Lexicase Selection Outperforms Previous Strategies for Incremental Evolution of
Virtual Creature Controllers

Jared M Moore' and Adam Stanton?

1School of Computing and Information Systems, Grand Valley State University, Allendale, MI.
2School of Computing and Mathematics, Keele University, ST5 SBG, UK.

moorejar @gvsu.edu

Abstract

Evolving robust behaviors for robots has proven to be a chal-
lenging problem. Determining how to optimize behavior for
a specific instance, while also realizing behaviors that gener-
alize to variations on the problem often requires highly cus-
tomized algorithms and problem-specific tuning of the evolu-
tionary platform. Algorithms that can realize robust, general-
ized behavior without this customization are therefore highly
desirable. In this paper, we examine the Lexicase selection
algorithm as a possible general algorithm for a wall crossing
robot task. Previous work has resulted in specialized strate-
gies to evolve robust behaviors for this task. Here, we show
that Lexicase selection is not only competitive with these
strategies but after parameter tuning, actually exceeds the per-
formance of the specialized algorithms.

Introduction

Evolutionary robotics (ER) seeks to evolve robust behav-
iors for animats in a variety of task domains. Typically,
a general task encompasses many similar, but unique sub-
tasks. Behaviors are often evolved for these subtasks, but
fail to identify the general aspects of a problem (Pinville
et al., 2011). Evolved controllers typically have difficulty
expressing a general behavior in response to such a chal-
lenge, instead effectively handling a specific subset of tasks
encountered during evolution while failing on related prob-
lems (Moore et al., 2013). As such, a capacity for general-
ized behaviors, indicating suitability to such a class of prob-
lems rather than specific instances, is a desirable outcome.
For example, beyond just simple locomotion, a legged robot
is considered more robust when it is able to walk on a variety
of surfaces, each providing a different level of traction, de-
spite these variations being instances of the same underlying
problem.

Eliciting generalized control typically requires the algo-
rithm to expose agents to a high number of different envi-
ronments. In the ER domain, the increased computational
or temporal overhead makes such a strategy infeasible for
even moderately-sized problems. One solution is to divide
and conquer: breaking down the problem and working incre-
mentally towards success in specific components (Bongard,

a.stanton @keele.ac.uk

2008). However, it is often unclear how an evolutionary reg-
imen can be structured to train a controller for a task whilst
also encouraging the behavior to generalize to more than
one specific instance. The common response is to apply a
considerable amount of domain knowledge and uniquely tai-
lored evolutionary algorithms to specific problems. This can
increase the time to develop a solution, discourages reusabil-
ity of an algorithm to different problems, and prevents the
application of common techniques to improve performance.

In this paper, we expand a previous investigation by Stan-
ton and Channon (2013) on generalized controller evolution
by implementing the Lexicase selection algorithm originally
proposed by Spector (2012). The particular problem ad-
dressed in this work is the evolution of a neurocontroller for
a fully-articulated quadrupedal animat in a 3D environment,
supported by simulated rigid-body physics. The animat’s
task is to move towards a target location, an objective that
includes the traversal of a wall situated halfway between the
agent and the destination. Since the height of the wall can
vary, the general wall traversal task (crossing walls of any
height between a defined minimum and maximum) repre-
sents a class of sub-problems, the traversal of walls of spe-
cific heights. As in Stanton and Channon (2013), our goal is
to apply evolutionary methods to discover animats that solve
this general task, without incurring the computational over-
head of an exhaustive search across the generalised problem.
This earlier work demonstrated that general behaviors can be
evolved for the wall-traversal task using specific strategies
to present sub-problems over evolutionary time. However,
the evolutionary strategies employed in these solutions were
highly customized to the specific environment.

Building on the previous investigation, we add the Lexi-
case selection algorithm as an alternate evolutionary strat-
egy. Lexicase selection has the potential to be a general
evolutionary algorithm. Should it be competitive with these
problem-optimized algorithms, it would be preferable to em-
ploy a general evolutionary algorithm capable of being ap-
plied to other problems with minimal change. Four separate
treatments are conducted, each with a different strategy for
limiting the number of environments an agent is exposed to

during evolution. The algorithms are compared based on
how well they evolve robust individuals capable of travers-
ing a variety of wall heights.

Our results show that while the previously investigated
approaches do indeed evolve effective individuals for the
generalized task, Lexicase selection is superior. We argue
that a general algorithm, in this case Lexicase, is preferable
to an algorithm constructed to fit the exact problem. First,
Lexicase selection, without any special parameter tuning,
achieves similar fitnesses to algorithms specifically struc-
tured to address the problem. Second, changing the number
of environments individuals are evaluated on each genera-
tion impacts the performance of Lexicase. Finally, tuning
the different parameters of the algorithm produces signifi-
cantly better results than non-Lexicase algorithms.

Background

Evolutionary robotics (Nolfi and Floreano, 2000; Sims,
1994; Floreano et al., 2008; Doncieux et al., 2015) applies
concepts derived from biology to the design of robotic sys-
tems. It has demonstrated an ability to address challeng-
ing problems in many task domains including: gaits (Clune
et al., 2009), object manipulation (Bongard, 2008), biologi-
cal study (Crespi et al., 2013; Doorly et al., 2009), and the
optimization of morphology (Auerbach and Bongard, 2010;
Bongard, 2010; Cheney et al., 2013). Often, these tasks have
a single performance objective, or weighted sum, to assess
the fitness of each individual. However, as task complex-
ity increases, distilling performance in a single measure be-
comes increasingly difficult.

Lexicase selection was introduced by Spector (2012) for
modal problems in genetic programming (GP). It falls in the
domain of many-objective problems, where more than five
objectives are used to evaluate potential solutions. Rather
than consider all objectives in a many-objective optimization
problem, Lexicase selection instead considers objectives in-
dividually. Per each selection event, one or many objectives
may be used to compare individuals. Individuals are com-
pared on all objectives over the course of evolution, but not
necessarily every generation. Further details of the Lexi-
case algorithm are presented in the next section. Helmuth
et al. (2014) have shown that Lexicase is effective at solv-
ing challenging problems in GP. Although it was initially
introduced for GP, Lexicase has the potential to be a very ef-
fective algorithm in evolutionary robotics where objectives
relating to performance (e.g. distance traveled, speed, stabil-
ity, multiple tasks) and efficiency (e.g. energy expended, tra-
jectory, passive elements) can result in many-objective prob-
lems. Moore and McKinley (2016) applied Lexicase selec-
tion in a multi-objective evolutionary robotics task. There,
NSGA-II (Deb et al., 2002) slightly outperformed Lexicase
selection, likely due to the relatively low number of ob-
jectives (3). Lexicase still outperformed a traditional Ge-
netic Algorithm (GA). In this study, we attempt to evolve

general Artificial Neural Network (ANN) controllers for
quadrupedal animats capable of climbing over obstacles of
100 different heights. Each wall height is treated as a sepa-
rate objective.

Methods

Robot Platform and Simulation Environment Figure 1
shows the quadrupedal animat used in this study. The robot
has a cuboid torso and four legs placed at the corners. Each
leg is divided into an upper and lower segment. The hip is a
2-degree of freedom (DOF) joint while the knee is a 1 DOF
joint; see Table 1 for specific parameter values.

Figure 1: The quadrupedal animat and simulation environ-
ment in this study. The animat is tasked with crossing a
wall (image right) and moving towards a target, represented
by the box (image left).

Head dimension 0.2 x0.2x0.2

Leg section dimension | 0.075 x 0.05 x 0.05
Head mass 2.0

Leg section mass 0.5

Hip joint axis 1 vertical, range [— 7, 7]
Hip joint axis 2 horizontal, range [0, 7]
Knee joint axis 1 horizontal, range [0, 7]

Maximum torque 0.125

Table 1: Physical parameters of robot.

The robot’s joints are actuated using a Proportional-
Derivative (PD) control mechanism (Reil and Husbands,
2002) that takes a target angle as input and applies a torque
to the joint according to Equation 1, where T is the applied
torque, ks and k4 are the spring and damper constants, 0 is
the desired angle, 6 the current angle and 6 the angle change
since the last timestep. As in previous work, ks = kg = 0.5
in this study.

T =kex (04— 0) — kqb (1)

Simulations are conducted in the Open Dynamics En-
gine (ODE) (Smith, 2013), a real-time rigid body physics
engine. ODE version 0.13.1 was used. ODE computes the
interaction between the different rigid components of the
robot as well as interaction with the environment; Table 2
lists key parameters used.

Timestep 0.02 seconds

Gravity —-1.2

Friction model | Pyramid approximation, p = 2.0
Global ERP 0.2

Global CFM 5.0 x 1075

Wall dimension | 0.05 x 5.0 x h

Wall position r=1y=0

Target position | z =2;y =0

Start location r=0y=0

Simulation time | 20 seconds

Table 2: ODE simulation parameters.

Task Environment Animats are evaluated on their ability
to cross a wall and move towards a target position. Wall
heights vary, from 0.01 up to a maximum value of 1.0
in 0.01 increments. Fitness values for animats are nega-
tive values, with a maximum fitness of 0.0 corresponding
to an animat reaching the target. For analysis, we divide
fitness values into the following bins: (1) reached objec-
tive (>= 0.0), (2) crossed wall (>= —0.2), (3) stuck on
wall (>= —0.6), (4) reached wall (>= —1.0), and (5) did
not reach wall (< —1.0).

Controller The controller is a feed-forward ANN with
fixed, fully-connected topology. Inputs comprise a number
of signals from the environment as well as spontaneous ac-
tivity generated by sinusoidal functions. These inputs are
shown in Table 3. The ANN has 12 hidden nodes and 12
outputs mapping to desired angles for each joint at the next
timestep within the ranges described in Table 1. tanh func-
tion is used for the transfer function in the hidden layer, and
the logistic function for outputs. The ANN is updated in
lock-step with the dynamics simulation, and inputs are prop-
agated completely through the network at each update.

Lexicase Selection Algorithm 1 presents the Lexicase se-
lection algorithm with modifications made for this study act-
ing as the selection operator in our genetic algorithm. Lex-
icase differs from traditional selection methods by evaluat-
ing individuals against a number of objectives per selection
event. Starting with one objective, individuals are compared
based on their performance (lines 3-19). Only in the case of

sin(27t)

cos(27t)

balance: arccos(H[10])
4| (H| = 7)) + Huiae,
5-12 | hip joint angles

W N =

13-16 | knee joint angles

Table 3: ANN controller inputs, where H is the ODE ro-
tation matrix of the robot’s head, |IA{z| is the distance from
each side of the robot’s head to the target and H ;45 is the
width of the head.

ties are additional objectives considered. If multiple individ-
uals have the same performance, those individuals are then
compared on the next objective in the random ordering. If at
the end of the selection process, there are multiple individ-
uals still left the algorithm selects an individual at random
from the subset (line 21).

Algorithm 1 Lexicase Selection Pseudocode. Adapted
from Spector (2012) and Moore and McKinley (2016)

1: subset + GetSubset FromPopulation(population, 4)
2: obj_order < Shuf fle(fitness_objectives)

3: for obj in obj_order do

4: r_sub < RankSubset(subset, obj)

5: tiesindex < 0
6: for i in 1 to length(r_sub) do
7: if r_subli][obj] > threshold * r_sub[0][obj]
then
8: tie < True
9: tieindex < i
10: end if
11: end for
12: if tie is T'rue then
13: subset « r_subl0 : tie_index]
14: else
15: tie < False
16: subset + r_sub[0]
17: break
18: end if
19: end for
20: if tie is True then
21: return RandomC hoice(subset)
22: else
23: return subset|0]
24: end if

Two individuals with similar performance do not neces-
sarily have the exact same distances travelled in the evolu-
tionary robotics domain. In this study, we adopt a modi-
fication to the Lexicase algorithm proposed in Moore and

McKinley (2016). Individuals are considered “tied” if they
are within a threshold of performance (5%) on an objective
when compared to the best individual in that objective (lines
7-10). This serves to relax performance requirements, se-
lecting individuals that complete the task, but are not nec-
essarily “optimal” in one objective. We parameterize this
threshold as fuzz_factor varying the range of equivalent per-
formance based on the treatments described in Results.

Evolutionary Algorithm A generational EA was em-
ployed in this study. A genome specifies a set of floating-
point weights for the ANN controllers. Populations com-
prise 50 individuals, each randomly initialized based on a
starting seed corresponding to the replicate number. For
non-Lexicase strategies (see below) fitness-based selection
is used where the population is ranked and the lower half is
replaced with mutated copies of the upper half, recombined
with a random individual from the upper half using single-
point crossover. The mutation rate used was %, where N
is the length of the genome. For Lexicase strategies, a new
population is created each generation using Lexicase selec-
tion to choose parents, and creating children using the same
recombination parameters. Morphologies of the animats re-
main fixed throughout evolution. The number of generations
varies among treatments and is noted in each treatment’s
description following this section. An animat is evaluated
based on their Euclidean distance from a target at the end of
a simulation. High fitnesses are only attained if the animat
climbs over a wall of varying height.

Treatments Stanton and Channon (2013) found that dif-
ferent strategies of presenting component problems in an in-
cremental evolutionary system affects the generalization of
the final solutions. In that work, the authors separated the
strategies into homogeneous (those that do not revisit ear-
lier components) and heterogeneous (those that do). A clear
difference was found between the two groups, with hetero-
geneous clearly outperforming the other group in the given
task. In the present work, we apply the commonly-used
random strategy (the worst-performing heterogeneous strat-
egy), as well as the best strategy from Stanton and Channon
(2013) and the trivial direct strategy and compare to new
strategies that use the Lexicase selection mechanism. We
next describe the individual treatments.

Random The Random treatment is used as a baseline for
comparison to the other treatments in this study. At each
generation, a randomly selected wall height is used to eval-
uate the performance of the individuals in the population.
There is no specific strategy to programmatically introduce
wall heights, hence, in one generation the wall may be very
short, while the next could be the maximum height.

Direct Single Subtask This treatment presents only one
component of the task—in the present work, the wall at its
maximum height.

Oscillating Strategies These strategies were amongst the
best treatments from Stanton and Channon (2013). Species
experience a cyclical change in the wall task, where the max-
imum height reached is a sinusoidal function of evolutionary
time and the period is a hyperparameter chosen empirically.
In the ‘max’ version of this strategy, the oscillation achieves
maximum amplitude in the first period. In the ‘increasing’
version, the amplitude of the oscillation steadily increases
over evolutionary time, and in the ‘adaptive’ version, the am-
plitude increases according to whether average population
fitness has increased in this generation compared to the pre-
vious generation. After initial parameter sweeps we found
that in this implementation of the task, cyclic strategies with
period 100 generations demonstrated the highest fitness and
these treatments are presented in the results section for com-
parison.

Lexicase We consider the Lexicase selection algorithm in
three ways. First, we implement Lexicase using rule-of-
thumb parameters and compare against other strategies by
keeping the total number of evaluations (and thus compu-
tation time) constant. Agents are evaluated in 5 randomly
selected environments per generation from a set of 100 total
wall heights and the algorithm proceeds for 1000 genera-
tions, totalling 250,000 evaluations (1000x50x5). During
the selection process, individuals in the subset are compared
to each other using the Lexicase algorithm described pre-
viously. A parent is selected from a subset of 5 randomly
selected individuals.

In the second Lexicase configuration, we examine how
changing the number of environments affects the perfor-
mance of the Lexicase solution. Specifically, we examine
1, 2, 5, 10, and 20 environments. Again we hold computa-
tion time constant, so consequently the number of genera-
tions changes in each case. We also examine additional tie
thresholds of 10% and 15%, comparing each across the four
different environment sizes. Changing the threshold alters
how likely two individuals are to be tied in one environment,
hence changing how many environments in which they are
compared, per selection event.

Finally, we explore the potential of Lexicase whilst hold-
ing the number of evolutionary events (the creation of new
individuals) constant but relaxing the requirement for equiv-
alent computation time. For this, the best tie parameter is
chosen from the earlier study and then each environment
size is explored for 5000 generations (250k evolutionary
events but 250k xn evaluations, where n is the number of
environments).

Results

Evolved Behaviors All treatments evolve at least some
wall crossing behaviors, although the level of success varies.
Figure 2 illustrates a few of the evolved behaviors of animats
completing the task. A video of select evolved individuals
can be seen at https://youtu.be/Q8z0Ktj2nlM.

= == == =

= == _ = - ==

2%

= == =k S =

== == - >

)

Figure 2: Two evolved animats crossing walls of varying heights. (7op) Perfect behavior results in crossing the wall and
reaching the box on the other side. (Botfom) Some individuals cross the wall but in doing so do not have time to reach the box,

these instead end up with high, but not perfect fitnesses.

As the wall height increases, it becomes more challenging
for the animats as they have relatively short legs. This some-
times results in wall crossing behavior, but not reaching the
target precisely.

Cross Treatment Comparisons Figure 3 plots the perfor-
mance of the best individuals per replicate across the treat-
ments. We define the best individual for a given replicate
as the individual in the last generation of evolution with the
highest mean fitness across the 100 environments. Mean fit-
ness is calculated by a final validation step run after the evo-
lutionary process has completed. As shown in the boxplot,
Lexicase selection with a fuzz factor of 1.05 and evolved
for 1,000 generations (Lex_5E_1.05F_1000G) outperforms
the direct subtask and random treatments significantly (p
< 0.01). For this and subsequent significance tests we apply
the Mann-Whitney-Wilcoxon Rank-Sum Test. However, for
the Oscillating (Max Amplitude) 100, Oscillating (Inc. Am-
plitude) 100, and Oscillating (Adapt Amplitude) 100 treat-
ments this difference is not significant (p = 0.117, p =
0.067, and p = 0.681 respectively). Lex 5SE_1.05F_1000G
is comparable to these treatments, even though it evolves for
1,000 versus 5,000 generations in the other treatments. Fur-
thermore, the fuzz factor and number of environments were
chosen by hand.

Best Individual Validation Performance Although the
average across replicates is informative from a performance
perspective, it does not provide information as to how ro-
bust the best individual from each replicate is. Figures 4, 5,
and 6 plot the performance of the best individual per repli-
cate across each of the 100 wall heights. Replicates are
ordered from lowest (top) to highest performing (bottom)
in the figures. Each individual is classified per the cate-
gories mentioned in Methods. As shown in the figures,

Best Individual Per Replicate Mean Fitness Across Evaluation Task

-0.2

. T T

-0.4 4

-0.6 4

Distance
L]
|
I

-0.8

=
14
t t T
Ko 3 < RN & K
O N
S ® S Q) 2 e)
N N <@ S & a>
& e & & N
$ & Q Q Q
A° N S < &
& N & ¥ S
8 »\« N N &
N2 <) <© \s
N >)
N & &
& ol %%\
Strategy

Figure 3: Performance distribution of the mean score of the
best individual per replicate across the treatments.

Lex_5E_1.05F_1000G has the highest number of wall traver-
sals, while also having the lowest number of failures. Os-
cillating (Max Amplitude) 100 and Oscillating (Inc. Ampli-
tude) 100 evolve many successful individuals, but perfor-
mance generally decays rapidly as evidenced by the higher
proportion of light and dark blue cells. Validation perfor-
mance for the Oscillating (Adapt Amplitude) 100 treatment
is similar to the Oscillating (Max Amplitude) 100 and Oscil-
lating (Inc. Amplitude) 100 treatments but we have omitted
the plot due to space considerations. Tall walls (right side of
the figures) tend to be difficult considering the high number
of failing individuals there across all three treatments.

Lex (5E_1.05F_1000G) Best Individuals Progress

= Reached Objective
Crossed Wall
Stuck on Wall
I = Reached Wall
Failed to Reach Wall

Replicate

Wall Height (0 - 100)

Figure 4: Performance of the best individual per replicate
for the Lexicase 1.05 Fuzz Factor, 5 environments, 1,000
generation treatment. Light colors denote crossing the wall
and reaching the objective. Darker shades indicate a failure
to traverse the wall.

Oscillating (Max i 100 Best Indivi g

® Reached Objective
3 I = Crossed Wall

| Stuck on Wall

— B Reached Wall
Failed to Reach Wall

Replicate

Wall Height (0 - 100)

Figure 5: Performance of the best individual per replicate
for the Oscillating (Max Amplitude) 100 treatment.

o (Inc. 100 Best

® Reached Objective
Crossed Wall

Stuck on Wall
Reached Wall
Failed to Reach Wall

Replicate

Wall Height (0 - 100)

Figure 6: Performance of the best individual per replicate
for the Oscillating (Inc. Amplitude) 50 treatment.

Figure 7 shows the average performance across repli-
cates for each treatment broken down into the five cate-
gories. The Lexicase treatment has comparable performance
to the four oscillating strategies, while the number of per-
fect and crossing individuals is low in the Direct Subtask
and Random treatments. These figures show that, on aver-
age, Lex_5E_1.05F_1000G , Oscillating (Max Amplitude)
100, and Oscillating (Inc. Amplitude) 100 handle the ma-
jority of wall heights in the task. In combination with the

heatmaps, it appears that most replicates handle wall heights
up to about 0.5, but above that the increasing height is chal-
lenging.

Average Performance for Best Individuals Per Treatment

100

80

60

40 4

Number of Environments

20 ~

Treatment

Figure 7: Average number of environments completed at
each level for the best individual per replicate across treat-
ments.

Lexicase Parameter Optimization After initially testing
Lexicase selection with a baseline set of parameters,
Fuzz Factor 1.10 and number of environments = 5, we
next explore different parameter configurations with three
additional Lexicase treatment groups. Figure 8 plots the
performance of the four Lexicase groups against each
other for a total of 20 treatments. The first two treatment
groups employ the same configuration as the 1.05 fuzz
factor group, with the number of environments dictating
the number of generations in each treatment, maintain-
ing the number of individual simulations at 250,000.
Other Lexicase variations with this same approach are: 1
env/5000 gen, 2 env/2500 gen, 10 env/500 gen, and 20
env/250 gen. A fuzz factor of 1.10 produces the highest
performing treatment (Lex_2E_I.10F_2500Gv) with 2
environments evolved for 2,500 generations among the
three Lexicase groups with variable generations (left three
in figure). However, this treatment is not significantly dif-
ferent than Lex_[E_1.05F_5000Gv, Lex_2E_1.05F_2500Gv,
Lex_1E_1.10F_5000Gv, Lex_1E_1.15F_5000Gv, and
Lex_2E_1.15F_2500Gv (p < 0.05).

Performance generally degrades as the number of envi-
ronments increase beyond 2 in these three treatment groups.
This result is contrary to our initial intuition as the addi-
tion of more environments during evaluation of an individ-

0 Lexicase Treatments Best Individual Per Replicate Mean Fitness

Distance

T
{1

1 °
1e °
| °

-0.6 -

-0.8 -

> > > > > > > > 5 5SS S S >SS0 00 00
g 0 00 00 00 U0 00 0 g0 0 & & & 6 o
0 O © © O O O Q©Q © 9 O Q © © QO © © © © ©
© O © O VUL O O © O VL O QO © O W o © © © o
o N O 1 N O 1V O 1L N O 1 O 1B N O 1 O W W
e T T T T T T T T T T TP T T
LWL 8L L L S 6L L WL 65 n

S22 < < T ST e eSS e
B o T N B B B T I N R B T T
W w0 W oW T T W W oW W owowow
W wwo oWwwwo o wwuwoor-o b o o
cd8ecdcocdw o dcocdwod T T d
x x x x x x x x x x x x x x x é o E<: x x
(5] Q (4] Q o Q o @ @ @ o @ o @ o J g 4Jd Q [+
e e [[[| [[[o p— |

Strategy

Figure 8: Performance distribution of the mean score of the
best individual per replicate across the Lexicase treatments.
Treatments are colored based on their parameter configura-
tions.

ual should result in more robust controllers. Changing the
fuzz factor results in 2 environment treatments having the
highest mean fitness, but performance still degrades in the
5, 10, and 20 environment strategies.

Within each of these three treatment groups, perfor-
mance generally degrades above 2 environments. We
hypothesize that this is due to the reduced evolution-
ary time given to the 5, 10, and 20 environment treat-
ments which focus on maintaining the number of indi-
vidual simulations at 250,000. To test this, we conduct
a fourth Lexicase group of treatments with a fuzz factor
of 1.10 and all five environment configurations evolve for
5,000 generations. Here, we observe that performance in-
creases from 1 environment up to 10 environments, with
the 20 environment treatment exhibiting decreased per-
formance. The Lex_I0E_1.10F_5000Gv treatment is sig-
nificantly better than all but the Lex_2E_1.10F_2500 and
Lex_5E_1.10F_5000G treatments. Furthermore, this treat-
ment results in the highest average performance during
validation, with animats crossing the wall in 85 of the
100 environments, compared to 70 environments in the
Lex_5E_1.05F_1000G treatment.

Figure 9 plots the performance per each replicate dur-
ing the validation step for the Lex_10E_1.10F_5000Gv treat-
ment. When compared to Figures 4, 5, and 6, the individual
replicates generally exhibit increased task aptitude and abil-
ity to generalize across wall heights. Indeed, this treatment
has the highest mean fitness and is significantly different

than the Lex 5E_1.05F_1000G , Oscillating (Max Ampli-
tude) 100, Oscillating (Inc. Amplitude) 100, and Oscillating
(Adapt Amplitude) 100 (p < 0.01 for all). Three of the repli-
cates are nearly successful in every environment, with only a
few failures mixed in. Still, it should be noted that no repli-
cate is completely perfect in any of the treatments conducted
in this study.

Lex (10E_1.10F_5000G) Best Individuals Progress
1 L W W T T T DT
LT] L1}

Reached Objective
m Crossed Wall
= Stuck on Wall
® Reached Wall
W Failed to Reach Wall

1
1 1 { DL A R O A O Y I | m
/]] [l
12 IR R AR
1

Q

g4 1

S 2 [l (| m 11

20 i I

19 [N PO T 1 1
18 n
15 |i (]
14
6 il {0 DT | (OO PR,
8 I 1 I
5 (| 1 1 i

1 T
17 1 L LI | m
Wall Height (0 - 100)

Figure 9: Performance of the best individual per replicate in
the task. Light colors denote crossing the wall and reaching
the objective. Darker shades indicate a failure to traverse the
wall.

Conclusion

In this paper, we have applied Lexicase selection to a previ-
ously examined evolutionary robotics problem. The original
evolutionary algorithms were customized to fit the dynam-
ics of the problem, introducing new wall heights in a highly
structured manner attempting to realize general behaviors.
Whereas, Lexicase selection evaluates individuals on a sub-
set of randomly selected wall heights. Considering the per-
formance of Lexicase selection versus the previously studied
treatments, it appears that Lexicase is suitable as a general
purpose evolutionary algorithm with the potential to gener-
alize to other problems without the need to devise new and
problem-specific EAs for each study.

Our initial Lexicase treatment (1.05 fuzz, 5 environments)
was competitive with the evolutionary strategies proposed
in Stanton and Channon (2013). Adjusting the fuzz factor
and number of environments further increased performance,
ultimately resulting in the most effective evolutionary algo-
rithm explored in this study. Moreover, the Lexicase strate-
gies employed here involved tuning algorithm parameters,
rather than exploring specialized algorithms for this specific
problem. Adding additional environments does help ini-
tially, but there appears to be a plateau in performance as
indicated by 5, 10, and 20 environment results for a fuzz
factor of 1.15. Here, we examined gradations of 1, 2, 5, 10,
and 20 environments, but it is possible that this parameter
can be tuned further.

After consideration of the first Lexicase results, we con-
clude that the lack of opportunity for genetic change drives

the decreasing performance. Changing the number of gener-
ations to 5,000 across the different number of environments
in Lexicase results in increased performance for 2 environ-
ments and above. Although there are now more individ-
ual environment evaluations and a corresponding increase
in computational time, we consider this acceptable for an
offline evolutionary algorithm. The wall clock time of these
runs is only longer than the initial treatments (approximately
22 hours) presented in Figure 3 by approximately 20 hours.
For an offline algorithm, this increase is acceptable as a de-
liverable will not be impacted significantly by this increase
in computational time.

Future work will examine further parameter tuning of the
Lexicase algorithm including the number of environments,
fuzz factor, and number of generations. Alternate evolution-
ary robotics problems will be explored to assess the suitabil-
ity of Lexicase to other problems in this domain.

Acknowledgements

This work was partly supported by the Evolutionary Systems
Research Group in the Faculty of Natural Sciences, Keele
University.

References

Auerbach, J. E. and Bongard, J. C. (2010). Dynamic resolution
in the co-evolution of morphology and control. In Proceed-
ings of the Twelfth International Conference on Artificial Life,
pages 451-458, Odense, Denmark.

Bongard, J. C. (2008). Behavior chaining: Incremental behav-
ioral integration for evolutionary robotics. In Proceedings of
the Eleventh International Conference on the Simulation and
Synthesis of Living Systems, pages 64—71, Winchester, United
Kingdom.

Bongard, J. C. (2010). The utility of evolving simulated robot mor-
phology increases with task complexity for object manipula-
tion. Artificial Life, 16(3):201-223.

Cheney, N., MacCurdy, R., Clune, J., and Lipson, H. (2013). Un-
shackling evolution: Evolving soft robots with multiple ma-
terials and a powerful generative encoding. In Proceedings
of the 15th Annual Conference on Genetic and Evolutionary
Computation, pages 167-174, Amsterdam, The Netherlands.
ACM.

Clune, J., Beckmann, B. E., Ofria, C., and Pennock, R. T. (2009).
Evolving coordinated quadruped gaits with the HyperNEAT
generative encoding. In Proceedings of the IEEE Congress
on Evolutionary Computation, pages 2764-2771, Trondheim,
Norway.

Crespi, A., Karakasiliotis, K., Guignard, A., and Ijspeert, A.
(2013). Salamandra robotica ii: An amphibious robot to study
salamander-like swimming and walking gaits. I[EEE Transac-
tions on Robotics, 29(2):308-320.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-IL. IEEE
Transactions on Evolutionary Computation, 6(2):182 —197.

Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. G.
(2015). Evolutionary robotics: What, why, and where to.
Frontiers in Robotics and Al, 2(4).

Doorly, N., Irving, K., McArthur, G., Combie, K., Engel, V.,
Sakhtah, H., Stickles, E., Rosenblum, H., Gutierrez, A., Root,
R., Liew, C. W., and Long, J. (2009). Biomimetic evolution-
ary analysis: Robotically-simulated vertebrates in a predator-
prey ecology. In Proceedings of the IEEE Symposium on Ar-
tificial Life, pages 147-154, Nashville, Tennessee, USA.

Floreano, D., Husbands, P., and Nolfi, S. (2008). Evolutionary
Robotics. In Handbook of Robotics. Springer Verlag, Berlin.

Helmuth, T., Spector, L., and Matheson, J. (2014). Solving uncom-
promising problems with Lexicase selection. /EEE Transac-
tions on Evolutionary Computation, PP(99):1-1.

Moore, J. M., Clark, A. J., and McKinley, P. K. (2013). Evolu-
tion of station keeping as a response to flows in an aquatic
robot. In Proceedings of the 2013 ACM Genetic and Evolu-
tionary Computing Conference, pages 239-246, Amsterdam,
Netherlands. ACM.

Moore, J. M. and McKinley, P. K. (2016). A Comparison of Mul-
tiobjective Algorithms in Evolving Quadrupedal Gaits, pages
157-169. Springer International Publishing, Aberystwyth,
UK.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The
Biology, Intelligence and Technology of Self-Organizing Ma-
chines. The MIT Press.

Pinville, T., Koos, S., Mouret, J.-B., and Doncieux, S. (2011). How
to promote generalisation in evolutionary robotics: The pro-
gab approach. In Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, pages 259-260,
Dublin, Ireland. ACM.

Reil, T. and Husbands, P. (2002). Evolution of central pattern
generators for bipedal walking in a real-time physics envi-
ronment. [EEE Transactions on Evolutionary Computation,

6(2):159-168.

Sims, K. (1994). Evolving 3D morphology and behavior by com-
petition. Artificial Life, 1(4):353-372.

Smith, R. (2013). Open Dynamics Engine, http://www.ode.org/.

Spector, L. (2012). Assessment of problem modality by differential
performance of Lexicase selection in genetic programming:
A preliminary report. In Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Com-
putation, pages 401-408, Philadelphia, Pennsylvania, USA.
ACM.

Stanton, A. and Channon, A. (2013). Heterogeneous complexifi-
cation strategies robustly outperform homogeneous strategies
for incremental evolution. In Proceedings of the 12th Euro-
pean Conference on Artificial Life, pages 973-980, Taormina,
Italy.

