Composable Modular Models for Synthetic Biology

GOKSEL MISIRLI, JENNIFER HALLINAN, and ANIL WIPAT, Newcastle University

Modelling and computational simulation are crucial for the large-scale engineering of biological circuits since
they allow the system under design to be simulated prior to implementation in vivo. To support automated,
model-driven design it is desirable that in silico models are modular, composable and use standard formats.
The synthetic biology design process typically involves the composition of genetic circuits from individual
parts. At the most basic level, these parts are representations of genetic features such as promoters, ribosome
binding sites (RBSs), and coding sequences (CDSs). However, it is also desirable to model the biological
molecules and behaviour that arise when these parts are combined in vivo. Modular models of parts can
be composed and their associated systems simulated, facilitating the process of model-centred design. The
availability of databases of modular models is essential to support software tools used in the model-driven
design process. In this article, we present an approach to support the development of composable, modular
models for synthetic biology, termed Standard Virtual Parts. We then describe a programmatically accessible
and publicly available database of these models to allow their use by computational design tools.

Categories and Subject Descriptors: J.3 [Life and Medical Sciences]: Biology and genetics; J.6 [Computer-
Aided Engineering]: Computer-aided design (CAD)

General Terms: Design, Standardization

Additional Key Words and Phrases: Synthetic biology, model-driven design, composable models, model an-
notation, database of models, standard virtual parts

ACM Reference Format:

Goksel Misirli, Jennifer Hallinan, and Anil Wipat. 2014. Composable modular models for synthetic biology.
ACM J. Emerg. Technol. Comput. Syst. 11, 3, Article 22 (December 2014), 19 pages.

DOIL: http://dx.doi.org/10.1145/2631921

1. INTRODUCTION

One ambition of synthetic biology is the large-scale engineering of biological systems
[Fritz et al. 2010; Hallinan et al. 2010; Young and Alper 2010]. This goal extends con-
ventional genetic engineering to the design and implementation of entire pathways and
even whole genomes [Liang et al. 2011]. It is therefore necessary to facilitate biological
engineering at a genomic scale, building on developments in high-throughput biology.
As the complexity and size of designs increases, the manual design of genetic circuits
becomes more challenging and the use of automated strategies and new computational
tools becomes important [Misirli et al. 2011]. Computational approaches are highly
desirable for designing complex systems and for improving the predictability of the
behaviour of an in silico system once implemented in vivo [Smolke and Silver 2011].
The mapping between the desired properties of a large complex system and the
genetic parts necessary to encode the system in vivo is difficult, if not impossible for

This work is supported by the Engineering and Physical Sciences Research Council under grant
EP/J02175X/1 and the Engineering and Physical Sciences Research Council/National Science Foundation
under grant EP/H019162/1.

Authors’ address: School of Computing Science and Centre for Synthetic Biology and Bioexploitation,
Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Correspondence email: anil.wipat@ncl.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.

2014 Copyright is held by the author/owner(s).

1550-4832/2014/12-ART22

DOTI: http://dx.doi.org/10.1145/2631921

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:2 G. Misirli et al.

a human to carry out manually. In particular, dynamic models of a system promise to
help optimise the design of the system by predicting the behaviour of the system before
implementation in vivo. Such models seek to capture in silico representations of the
biological entities involved in the system, the abundance of those entities, their dynamic
behaviour and the relationships between the entities. Models can thus potentially act
as blueprints for the design of a system to be implemented, since they already contain
information about the entities required in a system — information exploited in so-called
model-driven design.

Model-driven design is used extensively in a number of different engineering do-
mains including the software, automotive, and aerospace sectors [Feiler et al. 2005].
Models can be constructed to represent the relationships between elements in a sys-
tem and consequently used to derive the process by which the system is generated
[Balasubramanian et al. 2006]. Using this approach, models are transformed into
platform-specific electronic designs. For example, in embedded electrical systems, a
model that represents a system with a set of requirements can be used to automat-
ically generate the hardware implementation of the system [Henzinger and Sifakis
2006]. As with genetic circuits, these systems are built with individual components
such as transistors and logic gates, and the output of one component must be com-
patible with the input of the next component in order to allow the flow of data among
the components. Components can be represented with transfer functions that produce
outputs for given inputs using a set of equations. The integration of a set of equations
from these transfer functions allows models to be produced that can be simulated in
order to choose among and verify designs. The manual creation of simple electronic
circuits was long ago replaced with the use of computer-aided design (CAD) tools and
design automation. As a result, electronic design automation has become an indus-
try in which very-large-scale integrated circuits can be constructed from well-defined
components and subsystems that are electrically and physically correct [MacMillen
et al. 2000]. This approach is clearly applicable to the design of synthetic genetic
circuits.

Several computational design tools that allow synthetic genetic circuits to be de-
signed and simulated have been developed [Cai et al. 2007; Chandran et al. 2009;
Funahashi et al. 2003; Kaznessis 2007; Li et al. 2010; Marchisio and Stelling 2008;
Myers et al. 2009; Pedersen and Phillips 2009; Rodrigo et al. 2007a, 2007b]. These
tools often use libraries of mathematical models of biological parts in order to aid
a user in building complex and predictable designs [Hill et al. 2008; Pedersen and
Phillips 2009]. However, there is a lack of modular and reusable models of biological
parts in standard formats [Cooling et al. 2010]. The availability of databases of such
models would provide a useful computational resource to support tools for the design
of synthetic genetic circuits. These databases must store information about parts and
their interactions, such as how they function together and regulate each other. These
approaches can be used to constrain the possible solution space for computational
designs. Qualitative information about parts and their interactions can be used to
optimise the computational design of genetic circuits [Zomorrodi and Maranas 2014].
Moreover, by annotating parts with quantitative parameters, the dynamics of systems
can be simulated [Endler et al. 2009; Stelling 2004].

Modular modelling approaches for synthetic biology have been demonstrated in sev-
eral previous studies [Marchisio and Stelling 2008; Rodrigo et al. 2007a, 2011]. How-
ever, there is not always a one-to-one mapping between entities in these models and
the biological parts used to build actual systems in vivo [Rodrigo et al. 2011]. Although
these approaches include a formalism for representing models of parts, the number of
models available is small. Whilst libraries of models are available for systems biology
[Li et al. 2010], there are very few models available for synthetic biology. There is a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:3

clear need for computationally accessible and searchable libraries of models of parts
for genetic circuit design.

In modular modelling, models represent mathematical representations of biological
reactions; however, these models usually do not contain information about the biologi-
cal entities they represent. As a result, the composition of models is often application
specific. In order to automate the process of model composition and to make the compos-
able models available to existing tools, these models may be annotated with metadata.
Such metadata can include information about how to interpret and compose these
models using computational approaches.

Modular models of parts and their interactions can also be based on standard formats
at appropriate levels of abstraction. The Systems Biology Modelling Language (SBML)
[Hucka et al. 2003] and CellML [Cuellar et al. 2003] are two modelling languages that
allow the computational exchange of models. These languages are also actively used
by the synthetic biology community [Marchisio and Stelling 2009]. SBML is supported
by 257 tools at the time of writing.! Both languages are XML based, allowing the elec-
tronic exchange of models between computer applications and supporting the writing
of ordinary differential equation (ODE) representations of biological reactions.

We have previously described a modelling formalism for biological systems design,
Standard Virtual Parts (SVPs). SVPs are abstract models that are designed to represent
basic, physical biological parts such as promoters, RBSs, and CDSs in silico [Cooling
et al. 2010]. Intracellular events such as biochemical processes and gene products
that influence the behaviour of a genetic circuit can also be represented using SVPs.
SVPs have standard inputs and outputs that allow the construction of models of large
systems to be built from basic biological parts. The interfaces are based on widely
accepted biological signals such as polymerases per second (PoPS) and ribosomes per
second (RiPS) [Braffet al. 2005] as described in previous modular modelling approaches
in synthetic biology [Marchisio and Stelling 2008; Rodrigo et al. 2007a]. Sharing these
common signals makes the models composable [Marchisio and Stelling 2009].

This previous work provides the theoretical foundation for a model-based design
approach in synthetic biology, but it has drawbacks. First, the modelling of a single
biological part requires joining several SVPs together. SVPs, in this approach, refer
to any model fragment that models some biology, including molecular interactions.
Therefore, composition of models is not straightforward and requires the tracking of
different reaction fluxes for every part. Second, SVPs refer to models of parts and also
their interactions. Separating models of parts and their interactions with other parts
would facilitate constructing higher-level systems using a modular approach. Third,
and most importantly, computational composition of models using these SVPs is not
possible, since the metadata needed to facilitate such a process has not been defined.
Finally, although a repository was made available as part of this original work, there
were only few SVPs that could be used in model composition. In addition, the repository
was not available for programmatic access, and models could only be browsed manually.
In order to construct large, complex biological systems, large amount of information
about biological parts and their interactions from the literature and public databases
should be integrated and made available in standard formats. Moreover, the require-
ment for a model repository is different in systems biology approaches. For example,
the BioModels database [Li et al. 2010] provides models that can be simulated or can be
used in computational analyses. However, for a model-driven design approach, models
may be incomplete and may require additional information for the model composition
process. Moreover, in order to choose model fragments computationally, models should
be associated with functional terms. For example, searching for models of promoters

Thttp://sbml.org/SBML_Software_Guide.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:4 G. Misirli et al.

should be possible based on whether the promoters are inducible or repressible, or
using their relative strength.

In this work, we extend the SVP concept using annotations to encapsulate biochem-
ical reactions that are specific to the biological part being modelled, allowing a single
SVP to be provided for a single genetic part. Annotations are also used to specify the
inputs and outputs of SVPs. We defined additional types of operators, spacer sequences
and promoters. We extended the SVP concept to other modelling formalisms, includ-
ing SBML. A public, programmatically accessible repository called the Virtual Parts
Repository? was developed to provide access to this library of SVPs. This repository
was populated by integrating data from several sources and allows different search
options for different types of parts. The Repository also stores models of interactions
which can be used to combine models of individual parts in order to create simulatable
models.

2. METHODS
2.1. SVP Types

The modular nature of SVPs allows new templates to be defined at any desired level
of abstraction. In this work, the set of SVP types was extended beyond those described
previously [Cooling et al. 2010] to include operators and shims (spacer sequences). A
set of promoters acting as two-input logic gates was also defined. The modelling of
these promoters takes their relationships with binding transcription factors (TF's) into
account. Different types of logic gates, such as NAND and NOR, are modelled based on
physical constraints such as the proximity and strength of operators and promoters.
SVPs were also extended to encapsulate biochemical reactions, in order to create a
one-to-one mapping between SVPs and corresponding sequence features.

2.2. Mapping SVPs to Genetic Elements

In this work, SVPs are constructed as coarse-grained models with inputs and outputs.
Entities representing reactions that are specific to an SVP are encapsulated in the
model in order to simplify the process of connecting SVPs. For example, recurring
entities such as protein translation and degradation elements are incorporated inside
the SVPs and thus do not need to be added explicitly when SVPs are joined together.

CDSs and the behaviour of their encoded products are modelled using
FunctionalPart SVPs. An SVP of type FunctionalPart has a RiPS input that can
be connected to an RBS SVP. The output of such a FunctionalPart SVP may consist of
one default entity, but may also include modified forms of gene products. For example,
for a protein that can be phosphorylated, both its unmodified and phosphorylated forms
are the output of the SVP. Additional inputs can also be defined. For a protein that is
induced by an environmental factor, the concentration of the inducer molecule can be
used as an input, assuming that the interaction between the inducer and the protein
can be abstracted using a Hill-like equation [Alon 2006], so that it can be encapsulated
inside the SVPs.

SVPs encapsulate the entities for gene products and their production. The interac-
tions between gene products, environmental factors and biochemical reactions such as
degradation and deactivation are modelled as internal interactions. Figure 1 depicts an
SVP for a CDS and its encoded protein product. The RiPS signal is converted to a pro-
tein flux via a translation reaction. The concentration of the protein is represented by
a model entity, such as a species in SBML. The protein is induced by a small molecule
which acts as an input to the SVP. The reaction which models the activation of the

Zhttp://www.virtualparts.org.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:5

CDS-Protein SVP

Protein——m»
S Protein | _——> Protein
RiPS—», Production

«

Protein e i
small molecules— 5 i o Protein Protein
—w Deactivation, \Degradation

Protein*
Degradation ¢ “~~— Protein* { .
Proteu‘]*—»

Fig. 1. An example of an SVP for a CDS and its encoded protein. Protein* represents the activated form of
the protein in the SVP. The SVP includes the entities for protein production, and biochemical reactions such
as activation, degradation, and deactivation.

Promoter

PoPS _/PoPS—>
Output

Fig. 2. Promoter SVPs are PoPS generators.

protein links the unmodified and activated forms. The flux from this reaction is an in-
crease in the number of molecules of the activated form of the protein, and a reduction
in molecular levels of the unmodified protein. Both forms of the protein are also linked
through the deactivation interaction. In the example in Figure 1, the degradation of
both forms of the protein is encapsulated as part of the SVP. The SVP has outputs that
represent the unmodified and the phosphorylated form of the protein. These outputs
can participate in models of interactions that join different SVPs together.

Modular models can also be defined for interactions that are not encapsulated within
SVPs. Such interactions are between biological molecules that are represented in dif-
ferent SVPs. Examples include the phosphorylation of a response regulator by a kinase,
and the binding of a TF to a promoter in order to activate transcription. In this work,
these interactions are represented by distinct models, which are referred to as mod-
els of interactions, and are used to join SVPs in order to create simulatable models.
For example, in Figure 1, the SVP has outputs that represent the unmodified and the
phosphorylated form of the protein. These outputs can be used to connect the SVP to
another by participating in an interaction model that represents a phosphorylation
interaction.

A promoter SVP is simply a PoPS generator (Figure 2), and mRNA SVPs must be
connected to the PoPS output of a relevant SVP. This approach decouples the use
of promoters and other parts such as operators that affect the final magnitude of
PoPS signals. Relationships between promoters and TF's are represented as models of
interactions. These models have PoPS inputs and outputs that are calculated using the
PoPS inputs and the promoter occupancies of TFs. This approach also provides more
flexibility in the design of genetic circuits, since different TFs can be used to control the
activity of one promoter. A similar approach is also used for operator SVPs, in which
models of interactions for operator and TF SVPs represent the operator occupancies of
TFs.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:6 G. Misirli et al.

mRNA

mMRNA—>

mRNA L —> mRNA =
/P°PS_> Production

mRNA
Degradation

Fig. 3. An mRNA SVP contains modelling entities for mRNA production, degradation and mRNA.

wPoPS—.—mRNA.—RiPS

Fig. 4. Interfacing SVPs with common signal carriers.

@—POPS» Operator1 }—PoPS—+{ Operator2 |—PoPS—»

Fig.5. Anexample of an interface between a promoter and two operators. Operators independently modulate
the PoPS signal.

An mRNA SVP includes entities for mRNA production, degradation and the mRNA
itself (Figure 3). Although this SVP does not have an equivalent physical part at the
DNA level, it is required to connect the modelling of transcription and translation by
transforming PoPS into RiPS.

The definition of inputs and outputs, as demonstrated here, enables the composition
of models that encapsulate detailed biochemical reactions.

2.3. Composing Virtual Systems from SVPs

SVPs are specified with inputs and outputs that refer to widely accepted biological
signals in synthetic biology, such as PoPS (transcriptional) and RiPS (translational),
and the level of a particular biological species. Therefore, as biological parts that send
and receive these signals can be combined based on the exchange of these signals, SVPs
can be combined using these inputs and outputs. Promoter SVPs have PoPS outputs
that are converted into mRNAs (Figure 4). RBS SVPs have mRNAs as the input and
produce RiPS as the output, which can then be used as the input for proteins. Each
molecular form of a protein is represented as output. These signals specify how SVPs
can be combined without handling fine-grained internal modelling entities and their
relationships.

Operator and promoter SVPs can be concatenated to amplify or reduce PoPS sig-
nals. In our model, these parts do not overlap in genetic context, and their respective
activators or repressors act independently [Bintu et al. 2005]. This assumption allows
the use of operator parts regardless of the nature of upstream and downstream se-
quences [Alon 2006] (Figure 5). The PoPS signal from the final design component can
then be added to an mRNA SVP in order to convert transcriptional level information
to translational-level information. In cases where operators overlap or TFs bind coop-
eratively, operators are modelled as part of promoters in order to reflect the combined
transfer functions.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:7

Table I. RDF Properties with which Entities can be Annotated

Property Possible values Note
mts:InterfaceType Input; Output
mts:SignalType PoPS; mRNA; RiPS; Species; Enables the composition of models based on
EnvironmentConstant; Volume | biological signal carriers
mts:MolecularForm Default; Phosphorylated; This list can be extended
Dimer; Tetramer
mts:Species Species that represent physical molecules
can be linked to these molecules with this
property

2.4. Computational Composition of SVPs

SVPs can be joined manually to create models of systems. However, this process is
time consuming and error-prone. Ideally, SVPs should be joined computationally, for
example using CAD tools or biospecific composition languages, to facilitate large-scale,
model-driven design. Although it is obvious to an expert that a CDS should be placed
after an RBS, to enable computational design the flow of signals between biological
parts must be defined in a computationally comprehensible format.

In order to facilitate the computational composition of SVPs, SVPs are annotated
with machine-readable metadata about inputs and outputs. These annotations are
embedded in the XML structure of SVPs, and can be exchanged between tools with
no loss of information, using a formalism such as RDF [Endler et al. 2009]. Each SVP
is annotated with a list of inputs and outputs that can be mapped to the relevant
entities. These annotations consist of resource-property-value RDF triples. In each
triple the resource is the SVP being annotated, the property is whether the interface is
an input or output, and the value is the modelling entity referred to by the annotation.
Properties belong to a special namespace® and are prefixed with mts. The uniform
resource identifier (URI) for the namespace does not exist physically; however, it is used
to construct unique URIs. Input and output properties are specified with mts:Input
and mts:0Output URIs.

Modelling entities are annotated with additional information in the form of
RDF/XML, and are stored in the XML structure of the corresponding modelling en-
tities. This additional information is in the form of RDF properties (Table I).

2.5. Using Integrated Datasets to Construct SVPs

One approach to expanding the number of genetic parts available for synthetic biology is
to mine the definitions (sequence, function, etc.) for these parts from existing biological
information which is already publicly available [De Las Heras et al. 2010; Misirli 2013].
Furthermore, the creation of in silico models that define the behaviour of these mined
parts allows designs to be tested in silico via simulation. However, biological data
are often heterogeneous and spread in multiple databases, and therefore needs to be
integrated and presented to computational tools in suitable formats.

One such integrated dataset, constructed specifically for the model Gram-positive
organism Bacillus subtilis, is BacillOndex [Misirli et al. 2013]. This database includes
information about sequence-based genetic features that can be used as biological parts,
together with biological interactions between these parts and annotations. SVPs were
constructed for promoters, operators and CDSs encoding TFs from this dataset. In-
formation about relationships such as the TF regulation of promoters and the TF
binding of operators is incorporated. Interaction models can be used to join these SVPs

Shttp://purl.org/modeltosequence/1.04.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:8 G. Misirli et al.

together. Sequences for shims, RBSs, and terminators were also extracted as basic
biological parts.

Some of these TF's are response regulators that are part of two-component systems.
Such TF's must be activated by kinase proteins via phosphorylation. Therefore, SVPs
were also constructed to represent enzymes such as kinases. Phosphorylation reactions
between these proteins are represented as modular models. Different molecular forms
of proteins were incorporated into the SVPs based on the types of their interactions.
Metadata about SVPs also include Gene Ontology (GO) terms [The Gene Ontology
Consortium 2001] and data from Clusters of Orthologous Groups (COGs) database,
which are used to assign orthology group memberships to gene products and thereby
indicate protein function [Tatusov et al. 2001].

SVPs are derived from templates which are instantiated using different quantitative
parameters. The templates specify the rules regarding particular types of molecular
interactions, and SVPs include models of these interactions for different biological en-
tities. Although biochemical parameters are important for simulations [Silva-Rocha
and de Lorenzo 2010], obtaining these parameters can be difficult [Westerhoff and
Palsson 2004], and in most cases these parameter values are unknown. Here, quanti-
tative parameters were selected from a range of values reported in the literature. In
addition to deriving new SVPs, the BacillOndex knowledgebase was used to retrieve
an estimate of the relative strengths of promoters. BacillOndex includes normalised
values for maximum and minimum gene expression values from 79 microarray exper-
iments [Misirli 2013]. These normalised values were used to estimate transcription
rates of promoter SVPs. It has been known that prokaryotic transcription rates vary
between 0.0001 and 1 mRNA per second, and 80 bp can be transcribed per second [Alon
2006]. Transcription rates in the literature have also been reported within this range
[Braff et al. 2005; Elowitz and Leibler 2000; Ozbudak et al. 2002; Voigt et al. 2005].
In order to construct promoter SVPs with initial values, maximum normalised gene
expression values were mapped into a range between 0.0001 and 1. The new rates
represent relative transcription rates and can be used in simulations. Based on the
literature, the half-lives of mRNA and protein molecules are assumed to be 2 and 10
minutes, respectively [Elowitz and Leibler 2000]. Using the formula 1n(2) /half-life
[Alon 2006], the corresponding rates of degradation of mRNAs and proteins per second
are calculated as 0.0058 and 0.0012, respectively. 1000 nM for a TF in a bacterial cell
is a high concentration, and Km disassociation constants can change between 1 nM
and 10000 nM [Buchler et al. 2003]. Therefore, these constants were initially assigned
as 500 nM. Phosphorylation and dephosphorylation rates were selected as 0.0001 per
nM per second and 0.1 per second, respectively [Bray et al. 1993]. The RBSCalculator
application [Salis et al. 2009] was used to estimate translation rates from RBS parts.

2.6. Construction of the Virtual Parts Repository and Programmatic Access

The Virtual Parts Repository was developed as a Web application using Java. Maven*
is used to handle subprojects and dependencies, and to build new releases. Metadata
about biological parts and molecular interactions are stored in a relational database.
In the data model, interactions have parameters and interacting parts which may have
properties in the form of name-value pairs. These properties are used to store additional
information such as part type, PubMed ID, and host organism, and are used to filter
SVPs when querying. The persistence of the objects is carried out by the DataNucleus
API.® Once the Repository is constructed, SVPs are built using the metadata and are
stored as objects in the database.

4http://maven.apache.org.
Shttp://www.datanucleus.org.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:9

The current repository was populated with data mined from an ontology represen-
tation of the BacillOndex dataset [Misirli 2013]. This ontology was used to classify
sequence-based features, based on their composition and the molecular interactions.
Examples include the identification of inducible promoters, classification of promoters
based on sigma factors and the identification of CDSs using the biological functions
of their encoded proteins. The ontology was queried about the sequence features and
molecular interactions using the Jena API® and the results were stored in the Repos-
itory’s database. The classification results are assigned to SVPs using the subtype
properties.

Computational data exchange is facilitated by using existing data standards such
as SBML for models and the Synthetic Biology Open Language (SBOL) [Galdzicki
et al. 2014] for DNA sequence information. The Repository has a lightweight, REST-
based Web service interface [Curbera et al. 2002] that allows computational tools to
retrieve metadata about biological parts and their SVPs. An API that would allow
programmatic access to the Repository was also developed using Java. This API uses
the Web service interface to retrieve data in the form of Java objects and available
from the Repository’s website.” Models are returned using the SBMLDocument objects
of the SBML's JSBML library [Dréager et al. 2011] which provides Java objects for
SBML entities. SBOL-related data is interpreted using the 1libSBOLj® API. Composite
biological circuit designs are visualised using PigeonCAD [Bhatia and Densmore 2013]
which has a Web application that can receive designs in a custom format and produces
downloadable images.

3. RESULTS

SVPs are publically accessible from the Virtual Parts Repository (Figure 6). The Repos-
itory contains, at the time of writing, 3,015 SVPs and 699 interactions. We have
currently populated the Repository with SVPs relevant to B. subtilis, although the
framework is generic enough to support the creation of SVPs for a range of different
organisms, and work is currently underway to include parts for other organisms such
as Escherichia coli.

3.1. Standard Virtual Parts

The core annotations of an SVP include its ID, name, description, type, sequence, source
organism and whether the SVP is manually or computationally created. SVPs can also
include details of biochemical reactions, such as degradation, that are not dependent on
other parts. Such reactions are listed as internal events and are encapsulated as part
of the metadata for each SVP. Models of SVPs include these internal interactions and
some of the metadata such as type and sequence information about the part (Table II).

SVPs can be assigned additional subtype information to enhance basic type informa-
tion (Table III). These subtypes are useful for the selection of parts at a finer level of
granularity and each SVP may possess more than one subtype. For example, an SVP
of basic type Promoter may also be both a SigAPromoter and a InduciblePromoter,
annotations which indicate that the part is an inducible SigA promoter. These types
refer to terms from ontologies such as the Sequence Ontology (SO) [Eilbeck et al. 2005]
and an ontology that has been developed in house in order to define semantically types
of biological parts [Misirli 2013]. Similarly, operators can be filtered according to the
type of regulation of their TFs. The CDSs and their encoded products are modelled as
functional parts which are functionally defined using COG numbers.

Shttp://jena.apache.org.
"http://;www.virtualparts.org.
Shttps://github.com/SynBioDex/libSBOL;.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:10 G. Misirli et al.

L -) 4= ~ Y 4 . = W,

Standard Virtual Parts

Virtual Parts is a repository of standard virtual parts (SVPs) which are reusable, modular and composable models

of physical biological parts. These models can be joined together computationally in order to facilitate the model- Newcastle
driven design of large-scale biological systems. Models are available in SBML and Kappa format. Genetic UniVerSity

descriptions of parts can be retrieved using SBOL. The database is still under construction and being manually
curated.

Please use the form below to manually search for SVPs. For computational access to the repository, please use
the Web service interface or the Java AP

Search text

Type Choose a type v FL

Source organism Choose an organism v Co
Filter by property v

(Examples: Has Function "catalytic”, Has Function "GO_0000156", Type "C0G0436", Type "Inducible Promoter”,

Type "Enzyme")
Include all genetic elements

SEARCH

Fig. 6. The Virtual Parts Repository website” (version 1.0.2). Computational access is provided by a REST-
based Web service interface and also by an API.

Table II. Types of SVPs and the
Number of Models for Each Type in
the Current Virtual Parts Repository

(accessed 01/15/2014)

SVP type Number
Promoter 455
Operator 554
RBS 467
Shim 291
Terminator 1,123
FunctionalPart 125

Table Ill. Examples of Subtypes of SVPs and Number of
Corresponding Models in the Virtual Parts Repository

SVP subtype Type Number
Inducible Promoter Promoter 51
Repressible Promoter Promoter 86
Constitutive SigA promoter Promoter 310
Negatively Regulated Operator Operator 333
Positively Regulated Operator Operator 221
Transcription Factor FunctionalPart 94

SVPs may also possess other properties that are assigned in the form of name-value
pairs. These properties include database accession numbers, PubMed IDs, and infor-
mation about the data sources from which the SVPs are retrieved. For FunctionalPart
SVPs, properties also exist for their cellular locations and molecular functions in the
form of GO terms [The Gene Ontology Consortium 2001]. Parts may be retrieved either
manually via the website, or computationally, using Web services.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:11

Table IV. Examples of Types of Interactions in the Current
Virtual Parts Repository (accessed 01/15/2014)

Interaction type Number
Transcriptional activation 44
Transcriptional repression 85
Phosphorylation 27
Transcriptional activation by an operator 196
Transcriptional repression by an operator 333

3.2. Models of Interactions

Models of part interactions are stored in the Virtual Parts Repository and can be
retrieved computationally. These models are used to represent interactions between
parts, each of which is represented with an individual SVP. Such interactions con-
strain how biological parts can be used to create functional designs. Models of these
interactions may be needed to join SVPs together in order to create simulatable models,
particularly when representing higher-order trans-based interactions, such as protein-
protein interactions.

The properties of an interaction include information about the interaction’s unique
ID, its description, a mathematical representation of the reaction and its type. The
participating parts, reaction stoichiometries, molecular forms of the parts involved
and kinetic parameters are also part of the metadata for each interaction.

Interaction types currently include transcriptional activation, transcriptional repres-
sion, phosphorylation, dephosphorylation, transcriptional activation by an operator,
and transcriptional repression by an operator (Table IV).

3.3. Computational Access to the Repository

A REST-based Web service has been implemented to retrieve models (SVPs and models
of interactions) and metadata about parts and their interactions. Types, subtypes, and
properties of SVPs can also be used to retrieve a subset of SVPs using this Web service.
An API that enables programmatic access to the Virtual Parts Repository via a Web
service is also available.

The API, called JParts, returns Java objects in response to Web service calls. For
example, in order to retrieve the first 50 SVPs that represent SigA promoters, the
‘GetParts(1, "Promoter", "type", "SigAPromoter")’ method call can be used. Here,
Promoter is the type of an SVP and SigAPromoter is the type of a promoter SVP. SVPs
can also be searched for according to their functional roles. For example, protein SVPs
with associated GO classes can be searched for based on their molecular functions and
cellular locations. Parts can also be retrieved by their IDs. A list of interactions for
a part can be retrieved using a different method call. Additionally, SBML models of
parts and interactions can be retrieved. JParts also provides utility methods to create
a container model into which SVPs and their interactions can be placed, and to join
inputs and outputs of SVPs and models of interactions. The PartsHandler class is used
to access models of parts and interactions. The ModelBuilder class is used to add these
SVPs into an SBML model and to join them using the defined inputs and outputs of
SVPs. The resulting file can be simulated using tools such as COPASI [Hoops et al.
2006].

3.4. A Use Case: Computational Composition of the Subtilin Receiver System from SVPs

In order to demonstrate SVPs and their interface, the construction of a subtilin receiver
device is provided. In this system, the lantibiotic (a class of small peptide antibiotic)
subtilin is sensed by a two-component system (TCS) [Bongers et al. 2005; Klein et al.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:12 G. Misirli et al.

pSpaRK RBS spakK RBS spaR terminator pSpaS RBS gfp terminator

Fig. 7. The subtilin receiver device. Adapted from Cooling et al. [2010]. SpaK* and SpaR* represent the
phosphorylated proteins. Dotted and continuous arrows respectively represent gene-protein and protein-
protein interactions.

1993], which comprises the kinase protein SpaK and the regulatory protein SpaR.
CDSs encoding these proteins are located in the same operon and are transcribed by a
constitutive promoter. Each CDS has its own RBS.

In this synthetic system, this operon comprises the phosphate-mediated signalling
system required to form an activated SpaR protein (Figure 7). Upon sensing sub-
tilin, SpaK activates SpaR via phosphorylation. The activated SpaR then activates the
downstream pSpaS promoter to express the green fluorescent protein (GFP) [Spiller
et al. 2010] as a reporter protein. Both SpaK and SpaR are autodephosphorylated at a
constant rate.

The computational model of the subtilin receiver device includes modelling entities
for the activation and deactivation of the SpaK and SpaR proteins, the transcription
of mRNAs from the two promoters, and the translation of proteins. Modelling entities
representing the degradation of all of the proteins and mRNAs in the device are also
added to the model. In the model, the PoPS signal from the pSpaRK promoter is
converted into mRNAs. It is assumed that the mRNA transcription is uniform for both
CDSs. Therefore, both RBSs for spaK and spaR use the same mRNA output from the
pSpaRK promoter to produce RiPS signals which are then converted into the SpaK
and SpaR proteins. The activation of SpaR is modelled via an interaction between the
SpaK and SpaR SVPs. Similarly, the activation of the pSpaS promoter by the activated
SpaR is modelled via an interaction between the corresponding SVPs. This interaction
has a PoPS output which is converted into mRNA, the input for the third RBS in order
to produce GFP.

The subtilin receiver model can be constructed from SVPs using the API according
to the following rules.

(1) Create an empty model and add the SVPs.

SVPs required to construct the device are the “pSpaRK” and “pSpaS” promoter
SVPs; three SVPs representing the RBSs for spaK, spaR, and gfp CDSs; and three
FunctionalPart SVPs for SpaR, SpaK and GFP proteins and their encoding CDSs
(Figure 8).

(2) Add mRNA SVPs.

An mRNA SVP is used for SVPs representing the RBSs for spaK and spaR CDSs,
and another one is used for the RBS preceding the gfp CDS.

(3) Join SVPs by connecting their inputs and outputs with the same types using the
following rules:

—Connect the PoPS output of a promoter SVP to the PoPS input of an mRNA SVP.
—Connect the mRNA output of an mRNA SVP to the mRNA input of an RBS SVP.
—Connect the RiPS output of an RBS to the RiPS input of a FunctionalPart SVP.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:13

mRNA S - RiP S+ [l —Spak* m
[RiPS
SpaK_SpaR
| I—PoPS-»[mRNA_\SpaRKl RBS_GFP
mRNALTTRTTLY-RiPS pou M MRNA
Pak'y mRNA_GFP
SpaR_pSpaS PoPS’
Interaction
siss g

Fig. 8. Relationships between the SVPs of the subtilin receiver model. Ovals represent interactions and
other boxes represent SVPs. Each SVP has internal modelling entities that are encapsulated. SVPs are
connected with signal carriers such as PoPS and RiPS.

The JParts API’s ModelBuilder class provides a method to add a connection, which is
a simple assignment between the output of one SVP and the input of another SVP. In
the case of SBML, these assignments are implemented using AssignmentRules. SVPs
are already annotated with machine-level information to facilitate model composition
and these annotations are used by the API when connecting SVPs to create systems
models.

(4) Join SVPs by adding models of interactions.

The interaction between the SpaK and SpaR proteins can be added directly to the
container model without any explicit connection, since the connections for reactions
in SBML are implicit. For the interaction between the “pSpaS” promoter and “SpaR”
SVPs, the PoPS output of the “pSpaS” SVP must be connected to the PoPS input of the
model of the interaction between these two parts. Moreover, the PoPS output from this
interaction model should be connected to the corresponding mRNA SVP.

4. DISCUSSION

Design automation for synthetic biological systems is gaining popularity as a means
of constructing large-scale genetic circuits that are not possible to achieve manually
[Densmore and Hassoun 2012]. Computational design, simulation, synthesis and test-
ing strategies are key technologies for these systems. However, computational design
tools often lack access to simulatable models of biological parts [Clancy and Voigt 2010],
a situation which limits the design of complex genetic constructs. SVPs and their asso-
ciated repository, as described in this work, therefore provide a useful resource for CAD
and automation tools by offering a predefined library of modular models that encap-
sulate the behaviour and function of genetic parts. The Web-based interface facilitates
manual selection and browsing by a user, whilst the Web service interface facilitates
programmatic access to allow seamless access by remote software applications.

Another issue with design automation for synthetic biology is that biological sys-
tems have very large design spaces. In order to design biologically plausible systems
in a cost- and time-effective manner, these designs should ideally be constrained to
potentially valuable regions of the search space, using existing knowledge and compu-
tational simulation. The use of abstractions that hide the physical details of molecular
interactions has already facilitated the construction of biological devices from sim-
ple biological parts. In order to automate this process, SVPs can be used to derive
models from which biological systems can be generated automatically. Such a systems
design process [Henzinger and Sifakis 2006] facilitates a model-driven approach to
automatically designing and verifying genetic circuits in silico before implementing
them physically. SVPs are suitable for automating the searching of large design spaces
for both bottom-up and top-down approaches.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:14 G. Misirli et al.

SVPs can be combined computationally to construct a range of large, simulatable
models with the same behaviour, from which optimal solutions can be chosen in a
bottom-up approach. The output of one SVP can be connected to the input of another
SVP. However, not all parts interact with each other, and hence not all designs are
biologically plausible [Densmore et al. 2010]. Without considering such constraints, the
possible solution space for biological systems would grow exponentially [Rodrigo et al.
2011]. Information about interactions between SVPs can be used to identify suitable
SVPs, restricting the number of solutions to biologically plausible designs. Moreover,
SVPs are categorised according to their types, GO terms and COG numbers, allowing
SVPs to be selected using these criteria, prior to the assembly of larger models.

The automation of genetic circuits have been demonstrated via the domain specific
languages (DSLs) and the tools implementing them [Beal et al. 2011]. A design specified
with these languages is then mapped to individual parts. However, solutions should be
verified via simulation. SVPs already provide a mapping between biological function
and DNA sequence. Each SVP may contain a set of equations that takes inputs and
converts them into outputs. Therefore, SVPs can be combined to integrate all of the
transfer functions needed for the verification of a selected solution. SVPs can therefore
be plugged into tools that implement DSLs.

There are also tools, such as SBROME [Huynh et al. 2013] and MatchMaker [Yaman
et al. 2012], that use graph-based approaches to map abstract designs to individual
parts. These tools already work with libraries of parts and biological constraints in
order to realize genetic circuit designs and could benefit from the readily available
SVPs. Optimization-based algorithms have also been proposed to automate genetic
circuit designs. Tools such as OptCircuit [Dasika and Maranas 2008] can similarly
work with libraries of parts and their interactions to construct genetic circuits and
can also suggest kinetic parameters to implement a desired behaviour. With small
libraries of parts, it may be valuable to use directed evolution. Such tools can also
take advantage of SVPs to search for genetic parts that provide desired quantitative
parameters, reducing the effort to carry out these experiments. SVPs would then be
ideal for the application of a dual evolutionary strategy to evolve genetic circuits in
silico first and then to evolve the biological system in vivo or in vitro [Hallinan et al.
2012].

Recently, it has been shown that computational intelligence approaches, such as
genetic algorithms, can be used to guide the composition of SVPs for the design of
specified biological system [Hallinan et al. 2014]. SVPs can also be used by CAD tools
when manually designing biological systems. Virtual parts can be selected and joined
together using a CAD environment. We are currently in the process of integrating
iBioSim [Myers et al. 2009], a CAD tool that is developed for model-based design of
genetic circuits, with the Virtual Parts Repository.

Although model annotation has been used extensively in systems biology, the needs of
model annotation for synthetic biology are unique. In systems biology, models are used
to understand existing biological systems. Therefore, entities representing biological
reactions and molecules such as the proteins that participate in those reactions are
annotated to aid machine-level understanding of these entities [Lister et al. 2010].
However, in synthetic biology the emphasis is on the design of new biological systems
using existing or novel biological parts. Here, annotations are used to facilitate the
model composition, and to identify the types and nucleotide sequences of biological
parts. These annotations are essential to computationally design biological systems
and to derive DNA sequences necessary to encode these systems [Misirli et al. 2011].

The construction of models of biological systems, particularly novel biological sys-
tems, is not a trivial task. This process can be facilitated by using the extensive in-
formation available from biological databases and experimental results [Endler et al.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:15

2009]. The Virtual Parts Repository was populated using a data mining approach,
which demonstrates how existing biological data can be integrated and used as a basis
upon which to construct dynamic models for synthetic biology.

The use of SVPs exemplifies the advantages of using standardised models for syn-
thetic genetic circuits [Marchisio and Stelling 2008; Rodrigo et al. 2007al. SVPs are
stored in a publicly accessible catalogue and can be used by any tools that adopt stan-
dards such as SBML and the widely accepted biological signals [Braff et al. 2005] that
are used as the inputs and outputs of SVPs. The genetic descriptions of parts are avail-
able in the SBOL format. The use of data standards can facilitate the construction of
computational workflows that may include several different tools for biological system
design. This approach has recently been used to specify an abstract genetic circuit and
to automate the finding of solutions [Galdzicki et al. 2014]. The Virtual Parts Reposi-
tory is used to store the resulting genetic circuit designs alongside their computational
models. Having a single repository of models allows standardisation of models and fa-
cilitates a central curation approach. Currently, work is in progress to provide facilities
for curating and submitting user-defined models.

One of the current limitations of SVPs is that parts are considered to be independent
of their genetic context. However, it is known that other factors such as the length of
an operon can affect rates of transcription and translation. Although translation rates
are largely affected by the strength of RBSs, upstream and downstream sequences
can affect three-dimensional structures to prevent the binding of ribosomes and hence
reduce translation rates. There are already tools such as RBSCalculator [Salis et al.
2009] and RBSDesigner [Na and Lee 2010] that can be used to predict such behaviour.
These context dependent design issues are currently difficult to represent, since these
issues only arise when parts are joined together. Therefore, design time refinements
would be useful. In future work, we will update the JParts API and provide meth-
ods that will take genetic context information into account by incorporating existing
tools.

There are a number of design patterns designed to remove context dependency, such
as the use of insulating parts to reduce the effect of genomic context for transcription
[Davis et al. 2010] and translation [Na et al. 2010]; the use of negative feedback to
increase the robustness of genetic circuits to parameter variations [Silva-Rocha and
de Lorenzo 2010]; and reducing retroactivity [Del Vecchio et al. 2008; Kim and Sauro
2011], a quantity that is used to measure how the behaviour of a system changes when
it is connected to downstream components. SVPs can be used to implement these design
patterns. For example, SVPs can be used to implement genetic circuits with positive or
negative feedbacks to create stochastic [Siiel et al. 2006] or fast-response behaviours
[Alon 2007] respectively. Feed-forward loops (FFLs) can also be ideal to implement
a desired behavior; for example, to create a pulse of a signal or to filter noisy signals
(using incoherent type 1 FFL and coherent type 1 FFL, respectively). Negative feedback
can further be coupled with large input amplification (by using a strong promoter
or incorporating fast protein-protein interactions such as phosphorylation) to reduce
retroactivity.

The modular modelling approach and the catalogue of models of biological parts pre-
sented here facilitates the large-scale engineering of complex biological systems using
computational methods. The models are specified with defined levels of abstraction
in the form of mathematical formulae, an approach which is important for standar-
dising the modelling of biological parts for synthetic biology. These modular models
can be accessed computationally from the Virtual Parts Repository. The models also
include annotations that facilitate their computational composition, which is partic-
ularly important when constructing models of large systems that are not feasible to
build manually.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:16 G. Misirli et al.

In this work, we extended previous work on SVPs described by Cooling and col-
leagues and provided a database of SVPs. We encapsulate model entities specific for
a biological part in a single model, an SVP. This encapsulation provides a one-to-one
mapping between SVPs and biological parts and reduces the complexity when building
complex models from smaller models. We also provide a framework to computationally
join SVPs, by identifying inputs and outputs for different types of SVPs. These inputs
and outputs are annotated in SVPs in order to interpret the information necessary for
computational model composition. We integrated existing biological data sources and
mined the resulting dataset as a base to provide a model repository with computational
access to information about large numbers of biological parts and their models. SVPs
can be used to explore the space of possible solutions via computational simulation.
The availability of these standard models and associated metadata are useful for com-
putational tools, for example those that implement DSLs or stochastic heuristics, and
therefore for the automation of the design of predictable large-scale biological systems.

We are currently working to add new parts, curate models, and include support for
other modelling languages. In the future, the Repository will also be updated to extend
the range of organisms and to add chassis-specific data. The API will be enhanced to
provide additional features and to reduce the complexity of building virtual systems.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Michael Cooling, Owen Gilfellon, Dr. Matthew Pocock, the UK Flowers
consortium, and the SBOL community for helpful discussions.

REFERENCES

U. Alon. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman &
Hall/CRC.

U. Alon. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450-461.

K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema. 2006. Developing applications
using model-driven design environments. Computer 39, 33—40.

J. Beal, T. Lu, and R. Weiss. 2011. Automatic compilation from high-level biologically-oriented programming
language to genetic regulatory networks. PLoS ONE 6, e22490.

S. Bhatia and D. Densmore. 2013. Pigeon: A design visualizer for synthetic biology. ACS Synthet. Biol. 2,
348-350.

L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, and R. Phillips. 2005. Transcriptional
regulation by the numbers: Models. Curr. Opin. Genet. Develop. 15, 116—-124.

R. S. Bongers, J.-W. Veening, M. Van Wieringen, O. P. Kuipers, and M. Kleerebezem. 2005. Development
and characterization of a subtilin-regulated expression system in Bacillus subtilis: Strict control of gene
expression by addition of subtilin. Appl. Environ. Microbiol. 71, 8818-8824.

dJ. C. Braff, C. M. Conboy, and D. Endy. 2005. Definitions and measures of performance for standard biological
parts. In Proceedings of the International Conference Systems Biology (ICSB’05).

D. Bray, R. B. Bourret, and M. I. Simon. 1993. Computer simulation of the phosphorylation cascade controlling
bacterial chemotaxis. Molec. Biol. Cell 4, 469—482.

N. E. Buchler, U. Gerland, and T. Hwa. 2003. On schemes of combinatorial transcription logic. Proc. Nat.
Acad. Sci. 100, 5136-5141.

Y. Cai, B. Hartnett, C. Gustafsson, and J. Peccoud. 2007. A syntactic model to design and verify synthetic
genetic constructs derived from standard biological parts. Bioinformatics 23, 2760-2767.

A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P. Nickerson, and P. J. Hunter. 2003. An overview
of CellML 1.1, a biological model description language. Simulation 79, 740-747.

D. Chandran, F. T. Bergmann, and H. M. Sauro. 2009. TinkerCell: Modular CAD tool for synthetic biology. </.
Biol. Eng. 3, 19.

K. Clancy and C. A. Voigt. 2010. Programming cells: Towards an automated ‘Genetic Compiler’. Curr. Opin.
Biotechnol. 21, 572-581.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:17

M. T. Cooling, V. Rouilly, G. Misirli, J. Lawson, T. Yu, J. Hallinan, and A. Wipat. 2010. Standard virtual
biological parts: A repository of modular modeling components for synthetic biology. Bioinformatics 26,
925-931.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. 2002. Unraveling the Web
services web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6, 86—93.

M. Dasika and C. Maranas. 2008. OptCircuit: An optimization based method for computational design of
genetic circuits. BMC Syst. Biol. 2, 24.

J. H. Davis, A. J. Rubin, and R. T. Sauer. 2010. Design, construction and characterization of a set of insulated
bacterial promoters. Nucl. Acids Res. 39, 1131-1141.

A. De Las Heras, C. A. Carreno, E. Martinez-Garcia, and V. De Lorenzo. 2010. Engineering input/output
nodes in prokaryotic regulatory circuits. FEMS Microbiol. Rev. 34, 842—-865.

D. Del Vecchio, A. J. Ninfa, and E. D. Sontag. 2008. Modular cell biology: Retroactivity and insulation. Molec.
Syst. Biol. 4, 161.

D. Densmore and S. Hassoun. 2012. Design automation for synthetic biological systems. Des. Test Comput.
IEEE 1-1.

D. Densmore, J. T. Kittleson, L. Bilitchenko, A. Liu, and J. C. Anderson. 2010. Rule based constraints for the
construction of genetic devices. In Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS’10). 557-560.

A. Drager, N. Rodriguez, M. Dumousseau, A. Dorr, C. Wrzodek, N. Le Novere, A. Zell, and M. Hucka. 2011.
JSBML: A flexible Java library for working with SBML. Bioinformatics 27, 2167-2168.

K. Eilbeck, S. Lewis, C. Mungall, M. Yandell, L. Stein, R. Durbin, and M. Ashburner. 2005. The sequence
ontology: A tool for the unification of genome annotations. Genome Biol. 6, R44.

M. B. Elowitz and S. Leibler. 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403,
335-338.

L. Endler, N. Rodriguez, N. Juty, V. Chelliah, C. Laibe, C. Li, and N. Le Novere. 2009. Designing and encoding
models for synthetic biology. J. Roy. Soc. Interf. 6, S405-S417.

P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert. 2005. An overview of the SAE architecture analysis & design
language (AADL) standard: A basis for model-based architecture-driven embedded systems engineering.
In Architecture Description Languages, Springer, 3—15.

B. R. Fritz, L. E. Timmerman, N. M. Daringer, J. N. Leonard, and M. C. Jewett. 2010. Biology by design:
From top to bottom and back. BioMed Res. Int. 2010.

A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura. 2003. CellDesigner: A process diagram editor for
gene-regulatory and biochemical networks. BIOSILICO 1, 159-162.

M. Galdzicki, K. P. Clancy, E. Oberortner, M. Pocock, J. Y. Quinn, C. A. Rodriguez, N. Roehner, M. L. Wilson,
L. Adam, J. C. Anderson, B. A. Bartley, J. Beal, D. Chandran, J. Chen, D. Densmore, D. Endy, R.
Grunberg, J. Hallinan, N. J. Hillson, J. D. Johnson, A. Kuchinsky, M. Lux, G. Misirli, J. Peccoud, H.
A. Plahar, E. Sirin, G.-B. Stan, A. Villalobos, A. Wipat, J. H. Gennari, C. J. Myers, and H. M. Sauro.
2014. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating
designs in synthetic biology. Nat. Biotech. 32, 545-550.

The Gene Ontology Consortium. 2001. Creating the gene ontology resource: Design and implementation.
Gen. Res. 11, 1425-1433. http://genome.cshlp.org/citmgr?gca=genome%3B11%2F8%2F1425.

J. Hallinan, O. Gilfellon, G. Misirli, and A. Wipat. 2014. Tuning receiver characteristics in bacterial quorum
communication: An evolutionary approach using standard virtual biological parts. In Proceedings of the
IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology.

J. Hallinan, G. Misirli, and A. Wipat. 2010. Evolutionary computation for the design of a stochastic switch
for synthetic genetic circuits. In Proceedings of the 32nd IEEE Annual International Conference on
Engineering in Medicine and Biology Society (EMBC’10) (Buenos Ares, Argentina).

J. Hallinan, S. Park, and A. Wipat. 2012. Bridging the gap between design and reality - A dual evolutionary
strategy for the design of synthetic genetic circuits. In Proceedings of the (Bioinformatics’12) - Interna-
tional Conference on Bioinformatics Models, Methods and Algorithms, February 1-4, J. Schier, C. M. B. A.
Correia, A. L. N. Fred, and H. Gamboa, Eds., SciTePress, 263—268.

T. A. Henzinger and J. Sifakis. 2006. The embedded systems design challenge. In Proceedings of the Interna-
tional Symposium on Formal Methods (FM’06). Springer, 1-15.

A. D. Hill, J. R. Tomshine, E. M. B. Weeding, V. Sotiropoulos, and Y. N. Kaznessis. 2008. SynBioSS: The
synthetic biology modeling suite. Bioinformatics 24, 2551-2553.

S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U. Kummer.
2006. COPASI—a COmplex PAthway SImulator. Bioinformatics 22, 3067-3074.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

22:18 G. Misirli et al.

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein, D. Bray,
A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley,
T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le
Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F.
Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi,
M. Tomita, J. Wagner, and W. J. 2003. The Systems Biology Markup Language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics 19, 524-531.

L. Huynh, A. Tsoukalas, M. Koppe, and I. Tagkopoulos. 2013. SBROME: A scalable optimization and module
matching framework for automated biosystems design. ACS Synthet. Biol. 2, 263-273.

Y. Kaznessis. 2007. Models for synthetic biology. BMC Syst. Biol. 1, 47.

Kyung H. Kim and Herbert M. Sauro. 2011. Measuring retroactivity from noise in gene regulatory networks.
Biophys. J. 100, 1167-1177.

C. Klein, C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine
kinase/response regulator system. Appl. Environ. Microbiol. 59, 296-303.

C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He, A. Henry, M. Stefan, J.
Snoep, M. Hucka, N. Le Novere, and C. Laibe. 2010. BioModels database: An enhanced, curated and
annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4, 92.

dJ. Liang, Y. Luo, and H. Zhao. 2011. Synthetic biology: Putting synthesis into biology. Wiley Interdisciplinary
Reviews: Syst. Bio. Med. 3, 7-20.

A. Lister, P. Lord, M. Pocock, and A. Wipat. 2010. Annotation of SBML models through rule-based semantic
integration. J. Biomed. Semant. 1, S3.

D. MacMillen, R. Camposano, D. Hill, and T. W. Williams. 2000. An industrial view of electronic design
automation. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 19, 1428-1448.

M. A. Marchisio and J. Stelling. 2008. Computational design of synthetic gene circuits with composable parts.
Bioinformatics 24, 1903-1910.

M. A. Marchisio and J. Stelling. 2009. Computational design tools for synthetic biology. Curr. Opin. Biotechnol.
20, 479-485.

G. Misirli. 2013. Data integration strategies for informing computational design in synthetic biology. Ph.D.
dissertation. School of Computing Science, Newcastle University, UK.

G. Misirli, J. S. Hallinan, T. Yu, J. R. Lawson, S. M. Wimalaratne, M. T. Cooling, and A. Wipat. 2011. Model
annotation for synthetic biology: Automating model to nucleotide sequence conversion. Bioinformatics
27, 973-979.

G. Misirli, A. Wipat, J. Mullen, K. James, M. Pocock, W. Smith, N. Allenby, and J. Hallinan. 2013. BacillOndex:
An integrated data resource for systems and synthetic biology. /. Integrat. Bioinf. 10, 224.

C. J. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, and N.-P. D. Nguyen. 2009. iBioSim: A tool for
the analysis and design of genetic circuits. Bioinformatics 25, 2848-2849.

D. Na and D. Lee. 2010. RBSDesigner: Software for designing synthetic ribosome binding sites that yields a
desired level of protein expression. Bioinformatics 26, 2633—-2634.

D. Na, S. Lee, and D. Lee. 2010. Mathematical modeling of translation initiation for the estimation of its
efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes.
BMC Syst. Biol. 4, 71.

E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oudenaarden. 2002. Regulation of noise
in the expression of a single gene. Nat. Genet. 31, 69-73.

M. Pedersen and A. Phillips. 2009. Towards programming languages for genetic engineering of living cells.
J. Roy. Soc. Interf 6, S437-S450.

G. Rodrigo, J. Carrera, and A. Jaramillo. 2007a. Asmparts: Assembly of biological model parts. Syst. Synthet.
Biol. 1, 167-170.

G. Rodrigo, J. Carrera, and A. Jaramillo. 2007b. Genetdes: Automatic design of transcriptional networks.
Bioinformatics 23, 1857-1858.

G. Rodrigo, J. Carrera, and A. Jaramillo. 2011. Computational design of synthetic regulatory networks from
a genetic library to characterize the designability of dynamical behaviors. Nucl. Acids Res. 39, e138.

H. M. Salis, E. A. Mirsky, and C. A. Voigt. 2009. Automated design of synthetic ribosome binding sites to
control protein expression. Nat. Biotechnol. 27, 946-950.

R. Silva-Rocha and V. de Lorenzo. 2010. Noise and robustness in prokaryotic regulatory networks. Ann. Reuv.
Microbiol. 64, 257-275.

C. D. Smolke and P. A. Silver. 2011. Informing biological design by integration of systems and synthetic
biology. Cell 144, 855-859.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

Composable Modular Models for Synthetic Biology 22:19

D. G. Spiller, C. D. Wood, D. A. Rand, and M. R. H. White. 2010. Measurement of single-cell dynamics. Nat.
465, 736-745.

dJ. Stelling. 2004. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7, 513-518.

G. M. Siiel, J. Garcia-Ojalvo, L. M. Liberman, and M. B. Elowitz. 2006. An excitable gene regulatory circuit
induces transient cellular differentiation. Nature 440, 545-550.

R. L. Tatusov, D. A. Natale, 1. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram, B. S. Rao, B. Kiryutin, M. Y.
Galperin, N. D. Fedorova, and E. V. Koonin. 2001. The COG database: New developments in phylogenetic
classification of proteins from complete genomes. Nucl. Acids Res. 29, 22-28.

C. A. Voigt, D. M. Wolf, and A. P. Arkin. 2005. The bacillus subtilis sin operon: An evolvable network. Motif.
Genet. 169, 1187-1202.

H. V. Westerhoff and B. O. Palsson. 2004. The evolution of molecular biology into systems biology. Nat.
Biotechnol. 22, 1249-1252.

F. Yaman, S. Bhatia, A. Adler, D. Densmore, and J. Beal. 2012. Automated selection of synthetic biology parts
for genetic regulatory networks. ACS Synthet. Biol. 1, 332—-344.

E. Young and H. Alper. 2010. Synthetic biology: Tools to design, build, and optimize cellular processes. oJ/.
Biomed. Biotechnol.

A. R. Zomorrodi and C. D. Maranas. 2014. Coarse-grained optimization-driven design and piecewise linear
modeling of synthetic genetic circuits. Europ. J. Oper. Res.

Received January 2014; revised April 2014; accepted May 2014

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 22, Pub. date: December 2014.

