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SUMMARY

A signature characteristic of Alzheimer’s disease
(AD) is aggregation of amyloid-beta (Ab) fibrils in
the brain. Nevertheless, the links between Ab and
AD pathology remain incompletely understood. It
has been proposed that neurotoxicity arising from
aggregation of the Ab1-42 peptide can in part be ex-
plained by metal ion binding interactions. Using
advanced X-ray microscopy techniques at sub-
micron resolution, we investigated relationships be-
tween iron biochemistry and AD pathology in intact
cortex from an established mouse model over-pro-
ducing Ab. We found a direct correlation of amyloid
plaque morphology with iron, and evidence for the
formation of an iron-amyloid complex. We also
show that iron biomineral deposits in the cortical tis-
sue contain the mineral magnetite, and provide evi-
dence that Ab-induced chemical reduction of iron
could occur in vivo. Our observations point to the
specific role of iron in amyloid deposition and AD pa-
thology, and may impact development of iron-modi-
fying therapeutics for AD.

INTRODUCTION

The accumulation of the peptide fragment amyloid-beta (Ab1-42)

within the brain is a characteristic hallmark of Alzheimer’s dis-

ease (AD) (Selkoe, 1994; Yanker and Lu, 2009). It appears that

the neurotoxicity of Ab is linked to its aggregation state and sub-

sequent involvement in redox cycles (Rival et al., 2009). Further,

studies have suggested that the interaction of metal ions such as

iron and aluminum with Ab, and also copper and zinc, could play
Cell Chemical Biology 24, 1–11, O
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a crucial role in the release of reactive oxygen species (ROS) that

contribute to neurodegenerative damage (House et al., 2004;

Khan et al., 2006; Smith et al., 1997). In particular, iron can exist

in both redox-active forms (as ferrous, Fe2+ iron) and redox-inac-

tive forms (as ferric, Fe3+ iron). The aggregation state of Ab1-42
appears to affect the binding of Fe2+ and Fe3+ and thus influ-

ences the iron redox cycle and consequently the release of

free radicals via Fenton chemistry (House et al., 2004; Khan

et al., 2006; Rival et al., 2009). In vitro studies have also demon-

strated that this coexistence of iron and Ab decreases cell

viability, confirming this enhanced toxicity (Liu et al., 2011; Rott-

kamp et al., 2001; Wan et al., 2011).

Evidence for a link between the accumulation of redox-active

iron in the AD brain and the oxidative damage caused by ROS,

has profound implications for understanding the progression

and treatment of the disease. To date, redox-active iron minerals

such as magnetite (Fe3O4) have been found within tissue ex-

tracted from human Alzheimer’s brain (Collingwood et al.,

2005, 2008; Kirschvink et al., 1992), and in brain tissue sections

from APP/PS1 transgenic mice (Gallagher et al., 2012). In addi-

tion, our recent in vitro studies have built on prior work confirming

the formation of redox-active ferrous iron and nanocrystalline

magnetite following the aggregation of Ab with ferric iron in

different forms (Everett et al., 2014a, 2014b). However direct ev-

idence for the in vivo role played by Ab in the iron redox cycle and

the formation of redox-active minerals, remains elusive.

The presence of localized iron in vivo can be detected by MRI

due to its effect on the surrounding tissue, giving rise to detect-

able changes in transverse relaxation (T2) and susceptibility. It is

therefore possible that the presence of iron in AD tissue could be

used as a diagnostic tool (Acosta-Cabronero et al., 2013;

Antharam et al., 2012; Dobson, 2001; El Tannir El Tayara et al.,

2007; Meadowcroft et al., 2009, 2014; Wang et al., 2014).

Crystalline magnetic minerals such as magnetite can strongly

affect MRI contrast. The relative impact of mineralized iron de-

posits on MRI parameters depends very much on the materials
ctober 19, 2017 ª 2017 The Authors. Published by Elsevier Ltd. 1
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properties of the deposits (including crystallinity, iron oxide

phase, and size distribution), and the extent to which the de-

posits are aggregated or disbursed within tissue (Collingwood

and Telling, 2016). It is therefore important to determine which

forms of iron are associated with different pathology in AD, in or-

der to interpret MRI data for the assessment of disease progres-

sion. Further to this, emerging drug treatments based on iron

chelation, such as deferiprone (Devos et al., 2014), are depen-

dent for their efficacy on how strongly the iron is bound in vivo,

i.e., whether molecular or crystal bonding exists, together with

the morphology and surface structure of the iron deposits.

In this study we investigated the oxidation state and distribu-

tion of nanoscale iron in situ in cortical tissue, taken from an

APP/PS1 transgenic mouse model that reproduces the amyloid

deposition characteristic of AD. To probe both iron oxidation and

magnetic state we exploited techniques that use the element-

specific X-ray absorption of soft X-rays (Regan et al., 2001;

van der Laan, 2013; van der Laan and Figueroa, 2014), defined

as having energies between 40 and 2000 eV. Scanning transmis-

sion X-ray microscopy (STXM), which combines spectroscopic

analysis with high-resolution microscopy, has been used in ap-

plications as diverse as catalysis (de Groot et al., 2010), microbi-

ology (Coker et al., 2012; Hunter et al., 2008), and biomaterials

(Leung et al., 2010). In particular, previous studies have used

STXM tomap the oxidation state of iron in different environments

(Coker et al., 2012; Hunter et al., 2008; Tone et al., 2009) an

approach that is also used here.

In addition to the oxidation state, element-specific magnetism

can be detected by measuring the difference in absorption when

using X-rays of either left or right circular polarization (van der

Laan, 2013; van der Laan and Figueroa, 2014). This difference

is known as X-ray magnetic circular dichroism (XMCD) and oc-

curs at specific absorption edges such as the iron L2,3 edges.

The characteristic XMCD spectrum of magnetite (Telling et al.,

2009; van der Laan, 2013; van der Laan and Figueroa, 2014) en-

ables its unambiguous identification, evenwhen crystallographic

information is not available, or when the mineral is combined or

co-located with other non-magnetic iron oxides. Further, XMCD

obtained using STXM provides a powerful combined micro-

scopic probe that can measure oxidation and magnetic state,

and identify different mineral phases on the nanometer scale

(Coker et al., 2012; Hunter et al., 2008). We present the use of

X-ray spectromicroscopy in combination with TEM, to determine

the oxidation state, magnetic state, and morphology of iron de-

posits and their relation to pathological features in AD tissue.

RESULTS AND DISCUSSION

Mapping Protein Structure in Embedded Sections with
X-Ray Spectromicroscopy
Semi-thin adjacent sections of transgenic mouse tissue, taken

from a region encompassing the entorhinal cortex (see Supple-

mental Information; Figure S7) were examined using STXM,

with the X-ray energy tuned to specific absorption features. Pro-

tein (i.e., tissue) maps using the C K-edge p* amide peak (288.2

eV) were obtained of the area surrounding iron deposits prior to

measuring high-magnification iron maps, as shown in Figure 1A.

However, in order to obtain sufficiently thin (<500 nm) specimen

sections for STXMmeasurements it was necessary to embed the
2 Cell Chemical Biology 24, 1–11, October 19, 2017
tissue in a resin. Most TEM resins contain carbon groups that

produce peaks exactly overlapping the tissue (protein) peaks,

thus destroying contrast in the protein maps.

To avoid this problem we utilized a specialist resin developed

for use in STXM imaging that has been characterized elsewhere

(Li et al., 2009). The effectiveness of this resin is demonstrated in

Figure S1 (Supplemental Information). Characteristic carbon

K-edge X-ray absorption spectra were obtained in a region of

the sample containing mainly tissue, and a region containing

mainly resin (Figure S1A). It can be seen from the figure that

the spectrum from the tissue area contains a significant contribu-

tion from the resin (as expected for embedded tissue) and does

not closely resemble a reference protein C K absorption edge

spectrum (Figure S1C). However by scaling the resin spectrum

to the pre-edge shoulder in the tissue peak and then subtracting

the spectra, it is possible to recover a protein spectrum very

similar to the reference sample (Figures S1B and S1C). In partic-

ular, the post edge peak (labeled * in Figure S1) can be clearly

seen even though this is not easily discernible in the raw spec-

trum from the tissue.

For a given sample it was therefore possible to obtain protein

maps of the tissue by subtracting images obtained at the X-ray

energy corresponding to a strong resin feature (red arrow in Fig-

ure S1A), from those obtained at the p* amide protein peak (blue

arrow in Figure S1A). The resin-subtracted images thus obtained

expose the protein structure (i.e., tissue) in the sections, as

shown for a cortical section of the wild-type mouse tissue sam-

ple in Figures S1D–S1I. As can be seen from this figure, the ob-

tained protein maps reveal detail of the cellular membranes, or-

ganelles, and extracellular matrix, while surface artifacts (such as

the glue contamination seen in Figures S1D and S1E) are

removed.

Analysis of Morphology and Oxidation State of Iron
Following a coarse (low spatial resolution) survey of several adja-

cent sections from both wild-type and transgenic samples, we

examined in detail 15–20 areas of 50 3 50 mm2 for each sample

type where the sections appeared intact, and where these areas

were spaced evenly over a total tissue section area of several

mm2. Areas containing iron deposits were identified by obtaining

iron maps over regions where dense deposits could be dis-

cerned, as demonstrated for a section from the wild-type sample

in Figures S2A–S2C. Using this procedure it was possible to

detect iron deposits down to �100 nm in size within areas

measuring �25 3 25 mm2.

In total, evidence for only four iron oxide deposits was found in

the areas examined in the wild-type tissue sample. One of these

(not shown) was several micrometers in size with straight edges

and was of sufficient thickness to fully absorb X-rays at the Fe L3
absorption edge. This deposit was thus considered to be partic-

ulate surface contamination and was not analyzed further in

this study. The other three iron deposits, shown in Figures

S2D–S2F, appear symmetrical in nature and are approximately

100–300 nm in size. In contrast, we found numerous dense de-

posits in the tissue sections from the transgenic mouse sample.

However due to time constraints it was only possible to probe a

representative proportion of these with the X-ray techniques.

The absence of substantial iron deposits in the wild-type tissue

suggests that the use of 0.1 M sodium cacodylate in the tissue



Figure 1. Spectromicroscopy Analysis of Spatial Distribution, Morphology, and Oxidation State of Iron Deposits within Protein Structure

(A) Protein maps (top) obtained from a cortical section of transgenic mouse tissue showing three areas (A1, A2, and A3) where iron deposits were located.

Corresponding high-magnification iron maps of these deposits are also shown (lower images).

(B) X-ray absorption intensity measured across the Fe L2,3 absorption edge obtained from the iron deposits shown in (A). Also shown in (B) are the absorption

spectra obtained from an Fe3+ reference standard (in this case the iron oxyhydroxide, goethite FeO(OH)), and an Fe2+ reference standard (FeCl2). The strongest

peak intensity was normalized to unity for each spectrum for ease of comparison. The solid line for the spectra from regions A1–A3 corresponds to a best fit using

a superposition of suitably scaled Fe2+ and Fe3+ X-ray absorption spectra (see Figure S3). See also Figures S1 and S2.
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preparation did not lead to iron accumulation in these samples,

despite prior work which has indicated that sodium cacodylate

(dimethylarsinic acid) can mobilize iron from horse spleen ferritin

in vitro (Ahmad et al., 2000).

All of the deposits from the wild-type tissue displayed Fe L2,3
X-ray absorption spectra identical to that shown in Figure S2G.

Comparison with the reference Fe(III) mineral (goethite) in Fig-

ure S2G indicates that the iron deposits in the wild-type sample

contain predominantly ferric (Fe3+) iron. This is confirmed both by

the correspondence of the peak positions, and the reproduction

of the characteristic shoulder on the low energy side of the main

L3 peak (which is also reflected at the L2 absorption edge).

Although the exact intensity of this shoulder feature is found to

vary for different iron (III) minerals, it is typically approximately

half the height of the main L3 peak.

More extensive tissue damage was seen in the transgenic

mouse sample than in the wild-type sample (Figures 1A and

S1); however, it is not clear if this damage is pathological or

due to tissue fragility during sample preparation. In any case,

high-magnification iron maps of iron deposits in regions, labeled

A1, A2, and A3 in Figure 1A, revealed a clear fine structure to

these deposits. The oxidation state of these iron deposits was

investigated using X-ray absorption spectra obtained from spec-

tromicroscopy measurements (Figure 1B).
The oxidation state of iron affects the intensity of the various

X-ray absorption peaks measured at the iron L3 and L2 absorp-

tion edges, as the electron transitions involved are sensitive to

the local electronic structure (van der Laan and Kirkman,

1992). This leads to distinct differences in the shape of the

X-ray absorption spectrum obtained from Fe2+ and Fe3+ ions

(as seen in the case of the reference spectra labeled curves

A andB, respectively, in Figure S3, panel 1). In particular, consid-

ering only the L3 absorption region where the effects can be seen

more clearly, Fe2+ ions show a strong peak at �708 eV and a

broader shoulder at �710 eV, while Fe3+ ions show a strong

peak at �710 eV with a weaker should at �708 eV (indicated

by dashed vertical lines in Figure S3). It is thus possible to distin-

guish these two oxidation states of iron using the L2,3 absorption

spectrum. Further, it is also possible to determine the presence

of Fe2+ ions within a region containing Fe3+ ions, simply by

considering the superposition of the spectra. An illustration of

this is shown in Figure S3 (panel 1) where the reference curves

have been added together in different proportions.

To obtain a more quantitative measure of the percentage

of Fe2+ ions within an iron deposit, i.e., the ratio Fe2+/(Fe2+ +

Fe3+), it was necessary to allow for the different X-ray absorption

cross-sections of the two ion types. This was done by scaling the

measured X-ray absorption spectra for Fe2+ and Fe3+ ions, as
Cell Chemical Biology 24, 1–11, October 19, 2017 3



Figure 2. Comparison of TEM and STXM Micrographs Showing Correlation of Iron with Amyloid-like Fibril Morphology

(A–C) TEM images from the unstained section measured by STXM in Figure 1, showing fine structure in regions A2 (A) and (B), and A3 (C). The high-magnification

image shown in (B) was obtained from the dotted area shown in (A).

(D–F) Part (D) shows unstained TEM images of fibrillar structures located in a nearby area of the same section. The iron-containing fragment shown in (D) was

observed initially by TEM and subsequently mapped using STXM; iron map shown in (E). A higher-magnification TEM image of the dashed box region in (D) is

shown in (F). See also Figure S3.
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shown in Figure S3 (panel 2). To determine the percentage of

Fe2+ ions from each X-ray absorption spectrum measured from

the mouse tissue, we performed a non-linear least-squares

fitting procedure using the weighting of the spectra shown in Fig-

ure S3 (panel 2) as fit parameters. From the fits shown in Fig-

ure 1B it can be seen that, while one area (A2) contained predom-

inantly ferric iron, the other areas showed evidence of a

substantial ferrous iron component (nearly 50% Fe2+ for re-

gion A3).

Following STXM examination, high-magnification TEM images

were obtained from areas A2 and A3 (Figure 1A), as shown in Fig-

ure 2. The TEM images in Figures 2A–2C reveal a structure with a

fine fibrousmorphology within the iron deposits. In particular, the

ferrous iron-containing area (A3) shows very fine structure with

an almost amorphous morphology. TEM images from a nearby

area in the same section, not originally examined by STXM, re-

vealed numerous dense fragments with a fibrillar morphology

typical of amyloid plaques obtained from AD tissue (Meadow-

croft et al., 2009), and containing fibrils of between 50 and

150 nm in length (Figures 2D–2F). A subsequent STXM examina-

tion of one of these fragments confirmed a direct correspon-

dence between the iron density (in this case determined by

STXM to be ferric iron) and fibril density from TEM (see Figures

2D and 2E). Image cross-correlation analysis performed on

the images shown in Figures 2D and 2E confirmed a strong

correlation of pixel intensity between the images with a coeffi-

cient, R = 0.91 (20 nm pixel size), suggesting the fibrils them-

selves contained iron as opposed to the presence of discrete
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iron foci within fibril aggregates. A high-magnification micro-

graph of a thinner area (Figure 2F) revealed fibrils of�5 nmwidth

that appear typical of cross-beta-amyloid conformation (Fan-

drich et al., 2011).

Correlation of Iron with Protein Structure
In an adjacent section to that discussed above, some large

dense fragments reminiscent of amyloid plaque deposits were

observed. Combined protein and iron maps covering the area

around these deposits are shown in Figures 3A and 3B. Careful

examination of the protein map in Figure 3A reveals that the iron-

bearing dense fragments shown in Figure 3B also appear in the

protein map andmust thus contain substantial concentrations of

protein or peptide. However, when C K-edge X-ray absorption

spectra were obtained for these regions (Figure 3C), a broad-

ening of the p* amide peak was evident, compared with the

spectrum measured from the surrounding tissue (which is also

identical to the amyloid peptide spectrum [Everett et al.,

2014b]). The presence of iron should not affect the protein

X-ray absorption spectrum directly, as the energy is well below

the Fe L2,3 absorption edge and so X-ray absorption from the

iron should be minimal. We hypothesize that the observed

peak broadening in the protein spectrum may arise from modifi-

cation of the amyloid structure due to the formation of an iron-

amyloid composite.

We were able to exploit this peak broadening to obtain maps

at an alternative energy (labeled P2 in Figure 3C) just below the

p* amide peak (labeled P1). The resulting map using the P2



Figure 3. Spectromicroscopy Analysis of

Co-located Protein and Iron

(A and B) Protein map obtained from unstained

cortical section of transgenic mouse tissue (arrows

show the location of iron-bearing fragments) (A);

false color composite protein (cyan) and iron (red)

map (B) from the region shown in (A).

(C) Carbon K-edge X-ray absorption spectra from

the iron-loaded region (top) and surrounding tissue

(bottom).

(D) Protein map obtained using the alternative

X-ray energy position, P2, shown in (C).

(E) Iron map from the same region as in (D); also

used in the composite image in (B).

(F and G) Iron L2,3 X-ray absorption spectra (F)

obtained from thin areas A4 and A5 shown as

enlarged insets with positions indicated by the

yellow arrows in (G). The solid line for the spectrum

of region A5 corresponds to a best fit using a su-

perposition of suitably scaled Fe2+ and Fe3+ X-ray

absorption spectra (see Figure S3). See also Fig-

ure S4.
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feature in the broadened protein spectrum is shown in Figure 3D.

Comparison with the iron map in Figure 3E reveals that the ma-

terial displaying the P2 protein spectral feature is exclusively

associated with the iron-rich areas. Although most of this mate-

rial was too dense for spectral analysis of the iron, it was possible

to obtain Fe L2,3 X-ray absorption spectra from two thin regions

in the smaller fragments (Figures 3F and 3G). One of these re-

gions (A5) clearly contained a substantial ferrous (Fe2+) iron

component determined from the fit to constitute �70% of the

iron present (Figure 3F). Further examples of such regions where

iron was found to be co-located with protein structure are shown

in Figure S4. In all these additional regions, a similar broadening

of the p* amide peak was observed wherever iron was co-

located with protein.

In a nearby region on the same section we found a structure

resembling a diffuse amyloid plaque (Dickson and Vickers,

2001) (Figure 4). Using the same methodology outlined above

it was possible to independently map the three following signals

throughout this region: tissue (using the usual P1 spectral peak);

material exhibiting the broadened protein spectrum (using the
Cell Che
P2 spectral feature); and iron-containing

material (Figures 4A and 4B). Both the

diffuse plaque and the plaque frag-

ments shown in Figure 3 are consistent

in size and morphology with plaques

imaged previously using immunofluores-

cent techniques from age-matched APP/

PS1 transgenic mice in the same series

as the animal used in the current study

(Gallagher et al., 2012).

From the images in Figures 4A and 4B,

it appears that the iron distribution

exactly matches the plaque morphology.

A detailed mapping of the bottom right

portion of the plaque-like structure using

the weaker Fe L2 absorption edge to

avoid saturation, revealed a near-exact
correlation between the intensity (i.e., density) of the signal map-

ped using the P2 protein spectral feature (Figure 4D), and that of

the iron (Figure 4E), with an image cross-correlation coefficient of

R = 0.97 (125 nm pixel size). This is consistent with the interpre-

tation that the diffuse plaque is also comprised of a combined

material containing both amyloid and iron, as suggested earlier

for the fibrillar fragments observed by TEM.

In Situ Combined Nanoscale Measurements of Iron
Oxidation and Magnetism
On adjacent semi-thin sections taken from the same transgenic

sample we found particulate iron deposits that showed a strong

spatial variation in iron oxidation state over regions as small as

�50 nm, an example of which is shown in Figure 5. Iron L2,3
X-ray absorption spectra taken from representative regions in

the deposit are shown in Figure 5F. For these weaker intensity

spectra, which were obtained with a coarse energy step size, it

was necessary to first convolve the spectra from Figure S3

(panel 2) with a Gaussian function (s = 0.2) prior to fitting. From

the fits shown in Figures 5F and 5A, substantial variation in the
mical Biology 24, 1–11, October 19, 2017 5



Figure 4. Spectral Imaging Showing Corre-

lation of Protein with Iron in a Feature

Resembling a Diffuse Amyloid Plaque

(A) False color composite protein map from an

unstained cortical section of the transgenic mouse

tissue. The cyan-colored map was obtained using

the spectral peak labeled P1 in Figure 3C, whereas

the gold-colored map was obtained using the

spectral feature labeled P2 in Figure 3C.

(B) False color composite protein (P1, cyan) and

iron (red) map obtained from the same region as

(A), using the iron L3 absorption peak.

(C–F) Lower images show enlarged high-resolution

proteinmapsmeasured using the spectral features

P1 and P2, (C) and (D); and iron maps using peaks

at the iron L2 and L3 absorption edges (E) and (F),

respectively. The iron map in (F) is saturated and

does not therefore reveal the true iron density

variation that can be seen in (E).
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Fe oxidation state was determined, ranging from predominantly

ferric iron (region B1), to nearly pure (92%) ferrous iron (re-

gion B4).

It would seem unlikely that such variations are caused by the

coincidental surface contamination of the deposit area by

numerous small (�50–200 nm) particles of different oxidation

state iron minerals (Dobson and Grassi, 1996). We also discount

a postmortem oxidation effect caused by variations in the iron

deposit thickness, as themeasured optical density values, which

are directly proportional to the deposit thickness, indicated that

regions B1 and B4 were of approximately the same thickness. In

additional experiments on ferric iron standards we further ruled

out iron reduction caused by either (1) the preparation of semi-

thin sections of material for STXM and TEM analysis, or (2) the

interaction of the X-ray beamwith the sample during STXMmea-

surements. To do this we prepared embedded sections of iron

(III) minerals using identical procedures to those used for the

tissue samples. We also deposited samples of these Fe(III) min-

eral types directly onto electron microscope grids, in order to

assess the potential of the X-ray beam to reduce Fe(III) surface

contaminants.

The X-ray absorption spectra obtained during STXMmeasure-

ments for both of these embedded and surface-exposed sam-

ples are given in Figure S5, and are entirely consistent with ex-

pectations from previously published data (Regan et al., 2001).

The X-ray beam dwell time (exposure time) used for these mea-

surements was increased to three times that used for the tissue

iron deposits, making beam damage (iron reduction) even more

likely in these control experiments. Despite this, no obvious

reduction from a pure Fe3+ valence state was found for either

mineral (Figure S5). Further, the spectra obtained from the

embedded samples were almost identical to those seen for the

surface deposits, ruling out sample preparation as a possible

cause for the iron reduction.
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The implicit assumption in the previous

fitting analysis is that the Fe2+ and Fe3+

ions originate from different phases

within the iron region being measured;

for example, as would occur when a ferric
iron deposit had been partially reduced. However, the presence

ofmixed valence crystallinematerials, such as themagneticmin-

eral magnetite, complicates this simple picture. To detect the

presence of such materials, XMCD was used as this is sensitive

only tomagneticminerals. By remounting the above section onto

a cylindrical permanent magnet and exploiting the circular polar-

ization of the X-ray beam, we were thus able to measure the

magnetic properties of this iron deposit, in situ.

The circular polarization-dependent X-ray absorption spectra

measured under the applied magnetic field are shown in Fig-

ure 6A. The corresponding XMCD spectra obtained by subtract-

ing the spectra for the two polarizations, are shown in Figure 6B.

The X-ray absorption and XMCD spectra obtained from a syn-

thetic magnetite standard sample (labeled M in Figure 6) are

typical for this mineral, with the XMCD spectrum displaying a

characteristic negative-positive-negative peak structure due to

the ordering of magnetic cations (Coker et al., 2012; Telling

et al., 2009; van der Laan, 2013; van der Laan and Figueroa,

2014). The appearance of these features thus indicates the pres-

ence of crystalline and ordered magnetite, while the relative in-

tensity of the different peaks in the XMCD spectrum reveals

the degree of oxidation (i.e., the ratio of Fe2+:Fe3+ cations) of

the mineral.

By examining the spectra from the different regions in the tis-

sue it was possible to elucidate dramatic variations in their oxida-

tion andmagnetic states. The fraction of Fe2+ cations in themag-

netic mineral regions was quantified by fitting calculated XMCD

spectra to the data in Figure 6B (Telling et al., 2009). Assuming

that the magnetite reference sample was stoichiometric with a

corresponding Fe2+/Fe3+ cation ratio of 0.5, it was found that

the three other regions that showed a magnetic (XMCD)

response yielded approximate Fe2+/Fe3+ ratios of 0.7 (B6), 0.4

(B4), and 0.1 (B5). Here, ratios >0.5 indicate reduction, while

those <0.5 indicate oxidation from stoichiometric magnetite.



Figure 5. Spectromicroscopy Identification

of Local Oxidation State Variations in Nano-

scale Particulate Iron

(A) Protein map showing the area surrounding an

iron oxide deposit in a cortical section from the

transgenic mouse sample.

(B–F) Higher-magnification image (B) of the boxed

region in (A), taken at an energy of 350 eV and

showing the iron deposit (dotted red box). Iron

maps recorded using (C) the prominent Fe2+ peak

(708 eV) and (D) the prominent Fe3+ peak (710 eV)

were used for the difference map in (E), which was

obtained by subtracting image (C) from image (D),

and shows localized regions of Fe3+ (bright

contrast) and Fe2+ (dark contrast). The corre-

sponding Fe L2,3 X-ray absorption spectra ob-

tained from the regions labeled B1–B4 are shown

in (F). The solid lines for the spectra B1–B4 corre-

spond to best fit curves using a superposition of

suitably scaled Fe2+ and Fe3+ X-ray absorption

spectra (see Figure S3). See also Figure S5.
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Taking into account all the spectra in Figures 5F and 6,

together with the above Fe2+/Fe3+ ratios, it was possible to build

a profile of the oxidation state of both magnetic and non-mag-

netic iron phases present in each region of the iron deposit

shown in Figures 5B–5E. From this it appears that, whereas

one region (B1) contained only a non-magnetic Fe3+ phase

consistent with ferrihydrite, regions B4 and B6 both contained

a reduced form of magnetite together with a non-magnetic

Fe2+ iron phase, while region B5 contained a heavily oxidized

form of magnetite (i.e., approaching the maghemite, Fe2O3, stoi-

chiometry). This colocation of different nanoscale iron oxides

provides evidence for a possible redox cycling of the iron.

Several similar particulate iron oxide deposits were found in

adjacent sections that were examined by TEM. In all cases these

deposits were located in electron-dense regions of several

microns in size that were generally non-fibrillar (amorphous) in

nature. A typical example is shown in Figure 7 where an iron

oxidation state map was obtained for the deposit region (Fig-

ure 7C) and compared with the TEM image (Figure 7B). From

these images it can be seen that the most electron-dense area

in the TEM image (Figure 7B) corresponds to an Fe2+-rich region

with an X-ray absorption spectrum (not shown) very similar to re-

gion B4 in Figure 5. Thus, it is possible that the Fe2+ region in Fig-

ure 7 also contains nanoscale magnetite, although we do not

have comparable XMCD measurements to confirm this. Further

examples of regions with a similar morphology and containing

particulate nanoscale iron deposits are presented in Figure S6.

In summary, using a combination of X-ray and electron micro-

scopywe have observed the first direct evidence for iron-bearing

fibrillar aggregates, together with the iron loading of diffuse pla-
Cell Che
ques at the nanoscale level ex vivo. These

results, in addition to the modification

of the peptide spectrum obtained from

the plaques, suggest the composition of

diffuse plaques to be that of an iron-amy-

loid complex. This interpretation supports

previous in vitro studies that suggest a link

between Ab1-42 aggregation and iron
accumulation (Everett et al., 2014a, 2014b; Liu et al., 2011). In

particular the short, disordered fibrils tending to an amorphous

structure, observed here, are remarkably similar to Ab fibrils ob-

tained in vitro where amyloid was allowed to aggregate in the

presence of iron (Everett et al., 2014b; Liu et al., 2011). These

and other in vitro studies suggest that iron could be fundamen-

tally involved in amyloidosis (House et al., 2004; Huang et al.,

2004; Mantyh et al., 1993).

While there are well-documented differences between amy-

loid deposition in the transgenic APP/PS1 mouse model of AD,

and the amyloid deposition observed in human cases of AD,

the observations to date in vitro and in vivo support the hypoth-

esis that there is a fundamental process whereby available iron is

chemically reduced in the presence of aggregating Ab under

physiological conditions. The observations presented here, ob-

tained using advanced synchrotron X-ray microscopy tech-

niques, provide the strongest evidence to date that the iron

chemistry observed in vitro is replicated in vivo in a transgenic

model of Alzheimer’s disease that is directly relevant to the

hypothesis being tested, and these findings are consistent with

observations in material extracted from human brains exhibiting

Alzheimer’s pathology (Collingwood et al., 2008; Plascencia-Villa

et al., 2016).

However, in vivo, it is still not clear whether iron seeds plaque

formation or is integrated at a later stage. In the results presented

here we observed different types of iron-bearing structures;

dense amorphous regions containing localized particulate iron

deposits (including magnetite-based minerals), fibrillar frag-

ments, and diffuse plaque morphology. In the latter two cases

we found a direct nanoscale correlation between protein/fibril
mical Biology 24, 1–11, October 19, 2017 7



Figure 6. In SituMagnetic Characterization of Particulate Iron Using

STXM-XMCD

(A) Fe L2,3 X-ray absorption spectra obtained using X-rays with left circular

polarization (LCP, blue curves) and right circular polarization (RCP, red curves)

for the different regions labeled in Figure 5, together with a reference standard

of magnetite nanoparticles embedded in resin (labeled M).

(B) Corresponding XMCD spectra obtained by subtracting RCP curves from

LCP curves. The positive and negative peaks labeled 1–3 in the magnetite

reference spectrum in (B) are related to: magnetic Fe2+ cations on octahedral

symmetry sites (1); magnetic Fe3+ cations on tetrahedral symmetry sites (2);

and magnetic Fe3+ cations on octahedral symmetry sites (3). The solid red

curves in (B) show an approximate fit of the calculated XMCD spectrum for

each region. All spectra were recorded in a magnetic field of approximately

50 mT applied parallel to the X-ray beam.

Figure 7. TEM and STXM Comparison of Iron Oxidation State and

Structure in Particulate Iron

(A and B) TEM images from an unstained section of cortical tissue from the

transgenic mouse tissue sample. The boxed area in (A) is shown at higher

magnification in (B).

(C) The corresponding Fe2+ and Fe3+ distribution map is shown, where bright

areas correspond to Fe3+-rich regions and dark areas correspond to Fe2+-rich

regions. The labels 1–3 indicate corresponding regions in the TEM image (B)

and iron map (C). See also Figure S6.
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density and that of iron. This suggests that a seedingmechanism

could be involved for these structures, unless the iron can

permeate the dense plaques after the protein has been depos-

ited. Consequently, iron may play a much greater role in the

development of AD pathology than presently assumed.

Further to this, the observation of substantial levels of ferrous

iron (Fe2+) in the aggregates found in this study, is entirely

consistent with previous in vitro experiments where iron reduc-
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tion and redox cycling effects were found when Ab1-42 was

incubated in the presence of ferric iron (Fe3+) (Everett et al.,

2014a, 2014b; Huang et al., 1999; Khan et al., 2006). The forma-

tion of redox-active (i.e., ferrous) iron in vivo would provide an

additional free racial burden via Fenton chemistry. Such ferrous

iron would thus contribute further to neurodegeneration via

oxidative stress. Ferrous iron was also found in particulate

iron deposits of �50 nm size. Using X-ray absorption and

XMCD measurements we were able to show crystalline and

ferrimagnetic properties consistent with oxidized and reduced

forms of magnetite. Although nanoscale magnetite has been

found in AD tissue previously (Collingwood et al., 2008; Kirsch-

vink et al., 1992), these results are the first measurements of the

oxidation state of both magnetic and non-magnetic iron in AD

tissue in situ.

As no attempt was made to prevent postmortem oxidation of

tissue in this study, the detection of pure ferrous iron phases sug-

gests other mechanismsmust suppress oxidation. One possibil-

ity is that the iron is preserved in the ferrous state through binding

or coating with amyloid that is in either fibril or amorphous form.

The magnetosome membranes in magnetotactic bacteria are an

example of just such a mechanism, where they have been found

to prevent oxidation of magnetite nanocrystals (Zhu et al., 2015).

Here, the protective effect is consistent with the formation of

an iron-amyloid complex, as discussed earlier. However,

perhaps the most intriguing aspect is the detection of iron with
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intermediate oxidation states, providing strong evidence for

redox cycling of iron in vivo. While it has not yet been proven

that the presence of magnetite in the brain is connected to AD

pathology, the formation of the highly reduced iron oxides

observed here is not expected under normal physiological

conditions.

The detection of almost pure Fe2+ oxides is consistent with

previous nanoelectron diffraction studies on pathological ferritin

from AD tissue, where the Fe2+ mineral w€ustite was found to be

the major component of the ferritin core (Quintana et al., 2004).

Further to this, earlier work postulated that the malfunction of

ferritin could act as a precursor to the formation of ferrous

iron-rich minerals (Dobson, 2001). It is possible therefore that

ferritin provides the basis for the iron observed here. Such a

conclusion is also consistent with our previous in vitro experi-

ments where we incubated Ab1-42 with ferrihydrite (the ferric

iron oxyhydroxide core found in physiological ferritin) (Everett

et al., 2014a). In this previous work we found it was possible to

form localized areas containing nanocrystalline magnetite within

amyloid aggregates, due to the reductive effect of the iron-amy-

loid interaction. We also found that the iron was directly corre-

lated with amyloid fibril morphology; a result entirely consistent

with the iron-amyloid association in the tissue samples dis-

cussed here.

There is some evidence in our study to suggest that the oxida-

tion, crystalline, and magnetic state of the iron associated with

plaque material, is linked to the development of the amyloid pa-

thology. For example we found that ferric iron was associated

with diffuse plaques which are historically described as early-

stage pathological structures (Selkoe, 1994), whereas more par-

ticulate and crystalline iron (such as magnetite) was commonly

found within dense amorphous regions resembling plaque cores

in the transgenic APP/PS1 mouse brain tissue presented here,

consistent with prior observations in human Alzheimer’s brain

tissue (Collingwood et al., 2008; Plascencia-Villa et al., 2016).

Given the varying effect of different forms of iron on the relaxation

and susceptibility parameters that determine contrast in MRI

scans, a link between amyloid morphology and iron could serve

as an in vivo diagnostic marker to detect the onset and progres-

sion of the disease, long before substantial pathology has

developed.

Finally, understanding the relationship between iron and the

pathology of AD is vital for the development of treatments using

metal-modifying drugs such as chelators. To date, such treat-

ments have proved among themost successful in demonstrating

benefits in patient trials (Devos et al., 2014). Further to this, a

recent study on APP/PS1 transgenic mice similar to those

used in the work presented here, revealed that the use of the

Fe-chelating drug deferoxamine was able to reduce amyloid pla-

que formation and prevented iron-induced memory impairments

(Guo et al., 2013). Further studies are now required to assess

whether iron loading of amyloid structures is unique to trans-

genic mouse models, or can also be observed in human AD

tissue.

SIGNIFICANCE

We have demonstrated that advanced X-ray microscopy

techniques can be used to map, with nanoscale resolution
and a high degree of chemical specificity, the iron

biochemistry associated with amyloid pathology in a trans-

genic mousemodel of Alzheimer’s disease. The techniques

employed are extremely powerful because of the level of in-

formation that can be obtained without processing the

brain tissue, which here was unstained and chemically un-

fixed. We present the first evidence for iron reduced to a

pure ferrous state that is directly associated with the dense

protein deposits, consistent with amyloid pathology, that

form in the cortex of the APP/PS1 mouse but not the wild-

type. This is completely consistent with the hypothesis

that emerged from prior in vitro experiments, and provides

new evidence that amyloid-induced chemical reduction of

iron could occur in vivo. The combined sensitivity and

specificity of X-ray microscopy has shown that iron

deposits with different morphology and oxidation/mag-

netic states are not merely localized to the regions of pla-

que-like deposition in the APP/PS1 mouse as previously

suggested, but appear to be an integral part of these struc-

tures. Of particular significance, our results indicate that

diffuse amyloid deposits (more typical of early-stage amy-

loid pathology) comprise a bound amyloid-iron composite.

The findings are important both for transgenic models and

for studies of Alzheimer’s disease in humans, to assist with

determining the impact of iron chelation on amyloid depo-

sition, and to optimize contrast-agent-free MRI methods to

evaluate iron-rich amyloid deposits in the brain. Most

importantly, the findings support a model implicating iron

in the actual genesis of amyloid deposition in Alzheimer’s

disease.
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White, R.L. (2001). Chemical effects at metal/oxide interfaces studied by

X-ray-absorption spectroscopy. Phys. Rev. B 64, 214422.

Rival, T., Page, R.M., Chandraratna, D.S., Sendall, T.J., Ryder, E., Liu, B.,

Lewis, H., Rosahl, T., Hider, R., Camargo, L.M., et al. (2009). Fenton chemistry

and oxidative stress mediate the toxicity of the beta-amyloid peptide in a

Drosophila model of Alzheimer’s disease. Eur. J. Neurosci. 29, 1335–1347.

Rottkamp, C.A., Raina, A.K., Zhu, X., Gaier, E., Bush, A.I., Atwood, C.S.,

Chevion, M., Perry, G., and Smith, M.A. (2001). Redox-active iron mediates

amyloid-beta toxicity. Free Radic. Biol. Med. 30, 447–450.

Selkoe, D.J. (1994). Alzheimer’s disease: a central role for amyloid.

J. Neuropathol. Exp. Neurol. 53, 438–447.

Shirahama, T., and Cohen, A.S. (1966). A Congo red staining method for

epoxy-embedded amyloid. J. Histochem. Cytochem. 14, 725–729.

Smith, M.A., Harris, P.L., Sayre, L.M., and Perry, G. (1997). Iron accumulation

in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl.

Acad. Sci. USA 94, 9866–9868.
Telling, N.D., Coker, V.S., Cutting, R.S., van der Laan, G., Pearce, C.I., Pattrick,

R.A.D., Arenholz, E., and Lloyd, J.R. (2009). Remediation of Cr(VI) by biogenic

magnetic nanoparticles: an X-ray magnetic circular dichroism study. App

Phys. Lett. 95, 163701–163703.

Tone, B.M., Fakra, S.C., Manganini, S.J., Santelli, C.M., Marcus, M.A., Moffett,

J.W., Rouxel, O., German, C.R., and Edwards, K.J. (2009). Preservation of

iron(II) by carbon-rich matrices in a hydrothermal plume. Nat. Geosci. 2,

197–201.

van der Laan, G., and Kirkman, I.W. (1992). The 2p absorption-spectra of 3d

transition-metal compounds in tetrahedral and octahedral symmetry.

J. Phys. Condens. Matter 4, 4189–4204.

van der Laan, G. (2013). Applications of soft X-ray magnetic dichroism.

J. Phys. Conf. Ser. 430, 012127.

van der Laan, G., and Figueroa, A.I. (2014). X-ray magnetic circular dichroism -

a versatile tool to study magnetism. Coord. Chem. Rev. 277, 95–129.

Wan, L., Nie, G., Zhang, J., Luo, Y., Zhang, P., Zhang, Z., and Zhao, B. (2011).

Beta-amyloid peptide increases levels of iron content and oxidative stress in

human cell and Caenorhabditis elegans models of Alzheimer disease. Free

Radic. Biol. Med. 50, 122–129.

Wang, D., Li, Y.-Y., Luo, J.-H., and Li, Y.-H. (2014). Age-related iron depo-

sition in the basal ganglia of controls and Alzheimer disease patients

quantified using susceptibility weighted imaging. Arch. Gerontol. Geriatr.

59, 439–449.

Yanker, B.A., and Lu, T. (2009). Amyloid b-protein toxicity and the pathogen-

esis of Alzheimer disease. J. Biol. Chem. 284, 4755–4759.

Zhu, X.H., Kalirai, S.S., Hitchcock, A.P., and Bazylinski, D.A. (2015).What is the

correct Fe L-23 X-ray absorption spectrum of magnetite? J. Electron

Spectrosc. 199, 19–26.
Cell Chemical Biology 24, 1–11, October 19, 2017 11

http://refhub.elsevier.com/S2451-9456(17)30272-6/sref31
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref31
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref31
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref32
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref32
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref33
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref33
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref33
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref33
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref34
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref34
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref34
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref35
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref35
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref35
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref35
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref36
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref36
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref36
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref36
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref37
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref37
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref37
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref38
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref38
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref39
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref39
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref40
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref40
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref40
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref41
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref41
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref41
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref41
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref42
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref42
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref42
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref42
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref43
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref43
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref43
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref44
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref44
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref45
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref45
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref46
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref46
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref46
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref46
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref47
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref47
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref47
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref47
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref48
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref48
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref49
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref49
http://refhub.elsevier.com/S2451-9456(17)30272-6/sref49


Please cite this article in press as: Telling et al., Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of
Alzheimer’s Disease, Cell Chemical Biology (2017), http://dx.doi.org/10.1016/j.chembiol.2017.07.014
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

sodium pentobarbital Merial Animal Health, UK Euthanol

Sodium cacodylate Sigma-Aldrich 31533; CAS: 124-65-2 (anhydrous)

Ethanol Sigma-Aldrich 459836; CAS: 64-17-5

trimethylolpropane triglycidyl ether Sigma-Aldrich 430269; CAS: 3454-29-3

4,4’-methylenebis-(2-methylcyclohexylamine) Sigma-Aldrich 369500; CAS: 6864-37-5

Agar Sigma-Aldrich A1296; CAS: 9002-18-0

Congo red Sigma-Aldrich C6277; CAS: 573-58-0

Deposited Data

Raw and analyzed data This paper http://dx.doi.org/10.21252/keele-0000012

Experimental Models: Organisms/Strains

SPF C57BL/6 mice Harlan UK Ltd. (Bicester, UK) N/A

AbPPswe/PS1dE9 transgenic mice The Jackson Laboratory (Maine, USA) N/A

Software and Algorithms

aXis2000 software package McMaster University, Canada http://unicorn.mcmaster.ca/aXis2000.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Neil

Telling (n.d.telling@keele.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Animal maintenance and surgical procedures were performed at Trinity College Institute of Neuroscience, Dublin, Ireland. Specific

pathogen-free (SPF) C57BL/6 mice were purchased from Harlan UK Ltd. (Bicester, UK), whilst transgenic animals from an existing

colony of AbPPswe/PS1dE9 transgenicmicewere purchased from The Jackson Laboratory (Maine, USA), and used to form breeding

pairs with the C57BL/6mice (in an SPF animal housing facility in the Bioresources Unit, Trinity College, Dublin). Mice weremaintained

according to the regulations and guidelines provided by the local ethical committee. All animals were housed under a 12-h light-dark

cycle at an ambient temperature of 22◦C-23�C and were maintained under veterinary supervision throughout. Normal laboratory

chow and water were freely available to all animals. Animal experimentation was performed under a license granted by the Minister

for Health and Children (Ireland) under the Cruelty to Animals Act 1876 and the European Community Directive, 86/609/EEC, and

every effort was made to minimize animal stress.

METHOD DETAILS

Preparation of Cortical Tissue Sections
The mouse cortical brain tissue assessed in this study was obtained from two animals: a female mouse aged 8-9 months that was

part of the breeding series from the transgenic AbPPswe/PS1dE9 mice described above and in (Gallagher et al., 2012); and a

14 month old wild-type female mouse. Following anaesthesia, intracardial perfusion was performed for 20 minutes using 0.1M so-

dium cacodylate (Sigma-Aldrich, UK) to prevent metal leaching effects. To avoidmetal contamination the brains were removed using

only ceramic tweezers and forceps, and immediately flash frozen using liquid nitrogen before storing at -80�C.
The cortical tissue from the wild-type female mouse was used to develop the methodologies for x-ray spectromicroscopy analysis

for this study, and to confirm that the sample preparation procedures (including the use of 0.1M sodium cacodylate, and ethanol

dehydration prior to resin embedding) did not lead to unusual iron accumulation or the reduction of ferric iron in the final embedded

tissue sections.

The transgenic and wild-type whole brains were transferred in their frozen state to Keele University, where coarse frozen sections

were cut inside the cold chamber of a cryotome, using a sapphire knife. The frozen brain hemisphere was cut into four coarse sec-

tions approximated by the regions shown on the brain map (Mikula et al., 2007) on the RHS of panel 1 in Figure S7 (see Supplemental
e1 Cell Chemical Biology 24, 1–11.e1–e3, October 19, 2017

mailto:n.d.telling@keele.ac.uk
http://dx.doi.org/10.21252/keele-0000012
http://unicorn.mcmaster.ca/aXis2000.html


Please cite this article in press as: Telling et al., Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of
Alzheimer’s Disease, Cell Chemical Biology (2017), http://dx.doi.org/10.1016/j.chembiol.2017.07.014
Information). These coarse sections were defrosted in 0.1 M sodium cacodylate and then dehydrated using an ethanol series. Impor-

tantly, no chemical fixatives or other reagents were added to the sections. This was to prevent any possible metal leaching or

changes in oxidation state of iron within the tissue, although was inevitably to the detriment of the tissue preservation.

Following dehydration the coarse sections were embedded in an aliphatic epoxy resin consisting solely of equimolar amounts of

trimethylolpropane triglycidyl ether and 4,4’-methylenebis-(2-methylcyclohexylamine) (Li et al., 2009), and cured for 2 days at 60�C.
This resin is suitable for x-ray spectromicroscopy work due to the lack of strong features in its carbon K-absorption edge spectrum

(Li et al., 2009). Serial semi-thin sections of 200-300 nm were cut from the embedded blocks using glass blades, and deposited onto

either copper TEM grids or silicon nitride membranes. These sections were left unstained for subsequent STXM and TEM investiga-

tions. Further thick sections were also cut for parallel histological investigations (see below) but these were not used for the STXM or

TEM experiments.

In addition to tissue sections, embedded sections of iron oxide mineral standards were obtained using identical procedures by

dispersing the oxides in agar to form gels, and subsequently exposing these gels to 0.1 M sodium cacodylate for 10 mins before

dehydrating them using an ethanol series. These samples were then resin embedded and sectioned as described above.

Histological Staining
Following resin embedding of the transgenic mouse brain tissue, thick sections (� 1 mm) were cut and mounted on glass slides and

stained with toluidine blue dye (LHS, Figure S7). Congo red staining of resin-embedded sections from region 1 was also performed

using the protocol by Shirahama (Shirahama and Cohen, 1966). The Congo red stained sections were examined for birefringence

under cross-polarized light using an Olympus IX51 microscope. Numerous areas containing structures of �1 mm size that displayed

‘‘apple-green’’ birefringence characteristic of fibrillar amyloid, were found throughout region 1 (a typical example is shown in Panel 2,

Figure S7 in Supplemental Information). The semi-thin sections (200-300nm) cut from region 1 were left unstained and mounted on

copper grids and silicon nitride membranes for further study.

Synchrotron X-Ray Spectromicroscopy
X-ray spectromicroscopy experiments were performed with circularly polarised light on the 10ID1 beamline at the Canadian Light

Source, using the scanning transmission x-ray microscopy (STXM) endstation. Microscopy images were acquired by tuning the inci-

dent beam to a specific x-ray energy, and raster scanning across the area of interest (the x-ray spot size was �30 nm) with sample

exposure times <2 ms per pixel for each image in order to prevent radiation damage.

To obtainmaps corresponding to particular elements or oxidation states, paired imageswere acquired at the desired x-ray absorp-

tion feature and at a corresponding energy several eV from the feature, and subtracted from each other. This procedure ensures that

only structure containing the spectral feature of interest will appear in the map. For example, an iron map obtained using an image

recorded at the 710 eV peak and an off-peak background image at 705 eV, will show only structure containing iron and all other struc-

ture will be removed from the image.

Spectromicroscopy was performed by recording a series of images at different x-ray energies across the same area with an expo-

sure time of 2 ms per pixel. The image series was converted to optical density (OD) by recording the incident x-ray flux in a nearby

region not containing the sample (for e.g. a hole in the resin). Regions of interest could then be defined within the image series in order

to obtain the corresponding spectra.

XMCDmeasurements were obtained by mounting a silicon nitride membrane containing a tissue section, onto a hollow cylindrical

permanent magnet in order to pass the x-ray beam. A reference sample containing synthetic magnetite nanopowder (Sigma-Aldrich,

UK) embedded in resin using the identical procedure as for the tissue sample, was mounted on an identical magnet alongside the

tissue section. The reference sample was prepared several months after the tissue sections and so no cross sample contamination

was possible. As mounted, the magnetic field at the central position of each sample was �50 mT, which was sufficient to partially

magnetise the magnetite nanoparticles. XMCD was obtained by recording an image series across the iron L3 absorption edge

with both left and right circularly polarised x-rays, using an exposure time of 4 ms per pixel.

The two magnets were mounted in an opposing field configuration such that any XMCD signal in the tissue sample should be in-

verted with respect to the magnetite reference sample, providing additional validation of any apparent XMCD (i.e. magnetic) signal in

the tissue. During data analysis the raw data from the magnetite reference sample were subsequently inverted to facilitate compar-

ison with spectra obtained from the tissue sample.

STXM data and image processing were performed using the aXis2000 software package (http://unicorn.mcmaster.ca/aXis2000.

html). For iron L2,3 x-ray absorption spectra and XMCD, a 3-point smoothing filter was applied to the raw data. The brightness and

contrast levels of raw images were adjusted, and composite maps were obtained by converting grey scale images to false colour and

then recombining the images as overlays using the ImageJ software package.

Transmission Electron Microscopy
TEM was performed on unstained semi-thin sections using a JEOL 1230 instrument operating at 100 kV. Unless specified other-

wise, TEM measurements were conducted on sections after the completion of STXM measurements on the same sections, in or-

der to avoid electron beam damage. However due to the fragility of the sections it was not possible to subject all of them to both

STXM and TEM analysis. In the one case where a section previously examined by TEM was subsequently measured by STXM, it

was found that the carbon spectrum was substantially altered by electron beam damage and protein maps could no longer be
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obtained. However iron mapping, which uses much stronger spectral features and is thus less sensitive to electron beam damage,

was still possible on this section.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fits to x-ray absorption data were obtained using a non-linear least squares fitting procedure. Image cross correlation analysis was

performed using the ImageJ plugin called ImageCorrelationJ.

DATA AND SOFTWARE AVAILABILITY

Raw and analysed data: http://dx.doi.org/10.21252/keele-0000012
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