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Abstract 

Pancreatic cancer is the fourth main cancer in the western world. Currently the 

only chemotherapy available clinically is gemcitabine. However, gemcitabine 

treatment only proves effective in 23.8% of patients. Nano-structures (<120 nm) 

are capable of entering the highly permeable blood capillaries which supply the 

rapidly growing tumours. Once inside the capillaries they accumulate and are 

retained in the tumour as a result of the poor lymphatic drainage. This allows for a 

deeper tissue penetration which is otherwise difficult to achieve. Hybrid 

nanoparticles with an iron oxide core covered by gold shell (HNPs) have shown 

great potential for anti-cancer therapies. The magnetic iron oxide cores and the 

surface plasmon resonance (SPR) properties of the gold surface provide the 

HNPs with the capabilities of diagnostic imaging and drug delivery, making them 

true theranostic agents. 

A novel prodrug of gemcitabine has been developed by a regioselective coupling 

of gemcitabine and lipoic acid, itself a potent antioxidant. Gemcitabine-N-lipoate 

(GL) was obtained in a one-pot synthesis and the optimum conditions for the 

reaction were established. GL prodrug loading on to the HNPs surface was 

confirmed and the release profile of gemcitabine from the GL-HNPs formulation 

was studied at pH 3.6, 5.6 and 7.4 utilising different temperature conditions (20, 

37, 44 °C) using RPMI serum free media under sink conditions. 

The data showed the stability of the formulation at pH 7.4, 20 °C while the 

optimum release conditions for gemcitabine from the GL-HNPs formulation were at 

pH 5.6, 44 °C with the highest release of 41.1% recorded after 24 hrs. 
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Preliminary in vitro MTT assay together with the drug uptake study show the 

superior inhibitory effect of the GL-HNPs formulation on the cell viability over 

gemcitabine after 24 hrs which indicates faster uptake of the formulation, however 

the overall effect of gemcitabine is greater after 48 hrs which is mainly due to the 

slow release of gemcitabine from the formulation. 

The behaviour of the GL-HNPs formulation as a drug delivery system shows a 

great potential for the system to act as a theranostic tool and to overcome the 

significant drawbacks associated with gemcitabine.  
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m multiplet 

MeOH methanol 

Min minute 

mL millilitres 

Mmol millimoles 
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Mp melting point 

MS mass spectrum 

Mts Mesitylenesulfonyl chloride 

Mts spermine N1,N5,N10,N14-Tetramesitylatedspermine 

Mts TET N1,N4,N7,N10-Tetramesitylatedtriethyltetramine 

MTT  
3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium 
bromide 

NADH  Nicotinamide adenine dinucleotide phosphate 

NHS N-Hydroxysuccinimide 

NMR nuclear magnetic resonance 

PBS  Phosphate Buffered Saline 

PEHA pentaethylenehexamine 

q quartet 

RPMI-1640  Roswell Park Memorial Institute 1640 medium 

RT room temperature 

s singlet 

Spd  Spermidine 

Spm  Spermine 

t triplet 

TEA Triethylamine 

TEM  Transmission electron microscope 

TET triethyltetramine 

THF tetrahydrofuran 

TLC thin layer chromatography 

TMSCl trimethylsilyl chloride 

Ts-Cl  Toluenesulfonylchloride 

UV Ultraviolet 
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 Cancer 1.1

‘’Cancer is the name given to a collection of related diseases. In all types of 

cancer, some of the body’s cells begin to divide without stopping and spread into 

surrounding tissues’’ (National cancer institute 2016). 

There are more than 200 types of human cancers causing a significant mortality 

rate for over a third of all population all over the world. Of these lung, breast, 

prostate and bowel cancer stand for about half of all cases. In 2012 more than 14 

million new cases of cancer were diagnosed throughout the world, and over 300 

thousand people were diagnosed with the disease in the United Kingdom alone in 

2011 (Siegel et al. 2013; Cancer Research 2016). 

Cancer is a leading cause of death in developed countries and accounting for 

about 25% of all deaths. Cancer was considered in the past as an incurable 

disease, nowadays patients could survive their disease if it is diagnosed in the 

early stage of development and before metastasis (Park et al, 2008). 

Risk factors linked to cancer are either non-preventable like aging (patients over 

75 account for more than 30% of all patients developing cancer (Yancik 2005)) 

and hereditary factors which are linked to certain types of cancers, and 

preventable risk factors which include environmental factors (like ultraviolet 

radiation, chemical toxins, and cigarette smoking) and dietary habits (like high fat 

diet and alcohol). All these factors together account for about 40% of cases in the 

United Kingdom (Surh 2003; Yancik 2005; Moiseeva & Manson 2009; Cancer 

Research 2016). 
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 Pancreatic cancer 1.1.1

 Pancreas 1.1.1.1

The pancreas is an endocrine-exocrine gland sited in between the liver, stomach 

and the small intestine (Figure 1). According to the shape of the pancreas, the 

organ was described to have head, body and tail. The endocrine part of the 

pancreas is responsible for secretion of glucose regulatory hormones (insulin and 

glucagon) and it is made up with islets of Langerhans, while the exocrine part 

which is made up with ducts and acini is responsible for secretion of digestive 

enzyme ( Nabeel Bardeesy & DePinho 2002; Dintzis & Liggitt 2012). 

 

Figure 1: The pancreas location inside the body (Cancer Research UK 2016) 
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 Types of pancreatic cancer 1.1.1.2

Pancreatic cancers are classified according to the origin of the tumour into 

exocrine pancreatic tumour which accounts for about 95% of all pancreatic 

cancers where the tumour affects the exocrine part of the pancreas and the 

endocrine pancreatic tumour which is involved in the endocrine part of the organ. 

In addition a range of rare pancreatic malignancies are observed, like; 

adenosquamous carcinoma and mucinous non-cystic carcinoma (Ryan et al. 

2014). 

 Pancreatic ductal adenocarcinoma (PDAC) 1.1.1.3

PDAC is the major solid exocrine pancreatic tumour originating from the epithelial 

lining of the pancreatic ducts. It could be found anywhere in the pancreas but the 

majority of the PDAC’s are found in the head part of the organ (about 75% of 

pancreatic cancers develop at the head of the pancreas) (Alexakis et al. 2004; 

Hidalgo 2010; Cancer Research 2016; Kamisawa et al. 2016). Furthermore 

spreading of cancerous cells into adjacent or remote tissues, via lymphatics like 

the spleen and peritoneal cavity are frequently witnessed. Metastatic growth is 

also commonly seen in both the liver and lungs (Hezel et al. 2006). 

 

 Epidemiology of pancreatic cancer 1.1.1.4

According to Cancer Research UK pancreatic cancer was in the eleventh position 

for the most common cancers in UK in 2014 (12th most common cancer for male 

and 9th for female). It also accounts for 3% of all new cases of cancer. People 

aged over 75 in the UK are more susceptible to the disease (47% of new cases of 



5 
 

pancreatic cancer are diagnosed in the elderly) and PDAC accounts for over 90% 

of all cases. The fifth cause of cancer related death within the UK is due to 

pancreatic cancer. In 2014, 9600 patients were diagnosed with pancreatic cancer, 

and 8,800 deaths were documented as a result of this aggressive disease (Cancer 

Research 2016). The deep location of the pancreas prevent early notice of size 

increment of the organ mounting the disease (pancreatic cancers), so early 

diagnosis is usually not applicable until the late stage where clinical symptoms 

start to appear, once diagnosed most patients will have a maximal survival of 12 

months, with a less than 5% chance of surviving up to 5 years (Jemal et al. 2010). 

Long term survival can only be expected for an individual fortunate enough to have 

a primary localised tumour treatable via curative resection at the time of diagnosis 

(Hezel et al. 2006; Li et al. 2007; Singh et al. 2015). 

 Treatment of pancreatic cancer 1.1.1.5

Pancreaticoduodenectomy (surgical removal of the pancreas and duodenum) is 

the only possible curative treatment available for pancreatic tumour; even so 

unaided surgery will not succeed (N Bardeesy & DePinho 2002). Unfortunately 

surgery is only beneficial for patients in the early stages of the disease and it only 

prove to be effective in a rate ranging from 3-4% up to 27% as the 5 years survival 

rate report said (Ferrone et al. 2012; Shrikhande et al. 2007). 

Most of the failures of the surgery treatment of pancreatic cancer are due to 

recurrent relapse of the disease after operation which is normally refers to failure 

of detection and elimination of metastatic cancer within the pancreas at time of 
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diagnosis so adjuvant chemotherapy in addition to surgery is usually required to 

increase the survival rate (Ferrone et al. 2012). 

Adjuvants chemotherapies for pancreatic cancer are usually gemcitabine or 

Fluorouracil. Gemcitabine is the first line chemotherapeutic agent commonly used 

in the treatment of pancreatic cancer although it is only effective in 23.8% of 

patients (Sa Cunha et al. 2005). Many reports state that there is no extra benefit 

from using gemcitabine over Fluorouracil in pancreatic cancer therapy 

(Neoptolemos et al. 2010; O’Reilly 2011; Neoptolemos JP et al. 2012; Tuveson & 

Neoptolemos 2012). 

The management choices for patients unable to have their tumour removed by 

surgical resection is either chemoradiation (chemotherapy+radiotherapy) or 

chemotherapy with gemcitabine as the ordinary choice, currently no alternative 

choice other than palliative treatment is available (Vincent et al. 2011). 

New approaches (nanoparticle formulation) which adapt a pre-existing antitumor 

drug to be active against pancreatic cancer were recently developed and approved 

for clinical use in pancreatic cancer therapy. Abraxane® or nab-paclitaxil is a 

nanoparticle formulation of paclitaxel (anticancer), where the drug is bound to 

albumin nanoparticle to reduce the clinical side effect associated with the solvent 

used for the drug delivery. Studies conducted using co-administration of nab-

paclitaxil with gemcitabine compared with gemcitabine alone for metastatic 

pancreatic cancer therapy, seems to increase total survival rate (Von Hoff et al. 

2011; Von Hoff et al. 2013). 
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 Cancer chemotherapy 1.2

Treatment of cancer typically involves a combination of surgery, chemotherapy 

and radiotherapy. Surgical treatment of cancer relies upon the use of invasive 

techniques and usually requires concurrent intravenous delivery of a 

chemotherapeutic agent. Chemotherapy can be used alone to reduce the size of 

any tumours or cancerous tissues, including tissue which may remain following 

other interventions. Radiotherapy is also used but it is usually employed in 

combination with administration of a chemotherapeutic agent. 

The primary goal of any chemotherapy is to eradicate the cancerous cells 

preferentially and selectively in the presence of normal cells; this relies upon the 

fact that cancerous cells may grow and multiply faster than non-cancerous cells in 

normal tissue. New discoveries in the field of chemotherapy and optimisation of 

existing chemotherapeutic treatments over the past few decades have led to 

significant increases in patient survival and improvements in the quality of life, but 

efforts are still required to develop. 

A chemotherapy or antineoplastic agent refers to a chemical compound which has 

the ability to prevent new growth of cells, and because they are designed to kill 

cells they do so regardless of being healthy or diseased. In general all cytotoxic 

mechanisms of killing cells involves a block to cell synthesis pathway or affect 

DNA, RNA and protein function (Avendano & Menendez 2008). 

An ideal cytotoxic drug should be both tissue specific (i.e. affect only the diseased 

organ) and cell specific (i.e. affect only the diseased cells within the diseased 

organ), but unfortunately this is not yet applicable. Major adverse reactions 
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resulting from chemotherapy are cytotoxic effect on the short lived normal cells 

(e.g. gastrointestinal cells, hair follicle and bone marrow cells) leading to serious 

complications like nausea, vomiting, hair loss and susceptibility to infections. 

However there are other late irreversible major side effect associated with many 

cytotoxic agents affecting vital organs (heart, kidneys and lung) (Avendano & 

Menendez 2008). 

 Dosing of chemotherapy 1.2.1

Chemotherapeutic agents are frequently given in sequences to reduce the severity 

of side effects; the frequency of drug administration is usually several days to 

weeks. The dose for each cytotoxic agent that has to be given in each round is 

calculated according to the fact that each round of antineoplastic agent can kill a 

certain percent of tumour cells and this percent increases proportionally with the 

dose. If the agent(s) are capable to shrink the tumour to less than 10,000 cells, 

normal defence system will be able to eradicate them, therefore the dose should 

balance between the patient health conditions (their ability to tolerate the results 

side effect) and the active required dose (which depends on the size of tumour 

and the extent of tissue invasion) (Avendano & Menendez 2008). 
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 DNA alkylators class of anticancer 1.2.2

DNA alkylators or DNA cross-linking agents are one of the prominent classes of 

cancer therapeutic agents; it includes the compounds that target the active DNA 

molecule by interfering with DNA replication and transcription process (Anderson 

et al. 2009). All DNA alkylators are characterised being very reactive electrophile 

(bearing a positive charge), and typically have planar or heteroaromatic 

chromophores, that stack between base pairs of the DNA double helix (Martínez & 

Chacón-García 2005). 

The mechanism of alkylation of DNA molecule is the complexation reaction that 

happens between the nucleophilic groups of DNA (mainly but not solely the 

guanine base) with the electrophilic drug causing irreversible alkylation of the 

molecule, some alkylating agents has the ability to bind two distinct DNA bases or 

bind two DNA bases from two different DNA molecule (Kamal et al. 2007). 

Topoisomerase II enzyme (crucial enzyme in DNA shaping process) is also a 

target of some DNA cross-linkers, inhibition of Topoisomerase II lead to raise 

numbers of DNA strand breaks which may activate apoptosis (Fortune & Osheroff 

2000; BrañaBraña et al. 2001). 

Bisnaphthalimides (a new class of anticancer agents) also act by intercalating 

DNA molecule irreversibly by the aromatic rings implanting between the pairs of 

the DNA double helix, which alters DNA shape, leadings to cell death for a panel 

of human cancer cell lines (Braña et al. 1980; Braña & Ramos 2001; BrañaBraña 

et al. 2001; BrañaBrañaLin et al. 2003). 
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 Naphthalimide and Bisnaphthalimide based anticancer agents 1.2.2.1

Napthalimides (Figure 2) were created in the 1970s to have the structural 

components of several cytotoxic agents into a single molecule.  

 

Figure 2: General structure of naphthalimides 

The compounds were made by simple condensation of 3-nitro-1,8-naphthalic 

anhydride with the amine side chain. Afterwards, more derivative of 

naphthalimides were synthesised by changing ring substituents, and side chain ( 

Braña & Ramos 2001; Braña et al. 2001). 

Mitonafide and amonafide (Figure 3) were selected from a library of 

naphthalimides and thoroughly studied (go through Phase I and Phase II) because 

of their potent cytotoxic action against a group of cell lines. Both compounds exert 

their action by binding to DNA by intercalation and inhibit Topoisomerase enzyme 

II action while, other naphthalimides are unable to inhibit Topoisomerase enzyme 

II (Allen & Lundberg 2011; Braña & Ramos 2001). 

 

Figure 3: Chemical structure of Mitonafide 1 and Amonafide 2 
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Derivatives of naphthalimides similar to amonafide have been made to increase 

the cytotoxic effects of the naphthalimides family. One approach was to design 

and synthesis new symmetrical derivatives of naphthalimide (Bisnaphthalimides). 

Bisnaphthalimides, in comparison with naphthalimides have greater cytotoxic 

effect due to their stronger binding ability to DNA (Braña & Ramos 2001). 

Biological activity of bisnaphthalimide compounds are changed dramatically by 

changing both the chromophore substituents (in the order NO2 > H > NH2 > 

CH3CONH) and the linker chain character (length and nature) (Braña & Ramos 

2001). 

Elinafide (Figure 4), a bisnaphthalimide derivative selected for phase I and phase 

II study, has no substituents in the chromophore and has seven methylene groups 

in the linker chain. Elinafide has the highest cytotoxic effect among the other 

bisnaphthalimide derivatives but unfortunately its anti-cancer effects were 

restricted by its side effects (Bousquet et al. 1995; Bailly et al. 1996; Braña & 

Ramos 2001). 

 

 

 

Figure 4: Chemical structure of Elinafide 3 

Asymmetric bisnaphthalimide derivatives were synthesised in an attempt to solve 

poor solubility problems of previously known bisnaphthalimide based compounds, 
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yet cytotoxicity of these compounds decreased without great improvement of 

aqueous solubility of the parent compound (Braña & Ramos 2001). 

DNA intercalation (bifunctional intercalation via the major groove of double helix) 

and inhibition of Topoisomerase II enzyme are the way bisnaphthalimides exert 

their action. However, bisnaphthalimides structure requirements are (a) a nitro 

group in the naphthalimide rings, (b) two nitrogen atoms or (c) at minimum 3 

methylene groups in the linker chain (Bailly et al. 1996). 

Introduction of polyamines into the linker chain of bisnaphthalimides in order to 

increase their aqueous solubility and activity were found to be of great advantages 

as has been shown by Lin and colleagues (Lin & Pavlov 2000; Pavlov et al. 2001). 

 

 Polyamines 1.2.2.1.1

Polyamines in general are organic compounds having at least two primary amines 

in its structure. Naturally occurring polyamines (putrescine 4 (C4H12N2), spermidine 

5 (C7H19N3) and spermine 6 (C10H26N4) (Figure 5)) are known to be involved in 

living cell growth cycle. Polyamines levels inside the cell are linked to cell growth 

rate (low polyamine levels are associated with a decrease in cell growth) (Pegg 

2009). 
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Figure 5: naturally occurring polyamines (putrescine 4, spermidine 5 and spermine 

6) 

 

Furthermore, cancer development is also thought to be controlled by polyamines, 

as high polyamines level were observed in cancer cells of breast and colon 

compared to normal cell, however high polyamines level were found in patients 

with psoriasis, cystic fibrosis, or even during pregnancy (Casero & Marton 2007). 

Protein synthesis have been shown to be stimulated by polyamines through 

stimulation of DNA and RNA synthesis (Childs et al. 2003), additionally 

scavenging of reactive-oxygen species by polyamines leads to protection of DNA, 

proteins and lipids (Nayvelt et al. 2010). 
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 Polyamines derivatives as anticancer agents 1.2.2.1.2

Research over the last twenty years considers the inhibition of the anabolic 

pathways of polyamines. Inhibitors for anabolic enzymes in the biosynthetic 

pathway of polyamines were identified, but none of them go forward because of 

their low efficacy as anti-cancer agents (Casero & Woster 2001). 

Taking the benefit of polyamine transporters as a tool for improving the uptake of 

potential anticancer agents by including the polyamines in their structures, was a 

big field of research aiming to produce analogues with better cytotoxic activity in 

addition to or apart from inhibition of polyamines biosynthesis (Casero & Woster 

2001; Muth et al. 2014). 
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 Antimetabolite as anticancer agents 1.2.3

Antimetabolites are compounds with great structural similarity to naturally 

occurring compounds, with an ability to inhibit the natural metabolic pathway by 

interfering with their formation and utilisation (Avendano & Menendez 2015). 

Fluorouracil (5-Fu) and gemcitabine are cytotoxic drugs used to treat pancreatic 

cancer by inhibition of tumour growth by interacting with the processes involved in 

the synthesis of new proteins vital for cell proliferation. They also inhibit cell growth 

by also inhibiting DNA replication or causing enough stress to the cells leading to 

apoptosis (Batmani & Khaloozadeh 2013). 

 

 Gemcitabine 1.2.3.1

Gemcitabine 7 is a deoxycytidine 8 analogue (deoxycytidine is a naturally 

occurring nucleoside) (Figure 6). 

 

Figure 6: Chemical structures of deoxycytidine and gemcitabine 
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The chemical name of gemcitabine is 2́, 2́ diflourodeoxycytidine as the only 

difference between gemcitabine and deoxycytidine is the two fluorine atoms in the 

2́ position on the carbohydrate ring. Gemcitabine was introduced in 1986 for the 

first time as an antiviral agent, ten years later (in 1996) the drug was approved by 

the (FDA) for pancreatic cancer therapy (metastatic adenocarcinoma of pancreas). 

The drug also has established effects against solid human tumours (lung, breast, 

and ovarian cancer) (Heinemann 2001). Gemcitabine is commonly used in 

combination with other anticancer agents (acting by DNA demolition) like paclitaxil, 

and cisplatin (Li et al. 2010; Weigt & Malfertheiner 2010). 

 

 Mechanism of action of gemcitabine 1.2.3.1.1

Gemcitabine is hydrophilic in nature so it can’t enter the cell by passive diffusion; 

the nucleotide transporter proteins across the cell membrane are the means by 

which gemcitabine drug enters the cell (Mackey et al. 1998). 

Once gemcitabine is inside the cell it undergoes enzymatic phosphorylation 

(deoxycytidine kinase) into gemcitabine monophosphate 9 which is then 

transformed into gemcitabine diphosphate 10 and finally gemcitabine triphosphate 

11, which is the active form of gemcitabine. The rate limiting step in this activation 

is the first step (conversion of gemcitabine into gemcitabine monophosphate). 

Gemcitabine triphosphate is then integrated with other nucleotides within the 

developing DNA strand followed by another nucleotide to mask gemcitabine and 

prevent the DNA repair action (Plunkett et al. 1995). Incorporation of false 

metabolite resulted in blockade of DNA synthesis and consequent cell deaths. 
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Incorporation of gemcitabine into RNA is also established but the RNA synthesis 

inhibition effect as a mechanism for gemcitabine action is still in debate (van 

Haperen et al. 1993). 

Gemcitabine diphosphate and triphosphate have an ability to inhibit several 

enzymes including ribonucleotide reductase leading to the block of the de novo 

DNA synthesis as well as enhancement of their effects by feedback inhibition of 

metabolising enzyme (Wang et al. 2009) Figure 7 illustrates the mechanism of 

action of gemcitabine in brief. 

 

 

Figure 7: mechanism of action of gemcitabine 



18 
 

 Metabolism of gemcitabine 1.2.3.1.2

As shown above in the mechanism of action of gemcitabine, gemcitabine is a 

prodrug that requires activation first by phosphorylation prior to exhibit its it is 

anticancer effect. 

Deactivation of gemcitabine prior to being phosphorylated may occur by the action 

of cytidine deaminase enzyme while gemcitabine monophosphate 9 is 

deamination by deoxycytidylate deaminase enzyme (Bergman et al. 2002a). 

The product of deactivation of gemcitabine by deamination is the 2́,2 ́

diflourodeoxyuridine 12. This metabolite also displays cytotoxicity and it plays a 

role in ruling the passage and build-up of gemcitabine inside the cell (Veltkamp et 

al. 2008; Rudin et al. 2011a). 

Deamination of gemcitabine monophosphate results in 2,́ 2́ diflourouridine 

monophosphate 13 which has an inhibitory effect an thymidylate synthase enzyme 

affecting the deoxynucleotide triphosphate levels inside the cell (Bergman et al. 

1999). De-phosphorylation of gemcitabine monophosphate is another form of 

deactivation of gemcitabine by the action of 5́́́-nucleotidases enzyme which 

transforms nucleotides to nucleosides (Enrico Mini et al. 2006) 

(Figure 8) illustrates gemcitabine metabolism in brief. 
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Figure 8: metabolism of gemcitabine 
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  Resistance to gemcitabine 1.2.3.1.3

Cancer resistance to chemotherapy is a common practice in clinical cancer 

treatment, this chemo resistance may be intrinsic or acquired during treatment 

cycle (Kleger et al. 2014). Drug resistance can develop because of several 

reasons. like, changes in the drug target caused by mutations (Ling et al. 2005), 

over expression of proteins responsible for producing efflux pumps like p-

glycoprotein or an immune response to the drug/drug transporter, or even. 

Because cancer drugs are cytotoxic, macrophages may become increasingly 

sensitive to their presence and increase the rate of drug metabolism (Markman et 

al. 2013). The liver is responsible for much of the detoxification within the body 

and may improve the rate of drug metabolism after repeated doses (Tsume et al. 

2014).  

One of the significant intrinsic factors associated with pancreatic cancer resistance 

to chemotherapy, including gemcitabine, is the tumour environment itself because 

pancreatic cancer is categorised as a solid tumour, which is very difficult to 

penetrate by drugs (as well as the immune system) due to its dense stroma and 

poor vascularisation (90% of pancreatic tumour volume might be due to 

desmoplastic reaction) (Neesse et al. 2011). In addition, just like other 

chemotherapeutic agents, gemcitabine could suffer from chemo resistance; a 

number of mechanisms are involved in developing resistance to gemcitabine of 

which the metabolic pathways are the most noticeable (Walker & Ko 2014). As 

gemcitabine needs to be inside the cell to be activated and cause the consequent 

cell death, gemcitabine transporter proteins in the cell membrane are one of the 
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targeted causes of chemo-resistance; genetic factors play an important role in 

defining intrinsic resistance to nucleotide analogues (Zhang et al. 2008). 
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 Targeted cancer chemotherapy 1.3

Traditional chemotherapeutic lines alone or in combination with other therapeutic 

measures (surgery and radiotherapy) form the major therapeutic approach to 

cancer treatments (whether being localised or metastasised) (Rang et al. 2011), 

yet the high toxicity of the chemotherapeutic agents on the normal healthy tissues, 

together with low water solubility and the increasing probability of cancer cells 

developing multi drug resistance greatly limits their benefits as anticancer 

(Stavrovskaya 2000; Kwon 2003; Moorthi et al. 2011). 

Chemotherapeutic agents are not suitable for long term treatment of cancers due 

to their poor selectivity, the consequence of which is that the drug will affect all 

types of highly proliferative normal cells within the body, such as bone marrow 

cells, gut epithelia, hair follicles and red blood cells not just the rapidly-growing 

neoplastic tissue. Furthermore, drugs used in cancer chemotherapy have little 

effect on solid tumours since these tumours develop slowly and most do not have 

a high rate of proliferation. 

As a result, high-doses of chemotherapeutic drugs are required to inhibit the 

proliferation of tumour cells effectively, especially when treating resistant solid 

tumours. However, this high dose could also be the main reason behind 

discontinuation of chemotherapy due to the high degree of toxicity observed in 

adjacent tissues before the complete eradication of the cancerous cells is 

achieved (Mahato et al. 2011; Q. Sun et al. 2013a). 
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Failure of chemotherapeutics to exert their cytotoxic effects could be the reason of 

multi drug resistance; the systemic route of administration is the main route of drug 

delivery in cancer therapy and variation in metabolism, distribution and uptake by 

targeted tissues could play an essential role in determining the outcome of cancer 

treatments (Szakács et al. 2006). Research focussing on the mechanisms of 

multidrug resistance in cancer chemotherapy indicates three mechanisms of 

cellular drug resistance that have major contributions to the final therapeutic effect. 

These mechanisms are first, decreased uptake of membrane transporters 

dependent anticancer (such as nucleoside analogues), these compounds are 

usually highly water soluble in nature. Second, cell adaptation to counter act the 

effect of the cytotoxic drugs (including DNA damage repair and alteration of cell 

cycle and drug metabolism) and third, increased rates of energy dependent export 

of passively diffusing hydrophobic drugs through the plasma membrane (Szakács 

et al. 2006). 

Several rapidly progressing approaches have been developed aimed for solving 

the problems associated with conventional drug delivery systems. Of these 

prodrug strategies and nanoparticulate drug delivery systems draw the vast 

attention (Luo et al. 2014). 
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Prodrugs (prodrugs are defined as bio-reversible, chemically modified derivatives 

of drug molecules that undergoes biotransformation in vivo, either chemically or 

enzymatically, to release the active compound (Rautio et al. 2008; Mahato et al. 

2011)) have been widely used to increase the anticancer efficacy by altering 

physicochemical properties of the drug that hinder the active delivery to the site of 

action (such as the water solubility, lipid solubility and poor drug stability) (Bildstein 

et al. 2011; Luo et al. 2014) 

Nanocarriers have shown potential advantages as anticancer drug delivery 

vehicles by improving the drug bioavailability, and provide a passive way of tumour 

targeting and increased tumour accumulation via the unique (enhanced 

permeability and retention effect (EPR)) characteristics of the nanoparticulate 

systems. In addition there is great potential for nanoparticle systems to be 

fabricated as targeted and controlled drug release systems (Minko et al. 2013; Luo 

et al. 2014). 

Stages of drug distribution experienced by the drug loaded nanoparticles after IV 

administration (Figure 9) should be considered at the time of developing a new 

nanoparticulate system. These stages are presenting the formulation into the 

systemic circulation, filtration of the nanoparticles throughout the blood vessel wall, 

deep tumour penetration, nanoparticulate system uptake by cancerous cell and 

disposition of drug within the cancer cell (Sun et al. 2013b; Luo et al. 2014). 
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Figure 9: schematic presentation of nanoparticles distribution after intravenous 

administration: (i) circulation in blood; (ii) filtration via capillary wall; (iii) deep 

tumour penetration; (iv) uptake by tumour cells; and (v) release of nanosystems 

Nano-DDS: nanoparticulate drug delivery systems; P-gp: P-glycoprotein.(Luo et al. 

2014) 
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 Prodrug strategy of targeted drug delivery 1.3.1

Prodrug techniques have become an established tool for improving the 

physicochemical properties of a drug as well as the pharmacokinetic properties 

and they provide potential strategies for improving the selectivity of 

chemotherapeutic agents in comparison with other techniques for enhancing drug 

targeting (Rautio et al. 2008). 

The strategy behind using prodrug techniques is usually to alter the 

physicochemical properties of the active drug through some structural 

modification, this usually results in (for example) enhanced solubility in aqueous 

media, improved chemical stability, masking of any bitter taste associated with the 

parent drug molecule, avoidance of inactivation of the drug by systemic circulation 

through the liver, and reduction in irritation and allergies, reduced toxicity and pain 

associated with the parent compound (Singh et al. 2008; Müller 2009). 

More importantly, a prodrug approach could be used to improve the targeting and 

selectivity of chemotherapeutic agents in which ligands or polymers which 

recognise and bind to specific cell types are attached to the active drug by means 

of a cleavable linker. This approach is usually dependent on the over expression 

of a specific antigen and/or enzyme in tumour cells and cancerous tissue 

compared to the normal cells (Han & Amidon 2000; Mahato et al. 2011). 

Prodrug formation requires the parent drug to have a functional group ready to be 

joined to a linker via chemical bond formation; the linker should be either self-

cleavable or responsive to a certain trigger condition (like enzyme cleavage or pH) 

to allow the release of the parent drug. Additionally the linker should provide the 
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essential properties to overcome the problems faced by the drug on its way to the 

target cell. Ester and amide bonds (Figure 10) are among the most common 

bonds utilised in the design and synthesis of prodrugs, both bonds being 

characterised by being easy to synthesise and their functional groups are widely 

available in both linker molecules and parent drugs, in addition to the ability of the 

bonds to be cleaved by enzymes (Rautio et al. 2008; Mahato et al. 2011). 

Amide bonds are more stable than ester bonds towards enzymatic breakdown and 

most amide bonds are stable in plasma (from several hours to several days) in the 

absence of specific metabolising enzyme (Mahato et al. 2011). 

 

Figure 10: Esters and amide linkers used in prodrug design  
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Targeted prodrugs may be taken up by cells and then activated in the intracellular 

medium. For example, passive diffusion and endocytosis are common modes by 

which targeted therapies enter the cell prior to activation (Bildstein et al, 2011). 

Figure 11 shows the most common prodrug design for a chemotherapeutic agent 

containing as many as four distinct parts: (1) the active drug or its derivative; (2) a 

chemical linker to link the active compound to the rest of the prodrug; (3) a spacer 

or polymer susceptible to cleavage by a specific enzyme; (4) a targeting moiety 

with the ability to guide the molecule precisely to the site of action. (Mahato et al, 

2011). 

 

Figure 11: General design of a prodrug (reproduced from Mahato, et al 2011). 
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 Prodrugs of Gemcitabine 1.3.1.1

Changes to gemcitabine structure by addition of a cleavable moiety to form a 

prodrug are a very well-known approach to overcome gemcitabine disadvantages. 

Prodrugs of gemcitabine are generated either to overcome the deactivation 

process by cytidine deaminase enzyme, change the mechanisms by which 

gemcitabine enter the cell and to prolong the release of gemcitabine by increasing 

time of storage inside the cytosol (this outcome is achieved by blocking the N 4 

position of gemcitabine or changes to 5 ́ position in the carbohydrate fraction of 

gemcitabine). Or provide the gemcitabine monophosphate (the rate limiting step in 

gemcitabine activation) by phosphoramidate functioning of the 5́ position. 

Many prodrugs of gemcitabine have been synthesised (by addition of PEG 14, 15 

valproate, squalene, linear acyl derivatives 16 and phosphoamidate 17) (Figure 

12) and studies show their ability to protect against the action of cytidine 

deaminase enzyme, and also show the enhancement of the bioavailability of 

gemcitabine as well as modification to the route of drug entry suggesting 

motivating approach to treat difficult cancers (Moysan et al. 2013). 
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Figure 12 : e.g of gemcitabine prodrug derivatives (14: PEG-gemcitabine.; 15: 

Folate-PEG-gemcitabine.; 16: 4-(N)-acyl-gemcitabine.; 17: -gemcitabine 

phosphoramidatediester (Moysan et al. 2013). 
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 Targeted nanoparticles for drug delivery to cancer cells 1.3.2

Nano sized particles or more easily nanoparticles (NPs) are 1-100 nm size 

particles defined as a very small object acting as one system in term of properties 

and transport. NPs have been used in humans since 1983 when the US FDA 

approved the first micellar drug (Sandimmune®), and later on in 1990, the first 

polymer-drug conjugate (Adagen®) (Knop et al. 2010; Dreaden et al. 2012). After 

that much research has been done on a range of biomedical nanotechnologies 

(including inorganic nanoparticles and polymer drug conjugation) providing a 

potential tool for disease monitoring, diagnosis and treatment (Harris & Chess 

2003; Thakor et al. 2011; Dreaden et al. 2012). 

Targeted NPs can be classified in general into two main categories, passive and 

active targeting. Active targeting of cancerous cells by nanoparticles is achieved 

by targeting specific cellular components of tumour tissues such as over- 

expressed cellular receptors and other membrane bound proteins that enable 

active transport of the nanoparticulate system into the cell, and hence reducing the 

unwanted exposure of healthy tissues to the cytotoxic drugs. Interactions between 

the ligands and the cellular receptors may also facilitate the process of NPs 

endocytosis, including antibodies, peptides, and folic acid (Patra et al. 2008; Yu et 

al. 2010; Bazak, et al. 2014a). 

Passive targeting of tumour tissues by nanoparticles is the result of the well 

described phenomena of enhanced permeability and retention effect (EPR) which 

is built on the specific structure of tumour vasculature and the size range of the 

nanoparticles (Bazak, et al. 2014b). 
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Among all the physicochemical properties of nanoparticles (including shape, size 

and surface charge) the size of the nanoparticles makes a significant contribution 

to the ability of the particles to penetrate tumour tissues and being taken up and 

cleared by cells. Size is also the main regulator of nanoparticle biodistribution 

inside the body and hence on the overall therapeutic effects (Tang et al. 2014). 

Nanoparticle sizes range between 100-200 nm for most approved anticancer 

nanomedicines (Uster et al. 1998; Gradishar et al. 2005). Smaller sized anticancer 

nanomedicines have shown higher therapeutic effects in vivo, especially 

nanoparticles with 50 nm size (Cabral et al. 2011; Tang et al. 2014) 

Very small nanoparticle (< 2 nm) and relatively small nanoparticles (<10 nm) have 

been shown to travel freely into tumour tissues and to be cleared rapidly into the 

blood stream without effective accumulation inside the tumour (Matsumura & 

Maeda 1986; Dreher et al. 2006). 

The optimal size range of nanoparticles intended to be used for cancer treatments 

should also consider both the renal clearance (renal clearance threshold (<10–15 

nm) (Choi et al. 2011; Shilo et al. 2012)) and interstitial/lymphatic clearance (<20 

nm) (Moghimi et al. 2005). 

A study by Tang et al. 2014 demonstrated that 50 nm size nanoparticles show the 

highest tumour retention time by comparing the use of 50 nm silica nanoparticles 

as a drug carrier for breast cancer treatments to a 20 nm and 200 nm size silica 

nanoparticles. The tumour retention time used was taken in the study as a 

parameter to reflect the deep tumour penetration, nanoparticle uptake by cancer 
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cells, the rate of nanoparticle clearance from tumour tissues, and consequently the 

anticancer efficacy (Tang et al. 2014). 

Passive tumour targeting by Nano-particulate systems are basically thought to be 

due to the enhanced permeability and retention effect (EPR). Nanoparticle drug 

carrier systems, including liposomes and polymeric micelles, tend to accumulate in 

the tumour tissues more preferentially than normal tissues because of the 

undeveloped “leaky’’ tumour blood vessels and also due to the absence of 

lymphatic drainage inside the tumour. 

EPR phenomena (Figure 13) which have been first described and termed by 

Matsumura and Maeda, in 1986 will eventually lead to accumilation of nano-sized 

particles in the cancerous tissue (Matsumura & Maeda 1986). 

 

 

 

Figure 13: Diagram explaining EPR criteria of tumour vasculature. 
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The differences between the blood vessels of solid tumours and normal tissues in 

both physiological and morphological character were examined and described ( 

Ruoslahti 2002; Bae et al. 2011; Jain 2012). Due to the rapid angiogenesis in 

cancerous tissues an irregular blood vessel arrangement resulted in comparison to 

the structured vasculature of normal tissues (Morikawa et al. 2002; Campbell 

2006). Additionally the permeability of the tumour vasculature (the gap size in the 

tumour vessel wall is remarkably higher than the healthy tissues blood vessels) 

and the rate of endothelial cell growth is higher than in the healthy tissues (Yuan et 

al. 1995). 

Furthermore, retention of accumulated nanoparticles within the tumour tissues was 

observed because of the absence of a lymphatic system which is normally present 

for drainage of macromolecules in normal tissues (Peer et al. 2007). 

As a result, the EPR effect provides a passive way for nanosystem accumulation 

and retention permitting potential effective anticancer therapy with minimum drug 

toxicity (Bae et al. 2011). 

 Hybrid nanoparticles 1.3.3

Combining different materials into a single system makes it a hybrid system and 

when this system is nano sized, then these are termed hybrid nanoparticles. 

Hybrid nanoparticles display a dual or a core/shell nanostructure which combines 

different physicochemical properties and have great potential in the area of 

biomedicines. They can be functionalised by different reactive groups or charges 
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on the surface with great stability and compatibility (Leung et al. 2012). Several 

hybrid nanoparticles have emerged that are directed towards tackling the 

problems associated with tumour diagnosis and treatments, including cancer 

imaging and targeting (Sailor & Park 2012). Hybrid nanoparticles generated by 

joining both diagnostic and therapeutic functions of nanoparticles in one system 

are known as “theranostic” systems. Theranostics offers the potential monitoring of 

the biodistribution in vivo and also tracking the fate of therapeutic nanoparticles. 

Theranostics may also provide guided delivery of nanotheraputics payload and 

hence reduce the accompanying side effects of conventional nanodevices (such 

as affecting healthy tissues by cytotoxic agents or hyperthermia induced by 

external stimuli). Furthermore, theranostics may provide potential monitoring of the 

treatment efficacy by tracking the progress of the disease status (Kim et al. 2006; 

Kim et al. 2008; Sailor & Park 2012). 

 

 Hybrid iron oxide core gold shell nanoparticles (HNPs) 1.3.3.1.1

Both iron oxide and gold nanoparticles are prominent in the field of advanced 

nanoparticles. Their unique physicochemical character is the main reason behind 

the thorough investigation of them and hence their use in a wide range of 

applications (such as magnetic fluids, catalysis and bio-separation (magnetic 

nanoparticles) and cellular optical imaging, hyperthermia, and sensitive bio-

detection for DNA (gold nanoparticles)) (Leung et al. 2012). 

The biomedical applications of magnetic iron oxide nanoparticles include targeted 

therapy, drug delivery, enhanced resolution contrast agents for MRI, hyperthermia, 
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early detection of inflammatory, cancer, diabetes, and atherosclerosis (Patra et al. 

2008; V. V Mody et al. 2010) All these biomedical applications rely on the high 

magnetisation values of the nanoparticles so as to provide high-resolution MR 

images (V. V Mody et al. 2010). 

Other advantages of iron oxide nanoparticles in biomedicine are their ability to be 

fabricated easily into different sizes and shapes, and also their ability to be 

influenced by an external magnetic field to produce local hyperthermia (Pankhurst 

et al. 2003). 

Iron oxide nanoparticles intrinsic magnetic character may cause the particles to 

gather in clusters resulting in a large size nanoparticles and hence long term 

instability of the biomedical system. Furthermore cell toxicity may result from free 

radical production from degradation of iron oxide into iron in physiological 

environments. Many efforts aiming to tackle such problems by surface coating of 

the nanoparticles by organic macromolecules such as polyacrylic acid, dextran 

and poly(ethyleneimine) (PEI) or coatings such as silica, carbon or precious 

metals like gold (Thorek et al. 2006; Mahmoudi et al. 2009; Mody et al. 2010. ; 

Hoskins et al. 2012; Leung et al. 2012). 

 

Gold nanoparticles or colloidal gold is a suspension of nano-sized gold particles. 

Colloidal gold nanospheres are especially promising because of their simple and 

fast preparation and ease of bioconjugation. Gold spherical nanoparticles have a 

direct relation between their size and their light absorption/scattering character. 

Michael Faraday, in the 1850s, was the first to describe the difference in properties 
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between colloidal and bulk gold as shown in Figure 14 where the colloidal gold 

solution (<100 nm) is an intense red colour solution while the larger particles 

solution have a dirty yellowish colour. The unique interactions of gold 

nanoparticles with light are termed the localized surface plasmon resonance 

(LSPR). LSPR is the oscillation of the free electrons of the metal in response to 

the oscillating electromagnetic field of the light, This process is resonant at a 

specific frequency of the light. After absorption, the surface plasmon decays 

radiatively resulting in light scattering or non-radiatively by converting the 

absorbed light into heat. Furthermore the LSPR effect is also dependent on the 

shape of the gold nanoparticles (Jin et al. 2010; V. V Mody et al. 2010). 
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Figure 14: TEM images of gold nanospheres (upper panels) and gold nanorods 

(lower panels) as a function of increasing dimensions. (all scale bars 100 nm) (V. 

Mody et al. 2010) 
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By using both iron oxide and gold within a single drug delivery vehicle, a 

multifaceted system can be developed which exploits the surface chemistry of the 

gold whilst retaining the magnetic character of the iron oxide, allowing for 

biologically compatible drug delivery and imaging (Jin et al. 2010). This leads to a 

rigid nanoparticle structure which eliminates the potential of degradation of the iron 

oxide core and, hence, generation of toxic free radicals, thus giving an overall 

system, that is much more biocompatible. 

Various structures and sizes of HNPs can be obtained by utilising different 

synthetic methods. The HNPs structure can be defined in general into two main 

categories including monodispersed layers and aggregates particles, 

monodispersed layer of particles could involve the fabrication of core/shell, 

dumbbell shape and shell/core/shell particle while aggregates type of HNPs 

involve the mosaic assembly of particle component within a defined matrix (Wu et 

al. 2008; Yu et al. 2008; Leung et al. 2012). 

Core/shell nanostructure is a single core nanoparticles totally covered with a shell. 

In comparison to the core/satellite structure (a single core with many smaller 

nanoparticles attached to the surface of the core to form a star like shape hybrid 

nanoparticles) the surface is entirely covered by the shell, omitting the properties 

of the core material. Additionally, a low surface area to volume ratio would be 

obtained, in contrast to the core/satellite structure (Leung et al. 2012). 
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 Theranostic Application of HNPs 1.3.4

The term “theranostic” is applied to any system which possesses the ability of both 

diagnostic and therapeutic functions. Several potential applications of HNP 

nanosystems as theranostics have been hypothesised and tested by many 

researchers (Leung et al. 2012). The following list of applications have been 

chosen to emphasise the importance of HNPs in relation to work contained in this 

thesis. 

 Magnetic resonance imaging (MRI) 1.3.5

MR imaging is a non-invasive imaging techniques widely used in human clinical 

diagnostic practice. MRI techniques are based on hydrogen nuclei properties of 

alignment under a powerful applied magnetic field (Sun et al. 2008). 

Differentiation of tissues by MRI can be enhanced by contrast agents. Iron oxide 

magnetic nanoparticles have the ability to act as a powerful contrast agent by 

shortening the relaxation parameters of water by resulting the magnetic field (Sun 

et al. 2008). 

Gold iron oxide hybrid nanoparticles theranostic properties involving MRI are 

affected by the nanosystem structure. In the case of the core/shell structure 

(HNPs) the nanosystem displays a relatively lower magnetic response in contrast 

to other structures of the hybrid system, which is mainly due to the effect of the 

gold shell that covers the iron oxide and hence, lowers the magnetic effect of the 

particles. Furthermore, MR response of HNPs is directly proportional to the nature 

of the iron oxide core and size (large solid iron oxide cores have more MR 

response than the small porous particles) (Janib et al. 2010; Leung et al. 2012). 
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 Remotely induced hyperthermia 1.3.6

Heat induced cell death can be utilised as a therapeutic means to manage the 

tumour. Cell death occurs at a temperature above 42 ̊C (more specifically between 

41 - 47 ̊C apoptosis starts while necrosis happens at 50 ̊C) (Cherukuri et al. 2010). 

Hyperthermia can be generated by using radio-frequency, microwave and laser 

which involve the introduction of a probe into the body region.(Cherukuri et al. 

2010). 

Hyperthermia generated by hybrid iron oxide-gold nanoparticles is classified 

according to the way by which heat is generated into magnetic induced 

hyperthermia (for iron oxide part of the nanosystem) and photo induced 

hyperthermia (for the gold part of the nanosystem). 

HNPs are supposed to induce individual photo induced hyperthermia because of 

the utilisation of the magnetic properties of the nanosystem for MRI imaging. 

Application of a near infra-red (NIR) laser can cause the selective hyperthermia of 

the gold surface. The time and power of the NIR laser's irradiation of the HNPs 

hybrid system are usually similar to the irradiation of the gold nanoparticles alone. 

However, the gold nanoparticle criteria have a great effect on the photo induced 

hyperthermia (hyperthermia requires the gold nanoparticles to be either 

aggregated in clusters or being in specific shape (nanorod and nanoshell)) (Minelli 

et al. 2010; Leung et al. 2012). While in the case of the HNPs hybrid system, gold 

already absorbs in the NIR region, so hyperthermia can be achieved in its original 

form (Leung et al. 2012). 
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 Chemotherapeutic drug delivery  1.3.7

A study by Xu et al. 2009, where cisplatin (an anti-cancer drug) had been attached 

to the gold surface of a dumbbell shape gold-iron oxide nanosystem and the whole 

nanocomposite guided to the site of action by means of Herceptin® (HER2 

antibody) attached to the surface of an iron oxide part of the nanosystem (Figure 

15), showed the advantages of using tow functional ligands within one system 

without interference between their actions. The study showed the selective 

targeting of SKBR3 cells and also the in vitro release profile of the drug at the 

physiological environments. Finally the improvement of therapeutic effect of the 

system was compared to the naked drug (Xu et al. 2009). 
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Figure 15: graphical representation of drug delivery and the cell targeting of gold-

iron oxide dumbbell shape nanosystem 

 

In addition a study whereby doxorubicin was successfully loaded onto gold-coated 

iron oxide nanoparticles (Au-Fe3O4 nanoparticles) saw the same retention of 

magnetism and a sustained release of the drug (Kayal & Ramanujan 2010). 

Recent literature has shown the maghemite form of iron oxide preferentially binds 

gold compared with the magnetite form and is a more stable and biocompatible 

form of iron oxide. The presence of the gold shell on the magnetic core makes it 

possible to functionalise the nanoparticles with thiolated molecules by exploiting 

gold-sulfur chemistry. In particular, it facilitates the attachment of biological 

molecules with inherent self-assembly properties onto the surface of 

nanoparticles. This opens up new ways for assembling magnetic nanoparticles 
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rationally into well-organised and functional complexes through the lock and key 

functionality provided by the biological molecules on the surface (Robinson et al. 

2010). 

 Aim 1.4

The theranostic potential of iron oxide core gold shell hybrid nanoparticles (HNPs) 

together with the potential advantages of bioavailability, chemical stability and 

surface plasmon resonance properties of gold nanoparticles in addition to the 

loading ability of gold surfaces provides possibilities for novel drug formulation for 

treating pancreatic cancer. 

The first aim of this project involves the design and synthesis of a small library of 

bisnaphthalimide base compounds characterised by having twenty atoms in their 

linker chain and bearing different number of positively charged atoms (nitrogen 

atoms), as well as synthesising a bisnaphthalimide derivative with a sulfide 

functionality in the linker chain. These compounds are then used within the 

nanopharmaceutical group to test the electrostatic interaction and hence loading 

and release profiles of these compounds onto and from the gold surface of the 

HNPs. 

The second aim is to synthesise mutual prodrugs of gemcitabine with an ability to 

bind actively to the surface of the HNPs and test this ability by preparing and 

characterising the HNPs, and testing the loading and release profile of the 

prodrug. 
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The third aim is the biological investigations of the prodrugs of gemcitabine, the 

prodrug-HNPs formulation and comparing the resulting effects against a 

pancreatic cancer cell line with the effects of gemcitabine alone.  
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2 CHAPTER 2: SYNTHESIS AND 

CHARACTERISATION OF 

BISNAPHTHALIMIDE DRUGS 
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 Background 2.1

In order to test the hypothesis that hybrid iron oxide core gold shell nanoparticles 

(HNPs) can carry compounds possessing multiple positively charged residues as 

effectively as compounds which bear thiol or sulphide functionalities, a series of 

compounds was proposed, synthesised and screened against pancreatic cancer 

cell lines. Some of these compounds are known to be effective as anticancer 

agents (Lin & Pavlov 2000; Barron et al. 2010) and others were novel compounds. 

All of the compounds were derived from the basic symmetrical bisnaphthalimide 

structure characterised by having identical naphthalimide terminal residues and 

the same linker chain length of 20 atoms. However, the compounds differed in the 

number of positively charged atoms within the linker chain and one of them having 

disulfide residues included within the linker chain. 
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 Bisnaphthalimidopropyl polyamines 2.1.1

In the 2000s Lin and Pavlov (2000) designed and synthesised a series of novel 

bisnaphthalimidopropyl polyamine (BNIPP) compounds, by using naturally 

occurring polyamines as linker chains between two identical bisnaphthalimide 

residues (Figure 16).  

 

Figure 16: General structure of bisnaphthalimidopropyl polyamine (BNIPP) 

compounds  

 

Lin and Pavlov (2000) suggested that increasing the number of positively charged 

heteroatoms within the linker chain, would increase their water solubility and 

hence their overall cytotoxic activity (Lin & Pavlov, 2000). The BNIPP derivatives 

introduced by Lin and Pavlov consisted of two naphthalimidopropyl residues with 

connected linkers derived from naturally occurring polyamines: Putrescine 4, 

spermidine 5, spermine 6 and oxaputrescine 18 (Figure 17). 
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Figure 17: structures of naturally occurring polyamines: Putrescine 4, spermidine 

5, spermine 6 and oxaputrescine 18  

 

The BNIPP derivatives prepared by Lin and Pavlov (2000) from the naturally 

occurring polyamines were summarised in (Figure 18) (Lin & Pavlov 2000). 
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Figure 18: Structures of BNIPP derivatives prepared from the naturally occurring 

polyamines were bis(naphthalimidopropyl)putrescine (BNIPPut) 19, 

bis(naphthalimidopropyl)spermidine (BNIPSpd) 20, 

bis(naphthalimidopropyl)spermine (BNIPSpm) 21 and 

bisnaphthalimidopropyl)oxaputrescine (BNIPOPut) 22 
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The cytotoxicity of the BNIPP derivatives was first studied using the National 

Cancer Institute (NCI) screen who examined the BNIPP compounds against a 

number of human cancer cell lines (breast, colon, CNS, lung, leukaemia, renal, 

ovarian, and prostate cancer). The study revealed that the cytotoxic activity of the 

BNIPP derivatives was in the order BNIPPut 19 > BNIPSpd 20 > BNIPSpm 21 > 

BNIPOPut 22 (Lin & Pavlov 2000). 

In contrast, the aqueous solubility of the compounds was greatly affected by the 

number of heteroatoms in the linker chain: compounds with more positively 

charged heteroatoms (Nitrogen atoms) in the linker chain were more soluble in 

water (Lin & Pavlov 2000). 

A similar finding was obtained by Pavlovet al (2001) who examined the cytotoxic 

effect of BNIPSpd 20, BNIPSpm 21 and BNIPOSpm 23 (Figure 18 and Figure 19) 

against the human breast cancer MCF-7 cell line: the study showed growth 

inhibition of the cell line by the compounds was affected in the same order: the 

cytotoxicity went down with increasing either the length of linking chain or the 

number of positively charged heteroatoms in the linker (Pavlov et al. 2001;  Lin et 

al. 2003;  Barron 2010). 
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Figure 19: Chemical structure of bis(naphthalimidopropyl)oxaspermine 

(BNIPOSpm) 23 

 

Another study predicted that introducing an oxygen atom into the linker directly 

attached to the nitrogen of the naphthalimide ring would result in enhancing the 

solubility without affecting the cytotoxicity of the original compounds (Dance et al 

2005). In this study, they synthesised three compounds BNIPOPut 24, BNIPOSpd 

25 and BNIPOSpm 23 (Figure 19 and Figure 20) and compared their aqueous 

solubility and cytotoxicity to that of the parent compounds BNIPSpd 20 and 

BNIPSpm 21. The results showed an increase in the aqueous solubility but a 

decrease in the anticancer effect against the MCF-7 cancer cell line (Dance et al. 

2005). 

All the studies repeatedly confirmed that the cytotoxic effect of the BNIPP 

compounds is greatly dependent on the structure of the polyamine linker (Lin & 

Pavlov 2000; Pavlov et al. 2001; Lin et al. 2003; Dance et al. 2005; Barron et al. 

2010). 
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Figure 20: Chemical structure of bis(naphthalimideoxapropyl)putrescine 

(BNIPOPut) 24 and bis(naphthalimidooxapropyl)spermidine (BNIPOSpm) 25 

Further analogues of BNIPP compounds were synthesised (Figure 21) by 

modifying the length and number of heteroatoms in the linker chain, and their 

cytotoxicity against the human colon cancer cell line (Caco-2) and the parasite 

Leishmania infantum were examined using the MTT assay. The results showed 

that compounds with the same linker-chain length but one nitrogen atom less can 

have similar cytotoxic effects (Oliveira et al. 2007; Barron et al. 2010). 

Other investigations into analogues of BNIPP compounds focused on introducing 

cyclic or heterocyclic moieties into the linker chain. These studies also screened 

the compounds against a number of human cancer cell lines (Filosa et al. 2009; 

Barron et al. 2010). 
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Figure 21: Chemical structure of BNIPdiaminododecan (BNIPDodec) 26, 

BNIPdiaminodecan (BNIPDadec) 27, BNIPdiaminononan (BNIPDanon) 28, 

BNIPdiaminooctan (BNIPDaoct) 29, BNIPdipropyltriamine (BNIPDpta) 30, and 

BNIPdiethyltriamine (BNIPDeta) 31 
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The aim of this chapter is to present results obtained from the synthesis of the 

group of BNIPP analogues shown in (Figure 22) which includes previously known 

compounds BNIPSpm 21 and BNIPDodecan 26, and the novel compounds 

(BNIPDi) 32, (BNIHexamine) 33, and (BNIPds) 34 in order to compare their ability 

to associate with HNPs as drug delivery system. 
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Figure 22: Chemical structure of BNIPSpm 21, BNIPDodec 26 and proposed 

compounds (BNIPDi) 32, (BNIHexamine) 33, and (BNIPds) 34 
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  Attempt to synthesise bisnaphthalimido diaminoicosan (BNIPDi) 32 2.2

The synthesis of bisnaphthalimide derivatives was adopted from the successful 

synthesis of mitonafide 37 which is a compound with high cytotoxic activity among 

mononaphthalimide derivatives. The synthetic strategy described by Braña et al. 

for delivering mitonafide involve the use of equimolar amounts of both reactants 

(3-nitro 1,8-nphthalic anhydride 35 and N1,N1-dimethylethane-1,2-diamine 36) 

(Scheme 1) in a one-step reaction (Braña et al. 1993; Braña et al. 1996). 

The synthesis of bisnaphthalimide compounds was carried out generally by the 

same mechanism, which involves nucleophilic reaction of the 1,8-naphthalic 

anhydride with the corresponding polyamine in a 2:1 molar ratio respectively 

(Scheme 1) (Braña & Ramos 2001). 

 

Scheme 1: Synthesis of (A) mitonifide 37 and (B) bisnaphthalimide. Reagents and 

conditions: (i) absolute ethanol, reflux, 12 hrs 
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The strategy for the synthesis of BNIPDi 32 (Scheme 2) was adapted from the 

method previously described for synthesis of bisnaphthalimide derivatives by 

Braña et al. (Scheme 1). The rationale behind preparing BNIPDi 32 was to make 

an analogue of BNIPSpm 21 without any heteroatoms in the linker chain in order 

to confirm that the ability of the BNIPSpm 21 to be loaded on the HNPs surface is 

due to the charge-charge interaction between the compound and the gold surface. 

1,20-Eicosanedicarboxylic acid 38 acid was utilised as a starting material in order 

to synthesise the required linker chain (1,20-Eicosanediamine 41) for the synthesis 

of compound 32 (Norrehed et al. 2013). The process of synthesis of the linker 

chain 41 was carried out accordingly without prior purification of the intermediate 

product. Furthermore, the obtained yield from the reactions was quantitative. 

Regarding compound 41, the product was obtained in the final step as an off-white 

solid with a yield of 70%. 
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Scheme 2: Strategy for the synthesis of bis(naphthalimido)diaminoicosan (BNIPDi) 

32. Reagents and conditions: (i) thionyl chloride, reflux 18 hrs, (ii) dioxan, 

ammonium hydroxide solution, 4 hrs (iii) Lithium aluminum hydride, THF 12 hrs, 

reflux (iv), absolute ethanol, reflux, overnight 

 

 Synthesis of compound 39 (the acid chloride derivative of 38) 2.2.1

Activation of carboxylic acids by forming the corresponding acid chlorides is one of 

the simplest methods for activating otherwise unreactive carboxylic acids towards 

nucleophilic attack (Montalbetti & Falque 2005). Numerous reagents are 

commonly used to make the acid chloride from their parent acids, including thionyl 
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chloride (SOCl2) 42, phosphorus pentachloride (PCl5) 43, oxalyl chloride 45 

((COCl)2), phosphorus oxychloride (POCl3) 46 and phosphorus trichloride (PCl3) 

44 (Figure 23). 

 

Figure 23: commonly used reagents for acid chloride formation 

 

The general mechanism for making an acid chloride using thionyl chloride is 

shown in Scheme 3. The major drawback of this method of acid activation is the 

formation of hydrochloric acid and sulfur dioxide as by-products of the reaction, 

which can affect acid-sensitive compounds and the environment (Montalbetti & 

Falque 2005). 
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Scheme 3: Mechanism of acid chloride formation by using thionyl chloride 

(Montalbetti & Falque 2005) 

 

Two molar equivalents of thionyl chloride are required to react with 

eicosanedicarboxylic acid 38 to give the corresponding di-acid chloride derivative 

39. In practice, an excess of thionyl chloride was used to ensure that all the acid 

residues had been converted to the analogous acid chloride. 
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 Synthesis of 1,20-Eicosanediamide (40) towards making 1,20-2.2.2

Eicosanediamine (41) 

Reaction of an acid chloride with an amine results in amide bond formation  

 

 

Scheme 4: General reaction of acid chloride with amines (Montalbetti & Falque 

2005) 

 

HCl is formed as a by-product of this reaction so addition of base is necessary to 

trap the formed acid. In the synthesis of 1,20-eicosanediamide, ammonium 

hydroxide acts as both base and the source of amine nitrogen. It is used in excess 

to overcome the formation of the acid by-product (Scheme 4). 

The obtained white product (1,20-eicosanediamide 40), was reacted with LiAlH4 in 

dry THF at elevated temperature overnight in order to ensure complete reduction 

of compound 40. 

 Synthesis of BNIPDi 32 2.2.3

Once the diamine linker chain had been synthesised the subsequent step was to 

react it with 1,8-naphthalic anhydride 35. The mechanism of such a reaction 

involves intramolecular diamide bond formation facilitated by the short distance 

between the secondary amine and the carbonyl carbon atom. This favours the 
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intramolecular reaction rather than the potential for intermolecular polymerisation 

(Figure 24). 

 

 

 

Figure 24: Mechanism of naphthalimide formation  
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 Synthesis of BNIPSpm 21 and BNIPDodec 26 2.3

 General method of BNIPP synthesis 2.3.1

The general synthesis of BNIPP derivatives (Figure 25) first appeared when Lin 

and Pavlov merged the strategies of synthesising bis(alkyl) polyamine derivatives 

(Figure 26) (Bergeron et al. 1988) and bisnaphthalimide derivatives (Scheme 1B) 

(Braña et al. 1993; Lin & Pavlov 2000). 

 

Figure 25: General synthesis of BNIPP compounds 

 

The strategy involves N-alkylation of a fully mesitylated polyamine linker with O-

tosyloxypropyl)naphthalimide 53 to yield the fully protected analogue of the final 

product. Deprotection using hydrobromic acid delivers the hydrobromide salt (Lin 

& Pavlov 2000; Pavlov et al. 2001; Dance et al. 2005; Barron et al. 2010). 
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Figure 26: Synthetic scheme of a dialkyl spermine 50 

 

 Synthetic strategy of BNIPSpm 21 and BNIPDodec 26 2.3.2

The strategy used to deliver the two compounds BNIPSpm 21 and BNIPDodec 26 

was analogous to the previously published work by Lin and Pavlov (2000) and 

Barron et al. (2010). 

The plan was to prepare the fully mesitylated polyamine linker (Mts Spermine 58 

and Mts Diaminododecane 60) (Scheme 7 and Scheme 8), the mutual 

intermediate O-(tosyloxypropyl)naphthalimide 53) and couple them together in 1:2 

molar ratio respectively followed by elimination of the mesitylene protecting group 

(Scheme 5 and Scheme 6). 
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Scheme 5: Synthesis of BNIPSpm 21 reagents and conditions:(i) absolute ethanol, 

reflux, overnight (ii) tosyl chloride, pyridine, 12hrs (iii) CsCO3, DMF. (iv) HBr/glacial 

aceticacid, CH2Cl2 
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Scheme 6: Synthesis of BNIPDodec 26 reagents and conditions :(i) absolute 

ethanol, reflux, overnight (ii) tosyl chloride, pyridine, 12hrs (iii) CsCO3, DMF. (iv) 

HBr/glacial aceticacid, CH2Cl2 
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Scheme 7: Synthesis of mesitylated derivatives of spermine Reagents and 

conditions: (i) mesitylene chloride, pyridine, RT 12 hrs 

 

 

Scheme 8: Synthesis of mesitylated derivatives of diaminododecane Reagents 

and conditions: (i) mesitylene chloride, pyridine, RT 12 hrs 
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 Synthesis of fully protected polyamines (tetra-mesitylated spermine 2.3.3

56 and di-mesitylated diaminododecane 58) 

Spermine 7 and diaminododecane 57 were obtained from commercial sources and 

reacted with mesitylene sulfonyl chloride using pyridine as both a solvent and a 

base to trap the liberated hydrochloric acid by-product from the reaction. The 

reactions proceed smoothly to yield the products N1, N5, N10, N14-tetra-

mesitylspermine 56, and N1,N14-di-mesityl dodecane 58 in a yield 30% and 50% 

respectively after purification and recrystallisation from ethanol. Both compounds 

give one spot in TLC and their spectroscopic data which showed the right number 

of carbon atoms (in both aliphatic and aromatic region) match with the reference 

data provided by the original authors (Figure 27 and Figure 28), though the yields 

obtained were less than those reported in the literature (60% and 66%, 

respectively) (Lin & Pavlov 2000; Barron et al. 2010). 
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Figure 27: A: 13C NMR data of mesitylated spermine 56, B: DEPT 135 NMR data 

of mesitylated spermine 56  
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Figure 28: C: 13C NMR data of mesitylated dodecane 58, D: DEPT 135 NMR data 

of mesitylated dodecane  
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 Synthesis of N-(3-hydroxypropyl) naphthalimide 52 2.3.4

Synthesis of the N-(3-hydroxypropyl) naphthalimide 52 was reported in literatures 

mainly by two ways both of them stated a high yield product, the difference 

between the two methods is the type of solvent used (absolute ethanol or DMF) 

and the presence of catalytic amount of DBU base in case of using DMF as a 

solvent. The method chosen was refluxing 1, 8 naphthalic anhydride 35 with 

propanol amine 51 in absolute ethanol for 12 hrs to get the product in a very good 

yield. The 1H NMR data (Figure 29) show all the peaks at the right position 

(aromatic protons at 7.7-8.6, methylene protons at 2.0-4.5) which match the 

reference data. 

 

 

Figure 29: 1H NMR spectrum of N-(3-hydroxypropyl) naphthalimide 52 
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 Synthesis of (O-tosyloxypropyl)naphthalimide 53 2.3.5

Tosylation of the hydroxyl of N-(3-hydroxypropyl) naphthalimide 52 activates the 

hydroxyl group into a leaving group which is more easily replaced by a 

nucleophile. However, tosylation using an equimolar amount of the reactants 

under the conditions employed can result in one of either two products 53 and 59, 

or a mixture of the two (Figure 30), which affects the yield and makes purification 

difficult. To avoid this happening, a fourfold excess of para-toluenesulfonyl chloride 

can be used. (Lin & Pavlov 2000). 

 

Figure 30: Compounds which are potentially delivered from tosylation of 52 

 

Tosylation was performed in pyridine using an equimolar amount of reactants at 

room temperature for 16 hrs and the product purified by recrystallisation from 

ethanol to give 53 in a yield of 40% (Lin et al. 2003), sufficient to proceed to the 

next step. 

The 1H NMR data showed the methyl of the tosyl group and the methylene groups 

at (2.2-4.5 ppm) together with the aromatic proton of both the tosyl- and 

naphthalene group at (6.6-8.6 ppm) (Figure 31). 
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Figure 31: 1H NMR spectrum of tosylated 53 

 

 Synthesis of compound 54 and 55 2.3.6

The fully protected versions of BNIPSpm 54 and BNIPDodecan 55 were obtained 

by N-alkylation of the correspondence mesitylated polyamines with O-

tosyloxypropyl)naphthalimide 53 in 1:2 molar ratio respectively using DMF as a 

solvent and caesium carbonate as a base. The products were characterised by 

13C and DEPT-135 NMR analysis (Figure 32 and Figure 33) which show the 

aliphatic hydrocarbon (between 22 and 77 ppm) and aromatic hydrocarbon from 

mesitylene and naphthalene group (between 122 and 138). It also shows the 

inversion of CH2- peaks and disappearance of the quaternary carbon from the 

mesitylene group and the amide group. All the data acquired were matched with 

the reference data from the literature. 
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Figure 32: 13C (A) and DEPT135 (B) NMR spectrum of mesitylated analogue of 

BNIPSpm 54 
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Figure 33: 13C (A) and DEPT135 (B) NMR spectrum of mesitylated analogue of 

BNIPDodec 55 
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 Deprotection of mesitylated analogue of BNIPSpm 21 and 2.3.7

BNIPDodecane 26 

The target compounds BNIPSpm 21 and BNIPDodecan 26 were prepared by the 

demesitylation of the protected analogues 54 and 55 by HBr/glacial acetic acid at 

room temperature using anhydrous dichloromethane as a solvent. As before, the 

compounds were characterised by 13C and DEPT-135 NMR analysis (Figure 34 

and Figure 35) which show the aliphatic carbons (between 27 and 77 ppm) and 

aromatic carbons from the naphthalene group (between 122 and 138), it also show 

the inversion of CH2- peaks and disappearance of the quaternary carbon, all the 

data acquired matched the reference data from the literature. 

 

Figure 34: DEPT135 NMR spectrum of BNIPSpm 21 
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Figure 35: 13C (A) and DEPT135 (B) NMR spectrum of BNIPDodec 26 
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 Synthetic strategies for bisnaphthalimido heptaethyl hexamine 2.4

(BNIHexamine) 33 

Unfortunately, all strategies which were employed to deliver the target compound 

(BNIHexamine 33) failed to deliver the desired product. Two main strategies were 

extensively studied and two others were examined to see if they were applicable 

or not. 

 First strategy 2.4.1

The simplest way to obtain the six amino linker analogue of BNIPSpm 33 is 

explained in (Figure 36) were pentaethylenehexamine 60 can be used as a linker 

chain to reacted after mesitylation with tosylated N-(2-hydroxyethyle) 

naphthalimide 63 to make the desired analogue of BNIHehexamine33. 
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Figure 36: First strategy for synthesising BNIHexamine 33 

 

In this strategy, the first problem faced was the absence of a commercial source 

for pure pentaethylenehexamine (PEHA) 60. The only available product was 

technical grade which contains 70% PEHA 60 as a mixture with other unspecified 

amines. Purification was attempted by simple distillation at atmospheric pressure 

and at reduced pressure using Kugelrohr apparatus. Purification of the PEHA 60 

from this mixture was not feasible as most of the contaminant polyamines had a 
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very similar boiling point. An attempt to mesitylate the technical grade PEHA 60 

without prior purification was undertaken in order to find a way to facilitate 

separation of the desired product but the resulting mixture contained compounds 

with a very similar Rf value which made their separation very difficult to achieve. 

However, it was decided to proceed with this strategy by coupling O-

(tosyloxyethyl) naphthalimide 63 to mesitylated PEHA 61 with the aim to obtain a 

product which would be easier to separate from the mixture which included the 

mesitylated polyamines. 

Surprisingly, the result of this process was that no reaction between O-

(tosyloxyethyl) naphthalimide 63 and mesitylated PEHA 61 was observed, though 

spectroscopic analysis showed the original starting compound (N-(2-

hydroxyethyl)naphthalimide) 62. This finding was confirmed by reacting (O-

(tosyloxyethyl) naphthalimide 63) with mesitylated spermine 56 the result was the 

same, i.e. no reaction between 63 and 56 but compound 62 could be isolated 

readily. 

The proposed mechanism for this unexpected finding is presented in (Figure 37). 

The short distance (2 carbon atoms) between the nitrogen atom of the 

naphthalimide and the tosylated oxygen could be the reason that the detosylation 

is occurring. 
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Figure 37: Proposed mechanism of de-tosylation of 63  
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 Second strategy 2.4.2

In the following strategy, a commercial source of relatively pure 

triethylenetetramine (TET) 64 was utilised as a corner stone of the synthetic plan 

in (Figure 38). 

 

Figure 38: Schematic explanation of the second strategy of 33 syntheses 
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Mesitylation of TET 64 was performed following the same procedure reported for 

the synthesis of mesitylated polyamines described previously. The result was 

promising and a good yield of the pure compound was obtained (Figure 39). 

 

Figure 39: 1H NMR spectrum of mesitylated TET 65 

 

 Synthesis of the N-[2-(2-hydroxylethylamino)-ethyl]-1, 8-2.4.2.1

naphthalimide (HEAEN) 67 

Synthesis of 67was achieved according to the procedure reported by Chen et al. 

which required refluxing the two starting materials (35 and 66) in solution in 

ethanol to obtain the product in almost quantitative yield. The 1H NMR data 

acquired for the compound (Figure 40) shows the peaks at position 7.7-8.6 for 
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aromatic protons, and 2.0-4.5 for the aliphatic protons which perfectly match the 

reported spectroscopic data (Chen et al. 2009). 

 

Figure 40: 1H NMR of HEAEN 67 

 

 Synthesis of di tosylated N-[2-(2-hydroxylethylamino)-ethyl]-1, 8-2.4.2.2

naphthalimide (HEAEN) 68 

Tosylation of HEAEN 67 was also undertaken following a slightly modified method 

than that used for tosylation of N-(2-hydroxypropyl)naphthalimide 53 and N-(2-

hydroxyethyl)naphthalimide 63. Using pyridine as a solvent, the reaction resulted 

in an apparent mixture of two compounds, the monotosylate 70 (tosyl group 

substituted on the amine and the di-tosyl derivative 68) (Figure 41). 
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Figure 41: Chemical structure of 68 and 70 

 

Fortunately the reaction could be easily directed towards favouring the ditosyl 

derivative 68 by changing some reaction conditions (increasing the duration of 

stirring at 0 ̊C and using three molar equivalents of tosyl sulfonyl chloride) The 

13CNMR data acquired from both compounds is presented in (Figure 42) and 

highlights the difference in the number of aromatic peaks between 120-144 and 

the absence of a second methyl peak from the monotosylate derivative at 21.25 

ppm as compared to the ditosylate. 
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Figure 42: 13C NMR spectrum of (A) di-tosylated HEAEN 68 and (B) mono 

tosylated HEAEN 70 
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 Synthesis of the mesitylated analogue of Bisnaphthalimido 2.4.2.3

heptaethyle hexamine (Mts BNIHexamine) 69 

Following the success in synthesis of the required building blocks of desired 

compound BNIHehexan 33 it was envisaged that the subsequent coupling step will 

be equally facile, but it was not. 

Attempts of coupling the two reactants (ditosylated HEAN 70 with mesitylated TET 

69) were failed and no reactions were observed between the two reactants even 

though different reagents and conditions applicable for N-alkylation of polyamine 

had been applied (Table 1). 
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Table 1: Reagents and conditions used in the attempted coupling of di-tosylated 

HEAEN 68 to mesitylated TET 65 

Reagents Conditions Results 

Caesium carbonate 7equ. Dry DMF, RT, 12 hrs No reaction 

Caesium carbonate 7equ. Dry DMF, 60C 12 hrs No reaction 

Caesium carbonate 

10equ 

Dry DMF, RT, 24 hrs No reaction 

Caesium carbonate 

10equ 

Dry DMF, 60C, 24 hrs No reaction 

Triethylamine 5, 10 equ. Dry DMF, RT, 12 hrs No reaction 

Triethylamine 5, 10 equ Dry DMF, 60C, 12 hrs No reaction 

Diisopropylamie 5, 10 equ Dry DMF, RT, 12 hrs No reaction 

 

  



90 
 

 Other strategies 2.4.3

A few other plans were examined before moving on to the second strategy, most 

of which are highlighted in (Figure 43). They were time consuming and difficulties 

were faced during purification of the products or the product obtained was not 

consistent with that described in the reference literature source. 

The strategies were basically divided into two parts, the first being the attempt to 

make the linker (C14H28N8) 71 and react it directly with 1,8 naphthalic anhydride 

35, or the synthesis of pure PEHA 62 and couple it to N-(3-

hydroxypropyl)naphthaliimide 53. 

The second strategy was to attempt to make compound 72 first and then couple 

the two residues together using a smaller linking fragment, ditosylated 

ethylenediamine 73) (Figure 43). 
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Figure 43: Schematic explanation of different attempts to synthesise compound 33 
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 Synthesis of Bisnaphthalimidopropyl diaminopropyldithiobutane 2.5

(BNIPds 34) 

The final compound in the proposed series of BNIPSpm analogues was 

BNIPDodithiobutane 34 which has two sulfur atoms in the middle of the linker 

chain in place of the two nitrogen atoms present in the BNIPSpm 21 linker chain 

(Figure 44). 

The plan for synthesis is explained in (Figure 44). The spermine-like linker has to 

be synthesised first from the starting material (butane-1,4-dithiol) 75 which was 

extended by reaction with acrylonitrile 76 followed by reduction of the resulted bis-

nitrile 77 to bis-amine 78, synthesis of the required bisnaphthalimide analogue was 

achieved following the same procedure of N- alkylation, but this could be achieved 

without prior mesitylation of the linker chain. 
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Figure 44: BNIPds 34 synthetic strategy 

 

 Reaction of butandithiol 75 with acrylonitrile 76 2.5.1

Acrylonitrile 76 was chosen as a starting material after it proved extremely difficult 

to purify the product obtained from the analogous reaction of butandithiol with 

bromopropionitrile 74 (Figure 45). 
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Figure 45: 13CNMR spectrum show effect of column purification on the product of 

butandithiol (75) reaction with bromopropionitrile (74), A: crude product, B: 

compound recovered after column purification 
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Fortunately, the reaction of acrylonitrile 76 and 1,4-butandithiol 75 delivered a pure 

product which could be used without further purification. The reaction was 

complete after 4 hrs and the yield was quantitative. 13C NMR data show the five 

characteristic peaks of the product at 18.95 -31.56 and 118.53 (Figure 46). 

 

Figure 46: 13CNMR spectrum of bisnitrile 77 
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 Reduction of bisnitrile 77 to bisamine 78 2.5.2

The next step was reduction of bisnitrile 77 to bisamine 78. The reaction was tried 

using borane dimethylsulfide complex. 13C NMR of the product shows the 

disappearance of peaks at 118.53 ppm and appearance of a fifth peak in the 

aliphatic region (Figure 47). 

 

Figure 47: 13CNMR spectrum of bisamine 78 

 Synthesis of compound 34 2.5.3

Coupling the sulfide containing linker chain to 53 following the same procedure 

acquired from the synthesis of compound 22 and 26 was carried out without 

previous mesitylation of the two amino ends of the linker chain, and the rationale 

behind doing the reaction in this way is because mesitylation of the linker chain 

was ended with a mixture of compounds difficult to be purified. A direct reaction 
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between 53 and 78 in 2:1 molar ratio proceeds smoothly to yield compound 34 in a 

quantitative yield. 

Synthesis of the dihydrobromide salt of 34 was conducted following the same 

method applied for the deprotection step of 56 and 57 which involves deprotection 

using hydrobromic acid/glacial acetic acid in anhydrous CH2Cl2 under an inert 

atmosphere. 

 Conclusions 2.6

Two previously known compounds 21 and 26, together with two novel compounds 

32 and 34 have been synthesised successfully following an established procedure. 

The compounds were utilised by the Keele nanopharmaceutics research group to 

examine their ability to bind the gold surface of the iron oxide core gold shell 

hybrid nanoparticles, and investigate their cytotoxic effect against a pancreatic 

cancer cell line. 

Different strategies had to be applied to tackle the problems which arose during 

the synthesis of compound 33, but these were not successful, though the second 

strategy applied was very promising. 

The synthetic route chosen to produce compound 34 was an N-alkylation reaction 

without prior mesitylation of the diamine in the linker chain. This reaction has been 

used successfully and was found to be simple, reproducible, and did not produce 

by-products. Production of the dihydrobromide salt of 34 was successful but the 

compound was found to be unstable. 
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3 CHAPTER 3: SYNTHESIS AND 

CHARACTERISATION OF 

GEMCITABINE PRODRUGS 
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 Background 3.1

Following the successful experiments conducted previously within the Keele 

Nanopharmaceutics Research group which demonstrated the potential 

advantages of hybrid iron oxide core gold shell nanoparticles (HNPs) as a carrier 

for positively charged cytotoxic compounds and their potential effects as a 

powerful tool to tackle the problems presented by the deep stroma caused by 

pancreatic cancer, derivatives of gemcitabine were proposed which could actively 

bind to the surface of the HNPs and be delivered into the pancreatic cancer cell. 

The hypothesis being that this would increase the efficacy of gemcitabine which is 

the preferred chemotherapy for pancreatic cancer. 

 Nucleoside, Nucleotide and Nucleic acid 3.1.1

Genetic information is codified within living cells inside the nucleic acids DNA 

(deoxyribonucleic acid) and RNA (ribonucleic acid). Nucleic acids are polymeric 

sequences of nucleotides, which themselves are phosphorylated nucleosides 

which consist of a basic heterocyclic residue attached to ribose (RNA) or 3-

deoxyribose (DNA). 

The basic heterocyclic residue within nucleosides are nitrogen-containing 

heterocycles which are either purine- or pyrimidine derivatives. The purine 

nucleosides are adenine 80 and guanine 81, both of which are found in both DNA 

and RNA. The pyrimidine nucleosides are cytosine 82, thymine 83 and uracil 84: 

cytosine 82 is found in both DNA and RNA, whereas thymine 83 is present in DNA 

only and uracil 84 is only found in RNA. The heterocyclic residues are attached to 
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the pentose carbohydrate via a glycosidic linkage to the anomeric position of the 

pentose. 

Nucleic acids are polymeric macromolecules which contain the genetic information 

to code for the synthesis of proteins and other biomolecules. DNA consists of two 

strands and is essentially a complementary dimer which has the shape of a double 

helix. RNA exists as discrete single strand molecules. Genetic information stored 

within the nucleic acids is coded according to the sequence of the nucleotides 

within the molecule (Lodish et al. 2000; Neidle 2008). 

Figure 48 shows the basic structure of nucleic acid, nucleotides and nucleosides. 

 

Figure 48: Structures of nucleobase, nucleosides and nucleotides 
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 Nucleoside analogues 3.1.2

Nucleoside analogues, as the name indicates, are analogues very close in 

structure to the naturally occurring nucleosides which form the building blocks of 

the nucleic acids. This similarity allows these analogues to be integrated within the 

structures of DNA and/or RNA by the action of the DNA- or RNA polymerase 

enzymes which lack the ability to distinguish between nucleosides and their 

analogues. 

The integration of the false nucleoside within the replicating DNA molecule cause 

a deformity in the shape of the outspreading polymer. This deformity will 

consequently inhibit chain elongation, and eventually prompt apoptosis (a 

programmed cell death). 

The nucleoside analogues class of cytotoxic agents has shown significant clinical 

effects against several malignancies and solid tumours (Lodish et al. 2000; 

Simons et al. 2005; De Clercq & Field 2006; Neidle 2008; Madela & McGuigan 

2012 ). 

 Resistance to nucleoside analogues 3.1.3

Resistance to chemotherapy developed within cancer cells remains one of the 

major drawbacks of chemotherapy using cytotoxic drugs. Consequently, more 

effective treatment is in great demand, either by finding new ways of removing 

chemoresistance or making known therapeutic agents more efficient (Gottesman 

2002). 
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The cytotoxic action of nucleoside analogues within the cell is determined by their 

ability to enter the cell through transporters in the cell membrane and subsequent 

activation by nucleoside kinases to give the active phosphorylated form of the 

analogue (Fukuda & Schuetz 2012). Resistance to nucleoside analogues is 

developed when the processes of transportation and/or activation are disturbed by 

modulation of the enzymes involved or by the action of the natural catabolic 

enzymes that deaminate or deposphorylate the analogues (Galmarini et al. 2001;  

Damaraju et al. 2003; Fukuda & Schuetz 2012). However, nucleoside analogues 

continue to be of great value in attempts to overcome tumour chemoresistance, 

especially when used in combination therapy with other chemotherapeutic agents, 

mainly because the majority of nucleoside analogues have little tendency to cause 

cross-resistance with other cytotoxic agents (Galmarini et al. 2010). 

 Gemcitabine a nucleoside analogue 3.2

Gemcitabine 7 is an analogue of deoxycytidine 8: it has two fluorine substituents in 

the 2’ position of the ribose residue. The clinical outcomes using gemcitabine are 

very good but its efficacy is restricted by inactivation by deaminase enzymes. 

Several prodrug derivatives of gemcitabine have been developed to protect the 

drug from deamination and to increase drug lipophilicity but the high toxicity of 

these derivatives have rendered the compounds to have low value in term of 

clinical efficacy ( Plunkett et al. 1995; Bergman et al. 2002b; Alexander et al. 2005; 

Enrico Mini et al. 2006; Frese et al. 2012; De Sousa Cavalcante & Monteiro 2014). 
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The aim of this chapter is to describe the design and synthesis of a derivative, 

possibly a prodrug, of a clinically relevant drug, gemcitabine, to enable it to 

covalently or electrostatically bind to the gold surface of the hybrid nanoparticles 

(HNPs) described elsewhere in this thesis. The hypothesis is that the analogue will 

be taken up by the cell in quantity and have a greater efficacy as a consequence 

because it is bound to the HNPs. 
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 Attempt to synthesise positively charged prodrug of gemcitabine 3.3

Unmodified gemcitabine is unable to attach to the gold shell of the HNPs because 

it lacks the required functionality for creating a dative covalent or electrostatic bond 

with the outer shell; it lacks positively charged atoms or any sulfur-containing 

residues. Therefore, an analogue of gemcitabine is required which does contain 

the requisite functionality for bonding to the gold surface and is also able to exert a 

cytotoxic effect once in the cell, either by itself or through the liberation of 

gemcitabine. In this case, a prodrug approach was considered in order to release 

gemcitabine after the nanoformulation has been taken up by the cell. 

Work conducted previously within the Keele Nanopharmaceutics Research Group, 

which used bisnaphthalimide anticancer agents as model agents to investigate the 

electrostatic binding of positively charged drugs to the gold surface of HNPs, 

demonstrated that compound 21, derived from spermine 6 and bearing four 

positively charged amino groups in its structure, bound most efficiently to the 

negatively charged gold surface of the HNPs through electrostatic bonding 

association. 
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 Spermine 3.3.1

Spermine 6 is a natural polyamine; Polyamines are components of nearly all living 

cells: spermine is found in all eukaryotic cells but different species form additional, 

different ranges of polyamines. Putrescine 4, spermidine 5 and spermine 6 are the 

only polyamines produced by mammals (Kusano et al. 2007). 

 

The structure of spermine was first established in 1926 by a group of scientists, 

however Antonie van Leeuwenhoek had described crystals of spermine phosphate 

in human semen as early as 1678, while the name spermine was used first in 

1888 by Ladenburg and Abel. Spermine is found as a polycation at physiological 

pH and it is the compound that gives the semen fluid its characteristic smell 

(Kusano et al. 2007; Bachrach 2010). 

The role of spermine in cell metabolic pathways is well established. Together with 

other polyamines it plays an important role in many cell activities, including acting 

as a protective barrier against oxidative damage, the regulation of ion channels, 

conservation of membrane structure and function, affecting cell proliferation by 

regulating the process of transcription and translation, modulation of some kinase 

enzyme activity and stabilising the helical structure of nucleic acid (Khan et al. 

1992; Pedreño et al. 2005; Casero & Pegg 2009; Pegg 2009; Mandal et al. 2013; 

Pegg 2014). 

https://en.wikipedia.org/wiki/Antonie_van_Leeuwenhoek
https://en.wikipedia.org/wiki/Albert_Ladenburg
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 Strategy applied for coupling gemcitabine to spermine 3.3.2

The proposed strategy (Figure 49) was designed to provide a way of coupling a 

spermine molecule with gemcitabine without losing the ability to protonate all the 

remaining primary and secondary amine groups in the polyamine. The strategy 

was based upon published work on the selective protection of polyamines and 

coupling of a carboxylic acid to a primary amine group to form an amide using 

dicyclohexylcarbodiimide (DCC) as a coupling agent. Functionalisation of the 

spermine molecule by addition of a free carboxylic acid arm was required to 

achieve the goal, the carbonyl group of the carboxylic acid arm should be at least 

one carbon atom away from the amine coupling site of spermine to prevent 

possible protonation of the amine group reducing the reactivity of the carbonyl 

group towards amide bond formation. 

The potential advantages of amide bond formation between the proposed 

derivative of spermine and gemcitabine to produce a prodrug was the main reason 

behind choosing this kind of coupling. 
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Figure 49: Proposed synthetic strategy for the formation of a gemcitabine-

spermine prodrug (Jørgensen et al. 2005; Zhang et al. 2009; Kölmel et al. 2014; 

Jagu et al. 2015) 
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 Regioselective Boc protection of spermine 3.3.2.1

Boc refers to the tert-butoxycarbonyl protecting group 91 which is commonly used 

to protect amine functional groups during synthesis. Reaction of a primary or 

secondary amine with di-tert-butyl dicarbonate 92 yields the corresponding Boc 

protected N- tert-butoxycarbonyl derivatives 93. The term Boc protection is applied 

because of the ability of the Boc group to alter the reactivity of the amine group 

towards most bases and nucleophiles. The Boc protecting group can be readily 

removed using moderately strong acids. 

 

 

 

The chosen strategy to make the polyaminated gemcitabine analogue began with 

a regioselective protection of spermine. Reaction of spermine with di-tert-butyl 

dicarbonate 92 under standard conditions resulted in complete reaction of the 

primary and secondary amine groups in spermine to give the tetra-Boc derivative 

where all of the nitrogens have been protected. The selective protection of both 

secondary amino groups and one of the primary amino groups in spermine was 

reported by Geall and Blagbrough (2000): reaction of spermine with an equimolar 

quantity of ethyl trifloroacetate at -78 ̊C gave a crude mixture of mono-, di- and tri-
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trifluoroacetamide derivatives of spermine, with the mono-substituted derivative in 

which only one of the primary amino groups was protected being the dominant 

species. An excess of di-tert-butyl dicarbonate 92 was added to the flask 

containing the crude mixture of spermine trifluoroacetimidates and reacted under 

standard conditions in order to protect any unreacted amino functional groups. 

Finally, the trifloroacetate groups were cleaved by raising the pH of the mixture to 

pH 11. The tri-Boc-protected spermine 85 was obtained in 50% yield after 

purification by flash column chromatography (Geall & Blagbrough 2000). 

 

Purification of the reaction mixture described above was actually rather 

challenging and it proved almost impossible to separate the desired product from 

those derivatives protected by only two Boc groups which may be on the primary 

or secondary amino groups. A minor change to the procedure was introduced, 

inspired by Wellendorph et al (2003) who held the reaction temperature between -

48 ̊C and -52 ̊C while adding the trifluoroacetylation reagent to the solution of 

spermine. The temperature control favours the production of the tri-Boc-protected 

spermine 85 over other by-product of the reaction (i.e. di-Boc-protected spermine 

94) while addition of di-tert-butyl dicarbonate 92 was undertaken at 0 ̊C and the 

reaction temperature was left to reach the ambient temperature spontaneously 

(Wellendorph et al. 2003; Emanuela et al. 2012). 
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 Synthesis of compound 88 3.3.2.2

Synthesis of a spermine derivative bearing a carboxylic acid functional group 88 

required reaction of the tri-Boc protected spermine 85 with either methyl or ethyl 

bromoacetate to yield 86 and 87, respectively, followed by ester hydrolysis to yield 

compound 88. These were effectively one-pot reaction monitored by TLC. 
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 Reaction of gemcitabine with compound 88 3.3.2.3

The coupling of gemcitabine to compound 88 using DCC as the coupling agent 

was unfortunately unsuccessful: the reaction was repeated many times using 

slightly modified conditions, reaction times, etc but no product could be identified 

in each case, with only starting materials being observed. Due to time constraints 

and the prolonged complex multi-step synthesis and purification of the starting 

materials, the coupling of a polyamine derivative of spermine with gemcitabine to 

create a potential prodrug was abandoned. 
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 Synthesis and characterisation of sulfur bearing derivative of 3.4

gemcitabine 

In order to use the hybrid nanoparticles as a diagnostic and/or therapeutic tool in 

biomedicine the appropriate strategy to load the payload compound or species to 

the particle has to be chosen carefully (Cao-Milán & Liz-Marzán 2014). 

Both chemical and physical bonding interactions can be involved in molecular 

attachments to the gold surface of the HNPs used in this study (Figure 50): such 

interactions between the gold HNP surface and payload molecules may be 

achieved via chemisorption of thiol derivatives, electrostatic attraction between two 

differently charges species, hydrophobic attraction between the particle surface 

and the payload molecule and dative covalent bonding between electrons on the 

gold surface and sulfur atoms within the molecule ( Day et al. 2010; Jazayeri et al. 

2016). 
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Figure 50: Interactions between gold nanoparticle surfaces and molecules A) a 

dative covalent binding, B) ionic interaction, C) hydrophobic interaction  

 

 Lipoic acid 3.4.1

α-Lipoic acid 95, also known as thioctic acid, is a naturally occurring compound. 

Lipoic acid is synthesised enzymatically from octanoic acid in the mitochondria but 

it can also be acquired from nutritional sources. It has been found to accumulate in 

many tissues for a short period of time. The compound plays an important role in 

energy metabolism as it acts as a critical cofactor for the α-ketoacid 

dehydrogenase enzyme located inside the mitochondria. However, evidence has 

been shown that lipoic acid from dietary sources may not act as a metabolic 

cofactor. 
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Lipoic acid from dietary supplement is thought to trigger key biochemical 

processes which can lead to a potential therapeutic effect. For example, in 

addition to the antioxidant effect of lipoic acid the compound has been described 

as part of a regime for controlling diabetes and as an aid to improve age-

associated cardiovascular, cognitive, and neuromuscular deficits. It has also been 

shown to act as a modulator of various inflammatory signalling pathways ( Packer 

et al. 1995; Biewenga et al. 1997; Shay et al. 2009; Vallianou et al. 2009; Gorąca 

et al. 2011). 

 Lipoic acid coupling to gemcitabine 3.4.2

Synthesis of cytidine analogues 96 and 97 was used as a model prior to the actual 

reaction of gemcitabine 7 with lipoic acid 95. The result of the reaction of cytidine 8 

with lipoic acid 95 in the presence of a coupling agent was not fully characterised 

but the TLC showed three spots which had different Rf values than those 

corresponding to the starting materials. Upon separation products were identified 

using NMR spectroscopy which gave a preliminary indication of the position where 

the lipoic acid substituent had attached to cytidine 8: one product had a substituent 

on the primary amine 96 and another had the substituent attached to the primary 

alcohol of the ribose residue 97 (Scheme 9). 
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Scheme 9: Reaction between cytidine and lipoic acid 

 

Following the reaction of cytidine 8 with lipoic acid 95 the same conditions were 

employed for the reaction of gemcitabine 7 with lipoic acid 95. By using the same 

reagents and conditions only one product 98 was formed, as indicated by TLC and 

the NMR spectrum of the product obtained after chromatography. 

 

Scheme 10: Reaction between gemcitabine and lipoic acid. 

 



116 
 

 Characterisation of gemcitabine–lipoic acid derivative 3.4.3

The goal of this reaction was to synthesise a prodrug of gemcitabine by coupling it 

with a lipoic acid residue to give the corresponding lipoamide. It was assumed that 

the reaction would yield a mixture of products as was observed in the cytosine 

model, i.e. substitution on either the primary amine and/or the primary hydroxyl of 

gemcitabine. This seemed a reasonable expectation since the gemcitabine was 

reacted without any prior protection of functional groups to avoid any unwanted 

products, a decision driven by a desire to remove any unnecessary steps from the 

synthetic strategy. Surprisingly, a single product was indicated by the 

spectroscopic data and following thorough characterisation of the product it was 

determined that the site of coupling of the lipoic acid residue to gemcitabine was 

the primary amino group attached to the pyrimidine moiety of gemcitabine 

(compound 98) 
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 1H NMR spectrum of 98 3.4.3.1

The 1H NMR spectrum (Figure 51) of 98 (400 MHz DMSO-d6, 25 ̊ C) showed the 

following peaks: δ= 11.03 (s, 1H, a), 8.27 (d, 1H, b), 7.30 (d, 1H, c), 6.36 (d, 1H, 

d), 6.20 (t, 1H, e), 5.35 (t, 1H, f), 4.20 (m, 1H, g), 3.91 (m, 1H, h), 3.82 (m, 1H, i), 

3.65 (m, 2H, j), 3.18 (m, 2H, k), 2.44 (m, 3H, l, m), 1.93 (m, 1H, m), 1.68 (m, 1H, 

n), 1.25 (m, 1H, n), 1.58 (m, 2H, p), 1.39 (m, 2H, o) ppm. 

Comparing the data acquired for 98 with 1H NMR data for the gemcitabine 7 

starting material, the pyrimidine protons (b and c) had shifted from 8.19 (d 1H), 

6.29 (d 1H), for gemcitabine hydrochloride to 8.27 (d [b], 1H), 7.30 (d [c], 1H) for 

98 (Figure 52). These findings were the first indicator of lipoic acid coupling to the 

pyrimidine part of gemcitabine. 
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Figure 52: 1H NMR spectrum of gemcitabine HCl (A) and GL pro-drug 98 (B) in 

DMSO-d6 carried out using 400MHz NMR at 25 °C 
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 13C and DEPT-135 NMR Spectrum of 98 3.4.3.2

13C NMR detects carbon nuclei. Distortionless Enhancement of Polarisation 

Transfer (DEPT) is another 13C NMR experiment in which carbon nuclei may be 

differentiated based upon their substitution. In a DEPT-135 experiment the spectra 

shows the CH3 and CH signals above the base line but the -CH2- signals appear 

inverted below the base line and quaternary carbons are not visible using this 13C 

NMR experiment. Therefore, DEPT-135 can be used to confirm the number of 

hydrogens attached to carbons within a compound (Loudon 2002b). 

Figure 53 and Figure 54 show the 13C and DEPT-135 NMR data acquired for 

compound 98: aliphatic hydrocarbons (-CH2-) appear between 25 – 72 ppm with 

aromatic carbons from the pyrimidine group between 122 – 138 ppm. The amide 

(N-C=O) groups were observed at 174 ppm. The DEPT-135 spectrum (Figure 54) 

showed that the -CH2- groups present in the lipoic acid residue were inverted, 

between 25 – 40 ppm, and the quaternary carbons, for example the carbonyl peak 

from the amide (174 ppm) had disappeared. 
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Figure 53: 13C NMR spectrum of 98 in DMSO-d6 carried out using 400MHz NMR 

at 25 °C 
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Figure 54: DEPT 135 NMR spectrum of 98 in DMSO-d6 carried out using 400MHz 

NMR at 25 °C 
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 Two-dimensional NMR spectrum of 98 3.4.3.3

Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) is an 

accustomed method of (NMR) spectroscopy measurements which provide data 

plotted in two frequency axes rather than one. 2D NMR afford additional 

information about a molecule in addition to the one-dimensional NMR spectra and 

are particularly beneficial in molecule structure determination, typically for 

molecules that are too complicated to work with using one-dimensional NMR (Aue 

1976; Ernst et al. 1987). 

Heteronuclear single-quantum correlation spectroscopy (HSQC) experiment 

(Figure 55 and Figure 56) which correlate 1H NMR with the DEPT-135 of 

compound 98, is just confirming the data acquired by both the 1H NMR and 13C, 

DEPT 135. 

Heteronuclear multiple-bond correlation spectroscopy (HMBC) (Figure 57) detects 

heteronuclear correlations over longer ranges of bonds (about 2-4 bonds). 

HMBC experiment was selected to be the one which could show the site of 

coupling of lipoic acid to gemcitabine (the primary amine site of gemcitabine). The 

data in (Figure 57) show the assignment of the singlet at δ= 11.03 (a) relation to 

the peak at 96 which belongs to the pyrimidine carbon atom next to tertiary amine 

(e) which could serve as strong evidence of the site of coupling. 

 



124 
 

 

Figure 55: HSQC NMR spectrum of 98 in DMSO-d6 carried out using 400MHz 

NMR at 25 °C, showing CH and CH3 
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Figure 56: HSQC NMR spectrum of 98 in DMSO-d6 carried out using 400MHz 

NMR at 25 °C, showing CH2 
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Figure 57: HMBC NMR spectrum of 98 in DMSO-d6 carried out using 400MHz 

NMR at 25 °C 
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 Mass spectrometry analysis of gemcitabine-lipoic acid prodrug 98 3.4.3.4

Mass spectrometry applied in the field of analytical chemistry as a tool to 

characterise chemical (after ionizing them) according to their mass/charge ratio. 

Compounds masses measurement by mass spectrum is represented as a plot of 

ion signal to define the mass and hence to interpret the chemical structure. 

The typical procedure of mass spectroscopy involves ionisation of the sample by 

bombarding it with electrons and then sorting the resulting charged fragments 

according to their mass/charge ratio by subjecting them to an electrical or 

magnetic field (Hoffmann & Stroobant 2007). 

Mass spectrometry of the synthesised GL prodrug was acquired from NMSF 

(EPSRC National Mass Spectrometry Facility). The relevant area of the resultant 

spectrum is shown in (Figure 58). The formula mass of GL prodrug is 451.51 

g/mol, and the most abundant peak occurs at an m/z value of 452.112 which is the 

mass/charge of a protonated (M+H+) form of GL prodrug 98. 
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Figure 58: Mass spectrum of gemcitabine-lipoic acid (GL) prodrug 98 
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 Scaling up the synthesis of prodrug 98 3.4.4

The reaction conditions employed for the coupling of gemcitabine 7 to lipoic acid 

95 were effective when the reaction was undertaken at a very low scale. However, 

the capricious yields obtained, often as low as 5% meant there was a great need 

to scale the reaction up in order to have a sufficient amount of the product in hand 

in order to be able to undertake the full battery of experiments with the hybrid 

nanoparticles later on in the project. 

A scaled-up reaction was designed and conducted following the same procedures 

as applied for the small-scale synthesis of the prodrug 98 but unexpectedly no 

reaction was observed even though the reaction was monitored carefully by TLC 

and NMR spectroscopy. This reaction was repeated a number of times with the 

same outcome, no reaction observed and isolation of the starting materials. 

 Attempts to scale up the synthesis of prodrug 98 3.4.4.1

A number of other coupling reactions were designed utilising different strategies 

and performed in an attempt to isolate the product in a good yield but unfortunately 

not one of the reactions succeeded. These experiments focussed solely on 

obtaining compound 98 rather than trying to discover and isolate any other of 

products from the coupling of lipoic acid 95 to a hydroxyl group of gemcitabine. 

Methods for formation of amide bonds using coupling agents have been reviewed 

(Albericio 2004; Montalbetti & Falque 2005; Valeur & Bradley 2009) and a 

significant number of these methods were used in small scale experiments in 

order to find a method which gave the highest yield. These attempts were in 
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addition to the initial attempts that had been tried to optimise the simple protocol 

applied originally in the synthesis of 98. 

Unfortunately, all the alternative protocols used either gave no reaction or yielded 

a very small quantity of a mixture of compounds which were difficult to purify. 

Efforts were divided into three broad strategies, the first being a one-pot method 

where the reactants are combined with the coupling reagents in one step. The 

second method focused on the prior protection of the reactive hydroxyl groups in 

the gemcitabine structure by selectively adding Boc groups to get the advantages 

of dealing with 3′, 5′-O-Bis Boc gemcitabine which is highly soluble in a variety of 

organic solvents (Guo & Gallo 1999). The third method was to pre-react lipoic acid 

with thionyl chloride or N-hydroxysuccinamide before further reaction with 

gemcitabine. 

Figure 59 summarises the methods applied to obtain the prodrug 98. It should be 

noted that each of these reactions were attempted a number times and using 

slightly different conditions in order to eliminate as many variables as possible. 
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Figure 59: Schematic presentation of failed coupling attempts of lipoic acid and 

gemcitabine  
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It became clear from these numerous attempts to tackle the problem of low yield 

that obtaining a sufficient amount of prodrug 98 for further conjugation and release 

studies with HNPs as well as in vitro biological studies would be challenging. 

The focus then returned to the protocol used for the small-scale synthesis of 

compound 98. It was deduced that a step-wise addition of DCC to a solution of 

lipoic acid and waiting for a specific time to allow preformation of the acid-

carbodiimide adduct intermediate was essential before addition of gemcitabine to 

the reaction mixture (Figure 60). The timing is critical in this process, as are 

anhydrous reaction conditions, but this proved to be the solution for the scaling up 

issue. This deduction was based upon the observation of a white precipitate from 

reaction of lipoic acid with DCC prior to addition of gemcitabine. Formation of this 

adduct is essential to form the prodrug 98 and further optimisation finally delivered 

a protocol that gives a good yield of the desired product 98, which is consistently 

>40 %. Also, the yield of the expected products from reaction with the unprotected 

primary hydroxyl groups of gemcitabine did not increase and the desired product 

could be isolated readily. In summary, for the large-scale synthesis of prodrug 98 

the key consideration is the time required to form the intermediate shown in 

(Figure 61)prior to the coupling with gemcitabine. 
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Figure 60: proposed mechanism of lipoic acid coupling to gemcitabine using DCC 

as coupling agent 

 

 

Figure 61: proposed structure of lipoic acid derivative prior to being coupled to 

gemcitabine 
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 Conclusion 3.5

The synthesis of a prodrug derived from the reaction of gemcitabine with a 

spermine derivative was not successfully completed due to a series of difficult 

synthetic and purification steps. This remains a worthwhile challenge to face 

because the hypothesis is sound but the execution requires further investigation. 

Synthesis and characterisation of a prodrug of gemcitabine 98 was successfully 

completed. Compounds bearing thiol or disulfide bonds can bind to gold 

nanoparticles by means of dative covalent bonds, a covalent bond in which one 

atom donates the electrons to be shared between the two atoms involved. The 

presence of disulfides on prodrug 98 may allow the formation of a dative bond with 

the gold surface of hybrid nanoparticles (Figure 62). The next task involved 

assessing the attachment of prodrug 98 to the hybrid nanoparticles and to test the 

drug release rates from the formulation, leading ultimately to an investigation of 

the impact of the formulation on cell proliferation. 
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Figure 62: theorotical imagination of gemcitabine-lipoic acid prodrug coupling to 

the surface of the hybrid iron oxide core gold shell nanoparticles 
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4 CHAPTER 4: SYNTHESIS AND 

CHARACTERISATION OF HYBRID 

NANOPARTICLES AND GL PRODRUG 

RELEASE PROFILES 
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 Background 4.1

The heterogeneous nature of cancer together with the common limitations of 

nearly all current cancer treatments, particularly the narrow patient population 

range in which such drugs are effective, mean that cancer remains a challenging 

disease to treat. For example, gemcitabine 7 is only effective in less than 25% of 

pancreatic cancer patient (Burris et al. 1997). Additionally, the effects of 

treatments might be confined to a certain stage of the disease which necessities 

the idea of combining diagnosis and treatment in one effective system. The term 

“theranostic” is used to describe agents with dual diagnostic and therapeutic 

abilities; theranostic might bring more promise to improve patient prognosis (Xie et 

al. 2010; Xie & Jon 2012). 

Many materials have been investigated to explore their potential as imaging or 

therapeutic agents with many nanoparticulate systems being aimed towards the 

diagnosis or treatment of cancer (Nune et al. 2009). The combination of imaging 

and therapy in nanoparticle systems requires sufficient accumulation of such 

agents in diseased areas in order to overcome common specificity problems 

associated with chemotherapeutic agents and to achieve effective cancer 

treatment (Xie et al. 2010). 

Theranostic nanoparticles, as the name indicates, are nano-sized particle systems 

designed to have diagnostic and therapeutic abilities, hopefully to provide more 

patient specific and tailored disease management. Ideal criteria for theranostic 

nanoparticles includes: being biologically safe, the ability to accumulate in the 

chosen area of interest, have the ability to carry and deliver the requisite amount 



138 
 

of drug(s) to the site of action without affecting the nearby organs, detect and 

report disease characteristics and be able to be cleared or metabolised by the 

body into a safe form (Xie et al. 2010; Jokerst & Gambhir 2011; Chen et al. 2014). 

Despite the fact that several potential theranostic nanoparticles had been 

synthesised and tested for cancer therapy none of them meet all the required ideal 

criteria (Xie et al. 2010; Lammers et al. 2011; Chen et al. 2014). 

Nanoparticles with sizes ranging from 10-200 nm are favourable for active cellular 

uptake, high drug loading and specific targeting to the tumour, either through 

passive or active targeting (Duncan 2003; Davis et al. 2008). 

Among all the physicochemical properties of nanoparticles, including shape, size 

and surface charge, the size of nanoparticles has a significant contribution to the 

ability of the particles to penetrate tumour tissues and being taken up and cleared 

by cells. The size is also the main regulator of nanoparticle bio-distribution inside 

the body and hence on the overall therapeutic effects (Tang et al. 2014). 

Most approved anticancer nanomedicines comprise nanoparticles in the size 

range between 100-200 nm (Uster et al. 1998; Gradishar et al. 2005). Smaller 

sized anticancer nanomedicines have shown higher therapeutic effects in vivo, 

especially nanoparticles with 50 nm diameter (Cabral et al. 2011; Tang et al. 

2014). Very small nanoparticles (< 2 nm) and relatively small nanoparticles (<10 

nm) were shown to travel freely into tumour tissues and being cleared rapidly into 

the blood stream without effective accumulation inside the tumour (Matsumura & 

Maeda 1986; Dreher et al. 2006). 
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The optimal size range of nanoparticles intended to be used for cancer treatments 

should also consider both renal clearance (renal clearance threshold is<10–15 nm 

(Choi et al. 2011; Shilo et al. 2012)) and the interstitial/lymphatic clearance (<20 

nm) (Moghimi et al. 2005). 

A study by Tang et al (2014) demonstrates that 50 nm diameter nanoparticles 

show the highest tumour retention time: they compared the use of 20 nm, 50 nm 

and 200 nm diameter silica particles as drug carriers for breast cancer treatments. 

The tumour retention time observed in the study was used as a parameter to 

reflect the deep tumour penetration, nanoparticle uptake by cancer cell, the rate of 

nanoparticle clearance from tumour tissues and, consequently, the anticancer 

efficacy (Tang et al. 2014). 

As described before in chapter one, passive tumour targeting by nanoparticulate 

systems is thought to be due to the enhanced permeability and retention effect 

(EPR), in which nanoparticle drug carrier systems, including liposomes and 

polymeric micelles, tend to be accumulated in the tumour tissues more 

preferentially than normal tissues because of the undeveloped “leaky’’ tumour 

blood vessels and also due to the absence of lymphatic drainage inside the 

tumour. The EPR phenomenon (Figure 13) leads to nano-sized particles being 

absorbed and preserved within the target cells (Matsumura & Maeda 1986). 
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Figure 63: Diagram explaining EPR criteria of tumour vasculature 

 

The differences between the blood vessels within a solid tumour and normal 

tissues in terms of both their physiological and morphological character has been 

examined and described ( Ruoslahti 2002; Bae et al. 2011; Jain 2012). Due to the 

rapid angiogenesis in cancerous tissues an irregular blood vessel arrangement 

results when compared to the structured vasculature of normal tissues (Morikawa 

et al. 2002; Campbell 2006). Additionally, the permeability of the tumour 

vasculature, the gap size in the tumour vessel wall is remarkably higher than in 

healthy tissues. The rate of endothelial cell growth is also higher than in healthy 

tissues (Yuan et al. 1995). 

Furthermore, retention of accumulated nanoparticles within the tumour tissues is 

observed because of the absence of a lymphatic system which is normally present 

for drainage of macromolecules in normal tissues (Peer et al. 2007). 
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As a result, the EPR effect provides a passive way of nanosystem accumulation 

and retention permitting potential effective anticancer therapy with minimum drug 

toxicity (Bae et al. 2011). 

 Hybrid iron oxide core gold shell nanoparticles (HNPs) 4.1.1.1

The hybrid nanosystem used in this present study is composed of both gold as the 

outer shell and iron oxide as a core and which may hold significant potential as a 

drug delivery vehicle (Barnett et al. 2013; Hoskins et al. 2012): The magnetic 

character of the iron oxide core permits imaging and potential guiding of the hybrid 

system together with the advantages of the gold shell which can be exploited for 

heating and the potential to be loaded with a drug, either by electrostatic 

interaction or by utilising the well described gold-thiol interaction. 

Iron oxide metal nanoparticles have high magnetic character and a surface able to 

be functionalised by several biologically useful agents; the targeting of diseased 

tissues by magnetic iron oxide nanoparticles has been reported using 

functionalisation of nanoparticle surfaces with antibodies, nucleosides, proteins 

and enzymes (Peng et al. 2008; Hwu et al. 2009; Nune et al. 2009). 

Surface coating of nanoparticles has been shown to alter the in vivo behaviour of 

the nanoparticles: many nanoparticle technologies use poly ethylene glycol (PEG) 

to prolong circulation times in the blood, reduce uptake by the reticuloendothelial 

system (RES), increase the circulation half-life and improve accumulation in target 

tissues.(Nune et al. 2009). Polymer coating of iron oxide nanoparticles using 

dextran and poly(ethylenimine), for example, has been shown to improve 

biocompatibility and stability (Sun et al. 2008; Nune et al. 2009; Karimazadeh et al. 
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2017). Poly (ethylenimine) is a polymer containing multiple amino groups each 

separated by two carbon atoms (Figure 64). Poly(ethylenimine) has a poly-cationic 

character which makes it suitable for coating iron oxide nanoparticles to provide 

both the advantage of preventing the iron oxide core from being aggregated into 

large particle and providing a functional surface for a gold seed to be settled on to 

the surface of the iron oxide core. 

 

 

Figure 64: chemical structure of poly(ethyleneimine) polymer; a: repeating unit of 

poly(ethylenimine) polymer; b: typical branched poly(ethylemimine) fragment 

 

Magnetic resonance imaging (MRI) of iron oxide nanoparticles is a non-invasive 

technique used routinely in clinical medicine for imaging the function and structure 

of tissues. MRI relies on the difference in behaviour of protons in the presence and 

absence of an applied magnetic field and within this field the iron oxide 

nanoparticles have a high saturation magnetisation and increased loss of 

magnetisation when the magnetic field is removed (Nune et al. 2009). Iron oxide 
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nanoparticles are associated with significant advantages as a contrast agents 

because of their biocompatibility and high sensitivity in low to moderate 

concentration (Bellin 2006; Jun et al. 2008). 

Thermal ablation of cancerous tissues using gold nanoparticles as a source of 

heat after irradiation by near infrared laser light is an almost non-invasive 

technique which is easy to apply with high potential ability to kill malignant tissues 

in vital regions, especially when surgical removal is not a choice (Vigderman & 

Zubarev 2013; Mocan et al. 2016). Cell death following irreversible cellular 

damage may eventually occur when tissue is heated to 42 °C (Cobley et al. 2010). 

Gold nanoparticles have the ability to convert the absorbed laser light into heat 

and, consequently, an increased temperature will result in the surrounding tissues 

where the nanoparticles are located. Laser irradiation is essential for tissue 

penetration during photothermal ablation procedures in vivo (Liu et al. 2008; Guo 

et al. 2013). A temperature of up to 80 °C has been recorded for gold 

nanoparticles after light absorption (Huang et al. 2006; Cai et al. 2008). The ability 

of gold nanoparticles to produce heat following light irradiation and the cell death 

observed subsequently is due to the basic physical properties of gold in response 

to light exposure. This behaviour is known as surface plasmon resonance (SPR). 

SPR happens when a gold particle is exposed to light at a specific wave length 

and free electrons on the surface of the particles start to oscillate in response to 

the oscillation of the electromagnetic field of the light. Electron oscillation on the 

particle surface causes a charge separation and hence dipole oscillation along the 

electrical field of light. The SPR intensity and wavelength is affected by particle 
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shape, size and other factors that might affect the electron density distribution on 

the surface of the particles (Huang & El-Sayed 2010). 

Gold nanoparticles have been investigated in diverse areas including drug delivery 

(Cai et al. 2008). A heat triggered release study of a drug payload using HNPs as 

a Nano-carrier benefiting from the advantages of deep tumour penetration by 

nanoparticles aiming to increase the drug efficacy highlights the potential use of 

HNPs as thermal switches in heat triggered drug delivery (Curtis et al. 2015). The 

challenges highlighted by the Curtis et al. (2015) study of the HNPs as a thermally 

triggered system for targeted drug delivery, hypothesised the use of a heat 

responsive linker that holds the drug to the gold surface of the HNPs. The distance 

of the thermal labile linker from the gold surface and the heat control of gold 

surface to provide drug release before cell damage (Curtis et al. 2015). 

 Drug-nanoparticle formulation 4.1.1.2

A dumbbell shape nano-sized system in which cisplatin was coupled to a gold 

surface and guided by an antibody (HER2) attached on the surface of the 

accompanying iron oxide part of the system has been used as a drug delivery 

vehicle (Xu et al. 2009). The system has the advantages of multiple functionality 

and a diversity of ligands available which can act independently. The cisplatin 

release profile from the nanocomposite to the external environment showed that a 

low percentage of the drug was released from the nanosystem in the first two 

hours. Release increased when the pH was similar to the endosome/lysosome 

environment (low pH), demonstrating that the drug release would be enhanced 

after internalisation of the nanocomposites into the cells. The cell viability tests for 
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the drug-nanocomposite system, cisplatin, and control were compared which 

indicated that the cytotoxicity of the drug-nanocomposite system was greatly 

increased compared to the free drug (Xu et al. 2009; Leung et al. 2012). 

Clinical trials using nanoparticles, including colloidal gold as therapeutic agents for 

pancreatic cancer treatment, have shown that nanoparticles in conjunction with 

chemotherapeutic agents can improve the efficacy of the anticancer agents by 

increasing the delivery, cellular targeting and also reducing associated adverse 

effects because nanoparticles have the ability to overcome some of the difficulties 

faced by conventional chemotherapeutic agents (Au et al. 2016). 

In drug delivery approaches utilising nano-sized systems as a carrier, the drugs 

are either encapsulated inside or loaded on the surface of the nanoparticles. 

Regarding the iron oxide core gold shell hybrid nanoparticles it has been shown by 

Bhadra et al (2002) and Jokerst et al (2011) that this kind of nanoparticle coated 

with PEG has a chance to be an effective drug delivery system as it has a longer 

blood circulating period compared with conventional therapies (Bhadra et al. 2002; 

Jokerst et al. 2011). 

 Aim 4.2

The aim of the following study was to synthesise Hybrid iron oxide core gold shell 

nanoparticles (HNPs). Characterisation of the particulate species was performed 

at each step of the synthesis by determining the size and charge using Zeta 

potential measurements, the metal content of the HNPs by using ICP-OES, the 

UV/visible light absorbance of the metal particles by using UV/Vis. spectroscopy 



146 
 

and the shape and final size of the HNPs by using transmission electron 

microscopy (TEM). 

The subsequent aim was to study the interaction of gemcitabine analogue-lipoic 

acid (GL) prodrug 98 with the surface gold of the HNPs with and without a thiol 

capped polyethylene glycol (Thiol-PEG) present. Subsequent investigations into 

the potential for the nanoparticulate formulation to act as a pH and/or heat 

responsive drug delivery system in vitro required prodrug loading and drug release 

studies to be undertaken, monitored by HPLC.  

 Materia and methods 4.3

 Materials used 4.3.1

The following tables includes all the material used in the synthetic and 

characterisation procedures for HNPs as well as materials used in the following 

loading and release study of the GL prodrug onto the gold surface of the HNPs. 

Table 2: Materials used in synthesis and characterisation of gold iron oxide hybrid 

nanoparticle 

Material Suppliers 

Absolute ethanol Sigma-Aldrich Co., UK 

Chloroform Sigma-Aldrich Co., UK 

Copper grid Agar Scientific Co., UK 

Formvar Agar Scientific Co., UK 

HAuCl4 Sigma-Aldrich Co., UK 
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Hydrochloric acid Sigma-Aldrich Co., UK 

Hydroxyl amine Sigma-Aldrich Co., UK 

Iron (II) sulfate ACROS Organics Co., UK 

Nitric acid Sigma-Aldrich Co., UK 

PEI (Mw = 2000 g/mol) Sigma-Aldrich Co., UK 

PEI (Mw = 750000 g/mol) Sigma-Aldrich Co., UK 

Potassium nitrate Sigma-Aldrich Co., UK 

Sodium borohydrate ACROS Organics Co., UK 

Sodium hydroxide Fisher Scientific Co., UK 

Sulfuric acid Sigma-Aldrich Co., UK 

 

 

Table 3: Materials used in the study of GL prodrug loading on to HNPs and 

gemcitabine release profile  

Material Suppliers 

RPMI media Fisher Scientific Co., UK 

Hydrochloric acid Sigma-Aldrich Co., UK 

Sodium hydroxide Fisher Scientific Co., UK 

Acetonitrile Fisher Scientific Co., UK 

Dialysis Bag Medicell Co., UK 

Thiolated polyethylene glycol Sigma-Aldrich Co., UK 
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 Methods 4.3.2

 Synthesis of iron oxide core 4.3.2.1

To a stirring solution of iron sulfate (3.89 g) in sulfuric acid (20 mL, 0.01 M) a 

solution of sodium hydroxide (1.03 g) and potassium nitrate (1.82 g) previously 

dissolved in deionised water (180 mL) at 90 C̊ and bubbled with nitrogen gas for 1 

hr were added and the resulting mixture was stirred at 90 ̊C for 24 hrs under 

nitrogen (Sugimoto & Matijević 1980; Goon et al. 2009; Hoskins et al. 2012). The 

product of this reaction was separated magnetically using a strong magnetic field 

applied from outside the reaction flask to separate the iron oxide from the other 

reaction components. The iron oxide particles were then washed with deionised 

water six times successively and re-suspended in 15 mL of deionised water for the 

next step synthesis. 

 Iron oxide core coating 4.3.2.2

Poly(ethyleneimine) (PEI) with a molecular weight equal to 750 K g/mol was used 

in this step to coat the iron oxide core: a 50 mL solution of 5 mg/mL of PEI in 

deionised water was prepared and mixed with 5 mL of iron oxide nanoparticle 

(resulting from the previous step (4.3.2.1) suspension and sonicated for 1 hr using 

the Soniprep 150 Plus ultra-sonic disintegrator. The particles were then 

magnetically separated and washed successively (6 times 50 mL) with fresh 

deionised water to remove the excess of PEI. The particles were re-suspended in 

5 mL deionised water (Goon et al. 2009; Hoskins et al. 2012). 
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 Gold seeding step 4.3.2.3

Gold seed nanoparticles were prepared by reducing chloroauric acid (HAuCl4) to 

small sized colloidal gold: a 4 % solution of HAuCl4 was prepared and 375 µL of 

this solution was taken and mixed with sodium carbonate (500 µL, 0.2 M) in a 200 

mL beaker filled with 100 mL ice cold deionised water. The solution was stirred for 

10 min at this temperature before sodium borohydride (5 mL, 0.5 mg/mL) was 

added and the solution kept stirring for another 10 min. 

2 mL of a suspension of PEI coated iron oxide nanoparticles (product of step 

4.3.2.2) was stirred with 90 mL of the gold seed solution for 2 hrs at room 

temperature. The magnetic particles were magnetically separated and washed 

successively (6 times 50 mL deionised water) and re-suspended in 5 mL deionised 

water (Goon et al. 2009; Hoskins et al. 2012). 

The magnetic particles with the gold seeds attached were then treated with a 

solution of poly(ethylenimine) 2000 g/mol (20 mL, 1 mg/mL) for 10 min to aid 

stabilising the gold seeds on the surface of the iron oxide nanoparticles (Hoskins 

et al. 2012). The particles were then magnetically separated and washed 

successively (6 times 50 mL deionised water) and re-suspended in 5 mL deionised 

water. 

 Gold coating (synthesis of HNPs) 4.3.2.4

Gold shells were applied on top of the earlier coated iron oxide core obtained from 

the previous step (4.3.2.3). A mixture of a suspension of coated iron oxide core (2 

mL) and sodium hydroxide solution (110 mL of 0.01 M) was stirred at 60 ̊C. 

HAuCL4 solution (0.5 mL of a 1% solution) was added followed by hydroxyl amine 
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solution (0.75 mL, 0.2 M) and the mixture was kept stirring for 10 minutes. Four 

successive iterative reductions of gold were conducted by addition of HAUCl4 

(0.5 mL of a 1% solution) and hydroxyl amine (0.25 mL, 0.2 M) each time with 10 

minutes time intervals (Goon et al. 2009; Hoskins et al. 2012). 

An extra 0.5 hr of stirring is allowed before magnetic separation and washing (6 

times 50 mL deionised water) of the final product is performed. The resulting 

nanoparticles were re-suspended in 10 mL deionised water. 

 Characterisation of hybrid nanoparticles 4.3.2.5

Characterisation of the gold shell-iron oxide core nanoparticles was undertaken 

using several techniques including: inductively coupled plasma-optical emission 

spectroscopy (ICP/OES), UV/Visible spectroscopy, photon correlation 

spectroscopy and TEM imaging. 

 Characterisation using ICP/OES spectroscopy 4.3.2.6

Inductively coupled plasma-optical emission spectroscopy (ICP/OES) was used to 

determine the amount of both gold and iron in nanoparticle samples. The 

instrument used was an Optima 7000 DV ICP-OES (PerkinElmer, Wokingham, 

UK). 

An acid digestion was carried out on the samples using a mixture of concentrated 

nitric acid and hydrochloric acid (1:1) with heating to 100 °C (1:5 sample:acid 

mixture). The solution was then diluted with deionised water (1:1000) prior to 

analysis. A calibration was carried out using standard iron and gold solutions 

(1000 µg/mL) diluted with deionised water prior to analysis to (10, 5, 1, 0.5, 0.1, 
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0.05 µg/mL). A control sample of deionised water was also run. Gold was 

analysed at a wavelength of 242.794 nm while iron was analysed at a wavelength 

of 261.187 nm. A calibration curve (Figure 65) with a R2 value = 0.999 for gold and 

0.997 for iron was generated and both the gold and iron content of the 

nanoparticles was determined. The concentration of HNPs used in the subsequent 

experments was referred to the concentration of iron content of the HNPs. 
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Figure 65: ICP/OES standard calibration curve for Gold and Iron 
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 Characterisation using UV/Visible spectroscopy 4.3.2.7

Iron oxide nanoparticles, nanoparticles following the gold seed step and the final 

iron oxide core-gold shell hybrid nanoparticles (HNPs) were analysed using a 

Varian Cary 50 Bio Uv-Vis spectrophotometer over a wavelength range of 300-800 

nm in order to determine the ƛmax of the HNPs within this range. UV Peak 

absorbance was recorded for the aqueous samples in deionised water using 

quartz cuvettes. Uv-Vis absorption spectra were recorded between 300-800 nm, 

all readings were done in triplicate at room temperature and recorded as an 

average value (Hoskins et al. 2012). 

 Characterisation using photon correlation spectroscopy and zeta 4.3.2.8

potential measurement 

A diluted solution of nanoparticles in deionised water was prepared and sonicated 

in an ultrasonic bath prior to analysis. Hydrodynamic diameter, polydispersity 

index (PDI) and zeta potential measurements was performed using PCS on a 

Zetasizer Nano-ZS, Malvern Instruments, UK. The measurements were conducted 

at each step of the nanoparticle synthesis, all measurements were conducted in 

triplicate at 25 C̊ and an average value was determined. 

 Characterisation using Transmission electron microscopy (TEM) 4.3.2.9

Images of the nanoparticle products of each step in the synthesis of HNPs were 

obtained via using a JEOL 1200 EX-FDL5000 microscope (Jeol, Japan) 

transmission electron microscope. Sample preparation included diluting each 

suspension in deionised water and a small amount (10 μL) was dropped onto a 

formvar coated copper grid (previously prepared and dried for this purpose) and 
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allowed to dry at room temperature. The grids were placed into the TEM and 

directly imaged. 

 Loading of GL prodrug onto HNPs 4.3.2.10

Prodrug conjugation to the surface of the HNPs was performed by mixing a known 

amount of HNPs (based on the mass of iron oxide) in 5 mL of deionised water with 

a certain amount of the GL prodrug (prodrug mass was added in different ratios 

starting from 1:1 up to 6:1 prodrug: iron oxide respectively). The mixing was 

continued for 3 hrs at room temperature before the loaded HNPs were 

magnetically separated and washed with deionised water (5 mL). 

The mixing was performed either in the presence of or the absence of different 

concentrations of a thiolated polyethylene glycol. 

A calibration curve for measuring gemcitabine in various concentrations in 

aqueous solution was generated using HPLC (Perkin Elmer Flexar LC 

Autosampler connected to a UV detector set at a ƛmax of 268 nm for the detection 

of GL prodrug XX and gemcitabine (Cavallaro et al. 2006). The mobile phase used 

was acetonitrile:water (1:1 v:v), the flow rate was 1 mL/min and the column used 

was a Pinnacle DB C18 reverse phase column. The mass of the prodrug in the 

“wash solutions” was obtained using the equation of this calibration curve (Figure 

66).  

The amount of the GL prodrug remaining in the wash waste was used to 

determine the amount of GL prodrug loaded on the HNPs by subtracting the 
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amount of GL prodrug 98 in the waste solution from the total amount of the GL 

prodrug used. 

The resulting formulation produced in the presence of thiolated PEG was termed 

PEG GL-HNPs (polyethylene glycol-gemcitabine-lipoic acid prodrug-HNPs). When 

no PEG residues were present the formulation was referred to simply as GL-

HNPs. 

 

 

Figure 66: Graph of the calibration curve for GL prodrug concentration against 

HPLC retention peak area 
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 In vitro drug release in aqueous media 4.3.2.11

A release profile study was conducted in aqueous solution at 20 ̊C by placing GL-

HNPs formulation (2 mL of 500 µg/mL based on the iron oxide concentration of the 

HNPs) into a visking tubing (12-14 KDa) and dialysed against 200 mL of deionised 

water at 20 ̊C.  

At fixed time points (0, 10, 20, 30, 40, 50, 60, 90, 120, 180 minutes and finally after 

1440 minute (24 hrs)) a sample of 1 mL from the exterior solution was taken and 

replaced by 1 mL of deionised water at the specified time point. 

The amount of drug released was analysed by HPLC. The experiment was 

performed in triplicate and the data was expressed by the mean value. 

 In vitro drug release in biological media 4.3.2.12

In vitro study was performed by placing GL-HNPs formulation (2 mL, 500 µg/mL 

based on the iron oxide concentration of the HNPs) into a visking tubing (12-14 

KDa) and dialysed against 200 mL of RPMI media (the pH of the RPMI media was 

adjusted to be 3.6, 5.6 and 7.4 by using concentrated HCl) at 20, 37 and 44 ̊C, at 

fixed time points of (0, 10, 20, 30, 40, 50, 60, 90, 120, 180 minutes and finally after 

1440 minute (24 hrs)). A sample of 1 mL from the exterior solution was taken and 

replaced by 1mL of the same environmental media solution at the specified time 

point. 

The same procedures were repeated using PEG GL-HNPs formulation utilising the 

same pH and heat environments. 
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The amount of drug released was analysed by HPLC. The experiment was 

performed in triplicate and the data was expressed by the mean value. The overall 

number of experiments conducted is explained in Figure 67. 

  

 

Figure 67: Total number of release experiments conducted in in vitro release study  
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 Results 4.4

Characterisation of products from each of the intermediate steps and of the final 

HNPs prepared was undertaken and is described below. 

 Characterisation using UV/Visible spectroscopy 4.4.1

The UV/visible absorbance is regarded as an indicator of successful coating of the 

iron oxide core nanoparticle because of the difference in absorbance pattern 

between gold and iron oxide. Figure 68 shows a comparison between the 

UV/visible absorption spectra of the iron oxide core and the final HNPs, showing 

that the UV absorbance of gold starts to go up from 400 nm to reach the maximum 

absorption at 590 nm while at the same time the iron oxide spectra shows no 

absorbance change at the same wavelength. 

The gold seeded iron oxide nanoparticles are also expected to have a maximum 

absorbance around the highest absorbance of gold seed solution which is at 480 

nm (Hoskins et al. 2012). However, the data shows similar absorbance to the iron 

oxide core. The absence of a similar pattern of absorbance between the gold seed 

solution and the gold seeded on the surface of PEI coated iron oxide core was 

mainly due to the difference in concentration of gold seed within the two solutions. 
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Figure 68: UV/visible spectra comparison between HNPs and iron oxide core 
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the value of the surface charge concomitant with the next two steps of the hybrid 

nanoparticle synthesis (gold seeding and gold coating) which is due to negatively 

charged gold atoms. 

The hydrodynamic radius obtained for the iron oxide core shows a large diameter 

which is due to the magnetic properties of the iron oxide. The diameter was 

dramatically reduced after coating of the iron oxide with PEI polymer which 

confirms the ability of the PEI coating to reduce the aggregation of iron oxide. 

Polydispersity index (PDI) measurements of the nanoparticles showed a 

homogenous distribution of particles within each suspension.  

 

Table 4: Hydrodynamic radius, PDI and zeta potential of nanoparticle solution at 

different step of hybrid nanoparticle synthesis 

Particles Hydrodynamic 

radius/ nm 

PDI Zeta potential/ 

mV 

Iron oxide 1300 - -20.82 

Iron oxide-PEI 
568 0.782  6.93 

Gold seeded PEI 

coated iron 

oxide 

nanoparticles  

635 0.353 -5.8 

HNPs 
303 0.629 -16.2 
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 Characterisation using TEM 4.4.3

Transmission electron microscopy (TEM) imaging provides a detailed picture of 

the nanoparticles where the size and shape of the particles are clearly shown. 

Figure 69 shows the naked iron oxide core where the particles are gathered within 

a colony due to the highly magnetic nature of the particles. The size of the 

nanoparticles seemed to be higher than expected but this is mainly due to a lack 

of clearly individual nanoparticles. The shape of the particles was cubic to 

spherical. 

 

Figure 69: TEM image of iron oxide nanoparticles  
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Figure 70 shows the effective seeding the gold nano-seeds at the surface of the 

PEI coated iron oxide core. The small gold nanoparticles (2 nm) appear to be 

attached to the surface like dots; the picture still shows the particles assembled in 

groups but to a lesser extent than for the uncoated nanoparticles. 

 

Figure 70: TEM image of gold seeded on the surface of iron oxide nanoparticles 

 

Figure 71 shows the final size and shape of the hybrid nanoparticles (HNPs). At 

this stage, single nanoparticles with a defined shape could be seen, which could 

be described as a spherical to star shaped particles. The final size of the particles 

could be identified as being approximately 100 nm. 
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It was claimed that the thickness of the gold surface coat of HNPs measured by 

TEM examination falls within the range of 10-15 nm approximately (Hoskins et al. 

2012). 

  

Figure 71: TEM images of HNPs  
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 Gemcitabine-lipoic acid prodrug loading onto the HNPs 4.4.4

Gemcitabine-lipoic acid (GL) prodrug 98 loading studies on the gold surface of 

HNPs was performed in the presence and absence of thiolated PEG. The data 

acquired was derived from the equation of the calibration curve (y = 13350x + 

35623) (Figure 66) previously generated to link the known prodrug concentration 

and the area under the curve. 

In order to find a clear difference between the retention time of GL prodrug and 

gemcitabine for the subsequent release study, analysis of a solution containing 

known concentrations of both gemcitabine and GL prodrug was conducted. The 

results of this HPLC analysis of gemcitabine and GL prodrug are shown in (Figure 

72). 

The loading capacity of the HNPs was studied by using different ratio of GL 

prodrug to HNPs, the ratio used started from 1: 1 to 6:1 GL prodrug: HNPs was 

used to give the highest loading of 5 mg of GL prodrug to 1 mg of HNPs in case of 

absence of PEG thiol and 2.5: 1 GL: HNPs in case of presence of Peg thiol 

polymer ( 

Table 5). 
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Table 5: The drug loading % for GL prodrug only and GL prodrug + PEG loaded 

HNPs 

 GL prodrug Mass (µg) %Loading 

GL prodrug without 

PEG-Thiol 

25000 96 

GL prodrug with PEG-

Thiol 

25000 50 

 

 

 

Figure 72: Results of a HPLC analysis to determine the relative retention times of 

gemcitabine and the GL prodrug 98  
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 Drug release study 4.4.5

The drug release profile was first determined at 20 ̊C in aqueous media before 

starting to study the effect of heat and different pH environments on the release 

profile of gemcitabine from the PEG GL-HNPs and GL-HNPs formulations. The 

effect of different pH environments using RPMI media (3.6, 5.6 and 7.4) was 

chosen to simulate the biological environment faced by the formulation at the time 

of drug internalisation (Preissler & Williams 1981; Cooper & Hausman 2007). The 

release profile of gemcitabine from the nanoparticulate formulation in water was 

undertaken to compare the effect of cell culture media on the release amount and 

rate. The graph in Figure 73 shows no release of drug at the same pH and 

temperature between the aqueous environment and the cell media; the small % of 

burst release in the first hr of the study is thought to be a false reading because of 

the disappearance of the peak for at the following time point. This is might be 

because of peak interference between loosely bound GL prodrug and 

gemcitabine. 
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Figure 73: Graph show the comparison between release profile of gemcitabine 

from GL loaded HNPs over 24 hrs at pH 7.4 (in water and RPMI serum free culture 

media) at 20 ̊C 
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decreasing pH significantly enhanced the release rate of drug from the non-PEG 

formulation at 20 ºC. 

 

Figure 74: Release profile of gemcitabine from non-PEGylated GL-HNPs 

formulation over 24 hrs at pH 3.6, 5.6 and 7.4 (RPMI serum free culture media) at 

20 ̊C 
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release in the first 3 hrs of study (10.8% and 17.3%, respectively). Again, the PEG 

GL-HNPs formulation showed no release after 24 hrs within the same pH range 

mentioned above. These data suggest that a temperature of 37 ºC triggers the 

release of gemcitabine from the non-PEGylated formulation at pH 7.4 and it also 

increases the rate of release at pH 3.6 and 5.6 significantly but at the same time it 

has  negligible effect on the overall release at pH 3.6 and 5.6 after 24 hrs. 

 

 

Figure 75: Release profile of gemcitabine from non-PEGylated GL-HNPs 

formulation over 24 hrs at pH 3.6,5.6 and 7.4 (RPMI serum free culture media) at 

37 ̊C  
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 In vitro drug release at 44 ̊C 4.4.5.3

Gemcitabine release was analysed at 44 °C, this temperature was used to mimic 

the temperature of the environment surrounding HNPs after laser irradiation with 

near infrared light. These studies were carried out at pH 3.6, 5.6 and 7.4 as 

previously discussed. The graph in (Figure 76) demonstrates the rapid release of 

gemcitabine from the non-PEGylated HNPs formulation when heated to 44 °C.  

Gemcitabine release pattern from non-PEGylated formulation (Figure 76), showed 

a release of 21.9% at pH 7.4, 30.7% at pH 3.6 and a total of 41.1% of gemcitabine 

release at pH 5.6 after 24 hrs. 

A higher release rate of gemcitabine from the non-PEGylated formulation was 

recorded at pH 3.6, 5.6 and 7.4. A burst release was recorded in the first 3 hrs of 

study (29.5%, 37.2% and 18.6%, respectively). 

PEGylated HNPs formulation showed no release after 24 hrs at all the pHs 

mentioned above. 

These data suggest that the temperature increment has the highest effect on the 

release rate of gemcitabine from non-PEGylated formulation at pH 7.4 without 

affecting the overall % released after 24 hrs; both release rate and amount were 

significantly increased by increasing the temperature to 44 °C. 
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Figure 76: Release profile of gemcitabine from non-PEGylated GL-HNPs 

formulation over 24 hrs at pH 3.6, 5.6 and 7.4 (RPMI serum free culture media) at 

44 ̊C  
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 Discussion 4.5

Regarding the synthesis of the hybrid nanoparticles (HNPs), the data acquired 

supports the successful synthesis of the particles. The data generated from the 

surface charge measurements match the expected pattern, from being negatively 

charged particles for the uncoated iron oxide core (especially due to the surface 

associated sulfate (Hoskins et al. 2012)) to the positively charged PEI-coated iron 

oxide core, due to the positively charged amino groups within the PEI structure 

which is wrapping the iron oxide core. Figure 77 shows a suitable extent of particle 

separation as determined by the reduction in hydrodynamic radius. Additionally, 

the opposite charges between the iron oxide core and the PEI polymer favoured a 

good sort of charge-charge interaction. The continued reduction in the recorded 

surface charge value after addition of the small gold seed nanoparticles and after 

the final gold surface application suggests the successful application of both the 

gold seed and the gold outer layer. 

 

 

Figure 77: PEI polymer coating step of the naked iron oxide nanoparticles 
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Another major indication of a successful synthesis of the HNPs is the identification 

of both gold and iron concentration of the final particles: the ICP-OES instrument 

measures the amount of gold and iron in each HNPs patch synthesis would 

provide a strong evidence of presence of both metals in one system, and this is 

ascertain because of the magnetic way of separation and purification utilised 

throughout the whole process of HNPs synthesis (i.e. if the gold was washed out 

(because lacking of magnetic character) it want be available at the time of metal 

concentration measurement). 

UV/Vis spectroscopy data was used to detect the presence of gold on the surface 

of the HNPs. Gold nanoparticles display an optical feature known as surface 

plasmon resonance (SPR) and the SPR wavelength for gold nanoparticles is an 

absorbance in the visible region (500 - 600 nm). The magnitude of the absorbance 

peak and the absorbance shifting was greatly dependent on the size and shape of 

gold nanoparticles (the absorbance wavelength rises with large and irregular gold 

particles) (Huang et al. 2007; Hoskins et al. 2012). 

Finally, the TEM images of the starting, intermediate (gold seeding step) and the 

final HNPs provide a good sign of the successful synthesis. The TEM images also 

provide supporting data for the resulting shape and size of the HNPs: the final size 

of the HNPs appears to be within the range of 100-120 nm and the shape was 

almost spherical as indicated by the image of the HNPs (Figure 71). 

Loading of GL prodrug on the gold surface of the HNPs was confirmed by HPLC 

by determining the amount of the prodrug left over after the loading procedure. 

The loading capacity of the synthesised HNPs was assessed by mixing different 
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ratios of GL prodrug to HNPs and the highest loading capacity was found to be 5 

mg of GL prodrug to 1 mg of HNPs. The difference in loading capacity of HNPs in 

response to the presence of PEG thiol was thought to be due to competition 

between the GL prodrug and PEG thiol for the binding site of HNPs. 

The release profile of gemcitabine from GL prodrug-HNPs formulation was tested 

in serum free culture media (RPMI) at different pH (3.6, 5.6 and 7.4) to give 

conditions similar to the environment faced by the formulation inside the cell 

(endosomal pH 3.6, lysosomal pH 5-6, and blood and intracellular pH 7.4) 

(Preissler & Williams 1981; Cooper & Hausman 2007). 

The effect of heat on the release of gemcitabine from the GL-HNPs formulation 

was assessed: one of the aims of this research programme is to generate a 

thermally stimulated release system. The release profile at normal physiological 

pH and acidic pH environments of endosomal and lysosomal vacuoles was 

summarised. 

The release of gemcitabine from GL-HNPs formulation at pH 3.6 was explained in 

(Figure 78). Both the overall released amount and the release rate are increased 

significantly at 44 ̊C while only the rate of release was affected by increase the 

temperature from 20 ̊C to 37 ̊C. 

Non-PEGylated formulation also showed a biphasic release profile at 44 ºC and 37 

ºC due to an initial burst within 3 hrs, which is followed by a constant release.  
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Figure 78: Release profile of gemcitabine from non-PEGylated GL-HNPs 

formulation over 24 hrs at 20 ̊C, 37 ̊C and 44 ̊C (RPMI serum free culture media) 

at pH 3.6  

The effect of temperature on the release profile of gemcitabine from GL-HNPs 

formulation at pH 5.6 as shown in Figure 79 was that both the overall released 

amount and the release rate increased significantly at 44 ̊C while no significant 

change was recorded by change the temperature change from 20 ̊C to 37 ̊C. 

A continuous phase release profile was noted significantly at 20 ºC and 37 ºC 

while a nearly constant release was achieved after 24 hrs. 
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Figure 79: Release profile of gemcitabine from non-PEGylated GL-HNPs 

formulation over 24 hrs at 20 ̊C, 37 ̊C and 44 ̊C (RPMI serum free culture media) 

at pH 5.6  
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The effect of temperature on the release profile of gemcitabine from the GL-HNPs 

formulation at pH 7.4 is shown in Figure 80. The formulation is stable at 20 ºC (no 

release of gemcitabine was recorded) and similar release profiles were obtained at 

44 ºC and 37 ºC. 

 

Figure 80: Release profile of gemcitabine from non-PEGylated GL-HNPs 

formulation over 24 hrs at 20 ̊C, 37 ̊C and 44 ̊C (RPMI serum free culture media) 

at pH 7.4 
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used during the study. The loss of release of the drug from the PEGylated 

formulation in contrast to the non-PEGylated formulation did not agree with the 

behaviour of this nanoparticulate system observed in a previous study (Malekigorji 

et al. 2017). 

The possible explanation behind the loss of release upon using PEGylated HNPs 

formulation is that the polymer is shielding the prodrug, preventing the relatively 

strong amide bond that links gemcitabine to the lipoic acid residue from being 

directly affected by the low pH and the high temperature conditions.  
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 Conclusion 4.6

The fabrication of the Hybrid iron oxide core gold shell nanoparticles (HNPs) and 

the following conjugation with GL prodrug 98 onto the surface gold was achieved 

successfully; conjugation of GL prodrug 98 onto the HNPs in the presence of PEG 

thiol was achieved but with a significant reduction in loading capacity of the HNPs. 

The dative covalent bond between GL prodrug 98 and HNPs is highly stable and 

cannot be broken with the amount of heat used in this study. Release of 

gemcitabine from non-PEGylated GL-HNPs formulation was time, pH and 

temperature dependent. 

The release of the drug from the GL-HNPs formulation increases when the pH 

becomes similar to the environment in endosome/lysosome pH (low pH). 

Therefore, the release may be accelerated after the intake of the nanosystem by 

the cells through endocytosis.  

A potential clinical benefit has been noticed from the results of the rate of 

gemcitabine release from the GL-HNPs formulation lacking PEG thiol at various 

pH and temperatures.  

The next stage of this study is the observation of uptake and subsequent effects of 

the cell proliferation of pancreatic cancer cells. 
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5 CHAPTER 5: CELL VIABILITY ASSAYS 

OF DRUG- NANOPARTICULATE 

CONSTRUCTS 
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 Background 5.1

Pancreatic cancer remains one of the most serious global health issues despite 

great advances being made in both cancer diagnosis and surgical techniques. The 

disease is significantly aggressive and challenging, the principal problems arising 

from the de novo chemoresistant behaviour of the disease towards cytotoxic 

chemotherapeutic agents and the typically advanced stage of the disease at time 

of diagnosis (Banerjee et al. 2005). 

In an attempt to address the problems associated with pancreatic 

adenocarcinoma, several studies utilising combination therapies comprising of 

different classes of anticancer chemotherapeutic agents have been reported. Such 

studies show a significant increase in patient response rate but the therapies are 

highly toxic and there was no significant added benefit in terms of overall patient 

survival (Hengartner 2000; Arends et al. 2005). 

Cancer in general is a heterogeneous disease and there is a high diversity in 

cancer types with dissimilar histopathology, genetic and epigenetic differences, 

and clinical outcomes, Difficulties in understanding the various forms and stages of 

such neoplastic processes have hindered the creation of novel therapies (Louzada 

et al. 2012, Ferreira et al. 2013). 

The early thought of anticancer drug development was based on the anti- 

proliferative effect of the compounds because of the early recognition of cancer as 

an uncontrolled cell division. Furthermore the main objective of anticancer drugs 

was to reduce tumour size, accordingly murine cancer model were developed and 

utilised for anticancer screening benefiting from the rapidly growing character of 
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the model. In addition, the success acquired by using a murine cancer cell model 

was confined to the rapidly growing tumours only (e.g., lymphomas and childhood 

leukaemia) with little success regarding common solid tumour (e.g., lung and 

breast cancers) because of the slowly growing character of the tumour (Suggitt & 

Bibby 2005; Narang & Desai 2009. 

In the late 1980s, the United States National Cancer Institute (NCI) set an 

anticancer drug screening program in the aim of shifting anticancer drug discovery 

to human solid tumours. This change was based on the relative lack of clinical 

activity of the compounds for the common human adult solid tumours that had 

been screened against leukaemia, as modelled in transplantable murine 

neoplasms (Shoemaker 2006). 

Subsequently, new experimental models for many forms of cancer were 

developed based upon the results of advanced studies of cancer pathobiology 

which had led to a better understanding of anticancer drug screening (Vargo-

Gogola & Rosen 2007). 

Experimental models for the study of cancer which use primary tumours, paraffin-

embedded samples, cancer cell lines, xenografts, tumour primary cell cultures 

and/or genetically engineered mice were developed (Vargo-Gogola & Rosen 2007; 

Louzada et al. 2012; Ferreira et al. 2013). Studies of cancer chemotherapy usually 

utilise one of these models because of practical difficulties and ethical limits to 

undertaking drug testing in animals (Ferreira et al. 2013). Culture of cell lines 

appears as a practical alternative to overcome these ethical and practical 

difficulties and it is also a relatively simple and easy technique to employ. 
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Cancer cell lines are commonly used for research purposes and have proved to be 

an excellent model for the study of the biological mechanisms involved in cancer, 

in addition to providing the facility for high throughput screening for the deduction 

of large number of experimental parameters (Chiellini et al. 2016). 

This chapter describes the preliminary evaluation of the in vitro effects of 

gemcitabine-lipoic acid (GL) prodrug alone and also loaded on to the surface of 

the hybrid iron oxide core gold shell nanoparticles (GL-HNPs formulation), as 

compared to gemcitabine alone. The reduction in cell viability of pancreatic cancer 

cells (BxPC-3 cells) was used as an indicator of the effects of the prodrug and 

formulation. 

 Cell viability assays 5.2

The measurement of cell viability is routinely used for drug screening and toxicity 

testing of chemicals. Such assays play a fundamental role in all forms of cell 

culture and sometimes cell viability tests are the main purpose of the experiment 

(Stoddart 2011). 

Structural integrity of the cell and several cell functions are targets of cytotoxicity 

assays including: enzyme activity, cell membrane permeability, cell adherence, 

ATP production, co-enzyme production, and nucleotide uptake activity. Many 

toxicity assays can be used to correlate cell behaviour to cell number, providing a 

more accurate picture of, for example, anabolic activity (Louis & Siegel 2011). 

There are a wide range of cell viability assays, such as the routine trypan blue dye 

exclusion assay, colony formation method, crystal violet method, tritium labelled 
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drug assay, thymidine uptake method, and the MTT assay which is used for 

counting the number of live cells (Johnson et al. 2013). 

 MTT assay 5.2.1

Active metabolic pathways of viable cells are able to convert the yellow coloured 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye substrate 

into a formazan product which is a purple coloured dye (Figure 81), which has an 

absorbance maximum near 570 nm. Accordingly, dead cells lose the ability to 

metabolise the MTT into formazan, therefore the purple colour formation acts as a 

marker for the viable cells only. Reduction of MTT into formazan is expected to be 

NADH-dependent and because of the involvement of specific mitochondrial 

enzymes in the reduction of MTT dye it has led to the MTT assay being a tool for 

measuring mitochondrial activity (Berridge & Tan 1993; Marshall et al. 1995;   

Berridge et al. 1996). 

Preparation and addition of the MTT solution in a concentration of 0.5 mg/mL is 

followed by an incubation period of 2-4 hrs before recording changes in 

absorbance at 570 nm using a plate reading spectrophotometer. The intensity of 

absorbance, indicating the quantity of formazan produced, is directly proportional 

to the number of viable cells. The formazan dye is an insoluble compound which 

accumulates inside cells and around the cell surface in the culture medium, 

therefore solubilisation of formazan is required prior to recording the absorbance 

readings; DMSO is routinely used for this. 
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Figure 81: NADH-dependent formation of formazan product from MTT 

 

The amount of formazan product formed by cells is dependent on several 

parameters including: MTT concentration, the incubation period, and the number 

and activity of viable cells. The amount of formazan formed is time dependant, in 

that an extended incubation time results in more dye being accumulated. 

However, the effect of time of incubation on the accuracy of measurement is 

limited to a point because of the cytotoxic nature of the MTT which depletes NADH 

from the cell to generate the product. 

In this study, an MTT assay was utilised to investigate the toxicity of GL prodrug 

and GL-HNPs formulation against pancreatic cancer cell line (BxPC-3) and 

comparing them to clinically relevant gemcitabine. 

 

 Trypan blue exclusion and cell counting 5.2.2

Trypan blue is a diazo stain (Figure 82) commonly used for cell counting 

microscopy and to assess cell viability. 
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Figure 82: Structure of trypan blue stain 

Normal live cells with an intact membrane have a clear cytoplasm and are said to 

be colourless under the microscope. Because the cell membrane is a selective 

barrier a stain like trypan blue cannot cross the membrane and stain the cell. 

However, trypan blue can pass through the membrane if the cells are dead 

resulting in blue staining of dead cells (Strober 2015). 

Based upon selective staining of dead cells by trypan blue an exclusion assay can 

be established by subtracting the number of live cells from the total number of 

cells to get the cell viability percentage. Cell counting can be performed either 

automatically using an automated cell counter or manually by visualising the cells 

under a microscope. In this study, cells were incubated with formulation for a 

period of time (24, 48, 72 hrs) and then treated with trypan blue with the ratio of 

1:1 and the number of viable cells was counted using an automated cell counter. 

An exclusion assay is an easy and fast method, the entire procedure for each 

sample to be prepared and analysed takes between 5-10 minutes. The main 

limitations of this technique are the inconvenience of the method for high 

throughput screening because each sample has to set individually, and cell 
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viability is determined indirectly from cell membrane integrity. Therefore, it is 

possible that live cells with an abnormal membrane integrity might be able to 

repair it again, or the cell viability might be compromised yet the cell membrane 

integrity is (at least transiently) conserved (Strober 2001). 

 In vitro cellular uptake of GL prodrug and GL-HNPs formulation  5.2.3

Gemcitabine uptake by cells needs the presence of membrane bound proteins 

responsible for nucleotide transportation, such as the human equilibrate 

nucleoside transporter-1 (hENT1) (Bildstein et al. 2010). 

Drug delivery strategies including lipid derivatives (Bersani et al. 2014) and 

nanoparticle drug conjugation (Lee et al. 2013) have been examined to 

demonstrate an increased uptake of gemcitabine by cancer cells as well as to 

prevent the fast metabolism of the drug molecule. Among several strategies 

aiming to improve gemcitabine delivery into tumorous tissues the prodrug 

approach has been investigated, especially conjugation of a gemcitabine molecule 

onto a lipid, polymeric nanoparticles or cell penetrating peptides (Chitkara et al. 

2013; Zakeri-Milani et al. 2017). In the present work in vitro drug accumulation was 

assayed using HPLC techniques since by knowing the number of the cells in each 

experiment the concentration of drug taken up in each cell can be calculated 

(Treuel et al. 2013). 

 Aim  5.3

The aim of the in vitro studies was to test the effects of GL prodrug alone and 

attached to the gold surface of the HNPs nanoparticles (GL-HNPs) in comparison 

to the effect of gemcitabine on the BxPC-3 pancreatic cell line. The IC50 generated 



188 
 

from the percentage cell viability of BxPC-3 cells obtained from both MTT and 

trypan blue exclusion assays were utilised as preliminary data to confirm the effect 

of GL prodrug over gemcitabine as well as the effect of GL-HNPs formulation and 

the potential advantage of the GL-HNPs formulation as a theranostic tool in 

pancreatic cancer therapy. 

The drug uptake rates were determined in order to assess the value of the HNPs 

as a vehicle to facilitate the uptake of both GL prodrug and gemcitabine. 
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 Materials and methods 5.4

 Materials used 5.4.1

Material Supplier 

BxPC-3 Cells LGC Standards, ATCC (USA) 

RPMI Media Fisher Scientific (UK) 

Gemcitabine Sigma-Aldrich co., (UK) 

Cell Culture Flask Fisher Scientific (UK) 

96-Well Plates Fisher Scientific (UK) 

12-Well Plates Fisher Scientific (UK) 

6- Well Plates Fisher Scientific (UK) 

Dulbecco’s Phosphate Buffered Saline Sigma Aldrich co., (UK) 

3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide Sigma Aldrich co., (UK) 

Dimethyl sulfoxide Fisher Scientific (UK) 

Trypan Blue Stain 0.4 % Life Technologies (UK) 

Trypsin-EDTA Life Technologies (UK) 

Eppendorf Tubes Fisher Scientific (UK) 

Cell Counting Slides Life Technologies (UK) 

Streptomycin Penicillin Life Technologies (UK) 

Foetal Bovine Serum Life Technologies (UK) 

Acetonitrile Sigma Aldrich (UK) 
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 Methods 5.4.2

 MTT cytotoxicity assay  5.4.2.1

The MTT assay procedure was performed within a 96 well plate seeded by the 

BxPC-3 human pancreatic cancer cell line. Prior to seeding of the plate, the cells 

were cultured in RPMI medium supplemented with 10 % foetal bovine serum 

(FBS) and 1 % penicillin streptomycin (P/S). The BxPC-3 cells were then stored in 

the incubator at 37 °C in humidified 5 % CO2 atmosphere. Regular checking of the 

cell growth was performed and when the cell confluence reached about 80% of the 

flask, the cells were suspended and re-cultured into two flasks; this step was 

repeated as necessary. 

Preparation of 96 well plates was carried out by seeding each plate with 100 µL of 

the BxPC-3 cell suspension and then the plates were incubated under the same 

conditions mentioned above for 24 hrs. When the time lapsed the media was 

removed and the cells were treated with various concentrations of gemcitabine, 

GL prodrug and GL-HNPs formulation (Figure 83). The plates were then incubated 

further for 24, 48 and 72 hrs at 37 °C in humidified 5 % CO2 atmosphere. 

The gemcitabine, GL prodrug and GL-HNPs formulation solutions for cell 

treatment were prepared using a stock solution of 20 mg/mL of each of 

gemcitabine, GL prodrug and GL-HNPs formulation. The serial dilutions (Table 6) 

were prepared by diluting the stock solutions with fresh RPMI media 

supplemented with FBS and P/S. 
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Table 6. Preparation of anticancer drug solutions for MTT assay (0.01 - 100 

µg/mL) 

Drug concentration  

(µg/mL) 

Volume of 20 mg/mL drug 

stock solution (μL) 

Volume of media (mL) 

100 22.5 4.5 

50 11.5 4.5 

25 5.6 4.5 

10 2.25 4.5 

5 1.125 4.5 

*1 90 4.5 

*0.1 9 4.5 

*0.01 1 4.5 

 

*: Sample was made from 5 µg/mL concentration as a stock solution. 

 

After the incubation of the plates up to the specified time points (24, 48 and 72 

hrs), the drug solutions were removed and replaced by a 150 µL solution made up 

from combining 2/3 (RPMI media with FBS and P/s) and 1/3 MTT solution (5 

mg/mL MTT in PBS). The plates were incubated again at the same conditions 

mentioned above for 4 hrs, then the whole solution was removed from the plate 

and the formazan crystals formed within the plates were dissolved using DMSO 

solvent prior to the plate being inserted inside the microplate reader instrument 

(Tecan, infinite 200 pro, GmbH 5082, Australia) in order to record the absorbance 
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of the solution at 570 nm. Percentage cell viability and IC50 was calculated relative 

to the controls. All biological studies were run in triplicate and recorded as average 

values. 

  1 2 3 4 5 6 7 8 9 10 11 12   

A 
C C C C 0.01 0.1 1 5 10 25 50 100 

A 

B 
C C C C 0.01 0.1 1 5 10 25 50 100 

B 

C 
C C C C 0.01 0.1 1 5 10 25 50 100 

C 

D 
C C C C 0.01 0.1 1 5 10 25 50 100 

D 

E 
C C C C 0.01 0.1 1 5 10 25 50 100 

E 

F 
C C C C 0.01 0.1 1 5 10 25 50 100 

F 

G 
C C C C 0.01 0.1 1 5 10 25 50 100 

G 

H 
C C C C 0.01 0.1 1 5 10 25 50 100 

H 

  1 2 3 4 5 6 7 8 9 10 11 12   

 

Figure 83: Plot showing the dosing of 96 well plates for MTT assay by a single 

compound (C stand for control and each number in the dark blue area refers to the 

compound concentration in µg/mL) 
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 Trypan blue cytotoxicity test 5.4.2.2

The trypan blue assay was carried out using a 12 well plate: Each plate was 

seeded by 1 mL of BxPC-3 cell suspension containing approximately 50000 cells 

and the plate was incubated at 37 °C in a 5 % CO2 atmosphere for 24 hrs. 

When the time lapsed the media were removed and replaced by a 1 mL solution of 

gemcitabine, GL prodrug and GL-HNPs formulation (prepared by diluting stock 

solution with RPMI media supplemented with FBS and P/S) in the following order 

of concentration (0, 0.01, 0.1, 1, 10 and 100 µg/mL). The plates were then placed 

inside the incubator for 24, 48, and 72 hrs. 

Following incubation to the specified time point, the media was removed and the 

cells were washed 3 times with PBS. The cells were trypsinised and re-suspended 

in fresh media. A mixture of 50 μL of cells and 50 μL of trypan blue solution was 

placed in an Eppendorf tube and shake before a 10 μL of the resultant solution 

was placed into a cell counting slide before cell counting were performed using 

and automated cell counter (Invitrogen Countess®, UK). 

Viable cells were counted and the percentage cell viability was calculated and 

compared to the total cell count. IC50 were calculated in relation to the number of 

control cells. All biological studies were run in triplicate and recorded as average 

values. 
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 In vitro cellular uptake of formulations 5.4.2.3

Determination of drug uptake by BxPC-3 cells was achieved by using a 6 well 

plate seeded by 3 mL of cell suspension (about 150000 cells) and incubated at 37° 

C with 5 % CO2 for 24 hrs, then the media was replaced by a drug (gemcitabine, 

GL prodrug and GL-HNPs formulation) solution at concentrations equal 50 and 

100 μg/mL, the plates were then incubated for 24 hrs under the same conditions 

mentioned above.  

When the time laps the medium was removed and each well was washed with 1 

mL PBS before the addition of 185 μL trypsin into each well. Cells were re-

suspended in 1 mL media and viable cells were counted using an automated cell 

counter (Invitrogen countess®, UK). 

100,000 cells were transferred into the eppendorf tubes and centrifuged (800 rpm, 

5 min). The supernatant was removed and cells were re-suspended in acetonitrile: 

water (1:1).  

The drug concentration was quantified using reverse phase high performance 

liquid chromatography (HPLC) (Perkin Elmer, Flexar Autosampler, column: 

SPHERISORB ODS2 5 μm, length 250 mm, internal diameter 4.6 mm) and a 

mobile phase contained H2O and acetonitrile (50:50).  

By determining the drug concentration in the cell population (100,000), a single 

cell drug accumulation could be determined and compared. 
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 Results  5.5

 Cell viability 5.5.1

The cell viability of BxPC-3 cells was examined by treating the cells with known 

concentrations of gemcitabine, GL and GL-HNPs. The effects of these substances 

were analysed over a period of 24, 48 and 72 hrs.  

The MTT assay was used to determine the IC50, the drug concentration at which 

only 50 % of the cell population were viable. Drugs with lower IC50 values have a 

greater cytotoxic effect. 

 MTT assay for cell viability 5.5.2

Percentage cell viability for gemcitabine, GL and GL-HNPs at 24 hrs were 

compared (Figure 84): the graph shows no IC50 for gemcitabine (G) at this time 

point even at the highest concentration used in this experiment (100 µg/mL), 

though for GL there is a significant reduction in the cell viability at 50 µg/mL, the 

IC50 obtained for GL prodrug after 24 hrs was 56 µg/mL. 

In the case of GL-HNPs formulation there was a significant reduction in the cell 

viability (p < 0.05) starting at a concentration of 5 µg/mL and continued until an 

IC50 was obtained at comparable concentration to the free prodrug 53 µg/mL). 
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Figure 84: MTT assay graph show the effect of various concentrations of 

gemcitabine, GL and GL-HNPs on BxPC-3 cells at 24 hrs time points (n=3) (± 

19%) (p< 0.05) 

At 48 hrs (Figure 85), the comparison between the effect of gemcitabine (G), GL 

prodrug and GL-HNPs formulation show comparable effects on nearly all the time 

points with no significant differences (p < 0.05) except between gemcitabine and 

GL prodrug at 0.01 µg/mL point where the gemcitabine effect was greater than GL. 

Even though there is a great difference in the effect of gemcitabine at 0.1 µg/mL 

and 1 µg/mL the differences are still in significant (p> 0.05). The IC50 for GL 

prodrug and GL-HNPs formulation were both obtained at 0.1 µg/mL concentration 

(exactly calculated IC50 for GL and GL-HNPs formulation was 0.098 µg/mL and 

0.94 µg/mL respectively). The IC50 calculated for gemcitabine was 0.008 µg/mL. 
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Figure 85: MTT assay graph show the effect of various concentrations of 

gemcitabine, GL and GL-HNPs on BxPC-3 cells at 48 hrs time points (n=3) (± 

18%) (p < 0.05) 
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Figure 86 shows a comparison between the effect of gemcitabine (G), GL and GL-

HNPs on BxPC-3 cell viability at 72 hrs: The graph shows significant differences (p 

< 0.05) between the effects on nearly all the concentrations used between GL 

prodrug and gemcitabine especially at 1, 5, 10, 25, 50 and 100 µg/mL point at 

which the effect of GL prodrug was observed to be greater than gemcitabine alone 

while at the point of 0.01 and 0.1 µg/mL the effect of gemcitabine was greater. 

This kind of effect profile might be due to the cumulative effect of gemcitabine and 

the lipoic acid on the viability of the cancer cells. 

 

Figure 86: MTT assay graph show the effect of various concentrations of 

gemcitabine, GL and GL-HNPs on BxPC-3 cells at 72 hrs time points (n=3) (± 

12%) (p< 0.05) 
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Another surprising effect of the GL prodrug was observed at 72 hrs where the 

overall effect of the prodrug was greater than the effect of the prodrug-HNPs 

formulation at 5, 10, 25, 50 and 100 µg/mL point while both the GL-HNPs 

formulation and gemcitabine has nearly equal effect. It can be postulated that both 

the prodrug and the prodrug-HNPs formulation have similar rates of cell 

internalisation. 

 Trypan blue assay for cell viability 5.5.3

From the MTT assay the GL prodrug and GL-HNPs formulation were both shown 

to have a strong effect on cell viability in both a time and concentration dependent 

manner. Trypan blue assay of BxPC-3 cell viability for the GL prodrug and the 

prodrug-nanoparticulate formulation GL-HNPs (Figure 87 and Figure 88) displayed 

a proliferation inhibition profile similar to the profile obtained by the MTT assay at 

the same concentrations used in the MTT assay. The overall outcome from the 

trypan blue assay experiment confirmed a comparable effect of the GL prodrug to 

the GL-HNPs formulation at a given time point for the same concentration. 
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Figure 87: Trypan blue assay graph show the effect of various concentrations of, 

GL prodrug on BxPC-3 cells at 24, 48 and 72 hrs time points (n=3) (± 12.5%) (p < 

0.05) 
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Figure 88: Trypan blue assay graph show the effect of various concentrations of, 

GL-HNPs formulation on BxPC-3 cells at 24, 48 and 72 hrs time points (n=3) (± 

7%) (p < 0.05) 

 

 In vitro cellular uptake of formulations  5.5.4

The bar chart in Figure 89 shows the intracellular amount of both gemcitabine 

released from the GL-HNPs formulation and from the free GL prodrug used, after 

a 24 hrs exposure time. In order to best compare the activity of gemcitabine and 

the GL prodrug, the intracellular concentrations were determined after 24 hrs 

exposure time; this is to compare between different mechanisms for the 

internalisation and consequent therapeutic effect. 
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Figure 89: Chart displaying the average amount of gemcitabine inside the BxPC-3 

cells after exposure to GL-HNPs (n=3) (± 4.27%) compared to GL (n=3) for 24 hrs 

exposure time 

 

Free gemcitabine and GL prodrug seems to have different intracellular levels after 

24 hrs. No gemcitabine was detected after 24 hrs exposure of BxPC-3 cells to free 

gemcitabine (data not shown) which suggests that GL prodrug enters the cell via 

different mechanisms to gemcitabine; gemcitabine enters via the tight junction in 

the cell membrane, as well as being actively transported across the cell membrane 

with nucleoside transporters (E. Mini et al. 2006; Rudin et al. 2011b). 
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significantly higher compared to the detected amount of free GL prodrug (bearing 

in mind the difference in the mass between gemcitabine and the prodrug). 
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 Conclusions 5.6

The therapeutic activity of gemcitabine against solid tumours is well documented, 

yet these effects are limited by several factors including the hydrophilic nature of 

the drug, the short plasma half-life and associated multi-drug resistance (Zakeri-

Milani et al. 2017). The mechanism of gemcitabine transport into the cells plays a 

significant role in determining the drug effect. By coupling gemcitabine to lipoic 

acid to provide a means to bind the prodrug to the gold surface of the HNPs 

nanoparticles may provide several advantages. It may potentiate the action of 

gemcitabine due to site-specific activity or raising the amount of drug entering the 

circulation since the overall physicochemical properties of the prodrug (log P 

value, plasma half-life and bio-distribution) are different. Additionally, the effect 

exerted by the lipoic acid residue of the prodrug may affect the activity of the 

prodrug and the amount of gemcitabine released. For example, lipoic acid has 

been shown to have antioxidant properties (Geromichalou et al. 2015). 

Nanoparticulate drug delivery systems offer great potential for improving 

intracellular delivery of therapeutic agents. One of the possible reasons for this 

effect might be the mechanism of nanoparticulate cellular uptake. 

The cytotoxic effect of the GL prodrug and the GL-HNPs formulation is evident. 

The addition of a lipoic acid residue and coupling of the prodrug to the 

nanoparticles could improve the efficacy of gemcitabine therapy. The data showed 

that the coupling of gemcitabine to lipoic acid resulted in an increase in the rate of 

drug internalisation also. 
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6 CHAPTER 6: GENERAL DISCUSSION 

AND CONCLUSIONS 
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The first aim of this study was to provide a library of bisnaphthalimide compounds 

characterised by having the same total atoms in their linker chain while bearing 

different numbers of positively charged atoms. The synthetic strategies applied 

were shown to be successful except for the synthesis of the proposed derivative 

having six positively charged residues in its linker chain (compound 33). 

The study conducted utilising these compounds as a model for testing the ability of 

the hybrid iron oxide core-gold shell nanoparticles (HNPs) to act as thermo-

responsive carrier revealed the potential benefits of using the HNPs as a drug 

delivery vehicle in pancreatic cancer therapy, in addition to the potential 

advantages of the HNPs-drug system to act as a theranostic agent (M. Malekigorji 

et al. 2017). 

Malekigorji et al. (2017) also provided valuable data regarding the factors most 

responsible for the effective loading of the drug to the HNPs surface, i.e. number 

of cationic charged residues and the presence of sulfur atoms in the drug 

molecule. In addition, it was demonstrated that the effect of heat (44 ̊C) could 

reverse the drug HNPs binding if the association was an electrostatic charge-

charge interaction (Malekigorji et al. 2017). 

Following these findings, the second aim was to simulate the structural 

advantages of bisnaphthalimide based drugs (cationic charges and sulfur) by 

attempting the synthesis of two gemcitabine derivatives. Unfortunately, the 

synthesis of a gemcitabine derivative bearing a cationic polyamine chain was 

unsuccessful although the proposed strategy has been used by other researchers 

to deliver similar compounds (Geall & Blagbrough 2000). 
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The successful synthesis of the gemcitabine analogue bearing a sulfur-containing 

residue was accomplished by utilising amide bond coupling of gemcitabine to 

lipoic acid. The successful synthesis and reaction scale up was achieved by 

applying a simple one step reaction and the optimum conditions for the reaction 

were deduced. The regioselectivity of the coupling of gemcitabine to lipoic acid by 

amide bond formation was one of the advantages of using DCC as a coupling 

agent which provided only one product with reasonable yield (40%). 

Amide bonds in general are known to be cleaved in acidic pH environments and 

also by specific enzymes. A gemcitabine prodrug synthesised by introducing a 

substituent attached to the primary amino group of gemcitabine through an amide 

bond was described to be enzymatically cleaved by proteases and peptidases. In 

addition increased temperature had an additive effect on the rate of amide bond 

hydrolysis (Wickremsinhe et al. 2013). 

The objective of the synthesis of the GL prodrug was to provide gemcitabine with 

an arm to actively bind to the gold surface of the HNPs, while conferring the ability 

of the system prodrug-HNPs to act as a stimuli responsive carrier. 

The synthesis of the Hybrid iron oxide core-gold shell nanoparticles (HNPs) was 

confirmed to be successful by determining the physicochemical properties of the 

fabricated particles, including confirming the size, shape and effective coating of 

the iron oxide core of the hybrid system by utilising several techniques (UV/Vis 

spectroscopy, photon correlation spectroscopy, zeta potential measurement, 

inductively coupled plasma-optical emission spectroscopy (ICP-OES) and 

transmission electron microscopy (TEM)). The potential advantages of the HNPs 
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to act as a theranostic agent is derived from the ability of the system to be imaged 

using MRI due to the magnetic character of the iron oxide core. The gold surface 

of the HNPs can be functionalised and loaded with drugs and targeting agents and 

finally the potential ability of the gold surface to act as a nanoheater when 

irradiated by near infrared laser light. 

Loading of the GL prodrug onto the surface gold of the HNPs was studied at 

different concentration ratios and a maximum loading concentration of 5 mg of GL 

prodrug per 1 mg HNPs (based on iron mass) was achieved successfully in the 

absence of PEG thiol. 

The release profile of gemcitabine from the GL-HNPs formulation under sink 

conditions was studied at fixed time points in different pH and temperature 

environments: Up to 24 hrs of the release study the highest percentage of drug 

release from the nanoparticulate formulation was 41% which occurred at pH 5.6 

under the effect of elevated temperature (44 °C). In general, the data showed the 

combined effect of both low pH and heat on the rate and extent of gemcitabine 

release from the formulation. The drug release profile was performed at different 

pHs to mimic the cytoplasmic pH and also the pH range of endosomal and 

lysosomal environments. The drug release pattern followed the order of 

decreasing the pH of media. Increasing the temperature from 37 ºC to 44 ºC 

enhanced the drug release rate however the release rate and extent was higher at 

pH 5.6 than at pH 3.6 at the same temperature and time point which indicates that 

the optimum release pH was 5.6. 



209 
 

In vitro biological investigations of the GL prodrug and the GL-HNPs formulation 

on the human primary pancreatic adenocarcinoma cells (BxPC-3) was performed 

utilising two techniques, MTT assay and Trypan blue exclusion assay. The MTT 

assay depends on the metabolic activity of cells and their ability to convert 

coloured reagent from yellow to violet for absorbance measurements. The Trypan 

blue exclusion assay depends on the integrity of the cellular structure, in particular 

cell membranes. Both techniques required careful monitoring of the cell dilutions at 

the time of cell culture and drug dilution at the time of cell treatment, otherwise a 

variation in result would happen. Furthermore the MTT assay technique was able 

to detect the viability more accurately as compared to other techniques, in addition 

to the advantages of simplicity, high throughput measurement and relatively fast 

procedure (da Costa et al. 1999). 

The cell viability in the presence of the GL prodrug and the GL-HNPs formulation 

measured by MTT assay showed a better effect for the GL-HNPs formulation over 

both gemcitabine and GL prodrug alone after 24 hrs. The GL prodrug alone 

showed similar effects to gemcitabine in nearly all the concentrations used except 

for the highest concentration (100 µg/mL) where the prodrug was shown to be 

more effective. This finding tie with the result obtained from the cellular uptake 

study which shows a better uptake of the GL-HNPs formulation over GL prodrug 

and gemcitabine. 

Gemcitabine cytotoxicity on the cancer cell line after 48 and 72 hrs was shown to 

be more effective than the GL prodrug and the GL-HNPs formulation which might 
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indicate the importance of the time required for gemcitabine to be internalised and 

activated before excreting its full action. 

In general, according to the uptake study which indicated an enhanced 

internalisation of the GL prodrug and the GL-HNPs formulation over gemcitabine, 

the viability effect should show better response for the prodrug and the formulation 

over gemcitabine. However, gemcitabine requires to be released first from the 

formulation, or cleaved from the lipoic acid in case of the GL prodrug, and because 

of the relative stability of the amide bond the variable amount of the drug released 

from the prodrug and the formulation might be the cause of this behaviour. 

By comparing the MTT viability assay results obtained for the GL prodrug and the 

GL-HNPs formulation with the result obtained for the same compounds using the 

trypan blue exclusion assay, the IC50 appears to be different between the two 

assays. However, the standard deviation difference in the two experiments 

appears to be relatively high which might explain the difference between the 

results. 

Moreover, the biological assay required to be performed at the optimum conditions 

required for drug release from the nanoparticulate formulation (44 C̊ at pH 5.6) in 

order to simulate both the physiological conditions faced by the GL-HNPs 

formulation at the time of uptake and the heat generated by the possible laser 

irradiation of the gold surface of the HNPs. This was not achieved during this study 

but could form the basis of future work in this area. 
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Questions remain concerning the nature of the attachment of prodrug of 

gemcitabine (GL prodrug 98) to the gold surface of the HNPs to form GL-HNPs 

and subsequent release of gemcitabine 7 under various conditions. The amide 

bond between gemcitabine 7 and the lipoic acid 88 residue is very stable at pH 7.4 

and room temperature in deionised water yet it is potentially unstable when the 

prodrug is attached to the gold surface at elevated temperatures and reduced pH. 

Laser irradiation of the GL-HNPs formulation using a near infrared laser may show 

release of gemcitabine 7. This study could be undertaken in vitro but assumes that 

the formulation will be taken up by bodies within the cell that present an acidic 

environment. This latter assumption is key and can be resolved by studying cell 

uptake more closely. 

Attachment of gemcitabine 7 to the surface of the HNPs is worth exploring further. 

Sulfur forms dative bonds to the gold surface but it has been shown that 

electrostatic interactions can also be used to attach drug substances to gold. 

Irradiation of a formulation of a polyamine drug derivative coated onto HNPs with 

near infrared laser light triggers drug release. It therefore follows that a polyamine 

derivative of gemcitabine would be worth pursuing. As has been mentioned in this 

thesis, research towards the synthesis of such a prodrug was started but proved to 

be difficult to achieve in the timeframe allowed due to capricious reactions to 

synthesise the required polyamine precursors. This could easily form the basis of 

a further research project. 

The nature of the prodrug itself warrants further investigation in the absence of 

HNPs. It appears that it is potentially more cytotoxic than gemcitabine alone but 
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not at a level which is yet significant clinically. Again, the nature of the amide bond 

between gemcitabine 7 and the lipoic acid residue 88 may be important. Many 

studies into derivatives of gemcitabine have used attachment to the primary amine 

as a synthetic strategy. As mentioned previously, capecitabine 99 is a structurally 

related drug which also contains a residue bonded to what was a primary amine 

functional group on a nitrogen heterocycle. However, the alkyl substituent is not 

bonded through an amide but through a carbamate linkage. Carbamates are use 

in drug design as an isosteric replacement for the amide bond (Ghosh & Brindisi 

2015). Development of the gemcitabine analogue using a rational drug design 

approach would be worthy but also being mindful of the research that has already 

been published on gemcitabine analogues. 

 

The use of a gemcitabine 7 and capecitabine 99 together as a combination 

chemotherapy for pancreatic cancer has been reported to be clinically useful 

(Neoptolemos et al. 2017). Taking all of the comments above and being mindful of 

the potential of HNPs for drug delivery, it would be very interesting to develop a 

formulation in which capecitabine and gemcitabine prodrugs are attached to HNPs 

via a suitable responsive linker. Again, this could form the basis of a significant 

piece of research. 
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In conclusion, whilst it proved difficult to overcome synthesis of the 

pharmacologically active compounds and formulations described in this thesis, 

possible solutions have now been described. There is great potential to develop 

these findings, both in the presence or absence of HNPs. Future research may 

yield clinically significant results. 
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7 CHAPTER 7: EXPERMENTAL 
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 Synthesis and characterisation of compounds 7.1

All chemicals and solvents were purchased from either Sigma Aldrich or Alfa 

Aesar company and unless otherwise stated were used without further purification. 

Anhydrous dimethylformamide were purchased from Sigma Aldrich and used 

without further treatment.  

TLC plates used were silica gel 60 F254 (Merck) and detection was conducted 

using UV light, potassium permanganate solution or vanillin stain Flash column 

chromatography was carried out on silica gel 60 (40-63 µm mesh). 

Melting point determination was completed using a Bibby Stuart Scientific Melting 

point apparatus (uncorrected). Infrared spectra were recorded on a Thermo 

Nicolet Nexus FT-IR spectrometer. 

1H NMR and 13C NMR spectra were obtained using Bruker Avance 300 and/or 

Bruker Avance 400; 19F NMR spectra were obtained using a Bruker Avance 400. 

Multiplicities were recorded as broad peaks (br), singlets (s), doublets (d), triplets 

(t), quartets (q), quintets (qu),) double doublets (dd), multiplets (m). All NMR 

samples were made up in deuterated solvents with all values quoted in ppm 

relative to tetramethylsilane (TMS) as an internal reference. Coupling constants (J 

values) are reported in Hertz (Hz). 
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 N-(3-hydroxypropyl) naphthalimide 52 7.2

 

 

The synthetic procedure was adopted from (Lin & Pavlov 2000) 

1, 8-Naphthalic anhydride (39.60 g, 0.2 mol) was suspended in absolute ethanol 

(350 mL) with stirring, followed by drop-wise addition of 3-aminopropan-1-ol (15.00 

g 0.2 mol). The mixture was heated to reflux for 15 hrs. The resulting precipitate 

was collected by vacuum filtration, recrystallised from absolute ethanol and dried 

in a desiccator to give off-white needle shaped crystals.  

Yield: 79% 

Mp: 125.5°C 

νmax (cm-1) 1693 (NC=O), 3425 (OH). 

1H NMR (300 MHz CDCl3): δ 8.63, (2H, d, J 8.29 ArH) 8.25, (2H, d, J 8.48 ArH) 

7.78 (2H, t, J 8.29 ArH), 4.37 (2H, t, CH2-O); 3.60 (2H, t, N–CH2); 3.01 (br, s, OH); 

1.99 (2H, qu, -CH2-). 

13C NMR (300 MHz CDCl3): δ164.8 (C=O); 134.2, 131.6, 131.5, 128.1, 127.0, 

122.2 (aromatic carbons); 58.7, 36.7, 31.9 (aliphatic carbons). 
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 N-(3-hydroxyethyl) naphthalimide 62 7.3

 

 

The synthetic procedure was adopted from (Lin & Pavlov 2000). 

1, 8-Naphthalic anhydride (9.9 g, 50 mmol) was suspended in absolute ethanol 

(100 mL) with stirring, followed by drop-wise addition of ethanolamine (3.05 g 50 

mmol). The mixture was heated to reflux for 15 h. The resulting precipitate was 

collected by vacuum filtration, recrystallised from absolute ethanol and dried in a 

desiccator to give off-white needle shaped crystals.  

Yield: 84% 

MP: 179 °C 

1H NMR (300 MHZ CDCl3): δ 8.53, (2H, d, J 7.35 ArH), 8.15, (2H, d, J 8.48 ArH), 

7.69 (2H, t, J 8.48 ArH), 4.39 (2H t, CH2-O), 3.92 (2H t, N–CH2), 1.95 (br, s, OH). 

13C NMR (300 MHZ CDCl3): δ165.1 (C=O); 134.2, 131.6, 131.5, 128.1, 127.0, 

122.3 (aromatic carbons); 61.8, 42.7 (aliphatic carbons). 
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 N-[2-(2-hydroxylethylamino)-ethyl]-1, 8-naphthalimide (HEAEN) 67  7.4

 

 

The synthetic procedure was adopted from (Chen et al. 2009) 

 

1, 8-Naphthalic anhydride 5 (2.0 g, 10.1 mmol) was suspended in absolute ethanol 

(60 mL) with stirring, followed by drop-wise addition of 2-(2-aminoethylamino) 

ethanol (1.06 g, 10.2 mmol). The mixture was heated to reflux for 15 hrs. The 

resulting solution was concentrated by rotary evaporation of most of the solvent 

and then left to crystallise at room temperature; the resulted pink coloured powder 

was recrystallised from absolute ethanol and dried in a desiccator to give pale 

yellow crystals.  

Yield: 90% 

M.P: 115 ̊C 

1H NMR (300 MHZ CDCl3): δ 8.52, (2H, dd, J 8.29 ArH), 8.15, (2H, dd, J 8.90 

ArH), 7.69 (2H, t, J 8.10 ArH), 2.82 (t, 2H, J 4.90 Hz, –NCH2), 3.02 (t, 2H, J 6.40 Hz, 

CH2-N), 3.62 (t, 2H, J 5.20 Hz, CH2CH2-N), 4.32 (t, 2H, J 6.40 Hz, CH2-OH),  
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13C NMR (300 MHZ CDCl3): δ164.53 (C=O); 134.00, 131.48, 131.28, 128.07, 

126.98, 122.43 (aromatic carbons); 60.88, 50.98, 47.48, 39.91 (aliphatic carbons). 

 O-(tosyloxypropyl)naphthalimide 53 7.5

 

 

 

N-(3-Hydroxypropyl)naphthalimide 52 (5.10 g, 20 mmol) was dissolved in 

anhydrous pyridine (80 mL). The solution was cooled to 0 °C and kept stirring at 

that temperature for 10 minutes. para-Toluenesulfonyl chloride (5.72 g, 30 mmol) 

was added in small portions over a period of 30 minutes, the pale-yellow solution 

was kept stirring at 0 °C for extra 10 minutes then the solution was stored in the 

fridge overnight at 4°C The reaction mixture was poured into icy water (400 mL) 

with rapid, vigorous stirring, to deliver a viscous liquid that solidified very quickly 

upon stirring. The precipitate was filtered off and washed thoroughly with water. 

The crude product was recrystallised from ethanol.  

Yield: 58% 

Mp: 120.1°C 

νmax (cm-1) 1698 NC=O, 1093 (C-O) 
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1H NMR (300 MHZ CDCl3): δ 8.60, (2H, dd, J 7.35 ArH), 8.23, (2H, dd, J 7.35 

ArH), 7.78 (2H, t, J 8.29 ArH), 7.79 (2H, d, OTos ArH), 7.31 (2H, d, OTos ArH), 

4.22 (4H, p, N-CH2, CH2-O), 2.13 (2H, qu, -CH2-) 2.43 (3H, s, CH3). 

13C NMR (300 MHZ CDCl3): δ164.15 (C=O); 144.74, 143.54, 134.13, 132.96, 

131.37, 129.78 (naphthalimide aromatic carbons); 128.13, 127.93, 126.98, 122.41 

(tosyl aromatic carbons); 68.59, 37.10, 27.63 (CH2) 21.66 (CH3). 

 O-(tosyloxyethyl) naphthalimide 63 7.6

 

 

 

N-(3-Hydroxyethyll)naphthalimide 62 (1.5 g, 6.5 mmol) was dissolved in anhydrous 

pyridine (20 mL). The solution was cooled to 0 °C and kept stirring at that 

temperature for 10 minutes. para-Toluenesulfonyl chloride (1.25 g, 6.5 mmol) was 

added in small portions over a period of 30 minutes, the pale-yellow solution was 

kept stirring at 0 °C for extra 10 minutes then the solution was stored in the fridge 

overnight at 4°C The reaction mixture was poured into icy water (400 mL) with 

rapid, vigorous stirring, to deliver a viscous liquid that solidified very quickly upon 

stirring. The precipitate was filtered off and washed thoroughly with water. The 

product was purified by column chromatography but it is unstable on the column 

and so the yield is reduced as a result.  
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Yield: 53% 

Mp: 106 ̊C 

νmax (cm-1) 1698 (NC=O). 

1H NMR (300 MHZ CDCl3): δ 8.63, (2H, dd, J 7.16 ArH), 8.25, (2H, dd, J 8.29 

ArH), 7.78 (2H, t, J 8.29 ArH), 7.79 (2H, d, OTos ArH) 7.30 (2H, d, J 8.10 OTos 

ArH); 4.23 (2H m, CH2-O), 2.44 (3H, s, CH3), 2.14 (2H, qu, CH2). 

13C NMR (300 MHZ CDCl3): δ164.15 (C=O); 144.74, 143.54, 134.13, 132.96, 

131.37, 129.78 (naphthalimide aromatic carbons); 128.13, 127.93, 126.98, 122.41 

(tosyl aromatic carbons); 68.59, 37.10 (CH2) 21.64 (CH3). 

 

 Di tosylated N-[2-(2-hydroxylethylamino)-ethyl]-1, 8-naphthalimide 7.7

(HEAEN) 68 

 

(HEAEN) 67 (2 g, 7.03 mmol) was dissolved in anhydrous pyridine (50 mL). The 

solution was cooled to 0 °C and kept stirring at that temperature for 10 minutes. 

para-Toluenesulfonyl chloride (4.02 g, 21.12 mmol) was added in small portions 

over a period of 30 minutes, the yellow solution was left to reach the ambient 
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temperature spontaneously then kept stirring at room temperature for additional 12 

hrs, the aqueous workup of the reaction carried out by pouring the reaction mixture 

into icy water (400 mL) with rapid, vigorous stirring, to deliver a viscous liquid that 

solidified very quickly upon stirring. The precipitate was filtered off and washed 

thoroughly with water. The product was recrystallised from ethanol.  

Yield: 40% 

1H NMR (300 MHZ CDCl3): δ 8.52, (2H, d, J 6.97 ArH), 8.21, (2H, d, J 7.82 ArH), 

7.74 (2H, d, J 7.52 ArH), 7.80 (2H, d, OTos ArH), 7.53 (2H, d, OTos ArH), 7.35 

(2H, d, OTos ArH), 6.96 (2H, d, OTos ArH), 4.28 (4H, t, CH2-O), 3.71 (2H, t, CH2), 

3.54 (2H, t, CH2), 2.44 (3H, s, CH3), 2.15 (3H, s, CH3). 

13C NMR (300 MHz CDCl3): δ164.5 (C=O); 145.11, 143.32, 136.32, 132.48, 

131.53 (naphthalimide aromatic carbon), 134.15, 131.24, 129.98, 129.53, 128.058, 

127.00, 126.95 (tosyl aromatic carbons); 68.47, 46.48, 46.03, 37.72 (CH2), 21.69, 

21.03 (CH3) 

 Tetra-mesitylated spermine 56  7.8
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Spermine (4.04 g, 20 mmol) was dissolved in dry pyridine (50mL) the solution was 

cooled to 0°C. mesitylenesulfonyl chloride (18.57 g 85 mmol) was added in small 

portion and the mixture was kept stirring in ice for 1 hr and then for 20 hrs at room 

temperature. The reaction mixture was poured on to icy water (200 mL) with 

vigorous stirring to obtain a viscous brown precipitate which was collected using 

Buchner filtration. The precipitate was washed with water and diluted HCl, then 

dried over the filter paper and the crude product was recrystallised from hot 

ethanol.  

Yield: 30%. 

 Mp: 162.5°C 

 νmax (cm-1) 1603 Ar, (cm-1) 3266 NH. 

1H NMR (300 MHZ CDCl3): 6.95, 6.94 (8H, s, ArH), 3.20 (4H, t, CH2-NH), 3.05 

(4H, t, CH2-N), 2.81 (4H, t, CH2-N), 1.60-1.69 (4H, m, CH2–N) 1.29-1.35 (8H, m, 

CH2–N), 2.6 (12H, s, CH3.Mts), 2.54 (12H, s, CH3.Mts), 2.31 (12H, s, CH3.Mts). 

13C NMR (300 MHZ CDCl3): 142.71, 142.11, 139.98, 138.90, 133.70, 133.01, 

132.11, 131.96 (aromatic carbons Mts), 45.13, 42.82, 39.33, 27.60, 24.44 

(Aliphatic carbon spermine), 22.90, 20.98, 20.93 (CH3.Mts). 
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 Di-mesitylated diaminododecane 58 7.9

 

 

 

1,12-diaminododecane (2.0 g, 10 mmol) was dissolved in dry pyridine (40 mL) the 

solution was cooled to 0°C. mesitylenesulfonyl chloride (4.37 g 20 mmol) was 

added in small portion and the mixture was kept stirring in ice for 1 hr and then for 

20 hrs at room temperature. The reaction mixture was poured on to icy water (200 

mL) with vigorous stirring to obtain a viscous brown precipitate which was collected 

using Buchner filtration. The precipitate was washed with water and diluted HCl, 

then dried over the filter paper and the crude product was recrystallised from hot 

ethanol.  

Yield: 49%  

Mp: 102°C. 

1H NM (300 MHZ CDCl3): 6.97 (4H, s, ArH), 2.89 (4H, t, CH2-NH), 1.45 (4H, t, 

CH2–), 2.65 (12H, s, CH3.Mts), 2.31 (6H, s, CH3.Mts), 1.19 (16H, s, –CH2–). 

13C NMR (300 MHZ CDCl3): 142–131 (aromatic carbons), 42 (CH2–NH), 29-30 

(4×CH2), 26.9 (CH2), 23 (CH3.Mts), 21 (CH3.Mts). 
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 N1,N4,N7,N10‐tetra(mesitylenesulfonyl)triethylenetetramine 64 7.10

 

 

 

Triethylenetetramine (1.0 g, 6.8 mmol) was dissolved in dry pyridine (25 mL) the 

solution was cooled to 0°C. mesitylenesulfonyl chloride (6.0 g 28 mmol) was 

added in small portion and the mixture was kept stirring in ice for 1 hr and then for 

20 h at room temperature. The reaction mixture was poured on to icy water (200 

mL) with vigorous stirring to obtain a viscous deep brown nearly solid compound 

which was collected using Buchner filtration. The crude compound was washed 

with water and diluted HCl, then the pure product was delivered using column 

separation.  

Yield: 33% 

1H NM (300 MHZ CDCl3): 6.95 (4H, s, ArH Mts), 6.94 (4H, s, ArH Mts), 3.37 (4H, 

s, N-CH2-CH2-N), 3.30 (4H, t, J 6.03 CH2–N), 2.94 (4H, q, J 6.22 CH2–NH), 2.56 

(12H, s, CH3.Mts), 2.49 (12H, s, CH3.Mts), 2.32 (6H, s, CH3.Mts), 2.31 (6H, s, 

CH3.Mts). 



226 
 

13C NMR: (CDCl3) 143.08, 142.36, 140.19, 139.02, 133.10, 132.25, 132.08, 

132.05 (aromatic carbons Mts), 46.89, 45.39, 41.19 (aliphatic carbon), 22.92, 

22.87, 21.03, 20.96 (CH3.Mts) 

 Reaction of 1,4‐butane dithiol with acrylonitrile 77 7.11

 

 

 

1,4-butane dithiol (1.22 g, 10 mmol,) was dissolved in THF (25 mL). at -78 ̊C in an 

inert atmosphere, Triton B (1.672g 10 mmol) and after 10 minutes acrylonitrile 

(1.06 g, 20 mmol) were added and the mixture was allowed to reach the room 

temperature spontaneously, the reaction was quenched by water (20 mL) after 

four hrs the crude product was extracted twice with ether (10 mL) the combined 

organic layer washed with brine and dried over magnesium sulfate, after removal 

of inorganic salt the solvent was evaporated under reduced pressure.  

Yield: 50% 

1H NMR (300 MHZ CDCl3): 2.81 (t, CH2-CN); 2.65 (t, CH2-S); 1.69 (m, CH2-) 

13C NMR (300 MHZ CDCl3): 118.4 (CN); 31.6 (CH2–S); 28.1(CH2-CH2); 27.5(CH2–

S); 18.9 (CH2-CN). 
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 Reduction of 3,3'‐(butane‐1,4‐diylbis(sulfanediyl))Dipropanenitrile 78 7.12

 

 

 

3,3'-(butane-1,4-diylbis(sulfanediyl))dipropanenitrile 77 (1.2 g, 5.8 mmol) was 

dissolved in anhydrous THF (50 mL) under an inert atmosphere BH3.DMS (2.5 

mL, 33 mmol) was added and the mixture was heated to reflux for 24 hrs. After 

cooling, the excess borane was destroyed by very careful drop wise addition of 

excess methanol. And then the solvents and by products (trimethyl borate and 

dimethylsulfide) were removed in vacuum to give a colourless, viscous oil.  

Yield: 90% 

1H NMR: (300 MHZ CDCl3) 3.49 (NH2) 2.81 (t, CH2-N), 2.85 (m, CH2-S), 1.69 (m, 

CH2-). 

13C NMR: (300 MHZ CDCl3) 41.2 (CH2-N); 33.2 (CH2–S); 31.7(CH2-CH2); 

29.4(CH2–S); 28.6 (CH2-CH2). 

 1,20-Diaminoeicosane 41 7.13
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The synthetic procedure was adopted from (Norrehed et al. 2013) 

1,20-Eicosanedicarboxylic acid (2 g, 5.85 mmol) was dissolved in SOCl2 (40 mL) 

and heated to reflux for 2.5 hrs until gas evolution had ceased completely. The 

solvent was evaporated and the solid residue was dissolved in dioxane (20 mL). 

An NH3-solution (concentrated, in H2O, 25 mL) was added. A white precipitate was 

formed then the mixture was stirred for 1 hr, filtered off and left to dry in air over 

night. The obtained white solid was dissolved in hot dry THF and a suspension of 

LiAlH4 (0.5 g, 15 mmol) in dry THF (30 mL) was added at room temperature. The 

mixture was heated to reflux overnight and then quenched with H2O and filtered 

over a Buchner funnel. The product was obtained as a waxy white solid the 

resulted compound was used in the coupling step without further purification.  

Yield: 90% 

1H NMR: (400 MHZ CDCl3): 1.81-1.58 (30H, m), 1.41-1.25 (10H, m). 
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 Tetra- mesitylated bis(naphthalimidopropyl) spermine 54 7.14

 

 

 

Tetra-mesitylated spermine 56 (3.72 g, 4 mmol) was dissolved in anhydrous 

dimethylformamide. (50 mL) O-(tosyloxypropyl)naphthalimide 53 (3.3065 g, 8.5 

mmol) was added followed immediately by caesium carbonate (7 g) the mixture 

was stirred at 85°C for 8 hrs. the reaction mixture was poured into icy water (500 

mL) with vigorous stirring to give a pink solid precipitate. 2M HCl (50 mL) was 

added with stirring to remove any remaining caesium carbonate. The precipitate 

was collected by vacuum filtration and washed with water and then air-dried on the 

filter paper. The crude product was recrystallised from ethanol.  

Yield: 54%. 

Mp: 189.2°C 

1H NMR (300 MHZ CDCl3): δ 8.57, (4H, dd, J 7.35 ArH naphthalimide), 8.24, (4H, 

dd, J 8.48 ArH naphthalimide), 7.78 (4H, t, J 8.10 ArH naphthalimide), 6.91 (4H, s, 

ArH Mts), 6.70 (4H, s, ArH Mts); 3.91 (4H, t, J 6.97CH2-NH), 3.07 (14H, m, CH2-
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N), 1.70 (10H, m, CH2-N), 1.36 (4H, m), 2.55, 2.46 (20H, s, CH3.Mts), 2.27, 2.19, 

2.12 (16H, s, CH3.Mts). 

13C NMR (300 MHZ CDCl3): 163.98 (CH2 =O), 142.41, 142.33, 140.04, 139.95, 

134.08, 133.14, 132.69, 132.00, 131.82, 131.54, 131.27, 128.04, 126.97122.45 

(aromatic carbons), 44.93, 43.23, 42.95, 42.82 (CH2–N); 37.51, (CH2–N); 25.73, 

25.17, 24.33 (CH2); 22.87, 22.74 (CH3.Mts); 20.99, 20.89 (CH3.Mts). 

 Di-mesitylated bis(naphthalimidopropyl)-1,12 diaminododecane 55 7.15

 

 

 

Di-mesitylated diaminododecane 58 (1.13 g, 2 mmol) was dissolved in anhydrous 

dimethylformamide. (25 mL) O-(tosyloxypropyl)naphthalimide 53 (1.75 g, 4.5 

mmol) was added followed immediately by caesium carbonate (3.5 g) the mixture 

was stirred at 85°C for 8 hrs. the reaction mixture was poured into icy water (500 

mL) with vigorous stirring to give a solid precipitate. 2M HCl (25 mL) was added 

with stirring to remove any remaining caesium carbonate. The precipitate was 
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collected by vacuum filtration and washed with water and then air-dried on the 

filter paper. The crude product was recrystallised from ethanol.  

Yield: 65%. 

Mp: 102°C 

1H NMR (300 MHZ CDCl3): δ 8.58, (4H, d, J 7.35 ArH), 8.24, (4H, d, J 8.48 ArH), 

7.78 (4H, d, J 8.48 ArH), 6.73 (4H, s, ArH); 4.02 (4H, t, CH2-NH), 3.27 (, m, CH2-

N), 2.52 (12H, s, CH3.Mts), 2.15 (6H, s, CH3.Mts), 1.85 (m CH2). 

13C NMR (300 MHZ CDCl3): 164.0 (CH2 =O), 142.0–122.5 (aromatic carbons), 

45.3, 43.1 (CH2–N), 37.7, 29.5(CH2–N), 29.1, 27.4, 26.8, 25.9, 22.9 (CH2), 22.7 

(CH3.Mts), 20.8 (CH3.Mts). 

 Bisnaphthalimidopropyldiaminopropyldithiobutane (BNIPds) 34 7.16

 

 

 

To a solution of 78 (1.0 g, 4.2 mmol) in anhydrous dimethylformamide. (20 mL) O-

(tosyloxypropyl)naphthalimide 53 (3.45 g, 8.4 mmol) was added followed 

immediately by caesium carbonate (7 g) the mixture was stirred at room 

temperature for 8 hrs under inert atmosphere, the reaction was stopped and the 
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solvent evaporated under reduced pressure, dissolved in ethyl acetate washed 

with 2M HCl (20 mL), water (10 mL), brine (10 mL) and dried over magnesium 

sulfate. The combined extracts were reduced to give a brownie-yellow solid. 

Yield: 75%. 

1H NMR (300 MHZ CDCl3): δ 8.57, (4H, dd, J 7.16 ArH), 8.22, (4H, dd, J 7.54 

ArH), 7.75 (4H, t, J 7.54 ArH), 4.30 (4H, t, J 7.35), 4.19 (4H, t, J 6.22); 3.20 (4H, 

m, CH2-NH), 2.64 (4H, m, CH2-N), 2.51 (4H, m, CH2-N), 2.10 (4H, m, CH2), 1.99 

(4H, t, J 7.35 6.03 CH2), 1.72 (4H, m, CH2). 

13C NMR (300 MHZ CDCl3): 164.14 (CH2 =O); 134.13, 134.06, 131.52, 131.26, 

127.00. 126.95 (aromatic carbons), 62.84, 58.87, 53.53, 39.24, 37.52, 36.79, 

30.89, 27.24 (aliphatic carbons) 

 Bis(naphthalimido)diaminoicosan (BNIPDi) 32 7.17

 

 

 

1,8-Naphthalic anhydride 35 (8 g ,40mmol) was suspended in absolute ethanol 

(200 mL) with stirring. Followed by wise addition of 1,20-Diaminoeicosane 41 (.6.2 

g 19.8 mmol). The mixture was heated to reflux for 15 hrs. The crude precipitate 
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was collected by vacuum filtration, recrystallised from absolute ethanol and dried 

in desiccator, the product was obtained by column separation. 

Yield: 15%. 

Mp: 120.2 ̊C 

1H NMR (400 MHZ CDCl3): δ 8.62, (4H, d, J 7.09 ArH), 8.33, (4H, d, J 8.19 ArH), 

8.09 (4H, d, J 7.34 ArH), 3.76-3.68 (8H, m), 1.67-1.51 (8H, m), 1.27-1.22 (24H, m). 

13C NMR (400 MHZ CDCl3):164.19 (C=O); 133.81, 131.80, 131.14, 130.35, 

126.94, 118.96 (aromatic carbons); 40.50 (N–CH2); 29.70, 29.68, 29.66, 29.61, 

29.57, 29.40, 28.20, 27.17(-CH2-). 

 

  BNIPSpm 21 7.18

 

 

 

Tetra- mesitylated bis(naphthalimidopropyl) spermine 54 (2.19 g 1.5 mmol) was 

dissolved in dry dichloromethane (50 mL) HBr as a 33% solution in acetic acid (10 

mL) was added and the mixture stirred overnight at room temperature under 
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nitrogen. On the following day, the formed precipitate was filtered and washed with 

dry dichloromethane to give a yellow-orange solid. The precipitate was dried on 

the filter and then in vacuum at 60 °C to remove residual acetic acid.  

Yield: 60% 

Mp: 272 ̊C 

1H NMR (300 MHZ DMSO-d6): δ 8.51, (8H, dd, ArH), 7.90 (4H, t, ArH), 4.15 (t, 

CH2-N), 3.42 (m, CH2-NH, CH2-CH2). 

13C NMR (300 MHZ DMSO-d6):163.7 (C=O), 134.4, 130.7, 127.1, 122.0 (aromatic 

carbons), 43.9(N–CH2), 24.5, 22.4 (–CH2–). 

 BNIPDodec 26 7.19

 

 

 

Di-mesitylated bis(naphthalimidopropyl)-1,12 diaminododecane 55 (1.05 g 1 

mmol) was dissolved in dry dichloromethane (20 mL) HBr as a 33% solution in 

acetic acid (3.85 mL) was added and the mixture stirred overnight at room 

temperature under nitrogen. On the following day, the formed precipitate was 
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filtered and washed with dry dichloromethane to give a yellow-orange solid. The 

precipitate was dried on the filter and then in vacuum at 60 °C to remove residual 

acetic acid.  

Yield: 66% 

Mp: 216 ̊C 

1H NMR (300 MHZ DMSO-d6): δ 8.50, (8H, dd, ArH), 7.89 (4H, t, ArH), 4.12 (t, 

CH2-N), 3.52 (m, CH2-NH, CH2-CH2). 

13C NMR (300 MHZ DMSO-d6):163.6 (C=O); 134.4, 130.7, 127.2, 122.1 

(aromaticcarbons); 46.7(N–CH2); 44.8 (NH–CH2); 36.9, 28.8, 28.4, 25.9, 25.5, 

24.5. (–CH2–). 

 

 Gemcitabine-lipoic acid prodrug 98 7.20

 

To a solution of Lipoic acid (202 mg, 1 mmol), DCC (202 mg, 1 mmol) in DMF (10 

mL) stirred for 10 minutes at room temperature, gemcitabine (263 mg, 1 mmol) 

was added together with a catalytic amount of DMAP and the reaction mixture was 
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kept stirring at room temperature for 24 hrs, The reaction was then stopped and 

filtered, the filtrate was taken, the solvent was evaporated to its half volume under 

reduced pressure, the residue was mixed with ethyl acetate (20 mL) and the 

precipitated unreacted gemcitabine was removed by filtration, the solvent was then 

evaporated and the residue dissolved in ethyl acetate washed with water (10 mL), 

brine (10 mL) and dried over magnesium sulfate. The combined extracts were 

reduced to give a yellow solid, this was then purified by column chromatography 

(ethyl acetate: petroleum ether 10:1 to 1:1, followed by 100% ethyl acetate) to 

yield the title compound as a pale yellow solid.  

Yield 40.0% 

Mp: 115 ̊C 

1H NMR spectrums (400 MHz DMSO-d6): δ 11.03 (s, 1H, ), 8.27 (d, 1H, ), 7.30 (d, 

1H, ), 6.36 (d, 1H), 6.20 (t, 1H, ), 5.35 (t, 1H), 4.20 (m, 1H,), 3.91 (m, 1H,), 3.82 

(m, 1H,), 3.65 (m, 2H), 3.18 (m, 2H), 2.44 (m, 3H,), 1.93 (m, 1H), 1.68 (m, 1H), 

1.25 (m, 1H), 1.58 (m, 2H), 1.39 (m, 2H). 

13C NMR spectrums (400 MHz DMSO-d6): δ 174.36, 154.64 (C=O), 163.32, 

145.17, 96.44 (Ar carbon), 84.61, 81.45, 68.83, 60.15 59.56, (deoxy ribose 

carbon), 56.49, 39.39, 38.61, 36.71, 34.53, 28.54, 24.60 (lipoic acid carbo). 
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