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Abstract

A theoretical analysis is made of combustion instabilities of three combustor configurations. The

equations governing aeroacoustics and combustion are derived, arriving at an acoustic analogy in

terms of the pressure and total enthalpy. A solution for the acoustic analogy is determined in

terms of a Green’s function and initial instability results are presented for the pressure Green’s

function. These predictions are limited by assumptions made about the combustion zone. Finally a

‘reduced complexity’ equation is derived accounting for a generalised combustion zone. The equation

is nonlinear and furnishes limit cycle solutions for finite amplitude burner modes. It is a generalisation

to combustion flows of the Fant equation used to investigate the production of voiced speech (G Fant.

Acoustic Theory of Speech Production. Mouton, The Hague, 1960). The Fant equation governs the

unsteady volume flow past the flame holder which, in turn, determines the acoustics of the entire

system. The equation includes a fully determinate part that depends on the geometry of the flame-

holder and the thermo-acoustic system, and terms defined by integrals involving thermo-aerodynamic

sources, such as the flame and vortex sound sources. Illustrative numerical results are presented

for both the linearised equation and the full nonlinear equation. The linearised equation governs

the growth rate of the natural acoustic modes, which are excited into instability by unsteady heat

release from the flame and damped by large scale vorticity production and radiation losses. The full

nonlinear equation, however, governs the ‘limit cycle’ formation when absorption of sound by vortex

shedding at trailing edges equally opposes sound generation by the flame. Limit cycle modes are of

particular interest because they cannot be captured in linear predictions and are the primary source

of combustor instabilities.
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Chapter 1

Introduction

Sound is generated by unsteady heating of a fluid. Trapped sound waves produced by a flame

which are localised near the source and confined within a gas turbine, afterburner, furnace or other

thermofluid device involve pressure fluctuations whose interaction with the flame modulates the heat

release by changing the fuel burn rate. Large amplitude ‘combustion instabilities’ arise from this

back-reaction when pressure and heat release are appropriately phased [1–10]. These instabilities are

a significant source of structural fatigue and noise radiated into the environment.

Freely burning gas constitutes a monopole acoustic source with strength equal to the volumetric

rate of expansion in the combustion zone [1, 7, 9]. There is also a secondary ‘indirect’ combustion

dipole source producing ‘entropy noise’ and is due to unevenly heated combustion products acceler-

ating unevenly within the mean flow [11–21]. Although interest in this type of source has recently

revived [22–30], understanding factors governing feedback on the direct monopole flame source (i.e.

aerodynamics of the oscillating mean flow, structural vibrations, flame flashback, flame-vortex in-

teractions, burn rate fluctuations produced by flame-area oscillation, saturation of nonlinear heat

release rates, etc) are probably more important for the control of the system instabilities [31–37].
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Traditional vortex sources also radiate predominantly as acoustic dipoles in a confined flow be-

cause of the unsteady surface forces they induce [9,14,28,38,39]. Alternatively, in this case vorticity

production by surface frictional forces caused by a large amplitude acoustic field also involve the

transfer of energy between the sound and the mean flow. Vortex shedding at trailing edges is typi-

cally accompanied by the absorption of sound, and thereby opposes sound generation by the flame

and possibly favours the formation of limit cycle equilibria [9].

Kok et al. [37, 40] have investigated limit cycle properties and acoustic spectra for a flame in

a specially constructed combustor (a vertically oriented ‘Rijke burner’ [41]) of large aspect ratio

and rectangular cross-section. Schematic outlines of two variations of the burner (Configuration I

and II) are depicted in Figures 3.1 and 3.2, showing the burner rotated horizontally and viewed

in the spanwise direction (out of the paper) parallel to the longer rectangular cross-sectional edge.

The burner has piece-wise straight walls, and has uniform widths in the upstream and downstream

sections, so that the rectangular cross-sectional area varies along the duct. Both configurations are

described in detail in Chapter 3.

A full numerical treatment of the thermo-acoustics is computationally intensive and often cannot

be conveniently run for more than a few characteristic operating cycles. Reduced complexity analyses

that avoid a numerical treatment of the whole flow are generally based on one-dimensional acoustic

models [31–33,42–44], where upstream and downstream acoustic waves are coupled to unsteady ther-

mal and other sources in the combustion zone by application of appropriate conservation conditions.

These analyses are limited because they do not account for aeroacoustic flow properties such as vor-

tex shedding. They also assume a planar combustion zone, where thermodynamic variables like the

temperature and density ‘jump’ from an upstream to downstream value at one point along the duct

axis. We describe one of these models in terms of its wave-equation Green’s function in Chapter 4.
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The Green’s function is critically dependent on a burner blockage length ¯̀which accounts for the loss

between the upstream and downstream pressure due to the constriction caused by the flame-holder.

Numerical methods used to determine the burner blockage length are described in Chapter 5.

The mechanics of the combustors, as well as more complicated thermo-acoustic devices, exhibit

strong superficial similarities to those governing the production of ‘voiced’ speech by the throttling

by the glottis of the volume velocity Qo of air expelled during contraction of the lungs. Nonlinear vi-

brations of the ‘vocal folds’ produce large and rapid variations in the glottis cross-section causing air

to enter the upper section of the vocal tract as a succession of ‘puffs’ whose magnitudes determine the

effective acoustic source strength Q of the glottis. The air flow is usually turbulent, and the environ-

ment is too geometrically and structurally complicated to permit a timely and satisfactory complete

numerical analysis. But, a knowledge of the variation of Q with time t and of the correspond-

ing mechanical state of the upper tract is sufficient to determine the principal properties of voiced

speech. This can be achieved by means of a reduced complexity equation for Q(t) called the Fant

equation [45–47], a nonlinear integro-differential equation deduced with the help of an aeroacoustic

Green’s function [48, 49]. The equation is usually tractable, however, only when it can be assumed

that the relevant acoustic frequencies are small enough for sound to propagate one-dimensionally in

the vocal tract. We can formulate a thermo-acoustic Fant equation for the combustor which takes

account of a generalised combustion zone, where temperature and density variations occur between

two points along the duct axis, and which takes account of vortex shedding which may occur at

the flame-holder. In our numerical predictions we assume a quasi-static combustion zone which is

spatially fixed within the burner; however, if more information is known about the combustion zone,

an even more general model can be formulated.

The general form of the Fant equation is derived from the exact equations of fluid motion. This
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avoids the introduction of doubtful approximations in an analysis of a system in which sound is

usually a very small by-product of the flow; simplifications and approximations are delayed until the

very last stages of the acoustic calculation to avoid discarding apparently small, but nevertheless

important, source terms. This is the philosophy advocated to great acclaim by Lighthill [50] in his

theory of aerodynamic sound.

There is a simple analogy between the fluid-acoustic properties of the simple burner of Figure 3.3

and those of the vocal tract. The role of the glottis is played by the narrow constrictions of the flame-

holder. Nonlinear throttling responsible for limit-cycle equilibria is attributed not to changes in the

constriction cross-sectional area but to fluctuations in the heat release from the flame. The acoustic

field downstream of the flame-holder can therefore be ascribed principally to two monopole sources of

strengths corresponding respectively to the volumetric flow rate Q through the constrictions and Qf

from the flame. The mean jet shear layers downstream of the constrictions form prominent vortex

sources, they are responsible principally for controlling the unsteady flow through the constrictions

and the absorption of acoustic energy.

It is argued in this thesis that the methodology of the Fant equation can provide a valuable tool

for investigating flow through thermo-acoustic devices like the combustors described in Chapter 3.

The equation will be used to examine low frequency thermo-acoustic oscillations in the familiar

approximation in which only plane waves propagate within the system. We begin with the equations

governing fluid dynamics in Chapter 2 from which we derive Lighthill’s acoustic analogy as well as an

acoustic analogy for the total enthalpy. We also discuss various source types, including combustion

sources. In Chapter 3, we discuss three combustor models used for the thermo-acoustic predictions.

In Chapter 4, we derive the Green’s function for both the pressure, for which we show eigenfrequency

and modal amplitude results, as well as for the total enthalpy. Two methodologies for determining

4



the combustor blockage length are discussed in Chapter 5. The thermo-acoustic Fant equation is

derived in Chapter 6 and linear and nonlinear volumetric-flow rate predictions are presented for

Configuration III in Chapters 7 and 8. Nonlinear flow rate predictions for Configuration II are

discussed in Chapter 9.
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Chapter 2

Aeroacoustics and thermal sources

In order to formulate the problem of heat as a source of sound, it is first necessary to develop

the equations which define the generation of waves, vorticity, and entropy. In the burner problem,

the moving fluid contains intrinsic kinetic energy and therefore contains vorticity. The presence of

the heat source indicates that there is entropy production in the fluid. The vorticity and entropy

production are the ultimate source of sound production. We will review the equations governing

compressible flow, as well as the formulation of Lighthill’s equations and Lighthill Acoustic’s Analogy

in order to describe monopoles, dipoles and quadrupoles present in flame mixing problems. We will

also formulate the acoustic analogy in terms of the total enthalpy and describe thermal sources in

combustion

2.1 The equations of fluid dynamics

Five scalar equations are required to determine the motion of a fluid at time t and position x = (x1, x2, x3)

because the state of a fluid is only defined when the velocity v and two thermodynamic variables are
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specified. The governing equations are conservation of mass, momentum, and energy.

2.1.1 The continuity equation

Consider a fixed closed surface S which encloses a volume V entirely occupied by fluid. If the density

ρ = ρ(x, t) is defined as the mass per infinitesimal volume dV , the mass enclosed by the surface at

time t is
∫
ρ dV and the net rate at which mass is flowing outward across the surface is

∫
ρv · ndS,

where v is the fluid velocity, n is the unit outward normal, and dS is the infinitesimal surface element.

Mass of the fluid is conserved therefore

d

dt

∫
ρ dV = −

∫
ρv · ndS. (2.1)

We differentiate under the integral sign and use the divergence theorem to yield the traditional form

of the continuity equation [51]

∂ρ

∂t
+ div (ρv) = 0. (2.2)

By expanding the divergence term, the total time derivative of the density D
Dt

= ∂
∂t

+ v · ∇, also

known as the material derivative, of the density is formed. The continuity equation is written as

1

ρ

Dρ

Dt
+ div v = 0. (2.3)

2.1.2 The momentum equation

In its fundamental form, the momentum equation relates the total rate of change of momentum

to the sum of forces acting on it. For convenience, a Cartesian reference frame is assumed and
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subscript notation for vectors and tensors is introduced. For example, the vector x is written as xiei;

summation over i = 1, 2, 3 is implied and hence the vector xiei is equivalent to x1e1 + x2e2 + x3e3,

where e1, e2, e3 form an orthonormal basis with a common origin at O.

Considering a volume of fluid, the sum of the forces
∑

f on the volume is a combination of those

acting on the surface and those acting on the body. The surface forces are represented by the traction

t(n) per unit area. Let fb be the body force per unit mass. Summing both terms and integrating over

the entire body, the total forces acting on it is

∑
f =

∫

V

ρfbdV +

∫

S

t(n)dS, (2.4)

which is equivalent to the convective time rate of change of momentum D/Dt. The equation of

momentum conservation resolves to

D

Dt

∫

V

ρvdV =

∫

V

ρfbdV +

∫

S

t(n)dS. (2.5)

In order to resolve traction vector t(n), a stress tensor is assumed σji where t
(n)
i = σjinj. Substituting

the stress tensor into Equation 2.5, using the divergence theorem and resolving the body force ρfb

into one per unit volume F, one finds

D

Dt

∫

V

ρvidV =

∫

V

FidV +

∫

V

∂σji
∂xj

dV. (2.6)

The total derivative on the left-hand side can be moved within the integral by the Reynolds Transport

Theorem [52]. An arbitrary function F (t) is defined as the integral of F(x, t) over the volume V ,

F (t) =
∫
V (t)
F(x, t)dV . The Reynolds Transport Theorem shows that the function F (t) has a total

8



time derivative equivalent to

D

Dt
F (t) =

D

Dt

∫

V (t)

F(x, t)dV =

∫

V (t)

(
DF
Dt

+ F (∇ · v)

)
dV. (2.7)

Therefore for the function F(x, t) = ρvi, the integral in Equation 2.6 take the form

∫

V

ρ
D

Dt
vidV =

∫

V

FidV +

∫

V

∂σji
∂xj

dV, (2.8)

and therefore

ρ
D

Dt
vi = Fi +

∂σji
∂xj

. (2.9)

Conservation of angular momentum shows that the stress tensor σji is symmetric. It has been

confirmed in numerous experiments that air in thermo-acoustic problems can be considered a New-

tonian Fluid in which the shear stress is linearly related to the shear strain by the constant η, the

viscosity. The stress tensor σji can be expressed in two terms, an isotropic term and a shear term.

We can cast the momentum equation into the Navier-Stokes equation which expresses the forces

acting on a fluid in terms of pressure p, viscous forces, and body forces F. The momentum equations

in its final form is [52,53]

∂v

∂t
+ v · ∇v = −1

ρ
∇p+

η

ρ

(
∇2v +

1

3
∇(∇ · v)

)
+

1

ρ
F. (2.10)
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2.1.3 The energy equation

The internal energy of a fluid u is defined as the difference between heat input Q and work output

w such that

du = dQ− dw = Tds− pd
(

1

ρ

)
, (2.11)

where T , s, p, ρ are the respective temperature, entropy, pressure, and density of the fluid. The

enthalpy b = u+ p/ρ is the total energy available in the system and accounts for fluid displacement.

Differentiation of Equation 2.11 yields

db = Tds+
dp

ρ
= cpdT, (2.12)

where cp is the heat capacity of the fluid at constant pressure. In aeroacoustics it is convenient to

discuss the total enthalpy B = b+ 1
2
v2. Namely,

B =

∫
Tds+

∫
dp

ρ
+

1

2
v2 = cpT +

1

2
v2, (2.13)

which is the principal thermodynamic quantity evaluated in the following aeroacoustic problem.

2.1.4 Vorticity and Crocco’s momentum equation

Vorticity ω = curl v is not directly imparted into the fluid from moving boundaries or any other

external source; it is generated intrinsically and transported by convection and molecular diffusion.

Because vorticity can make a significant contribution to noise but an infinitesimal contribution to

the total fluid power, it is convenient to formulate the momentum equation into one where vorticity
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is the primary source.

In the absence of body forces F, we recast the viscous term of the momentum equation 2.10 using

the vector identity curl curl A = grad div A−∇2A to form

∂v

∂t
+ (v · ∇)v +∇

(∫
dp

ρ

)
= −ν

(
curlω − 4

3
∇(div v)

)
, (2.14)

where ν = η/ρ is the kinematic coefficient of viscosity. Using the vector identity (v · ∇)v = ω ∧ v +

∇(1
2
v2) and the expression for total enthalpy B in Equation 2.13, we cast the momentum equation

in Crocco’s form

∂v

∂t
+∇B = −ω ∧ v + T∇ s− ν

(
curlω − 4

3
∇(div v)

)
, (2.15)

where the first, second, and third terms on the right-hand side respectively correspond to vortic-

ity from vortex shedding, from so called ‘entropy waves’ due to entropy variations (discussed in

Section 2.3), and from viscous dissipation principally in the shear layer near a fixed boundary or

wall.

2.2 Lighthill’s acoustic analogy

In order to find an equation governing sound generation we refer to Lighthill who developed an

acoustic analogy because he was interested in the sound generated by turbulent nozzle flows. He

realised that in an ideal acoustic medium, sound propagates linearly as a wave and so he manipu-

lated the continuity and momentum equations into one where the wave operator
(

1
c2

∂
∂t
−∇2

)
is the

principal one. On the left-hand side of his combined equation the wave operator would act on a

thermodynamic variable, say pressure p or density ρ or total enthalpy B, and on the right-hand side
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there would be a source term called the Lighthill stress tensor which describes sound productions by

turbulent fluctuations.

2.2.1 Equations of linear acoustics

The equations of linear acoustics are obtained by assuming that pressure and density are each com-

posed of a mean value, which is constant, and an acoustic perturbation value, namely p = p0 + p′

and ρ = ρ0 + ρ′. In an ideal acoustic field, the perturbation pressures and densities are much smaller

than their respective mean values,

p′

p0

� 1 and
ρ′

ρ0

� 1. (2.16)

It is apparent in the continuity equation 2.3 that in the generalised case a volume source could

be placed in the fluid, say, a pulsating body. The expression describing this configuration would has

the form [54]

1

ρ

Dρ

Dt
+∇ · v = q(x, t). (2.17)

The linearised form of this equation is formed by expanding the material derivative and discarding

nonlinear terms, yielding

1

ρ0

∂ρ′

∂t
+∇ · v = q(x, t). (2.18)

Like the volume source generalising the continuity equation, an artificial force can generalise the

Navier-Stokes equation to represent say a vibrating body; however, the force introduced can be cast

with the already present body forces, not altering the momentum equation. In the absence of mean

12



flow, Equation 2.10 is linearised to become

ρ0
∂v

∂t
+∇p′ = F. (2.19)

The velocity v is eliminated between Equations 2.18 and 2.19 by subtracting the divergence of

Equation 2.19 from the time derivative of Equation 2.18, yielding

∂2ρ′

∂t2
−∇2p′ = ρ0

∂q

∂t
−∇ · F. (2.20)

The homentropic ratio of the perturbation pressure and density p′/ρ′ defines the square of the speed

of sound

c2 ≡ p′

ρ′
=

(
∂p

∂ρ

)

s

, (2.21)

where the s subscript indicates that entropy is held fixed, and that homentropic and adiabatic flow is

assumed, neglecting losses due to heat transfer between neighboring particles by viscous and thermal

diffusion.

Substituting Equation 2.21, in the form ρ′ = p′/c2
o (co being the mean value of c), into Equa-

tion 2.20 yields
(

1

c2
o

∂2

∂t2
−∇2

)
p′ = ρ0

∂q

∂t
−∇ · F, (2.22)

which governs the production of sound waves by the volume source q(x, t) and body force F.

As described in [55], it can be shown that small errors in specifying the source q(x, t) and the

body force F in a fluid can lead to very large errors in predicting the sound; this is due to only a

tiny fraction of the total available kinetic energy in a fluid radiating as sound waves, proportional to
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M5. Therefore q(x, t) and F are only introduced when it is known how they relate to real sources;

rarely do they ever appear in a complete description of the sound generated in a fluid.

In order to complete the discussion of linear acoustics, we assume body forces are negligible.

Equation 2.19 then implies the existence of a velocity potential ϕ in an incompressible and irrotational

flow, where v = ∇ϕ. In terms of the velocity potential, the perturbation pressure is given by

p′ = −ρ0
∂ϕ

∂t
. (2.23)

Substituting the perturbation pressure written in this form into Equation 2.22, one obtains the

equation of classical acoustics
(

1

c2
0

∂2

∂t2
−∇2

)
ϕ = −∂q

∂t
. (2.24)

Several types of sources can be represented by q(t) and those are discussed in Section 2.2.3; however,

first we show Lighthill’s generalisation of the source.

2.2.2 Lighthill’s equations

It was Lighthill’s goal to develop a wave equation having the same form as Equation 2.24 which

accounted for acoustic perturbations generated by regions of turbulence in a real flow. We begin

writing the momentum equation 2.9 in subscript form

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
+
∂σ̃ij
∂xj
≡ − ∂

∂xj
(pδij − σ̃ij) , (2.25)

where σ̃ij is the viscous stress tensor, σij = −pδij + σ̃ij, and δij is the Kronecker delta function

(= 1 for i = j and 0 for i 6= j). σ̃ij is the antisymmetric part of the velocity gradient and vanishes
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for the case of rigid motion, where there is no deformation. For a Newtonian fluid,

σ̃ij = 2η

(
eij −

1

3
ekkδij

)
, (2.26)

where eij = 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
is the rate of strain tensor. The continuity equation 2.2 is multiplied

by the velocity component vi and summed with Equation 2.25 to obtain the Reynolds form of the

momentum equation

∂ρvi
∂t

= −∂πij
∂xj

, (2.27)

where πij = ρvivj + pδij − σ̃ij is the momentum flux tensor. The pressure term p is replaced by

the perturbation pressure p − p0. In an ideal, linear acoustic medium, the momentum flux tensor

contains only the pressure

π0
ij = (p− p0)δij ≡ c2

0(ρ− ρ0)δij, (2.28)

and the momentum equation then reduces to

∂(ρvi)

∂t
+

∂

∂xi

[
c2

0(ρ− ρ0)
]

= 0. (2.29)

Writing the continuity equation 2.2 as

∂

∂t
(ρ− ρ0) +

∂(ρvi)

∂xi
= 0, (2.30)
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the momentum density ρvi can be eliminated between Equations 2.29 and 2.30 to yield the equation

of linear acoustics satisfied by the perturbation density ρ− ρ0

(
1

c2
0

∂2

∂t2
−∇2

)[
c2

0(ρ− ρ0)
]

= 0. (2.31)

In this approximation, it is assumed that the fluid is at rest at infinity and unbounded. Additionally,

turbulence, externally applied forces, and moving boundaries are neglected. We assert that the sound

generated by turbulence in a real fluid is equivalent to that produced by an ideal, stationary acoustic

medium forced by the stress distribution

Tij = πij − π0
ij

= ρvivj +
(
(p− p0)− c2

0(ρ− ρ0)
)
δij − σ̃ij,

(2.32)

where Tij is the Lighthill stress tensor, which is comprised of three terms. The first term ρvivj is

called the Reynolds stress; it is a nonlinear quantity due to random turbulent fluctuations in fluid

momentum and can be neglected in the absence of turbulence. The second term represents the

excess of momentum transfer by the pressure over that in the ideal, linear fluid of density ρ0 and

speed of sound c0. This is produced by wave amplitude nonlinearity, and by mean density variations

in the source flow. The third term σ̃ij is due to the viscous stress; it is linear in the perturbation

quantities and accounts for the attenuation of sound. σ̃ij can be neglected in source regions of very

high Reynolds number.

The Reynolds form of the momentum equation, written for an ideal, stationary acoustic medium
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of mean density ρ0 and speed of sound c0 subject to the externally applied stress Tij, takes the form

∂ρvi
∂t

+
∂π0

ij

∂xj
= − ∂

∂xj

(
πij − π0

ij

)
. (2.33)

Rewriting the momentum flux for an ideal, linear acoustic medium and resolving the difference in

momentum flux to the Lighthill stress tensor, Equation 2.33 can be rewritten as

∂ρvi
∂t

+
∂

∂xj

[
c2

0(ρ− ρ0)
]

= −∂Tij
∂xj

. (2.34)

The momentum density term can be eliminated using the continuity equation 2.2 using the procedure

used in the formulation of Equation 2.31, yielding the Lighthill equation:

(
1

c2
0

∂2

∂t2
− ∂2

∂xjxj

)[
c2

0(ρ− ρ0)
]

=
∂2Tij
∂xixj

. (2.35)

2.2.3 Monopoles, dipoles, and quadrupoles

The most significant type of source in heat-generated noise is the ‘monopole’ type source which can

be attributed to the volume flux from the flame. The strength of a flame source is defined by the

rate of entropy production where q(t) in Equation 2.24 is

q(t) =
1

cp

∂s

∂t
. (2.36)

The second type of source is the ‘dipole’ and can be thought of as two sources of opposite strength,

q(t) and −q(t), separated by a distance ` [56], where `� λ (λ being the sound wavelength) in order
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to ensure the source is acoustically compact. Due to their counter-acting nature, they have a much

smaller effect in the far-field than the monopole, where the far-field is the area at distance r � c/f

(f = ω/2π being the sound frequency) away from the source. In thermo-acoustic problems, the

dipole-type sources consist of three types: (i) vorticity due to vortex shedding ω ∧ v; (ii) entropy

gradient perturbations ∂(T∇s)/∂t; and (iii) and vorticity due to viscosity in the shear layer near the

duct wall ν curlω.

The third type of source is the ‘quadrupole’ and can be visualised as a nearby pair of equal and

opposite dipoles. A compact quadrupole has a smaller effect in the far-field perturbation pressure

than either the monopole or dipole. In the thermo-acoustic problems, the quadrupoles consist of

vorticity and entropy sources downstream of the flame, and are typically ignored.

2.3 Thermal sources

We consider two types of thermal sources: the first type is a simple heat source, such as say a wire

gauze within a duct, and generates waves strictly due to entropy production; the second is more

complex, such as say a flame, and involves not only waves generated by entropy production but also

so called entropy waves caused by entropy gradients and mixing due to vorticity.

A heat source which strictly generates entropy can be formulated in terms of the perturbation

pressure from Equation 2.22. Neglecting surface forces, we have

(
1

c2
0

∂2

∂t2
−∇2

)
p = ρ0

∂q

∂t
,

where p here and henceforth designates the perturbation pressure, and co and ρo respectively designate
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the mean speed of sound and density. We consider a heated uniform duct of cross-sectional area A

having respective upstream and downstream temperatures T1 and T2, densities ρ1 and ρ2, and speeds

of sound c1 and c2. The heat source qh would typically be defined in terms of heat release per unit

length of the duct and the pressure wave equation would take the form (from [9])

(
1

c2
0

∂2

∂t2
−∇2

)
p =

ρ2

Acpρ1T1

∂qh
∂t

, (2.37)

where cp is the fluid specific heat capacity. The pressure can be directly determined in terms of a

Green’s function which is discussed in detail in Chapter 4.

For more complicated sources where the entropy gradients and vorticity are significant, we for-

mulate a wave equation in terms of the total enthalpy B = cp + 1
2
v2. Taking Crocco’s formulation of

the momentum equation assuming compressible effects are uniform

∂v

∂t
+∇B = −ω ∧ v + T∇ s− ν curlω, (2.38)

we multiply it by the density ρ and take the divergence to obtain

div

(
ρ
∂v

∂t

)
+ div (ρ∇B) = −div (ρω ∧ v − ρT∇ s+ ρν curlω) , (2.39)

assuming ν is constant. The equation of continuity 2.3 allows us to write the first term on the left
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side in the form

div

(
ρ
∂v

∂t

)
= ∇ρ · ∂v

∂t
+ ρ

∂

∂t
div v

= ∇ρ · ∂v

∂t
− ρ ∂

∂t

(
1

ρ

Dρ

Dt

)

= ∇ρ · ∂v

∂t
− ρ ∂

∂t

(
1

ρ

∂ρ

∂t

)
− ∂v

∂t
· ∇ρ− ρv · ∇

(
1

ρ

∂ρ

∂t

)

= −ρ D
Dt

(
1

ρ

∂ρ

∂t

)
.

(2.40)

We can substitute the relation

dρ =

(
∂ρ

∂p

)

s

dp+

(
∂ρ

∂T

)

p

(
∂T

∂s

)

p

ds =
1

c2
dp− βρT

cp
ds,

β = (−1/ρ)(∂ρ/∂T )p being the constant-pressure expansion coefficient, into the last term of Equa-

tion 2.40 so that we can recast the the first term of Equation 2.39 as

div

(
ρ
∂v

∂t

)
= −ρ D

Dt

(
1

ρ

∂ρ

∂t

)
= −ρ D

Dt

(
1

ρc2

∂p

∂t

)
+ ρ

D

Dt

(
βT

cp

∂s

∂t

)
. (2.41)

The scalar product of the velocity v and the momentum equation 2.38 supplies the relation

1

ρ

∂p

∂t
=
DB

Dt
− T Ds

Dt
+
ν

2
v · curlω, (2.42)

which allows us to replace the pressure term on the right side of Equation 2.41, and again recast the

initial velocity term on the left of Equation 2.39 into the form

div

(
ρ
∂v

∂t

)
= −ρ D

Dt

(
1

c2

DB

Dt

)
+ ρ

D

Dt

(
1

c2

(
T
Ds

Dt
− ν

2
v · curlω

))
+ ρ

D

Dt

(
βT

cp

∂s

∂t

)
. (2.43)
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Substitution of Equation 2.43 into 2.39 yields the acoustic analogy in terms of the total enthalpy

(
ρ
D

Dt

(
1

c2

D

Dt

)
− ∂

∂xj

(
ρ
∂

∂xj

))
B

= div (ρω ∧ v − ρT∇ s+ ρν curlω) + ρ
D

Dt

(
βT

cp

∂s

∂t

)

+ ρ
D

Dt

(
1

c2

(
T
Ds

Dt
− ν

2
v · curlω

))
.

(2.44)

The term on the left is very similar to the wave operator acting on the enthalpy. The first two

terms on the right are principally due to scattering with the three terms within the first accounting

for (i) vortex shedding, (ii) entropy waves, and (iii) viscous dissipation near walls, and the second

term due to entropy production near the flame. The third term on the right principally accounts for

dissipation and typically makes only a negligible contribution to the sound and will be ignored [9].

For problems considered henceforth we can assume Mach numbers M = v/c� 1 and an ideal gas

where β = 1/T . We also assume density variations are small and can take momentous derivatives

D/Dt as scalar time differentials ∂/∂t. We have the final form of the acoustic analogy equation for

the total enthalpy

(
1

c2

∂

∂t2
− ∂2

∂xjxj

)
B = div (ω ∧ v − (T∇ s)′ + ν curlω) +

∂

∂t

(
1

cp

∂s

∂t

)
, (2.45)

where here and henceforth B denotes the perturbation value of the total enthalpy relative to its local

value in the absence of flow and sound, and (T∇ s)′ denotes the corresponding perturbation value.

In Chapter 4 we discuss the method of solution for Equation 2.45, the Green’s function.
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2.3.1 Combustion models

The source term on the right side of Equation 2.45 is dependent on the unsteady heat release from the

flame Q′f (having steady release Q̄f ). The combustion models which define the relationship between

the heat release and other variables, such as the say flow speed, is often determined empirically. It

is not our goal to review combustion models; however, the calculations in Chapters 7-9 depend on

these so we will briefly explore a few types of models. Lieuwen [35] have written a thorough review

of combustion, especially related to thermo-acoustics; this will be the basis of this discussion.

Acoustic wave-flame dynamics involve the simultaneous interactions between kinetic, fluid me-

chanic, and acoustic processes over a large range of timescales. Different physical processes may

dominate these interactions at different regions of the relevant parameter space [42, 57, 58]. We

can define four different flame regimes [59]: ‘wrinkled flamelets’, ‘corrugated flamelets’, ‘well-stirred

reactor’, ‘distributed reaction zone’. Flame regimes described as wrinkled or corrugated flamelets

correspond to situations where the reactions occur in thin sheets that retain their laminar structure.

These sheets become increasingly wrinkled and multiconnected with increasing unsteady flow flux

Q′, relative to the laminar flame flux Q̄f . Flame regimes described as well-stirred reactor corre-

spond to the limit where mixing occurs much more rapidly than chemical kinetics and reactions

occur homogeneously over a distributed volume. Our applications will be confined to the wrinkled

flamelets.

Heat release from combustion is typically governed by a flame transfer function which has the

form

F (ω) =
Q̂f/Q̄f

Q̂/Q̄
, (2.46)

where Q̂f and Q̄f are the frequency domain and steady components of the heat release, and Q̂
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and Q̄ are the frequency domain and steady components of the volumetric flux from the mean flow

surrounding the flame. The transfer function F (ω) depends on several factors including the geometry

of the combustion zone, the method of fuel injection, as well as thermodynamic parameters within

and surrounding the combustion.

Bloxsidge [60] describes an experimental afterburner used for measuring a flame transfer func-

tion. The afterburner is modeled as a duct with circular cross-section. Premixed fuel and air enter

upstream through a chocked nozzle and continue downstream until encountering a conical ‘gutter’

acting as a flame-holder, after which the fuel and air burn until finally reaching the duct exit. Sev-

eral measurements are taken from the experimental afterburner. Bloxsidge and Dowling empirically

derive a flame transfer function for this configuration [31,42], having the form

F (ω) =
1

1 + iωτ1

e−iωτ2 , (2.47)

where ω is the complex disturbance frequency, and τ1 and τ2 are the respective dynamic and convec-

tive time delay. τ1 is not physically very well understood; however, τ2 can be thought to be the time

taken for the mean flow to convect across the combustion zone.

The combustor models used in our analysis, which are described in Chapter 3, are very similar

to those used in [31,42,60] so we will use flame transfer function 2.47 in Chapters 7-9.
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Chapter 3

Models of a generic combustor

In our analysis we study three different combustor configurations. The aspect ratio of each is suf-

ficiently large to permit flow and combustion characteristics to be regarded as uniform across the

span and modeled by two-dimensional analytical and numerical methods [37,40,61–63]. In each case,

air enters the upstream duct through a perforated end-wall; the downstream is open. The flame is

in the upstream section of the combustor. The first two configurations are very similar and only

vary in the combustor outside wall geometry in the area around the ‘flame-holder’; they are the

same designs used in the Limousine project. The Limousine project (LIMOUSINE Limit cycles of

thermo-acoustic oscillations in gas turbine combustors) supports this research and is a Marie Curie

Initial Training Network consisting of seven academic and five industrial partners. Below we de-

scribe all three combustor configurations in detail using two-dimensional analytical and numerical

methods [37, 40, 61–63]. In each case, air enters the upstream duct through a perforated end-wall;

the downstream is open. The flame is in the upstream section of the combustor. The first two con-

figurations are very similar and only vary in the combustor outside wall geometry in the area around

the ‘flame-holder’; they are the same designs used in the Limousine project. The third configuration
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varies significantly from the other two. It is a uniform duct a thin constriction, which produces a

shear layer similar to that of the flame holder. Below we describe all three combustor configurations

in detail.

3.1 The Limousine combustor

Both Limousine combustors are modeled as a Rijke burner [40] having a closed upstream end and

open downstream end from which air exits. The air is heated by a flame fueled by a flame-holder.

Rotating the burner so that it rests horizontally, the axial coordinate is x1 and is measured from the

downstream edge of the flame-holder where x1 = 0; the burner has length L and cross-sectional span

`s. A plane is cut at arbitrary depth because of the aforementioned two-dimensional assumption

due to the large aspect ratio. The lateral coordinate is x2 and is measured from the centerline of

the plane, parallel to the x1-axis, where x2 = 0; the upper boundary of the burner is defined by

the function h(x1). The wall of the burner is height h1 above the centerline at the entrance and

h2 at the exit. The upstream and downstream regions of the burner have respective cross-sectional

areas A1 and A2, mean temperatures T1 and T2, perturbation pressures p′1 and p′2, mean densities ρ1

and ρ2, and sound speeds c1 and c2. The initial burner configuration (Configuration I) is depicted

in Figure 3.1. In this configuration, the duct walls and flame-holder are parallel so that the cross-

sectional area inclusive of the constriction caused by the flame-holder remains unchanged aft of the

downstream edge of the flame-holder.

The second burner configuration (Configuration II) is depicted in Figure 3.2. This configuration

varies from the first in that the duct cross-sectional area, inclusive of the flame-holder constriction,

decreases from A1 starting at the upstream edge of the flame-holder and then increases at the
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Table 3.1: Limousine combustor (Configuration I and II) parameters

Description Value
Upstream duct cross-sectional area A1 0.011 m2

Downstream duct cross-sectional area A2 0.006 m2

Distance from flame-holder edge to duct entrance L1 0.322 m
Distance from flame-holder edge to effective duct exit L̄2 1.142 m
Upstream mean temperature T1 288 K
Downstream mean temperature T2 1200 K
Upstream mean density ρ1 1.214 kg/m3

Downstream mean density ρ2 0.292 kg/m3

60°

x1

x2

x3

dL
x  = 1 L2

x

x  = -1 L1 x  = 01

y

A

C

Flame holder

B

Figure 3.1: Schematic section of the first Limousine combustor Configuration I.

downstream edge to A2. This change was made in order to increase the source flow speed near the

downstream edge of the flame-holder in order to increase mixing with the flame.

In both configurations described above the burners are divided into three regions: A, B, and C.

The air enters into A (the cold acoustic region) −L1 < x1 < X1 where the flow is one-dimensional.

The air is then heated in B (the hydrodynamic region) X1 < x1 < X2 where the flow is two-

dimensional, transitioning in area from A1 to A2. Finally, the air passes into the hot acoustic

region X2 < x1 < L2 where the flow is again one-dimensional. The heat released from the flame is
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Figure 3.2: Schematic secction of the second Limousine combustor Configuration II.

Qf = Q̄f + Q′f , where Q̄f is mean part and leads to the increase in mean temperature, and Q′f is

the fluctuating part and acts as a source of the acoustic waves. A pressure node is located at the

entrance plane x1 = −L1 due to it being a closed and another located just outside burner exit of the

burner x1 = L2 + δL = L̄2, in order to account for its open end.

3.2 The idealised duct combustor

The third and idealised combustor configuration (Configuration III) is devised in order to formulate

the Fant equation approach to the problem in Chapters 6-8. The configuration varies significantly

in geometry but captures similar flow features present in the Limousine combustor configurations.

The combustor is modeled as a duct of uniform cross-sectional areaA. In place of the flame-holder

there is a thin constriction which produces a similar shear layer and thus similar vortex shedding.

The point at which the constriction coincides with the centerline of the duct is defined as the origin.
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Table 3.2: Idealised duct combustor (Configuration III) parameters

Description Value
Duct cross-sectional area A 0.011 m2

Distance from aperture to duct entrance L1 0.322 m
Distance from aperture to effective duct exit L̄2 1.142 m
Upstream mean temperature T1 288 K
Downstream mean temperature T2 1200 K
Upstream mean density ρ1 1.214 kg/m3

Downstream mean density ρ2 0.292 kg/m3

The positive x1-axis is measured along the centerline toward the downstream end. The positive x2-

axis is measured along the constriction toward the upper-duct wall. The flame is just downstream of

the constriction. The upstream and downstream ends of the duct are respectively modeled as closed

(at x1 = −L1) and open (at x1 = L̄2). The upstream and downstream regions have respective mean

temperatures T1 and T2, mean densities ρ1 and ρ2, and sound speeds c1 and c2, which is identical to

that of the other configurations. The duct is depicted in Figure 3.3 and its parameters are specified

in Table 3.2.

T1, c1

flame
holder

r, T , c1  1  1
r, T , c2  2  2 dL

x  = -1 L1
x  = 01 x  = 1 L2

A

B

C

x2

x3
x1

lfh

inlet open end

y

x

Figure 3.3: Schematic section of the idealised duct combustor Configuration III.
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Chapter 4

The Green’s function

The Green’s function is the solution to the wave equation generated by an impulse point source at

location x = y at time t = τ . Explicitly,

(
1

c2

∂2

∂t2
−∇2

)
G = δ(x− y)δ(t− τ) where G = 0 for t < τ, (4.1)

where the Green’s function G = G(x,y, t, τ) and c is the local speed of sound. The Green’s function is

unique to any geometric and thermodynamic configuration and has the property that its convolution

with an arbitrary source, say q(x, t), yields the wave response due to that source. Namely,

F(x, t) =

∫ ∫ ∞

−∞
q(y, τ)G(x,y, t, τ)d3ydτ, (4.2)

where
(

1

c2

∂2

∂t2
−∇2

)
F = q(x, t). (4.3)
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In the present problem, for each of the combustor configurations described in Chapter 3, the walls of

the combustor are sufficiently rigid to assume ∂G/∂xn = 0 on the burner walls, where xn is directed

outward from the wall.

We examine two Green’s function for the combustor configurations discussed in Chapter 3. The

first is the pressure Green’s function and is applied strictly to the Limousine combustor Configura-

tions I and II discussed in Section 3.1 and assumes an abrupt temperature jump due to the flame

between the upstream and downstream sections. The time-domain Green’s function is calculated

from its time-harmonic Green’s function; an example is shown determining the ideal combustor

length from the Green’s function modal amplitudes for both Configurations I and II. The second

Green’s function is the total enthalpy Green’s function and is applied to combustor Configuration III

discussed in Section 3.2 and is determined by matching between the two acoustic (A and C) and

hydrodynamic (C) regions. This Green’s function is used to formulate the Fant equation in Chap-

ters 6-8. In both calculations, the Green’s function is dependent on the ‘blockage length’ ¯̀due to the

flame-holder in Configurations I and II and constriction in Configuration III; a detailed discussion

on its calculation is in Chapter 5.

4.1 The pressure Green’s function

The pressure Green’s function satisfies Equation 4.1 and when convoluted with a simple source, which

describes only volume entropy production such as on the right of Equation 2.37, yields the pressure

response from that source. In this section we examine the pressure Green’s function calculated from

the burner eigenfrequencies and its time-harmonic Green’s function. We analyse burner stability

using the Green’s function modal amplitudes as the stability criterion.
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4.1.1 Eigenfrequencies

An infinite number of eigenfrequencies exist in the Limousine combustor; however, experimental

results show that instabilities are caused by only the first few [29]. Therefore, in an effort to be

concise, we confine the discussion to the first three.

Derivation of the equation satisfied by the eigenfrequencies involves first imposing a form of the

velocity potential φ in the acoustic regions A and C where a sinusoidal potential is assumed, and

also in hydrodynamic region B where a linear dependence on x1 is assumed due to the region being

acoustically compact. The velocity potential has the form

φ =





a sin ω
c1

(x1 − L1) acoustic region A x1 < X1,

α + βA2

A1
(x1 − (X1 − Ll)) hydrodynamic region B x1 ≈ X1,

α + β(x1 − (X2 − L̄2)) hydrodynamic region B x1 ≈ X2,

b sin ω
c2

(x1 − L̄2) acoustic region C x1 > X2,

(4.4)

where a = a(y1, ω), b = b(y1, ω), α = α(y1, ω), and β = β(y1, ω) are constants to be determined.

The velocity potentials above must provide continuity of volume flux and pressure across the

boundaries at x1 = X1 and x1 = X2 and therefore must satisfy the conditions below on the left,

yielding the equations below on the right:

Volume flux at X1: A1
∂φ
∂x

∣∣
X1−

= A1
∂φ
∂x

∣∣
X1+

: a ω
c1

cos ω
c1

(X1 − L1) = βA2

A1
,

Pressure at X1: ρ1φ|X1−
= ρ1φ|X1+

: a sin ω
c1

(X1 − L1) = α + βA2

A1
L1,

Volume flux at X2: A2
∂φ
∂x

∣∣
X2−

= A2
∂φ
∂x

∣∣
X2+

: β = b ω
c2

cos ω
c2

(X2 − L̄2),

Pressure at X2: ρ1φ|X2−
= ρ2φ|X2+

: α + βL̄2 = bρ2

ρ1
sin ω

c2
(X2 − L̄2),

(4.5)

31



where subscript ∓ respectively designate upstream and downstream of the respective boundary.

Equation 4.5 is transformed into a 4 × 4 system of equations. The determinant yields the equation

satisfied by the eigenfrequencies. Namely,

fω(ωn) =
ρ2

ρ1

cosωnτL1 sinωnτL2 + cosωnτL2

[A2

A1

c1

c2

sinωnτL1 + ¯̀ωn
c2

cosωnτL1

]
= 0, (4.6)

where τL1 = (X1 − L1)/c1 and τL2 = (L̄2 − X2)/c2 are the times for sound to travel from one of

the two pressure nodes at x1 = −L1 and x1 = L̄2 to the respective nearest hydrodynamic-region

boundary at x1 = X1 and x1 = X2. The burner blockage length ¯̀ is derived in Section 5.1 and

defined in terms of the velocity potential ϕ∗; it has the form

¯̀=

∫ ∞

X2

(
∂ϕ∗

∂ξ
− 1

)
dξ +

∫ X2

−∞

(
∂ϕ∗

∂ξ
− A2

A1

)
dξ +

A2

A1

(X2 −X1).

Substituting the blockage length ¯̀ into Equation 4.5, we obtain a more concise form of the

equations governing conservation of volume flux and momentum

Volume flux: A1
∂φ1

∂x
−A2

∂φ2+

∂x
= 0,

Momentum: p2− − p1 = ρ1
∂φ2+

∂t
− ρ1

∂φ1

∂t
= ρ1

¯̀ ∂φ2−
∂x

.

(4.7)

Equation 4.6 is solved numerically using the Newton-Raphson method with starting estimate

ω
(0)
n = nπc2/(L̄2 − L1). Each consecutive estimate varies from the present estimate by the ratio of

the function’s value and the function’s derivative at that estimate, namely

ω(k+1)
n = ω(k)

n − fω(ω(k)
n )/f ′ω(ω(k)

n ),
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where fω(ω) is the function defined by Equation 4.6.

We determine eigenfrequencies for Configuration I and II described in Table 3.1. The boundaries

of the hydrodynamic region B and the blockage length are determined for both configurations in

Section 5.2. For Configuration I and II, these values are respectively found to be X1 = −0.038 m,

X2 = 0.015 m, ¯̀= 0.095 m, and X1 = −0.038 m, X2 = 0.021 m, ¯̀= 0.138 m. The blockage lengths

are respectively 80% and 130% longer than the hydrodynamic region. Table 4.1 lists the first three

eigenfrequency modes f = ω/2π for Configurations I and II.

Table 4.1: First three eigenfrequency modes for burner Configurations I and II

Eigenfrequency mode n 1 2 3
Eigenfrequency, Configuration I 172.6 Hz 429.9 Hz 544.9 Hz
Eigenfrequency, Configuration II 172.5 Hz 426.3 Hz 528.2 Hz

4.1.2 Green’s function modal amplitudes

We can define the Green’s function in terms of a sum of modal amplitudes gn such that

G(x,y, t, τ) ≡ H(t− τ)
∞∑

n=1

gn(x,y) sinωn(t− τ), (4.8)

where n corresponds to an eigenfrequency mode ωn and the spatial derivative ∂gn/∂x is the ap-

proximate criterion for evaluating the stability of a combustor configuration [44]. In this section we

determine these modal amplitudes.

The time-harmonic Green’s function Ĝ = Ĝ(x,y, ω) exists in spatial and frequency space. Fourier

transformation of the time-domain Green’s function G = G(x,y, t, τ) yields the time-harmonic

Green’s function

Ĝ(x,y, ω) =
1

2π

∫ ∞

−∞
G(x,y, t, τ)eiω(t−τ)d(t− τ). (4.9)
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Similarly, transformation of Equation 4.1 shows that Ĝ satisfies

(
∇2 +

ω2

c2

)
Ĝ = −δ(x− y), (4.10)

in both of the acoustic regions A and C.

Confining the time-harmonic Green’s function to one-dimension Ĝ = Ĝ(x1, y1, ω) and dividing

the hot acoustic region is divided into two parts by a source having position x1 = y1 from which

waves travel forward and backward. Noting the division, the time-harmonic Green’s function has

the form

Ĝ(x1, y1, ω) =





ĜA = a sin k1(x1 − L1) for − L1 < x1 < X1 region A

ĜC1 = ceik2(x1−X2) + deik2(x1−X2) for X2 < x1 < y1 region C

ĜC2 = b sin k2(x1 − L̄2) for y1 < x1 < L̄2 region C,

(4.11)

where a = a(y1, ω), b = b(y1, ω), c = c(y1, ω), and d = d(y1, ω) are constants to be determined, and

k1 = ω/c1 and k2 = ω/c2 are the respective acoustic wave numbers in regions A and C. Replacing

φ1 and φ2+ in Equation 4.7 with Equations 4.11a and 4.11b evaluated at X1 and X2, respectively,

yields the following two equations

ic− id = a
A1

A1

k1

k2

cos k1(X1 − L1)

c+ d = a
ρ̄1

ρ̄2

[
sin k1(X1 − L1)− ¯̀A1

A1

k1 cos k1(X1 − L1)

]
.

(4.12)

34



We can thus express c and d in terms of a,

c = aγ

d = aγ∗,

(4.13)

where

γ =
1

2

[
ρ1

ρ2

sinωτ1 +
ρ1

ρ2

A1

A2

¯̀k1 cosωτ1 − i
A1

A2

k1

k2

cosωτ1

]
, (4.14)

γ∗ being the complex conjugate of γ. Expressing Equation 4.11b in terms of γ

ĜC1(x1, y1, ω) = 2a [(Re γ) cos k2(x1 −X2)− (Im γ) sin k2(x1 −X2)] . (4.15)

Constants a and b are determined from conservation of pressure and volume flux across the source

position. Namely,

ĜC1(y1, y1, ω)− ĜC2(y1, y1, ω) = 0

∂ĜC1

∂x1
(y1, y1, ω)− ∂ĜC2

∂x1
(y1, y1, ω) = 1.

These constants are found to be

a(y1, ω) =
1

ωfω(ω)

[
sin

ω

c2

(x1 − L̄2)

]
,

b(y1, ω) =
−1

ωfω(ω)

[
ρ1

ρ2

(
sinωτL1 +

A1

A2

¯̀k1 cosωτL1

)
cos k2(x1 −X2) +

A1

A2

c2

c1

cosωτL1 sin
ω

c2

(x1 −X2)

]
.

where fω(ω) is defined in Equation 4.6. Substituting a and b into Equation 4.11, Ĝ(x1, y1, ω) assumes

the form

Ĝ(x1, y1, ω) =
ĝ(x1, y1, ω)

2ωfω(ω)
, (4.16)
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where

ĝ(x1, y1, ω) =





A(x1, ω)C(y1, ω) −L1 < x1 < X1

D(x1, ω)C(y1, ω) X2 < x1 < y1

C(x1, ω)D(y1, ω) y1 < x1 < L̄2,

(4.17)

where

A(x1, ω) = sin
ω

c1

(x1 − L1),

C(x1, ω) = sin
ω

c2

(x1 − L̄2),

and

D(x1, ω) =
ρ1

ρ2

(
sinωτL1 +

A1

A2

¯̀

c1

ω cosωτL1

)
cos

ω

c2

(x1 −X2)

+
A1

A2

c2

c1

cosωτL1 sin
ω

c2

(x1 −X2).

The time-domain Green’s function is obtained by the inverse Fourier transform

G(x1, y1, t, τ) =
1

2π

∫ ∞

−∞
Ĝ(x1, y1, ω)e−iω(t−τ)dω. (4.18)

Because the function fω(ω) is identically zero at the eigenfrequencies of interest, there are singulari-

ties at ω = ωn so Cauchy’s integral theorem is used to calculate the transform. Before the source time

t = τ , the Green’s function is, in satisfying causality, zero. After time t = τ , the Green’s function is

determined by defining a contour in the upper-half plane; the contour begins as ω → −∞ and con-

tinues along the real axis around each of the the singular frequencies ωn until approaching ω → +∞

where it extends upward in the imaginary axis before returning toward ω → −∞. Employing the

residue theorem and the symmetry of the frequencies ω−n = −ωn, the integral in Equation 4.18 is
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restated as

G(x1, y1, t, τ) = 2H(t− τ)
∞∑

n=1

ĝ(x1, y1, ωn)

ωnf ′(ωn)
sinωn(t− τ), (4.19)

and by equating this with Equation 4.8, we cast the pressure Green’s function modal amplitude gn

in its final form

gn(x1, y1) = 2
ĝ(x1, y1, ωn)

ωnf ′(ωn)
. (4.20)

In the following section we evaluate burner stability by numerical calculation of ∂gn/∂x1 for varying

burner length L.

4.1.3 Burner stability

One of the Limousine burner (Configuration I and II) parameters which we can easily modify to

improve stability is the length of region C, the downstream hot acoustic region. In the burner

configurations described in Section 3.1, small extensions can be added to its downstream end to

change its length; we examine the effect of length on the instabilities.

Figure 4.1 depicts the eigenfrequencies of the first and second mode for Configurations I and II,

plotted against the non-dimensionalised burner length L/X2. We note that each eigenfrequency

decreases as the burner length increases, as would be expected in a duct, such as an organ pipe. The

spatial derivative (with respect to x1) of the Green’s function modal amplitude is often considered

an approximate criteria for evaluating burner stability [44,64]. Figures 4.2 and 4.3 respective depict

the spatial derivative of the Green’s function modal amplitude of the first and second mode for

Configurations I and II, plotted against the non-dimensionalised burner length L/X2.

The optimal burner has negative or zero Green’s function modal amplitude derivative for all

detectable modes (n = 1, 2, 3 in this case). Figure 4.2 shows Configuration I has optimal non-
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Figure 4.1: Eigenfrequencies of modes n = 1, 2, 3 for burner Configurations I and II
plotted against non-dimensionalised burner length L/X2.

dimensionalised length L/X2 = 1.75, where L = 0.59 m, because both the first and third mode are

zero, while the second is negative. The burner is unstable at all other lengths principally because

the first mode is positive. Figure 4.3 shows Configuration II has similar optimal non-dimensionalised

length L/X2 = 1.76, where in this configuration L = 0.60 m, for the same reason as in Configuration I.
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Figure 4.2: Modes n = 1, 2, 3 of the Green’s function amplitude spatial derivative for
burner Configuration I, plotted against non-dimensionalised burner length L/X2 with
observer position x1 = L2 and source position y1 = X2.
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Figure 4.3: Modes n = 1, 2, 3 of the Green’s function amplitude spatial derivative
for burner Configuration II, plotted against non-dimensionalised burner length L/X2

with observer position x1 = L2 and source position y1 = X2.
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4.2 The total enthalpy Green’s function

The total enthalpy Green’s function satisfies Equation 4.1 but determines the solution of the total

enthalpy acoustic analogy 2.45. When convolved with source terms involving say vorticity, entropy

production, or entropy gradients, we yield the expression for the total enthalpy. In this section we

derive the total enthalpy Green’s function, in order to formulate an expression for the total enthalpy

and subsequently derive the Fant equation in Chapter 6.

The Green’s function is solved in the compact approximation, where only plane waves can prop-

agate in regions A and C. Within the compact transition region B, the Green’s function reduces to

a solution of Laplace’s equation

G(x,y, t, τ) = α(τ, x1, t) + β(τ, x1, t)Y (y), (4.21)

where α(τ, x1, t), β(τ, x1, t) are constants to be determined and Y (y) is the Kirchoff vector and

denotes a velocity potential normalised to have unit speed in region C. ∂Y/∂yn = 0 on the duct walls

and flame-holder, and assumed to satisfy

Y (y) ∼





y1, y1 >
√
A in C,

y1 − ¯̀, y1 < −
√
A in A,

(4.22)

where ¯̀ is the constriction ‘blockage’ length, given by [65,66]

¯̀=
4h

π
ln

[
cos

(
π`f
2h

)]
.

Equations 4.21 and 4.22 imply the Green’s function G ≡ G(x1, y1, t, τ) must satisfy the following
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conditions when y is in regions A and C

G = α− ¯̀, ∂G/∂y1 = β, y1 → −0

G = α, ∂G/∂y1 = β, y1 → +0




. (4.23)

Therefore, we can put

G(x1, y1, t, τ) = − 1
2π

∫ ∫∞
∞

β(ξ,x1,t) cos[k1(y1+L1)]
k1 sin(k1L1)

eiω(τ−ξ)dωdξ for y in A,

G(x1, y1, t, τ) = Go(x1, y1, t, τ) + 1
2π

∫ ∫∞
∞

β(ξ,x1,t) sin[k2(y1+L2)]
k2 sin(k2L2)

eiω(τ−ξ)dωdξ for y in C,

(4.24)

where

Go(x1, y1, t, τ) = − 1
2πA

∫∞
−∞ {H(x1 − y1) cos(k2y1) sin[k2(x1 − L2)]

+H(y1 − x1) cos(k2x1) sin[k2(y1 − L2)]} e−iω(t−τ)

k2 cos(k2L2)
dω,

(4.25)

which is the Green’s function corresponding to a source located at the flame-holder with the constric-

tion assumed to be closed. The implied Green’s function conditions above, G→ α− ¯̀, α respectively

as y1 → ∓0, yield consistency conditions which can be used to determine the following functional

forms of α and β:

α(τ, x1, t) = ¯̀β(τ, x1, t)−
1

2π

∫ ∫ ∞

∞
β(τ, x1, t)

cos(k1L1)

k1 sin(k1L1)
e−iω(ξ−τ)dωdξ (4.26)

¯̀β(τ, x1, t)−
1

2π

∫ ∫ ∞

∞
β(τ, x1, t)

(
cos(k1L1)

k1 sin(k1L1)
− sin(k2L2)

k2 cos(k2L2)

)
e−iω(ξ−τ)dωdξ

= Go(x1, 0, t, τ) ≡ − 1

2πA

∫ ∞

−∞

sin[k2(x1 − L2)]

k2 cos(k2L2)
e−iω(ξ−τ)dω

(4.27)
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Chapter 5

The burner blockage length

The blockage length quantifies the momentum loss in the Green’s function between the upstream and

downstream boundaries of the hydrodynamic region (B) in the burner, as in Equation 4.17 and 4.23.

The hydrodynamic region can be thought of as a airplug oscillating between the two acoustic regions,

having effective length ¯̀.

The blockage length ¯̀ is defined in terms of a blockage integral, which is derived in Section 5.1 and

is dependent on the hydrodynamic flow solution in the respective burner configuration. We propose

two different methods of determining this hydrodynamic flow solution. Both methods are applicable

to the combustor Configurations I and II described in Section 3.1. The first method (Method I)

determines the hydrodynamic flow solution from Laplace’s equation using a computational mesh

defined within a plane of the combustor geometries. Additionally, using this methodology, we quantify

the effect of flow splitters on aeroacoustic calculations. Method I applied to Configuration I is

described in Sections 5.2, 5.3. The second method (Method II) is more sophisticated and determines

the hydrodynamic flow solution by transformation of the burner geometry into a simple flat plate for

which the hydrodynamic flow solution is known analytically. Method II is applied to Configurations I

42



and II because Method II is more sophisticated and developed later in the project; it also coincided

with the change in the burner used in experiments. Method II is also applied to the idealised

geometry of Section 3.2; however, the transformation is determined analytically. Method II applied

to Configuration III is described in Section 5.6.

5.1 The blockage integral

The blockage integral is determined for Configurations I and II from the velocity potential of the

hydrodynamic flow solution in the burner configuration. The blockage integral defining ¯̀ is derived

starting with pressure momentum-loss equation 4.7

p2 − p1 = ρ1
∂φ2−

∂t
− ρ1

∂φ1

∂t
= ρ1

¯̀∂φ2−

∂x1

. (5.1)

Velocity potentials φ near the hydrodynamic region are defined in Equation 4.4 where

φ(x1) = α + βA2

A1
(x1 − (X1 − L1)) for x1 ≈ X1,

φ(x1) = α + β(x1 − (X2 − L̄2)) for x1 ≈ X2,

(5.2)

where x1 = −L1 is the position of the closed duct entrance plane, and x1 = L̄2 is just beyond the

open duct exit, accounting for a small acoustic end correction. Substitution of Equation 5.1 into φ

yields

¯̀= L1 −
A2

A1

L̄2. (5.3)
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Considering the limits of the velocity potential ϕ∗ as x1 → ±∞, we have from the φ definition 5.2

as x1 → +∞

ϕ∗(x1)→





∫∞
X2

∂ϕ∗

∂ξ
dξ + ϕ∗(X2) (Identity),

∫ x1

X2
dξ + L̄2 (From Equation 4.4b).

(5.4)

Similarly, as x1 → −∞

ϕ∗(x1)→





−
∫ X2

−∞
∂ϕ∗

∂ξ
dξ + ϕ∗(X2) (Identity),

A2

A1

∫ x1

X2
dξ + A2

A1
(X2 −X1 + L1) (From Equation 4.4c).

(5.5)

Matching formulations 5.4 and 5.5 at each respective limit x1 → ±∞ yields the following two

equations

L̄2 =
∫∞
X2

(
∂ϕ∗

∂ξ
− 1
)
dξ + ϕ∗(X2),

A2

A1
(X2 −X1 + L1) =

∫ X2

−∞

(
∂ϕ∗

∂ξ
− A2

A1

)
dξ + ϕ∗(X2).

(5.6)

The substitution of the difference of these equations into Equation 5.3 yields the blockage integral

¯̀=

∫ ∞

X2

(
∂ϕ∗

∂ξ
− 1

)
dξ +

∫ X2

−∞

(
∂ϕ∗

∂ξ
− A2

A1

)
dξ +

A2

A1

(X2 −X1). (5.7)

5.2 The blockage length by solution to Laplace’s equation

The expression for the blockage integral 5.7 is initially evaluated numerically in Method I from the

velocity potential of the hydrodynamic flow determined by the relation between the velocity potential

ϕ∗ and stream function ψ∗, given by

∂ϕ∗

∂x1

=
∂ψ∗

∂x2

. (5.8)

Stream-function values are determined assuming the flow is incompressible and irrotational. The
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velocity potential and the stream function satisfy Laplace’s equation for the respective incompressible

or irrotational flow. The stream function is solved numerically using finite difference methods.

5.2.1 Finite-difference methods

Figure 5.1: Schematic of a generic computational mesh.

Laplace’s equation for the stream function ∇2ψ∗ = 0 in two-dimensions is simply

∂2ψ∗

∂x2
1

+
∂2ψ∗

∂x2
2

= 0, (5.9)

for which we devise a finite difference scheme in order to solve. In this scheme, the continuous geom-

etry of the burner walls is divided into a discrete set of points collectively called a mesh: the distance

between neighboring points is ∆x1 in the x1-direction and ∆x2 in the x2-direction. This discrete

scenario is depicted in Figure 5.1.The discrete formulation of Laplace’s equation 5.11 is determined

using well-known, finite-difference equations. For example, the first and second derivatives of the
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function g(ξ) have the respective finite-difference approximations.

dg(ξ)
dξ
≈ g(ξ+∆ξ)−g(ξ−∆ξ)

2∆ξ
,

d2g(ξ)
dξ2 ≈ g(ξ+∆ξ)−2g(ξ)+g(ξ−∆ξ)

∆2ξ
,

(5.10)

where ∆ξ is the distance between neighboring points in the ξ-direction. ψ∗
N

, ψ∗
S
, ψ∗

W
, ψ∗

E
respectively

define mesh points above, below, left, and right (North, South, West, and East) of the central point

ψ∗o . The solution of Laplace’s equation is numerically determined by performing several hundred

iterations of the numerical formulation of Laplace’s equation. The point ψ∗o is determined in successive

iterations by the formula:

ψ∗o = C
∆

[
1

∆x2
1

(ψ∗
E

+ ψ∗
W

) +
1

∆x2
2

(ψ∗
N

+ ψ∗
S
)

]
, (5.11)

where C
∆
≡ 1

2
1

1

∆x2
1

+ 1

∆x2
2

. Employing the symmetry, the mesh is defined between the centerline x2 = 0

and the upper wall x2 = h(x1). The mesh is not bounded at either side at the true ends of the burner;

it is, rather, bounded such that its ends are sufficiently far from the hydrodynamic region that the

flow can be regarded as one-dimensional at say L∗1 and L∗2 for the entrance and exit respectively; this

in order to reduce computing time. Streamline boundary conditions are initially defined on the four

boundaries of the mesh: the centerline, the wall of the burner, and the sides at L∗1 and L∗2. These

boundary conditions must satisfy the following two conditions:

∂ϕ∗

∂x1
→ 1 as x1 → ∞,

∂ϕ∗

∂x1
→ A2

A1
as x1 → −∞,

(5.12)

for normalisation and mass conservation respectively. The numerical approximation of the stream-
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function value at the burner exit is determined from Equation 5.8, 5.10, and 5.12 and is

∂ψ∗

∂x2

≈ ψ∗(x1, x2 + ∆x2)− ψ∗(x1, x2 −∆x2)

2∆x2

= 1.

The stream function is linear so the finite difference derivative can then be expanded to extend

between the stream-function values at the burner wall and the centerline,

ψ∗(x1, 0 + k∆x2)− ψ∗(x1, 0) = k∆x2,

where k = h(L∗2)/∆x2 is the number of cells between the centerline and upper boundary of the burner.

Defining the stream-function value at the lower boundary as ψ∗(x, 0) ≡ 0, the upper boundary is

constant ψ∗(x1, h(x1)) = h(L∗2) = h2. At L∗1 and L∗2, the stream-function values transition linearly

between the value at the centerline 0 and the value at the upper boundary h2. The initial conditions

are irrelevant to the solution of the problem provided sufficient iterations are performed; the stream-

function values within the boundaries were arbitrarily chosen to have initial value ψ∗(x1, x2) = 0.

The boundary conditions are defined as above and remain fixed during all iterations. The values

ψ∗o at each non-boundary point in the mesh is determined for each successive iteration. Iterations stop

once values of ψ∗o converge and do not sufficiently change between successive iterations. Specifically,

letting ψni,j denote the value of ψ∗ at (i = x1/∆x1, j = x2/∆x2) after n iterations, and ε being a

prescribed threshold value, the computation stops when

∑

i

(∑

j

(
ψni,j − ψn−1

i,j

)2

)
≤ ε. (5.13)

Figure 5.2 depicts the burner hydrodynamic streamlines in Configuration I, where the prescribed
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Figure 5.2: Illustration of the hydrodynamic streamlines in burner Configuration I.

threshold is ε = 10−8.

5.3 The effect of splitter plates

In past experimental combustor configurations, it has been the practice to place splitter plates

half-way between the flame-holder and the burner wall. It is thought that these have the effect of

preventing the sides of the burner from over-heating by splitting the flow into one which encounters

the flame and one which does not. We examine the effect of splitter plates, predicting how its values

changes in their presence.

We first determine the value of the hydrodynamic streamlines in the absence of splitter plates,

as in Section 5.2. The splitter plates are then assigned a specific stream-function value determined

by the condition that there is zero circulation Γ =
∮
C

v · dx around them. This methodology is

illustrated using the example of a horizontal flat plate.
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Figure 5.3: Schematic of the flat plate used to calculate the circulation around the
splitter plates.

We choose to illustrate the calculation of the stream-function value using a flat plate rather than

the angled splitter plates due to the simplicity of the nomenclature involved in defining the normal

direction. The flat plate depicted in Figure 5.3 is within a uniform square mesh having node-spacing

∆x1 in the x1 direction and ∆x2 in the x2 direction. The flat plate, like the splitter plates, has

a single stream-function value ψc which is determined by the zero-circulation condition. All of the

nodes surrounding the flat plate have stream-function value determined by the numerical solution

to Laplace’s equation in the plate’s absence, for example ψ1 and ψ2. From the stream-function

definition, velocity v1 = v1,x1 = ∂ψ/∂x2 ≈ (ψ1 − ψc)/∆x2, and similarly, velocity v2 = v2,x2 =

∂ψ/∂x1 ≈ (ψ2 − ψc)/∆x1. The numerically-determined circulation is the sum of these velocities

along the top, bottom, and sides of the flat plate. Defining ∆ = ∆x1 = ∆x2, the circulation,

Γ =

∮

C

v · dx ≈
N∑

i=1

ψi − ψc
∆

≡ 0, (5.14)

is defined as zero and where N is the number of nodes surrounding the plate. The flat plate therefore
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has the stream-function value

ψc =
1

N

N∑

i=1

ψi. (5.15)

The identical method is easily applied to the burner splitter plates by simply rotating the chosen

coordinate axis. Stream-function values are finally determined in the presence of the splitter plates by

fixing the stream-function values at mesh points coincident with the splitter plates to those obtained

from Equation 5.15.

Hydrodynamic streamlines are depicted in Figures 5.2 and 5.4 for respective burner Configura-

tion I without and with splitter plates. Both figures show that the flow converges to one-dimensional

in each case at identical X1 and X2 positions. For Configuration I, in all numerical simulations

X1 = −0.038 m and X2 = 0.015 m.
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Figure 5.4: Illustration of the hydrodynamic streamlines in burner Configuration I
with splitter plates.
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X1 X2

Path 2

Path 1

Figure 5.5: Illustration of the integration paths used for calculating ¯̀ in burner
Configuration I with splitter plates.

In application to the splitter plates, formula 5.7 for the blockage length,

¯̀=

∫ ∞

X2

(
∂ϕ∗

∂ξ
− 1

)
dξ +

∫ X2

−∞

(
∂ϕ∗

∂ξ
− A2

A1

)
dξ +

A2

A1

(X2 −X1) ,

is limited only by the integration path which must be a straight line. In burner Configuration I

with the splitter plates, there are no straight paths between each end of the burner and therefore

a straight line cannot be used. We therefore must reformulate the blockage integral to allow for a

two-dimensional path. The generalised blockage integral is

¯̀=

∫ ∞

X2

∇ (ϕ∗ − x) · ds +

∫ X2

−∞
∇
(
ϕ∗ − A2

A1

x

)
· ds +

A2

A1

(X2 −X1) . (5.16)

The two paths are chosen for integration in order to verify the accuracy of the method; they are

depicted in Figure 5.5. Path 1 is located half-way between the splitter plate and the burner wall.
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Table 5.1: The burner blockage length for burner Configuration I, with and without
splitter plates

Configuration I Blockage length ¯̀

Without splitter plates 0.095 m
With splitter plates 0.101 m

From the ends of the splitter plate, it extends as a straight line in the upstream and downstream

region. Path 2 is very similar to Path 1 except it is located half-way between the burner and the

splitter plate. The blockage integral values obtained by integration along each of the two paths are

identical.

The effective blockage length ¯̀ in each case is calculated using numerical integration of Equa-

tion 5.7 having Legendre quadrature. Blockage length values for Configuration I, without and with

splitter plates, are shown in Table 5.1. For the Configuration I burner without splitter plates,

¯̀ = 0.095 m, which is identical to the result obtained using the one-dimensional integral equa-

tion 5.3. In the burner with splitter plates, ¯̀ = 0.101 m, which is only 6% larger than that without

the splitter plates. We can therefore conclude that the addition of splitter plates does not sufficiently

affect the analytic model of the two-dimensional burner and they can be neglected in analytic models.

5.4 The Schwarz-Christoffel transformation

A straight-sided polygon in the z-plane can be mapped into the transformed space on the upper half

ζ-plane, such that the sides of the polygon are transformed into the real ζ-axis ξ by means of the

formula [67–69]:

dz

dζ
= K

N∏

n=1

(ζ − ξn)αn/π−1 (5.17)
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for a polygon with N angular points, where αn and ξn (ξn < ξn+1) are the respective internal

angles and points on the real ζ-axis (ζn = ξn + ηi) corresponding to the ordered angular points

zn = x1,n + x2,ni in the z-plane. K is a complex constant and determines orientation and size. A

transformation containing four angular points is depicted in Figure 5.6. The perimeter of the polygon

maps onto the real ζ-axis so that one of the points ξn has location ζ = ∞; in this case, the factor

(ζ − ξn)αn/π−1 is omitted from the right-hand side of Equation 5.17.

z1

z2

z3

z4

a1a2

a3

a4z-plane

z-plane

j1 j2 j3 j4

Figure 5.6: Illustration of a polygon and the corresponding Schwarz-Christoffel trans-
formation.

The integral form of Equation 5.17,

z(ζ) = K

∫

ζ=ξ

N∏

n=1

(ζ ′ − ξn)αn/π−1dζ ′ + L, (5.18)

introduces an integration constant L, which determines the position of the polygon in the z-plane.

In any transformation, three ξn parameters may be prescribed arbitrarily, obeying the condition

ξi < ξi+1.
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5.4.1 An example with one unknown

Consider the duct depicted in the z-plane of Figure 5.7: it has height h which jumps from h1 to h2.

It contains the respective corners z1 = +∞+ ih2, z2 = ih2, z3 = ih1, z4 = −∞+ ih1, z4′ = −∞, and

z5 = +∞. In this geometry, Equation 5.17 takes the form

dz

dζ
= K

(ζ − ξ3)1/2

(ζ − ξ4)(ζ − ξ2)1/2
. (5.19)

The constants ξ3 and ξ4 are chosen to coincide with ζ = −1 and ζ = 0, respectively. The constant

h1
h2

z1z2

z3
z4

z4’
z5

a2

a3

j2 j=-13 j=04j=-¥1
j=¥5

z-plane

z-plane

Figure 5.7: Illustration of a duct of varying cross-sectional area and the corresponding
Schwarz-Christoffel transformation.

K is determined by integrating around the singularity at ζ = ξ4 found in the integral form of

Equation 5.19. Using residue methods discussed in [70], we evaluate the integral between ξ4′ and ξ4

and equated to the corresponding displacement in the z-plane, namely,

z4 − z4′ = h1i = K

∫

ζ=ξ4

(ζ ′ + 1)1/2

ζ ′(ζ ′ − ξ2)1/2
dζ ′ = K

π√
ξ2

, (5.20)

54



yielding K = h1i
π

√
ξ2. The constant ξ2 is determined similarly; however, the integral is evaluated

between ξ2 and ξ3, and equate it to the corresponding displacement in the z-plane, explicitly,

z3 − z2 = (h1 − h2)i = K

∫ ξ3=−1

ξ2

(ζ ′ + 1)1/2

ζ ′(ζ ′ − ξ2)1/2
dζ ′ = h1(i+

√
ξ2), (5.21)

resulting in ξ2 = −
(
h2

h1

)2

. The results from Equations 5.20 and 5.21 lead to the final form of the

Schwarz-Christoffel transformation for the duct:

dz

dζ
=
h2

π

√
ζ + 1

ζ

√
ζ +

(
h2

h1

)2
. (5.22)

This method is applied to the more complicated geometry of burner Configurations I and II in order

to derive the corresponding Schwarz-Christoffel transformation.

5.5 The blockage length by transformation

Blockage-length calculation Method II consists of mapping Configurations I and II burners (in the z-

plane) onto the upper half ζ-plane Formula 5.17. The burner and its transformation into the ζ-plane

are depicted in Figure 5.8.

Equation 5.17 for Configurations I and II respectively takes the form

dz

dζ
= K

(ζ − ξ3)1/6(ζ − ξ6)2/3

(ζ − ξ2)1/6(ζ − ξ4)(ζ − ξ5)1/6(ζ − ξ7)1/2
. (5.23)

dz

dζ
= K

(ζ − ξ3)1/2(ζ − ξ6)2/3

(ζ − ξ2)1/2(ζ − ξ4)(ζ − ξ5)1/6(ζ − ξ7)1/2
. (5.24)

55



z2

z3

z1

z4

z4’
z5

z6

z7
z8

j=-¥1
j2 j3 j6 j7 j=¥8j=04j=15

a6

a7
a5

a3

a2
z-plane

z-plane

Figure 5.8: Illustration of the upper-half Configuration I burner and the correspond-
ing Schwarz-Christoffel transformation.

The constants in each configuration ξ4 and ξ5 are chosen to coincide with ζ = 0 and ζ = 1, respec-

tively. The integral form of Equations 5.23 and 5.24 is respectively

z(ζ) = K

∫

ζ

F (ζ ′)dζ ′ = K

∫

ζ

(ζ ′ − ξ3)1/6(ζ ′ − ξ6)2/3

ζ ′(ζ ′ − ξ2)1/6(ζ ′ − 1)1/6(ζ ′ − ξ7)1/2
dζ ′, (5.25)

z(ζ) = K

∫

ζ

F (ζ ′)dζ ′ = K

∫

ζ

(ζ ′ − ξ3)1/2(ζ ′ − ξ6)2/3

ζ ′(ζ ′ − ξ2)1/2(ζ ′ − 1)1/6(ζ ′ − ξ7)1/2
dζ ′, (5.26)

where the integrand on the right-hand side of Equations 5.25 and 5.26 is defined as F (ζ). The four

unknowns in Equations 5.25 and 5.26 present a problem that cannot be solved analytically due to the

z2

z1

z4

z4’
z5
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z7 z8

x=-¥1 x2 x3 x6 x7 x=¥8x=04 x=15

a6

a7
a5

a3

z-plane

z-plane

a2

z3

Figure 5.9: Illustration of the upper-half Configuration II burner and the correspond-
ing Schwarz-Christoffel transformation.
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number of parameters ξi involved. [71, 72] present a numerical method for calculating the constants

in the Schwarz-Christoffel transformation of a polygon. The method consists of defining an error S

as the sum of the squares of the difference between the ζ-plane integral and the z-plane displacement

for two consecutive points. Specifically,

S =
N−1∑

n=1

∣∣∣∣K
∫ ζ=tξ+1

ζ=ξn

F (ζ ′)dζ ′ − (zn+1 − zn)

∣∣∣∣
2

, (5.27)

for all n corresponding to ξn having finite position in the ζ-plane, where N is the total number of

points. In the example with only one unknown, described in Section 5.4.1, the error is exactly zero

because the displacement in the z-plane is identical as the integral in the ζ-plane; however, when

there is more than one unknown, the error cannot be exactly zero so we search for an error S < 10−6.

5.5.1 Gauss-Jacobi quadrature

It is essential when evaluating integrals like 5.25 to devise a well-behaved numerical integration

scheme due to the singular nature of F (ζ). For example, if integrating between ξ3 and ξ4 in Equa-

tion 5.25, a zero would be encountered at ξ3 and a first-order pole would be encountered at ξ4. Given

the Schwarz-Christoffel transformation is defined such that ξi < ξi+1, singularities and zeros exist

only at the limits of integration, not between them.

The Gauss-Jacobi quadrature addresses this problem; [73, 74] approximate an integral having a

singular integrand using Gaussian integration, namely,

∫ 1

−1

(1 + x)β(1− x)γf(x)dx '
M∑

j=1

Wjf(xj), (5.28)
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where M is the chosen number of abscissae xi and weights Wi. The segment {ξi, ξi+1} ∈ ξ is

transformed to the segment {−1, 1} ∈ x using the linear transformation

ξ =
1

2
[ξi + ξi+1 + x(ξi+1 − ξi)] . (5.29)

Rewriting the integrand function 5.25 and 5.26,

∫ ζ=ξi+1

ζ=ξi

F (ζ ′)dζ ′ =

∫ ζ=ξi+1

ζ=ξi

i+1∏

k=i

(ζ ′ − ξk)αk/π−1G(ζ ′)dζ ′, (5.30)

the formula is separated into a function which is well-behaved within the segment {ξi, ξi+1}, G(ζ),

and a function which is either singular or zero at the limits. We write the Gauss-Jacobi formulation

of the integral as

∫ ζ=ξi+1

ζ=ξi

F (ζ ′)dζ ′ = C

∫ 1

−1

(1 + x)β(1− x)γG(x)dx ' C
M∑

j=1

WjG(xj), (5.31)

where β = αi
π
− 1, γ = αi+1

π
− 1, and C = (−1)γ

[
1
2
(ξi+1 − ξi)

]β+γ+1
.

The abscissae xj are estimated using the recursion relation

xj ' 3xj+1 − 3xj+2 + xj+3.

Values for xM , xM−1, xM−2 are required in order to initiate this recursive method; they are estimated

using known formulae which are functions of M , β, and γ. All estimates, whether initially obtained

using a formula (i.e. xM , xM−1, xM−2) or using the recursive relation above, are then refined using

the Newton-Raphson method to converge upon the exact zero of the Jacobi polynomial P β,γ
M (xj).
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Once a precise value is obtained for an abscissa xj, the corresponding weight Wj is calculated using

the formula

Wj =
2M + β + γ + 2

M + β + γ + 1

Γ(M + β + 1)Γ(M + γ + 1)

Γ(M + β + γ)Γ(M + 2)

2β+γ

P ′β,γM (xj)P
β,γ
M+1(xj)

,

where P ′(·) denotes the derivative of P (·) with respect to xj, and Γ(·) is the Gamma function. The

quadrature method has proven resilient and is used to determine all unknown ξi values.

5.5.2 Minimising the error

When a function is continuous, smooth and non-singular, one typically minimises an error or con-

verges upon an unknown value using a gradient-dependent method such as Newton-Raphson. How-

ever, when calculating the Schwarz-Christoffel transformation, gradient methods are not practical

because the gradients are either highly singular or zero at the points of interest by definition of the

Schwarz-Christoffel transformation. It is therefore essential to employ a convergence scheme in which

knowledge of the gradients is not necessary.

The chosen method of convergence is called the simplex method [75–79]. A simplex is the N -

dimensional analogue to a triangle containing N + 1 independent points in euclidean space. The

simplex must contain N + 1 points, N being the number of dimensions in the function. It is most-

easily described and depicted using one or two-dimensional functions. Figure 5.12 illustrates a simplex

for two numerical examples described in Section 5.5.3.

For the Rijke burner transformation, the simplex is initiated at step P = 1 with N + 1 arbitrary

points at {Xn=n1 ,Xn=n2 , ...,Xn=N+1}, it then replaces the point having the largest error S
(
XP=1
n=nj

)

with the dimensionally-opposite point. If in the following step P = 2, the dimensionally-opposite
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point XP=2
n=nj

corresponds to an error S which is smaller than in the previous step, the procedure will

do either one of the following. If the error at a different point in the simplex S
(
XP=2
n6=nj

)
is greater

than S
(
XP=2
n=nj

)
, XP=2

n6=nj is replaced with the dimensionally-opposite point XP=3
n6=nj in the following

step; however, if S
(
XP=2
n=nj

)
is still greater than the error at any other point, the simplex expands in

the direction between XP=1
n=nj

and XP=2
n=nj

. If replacement leads to an error which is smaller than any

other, the simplex contracts. This procedure continues for several iterations until converging upon

the chosen threshold, in this case S < 10−6.

5.5.3 Streamlines of a hydrodynamic source flow

In order to validate any calculated Schwarz-Christoffel transformation or determine the blockage

length ¯̀, we evaluate the streamlines of the potential flow originating from a source at negative

infinity in the z-plane. In burner Configuration I and II the source has strength q = h1U1, where

h1 and U1 are the respective height and velocity in the upstream region. The source is translated

into the ζ-plane and chosen to coincide with ζ− = 0 in all examples discussed. By definition of the

Schwarz-Christoffel transformation, we restrict our interest to the upper-half ζ-plane. The complex

potential w is defined as ϕ+ iψ, where ϕ is the velocity potential and ψ is the streamline value. In

general, we formulate the complex potential for M sources as

w = w(ζ) =
M∑

m=1

qm
π

[ln(ζ − ζm) + ln(ζ − ζ∗m)] , (5.32)

where ζ∗m is the image of the original source ζm across the real axis, as depicted in Figure 5.10.

Transformation into the z-plane is performed by integrating the function dz/dζ between the ζ

value chosen to correspond to z = 0, ζz=0 and ζ. Defining all sources to have equal and constant
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-plane

source

image

Figure 5.10: Illustration of a point source and its image about ξ-axis.

source strength qm ≡ qo, Equation 5.32 is simplified to

M∏

m=1

(ζ − ζm)(ζ − ζ∗m) = eπw/qo = eπϕ/qo
(

cos

(
πψ

qo

)
+ i sin

(
πψ

qo

))
, (5.33)

If we restrict interest to the uniform flow originating at −∞, M ≡ 1, ζ1 ≡ 0, we obtain

ζ = ±
√

eπϕ/qo
(

cos

(
πψ

qo

)
+ i sin

(
πψ

qo

))
. (5.34)

The streamlines are depicted allowing ϕ/h1 to vary over the range (−∞,∞) for fixed values of ψ

in the range 0 ≤ ψ/h1 ≤ 1, where ψ/h1 = 0 and ψ/h1 = 1 respectively correspond to the lower

boundary (centerline for the burner) and upper boundary of the burner.

A change of variables is required in order to integrate between ζz=0 ≡ a and ζ, prescribed by

Equation 5.34. We choose a straight line path where ζ ′ = a + λ(ζ − a), 0 < λ < 1, allowing us to
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reformulate the function z(ζ) =
∫ ζ
a

G(ζ′)
(ζ′−a)β

dζ ′ in to the form

z(ζ) = (ζ − a)1−β
∫ 1

0

G(a+ λ(ζ − a))dλ

λβ
, (5.35)

where G(ζ) is defined as the regular part of the function dz
dζ

= F (ζ), which is not singular at ζ = a.

The Jacobi quadrature, described in Section 5.5.1, is used to numerically integrate Equation 5.35.

5.5.4 Arbitrary source locations

In addition to the streamlines originating from a source at z → −∞, we are also interested in the

the streamlines originating from an arbitrary source configuration. In order to formulate the source

problem, we rewrite Equation 5.32 assuming that there are M sources and that each source strength

qm = κmqo is an integer multiple κm of the constant source strength qo, namely,

w =
M∑

m=1

κmqo
π

[ln(ζ − ζm) + ln(ζ − ζ∗m)] , (5.36)

where ζm and ζ∗m are still the respective ζ-plane source location and its image across the real axis.

The exponential of Equation 5.36 simplifies to

M∏

m=1

(ζ − ζm)κm(ζ − ζ∗m)κm − eπw/qo = 0, (5.37)
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which is a polynomial of order 2
∑
κm. The roots of this polynomial are calculated using a NAG [80]

subroutine. The subroutine assumes an N th-order polynomial equation of x of the form

N∑

n=0

anx
n = 0,

where an is the constant complex coefficient corresponding to xn. For large M in Equation 5.37,

it can be quite time-consuming to manually calculate the coefficients an, so we present an example

which suggests a method of automating the process. For M = 1 and κm = 1, Equation 5.37 simplifies

to

ζ2 − (ζ1 + ζ∗1 )ζ + (ζ1ζ
∗
1 )− eπw/qo = 0.

For convenience we define ζ̂n where ζ̂2n−1 ≡ ζn and ζ̂2n ≡ ζ∗n (i.e. ζ̂1 = ζ1, ζ̂2 = ζ∗1 , etc.). The

coefficient an corresponding to ζn is the sum of the products of sets of length N − n, namely

aN−n = (−1)n
NCn∑

i=1

{
n∏

j=1

ζ̂C(N,n)(i,j)

}
,

where NCn is the number of n-combinations in the set of N elements. C(N,n)(i, j) is the jth term of

the ith combinatic containing n-combinations of N elements. The combinatics are obtained using a

method described in [81].

The values of an are input into the NAG subroutine, returning 2
∑
κm roots ζ̂. Several roots

exist on the positive ζ half-plane; we evaluate Equation 5.35 for each of these positive roots ζ in

order to obtain the complete source solution.

The values ζm need not be arbitrary and can be chosen to correspond to the desired source location

in the z-plane. The method of calculating the source location in the ζ-plane involves inverting
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Equation 5.17 and integrating, namely,

ζ(z1)− ζ(z0) = K

∫ z1

z0

1

F (z)
dz, (5.38)

where F (·) is the function describing the transformation dz
dζ

.

We have numerically obtained results for several configurations, two of which are similar to burner

Configuration I: the first is a duct having the same upper-half geometry (Part A) and the second

having the same lower-half plane geometry (Part B). These geometries are depicted in Figure 5.11,

Parts A and B, respectively. Part A has one unknown parameter ξ2 and Part B has two unknown

parameters ξ4 and ξ5.

z3

z4

z5 j=02

a5
a3

z2

z3

z1

z4

z4’
z5

a3

a2z-plane

z6 j=-¥1 j4j5 j=¥6j=13

z-plane

z2’

z1z2

a4

j=-¥1
j2 j3=-1 j=¥8j=04

z-plane

z-plane

Part B

Part A

Figure 5.11: Illustration of geometries similar to those of burner Configuration I.
Part A: geometry having similar upper half; Part B: geometry having similar lower
half.

The numerical method described in Section 5.5 is used to calculate the Schwarz-Christoffel trans-

formations. The dimensions used are identical to those for burner Configuration I described in

Section 3.1. Fig. 5.12, Part A depicts the error S for several values ξ2. The simplex used to converge

upon the minimum value S is also illustrated. The first simplex ( ) contains N + 1 = 2

arbitrary points. The following simplex ( ) replaces the point XP=Po
n=nj

having the larger error
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S
(
XP=Po
n=nj

)
with the reflection about the line which is parallel to the ξ2-axis and intersecting the

point XP=Po
n6=nj , with the smaller of the two errors S

(
XP=Po
n6=nj

)
. XP=Po

n=nj
is replaced with XP=Po+1

n=nj
of the

two points. This process continues until S � 10−6. We determine ξ2 = −52.3 where S ∼ 10−7,

which is found after P ∼ 300 simplex steps. The formula for the transformation is

z(ζ) = K

∫ ζ

a

(ζ ′ + 1)1/6

ζ ′(ζ ′ + 52.3)1/6
dζ ′ + h1, whereK = 8.31, a = −1. (5.39)

Calculating the Schwarz-Christoffel transformation for the geometry depicted in Figure 5.11,

Part B is slightly more complicated because there are two unknown parameters. Figure 5.12, Part

B illustrates the contour of the calculated error S for numerous values of ξ4 and ξ5. The lower-right

half is shaded because the results in this area are invalid because they violate the condition ξi < ξi+1.

The figure also illustrates the three-point (triangular) simplex used to converge upon the optimum

value. In this case, the first simplex ( ) contains three points. In the following simplex (

), the point XP=Po
n=nj

, corresponding to the value having the largest error S
(
XP=Po
n=nj

)
, is replaced with

its reflection about the line connecting the other two points. Again, this process is continued until

the error S � 10−6. We determine ξ4 = 82.0 and ξ5 = 356.5, where S ∼ 10−6 found after P ∼ 400

steps. The formula for the transformation is

z(ζ) = K

∫ ζ

a

=
(ζ ′ − 82.0)2/3

ζ ′(ζ ′ − 1)1/6(ζ ′ − 356.5)1/2
dζ ′, where K = 8.28, a = 1. (5.40)

The numerical method for calculating the Schwarz-Christoffel transformation exemplified above

is extended to the full geometric complexity of burner Configurations I and II. The constants in
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Figure 5.12: Illustration of two simplexes: Part A: in one-dimensional space; Part
B: in two-dimensional space.

Equation 5.23 have been determined. The minimization procedure for each configuration requires

P ∼ 500 steps. The formula for the transformation of Configurations I and II is respectively

z(ζ) = K

∫ ζ

a

(ζ ′ + 1.309)1/6(ζ ′ − 586.4)2/3

ζ ′(ζ ′ + 393.1)1/6(ζ ′ − 1)1/6(ζ ′ − 2720)1/2
dζ ′, where K = 8.04, a = 1. (5.41)

z(ζ) = K

∫ ζ

a

(ζ ′ + 1.816)1/2(ζ ′ − 742.3)2/3

ζ ′(ζ ′ + 327.2)1/2(ζ ′ − 1)1/6(ζ ′ − 3018)1/2
dζ ′, where K = 8.04, a = 1. (5.42)

We depict streamlines of the hydrodynamic flow originating from a source at ζ = −∞ in Fig-

ures 5.13 and 5.14 for respective Configurations I and II. In Section 5.5.3 we describe the method

used to calculate the response from arbitrary source configurations. In practice, we had to employ

three integral paths before obtaining the correct streamlines, which are identical to those obtained

with the numerical approximation of Laplace’s equation in Section 5.2. The first method (a), de-

picted in Figure 5.15, is a straight line path between a and ζ. This method fails because the Jacobi

distribution is not sufficiently distributed as ζ →∞.
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Figure 5.13: Illustration of hydrodynamic streamlines in burner Configuration I
originating from a source located at (−∞, 0).
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Figure 5.14: Illustration of hydrodynamic streamlines in burner Configuration II
originating from a source located at (−∞, 0).
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The second method (b) employs the definition z(ξa) − z(ξb) ≡ K
∫ ξa
ξb

dz
dζ′
dζ ′ and follows the real

axis starting at a and ending at the singularity which is closest to the value ζ, say ξc. The path to ζ

from ξc is a straight line. The equation describing the integral path is

∫ ζ

a

dz

dζ ′
dζ ′ = z(ξc)− z(a) +

∫ ζ

ξc

dz

dζ ′
dζ ′,

where the quantity z(ξc) − z(a) is defined by the transformation. The method failed because the

desired numerical precision could not be reconciled with the first-order pole at the origin.

The third method (c) successfully determines the streamlines of the potential flow. It first inte-

grates between a and a point on the imaginary ζ-axis, say η̃. This method is the parallel to method

(b) except it follows the imaginary rather than the real axis; it ensures stability of the integral as

ζ → ∞ by refining the number of abscissae near ζ. The imaginary axis point is determined by the

formula:

η̃ = exp(k0 + k1 log(|ζ|)/ log(Vmax))i,

where k0 and k1 are positive, fixed constants, and Vmax ∼ 10300 is the largest number recognized by

the chosen numerical precision.
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Figure 5.15: Illustration of the integration paths used to calculate hydrodynamic
streamlines in burner Configurations I and II.

Figures 5.13 and 5.14 illustrates the hydrodynamic streamlines originating from a source at

ζ → −∞ for the burner Configurations I and II, respectively. Figures 5.16 and 5.17 illustrate

the hydrodynamic streamlines originating from two arbitrary source configuration for burner Con-

figuration I. In each case, there still exists a source at ζ → −∞.

Table 5.2: Position of the hydrodynamic region boundaries and blockage length for
burner Configurations I and II

Burner configuration X1 X2
¯̀

Configuration I -0.038 m 0.015 m 0.095 m
Configuration II -0.038 m 0.021 m 0.138 m

We determine the blockage length using Equation 5.7 from the the streamlines depicted in Fig-

ures 5.13 and 5.14. In Table 5.2 we compare the position of the hydrodynamic region boundaries X1

and X2 and the value of the blockage length ¯̀ for both Configurations I and II. These results are

also presented in [61,63].
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Figure 5.16: Illustration of hydrodynamic streamlines in burner Configuration I
originating from sources located at (−∞, 0) and (0.006,±0.011). All three sources are
of equal strength.

Figure 5.17: Illustration of hydrodynamic streamlines in burner Configuration I orig-
inating from sources located at (−∞, 0), (0.017,±0.006), and (0.023,±0.011), where
The sources located at (0.017,±0.006) have three times the source strength as the
other three.
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5.6 The blockage length for the idealised combustor

The blockage length for the idealised burner Configuration III of Section 3.1 is determined analytically

from the potential flow of unit speed ϕ∗ = ϕ∗(x) within the duct. We consider the symmetrical

duct depicted in Figure 5.18 having width 2h, as well as two flat plate constrictions of width `f ,

creating an aperture of width ∆ = 2h−2`f . The potential flow is determined by Schwarz-Christoffel

transformation. The transformation from the z to ζ-plane takes the form

dz

dζ
= K

ζ − ξ4

(ζ − ξ2)
√
ζ − ξ3

√
ζ − ξ5

. (5.43)

The transformation points ξ2 and ξ4 are respectively chosen to coincide with ζ = 0 and ζ = 1.

Qf

O x
y

2h

Figure 5.18: Schematic of the idealised Combustor III half-plane and its image across
the x1-axis.

Transformation points ξ3 and ξ5 are yet been determined but, from the symmetry of the problem,

are to be respectively chosen to coincide with ζ = α2 and ζ = 1/α2. The transformation has the

current form

dz = K
ζ − 1

ζ
√
ζ − α2

√
ζ − 1/α2

dζ. (5.44)
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The constant K is determined by equating the integral around the singularity ζ = ξ2 with the

distance between z2 and z2′ in the z-plane; it is found to be K = h
π
. Equation 5.44 is integrated on

either side to take the form

z =
h

π
ln



√
ζ − α2 +

√
ζ − 1/α2

√
1
α2 − 1

ζ
+
√
α2 − 1

ζ


 , (5.45)

where the constant α is determined by substituting z = z4 = 0 + i`f on the left-hand side and the

corresponding point ζ = ξ4 = 1 on the right-hand side. The constant is determined by the formula:

α = tan

(
π∆

8h

)
. (5.46)

The complex potential flow within the duct has the form w = ϕ∗+ iψ∗ = h
π

ln ζ. The blockage length

¯̀ due to the constriction is the integral along the entire x1-axis of the difference between the axial

flow speeds ∂ϕ∗/∂x1 in the duct with the constriction and the duct without the constriction (where

∂ϕ/∂x1 = 1). Namely,

¯̀ =
∫∞
−∞

(
∂ϕ∗

∂x
− 1
)
dx

=
∫∞
−∞

(
∂w
∂z
− 1
)
dz

= [w − z]∞−∞ ,

(5.47)

which is determined from the limits as z → ±∞. In the upper limit as z → ∞, ζ → ∞, the

transformation takes the form

z ' 2h
π

ln
(

2
√
ζ

(α+1/α)

)

= h ln ζ
π
− 2h

π
ln
(

1
2
(α + 1/α)

)
,

(5.48)

72



and w − z therefore approaches

w − z → 2h

π
ln

(
1

2
(α + 1/α)

)
. (5.49)

Similarly, in the lower limit as z → −∞, ζ → 0, and the transformation takes the form

z ' 2h
π

ln
(√

ζi(α+1/α)
2i

)

= h ln ζ
π

+ 2h
π

ln
(

1
2
(α + 1/α)

)
,

(5.50)

and w − z subsequently approaches

w − z → −2h

π
ln

(
1

2
(α + 1/α)

)
. (5.51)

The blockage is obtained by substitution into Equation 5.47 and is determined to be

¯̀= [w − z]∞−∞ =
4h

π
ln

[
1

2

(
tan

(
π

4
− π`f

4h

)
+ cot

(
π

4
− π`f

4h

))]
, (5.52)

which we simplify to the following final expression for the blockage length:

¯̀= −4h

π
ln

[
cos

(
π`f
2h

)]
. (5.53)
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Chapter 6

The thermo-acoustic Fant equation

The principal sources of sound are unsteady heat release, vorticity, and accelerated entropy inho-

mogeneities, so called entropy noise. At high Reynolds number, heat and momentum transfer by

molecular diffusion can be neglected, although it can be important in low velocity regions near the

wall. The momentum equation can be taken in the form

∂v

∂t
+∇B = −ω ∧ v + T∇s− η

ρ
curlω, (6.1)

where v is the velocity, ω = curl v is the vorticity, ρ, T , s are the respective density, temperature,

and specific entropy, η is the shear component of viscosity, and B = cpT + 1
2
v2 is the total enthalpy

(cp being the ratio of specific heats at constant pressure), which is constant throughout the flow for

steady, irrotational, and homentropic conditions.

Outside the regions of vorticity and entropy inhomogeneities, variations in the total enthalpy B

correspond to sound waves and are equal to −∂ϕ∗/∂t, where ϕ∗(x, t) is the velocity potential of

the incompressible and irrotational flow. Sound production principally occurs in the region near the
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flame-holder. We restrict interest to low frequency waves where acoustic disturbances propagate as

plane waves in the duct, and where the mean flow Mach number M is small. Treating the fluid as

an ideal gas, in Section 2.3 we cast the momentum equation into the acoustic analogy for the total

enthalpy
(

1

c2

∂2

∂t2
− ∂2

∂xjxj

)
B = div (ω ∧ v − (T∇s)′ + ν curlω) +

∂

∂t

(
1

cp

∂s

∂t

)
, (6.2)

where here and henceforth B denotes the perturbation from the mean value of the total enthalpy,

(T∇s)′ denotes the corresponding perturbation, c is the local speed of sound, and ν = η/ρ is the

kinematic shear component of viscosity. The repeated subscript j implies summation over all three

spatial coordinates. The first term on the right-hand side of Equation 6.2 corresponds to the vortex

and entropic sources, and the second term corresponds to the monopole flame source. In the low Mach

number approximation, we can approximate the acoustic pressure to be p′ ' ρB in the upstream

and downstream sections.

We can express the solution B(x, t) of Equation 6.2 in terms of a Green’s function G = G(x,y, t, τ)

that satisfies
(

1

c2

∂2

∂t2
− ∂2

∂yjyj

)
G = δ(x− y)δ(t− τ), G = 0 for τ > t, (6.3)

where y = (y1, y2, y3). The total enthalpy Green’s function G is determined for the idealised duct

(Configuration III) in Section 4.2. Green’s theorem, causality, and the momentum equation 6.1 give

the solution of the aerodynamic sound equation 6.2 in the form [28,53,55,82]

B(x, t) =

∫ ∞

−∞

∮

S

G
∂v

∂τ
· dS(y)dτ −

∫ ∞

−∞

∫

V

∂G

∂y
· (ω ∧ v − (T∇s)′ + ν curlω) d3ydτ

−
∫ ∞

−∞

∫

V

∂G

∂τ

1

cp

∂s

∂τ
d3ydτ,

(6.4)
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where the vector surface element dS on S is directed into the fluid and V denotes the spatial region

occupied by the fluid. The surface integral term ∂v/dτ corresponds to the mean inflow at the

upstream end. In the volume integral, the viscous term ν curlω is a dipole concentrated near the

duct boundary layer, and is small relative to other terms at high Reynolds number. The vortex

source term ω ∧ v is also a dipole and together with the entropic terms ∂s/∂y corresponds to the

effect of momentum and thermal mixing downstream of the flame. The final integral is a monopole

and corresponds to the entropic production from the flame.

We present two methods for solving Equation 6.4: the first is the ‘direct’ method which in-

volves equating two independent equations for the total enthalpy; the second is the ‘adjoint-equation’

method which involves determining an equation for the Green’s function component β and subse-

quently proving the Fant equation in terms of Q as the adjoint of the β-equation. In this chapter, we

derive the Fant equation for Configuration III; we then extend it to application to Configuration II

in Chapter 9.

6.1 The direct method

The dominant source of sound in the duct is the heat release flame monopole due to the flame.

Let Qf (t) denote the flame source strength. The flame is assumed to occupy a compact region just

downstream of the flame-holder. An observer in the downstream duct at x will detect source strength

Q(t) + Qf (t), where Q(t) is the component strictly due to the upstream volume source Qo past the

constriction. A schematic of the idealised burner configuration is depicted in Figure 6.1, where we

define control surfaces Σ = Σ−+Σ+, and Σo which are defined as follows: Σ+ is a plane cross-section

downstream of the constriction, where the steady and unsteady flows are nominally parallel to the
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x1-axis and of infinitesimal Mach number. Σ− is upstream from Σ+ and consists of the constriction

at x1 = 0, two vortex sheets originating at the edges of the constriction (defining the edge of the

separated flows), and a short vertical section just downstream of the constriction where jet velocities

have become uniform and parallel to the wall.

We initially consider a special case of Equation 6.4 where the duct is closed at the constriction

x1 = 0. We determine the total enthalpy B from the special Green’s function Go, defined by

Equation 4.25. Substituting the unknown combined source strength Q(t) +Qf (t) into Equation 6.4,

where only the surface integral is retained, with viscous contributions discarded, and with S extended

to include the control surface Σ enclosing the flame, we can express the total enthalpy as

B = B(x1, t) =

∫ ∞

−∞

∂

∂τ
(Qf +Q)(τ)Go(x1, 0, t, τ)dτ, x1 >

√
A, (6.5)

which is strictly a formal representation as both the volume velocity Q(t) and the flame heat release

rate Qf (t) are unknown at this point.

An interchange in dummy variable and integration by parts permits the left-hand side of Equa-

tion 4.27 to be used to express Equation 6.5 in terms of β(τ, x1, t) in the form

B = B(x1, t) =

∫ ∞

−∞
β(τ, x1, t)

[
¯̀ ∂

∂τ
(Q+Qf )(τ)

+
i

2π

∫ ∫ ∞

−∞
(Q+Qf )(ξ)

(
c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−τ)dωdξ

]
dτ,

(6.6)

where ¯̀ is defined for Configuration III in Equation 5.53.

The sound in the downstream duct can alternatively be formulated in terms of the thermo-

acoustic sources in Equation 6.4. In this alternative formulation, we assume viscous contributions
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Figure 6.1: Schematic of the idealised Combustor III depicting source configurations
and control surfaces.

are negligible in high Reynolds number. It is convenient to express B = B(x, t) in the separated

form

B = Bo +Bσ +Bf , (6.7)

where Bo, Bσ, and Bf respectively correspond to the total enthalpy contribution from the inlet

volume velocity Qo, from the momentum and thermal mixing over the combustion zone, and from

the heat release from the flame. Vorticity and entropy sources in the flow beyond the flame are

ignored.

The enthalpy component corresponding to the inlet volume velocity is calculated by substituting

the Green’s function 4.24 into the surface integral term in Equation 6.4 for a source located at

x1 = −L1 having strength Qo. Integrating by parts and re-naming the dummy variable of integration

we have

Bo = Bo(x1, t) = −
∫ ∞

−∞
Qo(ξ)

∂G

∂ξ
(x1,−L1, t, ξ)dξ =

ic1

2π

∫ ∫ ∫ ∞

−∞

β(τ, x1, t)Qo(ξ)

sin(k1L1)
eiω(ξ−τ)dωdξdτ.

(6.8)
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The vorticity, entropy, and viscous component corresponding to the mixing region is calculated

by substituting the Green’s function 4.24 into the first volume integral of Equation 6.4 which yields

Bσ = Bσ(x1, t) = −
∫ ∞

−∞

∫

V

β(τ, x1, t) (∇Y · [ω ∧ v − (T∇s)′ + ν curlω]) (y, τ)d3ydτ, (6.9)

where the integral is confined to combustion zone and Y is the Kirchoff vector defined in Equa-

tion 4.22. Although turbulent sources exist also downstream of the combustion zone, they are

essentially weak quadrupoles and make negligible contribution to the sound.

The enthalpy production term corresponding to the flame is also calculated in [82]. The heat

release per unit flame volume is q = ρT∂s/∂t so the total volume production from the flame is

Qf (t) =

∫

V

q(y, t)

cpρT
d3y. (6.10)

In the heat release component of the total enthalpy

Bf = Bf (x1, t) = −
∫ ∞

−∞

∫

V

∂G

∂τ

1

cp

∂s

∂τ
d3ydτ, (6.11)

the Green’s function can be cast as simply G = α(τ, x1, t) because terms β in Equation 4.21 are

O(k2y1) smaller in the downstream duct. It follows that

Bf (x1, t) = −
∫ ∞

−∞
Qf (τ)

∂α

∂τ
dτ, (6.12)

79



which can be recast into the following form using Equation 4.26:

Bf (x1, t) =

∫ ∞

−∞
β(τ, x1, t)

[
¯̀∂Qf

∂τ
(τ) +

ic1

2π

∫ ∫ ∞

−∞

Qf (ξ) cos(k1L1)

sin(k1L1)
eiω(ξ−τ)dωdξ

]
dτ. (6.13)

From Equation 6.7, the net acoustic field is given by

B(x1, t) =

∫ ∞

−∞
β(τ, x1, t)

[
¯̀∂Qf

∂τ
(τ) +

ic1

2π

∫ ∫ ∞

−∞
(Qf (ξ) cos(k1L1) +Qo(ξ))

eiω(ξ−τ)

sin(k1L1)
dωdξ

−
∫

V

(∇Y · [ω ∧ v − T∇s+ ν curlω]) (y, τ)d3y

]
dτ.

(6.14)

Equating the total enthalpies given in Equations 6.6 and 6.13 yields the thermo-acoustic Fant equa-

tion for the idealised burner

¯̀dQ

dt
+

i

2π

∫ ∫ ∞

−∞
Q(ξ)

(
c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

=
i

2π

∫ ∫ ∞

−∞

(
c1Qo(ξ)

sin(k1L1)
+
c2Qf (ξ) sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

−
∫

V

(∇Y · [ω ∧ v − (T∇s)′ + ν curlω]) (y, t)d3y,

(6.15)

which determines Q(t) in terms of Qo(t) and Qf (t) and mixing sources in the combustion zone.

Although volume velocity Q(t) occurs linearly on the left of Equation 6.15, the equation is actually

nonlinear as both the heat release source Qf (t) and the mixing region source in the final integral

exhibits nonlinearity.

Thus far it has been assumed that only plane waves propagate in the burner, that the flame region

is acoustically compact, and that the upstream and downstream Mach number M � 1. Proceeding

further, application of the Fant equation 6.15 requires the final integral on right-hand side to be

expressed in terms of Q. In order to do this we assume the combustion zone is quasi-static, which is
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equivalent to assuming it is acoustically compact. In other words, ∂v/∂t on the left of Equation 6.1

can be neglected across the combustion zone provided `cz � λ, where `cz ∼ O(h) is the axial extent

of the combustion zone and λ = c/f (f being the characteristic frequency) is the characteristic

wavelength. Namely, the combustion zone is acoustically compact provided fh/c � 1, which for

Configuration III requires the frequencies of interest f � 3000 Hz. In Figure 6.1, we show that

the combustion zone is bounded by the control surface Σ = Σ− + Σ+, where in the quasi-static

approximation the pressure in the jet must be equal to p′ on the interface portion of the control

surface Σ− on which the flow speed is uniform and equal to Uσ(t).

Neglecting ∂v/∂t on the left of Equation 6.1, the final integral on the right of Equation 6.15 can

be replaced by

−
∫

V

∇Y · ∇Bd3y = −
∫

V

div (B∇Y )d3y

because ∇2Y = 0. It follows from the divergence theorem that

−
∫

V

div (B∇Y )d3y =

∮

Σ−+Σ+

B∇Y · dS ' (B+ −B−)A, (6.16)

noting that −
∮

Σ−
∇Y · dS =

∮
Σ+
∇Y · dS = A, and where B± are the respective values of B on

Σ±. In formula 6.16 we can take B+ = p′/ρ2, where the mean flow velocity is negligible and the

unsteady pressure p′ is the uniform quasi-static pressure in the combustion region. Over the interface

portions of Σ− the velocity is uniform and equal to Uσ(t) so that B− = p′/ρ1 + 1
2
U2
σ . The volume

flux Q through the constriction is initially carried by the jets so Q = σAσUσ, where σ ' 0.6 is the
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jet contraction ratio and Ac is the cross-sectional area of the constriction. Therefore,

A(B+ −B−) = Ap′
(

1

ρ2

− 1

ρ1

)
− 1

2
AU2

σ

= −AB+

(
ρ2

ρ1

− 1

)
− AQ

2

2σ2A2
σ

=
ic2

2π

(
ρ2

ρ1

− 1

)∫ ∫ ∞

−∞
(Qf +Q)(ξ)

sin(k2L2)

cos(k2L2)
eiω(ξ−t)dωdξ − AQ

2

2σ2A2
σ

,

(6.17)

where B+ has been calculated in terms of Q and Qf from Equation 6.5.

Substitution of Equations 6.16 and 6.17 into Equation 6.15 yields the quasi-static Fant equation

approximation

ρ1
¯̀dQ

dt
+

i

2π

∫ ∫ ∞

−∞
Q(ξ)

(
ρ1c1 cos(k1L1)

sin(k1L1)
− ρ2c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

=
i

2π

∫ ∫ ∞

−∞

(
ρ1c2Qo(ξ)

sin(k1L1)
+
ρ2c2Qf (ξ) sin(k2L2)

cos(k2L2)

)
eiω(ξ−t) − ρ1AQ2

2σ2A2
σ

.

(6.18)

This equation has been derived strictly under the assumption that flow past the flame-holder is

unidirectional, in the positive x1 direction; however, reverse flow is know to occur at high-amplitude

oscillations, although these are typically small. We generalise for the reverse flow case by replacing

Q2 on the right hand side with Q|Q|. Similarly, limit cycle and other ‘steady state’ motions in the

burner are usually considered for constant value inflow volume velocities Qo = Q̄o so solutions of

Equation 6.18 are sought that are valid long after transients arising from starting flow have vanished.

So we put Qo(ξ) = Q̄o where
∫∞
−∞ Q̄oe

iωξdξ = 2πQ̄oδ(ω). Taking account of the above generalisation

and assumption, we cast the quasi-static approximation of the thermo-acoustic Fant equation into
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the following final form

ρ1
¯̀dQ

dt
+

i

2π

∫ ∫ ∞

−∞
(Q(ξ)− Q̄o)

(
ρ1c1 cos(k1L1)

sin(k1L1)
− ρ2c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

=
iρ2c2

2π

∫ ∫ ∞

−∞

Qf (ξ) sin(k2L2)

cos(k2L2)
eiω(ξ−t) − ρ1AQ|Q|

2σ2A2
σ

.

(6.19)

This approximation of the Fant equation is the most significant equation of this thesis. It will

be used extensively in Chapters 7, 8 to obtain respective linear and nonlinear results for Configu-

ration III. It will be extended in Chapter 9 to account for the Limousine burner Configuration II.

It is interesting to note that we can derive the thermo-acoustic Fant Equation using both a ‘di-

rect’ method described above but also using an ‘adjoint-equation’ method which is described in the

following section, and serves to justify the equating the acoustic fields of Equations 6.6 and 6.14.

6.2 The adjoint-equation method

In both the direct and adjoint-equation methods, the net acoustic field is determined from summation

of its components. We cast Equation 6.14 in the form

B(x1, t) =

∫ ∞

−∞
β(τ, x1, t)F(τ)dτ, (6.20)

where F = F(τ) can be described as a ‘Fant equation source’ and is defined as

F(τ) = ¯̀∂Qf

∂τ
(τ) +

ic1

2π

∫ ∫ ∞

−∞
(Qf (ξ) cos(k1L1) +Qo(ξ))

eiω(ξ−τ)

sin(k1L1)
dωdξ

−
∫

V

(∇Y · [ω ∧ v − T∇s+ ν curlω]) (y, τ)d3y.

(6.21)
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In order to obtain the Fant equation we differentiate Equation 4.27 with respect to τ to yield

¯̀∂β

∂τ
− i

2π

∫ ∫ ∞

∞
β(ξ, x1, t)

(
c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

k2 cos(k2L2)

)
e−iω(ξ−τ)dωdξ

=
∂Go

∂τ
≡ − ic2

2πA

∫ ∞

−∞

sin[k2(x1 − L2)]

cos(k2L2)
e−iω(ξ−τ)dω,

(6.22)

which we call the β equation and denote it as

Lβ =
∂Go

∂τ
,

where L is the operator acting on β. We similarly define the thermo-acoustic Fant equation as

L̂(Q+Qf ) = −F(τ), (6.23)

where L̂ is the adjoint to L. Namely, the Fant equation is

¯̀ ∂

∂τ
(Q+Qf ) +

i

2π

∫ ∫ ∞

∞
(Q+Qf )(ξ)

(
c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

k2 cos(k2L2)

)
e−iω(ξ−τ)dωdξ = F(τ),

(6.24)

where substitution of F(τ) in Equation 6.21 and an interchange of variables yields the thermo-acoustic

Fant equation 6.15. We prove the adjoint relationship by taking the product of Equation 6.24 with
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β(τ) to obtain

¯̀ ∂

∂τ
[β(Q+Qf )] +

i

2π

∫ ∫ ∞

∞
[β(ξ)(Q+Qf )(ξ)]

(
c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

k2 cos(k2L2)

)
e−iω(ξ−τ)dωdξ

= β(τ)F(τ).

(6.25)

Similarly, we take the product of Equation 6.22 with (Q+Qf )(τ) to obtain

¯̀ ∂

∂τ
[β(Q+Qf )]−

i

2π

∫ ∫ ∞

∞
[β(ξ)(Q+Qf )(ξ)]

(
c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

k2 cos(k2L2)

)
e−iω(ξ−τ)dωdξ

= (Q+Qf )(τ)
∂Go

∂τ
.

(6.26)

Integrating the sum of Equations 6.25 and 6.26 yields

B =

∫ ∞

−∞
β(τ)F(τ)dτ = −

∫ ∞

−∞
(Q+Qf )(τ)

∂Go

∂τ
dτ, (6.27)

which has left and right sides identical to Equation 6.5 after an interchange of variables and integra-

tion by parts. Substituting the potential flow approximation for the total enthalpy B ≈ −∂ϕ∗/∂t

and differentiating with respect to spatial variable x1 yields

− ∂

∂t

[
∂ϕ∗

∂x1

]
≡ − ∂

∂t

[
Q+Qf

A

]
= − ∂

∂x1

∫ ∞

−∞
(Q+Qf )(τ)

∂Go

∂τ
dτ. (6.28)
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Substitution of the right-hand side of Equation 6.22 for ∂Go/∂τ , we can write the above equation

into the form

i

2πA

∫ ∞

−∞
ω(Q+Qf )(τ)e−iω(t−τ)dω =

1

2πA
∂

∂t

∫ ∞

−∞
(Q+Qf )(τ)e−iω(t−τ)dω = − ∂

∂t

[
Q+Qf

A

]
, (6.29)

which is equivalent to the left-hand side of Equation 6.28. Thus, proving the ‘adjoint-equation’

method and justifying Equation 6.5. The following chapters determine the solution of Equation 6.19

and provide linear and nonlinear example results.
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Chapter 7

Application of the linear Fant equation

Initially we limit the application of the Fant equation 6.19 to illustrative calculations of the resonant

modes of the idealised burner Configuration III in Figure 3.3 with the characteristic parameters listed

in Table 7.1.

In the linearised approximation let Q̄, Q̄f denote the mean values of Q(t), Qf (t), and set

Q(t) = Q̄+ Re
(
Q̂e−iωt

)
, Qf (t) = Q̄f + Re

(
Q̂fe

−iωt
)
, (7.1)

where Q̂, Q̂f are the corresponding complex amplitudes of time-harmonic oscillations of frequency

ω of the perturbation volume velocities through the constrictions and from the flame. In the steady

limit Q(t)→ Q̄ the Fant equation 6.19 becomes

ρ1c1 − ρ2c2

ρ1

Q̄− Q̄o

A − 1

2

Qo

σ2A2
σ

=
p̄

ρ1

− 1

2
Ū2
σ = 0, (7.2)

where p̄ is the steady excess pressure within the upstream duct and Ūσ is the corresponding asymp-
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Table 7.1: Idealised duct combustor (Configuration III) parameters

Description Value
Duct cross-sectional area A 0.011 m2

Steady upstream source volume velocity Q̄o 0.022 m3/s
Constriction cross-sectional area Aσ 0.0055 m2

Distance from aperture to duct entrance L1 0.322 m
Distance from aperture to effective duct exit L̄2 1.142 m
Effective length of burner ‘blockage’ ¯̀ 0.022 m
Upstream mean temperature T1 288 K
Downstream mean temperature T2 1200 K
Upstream mean density ρ1 1.214 kg/m3

Downstream mean density ρ2 0.292 kg/m3

Maximum flame power Πmax 50 kW/m3

totic speed of the jets exhausting through the constrictions. Subtracting steady Equation 7.2 from

the full Fant equation 6.19, and linearising by taking terms Q̂2 to be negligible, we obtain the char-

acteristic equation for the burner eigenfrequencies [82]

k1
¯̀− cot(k1L1) + Z

(
1 +

Q̂f (ω)

Q̂(ω)

)
tan(k2L2) + iMo

( A
σAσ

)2

= 0, (7.3)

where Z = ρ2c2/ρ1c2, k1 = ω/c1 and k2 = ω/c2 are the respective upstream and downstream wave

number, and Mo = Uo/c1 is the mean flow Mach number in the upstream duct.

The first term on the left of Equation 7.3 corresponds to an effective increase in the duct length

caused by the flame-holder. The second and third terms correspond to acoustic propagation in the

respective upstream and downstream duct, as well as acoustic energy production in the third term.

The final term arises from unsteady motions of the jet emerging by production of vorticity at the

edges of the flame-holder. The magnitude of this effect can be gauged, considering the case of no

unsteady heat release.

The characteristic frequencies are real when Mo = 0 and when the unsteady heat release from the
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flame Q̂f = 0 due to the absence of mean flow dampening and unsteady combustion destabilisation,

which would give an imaginary part to the frequency. In the absence of a mean flow and unsteady

heat release, the equation governing the characteristic frequencies reduces to

ω ¯̀

c1

− cot (k1L1) + Z tan (k2L2) = 0,

which can be solved using the Newton-Raphson method. The lowest order modes have frequency

f = ω/2π ' 114, 273, 473, 683 Hz for the burner of Table 7.1.

7.1 The effect of mean flow

In order to show the damping effect of the mean flow we consider the burner absent of unsteady heat

release. The frequency ω = ω(Uo) is strictly a function of the inlet flow speed. Taking the derivative

of Equation 7.3 with respect to Uo and solving for dω/dUo, we find

∂ω

∂Uo
=
−i
c1

1

F (ω)

( A
σAσ

)2

, (7.4)

where

F (ω) =
¯̀

c1

+ csc2 (k1L1)
L1

c1

+ Z sec2 (k2L2)
L2

c2

. (7.5)

Starting with the characteristic frequencies above having zero imaginary part, we find complex reso-

nance frequencies for successive Uo steps by Runge-Kutta [79,83] four-step integration of Equation 7.4.

Figure 7.1 depicts the dependence of low order complex resonance frequencies on the mean inlet flow

speed in the absence of unsteady heat input. In each of the four present complex acoustic frequencies,
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increasing the mean flow speed in the upstream duct has a stabilising effect as the imaginary part

of the frequency becomes increasingly negative with increasing Uo. We also wish to investigate the

effect of increasing unsteady power.
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Figure 7.1: Dependence of the low order, linear theory complex resonance frequencies
on the mean inlet flow speed Uo = c1Mo for the burner of Table 7.1 when there is no
unsteady heat input from the flame.

7.2 The effect of unsteady heat release

The influence of unsteady heat release from the flame depends on the modulation of the heat release

rate by acoustic fluctuations near the flame-holder. These fluctuations modify the heat release rate

of the flame by producing variations in the flame surface area, vortex shedding from the flame-holder,

variations in the flame attachment point, etc [4,36,40,44,64,84]. In this chapter attention is confined

to the first of these mechanisms in the simplest possible manner, sufficient to illustrate its principal

influence on the characteristic equation 7.3. The approach is similar to that used in [33].
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Let q̄(x1), q′(x1, t) respectively denote the mean and unsteady components of heat release per

unit length downstream of the flame-holder, so from Equation 6.10 we have

Q̄f =

∫ Xf

0

q̄(x1)

cpρT
dx1, Q′f (t) =

∫ Xf

0

q′(x1, t)

cpρT
dx1, (7.6)

where the region of heat release extends over the interval 0 < x1 < Xf .

The heat release fluctuations occur because of changes in the flame front area produced by the

unsteady component of the volume velocity Q(t) through the constrictions. For this simple model,

suppose that an element of the steady flame front, within the interval dx1, has length ds(x1). Let

small amplitude variations in Q change ds to ds+ dζ, where ζ = ζ(x1, t), therefore

q′(x1, t) = q̄(x1)
∂ζ/∂x1

ds/dx1

. (7.7)

In the simplest approximation we put ds/dx1 = 1, and assume that perturbations in the flame area

propagate along the flame at the local mean flow speed Ūσ, i.e. ζ = ζ(t− x1/Ūσ). Thus

q′(x1, t) = −q̄(x1)
1

Ūσ

∂ζ

∂t
(t− x1/Ūσ) = −q̄(x1)

Q′

Q̄o

(t− x1/Ūσ), (7.8)

where Q′(t) is the unsteady component of the volume velocity.

The overall unsteady volume production rate of the flame Q′f (t) can now be determined by

substitution into the second of Equation 7.6. The resulting integral is approximated by assuming

that the main contribution is from within the vicinity of the centroid x1 = `q, say, of the mean heat
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release rate, so that
∫ Xf

0
q̄(x1)Q′(t− x1/Ūσ)dx1 ' Q′(t− `q/Ūσ)

∫ Xf
0

q̄(x1)dx1, and therefore

Q′f (t)

Q̄f

' −Q
′(t− τq)
Q̄o

, τq =
`q
Ūσ
. (7.9)

According to this model the heat release ratio Q̂f (ω)/Q̄(ω) in the characteristic equation 7.3 can be

replaced by

Q̂f (ω)

Q̄(ω)
' −Q̄f

Q̄o

eiωτq . (7.10)

The mean volume flow rate of the flame Q̄f is calculated from Equation 7.6 in terms of the mean

flame power Π =
∫ Xf

0
q̄(x1)dx1. The phase lag τq is responsible for the destabilisation of the natural

acoustic modes of the burner and for the appearance of forced, combustion-driven modes.

In terms of these definitions the characteristic equation 7.3 takes the form

k1
¯̀− cot(k1L1) + Z

(
1− Πeiωτq

cpρTQ̄o

)
tan(k2L2) + iMo

( A
σAσ

)2

= 0, (7.11)

which we solve taking the derivative with respect to Uo and Π and then solving for ∂ω/∂Uo and

∂ω/∂Π to respectively find

∂ω

∂Uo
=

−i
c1F (ω, Uo,Π)

( A
σAσ

)2

, (7.12)

and

∂ω

∂Π
=

Z
F (ω, Uo,Π)

eiωτq

cpρTQo

tan

(
ω
L2

c2

)
, (7.13)
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where

F (ω, Uo,Π) =
¯̀

c1

+ csc2

(
ω
L1

c1

)
L1

c1

+ Z
(

1− Πeiωτq

cpρTQo

)
sec2

(
ω
L2

c2

)
L2

c2

−Z
(
iΠτqe

iωτq

cpρTQo

)
tan

(
ω
L2

c2

)
.

(7.14)

We are interested in determining ω for a range of values Π at several fixed values of Uo. Integrating

Equations 7.12 and 7.13 in order to determine ω is path-independent so we integrate first with respect

to Uo with fixed power Π = 0 and then for increasing power between 0 < Π < Πmax, namely,

ω1 = ω0 +

∫ (Uo,1,Π0)

(Uo,0,Π0)

∂ω

∂Uo
dUo +

∫ (Uo,1,Π1)

(Uo,1,Π0)

∂ω

∂Π
dΠ, (7.15)

Figures 7.2, 7.3, 7.4 respectively depict both the complex natural acoustic ( ) and forced

combustion ( ) frequencies for the burner of Table 7.1 for the following three configurations

Uo = 2.0 m/s, `q = 0.8h = 0.04 m, Ūq ≈ 6.7 m/s,

Uo = 4.0 m/s, `q = 1.6h = 0.08 m, Ūq ≈ 13.4 m/s,

Uo = 6.0 m/s, `q = 2.4h = 0.12 m, Ūq ≈ 20.1 m/s.

In each case τq ' 5.97 ms. At Π = 0 each frequency takes the complex value indicated in Figure 7.1,

with negative imaginary part. Each mode is ultimately destabilised (Im ω > 0) by unsteady heating

as Π/Πmax increases, and the growth rate Im ω is seen to increase rapidly with frequency. It is also

clear that the frequency f = Re ω/2π can change significantly. In particular, at Uo = 2 m/s, the

frequency of the lowest order mode initially at f = 114 Hz is reduced to 70 Hz when Π = Πmax.

The same qualitative effects of heating are evident when the mean flow speed is Uo = 4 m/s and
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Uo = 6 m/s.

The natural acoustic modes of the burner are unstable when the delay time τq between successive

peaks in flame heat output is equal to an integral multiple n/f (n = 1, 2, . . .) of the period 1/f of

successive acoustic pressure peaks at the flame. More precisely, instability will actually occur provided

the heat release rate of the flame has a component in phase with the peak acoustic pressure, which

yields the condition n− 1
4
< τqf < n + 1

4
[1, 4]. This weakened condition is sufficient to ensure that

all of the natural acoustic modes of the burner are ultimately destabilised by unsteady heat release

from the flame provided the flame power is large enough.

The delayed response in flame heat release due to forcing by the sound can result in the appearance

of an additional set of forced combustion modes, which satisfy τqf = n to a good approximation

[4, 33, 36]. These modes are absent when Π = 0 and become rapidly evanescent when Π → 0. The

forced combustion modes which acquire positive growth are depicted in Figures 7.2-7.4 ( )

(all others are evanescent). The presence of these instabilities implies the existence of an acoustic

loop within the burner of the same frequency: f = 165, 335 Hz, in the first case in Figure 7.2. In

Figures 7.3 and 7.4, only the first combustion mode is excited. The rest are evanescent.
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Figure 7.2: Dependence of the low order, linear theory complex resonance frequencies
for the burner of Table 7.1 on operating power Π(0 < Π < Πmax) for Uo = 2 m/s and
`q/h = 0.8: , natural acoustic modes; , combustion modes.
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Figure 7.3: Dependence of the low order, linear theory complex resonance frequencies
for the burner of Table 7.1 on operating power Π(0 < Π < Πmax) for Uo = 4 m/s and
`q/h = 1.6: , natural acoustic modes; , combustion modes.
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Figure 7.4: Dependence of the low order, linear theory complex resonance frequencies
for the burner of Table 7.1 on operating power Π(0 < Π < Πmax) for Uo = 6 m/s and
`q/h = 2.4: , natural acoustic modes; , combustion modes.
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Chapter 8

Application of the nonlinear Fant

equation

We now consider Fant equation solutions for the downstream limit-cycle volume velocity Q(t) in

Configuration III; this can only be observed in nonlinear solutions. Characteristic parameters are

listed in Table 8.1.

8.1 The nonlinear heat source

Flame heat release is discussed in detail for for several geometric configurations in [35]; however,

the purpose of the present discussion is not necessarily to accurately describe the burner’s flame

heat release but rather to describe a new model for describing limit-cycle volume velocity oscilla-

tions. Dowling [31] describes a nonlinear heat release formulation introduced in Section 2.3 which

predicts well when the heat release Qf (t) and downstream non-flame volume velocity Q(t) make only

small-amplitude perturbations about a their mean or ‘steady-state’ values Q̄f and Q̄o, respectively.
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Table 8.1: Idealised duct combustor (Configuration III) parameters

Description Value
Duct cross-sectional area A 0.011 m2

Steady upstream source volume velocity Q̄o 0.022 m3/s
Constriction cross-sectional area Aσ 0.0055 m2

Distance from aperture to duct entrance L1 0.322 m
Distance from aperture to effective duct exit L̄2 1.142 m
Effective length of burner ‘blockage’ ¯̀ 0.022 m
Upstream mean temperature T1 288 K
Downstream mean temperature T2 1200 K
Upstream mean density ρ1 1.214 kg/m3

Downstream mean density ρ2 0.292 kg/m3

Maximum flame power Πmax 50 kW/m3

Transformation of Equation 2.47 into the frequency domain yields

τ1
dQf

dt
+Qf (t) = −Q̃f (Q(t− τ2)), (8.1)

where time delays τ1 and τ2 respectively correspond to dynamic and convective time delays. τ2 = `q/Ūσ

corresponds to the time delay τq in the linear calculations of Chapter 7 and is physically well-

understood. The dynamic time delay τ1 is not very well-understood and is analysed to determine an

appropriate value below. Q̃f (t) denotes the steady-state value of Qf (t) and is defined as follows:

Q̃f (Q(t)) =





0 for Q(t) < 0

ΠQ(t)

cpρTQ̄o
for 0 < Q(t) < 2Q̄o

2Π
cpρT

for 2Q̄o < Q(t)

(8.2)

From our linear calculations [82, 85], we initially predict the oscillations will have frequency

fo ∼ 100 Hz and use this value to non-dimensionalise time t. In order to understand the effect of

the dynamic time delay τ1 we investigate its behaviour after long time well in to the limit cycle
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tfo � 100 (fo ∼ 100 Hz being an estimated low-order resonant frequency), Qf (t) is periodic and

can be characterised by three parameters: the frequency amplitude of the oscillations, and the mean

value about which it oscillates. Although we are concerned with the frequencies constituting the

periodic behaviour of volume velocity through the constriction Q(t), we are not so concerned with

these frequencies for the heat release volume flux Qf (t). We are, however, interested in the mean

value and amplitude of Qf (t) at fixed convective time delay τ2. Figures 8.1 and 8.2 respectively

depict the mean value and amplitude of the non-dimensionalised volume velocity of the flame source

Qf at times tfo � 100 plotted against the dynamic time delay τ1 for fixed convective time delay

t2 = 6 ms, which is approximately the same value used in Chapter 7. We depict these values for four

power settings Π = 30, 40, 50, 60 kW. We see that smaller values of τ1 yield larger mean values of

Qf (t) as well as larger amplitudes.
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Figure 8.1: Mean value of the non-dimensionalised flame-source volume velocity Qf

plotted against dynamic time delay τ1 at time tfo � 100 for convective time delay
τ2 = 6 ms and power Π = 30, 40, 50, 60 kW.
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Figure 8.2: Amplitude of oscillations of the non-dimensionalised flame-source volume
velocity Qf plotted against dynamic time delay τ1 at time tfo � 100 for convective
time delay τ2 = 6 ms and power Π = 30, 40, 50, 60 kW.

8.2 The solution of the nonlinear thermo-acoustic Fant equa-

tion

In order to numerically determine the nonlinear solution of the Fant Equation 6.19 having the heat

release formulation above, we define a series of first-order differential equations with which we solve

for the volume using fourth-order Runge-Kutta integration. We rewrite the Fant Equation 6.19 with
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integral terms being on the left-hand side

¯̀dQ

dt
+

i

2π

∫ ∫ ∞

−∞
(Q(ξ)− Q̄o)

c1 cos(k1L1)

sin(k1L1)
eiω(ξ−t)dωdξ

− i

2π

∫ ∫ ∞

−∞
(Q(ξ)− Q̄o)

ρ2

ρ1

c2 sin(k2L2)

cos(k2L2)
eiω(ξ−t)dωdξ

− i

2π

∫ ∫ ∞

−∞
Qf (ξ)

ρ2

ρ1

c2 sin(k2L2)

cos(k2L2)
eiω(ξ−t)dωdξ = −AQ|Q|

2σ2A2
σ

.

(8.3)

Integrals with respect to ω are evaluated by defining a contour in the lower-half ω-plane which is anti-

clockwise and passes under all first-order singularities, occurring at modal frequencies Ω′n = nπ c1
L1

and Ωn =
(
n− 1

2

)
π c2
L2

. We evaluate the residues to find

¯̀dQ

dt
+ 2

∫ t

−∞
(Q(ξ)− Q̄o)

c2
1

L1

[
∞∑

n=1

cos(Ω′n(ξ − t)) +
1

2

]
dξ

+ 2

∫ t

−∞
(Q(ξ)− Q̄o)

ρ2

ρ1

c2
2

L2

∞∑

n=1

cos(Ωn(ξ − t))dξ

+ 2

∫ t

−∞
Qf (ξ)

ρ2

ρ1

c2
2

L2

∞∑

n=1

cos(Ωn(ξ − t))dξ = −AQ|Q|
2σ2A2

σ

.

(8.4)

Due to the effect of higher order modes Ω′n and Ωn being negligible, we can restrict the modes of

interest to a fixed number N . We can rewrite Equation 8.4 in the more compact form

¯̀dΞo

dt
+X0 +

N∑

n=1

(Xn(t) + Yn(t)) = −AQ|Q|
2σ2A2

σ

, (8.5)
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where Ξo(t), Xo(t), Xn(t), Yn(t) are functions respectively defined as follows

Ξo(t) = Q(t)−Q0

X0(t) =

∫ t

−∞
(Q(ξ)− Q̄o)

c2
1

L1

dξ,

Xn(t) = 2

∫ t

−∞
(Q(ξ)− Q̄o)

c2
1

L1

cos(Ω′n(ξ − t))dξ,

Yn(t) = 2

∫ t

−∞
(Q(ξ) +Qf (ξ)− Q̄o)

ρ2

ρ1

c2
2

L2

cos(Ωn(ξ − t))dξ.

(8.6)

We can collect Equations 8.3, 8.4, 8.5 and 8.6 to define a system of 4N + 3 differential equations

dX0

dt
=
c2

1

L1

Ξo(t),

dXn

dt
= 2

c2
1

L1

Ξo(t) + Ω′nX
′
n(t),

dYn
dt

= 2
ρ2

ρ1

c2
2

L2

(Ξo(t) +Qf (t)) + ΩnY
′
n(t),

dX ′n
dt

= −Ω′nXn(t),

dY ′n
dt

= −ΩnYn(t),

dΞo

dt
= −1

¯̀

(
X0 +

N∑

n=1

(Xn(t) + Yn(t)) +
A

2σ2A2
σ

(Ξo(t) + Q̄o)|Ξo(t) + Q̄o|
)
,

dQf

dt
= − 1

τ1

(
Qf (t)− Q̃f (Ξo(t− τ2))

)

(8.7)

where

X ′n(t) = 2

∫ t

−∞
(Q(ξ)− Q̄o)

c2
1

L1

sin(Ω′n(ξ − t))dξ,

Y ′n(t) = 2

∫ t

−∞
(Q(ξ) +Qf (ξ)− Q̄o)

ρ2

ρ1

c2
2

L2

sin(Ωn(ξ − t))dξ,
(8.8)
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and

Q̃f (Ξo) =





0 for Ξo < −Q̄o

Π
cp,1ρ1T1

(
Ξo
Q̄o

+ 1
)

for −Q̄o < Ξo < Q̄o

2Π
cp,1ρ1T1

for Q̄o < Ξo

, (8.9)

Ω′n = nπ
c1

L1

, Ωn =

(
n− 1

2

)
π
c2

L2

. (8.10)

We choose to restrict the number of mode to N = 6. The system of equations is solved using

fourth-order Runge-Kutta integration.

We solve the system of equations 8.7, 8.8 numerically using the parameters listed in Table 7.1 and

assigning each variable initial value 0. We consider the flame power Π, and the respective dynamic

and convective time delays τ1 and τ2 to be variable parameters and are chosen for each configuration.

In our initial configuration, we chose Π = 25kW, τ1 = 18 ms, τ2 = 6 ms. Initial amplitude oscillations

are depicted in Figure 8.3, showing the first ∼ 30 periods as the amplitudes approach the limit cycle.

The limit cycle is not fully realised until the number of periods exceeds several hundred (tfo � 100).

The limit cycle oscillations for the configuration is depicted in Figure 8.4 where the non-dimensionalised

time has the range 798 < tfo < 800. The amplitude of the oscillations is Q/Qo − 1 ≈ 3.1. The oscil-

lations depicted in phase space in Figure 8.5 correspond to the same non-dimensionalised time and

demonstrate that the oscillations have reached dynamic stability, i.e. limit cycle oscillations.

The Fourier transform of the non-dimensionalised downstream volume velocity is plotted against

frequency in Figure 8.6. We observe the dominating frequencies of the limit cycle are f ∼ 111, 336 Hz.

Increasing the flame power to the combustor’s maximum Π = Πmax, we expect to increase the
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Figure 8.3: Non-dimensionalised volumetric flux plotted against non-dimensionalised
time showing the approach to limit cycle oscillations for Configuration III, Π = 25 kW,
τ1 = 18 ms, τ2 = 6 ms.

nonlinear behaviour in the limit cycle. We depict in Figure 8.7 the limit cycle oscillations for about

two periods for the configuration Π = 50 kW, τ1 = 18 ms, τ2 = 6 ms. The amplitude of the

oscillations has effectively doubled, increasing linearly in response to the power increase. The wave

shape is also less sinusoidal, also indicative of nonlinearity.

In Figure 8.8 we similarly depict the oscillations in phase space for the configuration with increased

effective heat release. The phase lines are thin, indicating dynamic stability and thus limit cycle

oscillations. The rate of decay and growth of the oscillations (1/Q0fo)dQ/dt has effectively doubled

compared with the previous configuration.

We also depict the Fourier transform of the volumetric flux for the higher heat-release config-

uration in Figure 8.9. The dominating frequencies have remained effectively unchanged and are

f ∼ 110, 220 Hz
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Figure 8.4: Non-dimensionalised volumetric flux plotted against non-dimensionalised
time during limit cycle (tfo � 100) for Configuration III, Π = 25 kW, τ1 = 18 ms,
τ2 = 6 ms.

We are also interested in the effect of reducing the dynamic time delay τ1. Keeping Π = 50 kW

and τ2 = 6 ms fixed, we reduced the convective time delay by a third of its original value so that

τ1 = 12 ms. Figure 8.10 depicts the limit cycle oscillations for about two periods. The amplitude

of the oscillations have increased by a third compared to the previous configuration, with the longer

dynamic time delay. The wave shape is again not as sinusoidal. Figure 8.11 similarly depicts the

oscillations in phase space for the reduced convective time delay configuration, showing the rate of

growth and decay of the amplitudes has increased by a factor of ∼ 2 compared with the previous

configuration. Figure 8.12 depicts the Fourier transform of the volume flux. We again observe a

slight change in dominating frequencies to f ∼ 108, 215, 325 Hz.

Investigating the effect of further reducing the dynamic time delay we again keep Π = 50 kW

and τ2 = 6 ms fixed while reducing the dynamic time delay to τ1 = 6 ms. Figure 8.13 depicts
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Figure 8.5: Limit cycle oscillations depicted in phase space for the non-
dimensionalised volumetric flux during limit cycle (tfo � 100) for Configuration III,
Π = 25 kW, τ1 = 18 ms, τ2 = 6 ms.

the limit cycle oscillations for about two periods. The amplitude of the oscillations increased by

a factor of ∼ 2 compared to the previous configuration, with the longer dynamic time delay. The

wave shape is again not as sinusoidal. Figure 8.14 similarly depicts the oscillations in phase space

for this configuration, showing the rate of growth and decay of the amplitudes has increased by a

factor of ∼ 2.6 compared with the previous configuration. Figure 8.15 depicts the Fourier transform

of the volume flux. We observe the limit cycle frequencies f ∼ 105, 209, 315 Hz, which have reduced

slightly compared to the previous configuration.

Wanting to observe the effects of increasing the convective time delay τ2, we keep Π = 50 kW

and τ1 = 6 ms fixed while increasing the convective time delay by a factor of two so that τ2 = 12 ms.

Figure 8.16 depicts the limit cycle oscillations for about two periods. The amplitude of the oscillations

have increased by a factor of ∼ 2 compared to the previous configuration, with the shorter combustion
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Figure 8.6: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration III, Π = 25 kW, τ1 = 18 ms, τ2 = 6 ms.

time delay. Figure 8.17 similarly depicts the oscillations in phase space for the configuration with the

reduced dynamic time delay, showing the rate of growth and decay of the amplitudes has increased by

a factor of ∼ 2 compared with the previous configuration. The phase-plot lines are also significantly

thinner compared with the smaller convective time delay configuration, indicating the limit cycle has

reached a more refined dynamic stability. Figure 8.18 depicts the Fourier transform of the volume

flux. We observe the limit cycle frequencies have changed significantly and are f ∼ 121, 244, 365 Hz,

where the presence of the second harmonic is very small.

We thought it would also be interesting to show the harmonics for the configuration when

the dynamic time lag is increased for the higher convective time lag configuration, namely, where

Π = 50 kW, τ1 = 12 ms, τ2 = 12 ms. The Fourier transform of the volume flux is depicted

in Figure 8.19. We observe the limit cycle frequencies have changed slightly and are now given by
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Figure 8.7: Non-dimensionalised volumetric flux plotted against non-dimensionalised
time during limit cycle (tfo � 100) for Configuration III, Π = 50 kW, τ1 = 18 ms,
τ2 = 6 ms.

f ∼ 119, 240, 360, 480 Hz.

We conclude that decreasing τ1 has the effect of significantly increasing the amplitude of limit

cycle Q and dQ/dt oscillations while have a small effect on the frequencies of oscillation f . Increasing

τ2 has the effect of significantly increasing the amplitude of limit cycle oscillations, and also on their

frequency. The power Π has a linear effect on the amplitude of oscillations.
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Figure 8.8: Limit cycle oscillations depicted in phase space for the non-
dimensionalised volumetric flux during limit cycle (tfo � 100) for Configuration III,
Π = 50 kW, τ1 = 18 ms, τ2 = 6 ms.
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Figure 8.9: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration III, Π = 50 kW, τ1 = 18 ms, τ2 = 6 ms.
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Figure 8.10: Non-dimensionalised volumetric flux plotted against non-
dimensionalised time during limit cycle (tfo � 100) for Configuration III, Π = 50 kW,
τ1 = 12 ms, τ2 = 6 ms.
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Figure 8.11: Limit cycle oscillations depicted in phase space for the non-
dimensionalised volumetric flux during limit cycle (tfo � 100) for Configuration III,
Π = 50 kW, τ1 = 12 ms, τ2 = 6 ms.
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Figure 8.12: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration III, Π = 50 kW, τ1 = 12 ms, τ2 = 6 ms.
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Figure 8.13: Non-dimensionalised volumetric flux plotted against non-
dimensionalised time during limit cycle (tfo � 100) for Configuration III, Π = 50 kW,
τ1 = 6 ms, τ2 = 6 ms.
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Figure 8.14: Limit cycle oscillations depicted in phase space for the non-
dimensionalised volumetric flux during limit cycle (tfo � 100) for Configuration III,
Π = 50 kW, τ1 = 6 ms, τ2 = 6 ms.
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Figure 8.15: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration III, Π = 50 kW, τ1 = 6 ms, τ2 = 6 ms.
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Figure 8.16: Non-dimensionalised volumetric flux plotted against non-
dimensionalised time during limit cycle (tfo � 100) for Configuration III, Π = 50 kW,
τ1 = 6 ms, τ2 = 12 ms.
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Figure 8.17: Limit cycle oscillations depicted in phase space for the non-
dimensionalised volumetric flux during limit cycle (tfo � 100) for Configuration III,
Π = 50 kW, τ1 = 6 ms, τ2 = 12 ms.
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Figure 8.18: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration III, Π = 50 kW, τ1 = 6 ms, τ2 = 12 ms.
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Figure 8.19: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration III, Π = 50 kW, τ1 = 12 ms, τ2 = 12 ms.
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Chapter 9

Application to the Limousine burner

Application of the Fant equation to the Limousine burner depicted in Figure 3.1 requires modification

of the Green’s function derived in Section 4.2 in order to take account of the larger cross-sectional

area in the downstream section. We also must substitute the blockage length for the idealised

combustor calculated analytically in Section 5.6 with that for the Limousine combustor calculated

in Section 5.5. The modified Green’s function must then be substituted into Equations 6.8-6.12 in

order to formulate a modified Fant equation. In this chapter we formulate the modified Green’s

function and Fant equation and present nonlinear prediction of the downstream volume flux for the

Limousine burner.
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Figure 9.1: Schematic of the Limousine Combustor II depicting source configurations
and control surfaces.

9.1 The modified Green’s function

The formulation of the Green’s function for the Limousine burner Configuration II is similar to that

for the idealised combustor. The Green’s function takes the same form, as in Equation 4.21,

G(x,y, t, τ) = α(τ, x1, t) + β(τ, x1, t)Y (y),

where α(τ, x1, t), β(τ, x1, t) are to be determined. Y (y) satisfies Laplace’s equation and ∂Y/∂yn = 0

on the duct walls. The functional form of Y varies from Equation 4.22 in order to account for the

larger cross-sectional area in the downstream section. Y may be assumed to satisfy

Y (y) ∼





y1, y1 >
√A2 in C,

A2

A1
y1 − ¯̀, y1 < −

√A1 in A,

(9.1)
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where ¯̀ is the blockage length defined by Equation 5.7 and is given by

¯̀=

∫ ∞

X2

(
∂ϕ∗

∂ξ
− 1

)
dξ +

∫ X2

−∞

(
∂ϕ∗

∂ξ
− A2

A1

)
dξ +

A2

A1

(X2 −X1).

These imply that G ≡ G(x1, y1, t, τ) has the following functional form when y lies in regions A and C

G = A2

A1
α− ¯̀, ∂G/∂y1 = A2

A1
β, y1 → −0

G = α, ∂G/∂y1 = β y1 → +0




. (9.2)

Therefore, we can put

G(x1, y1, t, τ) = − 1
2π
A2

A1

∫ ∫∞
∞

β(ξ,x1,t) cos[k1(y1+L1)]
k1 sin(k1L1)

eiω(τ−ξ)dωdξ for y in A,

G(x1, y1, t, τ) = Go(x1, y1, t, τ) + 1
2π

∫ ∫∞
∞

β(ξ,x1,t) sin[k2(y1+L2)]
k2 sin(k2L2)

eiω(τ−ξ)dωdξ for y in C,

(9.3)

where

Go(x1, y1, t, τ) = − 1
2πA2

∫∞
−∞ {H(x1 − y1) cos(k2y1) sin[k2(x1 − L2)]

+H(y1 − x1) cos(k2x1) sin[k2(y1 − L2)]} e−iω(t−τ)

k2 cos(k2L2)
dω,

(9.4)

which is again the Green’s function corresponding to a source located at the flame-holder with the

constriction assumed to be closed. The implied Green’s function condition above G → A2

A1
α − ¯̀, α

respectively as y1 → ∓0 yield consistency conditions which can be used to determine the following

functional forms of α and β:

α(τ, x1, t) = ¯̀β(τ, x1, t)−
1

2π

A2

A1

∫ ∫ ∞

∞
β(τ, x1, t)

cos(k1L1)

k1 sin(k1L1)
e−iω(ξ−τ)dωdξ, (9.5)
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¯̀β(τ, x1, t)−
1

2π

∫ ∫ ∞

∞
β(τ, x1, t)

(A2

A1

cos(k1L1)

k1 sin(k1L1)
− sin(k2L2)

k2 cos(k2L2)

)
e−iω(ξ−τ)dωdξ

= Go(x1, 0, t, τ) ≡ − 1

2πA2

∫ ∞

−∞

sin[k2(x1 − L2)]

k2 cos(k2L2)
e−iω(ξ−τ)dω.

(9.6)

9.2 The modified Fant equation

We derive the Fant equation for the Limousine combustor using the same methodology as in Sec-

tion 6.1. We substitute Go from Equation 9.6 into Equation 6.5,

B(x1, t) =

∫ ∞

−∞

∂

∂τ
(Qf +Q)(τ)Go(x1, 0, t, τ)dτ, x1 >

√
A2,

to yield

B(x1, t) =

∫ ∞

−∞
β(τ, x1, t)

[
¯̀ ∂

∂τ
(Q+Qf )(τ)

+
i

2π

∫ ∫ ∞

−∞
(Q+Qf )(ξ)

(A2

A1

c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−τ)dωdξ

]
dτ.

(9.7)

We can again assume the total enthalpy B = Bo +Bσ +Bf is the sum of three component enthalpies

originating from the respective inlet volume velocity Qo, the momentum and thermal mixing over

the combustion zone, and from the flame heat release.

The enthalpy contributions from the inlet volume velocity Bo, the momentum and thermal mixing

Bσ, and the flame heat source Bf are respectively reformulated using the Limousine burner Green’s

function in Section 9.1; these are found to be

Bo(x1, t) =
ic1

2π

A2

A1

∫ ∫ ∫ ∞

−∞

β(τ, x1, t)Qo(ξ)

sin(k1L1)
eiω(ξ−τ)dωdξdτ, (9.8)
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Bσ(x1, t) = −
∫ ∞

−∞

∫

V

β(τ, x1, t) (∇Y · [ω ∧ v − (T∇s)′ + ν curlω]) (y, τ)d3ydτ, (9.9)

Bf (x1, t) =

∫ ∞

−∞
β(τ, x1, t)

[
¯̀∂Qf

∂τ
(τ) +

ic1

2π

A2

A1

∫ ∫ ∞

−∞

Qf (ξ) cos(k1L1)

sin(k1L1)
eiω(ξ−τ)dωdξ

]
dτ. (9.10)

We find that the net acoustic field is given by

B(x1, t) =

∫ ∞

−∞
β(τ, x1, t)

[
¯̀∂Qf

∂τ
(τ) +

ic1

2π

A2

A1

∫ ∫ ∞

−∞
(Qf (ξ) cos(k1L1) +Qo(ξ))

eiω(ξ−τ)

sin(k1L1)
dωdξ

−
∫

V

(∇Y · [ω ∧ v − T∇s+ ν curlω]) (y, τ)d3y

]
dτ.

(9.11)

Equating the total enthalpies in Equations 9.7 and 9.11 yields the thermo-acoustic Fant equation for

the Limousine burner

¯̀dQ

dt
+

i

2π

∫ ∫ ∞

−∞
Q(ξ)

(A2

A1

c1 cos(k1L1)

sin(k1L1)
− c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

=
i

2π

∫ ∫ ∞

−∞

(A2

A1

c1Qo(ξ)

sin(k1L1)
+
c2Qf (ξ) sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

−
∫

V

(∇Y · [ω ∧ v − (T∇s)′ + ν curlω]) (y, t)d3y.

(9.12)

Proceeding further, we assume the combustion zone in the Limousine burner is quasi-static, equivalent

to assuming it is acoustically compact (f � c1`s/A2 ≈ 6800 Hz). In Figure 9.1, we show that the

combustion zone is bounded by the control surface Σ = Σ− + Σ+. Σ+ is a plane cross-section

downstream of the constriction, where the steady and unsteady flows are nominally parallel to the

x1-axis and of infinitesimal Mach number. Σ− is upstream from Σ+ and consists of the two upstream

edges of the flame-holder, two vortex sheets originating at the edges of the flame-holder and defining

the edge of the separated flows, and a vertical section just downstream of the flame-holder where jet
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velocities have become uniform and parallel to the wall. The pressure in the jet varies significantly

but in the quasi-static approximation, it must be equal to p′ on the interface portion of the control

surface Σ− on which the flow speed is uniform and equal to Uσ(t).

Neglecting ∂v/∂t on the left of linearised enthalpic momentum equation 6.1, and noting the

divergence theorem, the final integral on the right of Equation 9.12 can be replaced by

−
∫

V

∇Y · ∇Bd3y =

∮

Σ−+Σ+

B∇Y · dS = (B+ −B−)A2, (9.13)

noting that −
∮

Σ−
∇Y · dS =

∮
Σ+
∇Y · dS = A2, and where B± are the respective values of B on Σ±.

In formula 9.13 we can take B+ = p′/ρ2, where the mean flow velocity is negligible and the unsteady

pressure p′ is the uniform quasi-static pressure in the combustion region. Over the interface portions

of Σ− the velocity is constant in magnitude and equal to Uσ(t) so that B− = p′/ρ1 + 1
2
U2
σ . The

volume flux Q through the constriction is initially carried by the jets so Q = σAσUσ, where σ ' 0.6.

Therefore,

A2(B+ −B−) =
ic2

2π

(
ρ2

ρ1

− 1

)∫ ∫ ∞

−∞
(Qf +Q)(ξ)

sin(k2L2)

cos(k2L2)
eiω(ξ−t)dωdξ − A2Q

2

2σ2A2
σ

, (9.14)

where B+ has been calculated in terms of Q and Qf from Equation 6.5 (using expression 9.6 for Go).

Substitution of Equation 9.14 into Equation 9.12 yields the quasi-static Fant equation approxi-
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mation

ρ1
¯̀dQ

dt
+

i

2π

∫ ∫ ∞

−∞
Q(ξ)

(A2

A1

ρ1c1 cos(k1L1)

sin(k1L1)
− ρ2c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

=
i

2π

∫ ∫ ∞

−∞

(A2

A1

ρ1c2Qo(ξ)

sin(k1L1)
+
ρ2c2Qf (ξ) sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ − ρ1A2Q

2

2σ2A2
σ

.

(9.15)

Taking account of the same generalisation and assumption discussed in Section 6.1, about reverse

flow and constant inflow, respectively, we cast the quasi-static approximation of the thermo-acoustic

Fant equation for the Limousine burner into the following final form

¯̀dQ

dt
+

i

2π

∫ ∫ ∞

−∞
(Q(ξ)− Q̄o)

(A2

A1

c1 cos(k1L1)

sin(k1L1)
− ρ2

ρ1

c2 sin(k2L2)

cos(k2L2)

)
eiω(ξ−t)dωdξ

=
i

2π

∫ ∫ ∞

−∞
Qf (ξ)

ρ2

ρ1

c2 sin(k2L2)

cos(k2L2)
eiω(ξ−t)dωdξ − A2Q|Q|

2σ2A2
σ

.

(9.16)

In the rest of this chapter we show numerical predictions similar to those in Chapter 8 in order

to obtain nonlinear results for the Limousine burner.

9.3 Thermo-acoustic Fant equation predictions for the Limou-

sine burner

We present numerical predictions for burner Configuration II, having the parameters shown in Ta-

ble 9.1. The value for the blockage length ¯̀ is determined in Chapter 5. We determine the nonlinear

solution of the Fant equation 9.16 using the fourth-order Runge-Kutta method described in Sec-

tion 8.2. The convective time delay τ2 = X2/Uo ≈ 10.5 ms and power Π = Πmax are known and fixed

in this configuration; however, the dynamic time delay τ1 is unknown and so we try two. Figures 9.2
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Table 9.1: Limousine combustor (Configuration II) parameters

Description Value
Upstream duct cross-sectional area A1 0.011 m2

Downstream duct cross-sectional area A2 0.006 m2

Steady upstream source volume velocity Q̄o 0.012 m3/s
Constriction cross-sectional area Aσ 0.0007 m2

Distance from flame-holder edge to duct entrance L1 0.322 m
Distance from flame-holder edge to effective duct exit L̄2 1.142 m
Effective length of burner ‘blockage’ ¯̀ 0.138 m
Upstream mean temperature T1 288 K
Downstream mean temperature T2 1200 K
Upstream mean density ρ1 1.214 kg/m3

Downstream mean density ρ2 0.292 kg/m3

Maximum flame power Πmax 50 kW/m3

and 9.3 depict the limit cycle oscillations for approximately two periods for Configuration II, where

τ1 = 6 ms and τ1 = 12 ms, respectively. Oscillations are ∼ 3.5 greater in amplitude in the smaller

dynamic time delay case, compared to the larger one.

Figures 9.4 and 9.5 similarly depict the limit cycle oscillations in phase space for Configuration II,

where τ1 = 6 ms and τ1 = 12 ms, respectively. In both cases, the lines are thin indicating dynamic

stability. The rate of change of the oscillations is ∼ 4 greater in the smaller dynamic time delay case,

compared to the larger one.

Figures 9.6 and 9.7 depict the Fourier transform of the limit cycle oscillations for Configura-

tion II where τ1 = 6 ms and τ1 = 12 ms, respectively. We observe the limit cycle frequencies vary

only slightly for the two configurations; they are f ∼ 139, 277, 416 Hz for when τ1 = 6 ms and

f ∼ 135, 271, 407 Hz when τ1 = 12 ms. In both cases, the frequencies compare very well with those

obtained in the experimental configuration [37].
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Figure 9.2: Non-dimensionalised volumetric flux plotted against non-dimensionalised
time during limit cycle (tfo � 100) for Configuration II, Π = 50 kW, τ1 = 6 ms,
τ2 = 10.5 ms.
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Figure 9.3: Non-dimensionalised volumetric flux plotted against non-dimensionalised
time during limit cycle (tfo � 100) for Configuration II, Π = 50 kW, τ1 = 12 ms,
τ2 = 10.5 ms.
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Figure 9.4: Limit cycle oscillations depicted in phase space for the non-
dimensionalised volumetric flux during limit cycle (tfo � 100) for Configuration II,
Π = 50 kW, τ1 = 6 ms, τ2 = 10.5 ms.
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Figure 9.5: Limit cycle oscillations depicted in phase space for the non-
dimensionalised volumetric flux during limit cycle (tfo � 100) for Configuration II,
Π = 50 kW, τ1 = 12 ms, τ2 = 10.5 ms.
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Figure 9.6: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration II, Π = 50 kW, τ1 = 6 ms, τ2 = 10.5 ms.
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Figure 9.7: Fourier transform of the volume flux plotted against frequency during
limit cycle (tfo � 100) for Configuration II, Π = 50 kW, τ1 = 12 ms, τ2 = 10.5 ms.
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Chapter 10

Conclusion

The Fant equation provides in a single equation a ‘reduced complexity’ representation of the instabil-

ities of a thermo-acoustic device such as a combustor. The equation contains well defined terms that

depend only on the geometry of the system, which correspond to its behaviour as a classical linear

acoustic resonator. In addition, it includes nominally exact, nonlinear contributions involving spatial

integrals of the thermo-aerodynamic sources, such as the flame, entropy and vortex sound sources.

These integrals provide a clear indication of what must be known to obtain a proper understanding

of the thermo-acoustic system, and can be evaluated to the desired level of approximation necessary

to treat the problem at hand.

The equation is nonlinear and can supply limit cycle solutions for finite amplitude burner modes

in terms of a specified nonlinear heat release rate of the flame. The illustrative numerical results pre-

sented are for both the linear and nonlinear equations. The linearised equation discussed in Chapter 7

governs the growth rate of the natural acoustic modes, which are excited into instability by unsteady

heat release from the flame and damped by large scale vorticity production and radiation losses

into the environment. Additionally, the equation supplies information about the ‘forced combustion
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modes’ excited by the local time-delay feedback dynamics of the flame. The full nonlinear equation

discussed in Chapters 8 and 9, however, governs the ‘limit cycle’ formation when absorption of sound

by vortex shedding at trailing edges equally opposes sound generation by the flame. Alternative

analysis involves modal representation of the Green’s function which is discussed in Section 4.1 and

cannot possibly take account of forced combustion modes nor limit-cycle formation.

The thermo-acoustic Fant equation offers a significant advance in combustion-noise predictions.

A few example calculations are presented in this thesis; however, the possible applications of the

equation are far greater, including arbitrary geometric and combustion configurations. The Fant

equation predictions compare very well with experiment but are determined with only a fraction of

the computational time required for numerical simulations. Future publications related to this work

include nonlinear predictions for various combustion models and combustion-zone configurations.

Although its applications are currently vast, we do not know completely the extent of the equation’s

application due to its inherent novelty.
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