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ABSTRACT

Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due
to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic
instabilities in rotating stars, for example, dynamical shear instability, evades consistent description.
Aims. We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by
comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions.
Methods. We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear
instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a
2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient
for the hydro simulation.
Results. Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar
evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable
regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simu-
lation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code.
A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass.
Conclusions. The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and
even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions
above this threshold remain stable for the course of the simulation.
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1. Introduction

Internal mixing plays an important role in stellar evolution.
Mixing takes place under several different conditions in stellar
interiors, all linked with different kinds of fluid instability: con-
vection, dynamical shear, secular shear, Rayleigh-Taylor, ther-
mohaline, etc. (see, for example, Heger et al. 2000; Maeder et al.
2013). Rotation-induced instabilities (e.g. dynamical shear, sec-
ular shear, GSF, ABCD) have a strong impact on the evolu-
tion and structure of stars. Stellar models including prescriptions
for rotation can, depending upon the initial angular velocity,
exhibit significantly different structural and evolutionary char-
acteristics to non-rotating models (see, e.g., Heger et al. 2000;
Heger & Langer 2000; Hirschi et al. 2004; Ekström et al. 2012).
Most predominantly, rotating models have more massive cores,
higher luminosities and more efficient mass loss via winds. In
massive stars, the interior structure of the carbon-oxygen core
is determined in a large part by its mass and by mixing at
? The movie of the simulation is available at
http://www.aanda.org
?? BRIDGCE: http://www.bridgce.ac.uk/

convective boundaries (Young et al. 2005). Whether or not a star
is rotating (and how fast) can, primarily by dictating the mass
of the CO core and secondarily by inducing mixing within the
core, alter the pre-supernova density profile of the star. A vari-
ation in density profile (not to mention the pre-supernova an-
gular velocity profile, see, e.g., Fryer & Heger 2000) can have a
marked effect on the explosion energy, explosive nucleosynthetic
yield and compact remnant type (neutron star or black hole) and
mass (see O’Connor & Ott 2013; Sukhbold & Woosley 2014;
Ertl et al. 2016; Sukhbold et al. 2016, and references therein).

Rotation also affects the nucleosynthesis in massive stars,
especially at low metallicities. Rotation-induced mixing across
convectively stable layers in massive stars has been shown to
be able to explain the observed enhancement of nitrogen in the
early universe (see Hirschi 2007, and references therein). In
the absence of additional mixing processes, the surface nitro-
gen abundance should scale with the metallicity of the protostel-
lar gas. However, transport of 12C and 16O from the convective
He-burning across the convectively stable He layer and into the
H-burning shell by the secular shear instability enables a primary
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production of 14N by proton captures on the transported 12C and
16O. The same secular shear process also transports some of
this 14N from the H-burning shell in which it was created back
down into the convective He-burning core, where it is exposed
to higher temperatures and alpha particles, resulting in the cre-
ation of 22Ne (two alpha-captures). 22Ne is an efficient neutron
source (activated by alpha-capture; 22Ne(α, n)25Mg) and its ro-
tationally induced presence in the He-core boosts the weak slow
neutron-capture (s) process production at low metallicities (see
Frischknecht et al. 2012, 2016, for more details).

Rotation and all the other processes mentioned above are in-
trinsically multi-dimensional due to their turbulent nature, and
their implementation in one-dimensional (1D) stellar evolution
codes is not straightforward and relies on many simplifications.
Usually, they are each accounted for as separate diffusive pro-
cesses, the diffusion coefficients of which are summed up. The
number of considered instabilities and the way they are imple-
mented in stellar evolution codes lead to significant differences
between the results of various codes, particularly for the ad-
vanced evolutionary stages of massive stars (Martins & Palacios
2013).

The results of stellar evolution calculations are thus model-
dependent, and while the impact of rotation is qualitatively
determined, there are still free parameters and artifacts of the
numerical implementations of the rotation physics (including
the artificial symmetry of rotating 1D models) that prevent the
1D models from making precise quantitative predictions. A bet-
ter knowledge about how chemical species and angular momen-
tum are transported inside stars is thus a crucial step in improv-
ing the treatment of rotation in, and hence the predictive power
of, stellar evolution codes.

Because of the considerable increase in computing power
and the development of modern and efficient hydrodynamics
codes during the past decades, it has become possible to sim-
ulate these processes by means of multi-dimensional hydrody-
namics simulations. Most of the efforts in this direction under-
taken recently have been focused on convection in the central
regions or shells (Herwig et al. 2006; Meakin & Arnett 2007;
Jones et al. 2017), or the convective envelope of cool stars
(Freytag & Höfner 2008; Chiavassa et al. 2009; Viallet et al.
2013; Magic et al. 2013). On the side of rotation-induced in-
stabilities, Prat & Lignières (2013, 2014) and Prat et al. (2016)
study the transport of chemicals through three-dimensional (3D)
direct numerical simulation of secular shear mixing and compare
their results to various prescriptions usually found in 1D stel-
lar evolution codes. They find a qualitative agreement with the
model of Zahn (1992) and extract a diffusion coefficient for secu-
lar shear mixing from their simulations in Boussinesq and small
Péclet number approximation. Garaud et al. (2015) performed a
stability analysis of secular shear mixing in low-Péclet-number
flows. In a linear stability analysis they find that flows with
RiPe & 0.25 are stable and that Ri & Pr−1 is a criterion for
energy stability for large Reynolds numbers. In direct numerical
simulations they see instabilities developing for RiPe > 0.25 but
disappearing significantly below the limit given by the energy
analysis. Garaud & Kulenthirarajah (2016) continue this numer-
ical study of shear flows for a wider range of parameters and
identify different categories of flow depending of the value of
RiPe.

Brüggen & Hillebrandt (2001) performed simulations of
Kelvin-Helmholtz instabilities in stratified shear layers. They
found instability also in the parameter range that is predicted to
be stable by linear theory and gave an expression for the effective
diffusion coefficient extracted from the simulations using tracer

particles. The significance of their result is limited by the fact
that they use Boussinesq approximation to compute the Richard-
son number, which is used as the criterion for instability. This
approximation is only valid for small variations in density, a cri-
terion not fulfilled in their simulations, where density varies by
almost 15%.

The aim of this paper is to answer a few specific questions
about dynamical shear instabilities in stellar models by compar-
ing the 1D prescription to results of a 2D hydrodynamic simula-
tion.

1. The Richardson criterion itself is only a necessary condition
based on a simple energy argument (see Sect. 2). Does the
instability actually develop in a realistic stellar setting?

2. Are the position and extent of the mixing region comparable?
3. In regimes with comparably short time scales in the 1D sim-

ulation the effect of the instability is spread out over many
time steps. The position of the unstable regions can shift be-
cause of the change in the profiles caused by mixing. Is a
similar behavior observed when including hydrodynamic ef-
fects?

4. Given that the major effect of shear mixing is changing the
profiles of angular velocity and composition, how well do the
initial and final state of the hydrodynamic simulation com-
pare to the 1D prescription?

5. Another commonly observed phenomenon is self-quenching
of the instability due to the change in the angular velocity
profile. Does this effect also appear in the full hydrodynamic
description?

6. A useful quantitative comparison between 1D and 2D/3D
data is often hard because the 1D prescription of mixing is
typically using a diffusion equation, while the actual process
is of advective nature. Does a D exist that can reproduce the
change in the radially averaged profiles of Ā and Ω by using
only a diffusion approximation?

In Sect. 2, we recall some theoretical aspects of the dynamical
shear instability. In Sect. 3, we describe the stellar model we
used as input to our hydrodynamics simulation, and give a brief
description of the Seven-League hydrodynamics code. Section 4
is dedicated to the mapping of our 1D model onto the 2D mesh
used for the hydrodynamics simulation. In Sect. 5, we discuss the
results of our multi-dimensional simulation of dynamical shear
mixing, and in Sect. 6 we compare it to the results obtained with
the 1D stellar evolution code. Finally, our conclusions are pre-
sented in Sect. 7.

2. Theory of the dynamical shear instability

In a setting without gravity, two layers of a fluid moving side-by-
side at different velocities are subject to the Kelvin-Helmholtz
instability. In the presence of gravity this is not always the case.
A simple energy argument can be invoked to derive a necessary
condition for the instability of an initially laminar flow (e.g.,
Sutherland 2010, Sect. 3.6.3).

Consider the mixing of the fluid in two layers at distance δz.
The difference in density between the two is δ% and the differ-
ence in velocity is δu. The latter can be positive or negative.
After the mixing event both layers will move at the velocity
u + 1/2δu due to conservation of momentum. The difference
in density between the two states is neglected here under the
Boussinesq approximation (e.g., Sutherland 2010, Sect. 1.12).
In essence the approximation states that density is assumed to
be spatially and temporally constant, except when it is used for
calculating buoyancy.
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The new state has a lower kinetic energy than the initial one.
The difference is

∆Ekin = %
(
u +

δu
2

)2

−
(

1
2
%u2 +

1
2
% (u + δu)2

)
= −1

4
%δu2. (1)

This excess energy needs to be enough to provide the potential
energy for displacement against the (positive) gravitational ac-
celeration g for the exchange of the two layers given by

∆Epot = gδ%δz. (2)

This requires ∆Ekin +∆Epot < 0, leading to a necessary condition
for instability

1
4
≥ gδ%δz
%(δu)2 · (3)

It can also be stated in its differential form as

Ri ≡ g

%

∂%/∂z
(∂u/∂z)2 ≤

1
4
· (4)

This defines the well-known Richardson number Ri in
Boussinesq approximation. The threshold 1/4 is called the criti-
cal Richardson number Ric.

A rigorous proof of Ric = 1/4 was given by Miles (1961)
and later in simpler and more general fashion by Howard (1961).
They consider the case of an inviscid, incompressible fluid with a
vertical density stratification. It is important to note that their lin-
ear analysis starts from an initially laminar flow, that means tur-
bulence cannot develop through shear from an initially nontur-
bulent configuration. Canuto et al. (2001) call this the bottom-up
approach. The opposite is a top-down approach, which asks the
question whether already existing turbulent motion is quenched
by the stabilizing effect of the density gradient. An analyt-
ical answer in Boussinesq approximation has been given by
Abarbanel et al. (1984), who find that the necessary and suffi-
cient condition for stability of a shear layer is Ri > 1.

It is common to rewrite the definition of Ri in terms of angu-
lar velocity Ω and the Brunt-Väisälä frequency N (e.g., Maeder
2009),

Ri =

 N

$ ∂Ω
∂r

2

· (5)

This uses the distance to the rotational axis $ = r sinϑ, where ϑ
is the colatitude.

The Brunt-Väisälä frequency N of a stratified gas is given by
(e.g., Maeder 2009, Sect. 6.4.1),

N2 =
gδ

HP

(
∇int − ∇ +

ϕ

δ
∇µ

)
· (6)

It is the frequency at which density perturbations in the strati-
fication oscillate. Terms related to rotation are not included in
this definition of N as they to do not appear in the Richardson
criterion (see Maeder 2009, Sect. 12.2.1.1).

Here, g is the magnitude of effective gravitational acceler-
ation, including the centrifugal force. The parameters δ and ϕ
are partial derivatives of density, determined by the equation of
state,

δ = −
(
∂ln %
∂ln T

)
P,µ
, ϕ =

(
∂ln %
∂ln µ

)
P,T
· (7)

The pressure scale height is defined by

HP = − dr
dP

P. (8)

There are three gradients involved in Eq. (6). The external gra-
dient,

∇ =
dln T
dln P

, (9)

is given by the temperature stratification of the gas. As we are
considering the deep interior of a star, the internal temperature
gradient of the displaced element is equal to the adiabatic gradi-
ent,

∇int = ∇ad =
Pδ

CP%T
, (10)

with the specific heat at constant pressure CP. The gradient in
mean molecular weight µ is given by

∇µ =
dln µ
dln P

· (11)

3. Stellar evolution and hydrodynamics codes

3.1. One-dimensional stellar evolution model

We calculated a 20 M� stellar evolution model at Z = 0.002 with
an initial rotation rate 40% of critical velocity (υini/υcrit = 0.4)
with the Geneva stellar evolution code (GENEC), which is de-
scribed in detail in Eggenberger et al. (2008). The prescriptions
for secular instabilities induced by rotation (secular shear), hor-
izontal shear and the transport equations (including meridional
circulation) used are the same as in Ekström et al. (2012), to
which we refer the interested reader. The treatment of dynam-
ical shear in this model is described in Sect. 3.2. GENEC uses
an equation of state that includes an ideal gas of ions, radi-
ation, and electrons at arbitrary degeneracy. For the electron
part it employs an expansion of the Fermi-Dirac distribution
(Kippenhahn & Thomas 1964; Kippenhahn et al. 1967).

3.2. Diffusion prescription

In the GENEC simulation we adopted the same prescription for
dynamical shear as in Hirschi et al. (2004) using the standard
Richardson criterion as defined in Eq. (4). The critical value,
Ric = 1/4, corresponds to the necessary condition for instability
in the case of an initially laminar flow (see derivation in Sect. 2).
It was therefore used as the limit for the occurrence of dynamical
shear in many stellar evolution codes.

In its full multidimensional nature, shear mixing is not a
purely diffusive process but shows typical features of advection
as well, such as the roll-up of vortex sheets, which temporarily
cause a local inversion of the chemical stratification. If horizon-
tal averages are considered, shear mixing can be well described
by diffusion (e.g., Prat & Lignières 2014). Because of this and
due to its ease of implementation, shear is commonly modeled
as such in stellar evolution calculations. Shear mixing is then
added to the other instabilities by summing the respective dif-
fusion coefficients. Although modeling instabilities as diffusive
processes and summing them up is convenient and thus popular,
it may not be possible to reproduce the effect of certain processes
with diffusion. Furthermore, interactions between the different
instabilities might be more complicated than a simple superpo-
sition (e.g., Maeder et al. 2013). While a description taking into
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account the advective nature of shear mixing would be ideal, the
result in Sect. 6 of this work shows that the diffusion approxi-
mation can go quite far in reproducing a horizontally averaged
hydrodynamics simulation on long time scales.

The diffusion coefficient used for shear mixing in the
GENEC calculations is not of microphysical nature and thus
needs a phenomenological ansatz. In the simulation discussed
in this paper we adopt the diffusion coefficient,

D =
1
3
vl =

1
3
v

l
l2 =

1
3

r
d Ω

d r
∆r2 =

1
3

r∆Ω ∆r, (12)

where r is the mean radius of the zone where the instability oc-
curs, ∆Ω is the variation of Ω over this zone and ∆r is the extent
of the zone where Ri < Ric. It is derived from the general form
of a diffusion coefficient for the transport of particles with mean
velocity v and mean free path l as suggested by J.-P. Zahn (priv.
comm.; see also Maeder 2009, Sect. 12.2.2).

Equation (12) is valid if Pe > 1, where Pe, the Péclet Num-
ber, is the ratio of advective to diffusive energy transport. Its for-
mal definition is Lu/α, with a typical length scale L, velocity u
and thermal diffusivity α. Pe > 1 is fulfilled in the considered
region of the GENEC model. It can be estimated by choosing
the size of the largest eddies of 108 cm as L, the rotational veloc-
ity 1.6 × 108 cm/s as u, and a mean value of 3 × 105 cm2/s as α.
This gives Pe ≈ 5× 1010. The hydrodynamic simulation was run
without diffusion of radiation, which corresponds to Pe → ∞.
Neglecting radiative transport of energy is a reasonable approx-
imation of the physical situation at the scales of the dynamical
shear instability. Due to numerical diffusion of energy Pe is lim-
ited at a finite value in practice.

Other prescriptions for the dynamical shear diffusion coeffi-
cient can be found in the literature. Heger et al. (2000) use:

DHeger =

[
min{∆r,HP}

(
1 −max

{
Ri
Ric

, 0
})]2

/τdyn (13)

where τdyn =
√

r3/(GMr) is the dynamical time scale and ∆r
the spatial extent of the unstable region. Mr is the mass enclosed
in a sphere of radius r. Figure 1 shows a comparison of this ex-
pression for D and the one by Zahn for a given stellar model.
Both values are very large (D > 1012 cm2 s−1 with many regions
showing D > 1014 cm2 s−1), implying that they cause almost in-
stantaneous mixing in the affected regions. For comparison, the
convective diffusion coefficient in the core He burning phase of
this star is about 1014 cm2 s−1. In practice, it is much more im-
portant which zones are flagged as being unstable to dynamical
shear than what the exact value of D is. Both prescriptions agree
in this respect.

Brüggen & Hillebrandt (2001) studied the dependence of D
on Ri in 3D hydrodynamic simulations of plane-parallel flows.
As already mentioned in Sect. 1, their use of the Boussinesq ap-
proximation for the definition of Ri makes it impossible to recon-
struct the dependence on the full definition of Ri from the given
data.

Figure 2 shows the structure evolution diagram for the 20 M�
model, where convective zones are shaded in gray. The blue dots
indicate shells which are unstable to dynamical shear. These can
be single zones or extended regions bounded by shear stable lay-
ers. This figure thus shows three main types of zones that are
unstable to dynamical shear.

The first type appears in the radiative layers from the end of
the main sequence onwards. The unstable zones are the result
of the combined general core contraction and envelope expan-
sion at the end of core hydrogen burning. One major unstable
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m
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Maeder (2009)
Heger et al. (2000)

Fig. 1. Comparison of prescriptions for the dynamical shear diffusion
coefficients. The underlying stellar model is the 20 M� star described in
Sect. 3.1. The black, solid line shows the coefficient defined in Sect. 12.
The orange, dash-dotted line was computed using Eq. (13).

region appears around the mass coordinate Mr ≈ 6 M�, which
corresponds to the edge of the former hydrogen-burning con-
vective core. It is caused by core contraction. It is marked by
1© in Fig. 2. A zoom in on this purely radiative, shear unstable
region is shown in Fig. 3. At the same evolutionary stage enve-
lope expansion causes another small unstable region between the
hydrogen-burning convective shell and the envelope of the star.

The second type is present at convective zone boundaries,
where convection redistributes angular momentum very effi-
ciently. This creates a sharp angular velocity gradient at convec-
tive zone boundaries, which lowers Ri and is therefore respon-
sible for development of dynamical shear. Examples are marked
by 2© in Fig. 2.

The third type occurs at the interface of carbon- and neon-
rich shells after core oxygen burning. Following the end of core
oxygen burning, most of the star undergoes a contraction until
the oxygen-burning convective shell develops. This contraction
increases the angular velocity gradients and thereby causes the
top of the last convective carbon-burning shell to become unsta-
ble to shear. It is indicated by 3© in Fig. 2.

In this first study of dynamical shear in massive stars, we
decided to focus on the last point, unstable zone during the ad-
vanced phases, for the following reasons. The evolutionary time
scale after core oxygen burning allowed us to cover a significant
part of the 1D stellar evolution model in 2D hydrodynamics. In
particular we could directly compare the behavior of the insta-
bility in both dimensionalities. The smaller length scales of the
carbon and neon shells made the computation easier than, for
example, the helium shell.

3.3. The Seven-League Hydro code

The numerical tool for the hydrodynamic simulation of the dy-
namical shear instabilities was the Seven-League Hydro (SLH)
code. SLH solves the compressible Euler equations with a finite-
volume scheme in one, two, or three spatial dimensions. It of-
fers a range of numerical flux functions, which are specifically
tuned to yield accurate results in all Mach number regimes.
The calculations presented in this article are computed with
the Roe-Miczek method (Miczek et al. 2015). SLH offers the
choice of implicit or explicit time stepping for the solution of
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Fig. 2. Structure evolution diagram of the 20 M� star with Z = 0.002 and an initial rotation rate 40% of critical velocity (υini/υcrit = 0.4). The
ordinate represents the enclosed mass and the abscissa the time left until the last model, which is in-between core oxygen burning and core silicon
burning. The gray zones indicate convective zones. The blue dots mark shells which are unstable to dynamical shear. They can either mark a single
unstable zone or an extended region, which is bounded by shear stable layers. The circled numbers refer to different situations in which dynamical
shear occurs in stellar models as given in the list in Sect. 3.2. The core and shell burning regions are indicated with the corresponding element
symbol. The vertical dashed line indicates the time that was used as the initial condition for the 2D hydrodynamic simulation. The red area marks
the spatial and temporal extent of the 2D simulation.
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Fig. 3. Same as Fig. 2 but zoomed in on unstable region at the edge of
what was the hydrogen-burning convective core before the beginning
of helium burning. The blue dots indicate zones which are unstable to
dynamical shear. Each dot indicates an extended shear unstable zone,
which is surrounded by shear stable layers. The gray areas are convec-
tive regions.

the hydrodynamics equations. Implicit time stepping is more ef-
ficient in the low Mach number regime (M . 10−2). As the max-
imum Mach number in the inertial frame is 0.5, we choose ex-
plicit time integration for the simulation presented in this paper.
This cannot be fixed by using a rotating frame of reference be-
cause the spread in Mach number between the inner- and outer-
most layers amounts to 0.1. The explicit time stepping method
of choice in SLH is RK3 (Shu & Osher 1988), which is second-
order accurate and has excellent stability properties.

A number of different grid geometries are implemented in
SLH with the mapped-grid formalism (e.g., Calhoun et al. 2008;
Kifonidis & Müller 2012). This allows us to use an arbitrary,
structured, curvilinear grid, which is adapted to the problem ge-
ometry, but performing all the computations on a logically rect-
angular grid. The connection between this computational grid

and the curvilinear grid is established through a mapping func-
tion. Its derivatives enter the finite-volume discretization at sev-
eral places. In the present case we employed this quite general
formalism to create a two-dimensional polar grid as it is best
adapted to the geometry of the rotating problem.

The equation of state of choice in this context was the
Helmholtz equation of state (Timmes & Swesty 2000), which
includes the contributions of radiation, an ideal gas of the nu-
clei and a Fermi gas of electrons at arbitrary degeneracy. We did
not switch on Coulomb corrections. This choice was due to the
fact that the equation of state in GENEC – on which our initial
conditions are based – does not include them. In the considered
range of the star their contribution to pressure and energy is less
than 1%. The treatment of electrons in the partially degenerate
regime is significantly different in the two codes. To retain the
same regions of convective stability in stellar evolution and hy-
drodynamics we needed to employ a special mapping procedure
detailed in Sect. 4.

4. Model setup

Mapping a one-dimensional stellar evolution model to a multidi-
mensional hydrodynamics code can introduce subtle problems,
even if it does not involve rotation. The challenge is to keep
the model in hydrostatic equilibrium and preserve many of the
thermodynamic properties well, while interpolating on an often
much finer grid and possibly applying some smoothing on the
very steep gradients introduced by the prescription for convec-
tion in the stellar evolution model. Another source of error is the
fact that the stellar evolution code might use a different equation
of state than the hydrodynamics code.

The condition of hydrostatic equilibrium for a cylindrically
symmetric, rotating star is (e.g., Maeder 2009)

∂P
∂r
− %

(
g + r sin2 ϑΩ2

)
= 0, (14)

∂P
∂ϑ
− r sinϑ cosϑΩ2% = 0. (15)

This assumes the Roche model, meaning that gravity is supposed
to be the same as if the mass enclosed in the isobaric shell were

A25, page 5 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629873&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629873&pdf_id=3


A&A 604, A25 (2017)

0.6 0.8 1.0 1.2 1.4 1.6

r/109 cm

0.250

0.255

0.260

0.265

0.270

0.275

∇ a
d

Helmholtz EoS
GENEC

Fig. 4. ∇ad computed from the equation of state as it is used in GENEC
(dashed line) and the value obtained from the Helmholtz equation of
state using the same values for density, temperature, and composition
as input.

located at the center of the star. This implies that the gravitational
acceleration is always directed to the center of the star.

A natural choice for performing 2D simulations of a rotating
star is the equatorial plane. This is why the following considera-
tions are done in the equatorial plane (colatitude ϑ = π/2) of the
star only. The ϑ derivative in Eq. (15) vanishes in this case. To
compute the radial pressure profile we can rewrite Eq. (14) as an
ordinary differential equation (ODE) for pressure with radius r
as the independent variable. We note that, in contrast to Eq. (6),
g(r) carries a sign, as the vector g points in negative r-direction.
This leads to

P′(r) =
(
g(r) + rΩ(r)2

)
%(r) ≡ geff(r)%(r). (16)

In this form %(r) is just the (interpolated) density profile of the
stellar model. An alternate way of computing % is to take the
temperature profile of the model and use the equation of state
to get %(T (r), P(r)). This is needed for reproducing temperature
accurately. The same could be done for entropy by using s(r) and
computing % as a function of s(r) and P(r) from the equation of
state. Here, P(r) is not the value taken from the stellar model but
the dependent function in the differential equation. What makes
a good choice for the density profile depends on what needs to
be reproduced accurately for the problem.

In the case of the current model the most pressing con-
cern was the difference in the equation of state. SLH uses the
Helmholtz equation of state while GENEC employs a sim-
pler approximation to a partially degenerate electron gas (see
Sect. 3.3). While the relative difference in pressure is less than
10−3 (Kippenhahn & Thomas 1964), there is a significant dis-
crepancy in the value of ∇ad, as shown in Fig. 4. It is clear
from the definition of the Brunt-Väisälä frequency that reducing
∇ad even by a small amount can cause marginally stable regions
in the star to become convectively unstable. As the model was
specifically chosen to be convectively stable, this effect is prob-
lematic. This is why we used input quantities that differ from
the typical choice of density or temperature. Using entropy was
not easily possible as it is not readily available from the stellar
evolution code. Instead the new model was constructed to repro-
duce the quantity ∇−∇ad, which determines convective stability,
exactly. To this end we needed to extend the ODE Eq. (16) to a
system for pressure P and temperature T . Here, density %(P,T )
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Fig. 5. Comparison of the quantity ∇ − ∇ad from the GENEC model
with the reconstructed values for the Helmholtz equation of state using
Eq. (19). This ensures that radiative regions stay radiative after mapping
the original data to SLH.

is computed as a function of these two quantities. An expression
for T can be derived from Eq. (9),

∇ =
dln T
dln P

=
P
T

dT
dP

=
P
T

dT
dr

dr
dP

=
P

T%geff

dT
dr
· (17)

To keep ∇ − ∇ad identical in the stellar evolution model and the
initial setup of the 2D hydrodynamic simulation, we did not use
∇(r) as an input quantity directly but instead we defined

∇ = (∇ − ∇ad)model + ∇ad(P,T ), (18)

where the expression in the parentheses with subscript “model”
was taken from the stellar evolution model and ∇ad(P,T ) was
given by the Helmholtz equation of state, employed in the hy-
drodynamics code. This leads to a new coupled system of ODEs,

P′(r) = geff(r)%(P,T ),

T ′(r) =
T%(P,T )geff(r)

P
[
(∇ − ∇ad)model + ∇ad(P,T )

]
.

(19)

The solution of this system matches the convective regions of
the stellar evolution code by construction as illustrated in Fig. 5.
This even works in the case of a different equation of state. A
drawback of this approach is that all other thermodynamic quan-
tities are not guaranteed to reproduce the original model. For-
tunately, the deviation is minor for the case at hand as seen in
Fig. 6. The condition for the development of a dynamical shear
instability is not changed by this mapping procedure as Ω and
N2 are identical to the original stellar model.

This approach does not ensure gravity to be consistent with
the density field. This could easily be fixed by extending Eq. (19)
with an additional equation for the enclosed mass m. We did not
follow this approach here because the simulation is carried out
with a fixed, external gravity field anyway.

The values for the radius that are given in the GENEC sim-
ulation are averages over isobaric shells. They correspond to the
value at ϑ = arccos

√
1/3 ≈ 54.7◦, the root of the Legendre poly-

nomial P2(cosϑ). The shape of the isobar r(ϑ) can be computed
from the profiles of Ω. We used the computed value of the equa-
torial radius and imposed the average ∇−∇ad on the isobar there.
While this is clearly not an exact reconstruction of shellular ro-
tation, as ∇−∇ad is not constant on isobars, it yields a 2D model
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Fig. 6. Radial profiles of temperature (solid lines) and density (dashed
lines). The yellow lines are the original data from GENEC and the black
lines are the initial data for the simulation with SLH, which are recon-
structed using the method described in Sect. 4.

that is qualitatively similar to the 1D code, meaning that it has
the same convective zones and Ω profile. The relative change in
T and % is less than 8%. An exact reconstruction of the original
profile that also preserves convective regions is not possible in
this case due to the differences in the equation of state.

For the radial boundary we used an impenetrable wall bound-
ary on the inner side. This type of boundary condition does not
employ ghost cells but directly sets the flux at the interface. The
details can be found in Ghidaglia & Pascal (2005). At the outer
boundary we left the ghost cells at their initial value. This al-
lows in- and outflow according to the internal flow, while pre-
venting runaway effects caused by extrapolation of the adjacent
velocities. There was no boundary in azimuthal direction as we
cover the full 2π azimuthal angle (φ) of the equatorial plane and
the geometry is intrinsically periodic. The grid resolution was
512(r)×1024(φ) with equidistant spacing. As a convergence test
we computed a higher resolution run with 758(r) × 1536(φ) grid
cells and a lower resolution run with 256(r) × 512(φ). The final
angular momentum profile after mixing has stopped is shown in
Fig. 7. It demonstrates that the instability starts in all three cases
but convergence is only reached with at least 512 radial zones.
A study of the second-order structure function of kinetic energy
at t = 50 min showed that the characteristic length scale of the
grids with 512 and 758 zones is 1×108 cm, while it is 3×108 cm
in the case of 256 zones. The analysis in this study was done
for the simulation with 512 radial zones. At this resolution the
average hydrodynamic time step is 1.3 ms. For comparison, the
typical GENEC time step at this stage of evolution is about 5 s.

We did not include any source terms except gravity. Both
nuclear reactions and plasma neutrino losses have an influence
on the evolution of the instability as well. This is, for exam-
ple, through the mixing of unburned carbon into the hotter re-
gions below and the resulting increased energy release. The min-
imum time scale of plasma neutrino losses on the simulation
domain, given by the ratio of the total energy to the loss rate,
is roughly 300 h. It was estimated using the fitting formulae of
Itoh et al. (1996). Nuclear burning acts on the same time scale,
although in a different region of the domain. The energy release
rate was calculated using one-zone calculations with the nuclear
network YANN (Pakmor et al. 2012). Comparing this to the du-
ration of the simulation of ∼6 h suggests that both effects are
relevant in the dynamic evolution. In our present study, however,
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Fig. 7. Angular average of angular velocity at t = 300 min after the shear
mixing has stopped. The lines show the profile for simulations with
256, 512, and 768 radial zones. Each have the corresponding number
of angular zones to keep the aspect ratio constant.

we focused purely on the hydrodynamic effects. This was done
intentionally to disentangle the effect of the source terms and
the hydrodynamic development of the instability, even tough it
impedes the possibility to compare the hydrodynamic simula-
tion and the stellar evolution model directly because the latter
includes the aforementioned source terms.

5. 2D hydrodynamic simulation of dynamical shear

Our goal was to study the development of dynamical shear in-
stabilities in a realistic stellar environment. This was achieved
by transferring a model from the stellar evolution code GENEC
to the hydrodynamic code SLH. To get an overview of the tem-
poral evolution of the shear instability it is useful to visualize the
evolution of the Richardson number, Eq. (4), in different parts
of the simulation domain. We computed the Richardson num-
bers locally on the 2D data and averaged it then on each radius
instead of obtaining a 1D profile of the other quantities and cal-
culating Ri from that. This ordering of the averaging operation
makes regions containing instabilities more obvious as radial
bins containing only few unstable zones are dominated by the of-
ten strongly negative values of Ri there. Figure 8 shows the tem-
poral evolution of angular averages of Ri. This highlights the re-
gion between 1.3×109 and 1.4×109 cm, in which we expect the
initial development of the shear instability from the well-known
theory outlined in Sect. 2. All figures show the simulation with
a radial resolution of 512 grid cells.

The first obvious result is that the instability developed at
the position predicted by the Richardson criterion (indicated by
the blue line in the bottom panel of Fig. 9, which is the initial Ri
profile in the 2D simulation). We see the growth of the instability
to a noticeable level after 19 min of simulation time. The spatial
distribution of Ri at this time is depicted in the first panel of
Fig. 10. It is still fairly symmetric, dominated by one large-scale
mode. This regular pattern is caused by the radially symmetric
initial conditions. It shows the typical rolled-up vortex sheets of
a Kelvin-Helmholtz instability.

The next panel in Figs. 10, 11 shows the departure from this
very regular pattern at t = 25 min. In the following panels at
t = 50 min and t = 80 min the flow develops a chaotic structure.
This creates a mixed region surrounded by stable layers with the
original stratification on top and bottom. The result is a smooth
step profile in Ā and angular velocity Ω. The lower edge of this
step is the position at which new, smaller shear instabilities de-
velop, causing a further change in the Ω profile. One case of this
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Fig. 8. Time evolution of the averaged Richardson number. Blue regions are expected to be stable to dynamical shear. Red regions are Richardson
unstable. The Richardson number was computed locally on the 2D data and averaged afterwards. The vertical dashed lines correspond to the
2D snapshots shown in Figs. 10, 11.

is seen at t = 150 min. As a consequence the region affected by
the instability expands to lower radii as could already be seen in
Fig. 8.

Figure 8 indicates that the unstable regions become smaller
after t = 150 min and have completely disappeared by t =
300 min. Shear mixing has brought Ω back into the Ri-stable
regime. The Ā and Ω profiles go back to a almost perfect cylin-
drical symmetry. This is illustrated in the first two panels of
Fig. 9, where the angular means and the minimum and maxi-
mum values almost coincide for t = 300 min.

The bottom panel of Fig. 9 shows the development of the ra-
dially averaged profile of the Richardson number. We see how
the region with Ri < 0.25 moves from its initial place be-
tween 1.35 and 1.4 × 109 cm to smaller radii. In the final state
at t = 300 min there is a significant region where Ri ≈ 0.4. This
indicates that Ri < 0.25 is indeed the right criterion for the de-
velopment of dynamical shear instabilities in this case.

6. Comparison between 1D and 2D models

The exact time of the onset of the instability in the SLH simu-
lation is marginally later than in the GENEC model as seen in
Fig. 12 but this delay has little significance as it mostly depends
on the exact time step used for mapping from 1D to 2D. The hy-
drodynamic simulation starts from a laminar flow so the shear
instability needs to grow from an initial perturbation at the level
of numerical noise.

In both the 1D and the 2D model the instability affects the
Ω profile for about 150 min (see Fig. 12), after which it stays
virtually constant. The GENEC model still has regions in which
dynamical shear is active but with a low value of D, so the effect
cannot be seen on the time scales considered here. In contrast to
the 1D model, the 2D simulation will not change at later times
as we do not include any evolutionary processes like nuclear re-
actions, neutrino losses, contraction, or expansion of the stellar
core.

Figure 12 gives an overview of the rearrangement of the an-
gular velocity Ω profile in both the 1D hydrostatic and 2D hy-
drodynamic simulation. We see that the instability occurs in both
cases shortly after the start of the simulation. Another similarity
is that the original instability is quenched by the change in Ω and
new unstable regions are formed in neighboring layers. This is
where the details begin to differ. In the 1D case the initial insta-
bility evolves much faster. This is due to the fact that a very high
diffusion coefficient (D > 1013 cm2 s−1) is used in the unstable
layer and a very low value in neighboring zones. This moves the
strong Ω gradient to a neighboring cell rather than smoothing
it as in the 2D model. After about 50 min the major changes
are over and a one-zone, Ri unstable region remains for a time
much longer than in the hydro simulation. This does not have
a significant impact on the long-term evolution of the Ω profile
as the diffusion coefficient is rather weak in the used prescrip-
tion. The plot of Ā in Fig. 13 shows that the region affected by
shear mixing agrees between 1D and 2D but the magnitude is
strongly underestimated by the 1D models. The latter only devi-
ate slightly from the initial condition, whereas the 2D case shows
a smooth step profile. If a similar behavior were realized in the
GENEC model, this would likely have a noticeable impact on its
later evolution. While 3D hydrodynamic simulations are needed
to make final quantitative statements, these results indicate that
the effect of dynamical shear might be underestimated in its cur-
rent treatment in stellar evolution codes.

In 1D models mixing due to dynamical shear was imple-
mented by solving a diffusion equation with a temporally and
spatially varying diffusion coefficient (see Sect. 3.2). In the
framework of 2D or 3D hydrodynamics such a coefficient is not
readily available as the process is not fundamentally of diffu-
sive nature. To ease the comparison the two kinds of simulation
it is useful to know what effective diffusion coefficient would be
needed to mimic the effect of hydrodynamics, at least on the hor-
izontal averages. We followed the approach of Jones et al. (2017)
to compute the diffusion coefficient D necessary to transform the
initial profile of Ā to the final profile in one diffusion step. This
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Fig. 9. Angular average of mean atomic mass Ā, angular velocity Ω, and Richardson number Ri for snapshots at different times indicated by line
color. The regions shaded in the respective line color show the range between the minimum and maximum value at the respective radius.

assumes a constant D over 120 min. The diffusion step is much
longer than the time steps of the stellar evolution calculation in
this phase and the result is therefore not directly suited for re-
placing the prescriptions mentioned in Sect. 3.2. Still, it gave us
a measure of the net diffusion caused by the shear instability. The
initial and final profiles were obtained by averaging over several
hydrodynamics snapshots, corresponding to one GENEC time
step.

Some regions can show antidiffusive behavior, that is D < 0.
The diffusion coefficient was set to zero in these cases. To re-
duce artifacts introduced by starting the computation in a region
with a flat profile, we started from both sides and matched the
results at the peak of D (r = 1.3 × 109 cm). The result is shown
in Fig. 13. As a benchmark of the quality of the diffusion ap-
proximation in this situation we plot Ārec, the mean atomic mass
profile recovered by applying D to the initial profile, as well.
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Fig. 10. Richardson number in the equatorial plane. The panels correspond to the time steps indicated by vertical lines in Fig. 8. Ri is evaluated
along radial profiles. The blue regions are stable to shear, the red regions are unstable. A movie of the entire simulation is available online.

It is virtually identical to the final profile Āfin, which suggests
that diffusion is able to reproduce the horizontally averaged pro-
file adequately. To check how strongly D is influenced by the

choice of step size we compute diffusion coefficients for a range
of smaller step sizes (5 min, 10 min, 20 min). Figure 14 shows
these at different times during the simulation. We notice that the
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Fig. 11. Mean atomic mass Ā in the equatorial plane. The panels correspond to the time steps indicated by vertical lines in Fig. 8.

step size does not have a strong impact on the diffusion coeffi-
cient, at most a factor of about 2.

It is not reasonable to compare this to the shear diffusion co-
efficient of GENEC at any particular instant because usually only

single zones have an extremely large (D ≈ 1014 cm2 s−1) value
while the coefficient in neighboring zones is zero. This behav-
ior is an artifact of the numerical implementation, in which only
unstable zones have a nonzero diffusion coefficient. The form of
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the diffusion coefficient reconstructed from the hydro simulation
underlines the fact that a non-zero diffusion coefficient should be
applied to a spatial extent larger than the unstable zones.

7. Conclusions

We performed a 2D hydrodynamic simulation of a dynamical
shear instability in a massive star to study their development and
the extent of mixing they cause. To start from realistic condi-
tions we use an initial model from the GENEC stellar evolution
code. In accordance with linear stability analysis we observe a
growing shear instability in regions where Ri < 0.25. Figure 9
shows that mixing causes the angular velocity profile to become

flatter at the center and steeper at the boundaries of the unsta-
ble layer. This shifts the unstable region to lower radii until a
stable, cylindrically symmetric state is reached. An interesting
finding of this work is that these stable regions are in the range
0.25 < Ri < 1, despite the fact that the flow here was initially
turbulent. This suggests a critical Richardson number of 0.25 for
triggering the instability, at least in the considered case, in which
no other instabilities are present.

We compare the outcome to the treatment in the 1D stellar
evolution code GENEC, which also provided the initial condi-
tions. In addition to the detailed time evolution of the profiles in
Figs. 8, 12, we compute an effective diffusion coefficient from
the hydro simulation and compare the initial and final profiles of
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mean atomic mass to the 1D model. In Fig. 13 we observe that
the instability occurs in 2D in a qualitatively similar fashion to
the 1D hydrostatic prescription. This means the position of the
instability, as determined by the Richardson criterion in 1D, is
almost the same. A larger quantity of material is mixed in the
2D case. This is not particularly surprising as the value of the
diffusion coefficient is not very well constrained by simulations
or theory so far (see Sect. 3.2).

Even very detailed 2D simulations will not give final answers
to the nature of the dynamical shear instability. This is due to the
differences between 2D and 3D turbulence. An obvious man-
ifestation of this is the long term stability of rolled-up vortex
sheets as seen in the first two panels of Fig. 10. A typical obser-
vation in the 3D case is that these large-scale structures decay
much more quickly to a turbulent state. On a more fundamen-
tal level, for 2D turbulence kinetic energy is transported from
smaller to larger scales instead of the opposite, which is true for
the 3D case. Future work on the hydrodynamics of the dynami-
cal shear instability should therefore ideally use 3D simulations.
This is not merely a question of higher computational cost but
also raises the issue of how to map a 1D averaged model to an
oblate 3D spheroid. Simply adhering to the definition of shellu-
lar rotation alone can lead to inconsistent states.

The next step will be to improve the treatment of dynami-
cal shear in 1D codes by considering the results of multidimen-
sional simulations presented in this study. The main point that
any 1D implementation of dynamical shear needs to fulfill is that
redistribution of angular momentum (and the associated mix-
ing of composition) occurs in regions where Ri < 0.25 and the

instability stops once a stable configuration is reached. Another
way of looking at this is that angular momentum will be trans-
ported (and mixing will take place) until the angular velocity
gradient is shallow enough to be stable everywhere (Ri > 0.25).
Finding the necessary 1D implementation is not an easy task.
The current treatment in 1D codes already includes a very effi-
cient transport in unstable layers. The net effect in 1D codes is to
shift the steep gradient to the next zone rather than smooth it as
in the multidimensional simulations. Using an even higher trans-
port coefficient will not remedy this problem. The different out-
come in 1D models is due to the fact that the evolutionary time
step is much longer than the time scale of the dynamical shear in-
stability. The higher coefficient found in multidimensional simu-
lations only applies for a small fraction of the evolutionary time
step, after which the zones are stable and the coefficient is zero.
The improved prescription needs to reproduce the long-term be-
havior of the instability. Potential avenues to explore are, for ex-
ample, using an artificially smaller diffusion coefficient in the
unstable layer or applying the large diffusion coefficient over a
broader region by developing a prescription combining dynami-
cal shear with secular shear (see, e.g., Maeder 1997). These are
only suggestions. The details of new prescriptions are beyond
the scope of this paper and will be the topic of further studies.

Acknowledgements. P.V.F.E., F.K.R., and S.J. gratefully acknowledge support
from the Klaus Tschira Foundation. The research leading to these results has
received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agree-
ment No. 306901. R.H. acknowledges support from the World Premier Inter-
national Research Center Initiative (WPI Initiative), MEXT, Japan. The authors
thank F. X. Timmes for making his code for plasma neutrino loss rates and

A25, page 13 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629873&pdf_id=14


A&A 604, A25 (2017)

his equation of state publicly available. P.V.F.E. thanks Rüdiger Pakmor for
his persistent encouragement. S.J. is a fellow of the Alexander von Humboldt
Foundation.

References
Abarbanel, H. D. I., Holm, D. D., Marsden, J. E., & Ratiu, T. 1984, Phys. Rev.

Lett., 52, 2352
Brüggen, M., & Hillebrandt, W. 2001, MNRAS, 320, 73
Calhoun, D. A., Helzel, C., & Leveque, R. J. 2008, SIAM Rev., 50, 723
Canuto, V. M., Howard, A., Cheng, Y., & Dubovikov, M. S. 2001, J. Phys.

Oceanogr., 31, 1413
Chiavassa, A., Plez, B., Josselin, E., & Freytag, B. 2009, A&A, 506, 1351
Eggenberger, P., Meynet, G., Maeder, A., et al. 2008, Ap&SS, 316, 43
Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, A&A, 537, A146
Ertl, T., Janka, H.-T., Woosley, S. E., Sukhbold, T., & Ugliano, M. 2016, ApJ,

818, 124
Freytag, B., & Höfner, S. 2008, A&A, 483, 571
Frischknecht, U., Hirschi, R., & Thielemann, F.-K. 2012, A&A, 538, L2
Frischknecht, U., Hirschi, R., Pignatari, M., et al. 2016, MNRAS, 456, 1803
Fryer, C. L., & Heger, A. 2000, ApJ, 541, 1033
Garaud, P., & Kulenthirarajah, L. 2016, ApJ, 821, 49
Garaud, P., Gallet, B., & Bischoff, T. 2015, Phys. Fluids, 27, 084104
Ghidaglia, J., & Pascal. 2005, Eur. J. Mech. B Fluids, 24, 1
Heger, A., & Langer, N. 2000, ApJ, 544, 1016
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368
Herwig, F., Freytag, B., Hueckstaedt, R. M., & Timmes, F. X. 2006, ApJ, 642,

1057
Hirschi, R. 2007, A&A, 461, 571
Hirschi, R., Meynet, G., & Maeder, A. 2004, A&A, 425, 649

Howard, L. N. 1961, J. Fluid Mech., 10, 509
Itoh, N., Hayashi, H., Nishikawa, A., & Kohyama, Y. 1996, ApJS, 102, 411
Jones, S., Andrassy, R., Sandalski, S., et al. 2017, MNRAS, 465, 2991
Kifonidis, K., & Müller, E. 2012, A&A, 544, A47
Kippenhahn, R., & Thomas, H.-C. 1964, ZAp, 60, 19
Kippenhahn, R., Weigert, A., & Hofmeister, E. 1967, Meth. Comput. Phys., 7,

129
Maeder, A. 1997, A&A, 321, 134
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars,

Astronomy and Astrophysics Library (Heidelberg, Berlin: Springer)
Maeder, A., Meynet, G., Lagarde, N., & Charbonnel, C. 2013, A&A, 553, A1
Magic, Z., Collet, R., Asplund, M., et al. 2013, A&A, 557, A26
Martins, F., & Palacios, A. 2013, A&A, 560, A16
Meakin, C. A., & Arnett, D. 2007, ApJ, 667, 448
Miczek, F., Röpke, F. K., & Edelmann, P. V. F. 2015, A&A, 576, A50
Miles, J. W. 1961, J. Fluid Mech., 10, 496
O’Connor, E., & Ott, C. D. 2013, ApJ, 762, 126
Pakmor, R., Edelmann, P., Röpke, F. K., & Hillebrandt, W. 2012, MNRAS, 424,

2222
Prat, V., & Lignières, F. 2013, A&A, 551, L3
Prat, V., & Lignières, F. 2014, A&A, 566, A110
Prat, V., Guilet, J., Viallet, M., & Müller, E. 2016, A&A, 592, A59
Shu, C.-W., & Osher, S. 1988, J. Comput. Phys., 77, 439
Sukhbold, T., & Woosley, S. E. 2014, ApJ, 783, 10
Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H.-T. 2016, ApJ,

821, 38
Sutherland, B. 2010, Internal Gravity Waves (Cambridge University Press)
Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501
Viallet, M., Meakin, C., Arnett, D., & Mocák, M. 2013, ApJ, 769, 1
Young, P. A., Meakin, C., Arnett, D., & Fryer, C. L. 2005, ApJ, 629, L101
Zahn, J.-P. 1992, A&A, 265, 115

A25, page 14 of 14

http://linker.aanda.org/10.1051/0004-6361/201629873/1
http://linker.aanda.org/10.1051/0004-6361/201629873/1
http://linker.aanda.org/10.1051/0004-6361/201629873/2
http://linker.aanda.org/10.1051/0004-6361/201629873/3
http://linker.aanda.org/10.1051/0004-6361/201629873/4
http://linker.aanda.org/10.1051/0004-6361/201629873/4
http://linker.aanda.org/10.1051/0004-6361/201629873/5
http://linker.aanda.org/10.1051/0004-6361/201629873/6
http://linker.aanda.org/10.1051/0004-6361/201629873/7
http://linker.aanda.org/10.1051/0004-6361/201629873/8
http://linker.aanda.org/10.1051/0004-6361/201629873/8
http://linker.aanda.org/10.1051/0004-6361/201629873/9
http://linker.aanda.org/10.1051/0004-6361/201629873/10
http://linker.aanda.org/10.1051/0004-6361/201629873/11
http://linker.aanda.org/10.1051/0004-6361/201629873/12
http://linker.aanda.org/10.1051/0004-6361/201629873/13
http://linker.aanda.org/10.1051/0004-6361/201629873/14
http://linker.aanda.org/10.1051/0004-6361/201629873/15
http://linker.aanda.org/10.1051/0004-6361/201629873/16
http://linker.aanda.org/10.1051/0004-6361/201629873/17
http://linker.aanda.org/10.1051/0004-6361/201629873/18
http://linker.aanda.org/10.1051/0004-6361/201629873/18
http://linker.aanda.org/10.1051/0004-6361/201629873/19
http://linker.aanda.org/10.1051/0004-6361/201629873/20
http://linker.aanda.org/10.1051/0004-6361/201629873/21
http://linker.aanda.org/10.1051/0004-6361/201629873/22
http://linker.aanda.org/10.1051/0004-6361/201629873/23
http://linker.aanda.org/10.1051/0004-6361/201629873/24
http://linker.aanda.org/10.1051/0004-6361/201629873/25
http://linker.aanda.org/10.1051/0004-6361/201629873/26
http://linker.aanda.org/10.1051/0004-6361/201629873/26
http://linker.aanda.org/10.1051/0004-6361/201629873/27
http://linker.aanda.org/10.1051/0004-6361/201629873/29
http://linker.aanda.org/10.1051/0004-6361/201629873/30
http://linker.aanda.org/10.1051/0004-6361/201629873/31
http://linker.aanda.org/10.1051/0004-6361/201629873/32
http://linker.aanda.org/10.1051/0004-6361/201629873/33
http://linker.aanda.org/10.1051/0004-6361/201629873/34
http://linker.aanda.org/10.1051/0004-6361/201629873/35
http://linker.aanda.org/10.1051/0004-6361/201629873/36
http://linker.aanda.org/10.1051/0004-6361/201629873/36
http://linker.aanda.org/10.1051/0004-6361/201629873/37
http://linker.aanda.org/10.1051/0004-6361/201629873/38
http://linker.aanda.org/10.1051/0004-6361/201629873/39
http://linker.aanda.org/10.1051/0004-6361/201629873/40
http://linker.aanda.org/10.1051/0004-6361/201629873/41
http://linker.aanda.org/10.1051/0004-6361/201629873/42
http://linker.aanda.org/10.1051/0004-6361/201629873/42
http://linker.aanda.org/10.1051/0004-6361/201629873/44
http://linker.aanda.org/10.1051/0004-6361/201629873/45
http://linker.aanda.org/10.1051/0004-6361/201629873/46
http://linker.aanda.org/10.1051/0004-6361/201629873/47

	Introduction
	Theory of the dynamical shear instability
	Stellar evolution and hydrodynamics codes
	One-dimensional stellar evolution model
	Diffusion prescription
	The Seven-League Hydro code

	Model setup
	2D hydrodynamic simulation of dynamical shear
	Comparison between 1D and 2D models
	Conclusions
	References

