200, as a function of dark matter mass Md,200, for
redshifts z = 0 (black lines), z = 2 (cyan lines) and z = 4 (red lines).
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It is also worth noting that Dutton & Macció (2014) derived equation (2.27) from

simulations of halos consisting of dark matter only, completely free of baryons. Ideally,

it would be useful to know how concentrations of simulated halos would depend on

baryon fractions. However, global baryon fractions are generally small (see §1.2), with

a maximum of the cosmic average (∼ 0.18 for Planck cosmology) in cluster size halos.

Therefore, any baryon-related differences in the halo structures would not affect the

models significantly.

2.2 Scaling relations at z = 0

Two-component spherical galaxies are formally defined by four parameters: Re and

M∗,tot for the stars, and r−2 and Md(r−2) for the dark matter halo. However, there are

constraints on the dark matter mass and radius scales from cosmological simulations

(§2.1.3 – §2.1.4), and interdependencies between these parameters (e.g. between Re and

M∗,tot; cf. §1.2.3). The models can therefore be fully defined by a single parameter,

chosen here to be M∗,tot.

Scaling relations between various stellar [Re, σap(Re), f∗(Re) ≡M∗(Re)/Md(Re)]

and dark matter [Md,vir, rvir rpk, Vd,pk] properties in z = 0 galaxies are now investigated,

in most cases as functions of M∗,tot. Where possible, the average trends are shown

against data from the literature, introduced in the next subsection. Again, there will

be intrinsic scatter associated with these trend lines, due to the scatter in the halo

concentrations and stellar-to-dark matter mass ratios introduced above, as well as the

interdependency between Re and M∗,tot.

2.2.1 Data samples

Three data sets of early-type z = 0 galaxies are taken from the literature. The first of

these is the ATLAS3D survey (Cappellari et al. 2011; Cappellari et al. 2013b; Cappellari

et al. 2013a), which considers various properties of 258 early-type galaxies (Elliptical E
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and lenticular S0). This sample consists of nearby galaxies only (all within a distance

D < 42 Mpc), with all of them brighter than MK < −21.5 mag (corresponding to

stellar masses M∗,tot & 9 × 109). Cappellari et al. also tabulate velocity dispersions

within an effective radius for all 258 galaxies, with 50 km s−1 ≤ σap(Re) ≤ 300 km s−1,

consistent with the range used to define the M–σ relation.

The second set of data are the 100 early-type galaxies (E and S0, as well as a

few dwarf-ellipticals, dE) from the ACS Virgo Cluster Survey (Côté et al. 2004; Chen

et al. 2010). As the survey name suggests, all of these galaxies are located in the Virgo

Cluster, with luminosities spanning three orders of magnitude (−22 . Mg . −12),

with stellar masses in the range 4 × 108M⊙ . M∗,tot . 5 × 1011M⊙. The Chen et

al. (2010) paper also gives various integrated colours for individual galaxies, including

(g− r), (g− i) and (g− z). Unpublished velocity dispersions for the ACSVCS galaxies

(P. Côté, priv. comm.) are also used. These are measured inside Re/8 and span a

range 20 km s−1 ≤ σ ≤ 400 km s−1.

The final data set considered is the summary data for ∼16,000 (early-type) galax-

ies in the Sloan Digital Sky Survey [SDSS; Graves et al. 2009a, b]. The summary data

are binned in slightly different ways in the two papers. In Graves, Faber & Schiavon

(2009a), the galaxies are first sorted into six velocity dispersion bins (where σ is mea-

sured inside Re/8), in the range 70 km s−1 ≤ σ ≤ 320 km s−1. The σ bins are then

split into three r-band absolute magnitude bins, Mr, with a different range for each

σ bin. The total range in absolute magnitude is approximately −18.9 ≥ Mr ≥ −23

(7 × 109M⊙ . M∗,tot . 2 × 1011M⊙). Finally, the Mr bins are then split into three

(g − r) colour bins, with a total range 0.665 ≤ (g − r) ≤ 0.828. In Graves, Faber

& Schiavon (2009b), the galaxies are sorted by their fundamental plane properties.

The data are initially sorted into the same six σ bins, each of which is then split

into five bins of effective radius, Re. The Re bins are equally spaced logarithmically,

over the range −0.1 ≤ logRe ≤ 0.9. Finally, each of these is divided into three sur-

face brightness (measured inside Re) residual bins, ∆ log Ie, where Ie is computed in

the V-band. The surface brightness bins are again evenly spaced logarithmically, for

−0.3 ≤ ∆ log Ie ≤ 0.3.
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The ATLAS and ACSVCS data are initially used to calibrate an Re–M∗,tot re-

lation (cf. §2.2.2). Once an average trend is obtained for Re as a function of stellar

mass, further scaling relations are obtained by combining this with the results brought

together in §2.1. The procedures leading to the scaling relations are detailed in the

subsequent subsections. The ATLAS and ACSVCS data are also used in plots of

f∗(Re) ≡M∗(Re)/Md(Re) (ATLAS only) and σap(Re) versus total stellar mass. This is

to ensure that following the procedures taken, the average trends are in general agree-

ment with the data. The SDSS data are included as an extra check for the Re–M∗,tot

and σap(Re)–M∗,tot relations.

2.2.2 Stellar masses and effective radii

Figure 2.5 plots stellar effective radius, Re, against M∗,tot, with data from ATLAS

(green squares), ACSVCS (magenta triangles) and SDSS (red circles). In all three

data sets, effective radii are tabulated by the original authors, either in kpc or as

angular sizes along with distances to the galaxies. Stellar masses have been calculated

by combining the integrated luminosities provided by the authors with mass-to-light

ratios from the single-burst population synthesis models (SSPs) of Maraston (1998,

2005), assuming a Kroupa (2001) IMF (§1.2.4.1), and stellar ages of 9 Gyr. The

masses in these M/L ratios include luminous stars and dark remnants, but not the

accumulated stellar ejecta (from stellar winds and supernovae over the lifetime of a

galaxy). Allowing for extended star formation lasting up to 6 Gyrs gives the same

M/L values, to within . 5%, when the mean stellar age is 9 Gyr (cf. §1.2.4.3).

Cappellari et al. (2011) give K-band absolute magnitudes for the 258 ATLAS3D

galaxies. As discussed in §1.2, the population synthesis model mass-to-light ratios

depend very weakly on colour (and hence metallicity) in this bandpass. Over the range

−1.7 ≤ [Z/H ] ≤ 2.3, interpolating the numbers tabulated by Maraston (2005) gives

0.93 ≥M∗/LK ≥ 0.82 for a Kroupa (2001) IMF and stellar ages of 9 Gyr. Thus, for the

ATLAS3D galaxies, a representative M∗/LK = 0.88M⊙/L⊙ is adopted. If the assumed

mean age of the stars is changed by ±2 Gyr, then the resulting mass-to-light ratios are
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Figure 2.5: Stellar effective radius, Re, against the total stellar mass, M∗,tot. The filled
squares (green) are the 258 early-type elliptical galaxies in the ATLAS3D data set,
the filled triangles (magenta) are the 100 ACSVCS galaxies, and the filled circles (red)
are the SDSS data. The SDSS data are placed into bins in Graves, Faber & Schiavon
(2009b) [see text], and the circle size is proportional to the number of galaxies in each
Re bin. The solid line (black) is the parametrisation of Re versus M∗,tot, given in
equation (2.29).
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altered by approximately ±15%.

Chen et al. (2010) give g-band apparent magnitudes and (g − z) colours for the

ACSVCS galaxies. Combining these with the surface-brightness fluctuation distances

from Blakeslee et al. (2009), the z-band absolute magnitudes are then calculated. For

metallicities −1.7 ≤ [Z/H ] ≤ 2.3, the Maraston models imply colours 0.87 ≤ (g− z) ≤
1.56, including all but a few of the ACSVCS data. The corresponding mass-to-light

ratios fall in the range 1.40 ≤ M∗/Lz ≤ 2.00M⊙/L⊙. The median colour in the

ACSVCS sample is (g − z) = 1.34, for which M∗/Lz ≃ 1.7M⊙/L⊙. This is the value

taken for all of the ACS galaxies to plot them in Figure 2.5. The mass-to-light ratios

again change by approximately ±15% if the assumed age is changed by ±2 Gyr (i.e.

approximate to the range of M/L anyway).

As mentioned, the summary data on ∼ 16, 000 galaxies from the SDSS sample

have been placed into three-dimensional bins by Graves et al (2009a,b). From Graves

et al. 2009a, each (g− r) bin has a median (g− r) colour assigned to it, along with the

number of galaxies in the bin. These are used to calculate a weighted average (g − r)

for the six velocity dispersion bins. Interpolating with the Maraston (2005) models

[assuming a Kroupa (2001) IMF and an age of 9 Gyr] gives a weighted average M∗/LV

value for each σ bin. In Graves et al. 2009b, each of the Ie bins has a median logRe

and log Ie value assigned to it. The latter of these can be used to calculate an average

V -band luminosity, LV , for each bin. This is then combined with the six mean M∗/V

values for each σ bin to calculate a stellar mass. This gives average Re and M∗,tot

values, shown by the red circles in Figure 2.5, with the circle size proportional to the

number of galaxies in a given effective radius bin.

The solid line going through the data in Figure 2.5 is a parametrisation of the

Re–M∗,tot correlation,

Re

kpc
= 1.5

(
M∗,tot

2 × 1010M⊙

)0.1
[
1 +

(
M∗,tot

2 × 1010M⊙

)5
]0.1

. (2.29)

This was chosen to ensure that there are approximately equal numbers of ATLAS3D &

ACSVCS data points lying above and below the line. A change in the assumed stellar
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age of ±2 Gyr shifts the mass scale in equation (2.29) by approximately ±(0.3−0.4) ×
1010M⊙, due to a change of ∼ 15% in the mass-to-light ratios. Alternatively, if systems

have different ages (for early-type galaxies, ages can generally range from 7–11 Gyr),

the scatter will be increased along the M∗,tot axis.

It should be emphasised that equation (2.29) represents an average trend for the

Re–M∗,tot correlation. The scatter around the line, with a global standard deviation of

∼ 0.13, is indicative of the fundamental plane for ellipticals, discussed in §1.2.3. For a

fixed M∗,tot, the data cover up to an order of magnitude in range over Re. This scatter

is due to a full description of an elliptical galaxy depending on a third parameter, i.e.

stellar velocity dispersion.

The ATLAS3D sample covers the range of stellar masses, 1010M⊙ ≤ M∗,tot ≤
1012M⊙, of the local galaxies used to define the z = 0 SMBH–bulge correlations.

As discussed in §2.1.1, it is also over this mass range that a Hernquist (1990) profile

adequately describes stellar distributions. The ACSVCS sample includes many galaxies

with lower stellar masses, where surface brightness profiles are better fitted by low-

index Sérsic (1968) profiles, tending towards exponentials (with n = 1). Such surface

brightness profiles are not well approximated by a Hernquist (1990) profile. These

lower mass systems are included in Figure 2.5 to ensure the change in slope in the

Re–M∗,tot data is incorporated correctly. The Re–M∗,tot relation does not depend on

the assumed stellar distribution, but other correlations investigated below do, building

upon equation (2.29). In those cases, the implications of assuming a Hernquist stellar

density distribution for all systems are considered.

2.2.3 Virial radii and halo virial masses

For any value ofM∗,tot, equation (2.29) gives a typical value forRe. Assuming the stellar

distribution is described by a Hernquist (1990) profile, the stellar-to-dark matter mass

ratio within the virial radius of a galaxy can be written as [from the mass distribution
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of Hernquist stars, given by equation (2.3)]

f∗,vir ≡
M∗(rvir)

Md(rvir)
=
M∗,tot

Md,vir

(
rvir/Re

rvir/Re + a∗/Re

)2

. (2.30)

Associating Md,vir with the dark matter mass of the main halo centred on the stars in

the galaxy, f∗,vir is additionally constrained by cosmological simulations through the

Moster et al. (2010) parametrisation (cf. §2.1.4):

f∗,vir = 0.0564

{[
Md(rvir)

7.66 × 1011 M⊙

]−1.06

+

[
Md(rvir)

7.66 × 1011 M⊙

]+0.556
}−1

. (2.31)

Finally, assuming the total mass within the virial radius is just the sum of the stellar

and dark matter mass, i.e., M(rvir) = Md,vir(1 + f∗,vir), then the connection between

M(rvir) and rvir [equation (2.25)], evaluated at z = 0 with the 2013 Planck cosmological

parameters gives

f∗,vir = 0.0544

[
rvir

100 kpc

]3 [
Md,vir

1012M⊙

]−1

− 1. (2.32)

Solving equations (2.30)–(2.32) for the three unknowns f∗,vir, rvir andMd,vir as functions

of M∗,tot gives the curves shown in Figure 2.6.

The peak in f∗,vir in the top panel, at a value of ≃ 0.03 at M∗,tot ≃ 3.4× 1010M⊙

(or equivalently, Md,vir ≃ 1.1 × 1012M⊙) comes directly from the form of equation

(2.31), taken from Moster et al. (2010). The rapid decrease in f∗,vir towards higher

masses corresponds to the rapid increase in Md,vir with increasing M∗,tot. Halos around

central galaxies with M∗,tot ≥ 1011M⊙ have Md,vir ≥ 1013M⊙ and rvir ≥ 500 kpc, and

so are encompassing entire groups and clusters.

The most massive systems are likely to contain baryons in the halo that are not

directly associated with the stars in the central galaxy. These include intracluster

light and gas, as well as off-centre satellite galaxies. Equation (2.26) does not take

into account these extra baryons. To do so requires the additional constraint of the

“global” baryon fraction, which is also a mass dependent quantity (Giodini et al. 2009;

McGaugh et al. 2010; Zhang et al. 2011). At a radius of r500 (where the overdensity
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Figure 2.6: Average scaling relations for some virial properties of (early-type) galaxies
as functions of total stellar mass. Top panel: The stellar-to-dark matter mass ratio
within the virial radius, f∗,vir, taken from Moster et al. (2010). Middle panel: Virial
radius of the model galaxy, rvir. Bottom panel: Dark matter mass inside the virial
radius, Md,vir. These three quantities are calculated as functions of M∗,tot by solving
equations (2.30)–(2.32).
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∆ = 500), Giodini et al. (2009) give the global baryon fraction as a function of total

system mass within r500:

fb,500 = (0.123 ± 0.003) ×
(

M500

2 × 1014M⊙

)0.09±0.03

. (2.33)

They obtained this result by combining stellar mass fractions associated with individual

galaxies at r500 with an estimate for the gas mass fraction, for 118 groups and clusters

over a mass range of 1013M⊙ ≤ M500 ≤ 1015M⊙. Their estimate for the gas mass

fraction comes from a mean trend established from an independent sample of well

observed groups and clusters (Vikhlinin et al. 2006; Arnaud, Pointecouteau & Pratt

2007; Sun et al. 2009).

The relationship between Mvir and rvir given by equation (2.25) provides a con-

venient way to calculate the masses, radii and mass fractions (stellar and baryon) at

different overdensities. This is necessary to make a direct comparison between the

Moster et al. (2010) relation for f∗,vir and the Giodini et al. (2009) relation for fb,500.

For overdensities ∆ and ∆vir, equation (2.25) evaluated at z = 0 implies

Mvir

M∆
=

∆vir

∆

(
rvir

r∆

)3

. (2.34)

Assuming that Mvir = Md,vir +M∗,vir and M∆ = Md,∆ +M∗,∆, this can be written as

Md,vir +M∗,vir

Md,∆ +M∗,∆
≡ 1 + f∗,vir(

Md,∆

Md,vir

)
+

(
M∗,∆

M∗,vir

)
f∗,vir

=
∆vir

∆

(
rvir

r∆

)3

. (2.35)

For a given dark matter halo model and stellar distribution profile, the ratios

Md,∆/Md,vir and M∗,∆/M∗,vir can be expressed as functions of r∆/r−2 and r∆/Re re-

spectively. From the scaling relations for the virial properties, specifying M∗,tot fixes

rvir, f∗,vir and Md,vir. This in turn fixes the concentration, and hence the r−2 radius.

The effective radius is also known once a total stellar mass has been chosen, through

the Re–M∗,tot relation. Therefore the radius r∆ is fixed by specifying M∗,tot, through

equation (2.35). Values for Md,∆/Md,vir and M∗,∆/M∗,vir are then calculated, and the

stellar mass fraction at any overdensity radius is then

f∗,∆ =

[
M∗,∆/M∗,vir

Md,∆/Md,vir

]
f∗,vir. (2.36)
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For the total baryon fraction, fb,∆, the extra baryons that are not associated

directly with stars in the central galaxies need to be considered. Denoting the mass

in these extra baryons as Mg, and assuming that they trace the dark matter, then the

mass fraction is constant as a function of radius:

fg ≡ Mg

Md
= fb,∆ − f∗,∆ = fb,vir − f∗,vir. (2.37)

The last equality in equation (2.37) can be rearranged to give fb,vir in terms of fb,∆

and the stellar mass fraction at the virial and r∆ radii:

fb,vir = (fb,∆ − f∗,∆) + f∗,vir. (2.38)

The baryon fraction at a given overdensity radius can therefore be transformed to a

baryon fraction at any other overdensity radius through equations (2.34) – (2.38).

The top panel of Figure 2.7 shows the baryon- (black curve) and stellar- (green

curve) to-dark matter mass ratios at the r500 radius, as a function of total system

mass within this radius, M500. The fb,500–M500 relation is the result from Giodini et al.

(2009), given by equation (2.33). The stellar-to-dark mass ratio at r500 is from equation

(2.36), assuming a Dehnen & McLaughlin model for the dark matter halo and for a

Hernquist stellar distribution. The broken blue line corresponds to the cosmic average

baryon fraction, f0 ≃ 0.18 (Planck Collaboration 2014).

The bottom panel shows the baryon- (black curves) and stellar- (green curves)

to-dark matter mass ratios inside the virial radius, rvir, versus Mvir. The green curve

is from the f∗,vir parametrisation from Moster et al. (2010). The black curve, showing

the fb,vir–Mvir relation, is obtained using equation (2.38), assuming a Hernquist stellar

distribution and a Dehnen & McLaughlin model for the dark matter. The broken blue

line again shows the cosmic average baryon fraction.

It is only in the most massive clusters (with Md,vir ≥ few × 1014M⊙) that fb,vir

gets close to the cosmic average. It is to be expected that in these largest systems, the

global baryonic content should approach the cosmic average. In lower mass systems,

more of the intra-cluster baryons will lie further away from the centre of the system,

even outside of rvir, as it will be easier for various feedback processes (AGN, supernova,
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stellar winds etc.) to clear gas out of such systems. In galaxy-sized halos (Md,vir .

1012M⊙), the baryon fraction is generally consistent with the mass of stars, remnants

and stellar ejecta in the galaxy, which are already fully accounted for. The qualitative

result of Giodini et al. (2009) — the decrease in fb,500 (and hence fb,vir) with decreasing

mass – is consistent with other studies in the literature that consider global baryon

fractions (McGaugh et al. 2010; Zhang et al. 2011; Gonzalez et al. 2013).

In terms of virial properties then, the maximum effect of accounting for the extra

baryons would be a ∼ 15% increase in the total virial mass (the cosmic average baryon

fraction) and a < 5% increase in the virial radius. This complication has little effect, at

least as far as rvir is concerned. The implications of an increased Mvir when calculating

the stellar velocity dispersions are also considered (cf. §2.2.6).

For stellar masses in the range 108M⊙ . M∗,tot . 1012M⊙, the models give virial-

to-effective radius ratios in the range 110 . rvir/Re . 170. As a result, the stellar

mass inside the virial radius is M∗(rvir) ≥ 0.99M∗,tot over the associated mass range

(108M⊙ . M∗,tot . 1012M⊙). Additionally, equation (2.30) gives f∗,vir ≃ M∗,tot/Md,vir,

with only a weak dependence on rvir/Re, since rvir/Re ≫ a∗/Re. The mass of dark

matter alone within rvir is therefore determined [through equations (2.30) and (2.31)]

almost independently of rvir. Thus, the calculated values of Md,vir are not changed

much by including these additional baryons outside of the central galaxies.

These results for the virial properties of the model galaxies will still hold true for

stellar distributions described by Sérsic models that depart significantly from Hernquist

profiles in projection, providing M∗(r) converges within r ≤ 100Re. This is always the

case for Sérsic profiles with 1 . n . 10 (cf. Figure 2.10). With this proviso, the curves

for f∗,vir, rvir and Md,vir are insensitive to the choice of stellar density profile.

2.2.4 Peak halo circular speeds

With virial radii and dark matter masses known as functions of M∗,tot, the scale radius

r−2 follows directly from equation (2.27) for the halo concentration, rvir/r−2. The

location of the peak of the dark matter circular-speed curve then comes from the ratio
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Figure 2.7: Top panel: The baryon-to-dark matter mass ratio at a radius of r500, fb,500,
as a function of total mass within r500, M500. The functional form of fb,500 is taken
from Giodini et al. (2009), and is given in equation (2.33). The broken blue line shows
the cosmic average baryon fraction according to the Planck cosmology, f0 ≃ 0.18. The
green curve shows the stellar-to-dark matter mass ratio at r500, calculated as described
in the text. Bottom panel the baryon (black curve) and stellar (green curve) mass
fraction at the virial radius, rvir, as a function of the total virial mass, Mvir. The
broken blue line again corresponds to the cosmic average. f∗,vir is from the Moster et
al. (2010) parametrisation. The calculation for obtaining fb,vir from fb,500 is described
in the text.
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rpk/r−2 specific to a choice of ρd(r) for the dark matter. The top panel of Figure 2.8

shows the model curves of rpk versus M∗,tot for all four dark matter halos. The curves

are very similar because rpk/r−2 ≃ 2 to within 15% for all of these halos. They are

also essentially independent of the choice of stellar distribution, due to the fact that

rvir and Md,vir are as well. For stellar masses in the range 108M⊙ ≤ M∗,tot ≤ 1012M⊙,

the scaling relations imply 15 ≤ rpk/Re ≤ 110 and 0.14 ≤ rpk/rvir ≤ 0.40, indicating

that the peak is more representative of the dark matter halo on global scales.

The peak value of the dark matter circular-speed can be expressed as

V 2
d,pk =

V 2
d (rpk)

V 2
d (r−2)

[
V 2

d (rvir)

V 2
d (r−2)

]−1
GMd,vir

rvir
. (2.39)

The normalised circular-speed profiles, V 2
d (r)/V 2

d (r−2), are shown for each halo in Fig-

ure 2.2, and are given in equations (2.9), (2.13), (2.17) and (2.21). For a given dark

matter density profile, evaluating the circular-speed profiles at r = rpk (fixed by the

density profile and independent of stellar distribution) and r = rvir (dependent on

M∗,tot), and then folding in the dependences of Md,vir and rvir on M∗,tot, yields Vd,pk

as a function of total stellar mass. The bottom panel of Figure 2.8 shows this mean

trend, again for all four dark matter halos.

The Vd,pk versus M∗,tot curves are once again insensitive to the choice of stellar

distribution. The differences between the halos are mainly a result of the different

widths of the circular-speed curves between rpk and rvir. The differences are greater

for smaller systems, as these have higher concentrations on average, leading to larger

ratios rvir/rpk and hence ratios Vd(rpk)/Vd(rvir) that are more sensitive to the detailed

shapes of the circular-speed curves.

The peak circular speeds in the largest systems, which represent the galaxies

defining the upper end of the observed SMBH–bulge correlations, have very large val-

ues (above 1000 km s−1), far exceeding the stellar velocity dispersion measured within

Re in real galaxies. This is because dark matter halos centred on such massive galaxies

correspond to entire clusters. At the same time, these larger halos will be the ones

that grow the most at low redshifts, after the epoch of quasar activity that may have

determined self-regulated black hole masses. Looking ahead to Chapter 3, a theoretical
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Figure 2.8: The location, rpk (top panel), and value, Vd,pk (bottom panel), of the
peak of the dark matter circular-speed curves at z = 0, as a function of total stellar
mass, M∗,tot. Both panels show the mean trends for the four dark matter halos I am
considering; NFW (black line), Hernquist (red line), Dehnen & McLaughlin (blue line)
and Burkert (broken magenta line).
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prediction for a critical SMBH mass of the form MBH ∝ V 4
d,pk (McQuillin & McLaugh-

lin 2012) is considered. It is therefore essential that Vd,pk be calculated in the halo

progenitors in order to compare such predictions to any observed MBH–bulge property

correlation. Modelling galaxies in this way soon leads to the conclusion that the naive

substitution, Vd,pk =
√

2σap(Re) cannot suffice to make this comparison.

To summarise so far, scaling relations between total stellar mass, M∗,tot, and

various properties of early-type galaxies at z = 0 have been constructed. These are

Re, f∗,vir, Md,vir, rvir, Vd,pk and rpk. The Vd,pk–M∗,tot relation turns steeply upwards

at approximately 4 × 1011M⊙, due to the non-monotonic behaviour of the stellar-to-

dark matter mass ratio. This leads to Vd,pk values that far exceed σap(Re) in the most

massive systems. However, in order to compare a prediction relating the black hole

mass to a global property of the protogalactic dark matter halo to the MBH–σap data

(and other SMBH correlations), calculations of the dark matter properties at z > 0

are required. This is the focus of Chapter 3. In the meantime, Vd,pk at z = 0 needs to

be connected to the aperture velocity dispersion, σap(Re), at z = 0. This ultimately

requires solving the spherical Jeans equation (cf. §2.2.6.1), for which the stellar-to-dark

matter mass ratio at more than one radius needs to be considered.

2.2.5 Stellar mass fractions at different radii

The stellar-to-dark matter mass ratio within radius r in a galaxy with a specified total

stellar mass can be written as

f∗(r) ≡
M∗(r)

Md(r)
= f∗,vir

M∗(r)/M∗,vir

Md(r)/Md,vir

. (2.40)

Here, f∗,vir is known as a function of M∗,tot from §2.2.3. If the stars are described

by a Hernquist profile, the normalised stellar mass profile comes from equation (2.3)

and can be evaluated at any r (for a given M∗,tot and hence Md,vir), since Re and rvir

are known once the total stellar mass has been specified. Once a dark matter halo

has been chosen, its mass profile follows and can also be evaluated at any r since the

concentration (and hence r−2 along with rvir) is also fixed by M∗,tot.
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Cappellari et al. (2013a,b) used dynamical Jeans modelling (cf. §1.3.2.2) to

estimate the ratio of dark-to-total mass within r = Re for each of the 258 ATLAS3D

galaxies. In the current notation, this is related to the stellar-to-dark matter mass

ratio inside Re:

f∗(Re) ≡
M∗(Re)

Md(Re)
=

1 −Md(Re)/M(Re)

Md(Re)/M(Re)
. (2.41)

Although the Cappellari et al. modelling assumes that the dark matter halos have

NFW density profiles, their results are not very sensitive to this detail, since they find

Md(Re) < M∗(Re) by factors of several for most of their galaxies. Therefore, at radii

around Re, the stars are the dominant component of the galaxy.

Figure 2.9 shows the f∗(Re) values for the 258 ATLAS3D galaxies. The arrows

at the top represent galaxies consistent with having no dark matter inside Re in their

analysis. The curves show the average dependence on M∗,tot for the four different dark

matter halos (line colours are indicated at the top of the Figure), obtained by evaluating

equation (2.40) at r = Re. The model curves depend on the stellar distribution through

the normalised mass profile, M∗(r)/M∗,vir ≃ M∗(r)/M∗,tot, evaluated at r = Re. For

a Hernquist density profile, M∗(Re)/M∗,tot ≃ 0.41576. The top panel of Figure 2.10

shows stellar mass profiles as a function of r/Re, for different integer values of the

Sérsic index, n. In the region r < Re, the shallowest profile corresponds to n = 10,

with n decreasing by one when moving to the next curve. The steepest M∗(r) curve in

this plot is for n = 1. The bottom panel shows M∗(Re)/M∗,tot as a function of Sérsic

index, n, with the broken red line corresponding to the value for a Hernquist profile.

In the mass range M∗,tot ≥ 1010M⊙, stellar distributions are more accurately de-

scribed by Sérsic (1968) profiles with Sérsic indices 3 ≤ n ≤ 7. Figure 2.10 shows

that describing the stars in this way, instead of using a Hernquist profile, alters

M∗(Re)/M∗,tot [and hence f∗(Re)] by less than 5%. For the lower-mass systems, where

there are no f∗(Re) data, the stellar profiles are described by profiles with smaller val-

ues of n, closer to exponential. For these, f∗(Re) can be up to ∼ 20% lower than the

Hernquist model value. This variations in M∗(Re)/M∗,tot with n are relatively small,

especially given the amount of scatter in the data in the f∗(Re)–M∗,tot plot.
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Figure 2.9: The stellar-to-dark matter mass ratio at the effective radius, f∗(Re), as a
function of total stellar mass, M∗,tot. The coloured lines show mean trends for the four
dark matter halos I am considering; NFW (black line), Hernquist (red line), Dehnen
& McLaughlin (blue line) and Burkert (broken magenta line). The data points are
from dynamical modelling by the ATLAS survey, where the arrows represent galaxies
consistent in their analysis with having no dark matter within Re.
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Figure 2.10: Top panel: Stellar mass profiles as a function of r/Re, for various Sérsic
profiles. These were calculated by de-projecting the surface density profile, and then
integrating the resulting ρ∗(r) profile. The different curves correspond to values of the
Sérsic index, n = 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 going from left to right at small r/Re. Bottom

panel: The stellar mass profile, M∗(r)/M∗,tot, evaluated at r = Re, as a function of
Sérsic index, n. The broken red line corresponds to M∗(Re)/M∗,tot ≃ 0.41576, the
value for a Hernquist stellar distribution.
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It is clear from Figure 2.9 that the f∗(Re)–M∗,tot relation is dependent on the

choice of dark matter halo. The main source of the differences between the curves in

Figure 2.9 is how steeply the enclosed dark matter mass, Md(r), decreases as r → 0.

Hernquist and NFW profiles have the same central density slope (i.e. ρd(r) ∝ r−1), and

therefore have similar values for Md(Re)/Md,vir, and hence f∗(Re), for a fixed M∗,tot.

Dehnen & McLaughlin (2005) halos have significantly shallower mass profiles than

NFW or Hernquist. These therefore have larger values of Md(Re)/Md,vir, and hence

smaller f∗(Re). Conversely, the central density core of the Burkert (1995) halo leads to

a mass profile that is much steeper than the three cuspy halos at small radii. This puts

relatively more dark matter at larger radii in the Burkert halos, giving lower values of

Md(Re)/Md,vir, and higher f∗(Re) for a fixed M∗,tot.

The three halos with central density cusps all imply f∗(Re) values that are broadly

consistent with the ATLAS3D data, for total stellar masses ≥ 1010M⊙. However, the

Burkert halo models over-predict the data. This is not a surprising outcome, as the

Burkert profile was originally proposed in connection with dwarf spheroidal galaxies,

not regular ellipticals.

2.2.6 Stellar velocity dispersions

2.2.6.1 Jeans modelling

To calculate (model) stellar velocity dispersions, the isotropic Jeans equation (cf.

§1.3.2) is solved. Including contributions to the gravitational potential from dark mat-

ter, stars and the accumulated ejecta from stellar winds and supernovae, the Jeans

equation is
d[ρ∗(r)σ

2
∗(r)]

dr
= −Gρ∗(r)

r2

[
Md(r) +M∗(r) +Mej(r)

]
. (2.42)

Intracluster baryons (in the form of intracluster gas and light or satellite galaxies) are

not included in this calculation. The consequences of this are discussed at the end of

the Section.

For the stellar ejecta, there are two extreme possibilities to consider. Either



121

the ejecta could be confined to the central regions of the overall potential well or

they could be expelled from the centre of the galaxy. If the ejecta are pushed well

away from the centre, most likely in lower-mass galaxies, they can become part of the

intracluster baryons, or can be driven out of the system entirely. However, if the ejecta

are confined to the central regions, then they are likely to approximately follow the

stellar distribution, so the mass profile is Mej(r) ≈ FejM∗(r), with Fej constant. The

value of Fej comes directly from the population synthesis models used to calculate mass-

to-light ratios in §2.2.2. For a Kroupa (2001) IMF and stellar ages greater than several

Gyr, Maraston (2005) gives the ratio of current-to-initial mass in stars and remnants

as ≃ 0.58 for the single-burst models, implying (1 + Fej) ≃ 1/0.58 −→ Fej ≃ 0.72.

Defining the normalised quantities

r̃ =
r

Re
; ρ̃∗ =

ρ∗
M∗,tot/R3

e

; σ̃2
∗ =

σ2
∗

GM∗,tot/Re
, (2.43)

where ρ∗ and σ∗ are the stellar density and one-dimensional velocity dispersion profiles,

the dimensionless Jeans equation is

d

dr̃

[
ρ̃∗(r̃)σ̃

2
∗(r̃)

]
= − ρ̃∗(r̃)

r̃2

M∗(r̃)

M∗,tot

[
(1 + Fej) +

1

f∗(r̃)

]
. (2.44)

The dimensionless stellar density, ρ∗(r), and mass, M∗(r)/M∗,tot, profiles are known for

a Hernquist distribution, and the function f∗(r) is known in full for any specified M∗,tot

and chosen dark matter halo, as discussed in §2.2.5. Using the boundary condition

that ρ̃∗σ̃
2
∗ → 0 as r̃ → ∞, equation (2.44) can therefore be solved for the dimensionless

σ2
∗/(GM∗,tot/Re) as a function of r/Re in a galaxy with any given total stellar mass.

2.2.6.2 The aperture velocity dispersion

The velocity dispersion in data is the aperture velocity dispersion over a circular disc

on the plane of the sky. This comes from projecting σ2
∗(r) along the line of sight and

then taking a luminosity-weighted average (Binney & Tremaine 2008). If r is the 3-D

spatial radius, R is the 2-D projected radius on the plane of the sky and z is along the
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line of sight of the observer, then r =
√
R2 + z2. Defining a dimensionless R̃ = R/Re

and z̃ = z/Re, the stellar surface-density profile is then

Σ̃∗(R̃) ≡ Σ∗(R)

M∗,tot/R2
e

= 2

∫ ∞

0

ρ̃∗(r̃) dz̃ = 2

∫ ∞

eR

ρ̃∗(r̃)
r̃ dr̃

(r̃2 − R̃2)1/2
, (2.45)

and the projected stellar velocity dispersion is therefore given by

σ̃2
p(R̃) =

2

Σ̃∗(R̃)

∫ ∞

0

ρ̃∗(r̃)σ̃
2
∗(r̃) dz̃ =

2

Σ̃∗(R̃)

∫ ∞

eR

ρ̃∗(r̃) σ̃
2
∗(r̃)

r̃ dr̃

(r̃2 − R̃2)1/2
. (2.46)

Taking the luminosity-weighted average of this, the aperture dispersion within a pro-

jected radius Rap is

σ̃2
ap(Rap) =

∫ Rap/Re

0
σ̃2

p(R̃) Σ̃∗(R̃) R̃ dR̃
∫ Rap/Re

0
Σ̃∗(R̃) R̃ dR̃

. (2.47)

For a given aperture size, and with the stellar density profile the same in all

galaxies, σap is determined by the form of the dark matter density profile and the

value of M∗,tot (which also determines the value of Md,vir, rvir and f∗,vir). These fix the

dimensionless unprojected velocity dispersion and the value of Re. Setting Rap = Re

in the equation above yields the dispersion corresponding to the measured values in

the ATLAS sample, and in many MBH–σ relations (Gültekin et al. 2009; McConnell

& Ma 2013; Kormendy & Ho 2013).

2.2.6.3 Comparison with data

Figure 2.11 shows velocity dispersion data for the ATLAS3D galaxies (green squares,

Cappellari et al. 2011, 2013a,b) and the SDSS galaxies (red circles, Graves et al.

2007a,b). For the latter, the circle size is proportional to the number of galaxies in

each σ bin in the Graves et al. summary data. Also included are unpublished velocity

dispersions for the ACSVCS galaxies (magenta triangles; P. Côté, priv. comm.). The

curves show the model aperture velocity dispersion, calculated for each of the four dark

matter halos.

All of the cuspy halos yield curves that run through the middle of the σap(Re)

data for galaxies with M∗,tot ≥ 1010M⊙, while the cored halo predicts dispersions higher
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than the observed average for a given total stellar mass. This is because for a fixed

M∗,tot, and hence Md,vir, the Burkert halo has more of its mass at larger radii than the

cuspy halos do. The unprojected σ∗(r) is substantially higher for r ≥ Re as a result,

inflating the line-of-sight dispersion even inside Re. For lower-mass systems, with

M∗,tot < 1010M⊙, the model stellar velocity dispersions calculated with the three cuspy

halos lie above most of the data. It is in this stellar mass range that the robustness of

the models is most uncertain.

As an extra comparison, Figure 2.12 shows the curve for a Dehnen & McLaughlin

halo (solid blue line) compared to the fit using SDSS data from Gallazzi et al. (2006),

given by (see Dutton et al. 2010);

log

[
σap(Re)

km s−1

]
= 2.054 + 0.286

(
log

[
M∗,tot

1010h−2M⊙

])
. (2.48)

This is valid for stellar masses 1010M⊙ . M∗,tot . 1012M⊙. The calculations from the

Jeans modelling outlined in §2.2.6.1 show excellent agreement with equation (2.48),

especially for M∗,tot & 1010M⊙. For smaller galaxies, where equation (2.48) is an

extrapolation, both are inconsistent with the ACSVCS data.

For a self-consistent Hernquist sphere containing stars only [Fej = 0 and 1/f∗(r) ≡
0], the dimensionless aperture velocity dispersion inside Re is σ2

ap(Re)/(GM∗,tot/Re) ≃
0.151. If the stellar ejecta and dark matter are included, the stellar velocity dispersions

can be usefully approximated by

σap(Re)√
GM∗,tot/Re

≈ 0.389

√
(1 + Fej) +

0.86

f∗(Re)
, (2.49)

where the term under the square-root represents the ratio of an “effective” total mass

to the total stellar mass. This approximation reproduces the aperture dispersion values

from the full Jeans-equation and projection calculations with relative error < 2.5% for

Hernquist stars inside any of the three cuspy halos, as long as f∗(Re) > 0.1.

The values of σ2
ap(R)/(GM∗,tot/Re) have also been calculated for self-gravitating

Sérsic (1968) R1/n spheres of stars, without any dark matter. This is done by de-

projecting the surface brightness profiles to obtain ρ∗(r) for each n. From this the mass
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Figure 2.11: Stellar velocity dispersion, σap(Re), within an aperture of radius Re as a
function of M∗,tot. Green squares are from the ATLAS survey, and red circles are from
the summary data for ∼ 16, 000 galaxies in the SDSS sample (Graves et al. 2007a,b).
The circle size is proportional to the number of galaxies in each σ bin from the Graves
et al. papers. The magenta triangles are from the ACSVCS data set. The curves show
the implied aperture dispersions for the four different halos, with line colours indicated
at the top of the Figure.
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Figure 2.12: Stellar velocity dispersion, σap(Re), within an aperture of radius Re as a
function of M∗,tot. Green squares are from the ATLAS survey, and red circles are from
the summary data for ∼ 16, 000 galaxies in the SDSS sample (Graves et al. 2007a,b).
The circle size is proportional to the number of galaxies in each σ bin from the Graves et
al. papers. The magenta triangles are from the ACSVCS data set. The solid blue line
is the σap(Re)–M∗,tot relation from the Jeans modelling outlined in §2.2.6.1, assuming
a Dehnen & McLaughlin density profile for the dark matter halo. The broken black
line shows the fit to SDSS data (velocity dispersion versus stellar mass) from Gallazzi
et al. (2006), [see equation (2.48)].
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profile, M∗(r), is obtained, and then the spherical Jeans equation is solved. This is to

investigate the consequences on the aperture dispersion (at Re) of assuming Hernquist

stars for all galaxies. The Sérsic σap(R) profiles are shown in the top panel of Figure

2.13, for Sérsic indices n = 1–10 in integer steps, as a function of R/Re. The bottom

panel shows σ2
ap(R)/(GM∗,tot/Re) evaluated at R = Re as a function of Sérsic index,

n.

For indices n ≤ 5, applicable for elliptical galaxies with stellar masses M∗,tot ∼
108M⊙–1011M⊙, the dimensionless aperture dispersion is 0.36 ≤ σ̃ap(Re) ≤ 0.43, com-

pared to σ̃ap(Re) ≃ 0.389 for the Hernquist model. The model curves for σap(Re)

in Figure 2.11 are therefore vulnerable at only the < 10% level to a bias resulting

from the use of a Hernquist profile. This bias will be a slight tilt, due to the corre-

lation between Sérsic index, n, and M∗,tot (cf. §1.2.3). The most massive ellipticals,

with M∗,tot ≥ 2 − 3 × 1011M⊙, are best described by higher n ∼ 5–7, for which

σap(Re)/(GM∗,tot/Re)
1/2 ≃ 0.43–0.49 rather than 0.389 (for Hernquist).

One potential reason for the disagreement between the model curves and data

for M∗,tot < 1010M⊙ that needs to be checked is the fact that the ACSVCS velocity

dispersions are measured inside Re/8, rather than Re (P. côté, priv. comm.). Figure

2.14 shows the ratio σap(Re/8)
/
σap(Re) as a function of Sérsic index, n. The solid

red line corresponds to a self-consistent sphere of Hernquist stars only [Fej = 0 and

1/f∗(r) = 0], with σap(Re/8)
/
σap(Re) ≃ 1.07. In terms of the curves then, calculating

the velocity dispersion at Re/8 instead of Re would shift them upwards by ∼ 7%, even

further away from the ACSVCS data for low-mass systems. For Sérsic models with

n . 4, corresponding to M∗,tot . 1010M⊙, the two aperture dispersions are the same

to within ∼ 10%, a similar difference as for Hernquist. Therefore, accounting for the

difference of within which radius σap is measured does not explain the disagreement

between the curves and data for M∗,tot < 1010M⊙.
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Figure 2.13: Top panel: Stellar aperture velocity dispersion profiles as a function of
R/Re, for various Sérsic profiles. The different curves correspond to integer values
of the Sérsic index, n = 1–10. Bottom panel: The stellar aperture velocity disper-
sion, σap(R)/

√
GM∗,tot/Re, evaluated at R = Re, as a function of Sérsic index, n.

The broken red line shows the value for a self-consistent Hernquist sphere of stars —
σap(Re)/

√
GM∗,tot/Re ≃ 0.389.
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Figure 2.14: The ratio of the aperture stellar velocity dispersion measured in-
side Re/8 to σap(Re), versus Sérsic index, n. The solid red line corresponds to
σap(Re/8)

/
σap(Re) ≃ 1.07, the value for a Hernquist stellar distribution.
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2.2.6.4 Stellar ejecta

The choice of a Hernquist profile to describe the stellar distribution in all galaxies is

obviously not very accurate for low mass galaxies, whose surface brightness profiles are

closer to exponential. However, as discussed above, accounting for this in the models

would alter the stellar velocity dispersions by < 10%. There are more important

physical considerations that affect the accuracy with which the models can describe

the lowest mass galaxies, with M∗,tot less than a few ×109M⊙.

To calculate the stellar velocity dispersions, σap(Re), the stellar ejecta were

assumed to be retained near the bottom of any galaxy’s potential well. However,

supernova-driven winds are likely to actually expel the ejecta from many dwarf ellipti-

cals to far beyond the stellar distribution (Dekel & Silk 1986). In this case, it is more

appropriate to have Fej = 0 in equations (2.44) and (2.49). Making this change lowers

the model σap(Re) values by ∼ 30% at a given M∗,tot.

This expected limiting physical behaviour of the stellar ejecta suggests an ejecta-

to-stellar mass fraction, Fej, that ought to depend on total stellar mass. Presumably,

such a dependency should lead to Fej ≃ 0.72 for the largest galaxies, where supernova

driven winds are unable to lift the ejecta from the bottom of the potential wells. Fej

would then decrease with M∗,tot, tending to zero for the lowest mass systems. An

ad-hoc Fej–M∗,tot relation given by

Fej = 0.72

(
M∗,tot/1010M⊙

1 + M∗,tot/1010M⊙

)
(2.50)

satisfies these high- and low-mass limits for the mass ejecta. As an ad-hoc relation,

this only has any sort of physical justification in the limiting cases just outlined.

Figure 2.15 shows σap(Re) versus M∗,tot. Data are from ATLAS (green squares),

ACSVCS (magenta triangles) and SDSS (red circles). All three curves are obtained

from the Jeans modelling (§2.2.6.1) for a Dehnen & McLaughlin halo. Both NFW and

Hernquist are very similar. The solid blue line assumes a constant ejecta-to-stellar

mass fraction of Fej ≃ 0.72, with the solid black line corresponding to Fej = 0. The

dashed line assumes Fej depends on M∗,tot as described by equation (2.50). The lower-



130

mass galaxy data (mainly from the ACSVCS sample) are clearly better described by

the model with Fej = 0, as expected. Over the mass range shown, the data are well

described by the curve that incorporates the ad-hoc Fej dependence on total stellar

mass. From this point onwards, the σap(Re)–M∗,tot model curve at z = 0 assumes Fej

depends on M∗,tot as in equation (2.50).

On the other hand, these same galactic winds may cause changes in the central

structures of the dark matter halos of dwarfs, from initially steep density cusps, to

shallower profiles, perhaps closer to the Burkert (1995) model (Burkert & Silk 1997;

Pontzen & Governato 2012). Subsequent tidal stripping could have led to further,

larger-scale modifications of the halos in many cases. Substantial, systematic alter-

ations to the dark matter density profiles could well impact the inferred values for

Vd,pk, f∗(Re) and σap(Re) from a given M∗,tot. The relation between M∗,tot and Md,vir,

ultimately given by equation (2.26), could also be in error when extrapolated to halo

masses with Md,vir ≤ 1011M⊙, the lower limit in the Moster et al. (2010) semi-analytical

models (Behroozi, Wechsler & Conroy 2013). All in all, more comprehensive modelling

is required to be confident in any details of the models for systems with stellar masses

below 1010M⊙.

2.2.6.5 Intracluster baryons

As discussed in §2.2.3, the scaling relations presented here do not take into account

any baryonic mass in intracluster light, X-ray gas or in off-centre cluster galaxies. Any

effects on the results will be most significant for the largest galaxies, associated with

cluster-sized dark matter halos. These “extra” baryons are expected to be spatially dis-

tributed like the dark matter, rather than the stars in the central galaxy. As such, they

can be included in the full Jeans-equation derivation of σap(Re) by simply increasing

the dark matter mass Md(r) by a constant factor at all radii, or equivalently, decreasing

f∗(r) by the same factor. However, equation (2.49) [on p.123] provides a convenient

way to estimate any possible affects on the model stellar velocity dispersions.

The correction factor will be largest if the global baryon fraction in a cluster is
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Figure 2.15: Stellar velocity dispersion, σap(Re), within an aperture of radius Re as a
function of M∗,tot. Green squares are from the ATLAS survey, and red circles are from
the summary data for ∼ 16, 000 galaxies in the SDSS sample (Graves et al. 2007a,b).
The circle size is proportional to the number of galaxies in each σ bin from the Graves
et al. papers. The magenta triangles are from the ACSVCS data set. The solid blue
curve is for Fej ≃ 0.72 and assumes a Dehnen & McLaughlin halo — identical to
Figure 2.11. The solid black line corresponds to Fej = 0, and again assumes a Dehnen
& McLaughlin halo. The broken line corresponds to the ad-hoc relation between Fej

and M∗,tot, introduced in equation (2.50).
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equal to the cosmic average value and only a negligible, trace amount is bound up in

the central galaxy itself. It will therefore be less than (1 − Ωb,0/Ωm,0)
−1 ≃ 1.18 (for

Planck 2013 cosmology). This could plausibly be the case in the largest cluster halos,

with Md,vir ∼ 1015M⊙ (Gonzalez et al. 2013). However, as discussed in §2.2.3, the

global baryon fraction is found to decrease systematically with decreasing halo mass

(McGaugh et al. 2010; Zhang et al. 2011; Gonzalez et al. 2013). In fact, on the scales

of individual galaxies, it should not be significantly larger than the mass fraction in

stars and stellar ejecta (see Figure 2.7), already fully accounted for in the models.

The maximum effect on σap(Re) implied by equation (2.49) is obtained by com-

paring the value of the right-hand side with (1 + Fej) = 1/0.58 and f∗(Re) = 0.5

(the lowest value in any of the model curves at Md,vir ≃ 1015M⊙), to the value using

f∗(Re) = 0.5/1.18 instead. The result is an increase of < 5% in the velocity dispersion,

similar to the maximum effect on the values for the halo virial radii in §2.2.3.

2.2.6.6 Dark matter halo properties versus σap(Re) at z = 0

Now that average scalings relating galaxy and dark matter halo properties to the total

stellar mass have been obtained, it is possible to consider any two properties plotted

against one another. Looking forward to Chapter 3, it is useful here to consider the

dark matter properties at z = 0 as functions of stellar velocity dispersion (as well as

stellar mass). It is global properties of the dark matter at higher redshifts that are

expected to be connected to the SMBH mass. For example, McQuillin & McLaughlin

(2012) relates MBH to Vd,pk(z). It should be emphasised that Vd,pk(z) refers to the dark

matter circular-speed peak when blow-out occurred in the protogalaxy, generally at

redshifts z > 0, and not the Vd,pk from §2.2.4, the z = 0 circular-speed peak.

Figure 2.16 shows the dark matter virial mass, Md,vir (top panel), and the peak of

dark matter circular speed curve, Vd,pk (bottom panel), as functions of σap(Re). In both

panels, the different lines correspond to the four dark matter halos considered through-

out the modelling, with the line colours indicated at the top of the Figure. The dashed

black line in the bottom panel shows Vd,pk =
√

2σap(Re). For σap(Re) < 200 km s−1,
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Figure 2.16: Top panel: Dark matter virial mass, Md,vir, at z = 0, as a function
of aperture stellar velocity dispersion, σap(Re), also at z = 0. The different curves
represent the four dark matter halos, with colours indicated at the top of the Figure.
Bottom panel: Peak of the dark matter circular-speed, Vd,pk, at z = 0, again as a
function of σap(Re), for the four dark matter halos considered in these models. The
dashed black line is for Vd,pk =

√
2σap(Re), and is shown for reference only.
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this simplistic substitution is actually not a bad representation of the scaling relations

for all four halos.

For intermediate to low velocity dispersions (70 km s−1 . σap(Re) . 200 km s−1),

the calculated values for Vd,pk are within ∼ 30% (depending on dark matter halo) of the

value implied by the simple substitution. However, Vd,pk =
√

2σap(Re) is clearly a poor

substitute for the implied relation between the two velocities at z = 0 for σap(Re) ≥
200km s−1, corresponding to the velocity dispersion range of the majority of current

SMBH data. At the largest σap(Re), this substitution under-estimates Vd,pk (relative

to the scaling relations) by up to factors of ∼ 3–4. As with the plots versus M∗,tot

earlier, the upward inflection in Md,vir and Vd,pk is due to the rapid decrease in f∗,vir

beyond M∗,tot ∼ 1011M⊙ [equivalently σap(Re) ∼ 150km s−1]. It is unsurprising that

the Vd,pk values for the most massive galaxies far exceed the stellar velocity dispersions

since these dark matter halos correspond to entire clusters.

2.2.7 Comparing to individual systems

Properties from the literature are collected for a few galaxies and halos spanning the

range of mass and stellar velocity dispersion covered by local galaxy samples used to

define empirical SMBH M–σ relations. Numerical values are then extracted from the

z = 0 scalings obtained throughout the Chapter to compare with the measurements.

2.2.7.1 Stellar and halo properties from the literature

Table 2.1 lists observed stellar properties of the Milky Way, M87 (at the centre of Virgo

subcluster A), M49 (at the centre of Virgo B) and NGC4889 (in the Coma Cluster).

Properties of the dark matter halos are also given, from dynamical modelling in the

literature. The analysis is clearly not meant to describe disc galaxies, but the Milky

Way is included as a useful check on the implications for ∼L⋆ galaxies in general.
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The Milky Way In the first row of Table 2.1, the total stellar mass, the radius r200

of mean overdensity ∆ ≡ 200 and the dark-matter mass Md,200 inside this are all taken

from McMillan (2011). Combining his best-fitting NFW concentration, r200/r−2 ≃
9.55, with his values of Md,200 and r200 plus rpk/r−2 = 2.16258 for an NFW halo, yields

rpk ≃ 52 kpc and Vd,pk ≃ 185 km s−1. These are consistent with separate modelling of

the Milky Way by Dehnen, McLaughlin & Sachania (2006).

The second row of Table 2.1 contains the total stellar mass of the Milky Way

bulge only, according to McMillan (2011). He does not record the effective radius of

the bulge or the aperture dispersion inside it, so we take Re ≃ 2.7 kpc from Freeman

(1985) and σap(Re) ≃ 103 km s−1 from McConnell & Ma (2013).

M87 and M49 For M87 and M49, Table 2.1 quotes total stellar masses based on

three different sources: the ATLAS3D survey (Cappellari et al. 2011), the ACSVCS

(Chen et al. 2010) and McConnell & Ma (2013). The original authors give total lu-

minosities, to which the mass-to-light ratios from Maraston (2005) models have been

applied, for a Kroupa (2001) IMF and a stellar age of 9 Gyr: M∗,tot/LK ≃ 0.88 M⊙ L
−1
⊙

for the ATLAS3D luminosity, M∗,tot/Lz ≃ 1.7 M⊙ L
−1
⊙ for the ACSVCS value and

M∗,tot/LV ≈ 3.15 M⊙ L
−1
⊙ for McConnell & Ma (2013). Both galaxies have Re values

in the ATLAS3D survey and the ACSVCS, and velocity dispersions in ATLAS and

McConnell & Ma (2013).

McLaughlin (1999) and Côté et al. (2001) fitted the kinematics of stars and

globular clusters in M87, plus the kinematics of Virgo-cluster galaxies and the total

mass profile derived from intracluster X-ray gas, with a two-component mass model

comprising the stars (plus remnants and stellar ejecta) in the body of M87 and an

NFW dark-matter halo with r200 ≃ 1.55 Mpc and Md,200 ≃ 4.2×1014 M⊙. This clearly

identifies the dark matter in and around M87 with the halo of the entire Virgo A

subcluster. McLaughlin (1999) and Côté et al. (2001) have an NFW concentration of

r200/r−2 = 2.8 ± 0.7 for the M87/Virgo A halo, so (with rpk/r−2 = 2.16258 again)

rpk ∼ 1.2 Mpc and Vd,pk ≃ 1100 km s−1.
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For M49/Virgo B, Côté et al. (2003) similarly use a two-component mass model

consisting of the galaxy’s stars plus a single NFW dark-matter halo, to fit the stellar

and globular cluster kinematics on 50-kpc scales and the X-ray mass profile out to

∼ Mpc radii. The Côté et al. (2003) analysis implies r200 ≃ 950 kpc with Md,200 ≃
9.4 × 1013 M⊙, and r200/r−2 ≃ 4.8. The dark-matter circular speed therefore peaks at

rpk ≃ 425 kpc, where Vd,pk ≃ 710 km s−1.

NGC 4889 NGC4889 is the brightest galaxy in Coma and not far from the nomi-

nal central galaxy, NGC4874. According to McConnell & Ma (2013), NGC4889 has

LV ≃ 3.0 × 1011L⊙ and hence (for M∗/LV ≈ 3.15 M⊙ L
−1
⊙ from the Maraston (2005)

population-synthesis models) M∗,tot ≈ 9.5×1011 M⊙. It is at the uppermost end of the

range of stellar masses plotted for the σap(Re)–M∗,tot relation (but it does not appear

on those plots since it is not in the ATLAS3D survey), and it hosts one of the largest

supermassive black holes yet measured: MBH = (2.1±1.6)×1010 M⊙ (McConnell et al.

2011; McConnell et al. 2012). The effective radius Re = 27 kpc and velocity dispersion

σap(Re) = 347 km s−1 in Table 2.1 are from McConnell & Ma (2013) and McConnell

et al. (2011, McConnell et al. (2012).

The global dark matter properties of the Coma Cluster are taken from dynamical

modelling by Lokas & Mamon (2003). They give values for rvir and Md,vir, rather

than r200 and Md,200 like the other galaxies in Table 2.1, and a best-fitting NFW

concentration of rvir/r−2 = 9.4. Together these imply rpk ≃ 670 kpc and Vd,pk ≃
1585 km s−1.

2.2.7.2 Comparison to models

Taking the total stellar mass M∗,tot as a starting point for each of the systems in

Table 2.1, the other stellar and halo properties are estimated from the scaling relations

developed in this Chapter. Table 2.2 shows the results for Re, σap(Re), Vd,pk, rpk, Md,200

or (for NGC4889/Coma) Md,vir, and r200 or (for NGC4889/Coma) rvir.
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Table 2.1: Values of stellar and dark matter halo properties at z = 0, taken from various
sources in the literature. References: 1 – McMillan (2011), 2 – Freeman (1985), 3 –
McConnell & Ma (2013), 4 – Cappellari et al. (2011), 5 – Cappellari et al. (2013a),
6 – Chen et al. (2010), 7 – McLaughlin (1999), 8 – Côté et al. (2003), 9 – Lokas &
Mamon (2003).

Galaxy M∗,tot Re ref. σap(Re) ref. Vd,pk rpk Md,200 or Md,vir r200 or rvir ref.
(M⊙) (kpc) (km s−1) (km s−1) (kpc) (M⊙) (kpc)

Milky Way 6.4 × 1010 – 1 – – 190 45 1.26 × 1012 230 1
MW bulge 9.0 × 1010 2.7 ± 0.3 1,2 103 ± 20 3 – – – – –
M87 2.9 × 1011 6.8 ± 1.5 4 264 ± 13 5 1100 1200 4.2 × 1014 1550 6

3.2 × 1011 8.7 ± 1.1 7 – – – – – – –
3.7 × 1011 – 3 324+28

−16 3 – – – – –
M49 4.2 × 1011 7.9 ± 1.7 4 250 ± 13 5 710 425 9.4 × 1013 950 8

4.7 × 1011 13.4 ± 1.1 7 – – – – – – –
3.7 × 1011 – 3 300 ± 15 3 – – – – –

NGC4889 9.5 × 1011 27 ± 2.0 3 347 ± 17 3 1585 670 1.2 × 1015 2900 9

L⋆ galaxies: σap(Re) ∼ 100–150 km s−1 For M∗,tot ≃ 6.4 × 1010M⊙ (the total

Milky Way mass), the scalings give the stellar effective radius as Re ≃ 3 kpc and the

velocity dispersion as σap(Re) ≃ 160 km s−1. This dispersion is higher than the value

typically used to put the Milky Way on the black hole M–σ relation: for example,

McConnell & Ma (2013) take σap(Re) = 103 km s−1 for the Galaxy. However, this

value is meant to represent the bulge only. For the bulge mass of M∗,tot ≃ 9× 109 M⊙,

the relations give Re ≃ 1.4 kpc and σap(Re) ≃ 90 km s−1.

For the total Galactic stellar mass of 6.4× 1010M⊙ and assuming an NFW halo,

the scalings lead to a peak circular speed of Vd,pk ≃ 200 km s−1, occurring at rpk ≃
75 kpc. Using equations (2.8), (2.27) and (2.25) to go from the virial radius implied

by M∗,tot to the radius of mean overdensity ∆ = 200 leads to Md,200 ≃ 2 × 1012M⊙

and r200 ≃ 270 kpc. For the mass of the bulge alone, M∗,tot ≃ 9 × 109M⊙, the average

trends imply Vd,pk ∼ 120 km s−1, rpk ∼ 35 kpc, Md,200 ∼ 3.6 × 1011M⊙ and r200 ∼ 150

kpc.

M87 and M49: σap(Re) ∼ 250 km s−1 For each of these galaxies, the mean of

M∗,tot from the three different values in Table 2.1 is used. Thus, M∗,tot = 3.3×1011 M⊙
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Table 2.2: Stellar and dark matter halo properties at z = 0 according to the scaling
relations. For each galaxy, the starting point is M∗,tot, taken from the literature.

Galaxy M∗,tot Re σap(Re) Vd,pk rpk Md,200 or Md,vir r200 or rvir

(M⊙) (kpc) (km s−1) (km s−1) (kpc) (M⊙) (kpc)
Milky Way 6.4 × 1010 3.0 160 200 75 2.0 × 1012 270
MW bulge 9.0 × 109 1.4 90 120 35 3.6 × 1011 150
M87 3.3 × 1011 8.0 245 600 330 6.0 × 1013 830
M49 4.2 × 1011 9.3 265 720 420 1.0 × 1014 1000
NGC4889 9.5 × 1011 15.2 345 1285 925 8.0 × 1014 2450

for M87, and M∗,tot = 4.2× 1011 M⊙ for M49. The parametrisation of Re versus M∗,tot

in §2.2.2 then gives the values recorded in Table 2.2, which broadly agree with the

measurements of Re. The model values in Table 2.2 for σap(Re), Vd,pk, rpk, Md,200 and

r200 assume an NFW halo around each galaxy (as the analyses from the literature do).

The predicted velocity dispersions compare well to the measurements for M87 and M49

in the ATLAS3D survey but not quite as well to the values recorded by McConnell &

Ma (2013), which are 20% higher.

The value of r200 for M87/Virgo A in Table 2.1, from McLaughlin (1999), is ≃80%

bigger than the one in Table 2.2, implied by the scaling relations. McLaughlin’s Md,200

is consequently larger by about a factor of 1.83 ≃ 6. Similarly, the circular-speed curve

of the halo in McLaughlin (1999) peaks at rpk ∼ 1.2 Mpc (with a very large uncertainty)

rather than rpk ≃ 330 kpc as expected here, and it has Vd,pk ≃ 1100 km s−1 rather

than Vd,pk ≃ 600 km s−1.

These discrepancies for M87/Virgo A may simply reflect the inevitable scatter

in the properties of individual systems around the typical values given by the average

trend lines. For M49/Virgo B, all of the halo properties in Table 2.2 obtained from the

scalings are remarkably close to the values in Table 2.1 from Côté et al. (2003).

NGC 4889: σap(Re) ∼ 350 km s−1 For M∗,tot = 9.5 × 1011 M⊙, the scalings give

Re = 15.2 kpc and (assuming an NFW halo) σap(Re) ≃ 345 km s−1. The velocity

dispersion agrees with the value in McConnell et al. (2011, McConnell et al. (2012),
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although the effective radius is smaller than their adopted 27 kpc. Further, the virial

and halo mass are estimated to be rvir ≃ 2.45 Mpc and Md,vir ≃ 8.0 × 1014 M⊙, which

compare well to the values in Table 2.1 determined by Lokas & Mamon (This is even

though NGC4889 is not precisely at the centre of the Coma Cluster).

Assuming an NFW halo density profile, the average trends imply rpk ≃ 925 km s−1

and Vd,pk ≃ 1285 km s−1 for the peak of the dark-matter circular speed in NGC4889/Coma—

different by ∼30% from the Lokas & Mamon (2003) numbers. Comparing to the peak

radii and speeds above for M87/Virgo A and M49/Virgo B emphasises the clear visual

impression given by Figures 2.6 (bottom panel) and 2.8 (bottom panel): In large galax-

ies Vd,pk, along with Md,vir, is a much more sensitive function of galaxy stellar mass

than the stellar σap(Re) is. (This follows directly from the steep decline at high masses

in the cosmological connection between M∗,tot and Md,vir adopted from Moster et al.

2010.) It therefore seems natural to expect much more scatter and many more apparent

“outliers” in MBH among very massive galaxies, if SMBH masses are connected funda-

mentally to the global properties of dark-matter halos rather than to stellar velocity

dispersions directly.

2.2.8 Total circular speeds

Many authors have attempted to connect the total (stars and dark matter) circular-

speed, Vc (at various radii depending on the author), to the stellar aperture velocity

dispersion, usually measured within Re or Re/8 (Gerhard et al. 2001; Ferrarese 2002;

Padmanabhan et al. 2004; Pizzella et al. 2005; Couteau et al. 2007; Dutton et al. 2010;

Volonteri, Natarajan & Gültekin 2011). This is often used as a “stepping stone” to

deriving a connection between MBH and the halo mass, normally defined to be Md,200

or Md,vir (Ferrarese 2002; Shankar et al. 2006; Bandara, Crampton & Simard 2009;

Dutton et al. 2010; Volonteri, Natarajan & Gültekin 2011; Bogdán & Goulding 2015).

Broadly speaking, MBH and halo mass are connected in the literature by combining an

MBH–σ relation with σ–Vc and Vc–MDM relations (cf. §1.3.3.5). It is usually assumed

that the total circular-speed curves are flat out to the virial radius (or r200) in order



140

to connect MBH and halo mass. However, this is not necessarily the case given the

dependence on M∗,tot of f∗,vir, Md,vir and σap(Re) in the average trends obtained in this

Chapter.

Before looking at how Vc at various radii and σap(Re) are connected, the total

circular-speed profiles, Vc(r), need to be considered. This is to see if the assumption

of a flat circular speed curve (out to rvir) is realistic. As will be discussed, these

profiles are fully determined by choosing a dark matter halo model, a stellar distribution

(taken here to be Hernquist) and specifying a total stellar mass, M∗,tot. Vc(r) can then

be evaluated at any given radius, and connected to the stellar or dark matter halo

properties at z = 0. Thus, average trends between Vc and any property are obtained,

once again with inevitable scatter around them.

2.2.8.1 Circular-speed profiles

The total circular speed profile can be written in dimensionless form by normalising to

GM∗,tot/Re:

V 2
c (r)

[GM∗,tot/Re]
=

1

r/Re

[
M∗(r)

M∗,tot

+
Md(r)

M∗,tot

]
=
M∗(r)/M∗,tot

r/Re

[
1 +

1

f∗(r)

]
. (2.51)

The dimensionless stellar mass profile, M∗(r)/M∗,tot is known for a Hernquist profile

as a function of r/Re. The function f∗(r) is the stellar-to-dark matter mass ratio as a

function of radius. Once a dark matter halo model and a stellar distribution have been

chosen, f∗(r) is fixed by M∗,tot. Specifying M∗,tot gives a value for f∗,vir. The stellar

mass profile can be evaluated at any r, since both Re and rvir are also determined by

M∗,tot. The same is true for the dark matter mass profiles, as the halo concentration

(and hence r−2) are fixed once M∗,tot has been chosen.

Figure 2.17 shows the total circular-speed profiles, Vc(r), as a function of r/Re

for a range of M∗,tot values. The different line colours correspond to M∗,tot = 109M⊙

(black line), 1010M⊙ (blue line), 1011M⊙ (green line) and 1012M⊙ (red line). This

range of stellar mass covers the majority of the data used for the scaling relations in

this Chapter, as well as encompassing the mass range used to define the MBH–bulge
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property correlations. All of the curves shown in the Figure are for Hernquist stars

and a Dehnen & McLaughlin dark matter halo. The NFW and Hernquist halos are

qualitatively the same. The non-monotonic behaviour seen between different M∗,tot is

a reflection of how the virial stellar-to-dark matter mass ratio varies with stellar mass

(i.e. the top panel of Figure 2.6).

There has been some debate in the literature surrounding the shapes of the total

circular-speed profiles for elliptical galaxies. It has been speculated that there is a

“conspiracy” between luminous and dark matter to produce flat circular-speed curves

over a large range in radius(Kronawitter et al. 2000; Gerhard et al. 2001; Koopmans

et al. 2006; Gavazzi et al. 2007; Koopmans et al. 2009). For a sample of 21 ellip-

ticals, Kronawitter et al. (2000) calculate the density and potential of the luminous

matter from the surface brightness profile. They specify a total gravitational poten-

tial, consisting of an isothermal dark matter component and a luminous component.

From this, they find total circular-speed curves that are consistent with being flat for

0.3Re . R . 1–2.5Re, where R is a projected radius.

More recently, Dutton et al. (2010) considered the optical circular-speed, Vopt,

defined to be the total circular speed inside an effective radius for early-types, Vc(Re),

whereas for late-types they use 2.2 disc scale lengths as the defining radius, Vopt ≡ V2.2.

Taking M∗,tot as a starting point, they obtain Vopt for the early-types by combining a

fit to SDSS data from Gallazzi et al. (2007) for σap(Re)–M∗,tot [equation (2.48)], with

a result from Padmanabhan et al. (2004) that vc(Re) = 1.5σap(Re) [cf. §2.2.8.2]. For

the late-types, Dutton et al. (2010) use a connection between V2.2 and M∗,tot for SDSS

data from Pizagno et al. 2007.

Dutton et al. (2010) connect Vopt to V200, the total circular speed measured

at r = r200, for both late- and early-type galaxies. Again starting with the total

stellar mass, they obtain V200 through a parametrisation of M∗,tot–Md,200 similar to the

connection used here between M∗,tot and Md,vir from Moster et al. (2010). For stellar

masses 7×109M⊙ . M∗,tot . 7×1011M⊙, Dutton et al. (2010) found that although the

circular speed curves of late-type galaxies were consistent with being flat, the curves

for early-types do not flatten off towards large radii [i.e., Vc(Re) 6= V200 in general].



142

Figure 2.17: Total circular-speed profiles, Vc(r)/[GM∗,tot/Re]
1/2, as a function of r/Re.

All curves are for Hernquist stars and a Dehnen & McLaughlin dark matter halo. The
different line colours represent different total stellar masses; M∗,tot = 109M⊙ (black
line), 1010M⊙ (blue line), 1011M⊙ (green line) and 1012M⊙ (red line).



143

For stellar masses 1010M⊙ . M∗,tot . 1011M⊙, the curves in Figure 2.17 are

approximately flat for r/Re ∼ 1–50. However, for the largest galaxies, with M∗,tot ∼
1012M⊙, the circular-speed profile is definitely not flat between these radii. The same is

true for small systems, with M∗,tot ∼ 109M⊙. This is because the smallest and largest

systems contain significant amounts of dark matter, even at smaller radii, reflected in

the f∗,vir–M∗,tot and f∗(Re)–M∗,tot relations. Therefore, the circular-speed profile of

the dark matter will “kick in” at smaller radii and will have a larger peak value. This

causes the total (stars and dark matter) circular speed to continue increasing out to

larger radii for the higher mass systems. It is also worth noting that at radii beyond

∼ 50Re, the circular-speed profiles begin to drop off. This is because the radius at

which the dark matter circular-speed has a maximum, rpk, has been passed and the

stellar circular speed, V 2
c,∗ → r−1 as r → ∞. Therefore, Vc(r) is significantly different

at the virial radius (rvir or r200), consistent with the results obtained by Dutton et al.

(2010) for early-type galaxies.

2.2.8.2 Connecting σap(Re) and Vc(Re)

The total circular speed can be evaluated at any radius r, and then related to any

of the stellar or dark matter halo properties at z = 0. One such relation to look at

is between the total circular speed inside an effective radius, Vc(Re), and the stellar

velocity dispersion, also inside Re. The connection between total circular speed and

σap(Re) have been looked at before, but only as power-law fits to data (Gerhard et al.

2001; Ferrarese 2002; Seljak 2002; Padmanabhan et al. 2004; Wolf et al. 2010). These

previous works do not account for the stellar mass dependence of f∗,vir or the halo mass

dependence of rvir/r−2. Both of these are likely to influence how Vc(Re) and σap(Re)

are related.

Figure 2.18 shows the Vc(Re)–σap(Re) relation (top) and the ratio Vc(Re)/σap(Re)

(bottom) as a function of σap(Re). The solid blue lines are the average trends obtained

by combining the σap(Re)–M∗,tot and f∗(Re)–M∗,tot relations with equation (2.51) for

the total circular speed, evaluated at Re. These curves assume a Dehnen & McLaughlin
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model for the dark matter halo and that the stellar ejecta mass fraction, Fej, depends

on M∗,tot through the ad-hoc relation given by equation (2.50). The dashed black lines

corresponds to Vc(Re) =
√

2σap(Re), with the green lines for Vc(Re) = 1.65 σap(Re)

[Padmanabhan et al. 2004; Dutton et al. 2010], the red lines for Vc(Re) = 1.5 σap(Re)

[Seljak 2002] and the cyan lines the results from Ferrarese (2002), with a correction

applied to the aperture velocity dispersion — σap(Re/8) ≃ 1.07σap(Re) for a self-

consistent sphere of Hernquist stars.

It has previously been assumed that Vc(Re) ∝ σap(Re), and a constant of propor-

tionality then estimated by fitting to the observations (Seljak 2002; Padmanabhan et al.

2004; Wolf et al. 2010). Generally, this leads to the ratio Vc(Re)/σap(Re) ≃ 1.5–1.7.

Ferrarese (2002) did not make this assumption, but her results are consistent with a

linear proportionality. For 21 elliptical galaxies analysed by Kronawitter et al. (2000),

Ferrarese (2002) related the aperture velocity dispersion measured within Re/8 to the

total circular speed. The total circular speed was taken to be within the kinematic ra-

dius, rkin, defined by Kronawitter et al. (2000) to be “ the radius of the last kinematic

data point”, with typical values of rkin ∼ Re [and hence Vc(rkin) ∼ Vc(Re)]. Ferrarese

found a best fitting power-law given by (cf. §1.3.3.5)

log[Vc(Re)] = (0.94 ± 0.11) log[σap(Re/8)] + (0.31 ± 0.26), (2.52)

consistent with Vc(Re) ∝ σap(Re/8) within the errors.

The average trend lines are broadly consistent with the results from the literature.

In the bottom panel, the minimum of Vc(Re)/σap(Re) ≃ 1.4 at σap(Re) ∼ 170 km s−1

can be traced back to the peak in f∗,vir at M∗,tot ∼ 3–4×1010M⊙. This peak propagates

through to the f∗(Re)–M∗,tot relation, and appears as a minimum in the bottom panel

of Figure 2.18 due to the 1/f∗(r) term in the total circular speed equation. With the

additional constraints on f∗,vir and rvir/r−2, a linear proportionality between Vc(Re)

and σap(Re) is not expected. Instead, the ratio Vc(Re)/σap(Re) is a non-monotonic

function of aperture dispersion within Re (and hence of M∗,tot as well), spanning the

range of the results in the literature.



145

Figure 2.18: Top panel: Total circular-speed at the effective radius, Vc(Re), as a func-
tion of σap(Re). Bottom panel: The ratio Vc(Re)/σap(Re), as a function of σap(Re). In
both panels, the dashed black lines correspond to Vc(Re) =

√
2σap(Re), the green lines

Vc(Re) = 1.65σap(Re) (Padmanabhan et al. 2004, Dutton et al. 2010), the red lines
Vc(Re) = 1.5σap(Re) (Seljack 2002) and the cyan lines are the relation from Ferrarese
(2002), using σap(Re/8) ≃ 1.07σap(Re). The blue curves are from the scaling relations,
assuming Hernquist stars, a Dehnen & McLaughlin dark matter halo and an ad-hoc
relation between the stellar ejecta mass fraction, Fej, and M∗,tot.
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2.2.8.3 Connecting Vc(Re) and Vc(r200)

As discussed, when connecting the circular speed at Re to the total halo mass (Md,vir

or Md,200), it is common practice in the literature to set the observed circular velocity

(in the optical part of a galaxy, Vopt), to the circular velocity at the virial (or r200)

radius: Vopt = V200 or Vopt = Vvir (Ferrarese 2002; Croton 2009; Bandara, Crampton

& Simard 2009). However, as is pointed out by several authors, the circular speed,

after first increasing, does decrease towards larger radii. The total circular speed is

dominated by the dark matter out towards the virial radius, and any realistic shape of

the dark matter density profile leads to a Vc(r) profile that decreases towards rvir or

r200. The circular-speed curves in Figure 2.17 are in agreement with this conclusion,

with Vc(r) beginning to decrease for r/Re & 50. For stellar masses in the range

108M⊙ . M∗,tot . 1012M⊙, the constraints on Re and rvir lead to 110 . rvir/Re . 170

(and given that r200/rvir ≃ 0.8, 85 . r200/Re . 140).

The top panel of Figure 2.19 shows Vc(r) evaluated at r = Re (dashed lines) and

at r = r200 (solid lines) as functions of M∗,tot. The different line colours are for the

three cuspy halo models used throughout; NFW (black), Dehnen & McLaughlin (blue)

and Hernquist (red). According to these average trends, setting Vc(Re) = V200 is not

a realistic assumption. V200 is clearly a non-linear function of total stellar mass, with

Vc(Re) > V200 for M∗,tot . 1011M⊙ and Vc(Re) < V200 for M∗,tot & 1011M⊙.

The bottom panel shows the ratio Vc(Re)/V200 for the three dark matter halos,

again as a function of total stellar mass. This further demonstrates how Vc(Re) 6= V200

in general. This compares well to the work of Dutton et al. (2010), who also derived

this result. They derive a mean relation between Vopt and V200, for late- and early-

type galaxies separately. As discussed, they begin by relating stellar mass to halo

mass, Md,200, considering measurements from weak lensing, satellite kinematics and

abundance matching (Moster et al. 2010, Behroozi et al. 2010) techniques (cf. §1.2.2).

For the average trends calculated here, the global stellar-to-dark matter mass ratio,

f∗,vir, from Moster et al. (2010) is used. In their paper, this is presented as the mean

of the log of stellar mass as a function of halo mass: 〈log(M∗)〉(Md,vir).
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Figure 2.19: Top panel: Total circular-speed at the effective radius, Vc(Re) (dashed
lines), and the ∆ = 200 overdensity radius, Vc(r200) (solid lines) as a function of
total stellar mass, M∗,tot. The different line colours are for the three cuspy halos used
throughout the calculations; NFW (black lines), Dehnen & McLaughlin (blue lines)
and Hernquist (red lines). Bottom panel: The ratio Vc(Re)/Vc(r200) as a function of
total stellar mass. The line colours are the same as for the top panel.



148

As discussed in §2.2.5, the stellar-to-dark matter mass ratio can be calculated at

any other radius once a total stellar mass has been specified, giving f∗,200 [or equiva-

lently 〈log(M∗)〉(Md,200)]. Since the weak lensing and satellite kinematics techniques

give the log of the mean halo mass as a function of stellar mass: log〈Md,200〉(M∗), Dut-

ton et al. (2010) also choose to do this for the abundance matching masses. This leads

to differences at the high mass end, with the method used by Dutton et al. yielding

systematically lower halo masses (for a fixed stellar mass) than the results used here.

However this subtlety, along with there distinction between late-and early-types, does

not significantly affect the results for Vopt/V200.

The top two panels of Figure 2.20 shows the Vc(r)–M∗,tot relation from Dutton

et al. (2010) for early-types (left panel) and late-types (right panel), for both Vopt and

V200. The curves in the bottom two panels show their Vopt/V200 ratios for early-types

(left panel) and late-types (right panel). For both, the average trends obtained here

(Figure 2.19) are at worst in error at a level of ∼ 15–20% compared to the Dutton et al.

results and lie within their shaded regions, corresponding to the 2σ uncertainties. This

level of discrepancy is expected for these sort of scaling relations, given the associated

scatter around the mean trends used as a starting point. The consistency between

curves in the bottom panel of Figure 2.19 and both the late- and early-type curves

from Dutton et al. indicates that distinguishing between galaxy type is not significant

to the overall mean trend.

Ultimately, a non-linear relation between Vc(Re) and V200 has implications for

connecting Md,200 to MBH in the next Chapter. Dutton et al. (2010) looked at this

themselves and found, based on their results for an average Vopt–V200 relation, that a

MBH–Md,200 trend line is not linear. However, the Dutton et al. result is based on a

linear MBH–σap(Re) relation from a best-fitting power law. Now that average trends

have been obtained for various stellar and dark matter halo properties at z = 0, these

can be combined with halo progenitor evolution, and thus model predictions for all

of the SMBH correlations will be obtained. Assuming a power-law fit for MBH–σap

to connect MBH and Md,200 will therefore not be necessary in the context of the work

presented here.
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Figure 2.20: Figure from Dutton et al. (2010). Top panel: Circular velocity versus
stellar mass relations for early- (left) and late-types (right). Shaded regions correspond
to the 2σ uncertainties. The Tully-Fisher and Faber-Jackson relations are given by
the dashed lines. For the Faber-Jackson relation, Dutton et al. converted velocity
dispersions into circular-speeds assuming Vc(Re) = 1.65 σap(Re), with the uncertainty
given by the black shaded region. The lower panels show the difference between the
Tully-Fisher and Faber-Jackson relations and the halo virial velocity relations. The
points with error bars (2σ) show the values of Vopt/V200 derived for L⋆ galaxies by
Seljak (2002).
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3 SMBH–bulge correlations at z = 0

In the previous Chapter, mean trend scalings between various stellar and dark matter

halo properties at z = 0 were established. These relations give Md,vir and Vd,pk, and

any other property of the dark matter halo, directly as a function of M∗,tot. They

were then re-cast to give Md,vir(0) and Vd,pk(0) directly as functions of the observable

σap(Re). McQuillin & McLaughlin (2012) derived a critical SMBH mass that suffices to

expel a virialised ambient medium (gas tracing dark matter, with no stars) to beyond

the virial radius of a non-isothermal dark matter halo (cf. §1.4.5). This critical SMBH

mass is

MBH ≃ 1.14 × 108M⊙

(
f0

0.2

) (
Vd,pk

200km s−1

)4

, (3.1)

where f0 is the spatially constant gas-to-dark matter mass fraction in the protogalaxy.

Vd,pk refers to the peak value of the circular speed, V 2
d (r) = GMd(r)/r in a dark matter

halo. This prediction connects MBH to Vd,pk at some time in the past, when quasar-

mode blow-out occurred. Therefore, in order to predict the dependence of MBH on

σap(Re) (or any other galaxy properties) now, it is necessary first to connect the halo

properties at z > 0 to those at z = 0.

As discussed, equation (3.1) is derived assuming that the shell is driven out by

momentum-transfer from the wind only. However, the outflows are expected to become

energy-driven (non-radiative) after an initial radiative phase (Zubovas & King 2012;

McQuillin & McLaughlin 2013). This is just one of the possible caveats surrounding

equation (3.1). It is unclear in detail how the inevitable switch to an energy-driven

outflow may (Silk & Rees 1998; McQuillin & McLaughlin 2013) or may not (Zubovas

& Nayakshin 2014) alter the functional dependence of a critical MBH for blow-out on

the dark matter Vd,pk or any other characteristic halo velocity scale. The equation

also assumes the ambient medium is initially static, ignoring any cosmological infall

of gas and an additional, confining ram pressure associated with hierarchical galaxy

formation (Costa, Sijacki & Haehnelt 2014). It also neglects the presence of any stars in

the protogalaxies, which could contribute both to the feedback driving gaseous outflows
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(e.g. Murray et al. 2005; Power et al. 2011) and to the gravity containing them.

Despite these limitations, equation (3.1) provides a good example to help under-

stand how expected relationships between SMBH masses and protogalactic dark matter

halos are reflected in the observed SMBH–bulge relations. The equation is simple and

transparent but still contains enough relevant feedback physics to be of interest, even

with the caveats mentioned above. It is also the only such relation (connecting MBH to

a global property of the protogalactic dark matter halo), which does not assume that

dark matter halos are isothermal spheres.

In equation (3.1), Vd,pk measures the potential well of a protogalaxy that just fails

to contain the quasar-mode feedback of an SMBH with mass MBH. It therefore refers

to the peak of the dark matter circular speed at some higher redshift, z > 0, marking

the end of the period when the SMBH grew rapidly (and almost to completion), via

sustained accretion at Eddington or super-critical rates. This redshift is denoted zqso,

and it will be different for each galaxy. Generally, the range of zqso should correspond

to the epoch of peak quasar number density and SMBH accretion rate, i.e. z ∼ 2–4

(Richards et al. 2006; Hopkins, Richards & Hernquist 2007; Delvecchio et al. 2014;

Di Matteo et al. 2008; Sijacki et al. 2007; Sijacki et al. 2015).

The relevant halo properties are calculated at z > 0 in §3.1, by tracking the

redshift evolution of halo virial mass and the maximum circular speed of the dark

matter, through mass accretion histories of halo progenitors. §3.2 then details how

Md,vir(z) and Vd,pk(z) can be expressed as functions ofM∗,tot and σap(Re) at z = 0. Once

these are known, they can be combined with equation (3.1) to give model curves for

MBH(z) versus different galaxy properties at z = 0. After introducing the SMBH data

in §3.3.1, these model curves are then compared to the observed SMBH correlations at

z = 0, including those between MBH and stellar velocity dispersion, total stellar mass,

halo virial mass, and combinations of σap(Re) and Re.
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3.1 Dark matter properties at z > 0

Hierarchical growth of dark matter halos is usually tracked by merger-tree and/or N -

body simulations of ΛCDM halos (cf. §1.1.6). For halos with virial masses at z = 0

in the range 1011M⊙ ≤ Md,vir(0) ≤ 1015M⊙, van den Bosch et al. (2014a) use both

of these to extract for each halo the redshift z1/2 at which its most massive progenitor

had a virial mass Md,vir(z1/2) = 0.5Md,vir(0). Given the bottom-up nature of structure

formation in CDM cosmologies, z1/2 is a decreasing function of Md,vir(0) in general and

is approximated by (cf. §1.1.6)

z1/2 = 2.05

[
Md,vir(0)

1012 h−1
0 M⊙

]−0.055

− 1 , (3.2)

with h0 = 0.67 according to Planck cosmology. Given z1/2, the virial mass of the

most massive progenitor of a halo at any other redshift can be approximated by an

exponential function (e.g., Zhao et al. 2009),

Md,vir(z)

Md,vir(0)
= exp

[
− z ln(2)

z1/2

]
. (3.3)

Figure 3.1 shows the results from the van den Bosch et al. (2014a) paper for both

the simulations (top left panel) and merger trees (right panel), along with the curves

from Equations (3.2) and (3.3) for different virial masses at z = 0 (bottom panel).

The top two panels are taken directly from the van den Bosch et al. paper. For the

simulation results, each line corresponds to the average obtained from all halos in a

given mass bin. The solid lines show average mass accretion histories over the redshift

range where the main progenitors of more than 90% of all host halos can be traced.

Dotted lines are extensions obtained from taking an average over all host halos. The

merger tree results are averages obtained using 2000 realisations. In the bottom panel,

the different line colours correspond to different values for Md,vir(0), as indicated in

the Figure. Equations (3.2) and (3.3) give good approximations to the van den Bosch

et al. (2014a) results for redshifts z . 5 [log(1 + z) . 0.8].

This approximation can then be used to obtain the evolution of any property of

the dark matter halo that is related to its total mass. The peak of the dark matter
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Figure 3.1: All panels show log[Md,vir(z)/Md,vir(0)] as a function of log[1 + z]. The
top row is taken directly from Figure 2 of van den Bosch et al. (2014). Top

left panel: Results from the simulations, where each line is the average obtained
from all halos in a mass bin that is 0.2 dex wide. The mass range covered is
1011M⊙ ≤ Md,vir(z) ≤ 1014.6M⊙. The solid lines show average mass accretion his-
tories over the range where the main progenitors of more than 90% of all host halos
can be traced. Dotted lines are extensions obtained taking the average over all host
halos. Top right panel: Results from merger trees, where each average is obtained using
2000 realisations. Bottom panel: Md,vir(z)/Md,vir(0) calculated using equations (3.2)
and (3.3), for different Md,vir(0) values. These are represented by different line colours,
as indicated in the Figure.
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circular-speed curve in a halo at z > 0, connected to the black hole mass through

equation (3.1), can be written (for any z) as

V 2
d,pk

V 2
d,vir

≡ V 2
d (rpk)

V 2
d (rvir)

=
g(rpk/r−2)

g(rvir/r−2)
(3.4)

where g(r/r−2) ≡ V 2
d (r)/V 2

d (r−2) is the normalised circular-speed curve of the dark

matter.

Since the ratio rpk/r−2 (and hence g(rpk/r−2)) is independent of redshift (it is

fixed by assuming a basic form for the dark-matter density profile), equation (3.4) can

be used to write

V 2
d,pk(z)

V 2
d,pk(0)

=
g [(rvir/r−2)z=0]

g [(rvir/r−2)z]
×

V 2
d,vir(z)

V 2
d,vir(0)

=
g [(rvir/r−2)z=0]

g [(rvir/r−2)z]
×

[
Md,vir(z)

Md,vir(0)

]2/3 [
∆vir(z)

∆vir(0)

]1/3 [
H(z)

H0

]2/3

, (3.5)

where the last line uses the fact that V 2
d (r) ∝ Md(r)

/
r and Md,vir ∝ r3

vir, at a given z.

For any choice of dark-matter halo model, and thus the function g(r/r−2), the right-

hand side of equation (3.5) is known in terms of z and Md,vir(0). Choosing a redshift

gives values for the overdensity, ∆vir(z), and the Hubble constant, H(z). If the dark

matter halo mass at z = 0 is also specified, then this fixes the halo mass at the chosen

z through the approximations for z1/2 and Md,vir(z). Hence the concentration rvir/r−2

at that redshift is also fixed.

The top panel of Figure 3.2 shows the virial masses of the most massive progen-

itors, relative to the z = 0 virial masses, as a function of Md,vir(z = 0), at redshifts

z = 1, 3 and 5. The middle panel then shows the masses of the largest progenitors at

the same redshifts directly as a function of halo mass at z = 0. Finally, the bottom

panel shows the ratio of progenitor-to-present Vd,pk at z = 1, 3 and 5 against Md,vir(0).

These curves depend on the choice of dark matter density profile, through equation

(3.5), with Hernquist (red curves) and Dehnen & McLaughlin (blue curves) shown here.

The curves for NFW and Burkert lie in between those shown.

The gradual flattening towards higher masses of the curves for Md,vir(z) versus

Md,vir(0) in the middle panel, and how this sets in at more modest halo masses for
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larger z, is significant. This is a generic feature of structure formation via hierarchical

merging. Halos in any given mass range at z = 0 have progenitors drawn from increas-

ingly narrow mass ranges, on average, at progressively higher redshifts. This high-mass

flattening is more pronounced at higher z, as more of their growth has occurred more

recently.

The z = 5 curve in the middle panel of Figure 3.2 appears to imply a maxi-

mum. However, this is specific to the relation between z1/2 and Md,vir(0) in equation

(3.2). Along with equation (3.3), these are both approximations to the numerical re-

sults of van den Bosch et al. (2014a) for the median most massive progenitors of halos,

with 1011 ≤ Md,vir(0)/M⊙ ≤ 1015. Any fine details following from them are therefore

not definitive, especially at the high end of the z = 0 mass range, or beyond z ∼ 5

[for larger redshifts, the approximation for Md,vir(z)/Md,vir(0) given by equation (3.3)

breaks down]. However, the flattening of Md,vir(z) as a function of Md,vir(0) is qualita-

tively robust. It ultimately has implications for the shape of the MBH–bulge relations

at the high mass end and is discussed further in §3.3.

In the bottom panel of Figure 3.2, the difference in Vd,pk(z)/Vd,pk(0) between the

Dehnen & McLaughlin and Hernquist model halos increases towards lower virial masses,

for a fixed redshift. This can be traced back to the dependence of halo concentration

on Md,vir(z) — lower mass halos generally have higher concentrations, rvir/r−2, and

therefore higher ratios of rvir/rpk. Thus, the ratio Vd,pk/Vd,vir is more sensitive in

lower mass halos to the model-dependent steepness of the circular-speed curve at radii

r > rpk. V 2
d,vir(z) ∝ Md,vir(z)/rvir(z) is independent of the halo density profile, so

only Vd,pk is actually model-dependent. Since NFW and Burkert (1995) haloes have

circular-speed curves that are intermediate in steepness to Dehnen & McLaughlin and

Hernquist models beyond rpk, the curves for Vd,pk(z)/Vd,pk(0) versus Md,vir(0) in these

other models lie between the two shown in Figure 3.2.
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Figure 3.2: Top panel: Relative virial masses Md,vir(z)/Mdvir(0) for the most massive
progenitors of halos with masses Md,vir(0) at z = 0, as given by equations (3.2) and
(3.3). From top to bottom, the curves are for the progenitors at fixed redshifts z = 1, 3
and 5. Middle panel: Virial masses of the most massive progenitor halos at z = 1, 3
and 5 (for the curves from top to bottom) plotted directly against the z = 0 halo
mass. Bottom panel: Peak circular speeds Vd,pk(z) in the most massive progenitors at
z = 1, 3 and 5, relative to the peak speeds Vd,pk(0) in the final halos at z = 0, from
equation (3.5). The solid (blue) lines are for halos with a Dehnen & McLaughlin (2005)
density profile and the dashed (red) lines are for halos with a Hernquist (1990) profile.
These bracket the corresponding curves for NFW and Burkert (1995) halos at the same
redshifts.
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3.2 Dark matter halo properties at z > 0 versus

stellar properties at z = 0

§3.1 details how properties of the dark matter halo at z > 0 compare to those at z = 0.

Combining this with results from Chapter 2 relating Md,vir and Vd,pk at z = 0 to M∗,tot

and σap(Re) also at z = 0, the properties in the halo progenitors are connected to the

stellar properties at z = 0. Folding in the MBH ∝ V 4
d,pk prediction, model predictions

connecting MBH to σap(Re) and M∗,tot are obtained. This will ultimately allow for

a comparison between the critical SMBH mass prediction in equation (3.1) and the

SMBH–bulge correlations in §3.3.

The top row of Figure 3.3 shows halo progenitor masses (for the most massive

progenitor), Md,vir(z), as a function of total stellar mass (left panel) and stellar velocity

dispersion (right panel) at z = 0, for various redshifts. The curves in the top left panel

are obtained by combining the approximation for Md,vir(z)/Md,vir(0) and z1/2 with the

average trend forMd,vir–M∗,tot at z = 0 from §2.2.3. The curves in the top right panel

follow from this by folding in the σap(Re)–M∗,tot trend lines from §2.2.6.

The curves for Md,vir(z) versus M∗,tot do not depend on the choice of stellar

density profile or dark matter halo model. The blue curves in Figure 3.3 correspond

to Dehnen & McLaughlin (2005) models for the halo density profiles and the red

curves to Hernquist (1990) profiles. These bracket the curves obtained using NFW

halo profiles, while the cored halo profiles of Burkert (1995) are not considered for

the SMBH correlations, due to yielding trend lines that were incompatible with the

σap(Re)–M∗,tot ATLAS data. The dashed lines show halo properties at z = 0, whereas

the solid lines are for larger redshifts, with zqso = 1, 3 and 5.

For σap(Re) ≤ 200 km s−1, the two halo models are indistinguishable in the top

right panel, whereas for larger velocity dispersions, a Hernquist profile (red curve)

implies a larger Md,vir(0) than a Dehnen & McLaughlin profile (blue curve), for a fixed

σap(Re). This behaviour is a reflection of the halo dependence seen in the σap(Re)–

M∗,tot relation at z = 0. Both the virial stellar-to-dark matter mass ratio and the value



158

of M∗,vir/M∗,tot are independent of the choice of halo model. Therefore any differences

in the σap(Re)–M∗,tot relation due to the chosen dark matter density profile are reflected

in the Md,vir(z)–σap(Re) relation.

The middle row of Figure 3.3 shows Vd,pk in the most massive progenitor at

zqso = 0 (dashed lines) and zqso = 1, 3 and 5 (solid lines), as a function of M∗,tot (left

panel)and σap(Re) (right panel) at z = 0. The dashed black line corresponds to Vd,pk =
√

2σap(Re). This is clearly a poor substitute for the actual relationship between the two

velocities at z = 0 in galaxies with σap(Re) & 200 km s−1 (or M∗,tot & 3 × 1011M⊙). It

does come closer to correctly estimating the dependence of Vd,pk at zqso = 3 on σap(Re)

at z = 0; but this appears to be entirely coincidental, and the situation is reversed for

σap(Re) . 200 km s−1.

At a given value of σap(Re) or M∗,tot, the downward “corrections” to Md,vir and

Vd,pk from their values at z = 0 to the progenitors at zqso > 0, are systematically larger

for larger systems. This is a restatement of the flattening towards higher masses in the

dependence ofMd,vir(z) onMd,vir(0) in Figure 3.2. Again, it is fundamentally because in

a (Λ)CDM cosmology, more massive halos were assembled and virialised more recently.

The mass difference between any two halos at a fixed redshift is therefore greater, on

average, than the mass difference between the typical largest progenitors of the halos

at some higher redshift. This contrast is greater for higher mass halos, as these are the

ones that have formed most recently.

Equations (3.2) – (3.5), which underpin the curves in Figure 3.3 are approxi-

mations to results from van den Bosch et al. (2014a) for the mass accretion histo-

ries of simulated halos. These simulations only extend up to z = 0 halo masses of

Md,vir = 1015M⊙, corresponding to σap(Re) ≃ 350–400km s−1 (depending on choice of

dark matter density profile). Beyond this, the equations are not only approximate,

but also extrapolations, and should not be read too literally. For example, the peaks

around σap(Re) ≈ 400 km s−1 in the curves for Md,vir and Vd,pk at zqso = 3 in the top

two right panels of Figure 3.3, may not be accurate. However, the relative flatness in

the curves at high velocity dispersions is a secure result. As the Figures show, curves

for Md,vir and Vd,pk at any zqso > 0 flatten at some high σap(Re) or M∗,tot at z = 0.
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Figure 3.3: In all panels, red curves are for a Hernquist halo, and blue curves are for
a Dehnen & McLaughlin halo. Top row: Halo progenitor masses, Md,vir(z), at z = 0
(dashed lines) and zqso = 1, 3 and 5 (solid lines), as a function of total stellar mass (left
panel) and stellar velocity dispersion (right panel) at z = 0. For zqso > 0, Md,vir(z)
corresponds to the mass of the most massive progenitor at that redshift. Middle row:

Peak circular speeds Vd,pk(z) at z = 0 (dashed lines) and z = 1, 3 and 5 (solid lines),
as a function of M∗,tot (left) and σap(Re) (right) at z = 0. The broken black line
corresponds to Vd,pk =

√
2σap(Re). Bottom row: MBH(z) at z = 0 (dashed lines) and

z = 1, 3 and 5 (solid lines), as a function of M∗,tot (left) and σap(Re) (right) at z = 0.
Curves are obtained by applying the critical SMBH mass prediction [equation (3.1)] to
Vd,pk(z).
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This effect will propagate through to predicted SMBH – bulge relations that involve

halo masses or circular speeds at zqso > 0.

The bottom row of Figure 3.3 shows SMBH mass versus M∗,tot (left panel) and

σap(Re) (right panel) at z = 0. The curves (blue for Dehnen & McLaughlin and red

for Hernquist) are obtained from the McQuillin & McLaughlin critical SMBH mass

[equation (3.1)], with a protogalactic gas fraction of f0 = 0.18 (for the 2013 Planck

cosmology) and with Vd,pk depending on σap(Re) (or M∗,tot) as shown in the middle row

of Figure 3.3. Given that MBH ∝ V 4
d,pk in equation (3.1), these curves are just scaled

and shifted versions of the Vd,pk versus σap(Re) and M∗,tot curves in the middle panels.

The dashed black line in the bottom right panel, shown for reference purposes only, is

also for equation (3.1) evaluated with f0 = 0.18, but with the simplistic substitution

Vd,pk =
√

2σap(Re).

The broken blue and red curves are for Vd,pk at zqso = 0 versus stellar mass and

stellar velocity dispersion at z = 0. These are the predictions of equation (3.1) for the

critical SMBH masses required to clear halos filled with virialised gas in an 18% mass

ratio, via quasar-mode feedback now. The solid curves are for Vd,pk at zqso = 1, 3 and 5

versus M∗,tot and σap(Re) at z = 0. These are predictions for the SMBH correlations in

quiescent galaxies at z = 0, if they come from an MBH ∝ V 4
d,pk relationship established

by quasar-mode feedback and blow-out from gaseous protogalaxies at zqso > 0 (with

negligible subsequent SMBH growth via coalescence in mergers). These curves are

discussed in more detail in §3.3.2, where they are compared to current SMBH data.

For the mass of the halo progenitor, the mass of the most massive progenitor

is used, thus identifying this to be the halo progenitor that ultimately defines the

centre of the larger potential well at z = 0. The distinction between the most massive

progenitors and most contributing progenitors (discussed in §1.1.6) could have some

implications for the final MBH–bulge property relations, possibly leading to a small

amount of scatter relative to the final curves.
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3.3 Model SMBH–bulge relations compared to data

In the last subsection, it was shown how connections between dark matter halo prop-

erties at z > 0 and stellar properties at z = 0 can be combined with a critical SMBH

mass prediction to obtain model predictions for MBH versus σap(Re) and M∗,tot at

z = 0. Ideally, these predictions would be compared to the ATLAS3D data (Cappellari

et al. 2011; Cappellari et al. 2013b; Cappellari et al. 2013a), since this sample was

used to construct the trend lines in Chapter 2. However, there are only 22 galaxies

in ATLAS with confirmed MBH values. It is therefore necessary to consider a larger

sample for the SMBH data, provided by the compilation from Kormendy & Ho (2013).

Before comparing the model predictions to the data then, these two samples need to

be compared to one another, to look at selection effects and to make comparisons of

the measured stellar properties between data sets for the same galaxies. It is well

documented that galaxies with MBH measurements tend to have higher than average

velocity dispersions, for a given stellar mass (Bernardi et al. 2007; van den Bosch et al.

2014b). It has been suggested that this is a selection effect associated with the SMBH

data (Shankar et al. 2016). It has also been noted that σap(Re) values cited in MBH–σ

samples are systematically higher than values for the same galaxies in large data sets

of early-type galaxies (Kormendy & Ho 2013).

3.3.1 Data

In the Kormendy & Ho (2013) sample, there are 60 galaxies flagged as early-types

(ellipticals and lenticulars). There are also late-type galaxies, but these are excluded

here, since the average trends constructed in Chapter 2 do not allow for the presence

of discs. For each galaxy, Kormendy & Ho tabulate values and uncertainties for SMBH

mass, K-band magnitudes and stellar velocity dispersions (measured within an effective

radius, Re). Total stellar masses are calculated here by combining K-band magnitudes

with the mass-to-light ratios from Maraston’s population synthesis models (assuming

a Kroupa IMF and a stellar age of 9 Gyr).
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The Kormendy & Ho (2013) compilation contains two compact ellipticals, M32

and NGC 4486B. Both of these are satellite galaxies, with M32 a companion of the

Andromeda galaxy (M31), and NGC 4486B orbiting M87. Compact ellipticals are char-

acterised by unusually high surface brightness for their given luminosity. Equivalently,

they have a lower than average Re compared to galaxies with similar luminosities (or

stellar masses). It has been suggested that compact ellipticals occupy a similar param-

eter space to bulges of disk galaxies, so the two types could be related (e.g. Bender

et al. 1992). The compact ellipticals in the Kormendy & Ho sample are flagged up as

cyan points in plots including data for the rest of this Chapter.

In total, there are 22 galaxies (E and S0) that appear in both Kormendy &

Ho and the ATLAS sample, with both tabulating σap(Re) and MK values for each

galaxy. Stellar masses are calculated by combining the absolute K-band magnitudes

with M∗/LK = 0.88M⊙ L
−1
⊙ , the value adopted for all of the ATLAS3D galaxies in

Chapter 2.

The top panel of Figure 3.4 shows total stellar mass versus stellar velocity disper-

sion, for various data sets. The magenta triangles are galaxies in the ACSVCS sample

and the green squares are galaxies in the ATLAS sample. The black points are from

the Kormendy & Ho (2013) data set, with red points representing ATLAS galaxies that

also appear in Kormendy & Ho: these points are connected by red lines. The two cyan

points correspond to the compact ellipticals M32 and NGC 4486B. The blue curve rep-

resents the average trend obtained in §2.2.6, assuming a Dehnen & McLaughlin (2005)

dark matter halo and an ad-hoc relation between Fej and M∗,tot (cf. §2.2.6.4).

This Figure shows two different issues with the SMBH data. Firstly, there appears

to be a selection effect in the MBH–σap(Re) data. The black points generally lie to the

right of the mean trend curves in the M∗,tot–σap(Re) plane. Therefore, if a galaxy

has a measured SMBH mass, then for a given M∗,tot (or equivalently, luminosity), the

aperture velocity dispersion is likely to be larger than the average expected for galaxies

of similar stellar mass. This bias has been discussed in the literature (Bernardi et al.

2007; van den Bosch et al. 2014b; Shankar et al. 2016), but it is an unsettled question

as to why it exists.
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Figure 3.4: Top panel: Total stellar mass, M∗,tot, at z = 0 versus stellar velocity
dispersion at z = 0, σap(Re). The blue curve is for the average relation from the Jeans
modelling calculation, discussed in §2.2.6, for a Dehnen & McLaughlin dark matter
density profile and assuming the Fej–M∗,tot relation given by equation (2.50). The
green squares represent galaxies in the ATLAS3D survey, magenta triangles correspond
to the ACSVCS data and black circles are early-type galaxies from the Kormendy &
Ho (2013) compilation. Red circles represent galaxies in ATLAS that have a MBH value
in Kormendy & Ho. These are joined to the corresponding black points by red lines.
Bottom panel: SMBH mass versus stellar velocity dispersion measured inside Re at
z = 0. The black points represent galaxies flagged as early types in Kormendy & Ho
(2013) and the red points are galaxies in ATLAS with MBH values. The cyan points
are the two compact ellipticals, M32 and NGC 4886B.
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Perhaps of more significance however is the disagreement between ATLAS and

Kormendy & Ho on the value for σap(Re) in the same galaxies. The differences are

shown by the red lines, connecting the location of a galaxy in the σap(Re)–M∗,tot plane

according to ATLAS (red points), to the location in this plane according to values cited

by Kormendy & Ho (black points). In all but three of the galaxies in common, the

measured velocity dispersion according to ATLAS is lower than the value in Kormendy

& Ho (2013). In some cases, the difference between the two velocity dispersions is larger

than 20%. Using the ATLAS velocity dispersions therefore moves the galaxies with

measured MBH to the left in the M∗,tot–σap(Re) plane. This moves them back towards

the average trend line and hence for the red points (galaxies with measured SMBH mass

and velocity dispersions taken from ATLAS), there doesn’t appear to be a selection

bias.

The bottom panel of Figure 3.4 shows SMBH mass versus σap(Re). The black

data points are for the E and S0 galaxies in the Kormendy & Ho (2013) compila-

tion, except for the two compact ellipticals (M32 and NGC 4486B), shown by the

cyan points. Red points are galaxies that are in both Kormendy & Ho and ATLAS,

with velocity dispersions taken from ATLAS. Due to the Kormendy & Ho velocity

dispersions generally being larger, using the ATLAS dispersions shifts the majority

of the points in common to the left in the MBH–σap(Re) plane. Most of these have

σap(Re) . 200 km s−1. However, the key point is that for σap(Re) > 200 km s−1, where

the majority of the current M–σ data lies, there are very few galaxies with velocity

dispersion measurements also in ATLAS. The ones that do are again shifted to the left.

Figure 3.5 shows stellar velocity dispersion at z = 0 (top panel) and SMBH

mass (bottom panel) versus total stellar mass (at z = 0). The top panel is equivalent

to the top panel of Figure 3.4. This once again illustrates the apparent selection bias

associated with theMBH–σ sample; the black points generally lie above the mean trend,

corresponding to larger σap(Re). However, for galaxies in common between ATLAS

and Kormendy & Ho, using the ATLAS data for the σap(Re) and M∗,tot values (the red

points), this selection bias disappears. The bottom panel supports the earlier claim

that for the majority of the MBH–σ (and MBH–M∗) data, σap(Re) > 200 km s−1 and
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Figure 3.5: Top panel: Stellar velocity dispersion, σap(Re), at z = 0 versus total stellar
mass, M∗,tot, also at z = 0. As for the previous Figure, green points are ATLAS
galaxies, magenta triangles are from ACSVCS and black points are from Kormendy &
Ho (2013). Red points are also ATLAS galaxies, but have an MBH value in Kormendy
& Ho and are joined to the corresponding black points. The blue curves are the mean
trend relations for a Dehnen & McLaughlin halo and the ad-hoc dependence of Fej

on total stellar mass. Bottom panel: MBH versus total stellar mass at z = 0. Black
points are from Kormendy & Ho, cyan points are the compact ellipticals (again from
Kormendy & Ho) and red points are galaxies from ATLAS.
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M∗,tot > 1011M⊙. In this region, there are very few galaxies for which the Kormendy

& Ho values can be “checked” against ATLAS. As for the velocity dispersions, stellar

masses in ATLAS are generally smaller, so red points lie to the left of the corresponding

black points.

Figure 3.6 shows the ratios (Kormendy & Ho to ATLAS) of stellar mass (top

panels) and stellar velocity dispersion (bottom panels), as functions of the ATLAS σap

(left) and ATLAS M∗,tot (right), for each of the 22 galaxies in common. Typical error

bars are shown in the top left corner of each panel. The horizontal error bars are

calculated by taking the typical errors from ATLAS (∼ 5% for velocity dispersions and

∼ 1% for K-band magnitudes, implying ∼ 20% for M∗,tot), and finding the rms average

for the 22 galaxies in common — ∆σap(AT) ≡ 〈[0.05σap(AT)]2〉1/2 and ∆M∗,tot(AT) ≡
〈[0.2M∗,tot(AT)]2〉1/2. Vertical error bars are calculated by a combining the ATLAS

and Kormendy & Ho (2013) errors for each galaxy, giving an error bar for each ratio,

and finding the rms average of these.

The Kormendy & Ho velocity dispersions and stellar masses are systemati-

cally higher than the ATLAS values, with 〈log[σap(KH)/σap(AT )]〉 ≃ 0.040 and

〈log[M∗(KH)/M∗(AT )]〉 ≃ 0.05. This implies that both stellar velocity dispersions

and stellar masses are typically ∼ 10% larger in Kormendy & Ho. For the stellar

masses, this difference is less than the typical errors in the ratios, so isn’t significant.

However, there is a genuine disagreement for the measured velocity dispersions between

ATLAS and MBH–σ sample. The bottom right panel suggests that this discrepancy

increases with stellar mass.

The issue with the velocity dispersions was also noted by Kormendy & Ho (2013).

Kormendy & Ho propose that the difference in the σap(Re) values between themselves

and ATLAS is due to how the aperture dispersion is defined. They suggest that ATLAS

obtain σap by averaging the projected dispersion, σp(R), weighted by luminosity:

σap(Re) =

∫ Re

0
I(R)σp(R)RdR

∫ Re

0
I(R)RdR

. (3.6)

On the other hand, Kormendy & Ho work with the “Nuker” definition, which they
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Figure 3.6: Data comparison for the 22 galaxies in common between Kormendy & Ho
(2013) and ATLAS3D. Top panels: Ratio of total stellar mass in Kormendy & Ho to
stellar mass in ATLAS, as a function of ATLAS stellar velocity dispersion (left panel)
and ATLAS M∗,tot (right panel). For both, the stellar mass was calculated using the
K-band magnitudes in the two data sets, combined with the mass-to-light ratios used
throughout. These are from the Maraston population synthesis models, for a Kroupa
(2001) IMF and an assumed age of 9 Gyr, yielding M/LK ≃ 0.88. Bottom panels:

Ratio of stellar velocity dispersion (measured within Re) in Kormendy & Ho to that
in ATLAS, versus σap (left) and M∗,tot (right; both from ATLAS). Typical error bars
are shown in the top right corner of each panel. The calculation of these error bars is
discussed in the text.
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claim to be

σ2
ap(Re) =

∫ Re

0
I(R)σ2

p(R)dR
∫ Re

0
I(R)dR

, (3.7)

therefore averaging σ2
p, weighted by intensity.

The suggestions made by Kormendy & Ho appear to be inaccurate on two ac-

counts. Firstly, it is clear from the ATLAS papers (Emsellem et al. 2007; Cappellari

et al. 2011; Cappellari et al. 2013b; Cappellari et al. 2013a) that they do not define

an aperture velocity dispersion as in equation (3.6). In fact, they define σap(Re) by

averaging σ2
p and weighting by luminosity. This is the same definition used to calculate

σap(Re) here, i.e.,

σ2
ap(Re) =

∫ Re

0
I(R)σ2

p(R)RdR
∫ Re

0
I(R)RdR

. (3.8)

Secondly, it isn’t clear that the “Nuker” definition is what Kormendy & Ho suggest

[equation (3.7)]. One of the earlier Nuker papers (Gebhardt et al. 2000) clearly states

that they define an aperture dispersion as “the luminosity-weighted line-of-sight dis-

persion inside a radius Re.” This is equivalent to the definition in equation (3.8).

To summarise then, there are significant issues with the data. Comparing the

SMBH data to the larger sample of early-type galaxies from ATLAS appears, at first,

to show a selection bias. For a given stellar mass, velocity dispersions in the SMBH

data are higher than average. However, for galaxies in common between ATLAS and

the Kormendy & Ho compilation, there is a disagreement for what the value of σap(Re)

should be. If the ATLAS value for the velocity dispersion is used instead, then there

is no selection bias for these galaxies. The discrepancy between the ATLAS velocity

dispersions and the ones cited by Kormendy & Ho is presumably a measurement issue

and is not understood, and as yet has not been well explained.

In terms of the work here, the Kormendy & Ho (2013) compilation is used to

compare to the model predictions obtained from average trend lines. The average

trends were calibrated against the ATLAS data, for which there are only 22 systems

with measured SMBH masses. It is necessary to compare the predictions against

the largest possible data set, provided by Kormendy & Ho (2013). Furthermore, the
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majority of the MBH–σ data have σap(Re) & 200 km s−1 (or M∗,tot & 1011M⊙). In this

region, there are only 9 or so galaxies in ATLAS that also have MBH, an insufficient

sample size for comparing against model curves.

3.3.2 MBH versus σap(Re)

The model predictions for the MBH(z)–bulge property relations are now compared di-

rectly against the SMBH data. As for the trend lines in Chapter 2, there is significant

intrinsic scatter around the model predictions. This is inevitable and can contain phys-

ical information, but is not characterised or explained here, although it is quantified

by considering the rms scatter and errors of the data. A discussion on the scatter is

left for Chapter 5.

Figure 3.7 shows SMBH mass versus σap(Re) at z = 0. The data points are for the

60 E and S0 galaxies in the Kormendy & Ho (2013) compilation. The two cyan points

are for the compact ellipticals, M32 and NGC 4486B. Both of these galaxies appear

unremarkable in the MBH–σap(Re) plane. The blue curves in the top panel of Figure

3.7 come from equation (3.1), with Vd,pk at zqso = 0, 1, 2, 3 and 4 given as a function of

σap(Re) at z = 0. These curves are also shown in the bottom right panel of Figure 3.3.

They all assume a Dehnen & McLaughlin (2005) dark matter density profile; the results

for an NFW halo and a Hernquist (1990) halo are shown in the middle panel (black

curves) and bottom panel (red curves) respectively. The black dashed line in each of

the panels, shown only for reference, corresponds to equation (3.1) evaluated with a

protogalactic gas-to-dark matter mass ratio of f0 = 0.18 [the value of Ωb,0/(Ωm,0−Ωb,0)

in the 2013 Planck cosmology], and the simplistic substitution Vd,pk =
√

2σap(Re).

The curves that assume an MBH–Vd,pk relation from the clearing of protogalaxies

by quasar-mode feedback at redshifts 2 ≤ zqso ≤ 4 enclose almost all of theM–σ data at

z = 0. The correspondence of this redshift range with the epoch of peak quasar activity

and SMBH accretion rate in both observations (Richards et al. 2006; Hopkins, Richards

& Hernquist 2007; Delvecchio et al. 2014) and cosmological simulations (Di Matteo

et al. 2008; Sijacki et al. 2007; Sijacki et al. 2015) is particularly encouraging. Equation
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Figure 3.7: SMBH mass versus stellar velocity dispersion measured inside Re at z = 0.
The data points represent galaxies flagged as early types in Kormendy & Ho (2013).
Top panel: The solid blue curves are the models for MBH versus σap(Re) at z = 0, as-
suming a relation MBH ∝ V 4

d,pk was established by accretion-driven feedback, according
to equation (3.1), at redshift zqso = 0, 1, 2, 3 or 4. These curves all assume a Dehnen
& McLaughlin halo for the dark matter density profile, and a spatially constant gas-
to-dark matter mass ratio f0 = 0.18 in the protogalaxies. They do not include any
SMBH growth between 0 < z < zqso; see text for discussion. Middle panel: Same as
top panel, but for an NFW halo for the dark matter (black curves). Bottom panel:

Same as top two panels, but for a Hernquist halo for the dark matter (red curves). In
all three panels, the dashed black line shows equation (3.1) with Vd,pk =

√
2σap(Re).
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(3.1) represents a simplified picture of just a few processes at a critical stage of galaxy

and SMBH formation, as well as assuming purely momentum-driven feedback, but

the fundamental connection it makes between the protogalactic dark matter halos and

SMBH masses appears to be along the right lines.

A simple MBH–Vd,pk prediction leads to model curves for MBH–σap(Re) that are

distinctly non-linear. Contrary to the suggestion by Kormendy & Ho (2013), this

curvature is easily accommodated by the data, and is reminiscent of the log-quadratic

fitting by Wyithe (2006a,b). The upward bend seen in all the curves around σap(Re) ≈
140 km s−1 can be traced back to the peak at M∗,tot ≃ 3.4 × 1010M⊙ (at z = 0) in

the global ratio of stellar-to-dark matter mass, f∗,vir, for the central galaxies of halos

(see the top panel of Figure 2.6). This leads to a highly non-linear relation between

the dark matter Vd,pk at any redshift and σap(Re) at z = 0 (see middle right panel

of Figure 3.3), ultimately leading to the distortion of the linear MBH–Vd,pk relation.

Roughly speaking, the curves with 2 ≤ zqso ≤ 4 in Figure 3.7 have average slopes

∆ logMBH/∆ log σap(Re) ≈ 1.5–2 for velocity dispersions 50 ≤ σap(Re) ≤ 100 km s−1,

and much steeper ∆ logMBH/∆ log σap(Re) ≈ 5–6 for 200 ≤ σap(Re) ≤ 300 km s−1.

The intrinsic scatter around any one of the model curves can be calculated. First

of all, the rms scatter, ∆2
rms, around a curve in the vertical direction is calculated. This

is quantified by squaring the difference between the measured MBH and the expected

MBH (from the curve) for each galaxy, adding all these up and dividing by the total

number of galaxies in the sample. The rms error, σ2
rms, is calculated by summing over

the squares of the MBH error bars for each galaxy. Finally, the intrinsic scatter is then
√

∆2
rms − σ2

rms.

For the model prediction with zqso = 3 in the MBH–σap(Re) plot, the intrinsic

scatter around the curve is ≃ 0.39 dex. This is an encouraging result, given the curve is

based on a physical model, and is not a best fit to the data. As discussed, Kormendy &

Ho (2013) found for a linear best fit that the intrinsic scatter was ∼ 0.3 dex (although

this also included classical bulges that are not considered here). Some of the intrinsic

scatter seen in the SMBH data around the model curve could be due to the value

of zqso, but it is unclear how much given all the other sources of scatter (around the
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average trends used to obtain the model predictions and due to gas-poor mergers at

low redshifts; see below).

The flattening of the model MBH–σap(Re) relations at very high σap(Re) ≥ 300–

350 km s−1 is more pronounced for higher zqso. This reflects the behaviour of progenitor

masses and circular-speed peaks at z > 0 as functions of Md,vir(0) and σap(Re) at z = 0,

discussed in §3.2. However, this feature is not expected to be seen in any M–σ data.

It is most prominent in the galaxy mass range where gas-poor mergers at low redshifts

should increase SMBH masses by the most from MBH at z = zqso.

3.3.2.1 Gas-poor mergers at low redshift

Volonteri & Ciotti (2013) perform cosmological simulations of black hole growth in the

central galaxies of halos with 1013M⊙ ≤ Md,vir(0) ≤ 1015M⊙ at z = 0. They track

contributions from gas accretion and from SMBH coalescences in gas-poor merger sep-

arately. For six example halos with Md,vir(0) = 1015M⊙, their results show that SMBH

growth via accretion is essentially finished by z ≈ 2–3. This redshift is what I refer

to as zqso. Coalescences in gas-poor mergers drive any growth for z < zqso, ultimately

increasing the SMBH masses by a wide range of factors, fco ≡ MBH(0)/MBH(zqso) ≃ 1–

30. For a larger sample of 1015M⊙ mass halos, Volonteri & Ciotti (2013) report

an average 〈fco〉 ≈ 11 ± 10. The scaling relations presented in Chapter 2 give

M∗,tot ≃ 1012M⊙ and σap(Re) ≈ 350–400 km s−1 (depending on dark matter density

profile) for Md,vir(0) = 1015M⊙. The highest data point in Figure 3.7 lies close to this

region: NGC4889 in the Coma Cluster, with σap(Re) = 347 ± 17km s−1, according to

McConnell et al. (2012).

For lower mass systems, there is typically much less SMBH growth via dry merg-

ers at redshifts z < zqso. For the central galaxies of halos with 2×1013M⊙ ≤Md,vir(0) ≤
1014M⊙ (implying M∗,tot ≃ 2–4 × 1011M⊙ and σap(Re) ≃ 220–275 km s−1), Volonteri

& Ciotti (2013) give average 〈fco〉 ≈ 2 ± 1. Further, for a set of 1013M⊙ mass ha-

los (corresponding to M∗,tot ≃ 1.4 × 1011M⊙ and σap(Re) ≃ 200 km s−1), they find

〈fco〉 ≈ 1.8±1.8 (suggestive of a small systematic effect, with a few strong outliers). It
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should be noted that Volonteri & Ciotti (2013) do not show explicitly for any of their

halos with Md,vir(0) < 1015M⊙ that accretion driven growth of the SMBH is negligible

after zqso ∼ 2–3. However, other simulations imply that this is generally the case (e.g.

Sijacki et al. 2007; Di Matteo et al. 2008).

Overall then, at the top end of the M–σ relation, dry mergers are expected to

scatter the data significantly upwards from the model curves in Figures 3.7, by up to

an order of magnitude in some cases. This will erase the flattening of the curves in

the range σap(Re) ≈ 300–350 km s−1 and could ultimately appear as a much steeper

mean relation there. At more modest σap(Re) ≤ 300 km s−1, there will still be some

upward scatter of the data from gas-poor merging, but less of it. The net shift in the

mean-trend curves in Figure 3.7 could possibly amount to a factor of ≈ 2–3 in the

main (possibly less for the lowest σap(Re) ≤ 200 km s−1) and should largely preserve

their overall shape.

3.3.2.2 Discussion

There are some obvious reasons why the curves in Figure 3.7 may represent upper

limits to the self-limiting SMBH mass from accretion driven growth at z ≥ zqso. First,

if the baryon-to-dark matter mass ratio in a gaseous protogalaxy is anything less than

the cosmic average during a quasar-mode accretion event, then equation 3.1 should be

evaluated with f0 < 0.18. At a fixed zqso and Vd,pk, this will decrease the critical MBH

for blow-out, since MBH ∝ f0. Second, equation (3.1) ignores any prior work done by a

growing SMBH to push the protogalactic gas outwards before the final blow-out, and

therefore over-estimates the required SMBH mass to clear a halo at zqso. Related to

this, lower MBH values than equation (3.1) may be sufficient to clear the gas to regions

that are “far enough” away from a central SMBH to shut down growth via accretion,

without expelling it past the virial radius.

Cosmological simulations are required to evaluate the balance between these ef-

fects pulling the model MBH–σap(Re) relations downwards and the competing effects

of low-redshift mergers pushing them upwards. However at this level, the more funda-
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mental simplifications behind the SMBH critical mass prediction need to be improved

first. In Chapter 4, the effects of the protogalactic gas not being virialised (gas does not

trace dark matter), and allowing for the presence of stars in the protogalaxies are in-

vestigated. The analytical scalings developed in Chapter 2, and the general procedure

applied in this Chapter provide a way to assess the main implications of any changes,

by checking them against the M–σ data, without resorting immediately to numerical

simulations.

Before looking at this, there are correlations between SMBH mass and other

galaxy properties (M∗,tot and Md,vir, as well as combinations of σap and Re) to be

considered. The empirical MBH–σap correlation takes on particular importance in the

context of self-regulated feedback models, as the velocity dispersion should reflect the

depth of the potential well from which SMBH feedback had to expel the protogalactic

gas. However, whether any one of the observed correlations is more fundamental than

the others remains an open question (Kormendy & Ho 2013; Shankar et al. 2016).

3.3.3 MBH versus M∗

Figure 3.8 show SMBH mass versus M∗,tot at z = 0. The data points are again for the

E and S0 galaxies in the Kormendy & Ho (2013) data set. The cyan points are again

the two compact ellipticals, M32 and NGC 4886B. For early-type galaxies, M∗,tot is

equivalent to stellar bulge mass, Mbulge. The blue curves in the top panel of Figure

3.8 represent equation (3.1) evaluated with f0 = 0.18 and Vd,pk(zqso) at zqso = 0, 1, 2, 3

and 4. These curves are also shown in the bottom left panel of Figure 3.3 and are for

a Dehnen & McLaughlin (2005) dark matter density profile: the NFW (middle panel)

and Hernquist (bottom panel) profiles are also shown.

Before discussing the MBH–M∗,tot relation in detail, it is first worth noting the

cyan point lying furthest above the curves (with M∗,tot ≃ 4 × 109M⊙ and MBH ≃
6 × 108M⊙), representing the compact elliptical NGC 4486B. This small early-type

is a satellite galaxy of M87, the giant elliptical at the centre of the Virgo A cluster.

NGC 4486B clearly has an SMBH that is far too big for its given stellar mass. One
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Figure 3.8: SMBH mass versus total stellar mass at z = 0. The data points represent
galaxies flagged as early types in Kormendy & Ho (2013). The cyan point corresponds
to NGC 4886B, a satellite of M87 (the giant elliptical at the centre of the Virgo A
cluster). Top panel: The solid blue curves are the models for MBH versus M∗,tot at
z = 0, assuming a relation MBH ∝ V 4

d,pk was established by accretion-driven feedback,
according to equation (3.1), at redshift zqso = 0, 1, 2, 3 or 4. These curves all assume
a Dehnen & McLaughlin halo for the dark matter density profile, and a spatially
constant gas-to-dark matter mass ratio f0 = 0.18 in the protogalaxies. Again, they do
not include any SMBH growth between 0 < z < zqso. Middle panel: Same as above,
but for an NFW halo for the dark matter (black curves). Bottom panel: Equivalent to
the top two, with a Hernquist halo for the dark matter (red curves).
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possible explanation (Kormendy & Ho 2013) is that it could have been been tidally

stripped of stellar mass as it orbits M87. However, this is unlikely to fully explain

the deviation seen in Figure 3.8. NGC 4486B has a stellar mass approximately 1–2

orders of magnitude smaller than systems with similar MBH values. This suggests it

has lost ∼ 90–99% of its original stellar mass through tidal stripping. The location of

this system in the MBH–M∗ plane is not yet fully understood, particularly given that

the other compact elliptical in this sample, M32, is consistent with the curves. As

mentioned, neither M32 nor NGC 4486B appear unusual in the MBH-σap(Re) plane.

As for the M–σ relation, the curves in Figure 3.8 are very much non-linear, with

a sharp upward bend around M∗,tot ≃ 4×1010M⊙. This can again be traced back to the

non-linear f∗,vir–M∗,tot relation. The flattening of the curves at M∗,tot ≥ 5× 1011M⊙ is

a reflection of the fact that larger systems were formed more recently. The arguments

in §3.3.2 regarding gas-poor mergers scattering MBH masses upwards with respect to

the curves applies here as well.

Broadly speaking, the curves are in good agreement with the data. At the higher

mass end, with M∗,tot ≥ 2 × 1011M⊙, the curves with zqso = 1–4 bracket the majority

of the MBH–M∗ data. In the range 1010M⊙ . M∗,tot . 1011M⊙, there are a handful

of data points that lie above the curve. This could, in part, be due to the imperfect

connection between σap(Re) and M∗,tot. The intrinsic scatter around the zqso = 3 model

curve is ≃ 0.7 dex, more than double the value from the Kormendy & Ho (2013) linear

best-fit (although again, the Kormendy & Ho value includes classical bulges). However,

the zqso = 3 curve is for a physical model, whereas Kormendy & Ho (2013) were looking

for a linear best-fit that minimized the intrinsic scatter. Again, the value of zqso itself

could contribute to the scatter, but without a more detailed analysis, it is unclear how

much.

3.3.4 Relating SMBHs to halo masses

As discussed, the critical SMBH mass obtained by McQuillin & McLaughlin (2012)

relates MBH to Vd,pk at the time of quasar-mode blow-out. It is therefore the dark
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matter, dominating the potential well that the gas must escape from, that is significant

in determining this critical SMBH mass. In this scenario, the observed correlations at

z = 0 between MBH and the stellar properties simply reflect this more fundamental

relation. A more accurate reflection of the MBH–Vd,pk relation at zqso may be provided

if the SMBH mass can be directly related to global properties of the dark matter halo

at z = 0.

The connection between the total (stars and dark matter) circular speed at (or

close to) the effective radius, Vc(Re), and the aperture velocity dispersion, σap(Re), is

commonly used in the literature as a starting point to connect MBH and Md,vir or Md,200

(e.g., Ferrarese 2002, Croton et al. 2009, Bandara et al. 2009, Dutton et al. 2010).

In short, the observed circular speed, Vc(Re), is transformed to Vc(rvir) [or Vc(r200)]

and combined with the overdensity definition [Md,vir ∝ r3
vir], giving a relation between

σap and Md,vir (or Md,200). By folding in a best fitting power-law relation for MBH–σ

from the literature (observational), the authors are then able to ultimately derive an

MBH–Md,200 relation.

Observational and theoretical studies of the MBH–Md,200 relation generally imply

a single power-law relation, with a slope of ∼ 1.4–1.8 (Ferrarese 2002; Bandara, Cramp-

ton & Simard 2009; Croton 2009; Bogdán & Goulding 2015). However, such a result

relies on the simplifying assumption that the observed circular-speed is proportional

to the circular-speed at the virial radius, independent of M∗,tot: Vopt = γV200 [a singu-

lar isothermal sphere corresponds to γ = 1]. However, this is not true in general (cf.

§2.2.8.2). Ferrarese (2002) did point out that assuming Vopt ∼ V200 is only good as a ze-

roth order approximation. However, she did not account for the halo mass dependence

of the global stellar-to-dark matter mass ratio (a Md,vir–M∗,tot relation) or the halo

progenitor evolution with redshift. Both of these contribute to relations between the

SMBH and bulge properties being highly non-linear. Therefore, a linear MBH–Md,200

relation is obtained by Ferrarese (and others), primarily because MBH–σ is taken to be

a single power-law and Md,vir–M∗,tot is taken to be linear in their calculations.

In this subsection, the dark matter halo mass at r200 is used instead of Md,vir.

This is so that a direct comparison can be made between the calculations here and a
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similar analysis by Dutton et al. (2010). For a given dark matter halo model, the ratio

Md,200/Md,vir is calculated by evaluating the mass profile at r200 and rvir, combined

with the overdensity definitions, Md,vir ∝ ∆virr
3
vir and Md,200 ∝ 200r3

200. For a given

M∗,tot, the value of f∗,vir fixes the virial halo mass. This in turn fixes both rvir and

r−2 through the concentration relation with Md,vir. The mass profiles can then be

manipulated to solve for r200, and hence Md,200/Md,vir. For a Dehnen & McLaughlin

halo, Md,200/Md,vir ≃ 0.8, with a very weak dependence on M∗,tot.

Figure 3.9 shows the MBH(z)–Md,200(0) relation. The data points represent the

early-type galaxies (E and S0) in the Kormendy & Ho (2013) sample. Md,200 values are

calculated for each galaxy by taking the tabulated σap(Re) from Kormendy & Ho (2013)

and taking the dark matter virial mass implied by the σap(Re)–Md,vir average trend line

at z = 0. The halo mass at r200 is then calculated by using the Md,200– Md,vir relation.

The solid blue curves assume a relation MBH ∝ V 4
d,pk was established by accretion-

driven feedback, according to equation (3.1), at redshift zqso = 0, 1, 2, 3 or 4. These

curves all assume a Dehnen & McLaughlin halo for the dark matter density profile,

and a spatially constant gas-to-dark matter mass ratio f0 = 0.18 in the protogalaxies.

The red line segments correspond to MBH ∝ M1.4
d,200 and MBH ∝ M0.65

d,200. These are the

approximate slopes suggested by Dutton et al. (2010) for their MBH–Md,200 relation

(see below). Given that the Md,200 values for each galaxy are obtained through the

trend line for σap(Re)–Md,vir, the intrinsic scatter around individual curves is the same

as for the MBH–σap(Re) relation. For the zqso = 3 curve, the intrinsic scatter is ≃ 0.39.

The overall shape of these predictions is again noteworthy, with the upward bend

seen in the MBH–σ curves no longer present. This is because the stars do not affect

a relation between the SMBH mass and the mass of the dark matter halo measured

on a global scale (the global stellar-to-dark matter mass ratio, f∗,vir or f∗,200, is always

. 5%). The flattening seen toward larger halo masses for higher zqso values reflects

the generic feature of hierarchical merging: the largest halos formed most recently.

Approximating the zqso = 3 curve from Figure 3.9 with a double power-law yields

slopes of ∼ 1.1 for lower mass halos and ∼ 0.6 for higher masses. These are similar to

the slopes suggested by Dutton et al. (2010), shown by the red lines.



179

Figure 3.9: SMBH mass versus dark matter halo mass inside the r200 radius, Md,200, at
z = 0. The data points represent galaxies flagged as early-types by Kormendy & Ho
(2013). To calculate an Md,200 value for each galaxy the tabulated σap(Re) values have
been folded through the scaling relations. The solid blue curves are the models for MBH

versus Md,200 at z = 0, assuming a relation MBH ∝ V 4
d,pk was established by accretion-

driven feedback, according to equation (3.1), at redshift zqso = 0, 1, 2, 3 or 4. These
curves all assume a Dehnen & McLaughlin halo for the dark matter density profile,
and a spatially constant gas-to-dark matter mass ratio f0 = 0.18 in the protogalaxies.
Red line segments are for MBH ∝M1.4

d,200 and MBH ∝M0.65
d,200.
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Figure 3.10 is taken from Dutton et al. (2010). The solid black line shows their

derived MBH–Md,200 relation. This curve was obtained by combining their Vc(Re)–V200

relation (cf. §2.2.8.3), which accounts for the halo mass dependence of f∗,200, with the

best-fit MBH–σ relation from Gültekin et al. (2009):

log

(
MBH

M⊙

)
= (8.12 ± 0.08) + (4.24 ± 0.41) log

( σ

200 km s−1

)
. (3.9)

The shaded region shows their 2σ uncertainties. The similarity between the curves

calculated here with zqso > 0 and the Dutton et al. (2010) results is encouraging.

Correcting for the h−1 in the halo mass unit, the zqso = 3 curve in Figure 3.9 differs

by no more than ∼ 20% from the Dutton et al. relation at any given halo mass, well

within their 2σ uncertainties.

Dutton et al. (2010) suggest that the change in slope of the MBH–Md,200 relation

could be indicative of different growth mechanisms for the SMBHs at different halo

masses. However, by accounting for the redshift evolution of the dark matter halos, a

single black hole growth mechanism — gaseous accretion until a critical SMBH mass is

reached and expels the surrounding ambient medium via momentum-driven feedback,

at some redshift zqso > 0 — leads to an MBH–Md,200 relation that shows a very similar

change in slope. The fact that the MBH–Md,200 relation is non-linear does not mean

it is less fundamental than any other relation, as suggested by Dutton et al. (2010)

and Kormendy & Ho (2013). The calculations here, based on a physical model, yield

MBH–M∗,tot and MBH–σap(Re) relations that are also distinctly non-linear. Dutton

et al. argue that the relation between SMBH mass and stellar mass may be more

fundamental, because of a single power law best-fit to the data. However, there is no

reason to expect any of the SMBH correlations to be linear when considering a physical

model, as demonstrated here.

Using self-consistent cosmological simulations for the co-evolution of SMBHs and

host galaxies, Booth & Schaye (2010) argue that SMBH masses are determined by the

masses of the host dark matter halos. Their recipe for regulating the growth of the

black hole involved implementing energy feedback by allowing the SMBHs to inject

a fixed fraction of the rest mass energy of the gas they accrete into the surrounding
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Figure 3.10: SMBH mass, MBH, as a function of halo mass, Md,200, according to Dutton
et al. (2010). The solid black line shows the relation derived by Dutton et al. assuming
their relation between Vopt and V200 for early-types, along with theMBH–σ relation from
Gültekin et al. (2009). The red shaded region corresponds to the 2σ uncertainties in
the relation. As the dashed red lines indicate, the Dutton et al. relation has a slope
of ≃ 0.65 at high halo masses and ≃ 1.4 at low masses. The short-dashed black line
shows the MBH–Md,200 relation derived assuming V200 = Vopt = 1.65σ, with a slope of
≃ 1.32. For reference only, the dotted line shows a linear relation between MBH and
Md,200.
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medium. This results in a connection between MBH and Md,200, both evaluated at

zqso. This relation can be looked at directly by combining the Vd,pk(z)–Md,vir(z) and

Md,vir(z)–Md,200(z) relations with the critical SMBH mass prediction. The Vd,pk(z)–

Md,vir(z) relation is given by the approximation to the van den Bosch et al. (2014a)

simulations of the redshift evolution of the halo potential well.

The blue curves in Figure 3.11 show the MBH(z)–Md,200(z) relation at zqso =

0, 1 and 2, assuming a Dehnen & McLaughlin model halo. The resulting relation in

Figure 3.11 is linear since both MBH and Md,200 are evaluated at zqso. This is different

to Figures 3.9 and 3.10, where there is a non-linear relation between MBH(zqso) and

Md,200(0) — the halo mass at z = 0. The red line segment corresponds to MBH ∝
M1.55

d,200, the slope obtained by Booth & Schaye (2010) in their simulations — the slopes

of the blue curves are all ≃ 1.3. The difference in these slopes is rooted in assumptions

made about the mechanisms of the SMBH feedback.

If the energy injected by a black hole is proportional to the halo gravitational

binding energy, then for isothermal models, MBH ∝ M
5/3
d,200 (Silk & Rees 1998). This

is because for energy-driven feedback in an SIS, MBH ∝ σ5. Combining the virial

theorem with the overdensity definition leads to Md,200 ∝ V 3
200 ∝ σ3, and hence the

relation between SMBH mass and halo mass. Extending this to an NFW density profile,

Booth & Schaye (2010) find a slope of ∼ 1.5–1.6, consistent with their simulations. The

analysis here involves the assumption of momentum-driven feedback halting the growth

of SMBHs — MBH ∝ V 4
d,pk. This dependence on the velocity scale leads to an expected

slope in the MBH–Md,200 relation of ≃ 1.33, again for isothermal models (Bandara et

al. 2009). The slopes of the blue curves in Figure 3.11 are consistent with this simple

expectation.

3.3.5 Bivariate correlations

Hopkins et al. (2007a,b) proposed a bivariate dependence of MBH on a combination

of bulge properties at z = 0. Hopkins et al. (2007a) call this the Black Hole Fun-

damental Plane (BHFP), and suggest that such combinations can significantly reduce
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Figure 3.11: SMBH mass, MBH, as a function of halo mass, Md,200, both evaluated
at zqso. The three curves correspond to zqso = 0, 1 and 2 respectively, assuming a
Dehnen & McLaughlin halo and that MBH ∝ V 4

d,pk was established by momentum-
driven feedback, according to equation (3.1). For all values of zqso, the slope of the
MBH(zqso)–Md,200(zqso) relation is ≃ 1.3. The red line is for MBH ∝ M1.55

d,200, the slope
found by Booth & Schaye (2010) in their simulations, implementing energy-driven
feedback.
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the scatter around a linear best-fit, compared to any of the single SMBH–bulge prop-

erty relations. The scaling relations developed here allow comparisons between the

McQuillin & McLaughlin (2012) critical MBH [equation (3.1)] and this version of the

data as well.

Considering a bivariate dependence of MBH on a combination of σap and Re or σap

and M∗,tot actually pre-dates the Hopkins et al. (2007a,b) work. When considering the

SMBH mass – bulge mass relation, Marconi & Hunt (2003) work with a dynamical bulge

mass. They calculated this dynamical mass, Mdyn = kσ2Re/G, assuming homology

(i.e. k is constant). Marconi & Hunt (2003) were considering a bivariate dependence

of SMBH mass, with MBH ∝ σ2
apRe. More recently, the ATLAS team (Cappellari et al.

2011; Cappellari et al. 2013b; Cappellari et al. 2013a) found that this combination of

σap and Re produced the best linear fit (for their 258 galaxies) for the fundamental

plane of ellipticals: M∗,tot ∝ σ2
apRe.

The main goal for the Hopkins et al. (2007a,b) study was to reduce scatter around

best fits for the SMBH – bulge relations at z = 0. Combining σap and Re, they find the

scatter reduces to ∼ 0.2 dex for MBH ∝ σ3
apR

0.43
e . Given that σ3

apR
0.43
e ∼ [σ2

apR
0.3
e ]3/2,

connecting MBH to σ2
apR

0.3
e results in the same intrinsic scatter around a linear best

fit as the Hopkins et al. (2007a) result. This form is more convenient to compare to

σ2
apRe. In what follows, the bivariate dependence of M∗,tot at z = 0 and MBH(z) on

both combinations of σap and Re [σ2
apRe and σ2

apR
0.3
e ] at z = 0 are considered.

3.3.5.1 Data

Unfortunately, Kormendy & Ho (2013) do not give effective radii for their data sample.

Re values are tabulated in the Harris, Poole & Harris (1977) compilation [along with

K-band magnitudes and σap(Re)], so this compilation is used for the purposes of this

Section. Only E and S0 galaxies in Harris et al. (2014) that are also in Kormendy &

Ho (2013) are considered, of which there are 35. It is worth noting that the MBH and

σap(Re) values are the same in Harris et al. and Kormendy & Ho (although the K-band

magnitudes are not). Before considering any bivariate dependences, the ATLAS and
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Harris et al. data need to be self-consistently compared.

In total, there are 14 galaxies in common between ATLAS, Kormendy & Ho

(2013) and Harris et al (2014). Figure 3.12 shows σap(Re) (top panel) and Re (bottom

panel) versus M∗,tot, all at z = 0. As in previous Figures, the green squares are for

galaxies in ATLAS and magenta triangles are from ACSVCS. The black points are from

the Harris et al (2014) data sample, with red points from ATLAS that also appear in

Harris et al. The curve in the top panel from the Jeans modelling in §2.2.6, assumes

a Dehnen & McLaughlin dark matter halo and a stellar ejecta mass fraction, Fej, that

depends on M∗,tot (cf. §2.2.6.4). The curve in the bottom panel corresponds to the

parametrisation of Re:

Re

kpc
= 1.5

(
M∗,tot

2 × 1010M⊙

)0.1
[
1 +

(
M∗,tot

2 × 1010M⊙

)5
]0.1

. (3.10)

The top panel of Figure 3.12 again appears to show the selection bias in the MBH–

σap(Re) data, discussed in §3.3.1. For a fixed stellar mass, the velocity dispersions are

systematically larger than average for galaxies with measured SMBH masses. Since

σap(Re) values are the same in Harris et al. and Kormendy & Ho, the ATLAS values

are again smaller. Therefore, if the ATLAS velocity dispersions are used where possible

for galaxies with MBH (red points), there is no obvious selection bias.

The anti-correlated scatter in σap and Re versus stellar mass (or luminosity),

related to the fundamental plane of ellipticals (cf. §1.2.3), is reflected in the bottom

panel of Figure 3.12. This shows that if M∗,tot is fixed, then the effective radius is

systematically lower than the mean trend for galaxies in the MBH–σ data sample.

These opposite systematic deviations from the average trends encourages looking at

combinations of σap and Re, as a function of M∗,tot. For galaxies in common, the

ATLAS values for Re are larger than those tabulated by Harris et al. As for the

σap(Re)–M∗,tot relation, if the ATLAS Re values are used for galaxies with MBH, there

is a less obvious selection bias (although this is a small sample of only 14 galaxies).

Figure 3.13 shows the ratios (Harris et al. to ATLAS) of effective radii (top

panels), stellar masses (middle panels) and aperture dispersions (bottom panels), as



186

Figure 3.12: Stellar velocity dispersion (top panel) and stellar effective radius (bottom
panel), both at z = 0, versus total stellar mass, also at z = 0. The green squares
are from the ATLAS data sample and the magenta triangles are from ACSVCS. Black
circles are galaxies from Harris et al. (2014) and red points are ATLAS galaxies that
are also in Harris et al. and Kormendy & Ho. Top panel: The blue curves are from the
Jeans modelling to calculate aperture velocity dispersions. They assume a Dehnen &
McLaughlin dark matter halo, as well as the ad-hoc Fej–M∗,tot relation. Bottom panel:

Solid blue curve shows the parametrisation of Re–M∗,tot [see equation (3.10)].
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functions of σap(Re) (left) and M∗,tot (right) from ATLAS. Typical error bars are shown

in the top left corner of each panel. The horizontal error bars are calculated as before,

by taking the typical errors from ATLAS (5% for velocity dispersions and ∼ 20% for

stellar masses) and calculating an average error for the 14 galaxies in the plot. The

error bars for the ratios are obtained by combining the errors from Harris et al. (2014)

and ATLAS for each data point, and an rms scatter is then calculated. Harris et

al. give error bars for the K-band magnitudes and velocity dispersions for individual

galaxies, and give typical errors of ∼ 10% for Re, as do ATLAS for effective radii.

The σ ratio plots are the same as the bottom panels of Figure 3.6, with fewer

points [since σ(KH) ≡ σ(Harris)]. The average difference in the velocity disper-

sions is given by 〈log[σ(Harris)/σ(AT)]〉 ≃ 0.04, the same as before. For the stellar

masses, the difference is significantly smaller, with 〈log[M∗(Harris)/M∗(AT)]〉 ≃ 0.015

(for the Kormendy & Ho comparison, this value was ≃ 0.05). For the effective

radii, the average difference is again reasonably small, but in the opposite direction:

〈log[Re(Harris)/Re(AT)]〉 ≃ −0.025. This is again a reflection of the anti-correlated

scatter between velocity dispersion and effective radius.

3.3.5.2 Combinations of stellar velocity dispersion and effective radius

The top panel of Figure 3.14 shows σ2
apRe versus total stellar mass at z = 0. Point

types and colours correspond to the same data samples as the previous Figure. The

curve is the predicted mean trend for a Dehnen & McLaughlin dark matter halo and

an ad-hoc Fej–M∗,tot relation. The trend line appears much straighter than in other

relations, unsurprising given that Mdyn ∝ σ2
apRe. The apparent selection bias for the

M–σ data (black points), seen in the σap–M∗,tot relation when using the Harris et al.

(2014) velocity dispersions, is no longer seen in this bivariate relation. This is in part

because the combination of σap and Re significantly cancels out the anti-correlated

scatter between the two properties.

The bottom panel of Figure 3.14 shows σ2
apR

0.3
e as a function of total stellar mass.

The curve is again for a Dehnen & McLaughlin halo and an assumed Fej–M∗,tot relation.
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Figure 3.13: Data comparison for the 14 galaxies in common between Harris et al.
(2014) and ATLAS3D. Typical error bars are shown in the top left of each panel. Top

panels: Ratio of effective radius in Harris et al. to effective radius in ATLAS, versus
σap(Re) (left panel) and stellar mass (right panel), both from ATLAS. Middle panels:

Ratio of total stellar mass in Harris et al. to stellar mass in ATLAS, as a function of
ATLAS stellar velocity dispersion (left panel) and ATLAS M∗,tot (right panel). Bottom

panels: Ratio of stellar velocity dispersion (measured within Re) in Harris et al. to
that in ATLAS, versus σap (left) and M∗,tot (right; both from ATLAS).
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Figure 3.14: Top panel: The combination σ2
apRe at z = 0, as a function of total stellar

mass, also at z = 0. Magenta triangles are for galaxies in the ACSVCS sample, with
green squares from ATLAS. Black points are from the Harris et al. (2014) compilation
of SMBH data, and the two cyan points are the compact ellipticals M32 and NGC
N4486B. The red points are galaxies in common between ATLAS, Kormendy & Ho and
Harris et al. (2014), and represent the ATLAS values for σap, Re and M∗,tot. These are
connected to the corresponding galaxies in Harris et al. by red lines. The blue curves
are the calculated mean trends, assuming a Dehnen & McLaughlin halo, with a mass
dependent Fej. Bottom panel: Same as the top panel, but for the combination σ2

apR
0.3
e

at z = 0 versus M∗,tot at z = 0.
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Figure 3.15: Top panels: Total stellar mass at z = 0 versus σ2
apRe (left) and σ2

apR
0.3
e

(right), evaluated at z = 0. Point type and colours are the same as for the previous
Figure. The blue curves are trend lines for a Dehnen & McLaughlin dark matter halo,
assuming an ad-hoc Fej =–M∗,tot relation. Bottom panels: MBH(zqso) as a function of
σ2

apRe (left) and σ2
apR

0.3
e (right), evaluated at z = 0. The black points are from Harris

et al. (2014) and the red points are ATLAS galaxies also appearing in Harris et al.
The curves are for a critical SMBH mass calculated using equation (3.1), assuming
f0 = 0.18, with Vd,pk evaluated at (from top to bottom) zqso = 0, 1, 2, 3 and 4.
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The shape of the curve is similar to the σap versus M∗,tot average trend, due to the

smaller power of Re, compared to the top panel (0.3 instead of 1). This combination

of σap and Re still appears to shows a selection bias for the M–σ data, when using

the Harris et al. velocity dispersions. However, as for the σap–M∗,tot relation, if the

ATLAS velocity dispersions are used for these galaxies (where possible), there is again

no obvious selection bias.

The top two panels of Figure 3.15 show M∗,tot at z = 0 as a function of σ2
apRe (left

panel) and σ2
apR

0.3
e (right panel). These are equivalent to the panels in Figure 3.14. The

bottom two panels show MBH(z) versus σ2
apRe at z = 0 (left panel) and σ2

apR
0.3
e at z = 0

(right panel). The black points are galaxies from Harris et al. (2014) and the red points

are systems that also appear in ATLAS and Kormendy & Ho. The two cyan points

are the compact ellipticals M32 and NGC 4486B (M32 has the lower M∗,tot and MBH

of the two). The blue curves are obtained by combining the bivariate dependencies

on M∗,tot with the Vd,pk–M∗,tot relation and the critical SMBH mass prediction —

MBH(z) ∝ V 4
d,pk(z). A Dehnen & McLaughlin dark matter halo is assumed, with

f0 = 0.18 and zqso = 0, 1, 2, 3 and 4. In both panels, the curves are generally in good

agreement with the data. As for the other SMBH correlations, the upward inflection

traces back to the peak in f∗,vir at around M∗,tot ≃ 3.4 × 1010M⊙. The flattening seen

in the curves [setting in at σ2
apRe ∼ 106 in the left panel and σ2

apR
0.3
e ∼ 3 × 105 in

the right panel] is again a reflection of the generic feature of structure formation by

hierarchical merging — the largest structures formed most recently.

As for the other SMBH relations considered here, the intrinsic scatter around the

model curves has been calculated. Although this doesn’t give details of the source of the

scatter, it gives an idea about which of the correlations are perhaps more fundamental

according to the physical model considered. For the zqso = 3 curve, the intrinsic scatter

is ≃ 0.67 dex for MBH ∝ σ2
apRe and ≃ 0.45 dex for MBH ∝ σ2

apR
0.3
e . These compare to

values from Hopkins et al. (2007a) for scatter around a linear best-fit of ≃ 0.43 dex

for MBH ∝ σ2
apRe and ≃ 0.21 dex for MBH ∝ σ2

apR
0.3
e . For the physical model then, the

scatter around the zqso = 3 curve is less for the MBH–σap(Re) relation than either of

the bi-variate relations considered here.
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An important question to ask is whether it is meaningful to try and reduce the

scatter around these mean trends. Doing so could hide real, physical scatter in the

data that is expected to be present. For example the redshift zqso, marking the end

of SMBH growth via rapid accretion, is expected to be different for each galaxy. This

accounts for some of the scatter in the SMBH correlations, and is seen by the clear

separation of the curves in Figures 3.7 and 3.8 showing the MBH–σ and MBH–M∗,tot

relations. However, both the bottom panels in Figure 3.15 have curves that are much

closer together, showing little dependence in the scatter on zqso. It is possible that

combining σap and Re in this way has just removed a physically interesting result,

namely the scatter due to different zqso for galaxies of similar sizes. The key point is,

the scatter still needs to be understood, by considering the intrinsic scatter around the

trend lines for the z = 0 relations, as well as the scatter associated with the SMBH

correlations.

3.3.6 Summary

The average trends between stellar and halo properties at z = 0 from Chapter 2 have

been combined with approximations for the redshift evolution of halo progenitors. This

allowed for Vd,pk and Md,vir at any redshift to be connected to the stellar properties at

z = 0. Folding in a relationship of the formMBH ∝ V 4
d,pk at a range of redshifts zqso > 0,

model predictions for the SMBH–galaxy property relations have been made. Despite

this linear (in log–log space) relation estimating the critical SMBH mass required for gas

blow-out, the model predictions that are inferred are highly non-linear. Nevertheless,

the resulting curves do describe the data for local early-types if the redshift of quasar-

mode blow-out was zqso ≈ 2–4. This range is reassuringly similar to the epoch of peak

quasar density and SMBH accretion rate in the Universe.

This lends support to the notion that the empirical SMBH relations fundamen-

tally reflect some close connection due to accretion feedback between SMBH masses in

galactic nuclei and the dark matter in their host protogalaxies. It also demonstrates

that the true physical relationships between MBH and stellar properties [σap(Re), M∗,tot
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and combinations of velocity dispersion and Re] are not necessarily pure power laws.

The model predictions obtained do not include any growth of the SMBH itself at red-

shifts z < zqso, which can occur by coalescences in gas-poor mergers at the centre of a

halo (cf. §3.3.2.1). However, this is distinct from the growth of the halo as a whole;

many sub-halos can be accreted at low redshift that do not sink to the bottom of the

potential well and thus do not grow the central SMBH. The effects of such mergers on

halo masses and circular speeds (and hence stellar velocity dispersions at z = 0) are

fully accounted for.

For each of the SMBH correlations considered, the intrinsic scatter around the

model curve for zqso = 3 has been calculated. The values range from ≃ 0.39 dex for

MBH–σap and MBH–Md,200, to ≃ 0.7 dex for MBH–M∗,tot. The bivariate correlations

have intrinsic scatter in between these two values. This suggests that in terms of the

physical model used here, the intrinsic scatter around the model predictions for the

SMBH relations is not necessarily reduced by combining the stellar properties in the

ways shown here. It also hints at the connection between MBH and σap(Re) (or Md,200)

perhaps being a more accurate reflection of the fundamental MBH–Vd,pk relation at

z = zqso, underpinning all the model curves.

The specific form of the initial MBH–Vd,pk used in this Chapter comes from a

simplified theoretical analysis of momentum-conserving SMBH feedback. This is as-

sumed to occur in isolated protogalaxies containing no stars, with the gas tracing the

dark matter. Hence, there are several simplifying assumptions involved that need to be

relaxed. The work presented in the next Chapter looks at the implications of relaxing

the assumptions of having no stars and a virialised gas.
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4 A new critical SMBH mass prediction

The work presented in Chapter 3 demonstrated how a prediction relating SMBH mass,

MBH, to the potential well depth of a host protogalaxy when quasar-mode blow out

occurred, at redshift zqso > 0, can be compared to observed correlations between MBH

and galaxy properties at z = 0. To make such comparisons, the scaling relations

obtained in Chapter 2, relating various properties of stars and dark matter in z = 0

systems, have also been used. The methods developed up to this point are readily

adaptable for other predictions involving the SMBH mass required for blow out.

The prediction used in Chapter 3 related MBH to the peak of the dark matter

circular speed, Vd,pk. This result was obtained by McQuillin & McLaughlin (2012) and

is given by:

MBH

M⊙

= 1.14 × 108

(
f0

0.2

) (
Vd,pk

200 km s−1

)4

. (4.1)

In this equation, f0 is the gas-to-dark matter mass fraction in the protogalaxy, assumed

to be spatially constant. As discussed, this prediction has several limitations. The force

balance behind it assumes that the protogalactic outflows driven by SMBH winds are

momentum-driven. The equation also assumes a wind moving into a static ambient

medium, where the gas traces the dark matter, making no account for in-falling gas.

It also neglects the presence of any stars in the protogalaxy, which could contribute

both to the feedback driving the gaseous outflows and to the gravity containing them.

It is unclear in detail how correcting for any of these caveats will affect either the

normalisation and/or the scaling.

Analytical predictions in the literature based on the assumption that the out-

flows are energy-driven (e.g. Silk & Rees 1998; McQuillin & McLaughlin 2013) also

assume dark matter halos that are distributed isothermally (SIS models) and a viri-

alised gaseous medium. McQuillin & McLaughlin (2013) find that an energy-driven

outflow leads to a different functional dependence of MBH on the velocity scale (in

this case σ0, the velocity dispersion of the dark matter halo) — MBHvw ∝ σ5
0 , where

vw is the wind velocity. On the other hand, Zubovas & Nayakshin (2014) argue that
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assumptions about the thermal physics behind the outflows do not affect the SMBH

mass required for blow out in a significant way.

Costa et al. (2014) found that the large scale outflows, driven by AGN, are in-

deed energy-driven in full cosmological simulations. They also suggest that a larger

momentum input rate is required to drive efficient outflows, due to infalling gas. Their

simulated energy-driven outflows can reach momentum fluxes of up to 10LEdd/c. The

effects of allowing for a non-virialised gas have only briefly been looked at. Ishibashi &

Fabian (2012) consider an initial gas distribution with a density profile ρg(r) ∝ r−2, in-

side a Hernquist dark matter halo. They suggest that the critical SMBH mass required

for a gas shell to escape from such a protogalaxy via momentum-driven feedback is the

same as for the case of gas tracing dark matter, since the shell will still accelerate at

large radii. The contribution from stars to the gravity trying to contain the outflow

have not been considered.

In this Chapter, a new prediction relating MBH to the potential well depth of

the protogalaxy is derived. This new prediction allows for the presence of stars in the

protogalaxy that can contribute to the gravitational force containing the outflow and

for the gas not to be tracing the dark matter (or indeed the stars). The contributions

to the feedback from stellar winds and supernovae (Murray et al. 2005; Power et al.

2011) are not considered here. Allowing for stars contributing to the gravity and a

non-virialised gas requires setting up three-component protogalaxies with (potentially)

different distributions for each component. Spherical symmetry is assumed for all com-

ponents, with the wind moving into an initially static ambient medium and that the

outflow is purely momentum-driven. It is also assumed that MBH remains constant

throughout the process, corresponding to a steady wind. Clearly then, the new predic-

tion still has caveats. However, it is necessary to keep certain assumptions the same

to investigate how correcting for other limitations affects the final result (in this case,

the critical SMBH mass required for quasar-mode blow out). As mentioned above, it

is unclear which of the limitations of equation (4.1) is the most significant.

To derive this new critical SMBH mass, the method from McQuillin & McLaugh-

lin (2012), outlined in §1.4.5, is followed closely. The feedback is modelled as a spherical
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radiative shell, driven outwards by an SMBH wind with momentum flux equal to the

Eddington value (dpwind/dt = LEdd/c with no pre-factor, King & Pounds 2003). Al-

lowing for stars and non-virialised gas in the protogalaxy potentially has implications

for the MBH that is required for quasar-mode feedback to clear the gas from a galaxy.

The new result is compared to equation (4.1) to see how the critical SMBH is affected.

It will also be compared to the empirical MBH–σap(Re) relation in z = 0 galaxies,

making use of the scaling relations developed in Chapter 2 and the methods outlined

in Chapter 3.

4.1 Equation of motion

The equation of motion of a momentum-conserving shell, in a protogalaxy consisting

of stars, gas and dark matter is given by

d[Mg(r)v(r)]

dt
=
LEdd

c
− GMg(r)

r2

[
MBH +Mcon(r)

]
. (4.2)

Here, r is the instantaneous radius of the shell, v = dr/dt is the velocity of the shell,

Mcon(r) is the sum of the dark matter mass and stellar mass inside r — i.e., the

“confining” mass. Mg(r) is the ambient gas mass originally inside radius r. The first

term on the right hand side, is the assumed outward force on the shell of swept up gas,

LEdd/c = 4πGMBH/κ (King & Pounds 2003). The subtracted term on the right hand

side is the gravitational confining force acting on the shell from the black hole, dark

matter and stars.

If the gravity from the black hole is negligible, which is true at large radii, then

the gravitational confining force has a maximum at a radius, rf , provided at least one of

the gas, stellar and dark matter distributions are non-isothermal. With MBH removed

and given that V 2(r) = GM(r)/r, the gravitational force term is

GMg(r)Mcon(r)

r2
∝ V 2

g (r)V 2
con(r). (4.3)

The radius rf therefore corresponds to where the product of the gas circular speed,

V 2
g (r) ≡ GMg(r)/r, and the circular speed of the “confining” mass, V 2

con(r) ≡ GMcon(r)/r,
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peaks. It is at this radius that a gas shell will begin to accelerate, if it is able to get

there in the first place. The value of the force at rf therefore determines the critical

SMBH mass [if LEdd/c ≥ GMg(rf)Mcon(rf)/r
2
f , then the gas is blown out of the galaxy],

assuming that the gas shell is able to overcome the gravity of the black hole at small

radii.

To solve for the velocity fields, v2(r), it is more convenient to write the equation

of motion as a derivative with respect to r:

d[M2
g (r)v2(r)]

dr
=

8πG

κ
MBHMg(r) −

GM2
g (r)

r2

[
MBH +Md(r) +M∗(r)

]
. (4.4)

Following McQuillin & McLaughlin (2012), characteristic mass and radius scales, Mσ

and rσ are defined, in order to write equation (4.4) in dimensionless form. These are

given in terms of a characteristic velocity scale,

V 2
con(rf) ≡

GMcon(rf)

rf
= V 2

f . (4.5)

By definition, this is the value of V 2
con(r) at the radius at which the gravitational force

is a maximum, rf . This is not necessarily the maximum of V 2
con(r). Denoting fg(rf) ≡

Mg(rf)/Md(rf) and f∗(rf) ≡ M∗(rf)/Md(rf), and defining f(rf) = fg(rf)/[1 + f∗(rf)],

the mass and radius scales are then given by

Mσ ≡ f(rf) κV
4
m

4πG2
≃ 1.14 × 108

[
f(rf)

0.2

] (
Vf

200 km s−1

)4

M⊙

and

rσ ≡ GMσ

V 2
m/2

. (4.6)

For the case of no stars [f∗(rf) = 0] and gas tracing dark matter [f(rf) = fg(rf) ≡ f0

and Vf = Vd,pk], these units are identical to the ones used by McQuillin & McLaughlin

(2012).

In order to express the equation of motion in dimensionless form, the following

dimensionless quantities are defined:

M̃ =
M

Mσ

r̃ =
r

rσ

ṽ =
v

Vm/
√

2
and x =

r

rf
, (4.7)
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along with

M̃f = M̃con(r̃f) and m(x) =
M̃(x)

M̃f

. (4.8)

Defining the gas-to-confining mass ratio normalised to f(rf) as

h(x) ≡ f(x)

f(rf)
=
mg(x)/mcon(x)

f(rf)
, (4.9)

and noting that M̃f = 2r̃f , the dimensionless equation of motion is

d

dx

[
h2(x)m2

con(x)ṽ
2(x)

]
= 4M̃BHh(x)mcon(x)

− 4
M̃BH

M̃f

h2(x)m2
con(x)

x2
− 4

h2(x)m3
con(x)

x2
. (4.10)

For the case of no stars [mcon(x) = md(x)] and gas tracing dark matter [h(x) = 1

everywhere and M̃f ≡ M̃d(r̃d,pk)], equation (4.10) reduces to the equation of motion

obtained by McQuillin & McLaughlin (2012). The formal solution to equation (4.10)

is

h2(x)m2
con(x)ṽ

2(x) = C + 4M̃BH

∫ x

0

h(u)mcon(u)du

− 4
M̃BH

M̃f

∫ x

0

h2(u)m2
con(u)

u2
du− 4

∫ x

0

h2(u)m3
con(u)

u2
du,

(4.11)

where C is a constant of integration, related to the initial momentum. By fully speci-

fying profiles for the gas, stars and dark matter, along with values for C and M̃BH (the

remaining unknown, M̃f , is determined once the profiles are chosen), equation (4.11)

has a unique solution for the velocity field of a particular gas shell.

4.1.1 Condition for shell escape

McQuillin & McLaughlin (2012) used the fact that there is a large class of solutions

that have local minima in v2(x) to derive a critical SMBH mass required for blow-out.

This method involves finding the minimum of the shell’s velocity fields, v2, with the
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critical case corresponding to v2
min = 0 at r = rcrit. This gives the black hole mass that

is necessary to expel a gas shell with particular initial conditions (i.e., a specific value

for C) from the protogalaxy. The sufficient condition for any shell (i.e., any value of

C) is then found by calculating the maximum of the corresponding black hole mass for

the radius r = rmax, at which the shell begins to accelerate, giving Mcrit.

If a local minimum in ṽ2(x) exists, the radius where it occurs is denoted as xmin

and the value at xmin is ṽ2
min. Given that dṽ2/dx = 0 at xmin, equation (4.10) gives

ṽ2
min

d ln[h2(xmin)m
2
con(xmin)]

d lnxmin

= 4
M̃BH

h(xmin)

xmin

mcon(xmin)
− 4

M̃BH

M̃f

1

xmin

− 4
mcon(xmin)

xmin

.

(4.12)

If a shell with a given initial momentum (value of C) is to escape, then ṽ2
min ≥ 0 is

required, so the shell doesn’t stall. If ṽ2
min < 0, then the gas shell stalls and re-collapses

if MBH is assumed to be constant (a steady wind). Taking ṽ2
min = 0 as the critical case,

and denoting the corresponding values of M̃BH and xmin as M̃crit and xcrit. Equation

(4.12) then leads to

M̃crit =
m2

con(xcrit)h(xcrit)

x2
crit

[
1 − h(xcrit)

M̃m

mcon(xcrit)

x2
crit

]−1

. (4.13)

Further to this, setting x = xcrit, ṽ
2 = 0 and M̃BH = M̃crit in the formal solution

to the equation of motion [equation (4.11)], combined with equation (4.13) yields

M̃crit =

C

4
+

∫ xcrit

0

[
h(u)mcon(u)

u

]2 {
mcon(xcrit) −mcon(u)

}
du

∫ xcrit

0

[
h(u)mcon(u)

u

]2 {
x2

crit

h(xcrit)mcon(xcrit)
− u2

h(u)mcon(u)

}
du

. (4.14)

Equating the right-hand sides of equations (4.13) and (4.14), xcrit and then Mcrit can

be found in terms of C (providing profiles have been chosen for the gas, stars and dark

matter). The necessary condition for the escape of a purely momentum-driven shell

with a particular value of C is just M̃BH ≥ M̃crit.

Shells with different initial conditions will have different values of M̃crit and xcrit,

given by equations (4.13) and (4.14). To compare these, McQuillin & McLaughlin
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(2012) differentiate M̃crit [equation (4.13)] with respect to xcrit, for a fixed value of M̃m:

dM̃crit

dxcrit
=

2m2
con(xcrit)xcrit

h(xcrit)

1
[
x2

crit/h(xcrit) −mcon(xcrit)/M̃m

]2

×
{ [

d lnmcon(xcrit)

d lnxcrit

− 1

]
+

1

2

[
d lnh(xcrit)

d lnxcrit

]

− h(xcrit)mcon(xcrit)

2M̃fx2
crit

[
d lnmcon(xcrit)

d lnxcrit

]}
. (4.15)

Using the definition of h(x), this can be re-written as

dM̃crit

dxcrit

=
2m2

con(xcrit)xcrit

h(xcrit)

1
[
x2

crit/h(xcrit) −mcon(xcrit)/M̃m

]2

×
{ [

1

2

(
d lnmcon(xcrit)

d ln xcrit
+
d lnmg(xcrit)

d lnxcrit

)
− 1

]

− h(xcrit)mcon(xcrit)

2M̃fx2
crit

[
d lnmcon(xcrit)

d lnxcrit

]}
. (4.16)

By definition, d lnmcon/d lnx − 1 = d lnV 2
con/d lnx, and d lnmg/d lnx − 1 =

d lnV 2
g /d lnx. Therefore, the term in the square bracket is

1

2

(
d lnmcon(xcrit)

d lnxcrit
+
d lnmg(xcrit)

d lnxcrit

)
− 1 =

d ln[Vg(xcrit)Vcon(xcrit)]

d lnxcrit
. (4.17)

Since x = 1 corresponds to r = rf , the radius at which the gravitational confining force

is a maximum and (equivalently) where the product Vg(x)Vcon(x) peaks, equation

(4.17) is positive for x < 1 and negative for x > 1. Hence, dM̃crit/dxcrit > 0 for shells

with sufficiently small xcrit, and dM̃crit/dxcrit < 0 for shells with sufficiently large xcrit.

Setting dM̃c/dxcrit = 0 for given dark matter, gas and stellar distributions, and a fixed

M̃m, therefore identifies the largest critical SMBH mass required for the momentum-

driven shell to escape, M̃max
crit .

Defining xcrit = xmax when dM̃crit/dxcrit = 0, equation (4.16) becomes

{
d ln[mg mcon]

d lnx

}

x=xmax

− 2 − 1

M̃m

h(xmax)mcon(xmax)

x2
max

{
d lnmcon

d lnx

}

x=xmax

= 0. (4.18)
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Substituting xcrit = xmax into equation (4.13), the dimensionless critical mass is given

by

M̃max
crit =

{
h(xmax)m

2
con(xmax)

xmax

}
×

[
1 − h(xmax)mcon(xmax)

M̃f x2
max

]−1

. (4.19)

In general, equation (4.18) is solved numerically for xmax (for given gas, stellar and

dark matter profile shapes and a fixed M̃f), with the corresponding M̃max
crit calculated

through equation (4.19). In the limit that M̃f ≫ h(xmax)mcon(xmax)/x
2
max, the final

term on the left-hand side of equation (4.18) is negligible [the logarithmic slope of

mcon(x) is a well behaved function, with a value of order unity at any value of x].

This is only strictly true in the limit of very large dark matter halos. With this limit

applied, and making use of the definition d lnm/d ln x − 1 = d lnV 2
c /d lnx, equation

(4.18) leads to
{
d ln[V 2

g V
2
con]

d lnx

}

x=xmax

−→ 0. (4.20)

Equation (4.20) has a single root in this limiting case, with xmax → 1, namely the

location where the product of Vg and Vcon peaks.

Setting xmax = 1 in equation (4.19), and assuming M̃f ≫ h(xmax)mcon(xmax)/x
2
max,

the sufficient SMBH mass is given by

M̃BH ≥ M̃crit = 1. (4.21)

Combining this with the definition of Mσ, the critical SMBH mass required for a

momentum-driven gas shell to escape a galaxy is

Mcrit −→
f(rf)κV

4
f

4πG2

≃ 1.14 × 108M⊙

[
f(rf)

0.2

](
Vf

200 km s−1

)4

, (4.22)

where denoting the radius at which the gravitational force is a maximum as rf ,

f(rf) ≡
fg(rf)

1 + f∗(rf)
and V 2

f ≡ G[M∗(rf) +Md(rf)]

rf
. (4.23)

Again, this is the critical SMBH mass required for gas blow-out, and assumes the gas

shell is able to get to the radius where it begins to accelerate, which corresponds to rf in
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the limit that M̃f ≫ h(xmax)mcon(xmax)/x
2
max. Whether a gas shell is able to reach rf ,

or stalls before this radius (ṽ2 = 0), depends on the initial conditions, and in particular

the value of C. For the examples in §4.3, it is assumed that the gas shells with C ≥ 0

do not stall if MBH ≥ Mcrit, and they are able to reach rf , and hence equation (4.22)

can be applied.

4.2 Comparison to previous results

Equation (4.22) is an extension of that obtained by McQuillin & McLaughlin (2012),

allowing for a non-virialised gaseous distribution and for the presence of stars in the

protogalaxy. A comparison of this new prediction to the “old” one yields

Mcrit,new

Mcrit,old
=

(
f(rf)

f0

) [
Vf

Vd(rd,pk)

]4

, (4.24)

where again rf denotes the radius at which the gravitational confining force is a maxi-

mum, if the gravity of the SMBH is negligible. For the case of no stars and gas tracing

dark matter, rf ≡ rd,pk, V
4
f ≡ V 4

d (rd,pk) and f(rf) = f0, and hence equation (4.24)

reduces to 1.

Throughout the rest of this Chapter, comparisons will be made between the

new result to the original prediction from McQuillin & McLaughlin (2012). The only

differences between the two predictions are the (possible) presence of stars in the pro-

togalaxy and the gas initially being non-virialised (not tracing the dark matter). This

will therefore allow for a detailed investigation of how the critical SMBH mass is al-

tered by relaxing these two assumptions. The suggestion by Ishibashi & Fabian (2012),

that allowing the gas to have an r−2 density profile inside a non-isothermal halo has

little effect on the SMBH mass required for blow-out, can be looked at in closer detail.

Ishibashi & Fabian (2012) are the only authors that have considered any kind of non-

virialised gas, and the contribution from the stars to the gravitational potential has

not been looked at before.

In what follows, a general method is outlined for using the new prediction, in
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terms of fully specifying profiles for the gas, stellar and dark matter distributions.

Ultimately, the new prediction will be compared to the MBH–bulge relations observed

at z = 0, using the methods applied in Chapter 3. A few representative examples to

illustrate the key results will be used, but this will not be an exhaustive set of possible

combinations of the different distributions.

4.2.1 Three-component protogalaxies

As mentioned above, the new result presented here allows for protogalaxies composed

of three components: stars, gas and dark matter. In what follows, it is more convenient

to think about the critical SMBH mass prediction [equation (4.22)] in terms of gas- and

stellar-to-dark matter mass ratios [fg(r) ≡Mg(r)/Md(r) and f∗(r) ≡ M∗(r)/Md(r)]:

Mcrit ≃ 1.14 × 108M⊙

(
fg,vir

0.2

) [
fg(rf)

fg(rvir)

] (
1 + f∗,vir

[
f∗(rf)

f∗(rvir)

]) [
Vd(rf)

200 km s−1

]4

.

(4.25)

Here, fg,vir and f∗,vir are global mass ratios (to dark matter) for the gas and stars

respectively. These are constrained as functions of redshift and/or dark matter virial

mass, Md,vir, by various studies in the literature (cf. §4.2.1.2 and §4.2.1.3). The ratios

in the square brackets in equation (4.25), along with the value of rf , are dependent on

how the three components are distributed with respect to one another.

The three individual components are determined by a scale radius, r−2,i, and

the mass within that scale radius, Mi(r−2,i). There are therefore six free parameters

that need to be chosen for a three-component protogalaxy (and hence a critical SMBH

mass) to be fully specified. However, as for the two-component galaxies in Chapter 2,

there are interdependencies between these parameters, along with constraints on dark

matter mass and radius scales. Results from the literature allow the number of free

parameters to be reduced to two (compared to one for Chapters 2 and 3, M∗,tot), chosen

here to be the halo mass at z = 0, Md,vir(0) and the gas-to-dark matter concentration,

r−2,g/r−2,d.

The redshift corresponding to the quasar-mode blow-out, zqso ≥ 0 needs to be
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specified as well. The model galaxies being set up here correspond to systems where

there has been no SMBH feedback, so they are essentially at z = zqso. This will

ultimately lead to connections between MBH and Md,vir(zqso) and Vd,pk(zqso). In §4.3,

these connections are considered for some specific examples, and are combined with

the average trends from Chapters 2 and 3 to compare to the empirical MBH–σap(Re)

correlation in z = 0 quiescent galaxies.

4.2.1.1 Specifying the profiles

The shape for the density profiles of the gas, stars and dark matter can be specified

using the (α, β, γ) models from Zhao (1995):

ρi(r) ∝
(
r

ai

)−γi

[
1 +

(
r

ai

)1/αi

](γi−βi)αi

. (4.26)

Here, i =g, ∗ or d, depending on the component being considered, and ai is a scale

radius. Once α, β and γ have been specified, the ratios r−2,i/ai and ri,pk/ai are known

for each profile. r−2,i is the radius at which the density profile has a logarithmic slope

of -2, and ri,pk corresponds to the maximum circular speed. The mass inside radius r

is given by

Mi(r) ∝
∫ r/ai

0

u2−γi(1 + u1/αi)(γi−βi)αidu, (4.27)

leading to the circular-speed profiles

V 2
i (r) =

GMi(r)

r
. (4.28)

The three cuspy dark matter halos used in Chapters 2 and 3 are all special cases

of an (α, β, γ) model. The Hernquist (1990) profile corresponds to (α, β, γ) = (1, 4, 1),

with an NFW (1996, 1997) model defined by (α, β, γ) = (1, 3, 1) and the Dehnen &

McLaughlin (2005) model by (α, β, γ) = (9/4, 31/9, 7/9). An SIS model is also an

example, with (α, β, γ) = (1, 2, 2).
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4.2.1.2 Stellar-to-dark matter mass ratio

In Chapter 2, the Moster et al. (2010) parametrisation of the f∗,vir–Md,vir relation at

z = 0 was used as one of the constraints, shown by the green curve in Figure 4.1. Moster

et al. (2013) again use the abundance matching technique to obtain the stellar-to-dark

matter mass ratio as a function of redshift (in the range 0 . z . 4) and Md,vir:

f∗,vir(z) ≡
M∗,vir

Md,vir

(z) = 2f∗,0(z)

[(
Md,vir

M1(z)

)−β(z)

+

(
Md,vir

M1(z)

)γ(z)
]−1

. (4.29)

The four parameters, f∗,0,M1, β and γ are functions of redshift given by

f∗,0(z) = 0.0282 − 0.0247
z

z + 1

logM1(z) = 11.884 + 1.195
z

z + 1

β(z) = 1.06 − 0.826
z

z + 1

γ(z) = 0.556 + 0.329
z

z + 1
, (4.30)

constrained by Moster et al. (2013) by fitting their model to stellar mass functions at

different redshifts. Again, Md,vir is the dark matter halo mass at the specified redshift.

4.2.1.3 Gas-to-dark matter mass ratio

As well as the stellar mass fraction, it is also possible to constrain the gas-to-dark

matter mass fraction within the virial radius. If the total baryon fraction at the virial

radius, fb,vir ≡Mb,vir/Md,vir, is for gas and stars, then the gas fraction is given by

fg,vir ≡
Mg,vir

Md,vir

= fb,vir − f∗,vir. (4.31)

The solid black curve in Figure 4.1 shows the baryon-to-dark matter mass fraction,

fb,vir, as a function of Md,vir at z = 0, discussed in §2.2.3. This is based on the

observational result obtained by Giodini et al. (2009), who consider the baryon fraction

inside the r500 radius for 118 groups and clusters, and from this, fb,vir was calculated.

It has been suggested that the decrease in the baryon fraction for smaller halo masses
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Figure 4.1: The baryon (black curve) and stellar (green curve) mass fraction at the
virial radius, rvir, as a function of the halo virial mass, Md,vir. The broken blue line again
corresponds to the cosmic average. f∗,vir is from the Moster et al. (2010) parametrisa-
tion. The broken blue line corresponds to the cosmic average baryon fraction, f0 ≃ 0.18
(Planck collaboration 2014).
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at z = 0, is primarily due to AGN or supernovae feedback (Giodini et al. 2009; Lagana

et al. 2011; Gonzalez et al. 2013). However, for the model galaxies in this Chapter,

a global baryon fraction before any AGN feedback has taken place is required, as a

function of both redshift and halo mass at that z. For this, it is necessary to turn to

results from cosmological simulations that have considered the baryon fraction without

any radiative effects from AGN and/or supernova feedback.

For halo masses in the range 1010M⊙ . Md,vir . 1015M⊙, Crain et al. (2007) in-

vestigate the baryon-to-total mass fraction (Mb,200/MT,200) in dark matter halos formed

in non-radiative gas-dynamical simulations, at z = 0 and z = 1. They find that

Mb,200/M200 is approximately 90% of the cosmic average, Ωb/Ωm ≃ 0.16, independent

of both red shift and halo mass. Crain et al. also perform simulations including a feed-

back mechanism associated with the energetic photons that re-ionized the Universe at

high redshifts. This has the potential to inhibit galaxy formation in low-mass halos

(Bullock, Kravtsov & Weinber 2000; Benson et al. 2002), and needs to be accounted

for in the context of the models here.

Crain et al. (2007) account for this feedback by including a simple photo-heating

model (with a minimum gas temperature of T ∼ 2 × 104 K imposed from z = 11).

They again consider halo masses in the range 1010M⊙ . Md,vir . 1015M⊙, for z = 0

only. In this case, they find that the baryon fraction is again approximately 90%

for halo masses & 1011M⊙, but decreases towards smaller systems. For halo masses

5×109M⊙ . Md,200 . 1011M⊙, Crain et al. (2007) find their photo-heated simulations

are well approximated by

Mb,200

M200
=

Ωb,0

Ωm,0

[
1 +

(
Md,200

1.7 × 109 h−1
0 M⊙

)−1
]−3

. (4.32)

Equivalently, this can be expressed as a baryon-to-dark matter mass ratio, by mul-

tiplying through by Ωm,0/Ωd,0. Dividing through by f0 ≡ Ωb,0/Ωd,0, equation (4.32)

becomes:

fb,200

f0

≡ Mb,200/Md,200

Ωb,0/Ωd,0

=

[
1 +

(
Md,200

1.7 × 109 h−1
0 M⊙

)−1
]−3

. (4.33)

Planelles et al. (2013) have analysed a set of hydrodynamical simulations of galaxy
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clusters and groups, with the aim of constraining the baryon-to-total mass fraction in

clusters, for masses in the range 1013M⊙ . Md,vir . 1015M⊙. They consider the redshift

evolution (between 0 ≤ z ≤ 1) of the baryon fraction inside various overdensity radii

(the actual virial radius, along with ∆ = 200 and 500). Planelles et al. (2013) consider

non-radiative simulations, as well as those that include supernova feedback (along with

star formation), and those that also include AGN feedback. For the non-radiative and

supernova feedback simulations, they find very weak mass and redshift dependencies,

parametrised by

fb,vir

f0

= 0.84(1 + 0.03z)

(
Md,vir(z)

5 × 1014h−1
0 M⊙

)0.01 (
∆vir(z)

500

)−0.03

. (4.34)

These results are consistent with other simulations with no heating included (Kravtsov,

Nagai & Vikhlinin 2003; Ettori et al. 2006; Crain et al. 2007). For the simulation

including AGN feedback, they find a slightly stronger mass dependence, with a power

of ∼ 0.03. Planelles et al. (2013) point out that this is consistent with the trends

displayed by the observational samples (Giodini et al. 2009; Laganá et al. 2011),

although with a significantly weaker dependence on mass.

To constrain the virial baryon-to-dark matter mass ratio for the models here, as a

function of both redshift and halo mass, it is necessary to combine the results of Crain

et al. (2007) and Planelles et al. (2013). Doing so allows fb,vir to be constrained for

a larger mass range, and accounts for the weak mass dependence from Planelles et al.

(2013) and the effects of feedback associated with energetic photons at high redshift

from Crain et al. (2007). Combining the two results, a parametrisation of fb,vir is given

by

fb,vir

f0
= 0.84

(
Md,vir(z)

5 × 1014h−1
0 M⊙

)0.01
[
1 +

(
Md,vir(z)

1.7 × 109h−1
0 M⊙

)−1
]−3

×
(

∆(z)

500

)−0.03

(1 + 0.03z). (4.35)

Strictly speaking, this only holds for z = 0, since the redshift evolution for the photo-

heating model is not considered by Crain et al. (2007). However, for their non-radiative
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simulation, Crain et al. (2007) find no evolution between z = 0 and z = 1, consistent

with the weak dependence found by Planelles et al. (2013). It is therefore assumed

here that the redshift evolution remains weak when photo-heating is included, and that

the z dependence in equation (4.35) extends to higher redshifts.

Figure 4.2 shows fb,vir(z) (dashed lines), f∗,vir(z) (solid lines) and fg,vir(z) (dotted

lines) as a function of Md,vir(0). The mass fractions are evaluated at redshifts z = 0

(black curves), z = 1 (blue curves) and z = 3 (red curves). The broken green line

corresponds to the cosmic average baryon fraction, f0 ≃ 0.18 (Planck collaboration

2014). The halo mass at z = 0, Md,vir(0), was calculated by using the exponential

function that approximates the halo evolution from van den Bosch et al. (2014a; cf.

Chapter 3):
Md,vir(z)

Md,vir(0)
= exp

[
− z ln(2)

z1/2

]
, (4.36)

where

z1/2 = 2.05

[
Md,vir(0)

1012 h−1
0 M⊙

]−0.055

− 1 . (4.37)

The f∗,vir curves were calculated using equations (4.29) and (4.30). The peak in

f∗,vir decreases with redshift from ∼ 0.03 at z = 0 to ∼ 0.01 at z = 3. As mentioned,

Moster et al. consider redshifts up to z ∼ 4, with the qualitative evolution slowing

down as z increases, due to the z/(1+z) dependencies in equation (4.30). However, they

warn against taking exact numbers too seriously for z > 3, due to large uncertainties

surrounding the stellar mass functions at these higher redshifts.

As implied by equation (4.35), the baryon fraction has little dependence on both

redshift and mass (over most of the halo mass range considered here). For halos at

z = 0 with masses Md,vir(0) & 1011M⊙, the baryon fraction at rvir is close to the cosmic

average, independent of z. This supports the notion that it is indeed AGN feedback

that reduces fb,vir, and is the reason for the steeper mass dependence in observations,

from which fbvir ∼ M0.09
d,vir is implied (cf. §2.2.3). Given that f∗,vir is small (always

< 3%), fg,vir ∼ fb,vir for all masses and redshifts. The slight exception to this is the

dip in fg,vir right at the peak of f∗,vir. This peak has a smaller value for higher z, so

the dip becomes less prominent.
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Figure 4.2: Global mass ratios at a specified redshift, z, as a function of dark matter
viral mass, Md,vir, at z = 0. The solid curves correspond to the stellar-to-dark matter
mass ratio, given by equations (4.29) and (4.30), taken from Moster et al. (2013).
The broken lines are for the baryon-to-dark matter mass ratio, described by equation
(4.35). The dotted lines are the gas-to-dark matter mass ratio, fg,vir = fb,vir − f∗,vir.
The three redshifts plotted are z = 0 (black curves), z = 1 (blue curves) and z = 3
(red curves). The solid green line corresponds to the cosmic average, f0 = 0.18.
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Specifying Md,vir(0) therefore gives Md,vir(z) f∗,vir(z) and fg,vir(z) at z ≥ 0, and

hence the stellar and gas mass inside the virial radius at any given redshift. This in

turn fixes the total virial mass, Mvir ≡Md,vir +Mg,vir +M∗,vir. Combining this with the

fitting formula for the overdensity of a virialised sphere from Bryan & Norman (1998)

and H(z)/H0, the virial radius can be calculated:

rvir

kpc
=

{
1166.1 h2

0

∆vir(z)

Mvir/M⊙

[
H(z)

H0

]2
}−1/3

, (4.38)

where h0 = 0.671 (Planck Collaboration 2014).

4.2.1.4 Concentration relations

Specifying Md,vir(0), along with a redshift (so Md,vir(z) is known), also fixes the dark

matter halo concentration, rvir/r−2,d, through the parametrisation given by Dutton &

Macció (2014):

log

[
rvir

r−2

]
≃ a − b log

[
Md(rvir)

1012 h−1
0 M⊙

]
(4.39)

with

a = 0.537 + 0.488 exp
(
−0.718 z1.08

)

b = 0.097 − 0.024 z .

For a given dark matter halo mass (at a chosen redshift), the virial radius is also

known through equation (4.38). Combining this with equation (4.39) therefore gives

r−2,d, which in turn fixes rd,pk (see discussion in §4.2.1.1). The dark matter component

is therefore fully specified by Md,vir, assuming the above constraints are used. For the

gas and stars, an equivalent parameter is still needed, such as a stellar concentration

rvir/r−2,∗ and gas concentration rvir/r−2,g.

The stellar effective radius, Re, and total stellar mass, M∗,tot are related in z = 0

early-type galaxies by

Re

kpc
= 1.5

(
M∗,tot

2 × 1010M⊙

)0.1
[
1 +

(
M∗,tot

2 × 1010M⊙

)5
]0.1

. (4.40)
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Once the shape parameters for the stellar distribution (α∗, β∗, γ∗), the ratios Re/a∗ and

a∗/r−2,∗ are known. As an example, a Hernquist profile (used throughout Chapter 2

for the stellar distribution) yields Re/a∗ ≃ 1.81527 and a∗/r−2,∗ = 2. Thus, once Re is

known, other radii that are specific to the stellar distribution follow automatically.

Given that the stellar mass profile can be normalised to M∗,tot and the radius

normalised to Re, evaluating M∗(r) at the virial radius gives an equation relating these

properties to both M∗,vir and rvir. Again as an example, the Hernquist stellar mass

profile evaluated at r = rvir is

M∗,vir = M∗,tot

[
rvir/Re

rvir/Re + a∗/Re

]2

. (4.41)

Since M∗,vir and rvir are set by fixing Md,vir, equations (4.40) and (4.41) can be solved

simultaneously to find M∗,tot and Re. This in turn leads to r−2,∗ and r∗,pk. It is also

worth noting that M∗,vir & 0.99M∗,tot for 1010M⊙ . Md,vir . 1015M⊙, so specifying a

dark matter halo mass gives approximate values for M∗,tot and Re, independent of the

choice of stellar density profile.

The Re–M∗,tot relation in equation (4.40) is for z = 0 early-type galaxies only.

In order to have the stellar concentration, rvir/r−2,∗, constrained for higher redshifts,

an equivalent relation is needed for z > 0. Observational studies of stellar property

scaling relations at higher redshifts have only been done up to z ∼ 1 (Fernandez Lorenzo

et al. 2011; Zahid et al. 2015; Peralta de Arriba et al. 2015). Even at this redshift,

corresponding to a look-back time of ∼ 8 Gyr, there are limited data, and these are

understandably biased toward the high-mass end (Peralta de Arriba et al. 2015).

Various studies have combined observations with hydrodynamical simulations

of galaxy mergers to consider the redshift evolution of stellar properties and scaling

relations (Hopkins et al. 2009; van Dokkum et al. 2010; Williams et al. 2010; van der

Wel et al. 2014). Qualitatively, there is strong agreement in the literature that at a

given M∗,tot at z = 0, galaxies are more compact at higher redshifts (i.e., stellar effective

radii are smaller). This is attributed to a combination of dissipation effects (Hopkins

et al. 2009), gas-poor mergers (Williams et al. 2010) and the growth of extended stellar

halos (van Dokkum et al. 2010).
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For a galaxy with a given M∗,tot at z = 0 [determined by specifying Md,vir(0)],

the effective radius at z > 0 is

Re(z) = Re(0) [1 + z]−α, (4.42)

where values of α in the literature range from ∼ 0.2–1.5. This large range is due to the

specific initial conditions in the individual simulations for merger rates, star formation

rates and the significance of dissipation. Both Hopkins et al. (2009) and Williams et

al. (2010) find that α depends weakly on stellar mass — the effective radii of higher

mass systems evolve more rapidly (larger α). Van der Wel et al. (2014) distinguish

between late- and early-type galaxies, and find a significantly different rate of size

evolution, with α = 0.75 for late-types and α = 1.48 for early-types. Peralta de Arriba

et al. (2015) consider a small sample of 27 giant ellipticals at z ∼ 1, and compare to a

larger sample of early-type galaxies at z = 0 in the Re–M∗,tot plane. Their results are

consistent with equation (4.42), with α = 1.25. Ultimately, the value of Re at a given

redshift determines the values of r−2,∗ and r∗,pk, and hence the location where V∗(r)

reaches a maximum.

The gas concentration, rvir/r−2,g, is the only unknown once Md,vir(0) has been

specified (along with a value for zqso). Instead of this, the gas-to-dark matter con-

centration, r−2,g/r−2,d, can be chosen as the second free parameter, and rvir/r−2,g cal-

culated after. Leaving r−2,g/r−2,d unconstrained essentially means that whether the

gas is centrally concentrated (r−2,g/r−2,d < 1) or spatially extended (r−2,g/r−2,d > 1)

with respect to the dark matter, is decided beforehand. If r−2,g/r−2,d = 1 and

(αg, βg, γg) = (αd, βd, γd), then the gas directly traces the dark matter.

4.3 Examples

To demonstrate how the new critical SMBH mass [equation (4.22)] compares to the

McQuillin & McLaughlin (2012) result [equation (4.1)], a few representative exam-

ples are considered. In what follows, the stellar component is modelled as a Hern-

quist profile [(α∗, β∗, γ∗) = (1, 4, 1)] and a Dehnen & McLaughlin model [(αd, βd, γd) =
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(9/4, 31/9, 7/9)] is used to describe the dark matter. The baryon fraction inside the

virial radius depends on mass and redshift as described by equation (4.35). The ef-

fective radius at z > 0, Re(z), is determined through equation (4.42), with α = 1.25.

Again, for all examples it is assumed that the gas shells with C ≥ 0 do not stall and

reach rf if MBH ≥ Mcrit, allowing them to escape from the protogalaxy (i.e., it is as-

sumed that Mcrit is the sufficient condition for blow-out, independent of the relative

distributions of gas, stars and dark matter).

4.3.1 Dehnen & McLaughlin gas profile

For the first example, the gas and dark matter are both assumed to be described by

Dehnen & McLaughlin profiles [(αd, βd, γd) = (αg, βg, γg) = (9/4, 31/9, 7/9)]. This does

not necessarily mean that the two components trace each other. rvir/r−2,d is fixed by

the halo virial mass (at a given redshift). The gas will trace the dark matter if the

gas-to-dark matter concentration, r−2,g/r−2,d = 1.

Figure 4.3 shows the circular-speed profiles for the dark matter (top panels), mass

fractions (middle panels) and density profiles (bottom panels) as functions of r/rvir.

The columns corresponds to different values of the gas-to-dark matter concentration,

with r−2,g/r−2,d = 0.1 (left), 1 (middle), and 2 (right). This final value was chosen as a

maximum to ensure that rf/rvir, shown by the vertical magenta lines in each panel, does

not exceed 1. In the middle row, the red curves are for fg(r)/fg,vir and the green ones

for f∗(r)/f∗,vir. The curves in the bottom row are for the gas (red curves) dark matter

(black curves) and stellar (green curves) density profiles, normalised to the value at

rvir. The solid curves in all panels are for zqso = 0 and the broken lines correspond

to zqso = 3. In all panels, the virial halo mass at z = 0 is Md,vir(0) = 1012M⊙,

corresponding to a halo mass at zqso = 3 of Md,vir(3) ≃ 1.5 × 1011M⊙.

In terms of the critical SMBH mass, the most important parts of these plots are

the values of Vd(r)/Vd,pk, fg(r)/fg,vir and f∗(r)/f∗,vir at r = rf . Although the stars

are extremely centrally concentrated (compared to the gas and dark matter), they

have little impact on the final value of MBH. This is because the stars enter the new
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Figure 4.3: Circular-speed profiles for the dark matter (top row), mass fractions (middle
row) and density profiles (bottom row) as functions of r/rvir. The stellar distribution is
a Hernquist profile, with the gas and dark matter described by a Dehnen & McLaughlin
model. In all panels, the halo mass at z = 0 is Md,vir(0) = 1012M⊙, corresponding to
Md,vir(3) ≃ 1.5 × 1011M⊙. The solid lines correspond to zqso = 0 and the broken lines
to zqso = 3. The vertical magenta lines indicate the value of rf/rvir. In the bottom two
rows, the red curves represent the gas, black curves the dark matter and green curves
are for the stars. Columns are for different gas-to-dark matter concentrations, with
r−2,g/r−2,d = 0.1 (left), 1 (middle) and 2 (right).
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prediction through the term [
1 + f∗,vir

f∗(rf)

f∗,vir

]
.

f∗,vir is typically small (always less than 4%), and the value of rf is driven mainly by

the gas-to-dark matter concentration. For the example in Figure 4.3, rf/rvir ∼ 0.1–

1 for the zqso = 3 case. Even for the smallest value of rf/rvir ≃ 0.1 [and hence

the largest value of f∗(rf)/f∗,vir], the stars contribute very little. For a halo mass

at z = 0 of Md,vir ≃ 1012M⊙, the global stellar-to-dark matter ratio at z = 3 is

f∗,vir(z = 3) ∼ 0.003. From Figure 4.3, f∗(rf)/f∗,vir ≃ 18, implying the stars change

the value of MBH by less than 5%.

Figure 4.4 shows the ratio Mcrit,new/Mcrit,old (top row) and the critical SMBH

mass, MBH (bottom row) halo virial mass (left) and r−2,g/r−2,d (right) at zqso = 3. In

the left column, three values of the gas-to-dark matter concentration are shown, with

r−2,g/r−2,d = 0.1, 1, and 2. The right column shows curves for Md,vir(3) = 1010, 1011

and 1012M⊙. The solid red curves in the bottom row correspond to the critical SMBH

mass calculated using the McQuillin & McLaughlin (2012) result [equation (4.1)].

The overall shape of the curves in the top left panel [Mcrit,new/Mcrit,old versus halo

mass] is primarily driven by the fb,vir–Md,vir relation, with the “fall-off” forMd,vir . 1011

due to the form of equation (4.35). Even in the most massive halos, the baryon fraction

inside the virial radius is approximately 90% of the cosmic average (fb,vir ∼ 0.9 f0),

according to equation (4.35). McQuillin & McLaughlin (2012) assumed that all of

the baryons were gas (and traced the dark matter), and that the baryon fraction was

always equal to the cosmic average, independent of mass. This is why even for the

case of gas traces dark matter (corresponding to the middle curves in each panel, with

r−2,g/r−2,d = 1), the new prediction is lower than the old critical mass in the top left

panel of Figure 4.4, and hence why Mcrit,new/Mcrit,old < 1.

The dips in the curves are due to the connection between f∗,vir(z) and Md,vir(z)

at zqso = 3. Combining fb,vir(z) with the maximum in f∗,vir(z), this corresponds to a

dip in the global gas-to-dark matter mass ratio, fg,vir(z). This propagates through to

the new critical SMBH mass prediction, and hence the ratio, Mcrit,new/Mcrit,old. The



217

Figure 4.4: The ratio Mcrit,new/Mcrit,old (top row) and MBH (bottom row) as functions
of Md,vir(z) (left column) and r−2,g/r−2,d (right column), at zqso = 3. The red lines
in the bottom row correspond to the critical SMBH mass according to McQuillin &
McLaughlin (2012). In the left column, the solid black curves from top to bottom
correspond to r−2,g/r−2,d = 0.1, 1 and 2. For the right column, the curves correspond
to halo masses at zqso = 3 of Md,vir(3) = 1012M⊙ (top curve), Md,vir(3) = 1011M⊙

(middle curve) Md,vir(3) = 1010M⊙ (bottom curve).
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curves in the bottom left panel illustrate that the main difference between the new

prediction and the old one is the slight change in the baryon fraction [from the cosmic

average to the mass dependent fb,vir(z)]. The stars clearly have little impact on the

value of the critical SMBH mass as a function of halo mass.

When the gas is centrally concentrated (wrt the dark matter), r−2,g/r−2,d < 1,

so there is relatively more gas closer to the SMBH. This makes it more difficult for the

SMBH wind to push the gas outwards, requiring a larger mass for blow-out (than if gas

traced dark matter, with r−2,g/r−2,d = 1), so Mcrit,new/Mcrit,old increases as r−2,g/r−2,d

decreases. On the other hand, a gas distribution that is more extended than the dark

matter (r−2,g/r−2,d > 1) will be easier to clear for the SMBH, hence Mcrit,new decreases

with increasing r−2,g/r−2,d. This is illustrated by the two left panels in Figure 4.4. As

alluded to earlier, a value of r−2,g/r−2,d & 2 implies that rf & rvir. From the definition of

rf , this means that the gravitational force pulling against the gas shell has a maximum

value outside of the virial radius. Such a model is not physically meaningful, so the

behaviour of any quantity for r−2,g/r−2,d & 2 should not be over-interpreted.

Only when the gas is reasonably centrally concentrated (r−2,g/r−2,d . 0.15), and

only for Md,vir(3) & 1011M⊙, does the ratio Mcrit,new/Mcrit,old exceed unity. This limit

on Md,vir again reflects the additional constraint of the virial baryon fraction as a

function of halo mass that has been used here. For the gas and dark matter having the

same profile shapes, it is fb,vir and r−2,g/r−2,d that dominate the differences between

the new and old predictions.

Figure 4.5 shows MBH as a function of aperture stellar velocity dispersion at

z = 0. Data points correspond to the early-type galaxies from the Kormendy &

Ho (2013) sample. The blue curves in each panel correspond to the McQuillin &

McLaughlin (2012) critical SMBH mass, evaluated with f0 = 0.18 at zqso = 0, 1 and

3, so are the same as the curves from §3.3.2. The red curves correspond to the new

critical MBH prediction [equation (4.22)], evaluated at the same values of zqso, with the

baryon fraction given by fb,vir in equation (4.35). Each panel corresponds to a different

value for the gas-to-dark matter concentration with r−2,g/r−2,d . 0.1 (top panel), 1

(middle panel) and 2 (bottom panel).
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Figure 4.5: SMBH mass as a function of σap(Re) at z = 0. In all panels, the data points
are for the early-type galaxies from the Kormendy & Ho (2013) sample. The blue curves
correspond to the McQuillin & McLaughlin (2012) critical SMBH mass, evaluated with
f0 = 0.18 at zqso = 0, 1 and 3. The red curves are for the new prediction evaluated at
the same values of zqso, for Hernquist stars and a Dehnen & McLaughlin model for the
gas and dark matter. Panels correspond to different values of the gas-to-dark matter
concentration, with r−2,g/r−2,d = 0.1 (top), 1 (middle) and 2 (bottom).
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Ultimately then, the new prediction is not all that different from the McQuillin

& McLaughlin (2012) result in this case, even though Mcrit,new allows for:

• a mass dependent baryon fraction, fb,vir;

• the presence of stars in the protogalaxy;

• the gas to be centrally concentrated (top panel) or spatially extended (bottom

panel).

For σap(Re) & 200 km s−1, all of the red curves differ from the corresponding blue

curves (i.e. with the same zqso) by no more than ∼ 40%. The similarities are a result

of the weak dependence of Mcrit,new/Mcrit,old on both Md,vir(z) and r−2,g/r−2,d. The gas

and dark matter both have the same profile shape in this example, so a critical SMBH

mass similar to if gas traces dark matter is perhaps to be expected.

4.3.2 r−2 gas

For the next example, a gas profile with an r−2 density profile is considered, corre-

sponding to (αg, βg, γg) = (1, 2, 2). The dark matter halo is still assumed to be a

Dehnen & McLaughlin model. In the previous example, it was shown that the stars

do not significantly influence the new critical SMBH mass. This is because the stars

contribute only a small fraction of the overall mass of the system. Stars are therefore

discarded for this example, so the protogalaxy consists of gas and dark matter only.

This is comparable to the set-up in Ishibashi & Fabian (2012), who considered an r−2

gas profile inside a Hernquist dark matter halo. For a direct comparison, fb,vir ≡ f0,

independent of Md,vir is assumed for this example only.

Given that the gas density is ρg(r) ∝ r−2, then d ln ρg/d ln r ≡ −2 for all radii.

The gas-to-dark matter concentration, r−2,g/r−2,d, is therefore not defined for this

example. The gas mass profile is Mg(r) ∝ r, leading to V 2
g (r) = constant. Since

there are no stars in this example, the radius at which the gravitational force (i.e., the
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product V 2
g V

2
d ) is a maximum, is exactly where the dark matter circular speed peaks:

rf ≡ rpk. This is always the case, independent of redshift.

Figure 4.6 shows Vd(r)/Vd,pk (top row), fg(r)/fg,vir (middle row) and ρ(r)/ρvir

(bottom row) as functions of radius, at zqso = 3. All panels correspond to a halo

mass of Md,vir(3) ≃ 1.5 × 1011M⊙. The vertical magenta line indicates the value of

rf/rvir ≡ rpk/rvir, at which Vd(r)/Vd,pk = 1. Given the shape of the gas density and

mass profiles relative to the dark matter, both fg(r) and ρg(r)/ρd(r) tend to infinity

as r −→ 0 and r −→ ∞.

Figure 4.7 shows SMBH mass (top panel) and Mcrit,new/Mcrit,old (bottom panel)

as functions of Md,vir(z) at zqso = 0 and zqso = 3. In the top panel, the red curves cor-

respond to the McQuillin & McLaughlin (2012) critical SMBH mass. For this example,

the ratio Mcrit,new/Mcrit,old is given by

Mcrit,new

Mcrit,old

=
fg(rf)

fg,vir

=
fg(rpk)

f0

. (4.43)

This depends on the halo mass at a given redshift, due to the Md,vir dependence of rpk.

For a given Md,vir (and redshift), the virial radius and halo concentration, rvir/r−2,d, are

both fixed, thus fixing r−2. For a chosen dark matter density profile, the ratio rpk/r−2,d

is known (for Dehnen & McLaughlin, rpk/r−2,d ≃ 2.28732), and therefore specifying

the halo mass determines rpk. The fact that the Md,vir dependence of Mcrit,new/Mcrit,old

is weaker for higher redshifts reflects the redshift dependence of the halo concentration.

For zqso = 3, the ratio of new-to-old critical SMBH masses is Mcrit,new/Mcrit,old &

0.95. This is consistent with the results of Ishibashi & Fabian (2012). They suggest

that the SMBH mass required for a particular gas shell to escape is essentially the same

for gas tracing the dark matter and gas having ρg(r) ∝ r−2. For this example, the new

prediction is therefore very close to the original result from McQuillin & McLaughlin

(2012), as shown by the similarity between the red curve and black curve in the top

panel for zqso = 3.

Figure 4.8 shows SMBH mass versus σap(Re) at z = 0, for early-type galaxies

from Kormendy & Ho (2013). The blue curves are again the same as from §3.3.2,

corresponding to the critical SMBH mass prediction from McQuillin & McLaughlin
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Figure 4.6: Circular-speed profiles for the dark matter (top row), mass fractions (middle
row) and density profile ratios (bottom row) as functions of r/rvir, at z = 3. The
dark matter is modelled by a Dehnen & McLaughlin halo and the gas is described by
(αg, βg, γg) = (1, 2, 2), i.e., ρg ∝ r−2. The stars are left out of this model, and the virial
gas fraction is set to the cosmic average: fg,vir ≡ f0. In all panels, the halo mass at
z = 0 is Md,vir(0) = 1012M⊙, corresponding to Md,vir(3) ≃ 1.5 × 1011M⊙. The vertical
magenta lines indicate the value of rf/rvir. Columns are for different gas-to-dark matter
concentrations, with r−2,g/r−2,d = 0.1 (left), and 1 (right).
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Figure 4.7: MBH (top row) and the ratio Mcrit,new/Mcrit,old (bottom row) as functions
of Md,vir(z) at z = 3 and z = 0. The red lines in the top row correspond to the critical
SMBH mass according to McQuillin & McLaughlin (2012).
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Figure 4.8: SMBH mass as a function of σap(Re) at z = 0. The data points are
for the early-type galaxies from the Kormendy & Ho (2013) sample. The blue curves
correspond to the McQuillin & McLaughlin (2012) critical SMBH mass, evaluated with
f0 = 0.18 at zqso = 0, 1 and 3. The red curves are for the new prediction evaluated at
the same values of zqso, for a Dehnen & McLaughlin model for the dark matter and a
gas profile described by (αg, βg, γg) = (1, 2, 2).

(2012), evaluated with f0 = 0.18 at zqso = 0, 1 and 3 for a Dehnen & McLaughlin dark

matter halo. The dashed black line, shown for reference only, corresponds to the same

prediction with Vd,pk =
√

2σap(Re). The red curves are from the new critical SMBH

mass, evaluated at the same zqso values. For this example, there are no stars [f∗,vir = 0],

and the baryon fraction is taken to be the cosmic average, fb,vir = fg,vir = f0. The dark

matter is described by a Dehnen & McLaughlin model, and the gas has a r−2 profile.

This again illustrates the fact that whether the gas has a density profile ρg(r) ∝
r−2, or the gas traces the dark matter, does not ultimately matter for the model

MBH–σap(Re) prediction (and other SMBH relations), if the gas is able to escape. For

the zqso = 3 curves, the new prediction is always within 5% of the original one. For

σap(Re) & 200 km s−1, the z = 0 curves differ by no more than 20%. The similarity
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lends support to the idea that it is the dark matter, and the depth of the protogalactic

potential well at the point of blow-out, that are fundamental in determining the critical

MBH. The maximum gravitational force occurs where the dark matter circular speed

peaks, which probes the protogalaxy on global scales. Therefore fg(rpk)/fg,vir of order

unity is to be expected in this case, and so Mcrit,new/Mcrit,old ∼ 1 is not surprising.

4.3.3 Extreme gas distributions

The two previous examples suggest that, assuming gas shells with C ≥ 0 do not stall

if MBH ≥Mcrit, the details of the initial gas distribution in the protogalaxy might not

be significant in the context of a critical SMBH mass required for blow-out. For both

examples, it was perhaps expected to be the case, given the choice of gas distributions

used. However, it is worth checking this more generally, to see how significant the gas

distribution is. This final example considers two physically extreme gas distributions

inside a Dehnen & McLaughlin dark matter halo, with stars again neglected. The first

of these is a highly centrally concentrated gas (relative to the dark matter), described

by (αg, βg, γg) = (1, 4, 2), with r−2,g/r−2,d = 0.01. Such a gas distribution could be

possible if the gas has a way of cooling rapidly before SMBH feedback begins, falling

towards the centre as it does so. The second distribution is a spatially extended (again

relative to the dark matter) gas, with the maximum gravitational force at rf ∼ rvir. A

spatially extended gas can be described by (αg, βg, γg) = (1, 4, 0) with r−2,g/r−2,d = 2.5,

and is possible if the gas is able to be heated somehow (again before SMBH feedback),

perhaps from supernova or photo-heating from energetic photons at high z in low mass

galaxies.

Figure 4.9 shows the circular-speed profiles of the dark matter (top panels), gas-

to-dark matter mass ratios (middle panels) and gas-to-dark matter density ratios (bot-

tom panels) as functions of r/rvir at zqso = 3. The left column is for the centrally

concentrated gas distribution and the right for the spatially extended gas. The ma-

genta lines again indicate the value of rf/rpk. In each panel, the halo mass at z = 0 is

Md,vir(0) ≃ 1012M⊙ corresponding to Md,vir(3) ≃ 1.5 × 1011M⊙.
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Figure 4.9: Circular-speed profiles for the dark matter (top row), mass fractions (middle
row) and density profile ratios (bottom row) as functions of r/rvir, at zqso = 3. The
dark matter is modelled by a Dehnen & McLaughlin halo and the gas is described by
(αg, βg, γg) = (1, 4, 2) with r−2,g/r−2,d = 0.01 [left column] and (αg, βg, γg) = (1, 4, 0)
with r−2,g/r−2,d = 2.5 [right column]. In all panels, the halo mass at z = 3 isMd,vir(3) ≃
1.5 × 1011M⊙. The vertical magenta lines indicate the value of rf/rvir. gas-to-dark
matter concentrations, with r−2,g/r−2,d = 0.01 (left), and 1 (right).
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For the centrally concentrated gas, fg(r) −→ ∞ as r −→ 0. The radius for which

the gravitational force is a maximum is rf/rvir ≃ 10−3, at which fg(rf)/fg,vir ≃ 104.

This is a very large value, reflecting the excessive amounts of gas at such small radii.

Given the form of the new critical SMBH prediction, it could be naively assumed

that this would imply an extremely large Mcrit,new. However at rf/rvir ≃ 10−3, the

ratio Vd(rf)/Vd,pk ≃ 0.1. This ratio enters the prediction to the 4th power, and hence

there is a “cancelling” effect between fg and Vd at rf . As fg(rf) increases, the value

of [Vd(rf)/Vd,pk]
4 decreases by a similar amount, so the product of the two remains

approximately the same. For the spatially extended gas, fg(r) −→ 0 as r −→ 0 and

rf ≃ rvir, so most of the gas is already out at the virial radius. At rf ≃ rvir, both

fg(rf)/fg,vir and Vd(rf)/Vd,pk are of order unity, so Mcrit,new ∼ Mcrit,old.

Figure 4.10 shows SMBH mass as a function of σap(Re) at z = 0. The data are

again for E and S0 galaxies from Kormendy & Ho (2013). The blue curves represent

the McQuillin & McLaughlin (2012) critical SMBH mass prediction for a Dehnen &

McLaughlin halo and f0 = 0.18, evaluated at zqso = 0, 1 and 3. The red curves are for

the new prediction evaluated at the same zqso values, for a Dehnen & McLaughlin model

for the dark matter and a baryon fraction from the fb,vir–Md,vir relation. The top panel

is for the extremely centrally concentrated gas, described by (αg, βg, γg) = (1, 4, 2),

with r−2,g/r−2,d = 0.01. The middle panel corresponds to a gas profile described by

a Dehnen & McLaughlin density profile with r−2,g/r−2,d = 1 — i.e. the gas traces

the dark matter. The bottom panel is for the spatially extended gas, described by

(αg, βg, γg) = (1, 4, 0), with r−2,g/r−2,d = 2.5.

For the centrally concentrated gas, the ratio of Mcrit,new/Mcrit,old ∼ 3–4, with

a slight dependence on redshift. This is a relatively small change given the extreme

differences in the gas distributions in the two predictions. Intuitively, a more centrally

concentrated gas should lead to a higher SMBH mass, with MBH increasing for lower

values of the gas-to-dark matter concentration. However, if the gas is more centrally

concentrated, then the value of rf/rvir decreases. There is therefore less dark matter

inside rf , and hence the gravitational force pulling against the outflow is smaller. These

two effects cancel each other out to some extent, leading to very similar critical SMBH
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Figure 4.10: SMBH mass as a function of σap(Re) at z = 0. In all panels, the data
points are for the early-type galaxies from the Kormendy & Ho (2013) sample. The
blue curves correspond to the McQuillin & McLaughlin (2012) critical SMBH mass,
evaluated with f0 = 0.18 at zqso = 0, 1 and 3. The red curves are for the new prediction
evaluated at the same values of zqso, for a Dehnen & McLaughlin model for the dark
matter. In the top panel, the gas profile is described by (αg, βg, γg) = (1, 4, 2) with
r−2,g/r−2,d = 0.01. The middle panel is for a Dehnen & McLaughlin gas profile, with
r−2,g/r−2,d = 1. The bottom panel is for a gas profile described by (αg, βg, γg) = (1, 4, 0)
with r−2,g/r−2,d = 2.5.
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masses for extremely different gas distributions. For the gas tracing the dark matter

(middle panel) and spatially extended gas (bottom panel), the difference between the

two predictions is . 40% for σap(Re) & 200 km s−1.

Ultimately then, the MBH–Vd,pk prediction from McQuillin & McLaughlin (2012)

is fairly robust to allowing for stars in the protogalaxies and allowing different initial

gas distributions. Given the constraint on f∗,vir from Moster et al. (2013), the stars

have a negligible effect on the critical SMBH mass, with a < 5% difference for MBH

at zqso = 3. The value of MBH is also not overly sensitive to the details of the gas

distribution, again with the given constraints on f∗,vir and fb,vir.

This result is based on the assumption that any shell with C ≥ 0 escapes from

a protogalaxy if MBH ≥ Mcrit. However, it could be the case that Mcrit is no longer

sufficient to drive the shells out. For example, for an extremely centrally concentrated

gas, it could be required that C be very large to avoid the shells stalling at r < rf . This

would imply that the sufficient SMBH mass that guarantees escape, is somewhat larger

than the Mcrit from equation (4.22). To investigate this requires a detailed analysis of

the velocity fields of the gas shells.

For an initial gas distribution that is extremely concentrated, with the maximum

gravitational force at a radius of rf ≃ 10−3rvir, the critical SMBH mass is only a

factor of 3–4 times larger than the McQuillin & McLaughlin (2012) prediction. This

again demonstrates that it is the dark matter in the protogalaxy, and the depth of

the corresponding potential well, that is fundamental in determining MBH. Allowing

for stars and a non-virialised gas in the protogalaxy therefore has little impact on the

SMBH mass required for quasar-mode blow-out of the gas.
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5 Summary & Discussion

5.1 Summary

The observed correlations between the masses of supermassive black holes (SMBH),

MBH, and properties of the galaxies at z = 0, are strong evidence for co-evolution

between the SMBH and host. As discussed, this co-evolution likely involved self-

regulated feedback. Most of the SMBH mass in the Universe today was grown during

a quasar phase of Eddington-rate accretion (Yu & Tremaine 2002). This deposits

significant amounts of energy and momentum back into the gaseous medium, possibly

leading to a blow-out that stops any further growth of the SMBH. It is therefore

the depth of the potential well, from which the SMBH feedback has to expel the

protogalactic gas, that determines MBH.

The potential wells in question were dominated by dark matter. The main goal

of the work presented here was to establish a method for connecting stellar properties

at z = 0 to dark matter halo properties at z = 0 and higher redshifts. This allows

for theoretical results connecting MBH to a measure of the potential well depth, to be

transformed into model predictions for the observed SMBH correlations at z = 0.

One such analytical prediction comes from McQuillin & McLaughlin (2012), who

connect MBH to the peak of the dark matter circular-speed curve, Vd,pk, at the time

of blow-out. Their prediction that MBH ∝ V 4
d,pk assumes that the SMBH feedback

is purely-momentum driven, in a gaseous protogalaxy with a static ambient medium

that initially traces the dark matter. This critical SMBH mass prediction was used in

Chapter 3 to obtain model predictions to compare to the observed SMBH correlations.

A two-component model for spherical galaxies was used as a starting point in

Chapter 2 for establishing scaling relations between stellar and dark matter properties

at z = 0. The stellar properties that are important are the total stellar mass, M∗,tot,

along with other properties at (or averaged inside of) the effective radius: Re, σap(Re)

and f∗(Re). Hernquist (1990) density profiles were therefore used for the stars inside
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any galaxy. The consequences of this assumption on the scaling relations are considered

by comparing the stellar properties for a Hernquist profile to those for more general

Sérsic (1968) profiles, with variable Sérsic index, n. It is the dark matter halos that

are key to determining SMBH mass in the feedback scenario focussed on in Chapter 3.

Four different halo density profiles are therefore considered for the scalings in Chapter

2: those of Navarro et al. (1996, 1997; NFW), Hernquist (1990), Dehnen & McLaughlin

(2005) and Burkert (1995).

These model galaxies were constrained by various results from the literature.

Cosmological simulations relate dark matter virial masses to the halo concentrations,

rvir/r−2 (Dutton & Macció 2014), and stellar masses, M∗,tot (Moster et al. 2010).

Data samples of early-type galaxies at z = 0 relate M∗,tot to the effective radii, Re

(Cappellari et al. 2011, 2013a,b). All of these together allowed the model galaxies to

be put in terms of single independent parameter, which was chosen here to be M∗,tot.

Establishing trend lines in terms of one parameter leads to inevitable scatter around

them, but the focus of the work here was to obtain the “correct” trends.

The Re–M∗,tot relation was obtained by considering three data samples for local,

early-type galaxies: 258 systems from the ATLAS3D survey (Cappellari et al. 2011,

2013a,b), 100 from the ACSVCS (Chen et al. 2010) and summary data for ∼ 16, 000

galaxies in the SDSS (Graves et al. 2009a,b). In each case, effective radii and integrated

luminosities were tabulated by the authors. Total stellar masses were estimated by

combining these luminosities with mass-to-light ratios calculated from the single burst

population synthesis models of Maraston (1998, 2005), assuming mean stellar ages

of 9 Gyr and a Kroupa (2001) IMF. A mean stellar age of 9 Gyr corresponds to

z ∼ 1.3 (assuming Planck 2013 cosmology), and was chosen as an intermediate value

for “typical” early-type galaxies with ages 7–11 Gyr, corresponding to 0.8 . z . 2.5.

A parametrisation of the average Re–M∗,tot relation was then chosen such that equal

numbers of ATLAS3D & ACSVCS data points lie above and below the trend line. This

relation does not depend on the choice of stellar or dark matter distribution.

The virial properties (Md,vir, rvir, and f∗,vir) were then connected to M∗,tot by

combining the f∗,vir–Md,vir relation from Moster et al. (2010) with the Hernquist mass
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profile (evaluated at rvir) and the overdensity definition (Mvir ∝ r3
vir). These are in-

dependent of any assumptions about the density profiles of the halos. The shape of

the f∗,vir–M∗,tot relation is a direct result of the Moster et al. (2010) parametrisation,

reflecting the inefficiency of star formation in the smallest and largest systems. This

emphasises that halos around central galaxies with M∗,tot & 1011M⊙ encompass entire

groups and clusters. The effects of “extra” baryons not associated with the central

galaxy were also considered, and were found to change rvir by < 5% and have lit-

tle impact on the values of Md,vir. It was also found that the relations involving the

virial properties are insensitive to the choice of stellar density profile, so long as M∗(r)

converges within r . 100Re.

With rvir and Md,vir known as functions of M∗,tot, the scale radius r−2 followed

from the concentration–halo mass relation of Dutton & Macció 2014. The location of

the peak of the dark matter circular-speed curve, rpk, was then obtained for each halo

as a function of total stellar mass. The model halo dependence of rpk versus M∗,tot

was found to be weak, due to rpk/r−2 ∼ 2 for all these halos (and it was assumed that

rvir/r−2 versus Md,vir is always the same). The peak value of the circular-speed, Vd,pk,

was obtained by evaluating the circular-speed profiles for each halo at rpk and rvir, and

folding in the dependencies of M∗,tot on rvir and Md,vir. This gave Vd,pk for any given

stellar mass. The model halo dependence was primarily driven by the differences in

the widths of the circular-speed curves between rpk and rvir.

The stellar-to-dark matter mass ratio at the effective radius, f∗(Re), was calcu-

lated by evaluating the stellar and dark matter mass profiles at Re, and combining with

f∗,vir. The average trend for f∗(Re)–M∗,tot was then compared to data from Cappellari

et al. (2013b), who tabulated dark-to-total mass fractions for the 258 galaxies in the

ATLAS sample. For the three cuspy halos (NFW, Hernquist and Dehnen & McLaugh-

lin), the trend lines were found to be broadly consistent with the data. The cored halo

(Burkert) was incompatible with these data, due to the much steeper Md(r) profiles at

small radii. The dependence on using a Hernquist profile to describe the distribution

of stars was also considered, entering f∗(Re) through the value M∗(Re)/M∗,tot. For

Sérsic profiles with 3 . n . 7, corresponding to stellar masses M∗,tot & 1010M⊙, the
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values of f∗(Re) were altered by less than 5%. For smaller n, the stellar mass fractions

were lower than the Hernquist value by no more than 20%. This was a relatively small

change compared to the significant scatter around the f∗(Re)–M∗,tot trend line.

Stellar velocity dispersions were then calculated using the isotropic Jeans equa-

tion, including contributions to the gravitational potential from the dark matter, stars

and accumulated stellar ejecta. Initially, the stellar ejecta were assumed to be confined

to the central regions, with Mej(r) ≈ FejM∗(r). The value of Fej came from the stellar

population synthesis models from Maraston. For a mean stellar age of 9 Gyr and a

Kroupa (2001) IMF, Fej ≃ 0.72. The value of the ejecta mass fraction was calculated

for various star formation histories and was found to be robust, with Fej increasing by

< 2% for extended star formation lasting up to 6 Gyr.

Solving the Jeans equation gave σ2
∗(r) profiles for any given stellar mass. The

aperture dispersions were then calculated by projecting this along the line of sight,

and taking a luminosity-weighted average over a disc of radius Re. The calculated

σap(Re)–M∗,tot scaling relation was then compared against the early-type galaxy data.

For stellar masses 1010M⊙ . M∗,tot . 1012M⊙, encompassing the range used to define

the MBH–galaxy property correlations, the three cuspy halos were consistent with the

data. The cored halo over-estimated the value of σap(Re) for a given stellar mass.

σap(Re)/(GM∗,tot/Re)
1/2 values were also calculated for self-gravitating Sérsic profiles

without any dark matter. These differed from the value for Hernquist stars by no more

than ∼ 20%, with a slight tilt due to the stellar mass dependence of n.

All of the model curves were above the data for M∗,tot . 1010M⊙. One possible

reason for this was because Fej ≃ 0.72 was assumed for all stellar masses. More

realistically, the stellar ejecta mass fraction will be closer to zero in low-mass galaxies,

where supernovae driven winds can expel the gas. an ad-hoc relation between Fej and

M∗,tot was introduced such that Fej = 0 for low-mass galaxies and Fej = 0.72 for high-

mass systems. The resulting trend line for σap(Re) was consistent with the early-type

galaxy data for 108M⊙ . M∗,tot . 1012M⊙. The effects on the velocity dispersions of

including intracluster baryons were found to be an increase of < 5%, similar to the

effect on the virial properties.



234

The average trends connecting Md,vir, Vd,pk and σap(Re) to M∗,tot were then com-

bined to obtain Md,vir and Vd,pk as functions of aperture velocity dispersion. This

demonstrated that in the most massive galaxies, the maximum of the dark matter

circular speed far exceeds the aperture velocity dispersions at Re. At this stage, the

average trends were checked by comparing various numbers extracted from them to

relevant data in the literature for the Milky Way, M87, M49 and NGC 4889. It was

particularly notable that, starting with just the galaxies’ total stellar masses, the scal-

ings imply detailed properties of the cluster-sized dark matter halos around each of

M87, M49 and NGC 4889, which were in reasonable agreement with the literature

values.

Total (stars and dark matter) circular speed profiles, Vc(r) were obtained by com-

bining the stellar and dark matter mass profiles. Each of these was fixed by specifying

M∗,tot, and hence so was Vc(r). In general, the total circular-speed curves were not

flat, an assumption made in the literature when investigating relations between SMBH

mass and halo mass. The relation between Vc(Re) and σap(Re) was calculated and

was found to be broadly consistent with results from the literature. The connection

between Vc(Re) and Vc(r200), and how it varies with stellar mass, was also calculated.

The trend lines obtained here compared well to results from Dutton et al. (2010), sug-

gesting that distinguishing between late- and early-type galaxies, and the differences

in how f∗,vir is defined, are not significant in this context. It should be noted that all

the average trends are largely untested against dwarf galaxies with σap . 60–70 km s−1

(corresponding to M∗,tot . several ×109M⊙). More comprehensive modelling is re-

quired to be confident of how these kinds of average trends extrapolate to lower stellar

masses.

With scaling relations between stellar and dark matter properties at z = 0 es-

tablished, the halo evolution was considered in Chapter 3. This was ultimately so the

z = 0 properties could be related to the halo properties at z > 0, which are connected

to the SMBH masses required for gas blow-out. The simulation and merger tree results

from van den Bosch et al. (2014a) were approximated by an exponential function de-

scribing Md,vir(z)/Md,vir(0) and estimating the z1/2 redshift [the redshift at which the
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most massive progenitor had a virial mass Md,vir(z1/2) = Md,vir(0)]. Vd,pk(z)/Vd,pk(0)

was then approximated for the three cuspy dark matter halo models, through a depen-

dence on Md,vir(z)/Md,vir(0). The relation Md,vir(z) versus Md,vir(0) showed gradual

flattening towards higher masses, which set in at more modest halo masses for higher

redshifts. This reflects a generic feature of structure formation by hierarchical merg-

ing — the most massive systems have formed more recently — and ultimately has

significant implications for the MBH–galaxy property correlations.

The approximations for Md,vir(z)/Md,vir(0) and Vd,pk(z)/Vd,pk(0) were then com-

bined with the average scalings from Chapter 2 to obtain connections between z > 0

halo properties [Vd,pk(z) and Md,vir(z)] and z = 0 stellar properties [M∗,tot and σap(Re)].

These again showed the flattening towards higher masses in the dependence of Md,vir(z)

on Md,vir(0). Folding in the MBH ∝ V 4
d,pk prediction form McQuillin & McLaughlin

(2012), model predictions for MBH versus σap(Re) at z = 0 and M∗,tot at z = 0 were

obtained.

Before comparing these model predictions for the SMBH correlations to data,

it was necessary to make comparisons between the ATLAS and SMBH data. The

ATLAS data were used to construct the trend lines in Chapter 2, so ideally would’ve

been used here to compare to model predictions. however, there were only 22 galaxies

in the ATLAS sample with confirmed MBH values, so a larger sample was required.

This was provided by the Kormendy & Ho (2013) compilation. In the σap(Re)–M∗,tot

plane, the Kormendy & Ho (2013) compilation lie systematically above the trend line,

implying a selection bias in the SMBH data. However, for galaxies in common between

ATLAS and Kormendy & Ho, if the σap(Re) and M∗,tot values from ATLAS were used

instead, there was no obvious selection bias or systematic offset. The ATLAS velocity

dispersions and stellar masses were lower than those cited by Kormendy & Ho (2013)

by, on average, 10%. For the same galaxies, the ATLAS data points therefore lie to the

left of the “usual” SMBH data in the MBH–σap(Re) and MBH–M∗,tot planes. However,

for σap(Re) & 200 km s−1 (or M∗,tot & 1011M⊙), where the majority of the current

SMBH data lie, there were less than ten galaxies in common, so there was no way to

check the majority of the cited values in Kormendy & Ho (2013).
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The model predictions connecting MBH to σap(Re) and M∗,tot at z = 0 were

compared to the SMBH data. The predictions were calculated at a range of redshifts,

zqso, defined as the redshift at which gas-blow out due to quasar phase accretion oc-

curred. The specific form of this MBH–Vd,pk relation comes from a simplified analysis of

momentum-conserving SMBH feedback in isolated and virialised gaseous protogalaxies

with non-isothermal dark matter halos. This yielded model predictions for the MBH–

σap(Re) and MBH–M∗,tot relations that were highly non-linear in log–log space. The

shape of these predictions was driven by the non-monotonic shape of f∗,vir as a function

of M∗,tot (resulting in an upward inflection) and, more fundamentally, the flattening in

the curves due to the largest objects forming most recently.

As discussed, SMBH growth via gas-poor mergers at z < zqso was not accounted

for. The simulations by Volonteri & Ciotti (2013) suggest that low-redshift merging has

a significant effect on the SMBH masses in systems with large σap(Re) & 300–350 km s−1

at z = 0, increasing MBH by a wide range of factors, fco ≡MBH(0)/MBH(zqso) ≃ 1–30.

Nevertheless, the model predictions describe the data reasonably well if the redshift

of quasar-mode blow-out was zqso ∼ 2–4. This range is reassuringly similar to the

epoch of peak quasar density and SMBH accretion rate in the Universe (Richards

et al. 2006; Hopkins, Richards & Hernquist 2007; Delvecchio et al. 2014). This lends

support to the notion that the empirical SMBH correlations fundamentally reflect some

close connection due to accretion feedback between SMBH masses in galactic nuclei

and the dark matter in their host protogalaxies. It also demonstrates how the true

physical relationship between SMBH mass and stellar velocity dispersion at z = 0 is

not necessarily a power-law.

The relation between SMBH mass, fixed at zqso, and halo mass at z = 0 was

also considered. As for the other model predictions, this was found to be non-linear.

However, the contribution from the stars is insignificant on global scales, so there was

no upward inflection. The MBH–Md,200 relation was compared to a similar study from

Dutton et al. (2010). The model prediction calculated here showed a similar change in

slope, without requiring a different SMBH growth mechanism (as suggested by Dutton

et al. 2010).
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The model prediction forMBH(zqso)–Md,200(zqso) calculated here yielded a slope of

∼ 1.3. This was found to be linear because bothMBH and Md,200 were evaluated at zqso,

unlike the Dutton et al. (2010) study that considered Md,200 at z = 0. Booth & Schaye

(2010) also considered a MBH(zqso)–Md,200(zqso) relation, and found a slope of ≃ 1.55.

The differences in the slopes between this study and Booth & Schaye (2010) are due to

different assumptions regarding the driving mechanisms behind the feedback. Booth

& Schaye (2010) assumed an energy-driven outflow, whereas the theoretical prediction

used here is based on a momentum-driven analysis.

The final version of the SMBH data considered was the bivariate dependence of

MBH on a combination of bulge properties at z = 0. Two different combinations of

σap and Re were considered — σ2
apRe and σ2

apR
0.3
e — and connected to M∗,tot at z = 0

and transformed to model predictions for MBH. These model curves were again highly

non-linear, and were broadly consistent with the data for zqso ∼ 2–4. This once again

supports the idea that the key connection is between MBH and the dark matter halo

of the protogalaxy when quasar-mode blow-out occurred. Any of the observed SMBH

correlations at z = 0 are a reflection of this fundamental relation.

For all of the SMBH correlations at z = 0, a calculation was made for the intrinsic

scatter around the model predictions for a fixed zqso. For the model curve corresponding

to zqso = 3, the intrinsic scatter ranged from 0.39 dex for the MBH–σap(Re) and MBH–

Md,200 relations up to 0.7 dex for the MBH–M∗,tot relation. The bivariate correlations

yielded intrinsic scatter (again around the zqso = 3 curve) of 0.67 dex for σ2
apRe and

0.45 dex for σ2
apR

0.3
e . This suggests that connecting MBH to σap(Re) or Md,200 at z = 0

leads to a more accurate reflection of the fundamental relation between MBH and Vd,pk

at z = zqso.

The theoretical relation MBH ∝ V 4
d,pk, used to obtain model predictions for the

SMBH correlations in Chapter 3, has several caveats associated with it. Chapter 4

focussed on relaxing two of these simplifying assumptions: allowing for the presence

of stars contributing to the confining gravity and allowing for a non-virialised gas.

A full mathematical derivation was given, following the methods from McQuillin &
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McLaughlin (2012). This new prediction was given by

Mcrit ≃ 1.14 × 108M⊙

(
f(rf)

0.2

) (
Vf

200 km s−1

)4

, (5.1)

where

f(rf) =
fg(rf)

1 + f∗(rf)
and V 2

f =
G[M∗(rf) +Md(rf)]

rf
. (5.2)

It was trivial to show that this reduces to the McQuillin & McLaughlin (2012) result

in the case where there are no stars [f∗(rf) = 0] gas traces the dark matter [fnew = f0

and Vm = Vd,pk].

A general method was set up for making use of this new result by specifying profile

shapes for the density distributions of the stars, gas and dark matter. These three-

component models were constrained in a similar way to the model galaxies in Chapter

2. Cosmological simulations gave stellar (Moster et al. 2013) and baryon (Crain et

al. 2007; Planelles et al. 2013) mass fractions as functions of both redshift, z, and

halo mass at that redshift, Md,vir(z). The halo mass at z = 0 determined Md,vir(z)

itself through the approximations of Md,vir(z)/Md,vir(0) and z1/2 from Chapter 3. The

dark matter concentration was also constrained (Dutton & Macció 2014), as was the

stellar concentration (through the Re–M∗,tot relation and Re(z)/Re(0)). The relative

concentration of gas-to-dark matter, r−2,g/r−2,d, was left as a free parameter.

A few representative examples were considered to demonstrate how the new pre-

diction compared to the McQuillin & McLaughlin (2012) result. For each of these, it

was assumed that if C ≥ 0 (related to the initial momentum) in the formal solution

for the velocity fields, then the gas shells were guaranteed to escape for MBH ≥ Mcrit

(i.e., it was assumed that Mcrit was sufficient for blow-out, independent of the relative

distributions of gas, stars and dark matter). It was first of all found that, given the

constraint on f∗,vir, the presence of stars did not contribute to the gravity, and therefore

to the critical SMBH mass, in a significant way. Stars were therefore only considered

in the first example, assuming a Hernquist (1990) distribution. In this example, both

the dark matter and gas were assumed to have Dehnen & McLaughlin (2005) density

profiles, with r−2,g/r−2,d allowed to vary. It was found that if the gas is more centrally



239

concentrated than the dark matter (r−2,g/r−2,d < 1), the critical SMBH mass required

for blow-out was higher, but not by much.

The second example considered a gas distribution described by an ρ(r) ∝ r−2

profile inside a Dehnen & McLaughlin halo. It was found from this example that

the gravitational force has maximum at the same location of the peak of the dark

matter circular speed, rf ≡ rpk. The critical SMBH mass was found to have a slight

dependence on fg(rpk)/fg,vir, which was smaller for lower Md,vir. This result also showed

that in this case, the critical SMBH mass is approximately the same as the McQuillin

& McLaughlin (2012) result, consistent with the findings of Ishibashi & Fabian (2012).

Finally, the robustness of the new result was tested by considering two extreme

cases for the gas distribution. The first was a highly centrally concentrated gas (relative

to the dark matter), with an r−2 profile in the central regions. The second was a

spatially extended gas (relative to the dark matter), with a central density core. It

was found that the details of the gas distribution are not hugely significant to the

critical SMBH mass. However, if is unclear how much of an issue the assumption of

gas shells always escaping for C ≥ 0 and MBH ≥ Mcrit could be. Nevertheless, for the

extreme physical examples considered, the new Mcrit only differed from the McQuillin

& McLaughlin (2012) results by factors of 3–4. This lends yet more support to the

idea that it is the dark matter in the protogalaxies, and more specifically their depth of

the potential wells, that determines the SMBH mass required for gas blow-out during

quasar-mode feedback.

5.2 Open questions and future work

The work presented here has demonstrated how an analytical prediction for the SMBH

mass required for gas blow-out in a quasar-phase of a protogalaxy can be compared to

the observed MBH–galaxy property correlations at z = 0. A theoretical relation based

on an analysis of momentum-driven feedback —MBH ∝ V 4
d,pk (McQuillin & McLaughlin

2012) — was shown to ultimately yield model predictions that are consistent with
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the observed relations for current SMBH data. It was also shown that these model

predictions are not overly sensitive to the details of the initial gas distribution in the

protogalaxies (assuming the gas shells always escape), just before quasar-mode blow-

out. Despite these successes, there are many open questions remaining and several

areas for improvement in future work.

5.2.1 Scatter

As mentioned at the start of Chapter 2, all of the average trends that have been

established have intrinsic scatter around them. This is inevitable given the results from

cosmological simulations (stellar-to-dark matter mass fractions, halo concentrations)

and observations (Re–M∗,tot relation, related to the fundamental plane for early-type

galaxies at z = 0) used as a starting point. These all have significant scatter, and

are combined in various ways to obtain other trend lines. The scatter around these

average trends is important and can contain physical information (such as the anti-

correlated scatter between Re and σap(Re)). For the stellar properties at z = 0, the

trend lines were checked against data to ensure obtaining them from combining other

scaling relations had not systematically offset them from the data (due to scatter).

For the model predictions of the SMBH relations, intrinsic scatter is again in-

evitable. This is partly because of the scatter associated with the average trends for

z = 0 properties, used in part to obtain the model predictions. Other possible sources

of the scatter in the SMBH relations are:

• the value of the quasar-mode blow-out redshift, zqso;

• gas-poor mergers at redshifts z < zqso, not accounted for in the model predic-

tions here;

• details of the halo progenitor evolution, more specifically the difference between

most massive progenitor and most contributing progenitor.

A very much open question related to this is why is the scatter around the model
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predictions for the SMBH relations so small, given all the sources and the scatter in

the average trends combined to obtain them.

Now that the “correct” trends for the z = 0 properties and the SMBH relations

have been established, the actual scatter can be calculated for trend lines that can

be compared to data. The intrinsic scatter for the model predictions of MBH versus

various galaxy properties at z = 0, was calculated in Chapter 3 for fixed zqso. However,

the value of zqso itself could well be the dominant source of the scatter in the observed

SMBH correlations. For a range of zqso values, the model curves appear to cover the

majority of the data in the MBH–σap(Re) plots.

Estimating the scatter around the trend lines established in Chapter 2 is no

trivial task. The scatter in the concentration (Dutton & Maccio 2014) and stellar mass

fraction (Moster et al. 2010; Behroozi et al. 2013) relations have been quantified in the

literature and the rms scatter could be calculated for the Re–M∗,tot relation. These were

used as the starting point to obtain all the other average trends throughout Chapter 2.

Calculating the expected scatter around each trend line requires a thorough statistical

investigation. This could involve merger tree algorithms to combine the average trends,

keeping track of the scatter along the way.

5.2.2 Improving the prediction

The outflows are expected to switch from momentum-driven to energy-driven at rela-

tively small radii. This motivates the question as to why the momentum-driven pre-

diction used in Chapters 3 and 4 does so well when compared to the data. The energy-

versus momentum-driven debate needs to be investigated thoroughly for non-isothermal

dark matter halos in the protogalaxy. It could well be the case that these details are

not significant, as alluded to by Zubovas & Nayakshin (2014).

Related to this is the issue of time dependence of the SMBH mass. The MBH ∝
V 4

d,pk prediction, and other analytical results in the literature, always assumes thatMBH

remains constant during the accretion phase. Realistically, the SMBH mass increases

with time, resulting in changes in the forces driving the outflow. If the SMBH is
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accreting at a fraction q of the Eddington rate, then during the quasar phase,

ṀBH(t) =
qLEdd

ηc2
=

4πGqMBH

ηκc
, (5.3)

where η is the accretion efficiency. Thus

MBH(t) = MBH(0) exp

[
4πqGt

ηκc

]
, (5.4)

with MBH(0) corresponding to the mass of the black hole just before the quasar-mode

accretion begins at t = 0. The e-folding time (Salpeter 1964) is therefore

ts =
MBH(t)

ṀBH(t)
=

ηκc

4πqGt
≃ 4.7 × 107

( η

0.1

)(
1

q

)
yr. (5.5)

This time-scale is less than the time taken for an outflow with a constant MBH to be

driven out to the scale radii of the non-isothermal halos, with t ∼ 108 yr (McQuillin

& McLaughlin 2012). If the SMBH accretes matter at a rate comparable to Edding-

ton, the SMBH mass will approximately double during the time ts, which will have a

significant effect on the forces driving the outflow.

With a time-dependent MBH included, it is possible to investigate the time evo-

lution of the driving forces behind the outflow, rather than assuming an outflow to be

purely momentum- or purely energy-driven. To do this, the nature of the cooling and

how it changes with time needs to be better understood. Appropriate cooling functions

need to be included in calculations, allowing the cooling time of the shocked wind to

be obtained at any given radius. Given this, changes in the structure of the shocked

wind and shocked ambient medium over time can be completely specified. The issues

of time-dependent cooling and shell structure are non-trivial, and may well be best

addressed through simulations.

Another area for future work is to consider the stability of the outflows. The

MBH–Vd,pk prediction assumes the outflow is always spherical and smooth (i.e. stable).

Thermal instabilities have been briefly considered in the analysis of energy-driven out-

flows through the Rayleigh-Taylor instabilities (Costa et al. 2014). However, the shells

could be subject to gravitational instabilities during the momentum-driven stage, when
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the shocked wind region is thin, causing the outflow to fragment. These instabilities

have been considered for supernova remnants and stellar winds (Vishniac 1983; Ryu &

Vishniac 1988). In the context of SMBH feedback, such instabilities could trigger star

formation in the galaxy, as a fragmented shell will lead to a clumpy outflow.

One possible way to proceed is to use linear perturbation theory. This method

assumes that an initial perturbation is small compared to an initial quantity — if the

radius r is perturbed by δr, then δr ≪ r. The equation of motion of the gas shell

can then be perturbed by evaluating the quantities [Mg(r), Md(r), v(r)] at the radius

r + δr. This equation can then be solved to identify under what conditions instability

occurs. In typical fluid-instability problems, this involves deriving a dispersion relation

and determining when imaginary parts are present. If there are imaginary parts in the

dispersion relation, the system is unstable.

The time scales for these instabilities can determine if they are applicable to

realistic outflows from SMBH feedback. If the perturbations are violent and grow

quickly, then the fragmentation time, tfrag, is short. If the outflow can be approximated

as being purely momentum-driven for a time, tmom, and tfrag ≫ tmom, the shell will

become energy-driven before it has time to fragment. However, if tfrag < tmom, then the

shell will break up into clumps of gas. These will be dense regions that can themselves

become gravitationally unstable and collapse, forming stars (Nayakshin & Zubovas

2012). Otherwise, the clumps are likely to fall toward the centre of the galaxy, refuelling

the SMBH.

5.2.3 Improving the scalings and model predictions

For the average trends in Chapter 2, and hence the model predictions in Chapters 3

and 4, more detailed analysis is required for extrapolating down to dwarf galaxies [less

than a few ×109M⊙]. This would involve properly accounting for:

• different dark matter distributions, with cored halos possibly more applicable;

• different stellar density profiles — low-mass early-types are better described
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by a Sérsic profile with n ∼ 1;

• the stellar mass ejecta fraction, Fej, and whether it does depend on M∗,tot.

The dark matter halos are potentially cored due to the SMBH winds changing the

central structures (Burkert & Silk 1997; Pontzen & Governato 2012). This effect

is likely to become more significant as halo mass decreases. This could imply that

the “core” radius [i.e., the radius when ρd(r) becomes constant] is a mass dependent

quantity, increasing as M∗,tot (or Md,vir) decreases. The mass dependence of Fej was

considered in Chapter 2, but only through an ad-hoc Fej–M∗,tot relation.

Related to this is the non-homology of stellar structure in early-type galaxies.

This is discussed in terms of connecting Sérsic index, n, to the total stellar mass,

M∗,tot. This n–M∗,tot relation has not been fully accounted for in the trend lines from

Chapters 2 and 3. The effects of using a Hernquist profile instead of the more general

Sérsic profiles to describe the stars were considered for connecting σap(Re) and Vd,pk,

and were shown to be a second-order concern in this limited context. However, at the

same time as considering the extrapolation down to low mass galaxies, it would be a

good idea to also include the n–M∗,tot relation in establishing the average trends, thus

accounting for different stellar density profiles. This relation of course has associated

intrinsic scatter, and this ultimately needs to be considered as well.

Cosmological simulations could be used to evaluate the balance between effects

that pull the model curves for the SMBH relations upwards (gas-poor mergers) and

those pushing them down (fb,vir < f0, prior work done by a growing SMBH etc.). One

possible way to do this would be to include a recipe which “switches off” SMBH growth

via accretion when the simulated black holes reach, for example, the model prediction

for MBH–σap(Re), at a specified zqso [or folding in a zqso–σap(Re) relation]. For z < zqso,

the simulations could then invoke a recipe for gas-poor mergers, and see where the final

simulated MBH values lie with respect to the model predictions. If any prior work done

by black hole can be quantified (by considering the time dependence of MBH) and

accounted for as well, this could then be used to interpret the baryon fraction required

to make the simulated black holes consistent with the model predictions (and hence
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the data).

Another possible line of future work is to look at the potential systematic depen-

dence of the quasar-mode blow-out redshift, zqso, on M∗,tot or σap(Re) at z = 0, with

zqso decreasing as stellar mass increases. If such a dependence could be quantified,

this would lead to single model predictions for the SMBH relations. Presumably a

zqso–M∗,tot or zqso–σap(Re) relation would again have intrinsic scatter around it. Inves-

tigating this would therefore perhaps be best done along side a detailed analysis of the

scatter in all of the trend lines from Chapters 2 and 3.
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