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ABSTRACT

The ab initio calculation of wave functions for small poly-
atomic molecules is now feasible but is time-consuming, expensive
and limited in accuracy. The most frequently used approach is
that of molecular orbital (MO) theory, using the self-consistent
field (SCF) method with a linear combination of atomic orbitals
(LCAO) epproximation to the MO's, On the other hand, semi-
empirical methods have been widely used and have yielded extremely
interesting results in spite of the fact that they have often been
based on flimsy theoretical foundations. The first and best known
calculations of this type were of course initiated by Hiickel and
refer to the m~electrons of conjugated molecules, Later semi-
empirical SCF LCAO MO calculations, in which electron interaction
effects are more properly taken into account, were done on 7=
electron systems. Then the Hlickel type LCAO MO method, eand later
the approximate SCF MO scheme, were applied to more general
systems.

In this work a nev semi-empirical SCF scheme is presented
in which an attempt is made to produce a method as close to &b
initio procedures as possible. A particular basis of orthogona~

lised orbitals is chosen to render valid, with a reasonable degree



of accuracy, the integral approximations made. The use of a
particular set of integral approximations allows the simulafion
of the results of non-empirical calculations. The semi~empirical
calculations described in this work are less empirical than any
previously performed on more general systemsj this allows the
scheme to be built on a sounder basis than other semi-empirical
schemes which indude all electrons. Results are presented to
show that with a relatively simple method of estimating the
larger two-electron integrals, over an orthogonal basis, reasonsble
results can be obtained for small polyatomic molecules, As well as
giving good results the method is used as a basis for examining the
foundations of more empirical calculations.

Two approaches are used to obtain wave functions, the SCF MO
LCAO and the self-consistent group function (SCCGF) method. It is
found that SCGF method has several advantages over the ordinary
SCF MO LCAO method in the performance of semi-empirical

calculations.



CHAPTER ONE

INTRODUCTION

The Theory of Self-Consistent Molecular Orbital and Group
Function Methods

The general aim of this work was to perform semi-empirical
calculations on molecules, including all electrons.

This chapter describes.the tvo methods; SCFMO and SCGF, which
have been used in this work to obtain approximate solutions to the

Schrddinger equation
HY=E Y | (1)

where H is the Hamiltonian operator for the electronic part of the

system*

HeDn)+3 I g, (2)

i iy J
h(i) = =3v2(i) + V(i)
n

vii)=-12 It
n

i denotes an electronic coordinate and n a nuclear coordinate

~

*¥ For typographical convenience a letter with a roof, e.g. H,

denotes an operator.,



(atomic units are used e=1, m=1, h/2m=1),

The MO method is an extension of the Bohr theory of electronic
configurations from atoms to molecules., Each electron is assigned
to a one-electron wave function or MO. An approximate N-electron
wave function is then built up as an antisymmetrised product (AP)

of MO's.,

wi(l) ¥p(1) eeee 9 (2)
01(2) ¥,(2) veun 9 (2)
o= (N!)'% 60000000000 0000080000082 (3)

8600060600000 00000000000

Vi (8) ¥,(N) eeae gy (N)

¢ may also be represented as

¢ = (N!)‘i I (-0)F P{v;(1)¥,(2) ... ¥y ()
P

in which the sum P is over all permutations of the N! distinct
electrons amongst themselves and (--l)P is +1 if the permutation
involves an even number of pair interchanges, -1 if it involves ean
odd number. The MO's are products of a function depending on the

space coordinates of the electron only and a function depending on

-2 -



the spin coordinates only*

V(i) = o (x;3y532;) n (i)
where

. (i)
"K(l) = { Z(;)

The spatial functions and the spin functions are assumed orthonormal

J ¢i*(1)¢j(1) dx, = ‘Sij

(L)
f ni(sl)nj(sl) d-sl sij

If the original space orbitals are not mutually orthogonal
then they can always be transformed to an orthogonal basis., The form
of the wave function (3) requires that all the MO's must be linearly
independent, since otherwise the determinant vanishes. So only two
MO's can contain the same spatial function and they must then have
different spins; such a pair of MO's are said to form a closed
electron shell. A closed shell structure then refers to an AP com=
pletely composed of closed shells. Most molecules in the ground

state have a closed shell structure in the MO approximation.

+ The term MO is here used to denote the spin-orbital product =

not just the spatial factor.
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In the group function method, various lone pairs and bond
pairs are recognised from the start and the wave functions is written
as an antisymmetrised product of localised two-electron functionms,
Mére generally one considers also many-electron groups of
electrons (such as a m-electron system).

The closed shell molecular wave function is written

¥ ,B,...(Lo2eeeell) = M ; (-1)F P0y(1y0ecM)Op(N 41,000, 4N) £, L) (5)

@R is called a group function for the NR electrons of group R, It
is assumed that the group functions are individually antisymmetric
in the variebles to which they refer. A completely antisymmetrical
function results when the summation in (5) excludes the sub-group
of permutations which leave every electron in its original group.
If there are v permutations in the remaining distinct cosets, the
1)'3

normalising factor M is (v!) “, provided the group functions are

normalised and orthogonal in the sense
I ¢R*(l,i,j....)¢S(l,k.2,...) dt, = 0 (R#S)

The wave function for group R, Ons is written as a linear
combination of NR-electron basis functions for the electrons of

group R, ¢§



m
p= 1 o (6)

wvhere the ¢ﬁ are constructed from orbitals ry1sT¥y9eee Of group R
(e.g. a Slater determinant or suitably coupled set of determinants).
r; are basis orbitals of group R (e.g. suitably orthogonalised AO's

or hybrids).

Variation Theorem

For a normalised trial wave function Y we can calculate
E= f wOH Y dr
which is the expectation value of the energy of the system in state

¥, By the variation theorem this expectation value cannot be less

than the exact energy of the system in its lowest energy state

E = E (7)
Proof Expanding the trial function ¥ in terms of the complete set

of orthonormal eigenfunctions of H, and assuming that ¥ is normalised

then
m
¥ = Z ¢ wz
1
and n
*
E= 2 c1 cj Hij
?



where
= * T
Hlj J wi (l) H \pj(l) dTl
Now since

~

Hy, =E, {,

S G
*
Hs = E f ¥ *(1)4,(1) ar; = E; 8,
So
m
E *c. E,
) g %57 (8)

But as Y is normalised, substitution in / Y*¥ dt = 1, multiplication
by E, end subtraction from (8) gives

E-E, = |e,|2 (E;-E)) + leg]? (E3-E)) + .o
But every term on the right is positive since E, is the lowest
energy 'value and (T) therefore follows.

In the variation method Y contains parameters which can be
varied until E has its lowest value for the particular type of
function chosen., This is an extremely useful method since we know
that variation of parameters in the wave function cannot give a lower
energy than the exact energy, so that it is reasonsble to assume that
lowering the energy produces a better wave function which is a more

adequate description of the system., There are no analogous theorems

-f -



for such properties as dipole moment or charge distribution so that
it would be very difficult to use these properties to decide upon a

good wave function.

The SCF MO method for closed shell systems

The SCF MO method for closed shell systems has been developed

2) (3).

by Roothaan(l), Hall( and McWeeny

The total energy for the closed shell system is

E = f o* H ¢ dr

~

where H is given by equation (2) end ¢ by equation (3).

E= j o* ¥ h(i) ¢ at + J o* (1/2 ' 1/r,.) ¢ ar
i i,y M

=1+G

Now

I=

= |4

[ 3 DF 020y ] ) ] -0
*7P i Q

Q(Wl(l)¢2(2)...wN(N)) aTldeooodTN

Since each permutation P simply affects the labelling of the

- variables of integration we have N! identical terms

1= [ (41 (1)v,(2) e any(m]* B(i) % (-1)% Qw; (2)¥,(2) 40y (1))
. 1

d‘tldTZ...dTN



Now since X n(i) is a sum of one-electron operators, any non-irivie.l
permutatio; Q produces two non-coincidences of spin orbitals, one of
which must integrate to zero by equation (4), so
I=] I v;(1) B(1) v;(2) ar) = ] o,
i i

8ince all the factors multiplying these terms integrate to unity
by equation (k). |

For the electron repulsion terms the reduction is the same
except that since l/rij is & two-electron operator the only permu~
tations Q which result in non-zero terms are the identity and

single interchanges.

6= [ (k@) (172 2 e

x Q (¥;(1)¥,(2) suty (W) )ar dr,.. a1y
- "(2) Lo
: 1
- [ vrvre 2 v @vanes,)

CE=Jh +} ] (- k) (9)
1



For the closed shell case the MO's occur in pairs with the
same space functions and different spin functions, We can reduce
equation (9) further by integrating over spin coordinates, We

define the following integrals over space coordinates only:

Bo= [ et B e ey

J.

i = J 6;*(1)45%(2) 2= ¢;(1)0,(2) aryan,

T12
1
K5 = I 0% (1)9;%(2) T 4;(2)4;1) anyar,

When the spin integration is performed hi is always equal to Heo
Jij is always equal to Jij and kij 1s equal to Kij if ¢i and ¢j have
the same spin factor, and zero otherwise, So contributions to Hi’

Jij and Kij arise from the following combinatiops of spin factors:

¢i* ¢j* ¢i ¢j
h. Q o
. 8 8
ji. o o a o
J 1 8 B |8 |8
o B o B
B o B o
k.. o o o
N B (B |8




So the energy expression (9) reduces to

E=2 ? B+ § (2Jij - Kij) (10)
i 1,)

To obtain the AP for which the energy is a minimum we have
to minimise (10) by varying the MO's with the constraint that the

MO's form an orthonormal set,

If we use the approximation that our MO's are linear combin-

ations of atomic orbitals (LCAO)

¢i = g Xp Tpi (11)

vhere the x?'s are normalised atomic orbitals (AO's)
*¥(1 l) 4ty = 1
f Xy ( )xp( ) ar,

then we have to find the coefficients Tpi for which the energy of the

AP is a minimum. Writing equetion (11) in matrix notationt

$=x1I

vhere

$ is (410, ¢;8, ¢,0, 6,8, «0v ¢ 0, ¢ B)

Xis (xl' XZ' X3' see Xm)

t For typographical convenience an underscored letter denotes a

matrix



and T is an m>n maetrix, each colunm containing the A0 coefficients
of a given MO,

We then define

R=r1f
E=2R

(%)

where P is the charge end bond order matrix’ ‘., The orthonormality

requirements may then be written

RZ =

i

(12)

for then
is satisfied when

end it can be shown that (12) is both necessary and sufficient for
the existence of a T with this property.
Introducing expression (11) into the expression for the

energy (10) we get

=t pgq E Toi" Tai f %" (1) 1) x (1) a7,

+ ) } T %1 *r .7 .(2(pr|gs)-(ps|ar))
DyQsTy8 i,5 T W THEI

where



(prlgs) = JJ xp*(l)xr(l) Ly *(2)x (2) ar a1,

12 ¢
Now since by definition

n
Z T .T % (n occupied orbitals)

R =
qp igl ql P1
then
E=2 J R H_+ )) R_R__ (2(pr}as)-(ps]ar))
PsQ @ P DsQsXyS P 8
where

N [3 f a E.

(J(R))rs = tiu Rtu(rslut)

(x(r))__ = } Rtu(rtlus)

rs t,u
then we have

Es= R H + 3 R_UR)__ - (®®&®) )
p?q v pq p?r rp (2 pr = )pr

or

E=2trRE+trRG (13)

where



¢ =2 IR - K(B)

Now we must minimise the energy expression (13) by the
variation of the matrix R subject to the idempotency condition
(12), Assume that we have an initial R matrix satisfying equation
(12) and consider a variation

R+>R+ &R

then to first order

1) a2 tr sRE+tr SRC+ trRC
Now
tr SR G = tr R &G
since
G = )) Rtu(z(rs|ut) - (rt]us))
t,u

tr R8G = ] R &G
r,s

D) R.g GRtu(Q(rslut) - (rt]us))
r,8 t,u

) SR, ) Rsr(2(ut|rs) - (tr|us))
t,u

= z 6Rtu Gut
tyu
= tr G &R
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So
B =2 tr & (84 0)

=2tr 6Rn"

where
B =H+g
Now since
pezrf =t P
wvhere

L]

Here the qﬁantity € is the expectation value for an electron in

(1k)

orbital x of the Hartree~Fock Hamiltonian whose matrix is g?, and

is called an orbital energy. So to first order the change in

energy is equal to the change in the total orbital energy,

- 1l -



(1)
6B = 6Eorb

Now if we choose the orbitals as eigenvectors of g? we shall

automatically minimise E by the variation theorem. So the

orb
condition for minimum energy 6E(l) = 0 may be satisfied by solving
nc=EC (15)

a one-electron eigenvalue problem.

However since g? depends on the elements of R and hence ¢n
the solutions, an iterative procedure is necessary. An initial R
satisfying equation (12) is chosen and 3? calculated, the eigenvalue
problem is then solved and the solutions used to set up a new R mat-
rix and so to recalculate EF. When the R formed from the solutions
of the eigenvalue equation differs very little from that used in
forming g? then the solution is self-consistent and the procedure

is terminated,

The SCGF method for closed shell systems

The SCGF method has been devéloped by Parks and Parr(S) and
McWeeny(6). The derivation of the equations which determine the
"best" wave function (in the variational sense) will be outlined

below.

- 15 -



Different groups are assumed to be "strong orthogonal" in

the sense (using the notation discussed earlier in this chapter)
[ otiidnens) aglimnn) as =0 (rs0) (16)
This is true provided
f E(1y00dp000) 65010k 2,000) a1y = O

which may be ensured by building different group functions from

mutually orthogonal sets of orbitals:
*
[ 2riss) ax, =0 (xs)

The total energy using a wave function of the form given in
equation (5) can be derived using a procedure similar to that
employed in the derivation of the SCF MO equations., The total

energy
= *» h (i 9 + I 4’* ' P
E I ¢A.B'.Q. .z h(l) A.B'... dt A'B’..lla cZo(l/rla)l°A.B’.ldT
1 1,4
can be reduced using the orthogonality condition given in equation
(16).

E=) I o ¥ fy o at + ] RE
»

' (oK)
£ rRsXRs

S

vhere

- 16 =



[==})
]

Ry« 1 I
0 i(%) e .§ R) ij)

ey
)

= o ® O %
RS J R 'S igR) j%s) (l/rij) o0 dr

KRs

I o ¥ o '%R) _% (1/r; ) B(i+ej) oy 0 dr
3

vhere i(R), for example, refers to summation over variables (i) in
group R, 47T represents integration over all variebles and the
operator §(i+*j) interchanges i and j in the functions succeeding
it.

The aim is to obtain a good one-configuration approximation
to the molecular ground state by optimising each GF, ¢R.
approximation is that which minimises the energy of each group in

The best

en effective field provided by the other groups. An effective
Hamiltonian for group R in the field of all other groups is given

by

R | 1 '
H ff(lizooc-N) = i?R) eff(l) + 32 .g (R) (l/rij) (17)

where

haee(i) = 8(1) + 1 (P) - 8w))
S(#R)
The coulomb and exchange operators ER(i) and ﬁR(i) are given by

- 17 -



R/, . : :
J (1) = J ¢R (l,2.co,J,-oNR) j%R) (l/rij) ¢R(l,2,..,J,..NR) dt

“R,. R . Dl s
0) = [ ax ar(,2,0008,00mp) Joy (i) aizee iy i)

vhere A4t represents integration over all variables except i and the
operator ?(i*ﬁ) replaces i by j in the functions succeeding it.
These operators can be reduced‘further(T), in terms of the one=-

electron density matrix for group R, p?(i;j):

a

. R,. .
FR1)vi) = f p1(d3d) ars ¥(i)
: rij

R L *
KR(i)w(i) = f de p1(isJ) v(3) (an integral operator)
To o
i

(7)

It can be shown''’ that the condition for stationary total
energy is

AR .
I &R*,Heff ¢y 47 = stationary value,

that is the energy of each group in the effective field provided by
the other groups is a minimum,

The wave function for the group R is written as a linear
combination of basis functions for the electrons of group R as in

equation (6).

- 18 -



The basis functions (¢§) to be used will depend on the
nature of the group but two cases of special importance serve to
illustrate the general procedure. For describing & non-localised
T-electron system, it is convenient to employ just one $§, a one=-
determinant function whose orbitals are linear combinations of the

basis orbitals.
o = = O FTaT,68TaT,8 vons]
U u* 17 C1F T27 T2t teee
In order to discuss bond properties in detail, it is

necessary to have a more flexible function. For a bond function

constructed from two orbitals we can ¥orm three independent singlet

functions
¢¥ = (1//2) |70 78]
45 = (1/2) (|rja r,8|=|r6 * 0]} (19)
&5 = (1/VB) |r,a r,8]

If all three are admitted the choice of basis orbitals will be

arbitrary. If r, and r, are AQ's at opposite ends of a bond the

¢§ in (19) will represent "covalent" and "ionic" structures.
Variational determination of the coefficients Cﬁ in equation

(6) is carried out by an iterative procedure, adjusting the groups

one at a atime, To determine the best group function o at a given



stage, all other group functions being specified at that stage, a
linear variational problem with Hamiltonian ﬁzﬁ. must be solved.
This leads of course to the secular equations for the coefficients

T R ,.R
L c, (Heﬁ.)w -5, ER) = 0 : val,2,...m

The wave function for the other groups enter this equation through
the operators 55(1) ana ﬁs(i) in equation (18).
With group functions of the form desc¢ribed above it is easy
to write down explicit expressions for the matrix elements of the
* [ . R
effective Hamiltonian (Heff)

The GF approach has immediate chemical appeal because it

uv*®

stresses the individuality of different bonds and other chemically
recognisable groups. It can transcend the limitations of the
Hartree~Fock theory because some measure of correlation is admitted

within each electronic group.

-20-
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CHAPTER TWO

REVIEW OF PREVIOUS WORK

n-Electron Calculstions

A very large number of semi-empirical calculations have been
performed on meelectron systems. These systems were treated first'
for historical reasons and because the calculations were compara~-
tively simple. The bonding in conjugated systems had interested
chemists ever since Kekulé., The properties of rm=-electron systems
had been extensively investigated and the characteristic properties
of these compounds, such as their stability, reactivity and spectra,
vere of great interest. The calculations were relatively simple as
the ™ group of electrons were treated separately from other
electrons. The m-electrons are treated separately from the o-
electrons, the effects of which may be allowed for (in principle) by
the use of an effective Hamiltonian

Ny n

w
fy(ti2enm) = B )+ 1 T () (1)
¥ T

This assumption is consistent with the use of a wave function of the

form
v= Ay, ¥ )



vhere ¥ is an antisymmetric function for the sigma part of the
system and ¥ is an antisymmetric function describing the pi part.
The product function is fully antisymmetrised by the operator A
(see section on group functions in Chapter 1).

A m~electron wave function v is then sought which minimises

the T-electron energy
* g %
E, = [ Y *H ¥ odr | [ Y ¥y ar (2)
This minimisation problem has been dealt with using an MO form of
¥y in Chapter 1 where the problem was reduced to a set of one-
electron equations

g? C=¢C (3)

These SCF equations for the 7 group alone are deduced using an
orthonormel set of AO's. This is reesoneble since it is usually
assumed in semi-empiricel methods that the % MO's are formed from
a linear cambination of 2p, AO's and that the overlap integrals
between AO's are zero.

In Hiickel theory equation (1) is not used, but the much
simplei form

- seff
H (1,24000m ) = E Ho(u)

-23 -



is employed, where 8°TE(1) incorporates the effect of the electron
repulsion terms in some average way. As the terms which represent
the interaction of electrons are not inclﬁded explicitly in the
Hiickel method, an iterative procedure is no'longer necessary and
the problem is reduced to a set of linear equations. Equation (3)
can then be written

reff .
g cqi (Hpq -e)=0 (i=1,24400n )

which has non-trivial solutions when the €; are the roots of the

secular equation

‘ﬁeff -c.|l=0
rq 1
where
seff % ceff
npq .f X (1) 85 (1) xq(l) ar(1)

for the atomic orbitals Xp end xq.

The final assumption of Hlckel theory concerns the values of

the integrals geff
Pa

ﬁeff I
pp

where ap depends only on the nature of the atom p concerned

e T
f
pa - °pq

\

where qu is an empirical property of the bond pq and is zero if

- 2l =



p and q are not neighbours.
The total energy is assumed to be equal to the total orbital

energies, so that for the closed shell case

E‘"=2gei
The Huckel method has been very successfully applied to a

very large number of conjugated systems. It has been very useful
in correlating properties such as reactivities, bond lengths and
electron distribution, and has the advantage of being very simple
to use. Perhaps its biggest practical drawback is the fact that it
does not give a reasonable interpretetion of spectra, singlet and
triplet excited levels not being split. Huckel theory also has the
disadventage that the quantities involved, the Hamiltonian matrix
elements, are not exactly defined, and no basis set is actually

specified. As McWeeny(l)

has pointed out, the Hlickel paremeters
for alternant hydrocarbons are to be compared with the elements of
the self-consistent Hartree-Fock Hamiltonien in which the C-C bond
orders are given a common average value and the "formal" orders
between more distant atoms are neglected. In this case however the

total energy and excitation energies cannot be expressed as simple

sums and differences of orbital energies, and different values for



the Huckel parameters are needed in discussing different properties.,
In systems containing hetero-atoms the nature of the parameters is
even less clear,

In the SCF LCAO MO theory, the Hamiltonian of equation (1)
is not approximated, that is the electron repulsion is included
explicitly and the SCF equations (3) are solved by the procedure
outlined in Chapter 1. Approxiﬁations are however made in the cal-
culation of the integrals. The one-electron integrals are approxi-

mated in the following way

* ~
frr = I xr EHCOZ'G(H) xr dr

I X =372 + v+ s(gr) Vylx,. ar

ﬁw -

T s(#r) Zg Yrs

+y
n

2
- I xr*|-gv *V HV 4 ¥

v d
t(#r,s) eltg &

= B
rs

where Ve is the repulsion integral between 2p. type charge clouds

on r and s

- 26 =



Y = I x,*(1) x.(1) r—::-z- x*(2)x (2) atdr,

The framework field V., due to the framework ion s is approximated
by that of a charge Zs (the number of meelectrons contributed by
atom s) smeared out with 2pﬂ-like density, so that the interaction
between a T-electron and this field can be approximated by the
electronic repulsion integral between two m-charge clouds, w, is
roughly minus the ionisation potential from the orbital ¢, of atom
r in the framework, so that W, is approximately & characteristic
of the atom r in any conjugated framework., Similarly Brs is
expected to be characteristic of the bond r-s.

'Early calculations using theoretical values for Yrs did not
give very good results. Moffit (1951)(2) and Pariser (19Sh)(3)
proposed that these integrals should beestimated from spectroscopic

data. If we consider the following energy change

where the dots are 7-electrons, then the energy change in this
theoretical reaction is the energy of the components on the right

hand side minus the energy of those on the left,

- 27 -



energy on right hand side = -2 I. (valence state ionisation potential)

* Yeo

energy on left hand side = =2 I,

Thus ignoring core energy changes the energy change is Yoo But the
energy needed to perform this reaction is -IC (to ionise an electron)
+ Aq (the electron affinity, for the electron to be received by the
neutral carbon atom)., So YCC should be equal to IC - Ac. It was
therefore proposed that the theoretical value should be adjusted by
setting

Yec = Ic = 4¢
and reducing the other repulsion integrals to roughly maintain
relative values.

SCF n theory has been very successful, particularly in
explaining the electronic spectra of cyclic hydrocarbons. It has
been less successful for heterocyclic compounds, meinly due to the
difficulty of deciding on good one~-electron parameters. It should
be noticed that the explicit introduction of electron repulsion
does make the calculations considerably more complicated then

Hiickel calculations.,
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Calculations including all electrons

As in m-electron calculations the first sigma electron
calculations were of the Huckel type with electron repulsion not
treated explicitly. Calculations of this type have been performed

(6-10)

by Sandorfy(h), Yoshizumi(S), Fukui et al ’ Hoffmann(ll‘lh) and

Pople and Santry(ls’ls).

Sandorfy in 1955 performed extended Hiickel calculations on
saturated hydrocarbons and their derivatives using three different
procedures:

(1) inclusion of only the sp, orbitals necessary to

describe the carbon skeleton;

(2) implicit inclusion of hydrogen atoms by also

including sp, hybrids directed towards the
hydrogen atoms;

(3) explicit inclusion of 1s orbitals on the hydrogen

atoms.,

Using method (1) Sandorfy found that the effect of an
electron attracting substituent X was mainly to alter the charge
in the carbon orbital contributing to the C-X bond, As the
orbital charges alternéxe and there are two orbitals on each atom

the small alterations of charge on other atoms are further damped.
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Using method (2) he found that almost all the charge pulled
on to an electron-attracting substituent X comes from the carbon
orbital bonded to it and also from the orbitals directed towards
hydrogen on that carbon. He found that the charge on the carbon
atoms decreased in the order lary’ 2ary’ 38,

In method (3), H orbitals were introduced explicitly for the
first time into a semi-empirical calculation.,

Sendorfy found it difficult to consider actual substituents
realistically as new parameters are needed and it is necessary to
find a way of introducing lone pairs, This weas probably the first
time that any charges and bond orders had been derived for the
o-bonded hydrocarbons and their derivatives.

Also in 1956 Yoshizumi considered hydrocarbons and their
derivatives by including only the carbon skeleton of 8p; orbitals
(equivalent to method (1) of Sandorfy). Using the polarissbilities
of Coulson and Longuet~Higgins he concluded that effect of a small
change in o is limited within the neighbouring bond which is in
agreement with Sandorfy's results. He therefore predicted that
the value of the dipole moment for C,HX was a limiting one. This
tendency was bbse;ved for CL but not for Br and I, He therefore

concluded that in the latter cases the effect of heteroatoms could



not be expressed properly by a change in o only, so that this
method would not be applicable without modification,

Yoshizumi only treated linear compounds. In 1960 Fukui et
al treated linear, branched chain and cyclic compounds by the same
carbon skeleton method., As they treated non-linear compounds they
had of course to introduce new.parameters. They calculated the
ionisation potentials of paraffins from the C-C orbitals., For the
n-paraffins they obtained good agreement with experiment except in
the case of ethane., For cycloparaffins the agreement was not so
good, and the greater the deviation of the actual C-C-C angle from
the normal cne the worse the agreement. They concluded that this
was because steric factors had been left out of consideration.

They calculated the total electronic energies and obtained
epproximately the same total energy per CH, group for ethane to
n-heptane in accord with experimental data on the heats of forma=
tion of these compounds. They neglected nuclear repulsion in this
calculation and concluded that discrepancies may have been due to
this. This seems extremely unlikely, as the energy per CH2 group
in the above molecules would certainly not be approximately the same
if nuclear repulsion had been included. This point will be dis-
cussed in more detail later in the chapter when Hoffmann's work is

examined.



Fukui et al have also performed calculations including
the hydrogen atoms explicitly and using sp, hybrids., They have
done calculations on the o=structures of unsaturated compounds and
have calculated o~electron densities and o dipole moments. From
the energy gaps (between the highest occupied and lowest unoccupied

orbitals) calculated, they concluded that in most of the molecules

the gap was easily large enough to accommodate all the ¢ MO's, 1In
some exceptional cases, for instance chlorcbenzene, however, they
concluded that it is possible that the lowest vacant o MO may be
below the lowest vacant 7 MO, This may have an important bearing
on the nature of chemical reactions and on physical processes such
as polarographic reduction.

It should be noted that it is very dangerous to obtain
molecular properties by the addition of separately calculated g
and 7 molecular properties. Thus accurate SCF LCAO minimal basis
calculations on formaldehyde (to be discussed later) predict that
the m-electron density is greater on the carbon atom than on the
oxygen atom. This is of course contrary to what is usually assumed,
Of course the effect of the o~electrons on the n-electrons should
be taken into account in a self-consistent procedure.

One of the dangers of semi-empiricﬁl procedures is that we

only get from the calculations what we expect,- This is illustrated
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by the case of formaldehyde mentioned above, where the semi-
empirical one-electron parameters for carbon and oxygen are so
chosen that the oxygen atom will have greater m-electron charge
than the carbon atom. This weskness of course can only be overcome
by approximate procedures which retain as much as possible of the
exact procedures.

Pople and Santry have a.iso performed calculations involving
the explicit introduction of hydrogen atoms and using 8p3 hybrids.
For saturated hydrocarbons they derived sufficient conditions for
a transformation to completely localised orbitals for C-H and C=C
bonds and they then used a perturbation approach to study the
extent and causes of partial delocalisation of the bonding electroms.
They found that long range bond orders, a measure of electron de-
localisation, could be quite large and could extend over several
bonds. They also applied the method to unsaturated hydrocarbons
including both ¢ and 7 electrons in contrast to Fukui et al. This
perturbation technique does predict that the electronic charge on
the hydrogen atom decreases in the series ethane, ethylene and
acetylene in agreement with SCF LCAO MO minimal basis calculations
and vith experimental evidence. It will be seen below that this is

not true in Hoffmann's extended Hiickel calculations, Like Sandorfy,
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Yoshizumi and Fukul et al, Pople and Santry used the Longuet-
(17)

Higgins and Roberts method of estimating off-diagonal

Hamiltonian matrix elements

Hij = K Sij

where sij is the overlap integral between orbitals ¢; end ¢j.

Hoffmann has performed calculations including hydrogen
atoms explicitly and using s and p orbitals rather than sp,
hybrids, He treated a very large number of organic and inorganic
compounds, both saturated end unsaturated, linear and cyclie, homo
and hetero. He treated molecules as large as decalin and
anthracene,

As Hoffmann treated general polyatomic molecules (not only
hydrocarbons) he needed specific values for the diagonal elements
of the Hamiltonian matrix elements H.eo The H.. were chosen as
valence state ionisation potentials. The off-diagonal matrix
elements were calculated using the Wolfsberg-Helmholtz(iB)

approximation

Hij = 0,5K (Hﬁ-i-Hjj) sij

vhere sij is the overlep integral between orbitals i and j.
The method predicts the bond distance in methene very

accurately when the nuclear repulsion term is excluded from the
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total energy calculation. If the nuclear repulsion term is
included then the minimum disappears completely., Ve have seen
earlier in this chapter that good results have been obtained using
the Hiickel method and calculating the total energy simply as a sum
of orbital or one-electron energies. Slater(lg) has pointed out
that the sum of the one-electron energies of the Hartree-Fock
Hemiltonian is equal to the total energy minus the nuclear-nuclear
repulsions, plus the electron-electron repulsions, The last two
terms cancel roughly and so the sum of the one-electron energies
is approximately equal to the true total energy. The predicted
bond distances in acetylene, ethylene and ethane however are less
satisfactory and the water molecule is predicted to be linear,

The calculations fail to predict any strain energy in small rings
and tend to overestimate steric repulsions. This finally leads to
incorrect isomerisation energies for pentanes and hexanes, The
theory does in general lead to the correct assignment of equilibrium
conformation and predicts barriers to rotation in ethane and other
molecules, though the barriers are very inaccurate and even their
qualitative behaviour from one molecule to another is often wrong.
Many of the charges and bond orders for the molecules have been

calculated for the first time, Hoffmann is apparently confident
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of the charge distributions since simple Hiickel theory indicatés
that these are quite insensitive to the choice of parameters.
Results to be presented later suggest tha the predicted charges
should be viewed with some suspicion, Simple Hiickel theory only
indicates that the charges in alternant hydrocarbons are insensi=-
tive to a change of parameters, but this is surely because the
charges are mainly dependent oﬁ the topology of the molecule.
This is not the case for molecules containing heteroatoms and when
hydrogen atoms are included explicitly all the calculations become
equivalent to such calculations. Thus Hoffmann's charges in the
molecules methane, ethane, ethylene and acetylene are not in
agreement with the results of exact SCF LCAO MO minimal basis
calculations or with experimental evidence. This point is discussed
further in Chapter 6.

In n-electron calculations the major step taken after the
Hiickel method had been introduced was the use of semi-empirical
SCF LCAO MO theory. In calculations involving o= or both o- and
n-electrons the analagous step was taken by Pople, Santry and
Segal(zo’zl).

Pople, Santry and Segal examined the invariance of various

approximate SCF procedures under simple transformations of the AO
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basis set, such as rotation of axes or replacement of s and p
orbitals by hybrid orbitals, They believe that it is important
that any approximate theory should be independent of choice of
axes system as in the full SCF theory. They also believe that the
approximate theory should be invariant with respect to the hybrid-
isation of AO's, In order to satisfy these criteria they suggestéd
that the approximate coulomb integrals for p orbitals on centres
A and B should be independent of orientation

(2pﬁ 2pi|2p§ 2p§) = (2p3 2p¢|2p§ 2P§) = (2pi 2P2|2P2 2p§)
but the actual integrals do not of course have this property and
the imposition of such equalities represents a dangerous over-
simplification. The only real invariance requirement is that all
physical properties are invariant against the change of description
in which one set of basis orbitals is replaced by a new set, related
to the old by a non-singular linear transformation (as for instance
in changing the axes wifh respect to which the p orbitals are
defined, or in changing from a non-orthogonal to an orthogonal
basis). This does not imply that approximations made in one basis
will be equally valid when applied to the corresponding quantities
in another basis. In fact the invariance of physical properties

would almost certainly require that the approximations should be



different, There is no physical law requiring invariance of
approximations.

They concluded that there are only two internally consistent
approximations to the full SCF equations. These are the use of (i)
only (aalbb) two-centre integrals, that is the complete neglect of
differential overlap (CNDO), and (ii) neglect of differential over-
lap except for two-centre integrals of type (aa'lbb'), where a and
a' (or b and b') are orbitals on the same centre, that is neglect
of diatomic differential overlap (NDDO). Also if Bij is chosen to
be proportional to the overlap integral Sij’ then the constant of
proportionality must be independent of the type of orbital i or j
and only dependent on the nature of the two participating atoms.
This criterion is not satisfied by the WOlbeerg-Helmholtz(g)
approximation used by Hoffmann. It is satisfied by the Longuet-

(17)

Higgins and Roberts approximation

Bij = Bp Sij
wvhere BAB depends only on the nature of the atoms a end b and i
and j are orbitals on centres a and b respectively,
In the CNDO method Pople, Santry and Segal suggest that

further approximations have to be made to restore invariance under

hybridisation or other local rotations, as discussed sbove, which
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is destroyed when CNDO is assumed. It has to be assumed that Vi3

depends only on the atoms to which orbitals i and j belong and not

A"B

equivalent irrespective of the nature of the orbitals up &nd v

on the type of orbitals involved. They assumed that all Y, are

Bl
and are equal to YQS o5 *

The calculatiﬁhsBpredict reasonable bond angles though like
Hoffnann's extended Hiickel calculations they do not predict bond
distances reasonesbly. The charges on the hydrogen atoms in the
series methane, ethane, ethylene, acetylene are in agreement with
experimental evidence except for the fact that methane and ethane
have almost the same charge on the hydrogen. This point will be
discussed in more detail in Chapter 6. The theory predicts
barriers to rotation in molecules such as ethane and though the
absolute values of the barriers are much too low the relative
magnitudes in a series of molecules are correct. It was seen
earlier that this was not the case with Hoffmann's extended Hiickel
calculations.,

Pople and Segal performed a large number of semi~-empirical
SCF calculations. The approximations used in we-electron calculee
tions are not necessarily applicable to calculations including

o-electrons.
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Thus in O=electron calculations the CNDO approximation
involves the neglect of one and two-centre repulsion integrals of
the form (aa'|bb') where a and a', and b and b', are orbitals on
the same centre., This is not the case in 7 theory since there is
only one orbital on each centre.

Pople, Santry and Segal appear to require by their invari-
ence procedure described sbove that the approximations used should
be the same regardless of the basis set used., This invariance of
approximetions does not appear to be essential as it is obvious
that CNDO is only a reasonable approximation for an orthogonal
basis set and not just for any basis, Thus over a Slater AO basis
of s and p orbitals the CNDO approximation would involve the neglect
of integrals as large as 0,25 =« 0,35 atomic units which would
obviously be very unsatisfactory. When these integrals are transe
formed to a symmetrically orthogonalised hybrid basis they are
reduced in value and their neglect becomes more reasonable, though
still questionsable, since the largest of them, of the form (aa'|aa'),
are approximately 0,075 atomic units or 2 electron volts. So in
fact even using an orthogonal basis it would eppear desirable to
retain integrals of the form (aa'|bb'). This point will be dis-~

cussed in more detail in Chapter 5 where the effect of various
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approximations is examined,

However in spite of these two objections the method does
give reasonable results, as has been seen sbove, and it is useful
to examine why this is so.

Pople and Segal have calculated the one-electron Hamiltonian
matrix elements in the following way:

(a) a's are calculated using spectroscopic data and so

a reasonsble difference between the a's for s and
p orbitals on one centre and for a's on different
centres are obtained.

(b) B's are calculated by fitting CNDO diatomic cal-

culations with variable B to give results closest

to those of the exact minimal basis calculations.

In this way the B's are chosen to be reasonably

close to the exact values over an orthonormal basis
as can be seen in the Tables below giving Pople and
Segal's one-electron integrals for water and the
exact integrals for the non-orthogonal and orthogonal
bases for comparison (the effective Hamiltonian
approximation has been used, since Pople and Segal

do not include the 1s orbital explicitly).
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Pople and Segal's One-Electron Hamiltonian for Water

hy h2 28
=3.4k71 -0,124 ~0,3Th
-3.471 -0.37L
-6.313

Exact One-electron Hamiltonian for Water (Non-Orthogonal Basis)

2px

"00 156
-0.,156
0

-5.715

2
Py

-0.203
0.203

=5.T15

2pz

o O O O

0
’50715

h, h, 28
-3.9198 -1.,7k01 -2.8193
-309198 ’2.8193
-5.915&

Exact One-electron Hamiltonian for Water

2px

-1.15 32
-1.,1532
0o

=5.3794

2
Py

-1.3890
1.3890
0
0
=5.4h3L

~(Symmetrically Orthogonalised Basis)

hl h2 28
"3.2839 -0.1h89 -0.1670
-3.2839 =0.4570
~5.7845

2px
"0.232)4
-002321‘

0.,0932
'SoBQhS
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Py

-0,2122
0.2122
0
0
-5.4281

2p

o O O O

0
-5 02878

2p

o O O O
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It is clear that Pople and Segal's one-electron integrals
correspond most closely to the values calculated for an orthogonal
basis, for which the CNDO approximation is reasonable. Also their
prescription for estimating the one-electron matrix elements by
fitting diatomic CNDO to exact calculations compensates to some
extent for the errors introduced by the use of the CNDO
approximation.

The B values used, which simulate values over an ortho=~
gonalised basis, remain reasonable parameters for molecules other
than diatomics, as noted by L&wdin(zz). Thus for a diatomic with

hybrid orbitals on the two centres

h1=Sl‘+>‘px hzssz-)\px

1 2

the orthogonalised hybrids are (to first order in overlap)
Ry =h; -318h; eand Ezzhz-asrlz
for then

iIs=-3s=0

S = S
f{152

(to first order in overlap). So 8 over the orthogonalised basis

is given by

™l
R
™
!
w0
Q
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Now consider the effect of bringing up a point charge. The a term
alters by I |¢,12 V v = X and the g term by f 6,* ¢, V dv, that is

approximately SX. So we have

a+at+ X

B+ g + SX

So
B =B+ 88X~ S(atX)

= B = Sa

This explains why B can be taken over from diatomic to
polyatomic molecules since to first order it does not alter with
external molecular environment.

The success of the Pople Segal calculsations is apparently
not due to the invariance restrictions but rather is achieved in
spite of them., The calculations give reasonable results because
they simulate the use of an orthogonal basis, for which the CNDO
spproximation is reasonable, and they have to some extent allowed
for the use of the CNDO approximation, and the more drastic approx-
imation of setting all Y5 equal, by fitting the B values used to

give results close to exact diatomic calculations,
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CHAPTER THREE

AIMS AND REVIEW OF PRESENT WORK

In recent years ab initio calculations on diatomic molecules
end semi-empirical calculations including all electrons have been
performed., These semi-empirical calculations have been described
in the previous chapter. They have either not considered electron
repulsion explicitly (extended Hiickel calculations) or incorporated
a large number of approximations and semi-empirical elements. The
success of the Parr-Pariser-Pople semi-empiricel n-electron theory
encourages the study of minimal basis calculations including all
electrons with the aim of producing a more complete semi-empirical
theory thaﬁ those which have so far been used., This is the aim of
the present study.

With this aim in view, it is first necessary to perform ab
initio minimal basis calculations on simple polyatomic systems,

Tvo main methods were used: (i) SCF LCAO MO calculations, and (ii)
"group function" calculations in which individusl bonds, inner
shells, etc. are dealt with as 1ocalisedAunits. The computational
background is to a large extent common to both methods. Since come
putational facilities have so far been severely limited, the

necessary pilot calculations have employed integrals accurately
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calculated elsewhere, or else less accurate integrals which may
often serve for comparative calculations using the different
quantum mechanical methods. When accurate and approximate integrals
are both available it has been possible to gain valuable insight
into the effects of approximation,

The calculations have been performed with a view to eventually
producing a semi-empirical scheme., It is of course obvious that
unless a large proportion of the two-electron integrain are neg-
lected the number of parameters becomes completely unwieldy even for
the smallest molecules., It is therefore necessary to choose an
orbital basis in which most of the two-electron integrals take
very small values, It remains to be seen whether or not a basis
can be found in which the CNDO, or the less stringent NDDO approxi-
mation, gives a reasonable representation of the facts, when there
are several AO's on each centre., Experience suggests that such &
basis will consist of orthogonal orbitals possessing maximum
localisation. The problem of meking reasonable integral approxima~-
tions is inseparable from that of how best to choose a basis in
which the orbitals will exhibit orthogonality and a high degree of
locsalisation,

The s,p,d,¢.. Orbitals on each centre although orthogonal
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by symmetry, do not exhibit high localisationj 2s and 2p AO's for
example occupy roughly the same region of space and are orthogonal
only because of their nodal properties. It is, however, possible
to improve the localisation by mixing; for example the four sp3
hybrids are concentrated mainly in four tetrshedrally disposed
regiohs and are thus not only orthogonal but also substantially
"non-errlapping". Various criteria have been devised for defining
such orbitals, but in this work suitsbly chosen hybrids were con-
sidered adequate, as well as having strong chemical appeal. Thus
in qualitative valence theory chemical bonds are commonly aésociated
with overlapping pairs of hybrids and so by choosing these we retain‘
close contact with the simple pictorial concepts., Hybrids on
different centres are not of course orthogonal, those which point
towards each other having a particularly large overlap; they may,
however, be symmetrically orthogonalised by the L6wdin(l) prescripe-
tion and then remain as close to the simple hybrids (in the least
squares sense(z)) as is permitted by orthogonality.

The following approximations, which are often used in perfor-

ming semi-empirical calculations, have been examined:
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(i) Neglect of 'inner=-shell! electrons:

(a) allowing for inner-shell electrons by replac-
ing the complete one-electron Hamiltonian by
an effective Hamiltonian

(b) replacing the inner-shell electrons by point
charges centred at the nuclei,

(ii) Neglect of certain two-electron integrals over an
orthogonalised basis set:

(a) CNDO approximation, the neglect of all but
(¢i¢i|¢j¢j) integrals

(b) NDDO approximation, the neglect of all but:
(¢i¢i'|¢j¢j') integrals, vhere ¢;, ¢,' (and
¢j, ¢j') are different orbitals on the same
centre.

In Parr-Pariser-Pople m-electron theory the approximation

(050510, 0) = 855 &0 (4505100,
is used.
In m-electron calculations there is only one orbital on each
centre, but when all electrons are included the situation is
different because the charge density (¢i¢j) may involve different

orbitals on the same centre. Approximetion (a) would then involve

-50-



the neglect of most one=-centre integrals. For this reason this
approximation seems rather too drastic when all electrons are
included, So calculations using an NDDO epproximation (b) have
also been performed and the effects of the two approximations have
been compared.

The approximation of integrals by the Mulliken method(3)
and by the fitting of Slater orbitals with Gaussian orbitals(h)
have also been examined. Experience gained in the use of these
approximations and in the use of exact two-electron integrals has
then been used in an attempt to produce a much simpler scheme for
the approximation of the two-electron integrals over an orthbgonan
lised hybrid basis. This approximation, which has involved the
study of the effect of orthogonalisation on the two-electron
integrals, has been used in performing a large number of semie
empirical calculations.

 All previous approximate SCF schemes have tsken all or part
of the one-electron Hamiltonian matrix from experimental data.,
The usual procedure is to take the one-centre parts of the "core"
Hamiltonien (for an electron in the presence of a single nucleus
and inner shell electrons) from atomic data and to obtain from

these a complete framework Hamiltonian by allowing in some way for
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the attraction of other atomic centres in the molecule. This

procedure appears to be unsatisfactory for two reasons:

(a)

(b)

The ocne-centre contributions are estimated without
ever specifying the basis orbitals. Consequently,
it is not clear how the data (referring to free
atoms) is related to the quantities appearing in
the theory (referring to atoms or ions in a
molecular environment),

If one assumes that the empirical one-centre

terms refer to orthonormalised AO's (for which

the neglect of certain two-electron integrals may

‘be a reasonable approximation) then the addition

of "framework corrections" must be over the same
basis. This actually involves the calculation of
the whole framework Hamiltonian matrix over the
non-orthogonal basis (including three-centre

parts) and transformation to an orthogonal basis,

In the calculations so far performed, efforts have been made to

calculate all one~-electron integrals accurately for the reasons dise

cussed above and for the following reasons:
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(i)

(iii)

(iv)

These integrals, unlike the two-electron integrals,
are not disturbed by the approximate admission of
correlation effects, .

There are not many of these integrals and the problem
of calculating them only increases as N2 as the dimen-
sion of the problem, N, increases,

The only one-electron integrals which do involve a
large amount of computing time are the three-centre
nuclear attraction integrals. There are closed ana-
lytical expressions for all others., However, the
three~-centre integrals appear to pla& a large part

in determining the final one-electron Hamiltonian
over an orthogonalised basis, and errors in them can
have a large effect; attempts to estimaté them
adequately (e.g. by the Mulliken approximation)

were unsuccessful., These integrals have therefore
been calculated exactly.

There has been great difficulty in w-electron theory

in obtaining one-electron parameters by semi-

empirical procedures. A more systematic approach in
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which such parameters are calculated exactly is

now urgently needed,

After obtaining the basic integrals, exact or approximate,
the calculation of SCF MO or group function wave functions is
completed., Before discussing results, it is useful to comment on

some of the computational details involved.
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CHAPTER FOUR

COMPUTATIONAL DETAILS

In ordez; to perform the calculations described, a large
number of computer programs have been developed. The integral
programs are slanted towards minimal basis calculations involving
hydrogen and first row elements. Thus two types of centres can
be chosen, 'heavy atoms' and hydrogens. In calculating the
diatomic integrals an appropriate 'sigma~pl' orbital set
(28, 2pgy 2Dys 2Pgs 1s) is automatically placed on each pair of
heavy centres and rotated to a 'standard orbital' set (2s, 2px,
2Py’ 2P,» 1s) defined by the global coordinate system (see diagram
below). A 1s orbital is placed on each hydrogen.

The programs fall into the following parts:

(i) The calculation of the one-electron Hamiltonian integrals

This program calculates the matrix of integrals for the
sigme=pi Slater orbital basis on an arbitrary three-dimensional
array of centres, Since the integrals are calculated for one pair
of centres at a time the problem is split into the evaluation of
integrals for a number of diatomic proﬁlems. These can easily be
calculated by the method of Roothaan(l). The program then trans-

forms to the standard orbital basis or any specified hybrid basis.,
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m

Trans formation to standard orbital and hybrid basis

In the diagram below, the line AB and the P, orbitals fix
the plane z. Py is chosen in the bond direction, P perpendicular

to AB in plane z and = perpendicular to AB and normal to plane z.
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If the stendard orbitals on centre x are

gx = (2sx, 2p§, Qp;, 2p:, 1s*) and the local rotated orbitals are

9" = (2s%, 2p§. 2p§. 2p§, 1s*), then

&' = R
where R is the matrix of direction cosines of the rotated orbitals
with respect to the standard axes. The one-electron integrals in
the two bases are then related by (note that R is real orthogonal,
Rl = gf)

t 5 tr " T +
Lip = (87 T8) = Ry(0,7" T 85" )BgT = Ry £,5" Ry
Considering the p orbitals on centre A as vectors we can

determine the 'vectors' of the rotated bases,

n

-. —— .
(a) p, 3 AB = (cl’cz'cs)/R (where (c4c,,cy) are the coordinates

of B with respect to A as origin and R is the distance between
A and B)
(b) p, is perpendicular to P, (0,0,1) and Py
Py = (y10¥20¥3) -
(pp°p,) =y3=0
(P °p,) = yie) +¥ype; =0

p, = (¥cy, ey, 0)/A
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(c) ps = (2142523) is perpendicular to P, and p_

Z)Cy = 2,y =0 z)cy + 2,c, +23c3 =0

Pz = (tcjeg3, tepea, ¥(e) +cy ))/(AR)

vhere R = 'c1§+c22+c32, A= "c12+c22. (The sign convention for )

and p- is arbitrary, any choices giving the same final result for

the rotation.)

We can then write the specific form of RA and of RB which is

->
the same except that P, is in the direction of the vector BA =

(-C 1.-C 2.-0 3)/R.
l1 0 O 0 0 l O 0 0 0
Cl] =Cc2 =c)C3 0 0 =Cy1 =Cy =CjiC3
° R A AR R A AR °
R. =] 0 2 &1 =cocs3 = |0 =C2 &1 =cpc3
A R K i O s R X AR
£3 A =<3 A
0 & 0 R 0 0 R 0] R 0
0O o0 o 0 1l 0O o 0 0 1l

If B is a hydrogen atom then Lyp ond fﬂB' are 5x1 matrices and

*
I3 =By Iip

If‘zx = 9V where 3& is the hybrid basis and $, is the standard

orbital basis then if A and B are carbon type atoms
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- a +
£ = (8,7 T 85)
= v t
AN ¥

= (LT RI5, (BT ¥p)
= (Bﬂi !ﬂ)T thv (BBT XB)

If B is a hydrogen atom then

f5 = (By

*‘!A)*-zAB'

Since there are no closed analytical expressions for the
three-centre nuclear attraction integrals the program assumes that
these have already been calculated. These integrals were at first
approximated, but were finally calculated using a three-centre
numerical integration program. The method used is to transform each
diatomic electron density into elliptical coordinates (£, n, ¢) and
to integrate over n and ¢ using the finite-interval Gauss numerical

quadrature method and over £ using the infinite-interval Gauss-

Laguerre quadrature.

(ii) The calculation of coulomb type (ij[g]i'j') integrals

As in (i) the integrals over the sigma~pi basis are
(1)

calculated and are then transformed to a standard orbital basis

or any specified hybrid basis, This two-electron transformation
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will be discussed in detail in section (iv).

(iii) The calculation of the transformation matrix between the
standard basis and the set of orthogonalised hybrids

The transformations involved:

(a) Schmidt orthogonalisation.

Sschmiat orth, =2 X
All valence orbitals on all atoms are orthogonalised to the inner
shell 1ls orbitals, |
This is necessary in order to keep the 1ls orbitals uncone-
taminated by other orbitals. This has been discussed by McWeeny

(2) and by Klessinger(3). They have found that when the

and Ohno
inner shell orbitals are made to mix with the valence orbitals
then the resultant loss of inner-shell energy is not compensated
by the gain in bonding energy of the outer shells. The best total
energy is obtained by Schmidt orthogonalising the valence orbitals
to the inner shell orbitals so that they remain unchanged during
symmetric orthogonalisation (see section (c)),

The general equation for the Schmidt orthogonalised funetion

wn vhich is & linear combination of ¢1.¢2....¢n and is orthogonal

tO b9dopece n-l is needed:

- 6]l -



n jmp 1 3
n=1
< > ]
4’5 "Pn = 0= Sjn + izl cs Sij for j=1,2,.e4n=1

So we have a set of linear equations to be ‘solved

nel

C: S,. ® a5, for j“l,2,...n-l
im] 1 1) Jn

or in matrix notation
cA=B (1)

where ¢ is a row matrix of dimension n-1, A is & square matrix

containing the first n-l rows and colums of S, the overlap matrix,

and B is a row matrix containing the first n-l elements of the nth

row of S. Equation (1) can be solved to obtain the ¢;'s by any of
the standard methods. In this case g_"’l was determined by diagona~

L4

lising A using Jacobi method to get %ag, teking the reciprocal of

the elements of -‘5-diag gnd transforming -‘l-\-;ia.g with the eigenvectors
of A
1.
Adia.g =V AV
c=Bpat
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(b) Hybridisation

jhybrid = Sschmiat orth, g

Note that U is in general a non-unitary matrix, In most cases
hybrids are set up to point along the bonds and the lone pair
hybrids are then determined by orthogonalisation requirements,
This is not the case in molecules such as formaldehyde where the
hybrids are not uniquely defined by the requirement that they
point along the bonds (e.g. s,p-mixing at the oxygen atom). In

this case sp, hybridisation was arbitrarily assumed for the sake

of simplicity.,
(c) Symmetric orthogonelisation

— -3
L) -g'hy‘br:ld'§

where S is the overlap matrix for the hybrid orbitals., It is
desirable to keep the orthogonal orbitals as close as possible to
the localised hybrid orbitals. This procedure, first proposed for
(4)

molecules by Léwdin' "', produces the set of orthogonal ofbitals(S)
closest (in the least squares sense) to the original AO's,

The total transformation is thus

7 = a(uus™)
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The program to get (ZI__U_§-%) thus involves the calculation of overlap
integrals by a program identical in design to that which calculates
the one~electron Hamiltonian. It also involves a general Schmidt
orthogonalisation procedure and transformation of the overlap
integrals to a Schmidt orthogonalised hybrid basis. The square
root of the inverse of the overlap matrix is obtained by diagona~
lising the matrix to get §-diag’ taking the reciprocal square root
of the elements of §-diag and transforming -S-;J%a.g with the eigenvec= -

tors of _S_ s

(iv) The transformation of one~ and two-electron integrals

(r|f]|s) = i?j LI (i]£]3) *
(rs|tu) = ]~ T.m, (ilkr) Tomo, (2)

iyJekyt

* In this section a transformation of orbital bases is represented

by
Rell

vhere R and I are column vectors of orbitals. Previously in this

chapter the convention

(-0

i

I

where R and _f_ are row vectors had been used,
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vhere T is the transformation matrix., The method used is to split
the sum into smaller parts, thus for the two~electron integrals
the steps involved are

crs
1

s
J

rs

Y = L,

1,3

= T.T

ri’sj

c;"? (1j[xe) (3)
tu

(rs|tu) = vFs
kgz ke Gk

(4)

and for one-electron integrals

This procedure reduces the direct evaluation of expression (2),
involving N8 operations, to two processes (3) end (4) involving N©
operations, N being the number of orbiﬁals. A further reduction is
obtained by storing and calculating only the distinct twoe-electron
integrals e.g. i = jo k = L, (ij) = (k). In this way the number
of operations is reduced from NS to M3, where M is N(N+1)/2. As
only di¥tinct integrais are stored, they are not implicitly
labelled by their position in a matrix but are lsbelled explicitly
by storing them together ith a label consisting of four integers

stored in a decimal word., This lebelling technique allows also for
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the storing of only non-zero integrals or of any subset of
integrals which may be required.,

If only distinct integrals are used then as each integral is
used it must be multiplied by a numerical factor to allow for the
non-distinet integrals which a}e equal to it. The table below
gives the various types of distinct integrals for i 2 jo k % g and
(i3) 2 (k%) and the non-distinct integrals which are equivalent to

then,

Integral Equivalent Integrals

(iilii)
(1il35) | (35li1)

(15145 | Gilsd) (Gilig) (5ilsd)
iilks) | (ii)%) (klI;i) (% ]ii)

(ij1k2) | (i51) (5ilke) (§i)ak)

(k2]i3) (xo|ji) (ex|ij) (ax|§i)

.. The use of only distinct integrals can be allowed for by
replacing the expression for CI? by

cfS m

ij riTsj + (- 6ij) TsiTrj
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in expression (3), adding into both Y;i and *§§ for an integral
(ijlke) if (ij) # (x2) and summing only over i Z jin (3) and
k = 2 in (L),

The transformation can be performed to get (i) all integrals
over the transformed basis; (ii) only (rasalthub) integrals over
the transformed basis; and (iii) only (raralsbsb) integrals over
the transformed basis; where r, is an orbital on centre a.

For diatomic coulomb integrals on centres a and b (see
section (ii)) this would involve a transformation with matrices
of order (10x10), Since blocks of integrals of the general

forn

) (g lke) D) G5 k)
(iii)  (iydy [k 2,) (iv) (i g heyy)
are calculated separately, they are also transformed separately.
So there is a reduction to at most four transformations involving
matrices of order (5x5)
) = 1T ) 2,

1yJaekyt

(v) SCF _programs

Closed shell SCF MO programs(s’T)

involving either the
eigenvalue technique or steepest descent procedure have been used.

The eigenvalue technique has been modified by the near diagonalisa-
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tion of the Hartree-=Fock Hamiltonian H by the eigenvectors U

obtained in the previous cycle according to

E=utny

The diagonalisation process is then entered with the near-diagonal
:E end initial eigenvectors U, so diagonalisation is very quick,
Also, as the process approaches self-consistency E becomes more
nearly diagonal, so that succgssivé iterations take less and less
time.

Closed shell SCGF programs have been used, the method lende
ing itself to calculations on large molecules with a minimum of
computational effort. A conventional SCF MO calculation for a
system with, say, 50 basis orbitels requires a fairly large come
putef and (even assuming reasonsble convergence of the process) is
expensive in computing time, The SCCF calculation, on the other
hand, requires only the diagonalisation of one small matrix (in
the present case 3x3) for each electron pair, snd is a rapidly con-
vergent process. Moreover, besides being relativeiy small the
SCGF computing time is roughly linear in the number of distinct
electron groups, while that for an SCF MO calculation is at least

cubic in the number of orbitals used. The calculations reported
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in this work were in fact performed using an IBM 1620 computer,
the computing time for the two types of calculation being in the
ratio 40:1 for the larger molecules.

Program Testing

The twoeelectron transformation program can be tested
systematically by using various transformation matrices and
integral values. The following tests have been made:

(a) All integrals equal to one, transformation matrix
is the unit matrix. Obviously all transformed
integrals must be one.

(b) All integrals equal to one, all elements of

transformation matrix equal to one

(rs|tu) = ] TpiTs; (ijlke) T, T o

Various other tests of the same nature were used. First the
elements of the transformation matrix were varied systematically,
all integrals having a constant value. Then the integral values

vere varied, all elements of the transformation matrix having the
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same value., Finally both the elements of the transformation
nmatrix and the values of the integrals were varied. All these
results are easily checked by hand calculation. The tests were
completed by recalculating the two-electron integrals for water
over an orthogonalised hybrid basis(B).

The one-electron transformation was tested in a similar
manner,

Integral programs, however, cannot be tested in such a
systematic manner, It has been seen that the integrals (overlap,
one-electron Hamiltonian and two-electron coulomb) are calculated
for one pair of centres at a time and so the problem is in fact a
diatomic problem. The diatomic parts of the various programs have
been tested by comparison with the imegrals obtained from J, Miller
and J,C. Browne's diatomic packa,ge(s). Thus the heavy centre-
hydrogen parts have been tested using CH, and the heavy centre-
heavy centre parts using N, and CO. The full one-electron
Hamiltonian program including three-centre nuclear attraction
integrals was then tested on water and methane and compared with the

calculations of Klessinger and McWeeny(3' 9)

(10).

» Who have used

Barnett-Coulson programs

The various parts of the transformation matrix formation
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were tested separately. Thus the Schmidt orthogenalisation and
the hybridisation matrices can easily be checked by hand. The

formation of §f; was checked by forming the matrix product

stsgstan

The programs were then tested by recalculating the transformation
metrices used by Klessinger and McWeeny in their water and methane
calculations(3"9).

The least accurate parf of the calculation, the three-
cenire program, gave results agreeing at worst to three decimal
places with the test data. This was with a network of (10x10x10)
quadrature points over the elliptical coordinate system., The
results of the transformation prograﬁs, the ane-centre and two~
centre integral programs and the progrems calculating transforma-
tion matrices were in agreement to the full number of significant

figures (most of the test data was quoted to six decimal places),
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CHAPTER FIVE

PRELIMINARY CALCULATIONS

The approximations discussed in Chapter 3, neglect of
inner-shell electrons (i a,b) and neglect of certain two-electren
integrals (ii a,b), were investigated using the SCF MO and SCGF
methods. The effect of using approximate integrals was then
examined., Finally a scheme for the approximation of two-electron
integrals over an orthogonalised hybrid basis is proposed., The
preliminary calculations have been performed on fhe water and
methane molecules, for which exact integrals were availsble, over
a minimal A0 basis, from previous work. These basic integrals

have been transformed to an orthogonal hybrid basis,

(1) Exact Integrals

For these calculations a minimal basis of Slater orbitals

was employed, the values of the exponents being

carbon z(1s) = 5.7 t(2s) = g(2p) = 1,625
oxygen z(1s) = 7.7 z(2s) = g(2p) = 2,275

hydrogen g{ls) = 1,0

For water the bond length was teken to be 1.8103 a.u,
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(experimental value) and the bond angle to be 1050. For methane
the bond length used was 2,06T419 a.u. (experimental value) and
the configuration tetrahedral. The construction of the ortho=-
normal basis follows section (iii) of Chapter 4. All valence
orbitals were Schmidt orthogonalised against the oxygen 1s
orbital. The oxygen s and p orbitals were then hybridised, the
bond orbitals set up to point along the bonds and the lone pair
hybrids determined by the orthogonalisation requirements.

Finally -all orbitals were symmetrically orthogonalised.

(a) Water

The results of the calculation are conveniently expressed
in terms of the spinless one=electron density matrix P whose
elements completely determine the electron density, orbital and
overlap populations etc.

The SCF MO total energy and density matrix were obtained
for the exact calculation, in close agreement with those of
McWeeny and Ohno(l) (Table 1).

The CNDO approximation in which only (¢i¢i|¢j¢j) integrals
are included led, in the SCF MO calculation, to a reversal of bond
polarity, as indicated by the orbital populations, the electronms

being drawn towards the hydrogen atoms, and an energy 0.86 a.u.
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too high (Table 3), but the NDDO approximation which includes
(¢i¢i,|¢j¢j,) integrals gave more encoursaging results, with the
correct polarity and an energy only 0,105 a.u. too high, But

there is a loss of bond density and of atom charge from the lone
_pair orbitals (Table 2). The integrals neglected, using an ortho-
normalised hybrid basis, are mostlj very small, butin view of their
large number it is not surprising that the total energy may be
substantially affected. This in itself is no cause for concern

if the aim is to obtain. a reasonable wave function with which to
discuss other molecular properties,

The above calculations were also performed using the SCGF
method. The results for the exact calculation and the calcula~
tions involving the CNDO and NDDO approximations are given in
Tebles 4 = 6, The exact SCGF calculation gives total electronic
energy slightly lower than the SCF MO calculation, as expected
since the SCGF method introduces some measure of correlation
between electrons in the same group. The results are reasonably
close to those of thé SCF MO method, though the densityof charge
on the hydrogen atom is consistently lower. The density matrix

elements predicted using the NDDO approximatién are again

reasonably close to the exact results while the CNDO approximation
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again leads to a reversal of bond polarity.
The exact SCF MO calculation was modified in that the 1s
electrons were not included in the SCF calculation and this 'core!

was allowed for by replacing the one-electron Hamiltonian by an

effective Hamiltonian heff, where (using k to denote the 1s
orbital)
eff . T
hij = hij + 2(kk|ij) = (kil|kj)

This reduction may be used whenever part of an antisymmetrised
product function referring to & number of electrons is regarded

(2)

as fixed'®’, It would seem very reasonaﬁle from a chemical view-
point to fix the 1ls electrons. This'core approximation gives
excellent results, very close to the exact calculation, the
valence electron energy being poorer by only 0,001 a.u. and the
density matrix in close agreement (Table T). But all the
integrals have still to be calculated and the only saving is in
a reduced SCF problem. For this reason the approximation of
representing the 1s electrons as simply a point charge at the.
nucleus was examined,

The point charge calculation differs from the exact SCF MO

calculation in that the ls electrons were replaced by a point

charge -2e at the nucleus. This means that the nuclear charge

- T6 =



on the oxygen atom was put equal to Z-2, The only integrals
vhich differ from those used in the exact calculation are the
one-electron integrals through the alteration of Zoxygen in the
nuclear attraction operator. The procedure is the same as the
exact calculation except that the ls electrons are not included
in the SCF calculation (or at least only indirectly in that the
2s, h, h, are Schmidt orthogonalised to the 1s).

The resulting SCF density matrix and total electronic
energy are given in Table 8. The use of the point charge approxi-
mation has quite a large effect, the energy being poorer by 0.75
a.u., but the main features of the charge density (including the
direction of bond polarity) are still reproduced. It is necessary
in the complete calculation to Schmidt orthogonalise all orbitals
to the 1ls orbital before symmetrically orthogonalising. This is
because a higher total energy is obtained if the ls orbital is
contaminated by valence shell orbitals. This constraint does not
necéssarily apply when the 1s electrons are not explicitly cone
sidered. | |

It may be that when the 1s is represented by a point charge,
the 2s orbital should be orthogonal to a Dirac delta function at
the nucleus éince the 1s has been shrunk into this., The Slater

2s orbital is of course already orthogonal in this sense,
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So the above calculation was repeated without Schmidt
orthogonalising 28, h, h' to a 1s orbital. The resulting SCF
density matrix and total electronic energy are given in Table 9,
The total energy is seen to be very low, 2.7 a.u. lower than the
exact calculation. A comparison of the orbital energies for the.
SCF MO calculations (Table 10) for the sbove runs shows that the
lowest orbital energy in this calculation is lower than in the
other calculations described above. This could be ascribed to a
slight tendency of the lower orbital to 'collapse' into a ls
orbital. It can be looked at from an alternative point of view,
The atomic orbital energy of the Slater 2s is less than that of
the Slater 2p while that of the Schmidt orthogonalised 2s is
sbout the same as the 2p. So we would expect that the lowest
orbital energy would be less when the 2s is not Schmidt orthogo-
nalised than when it is,

Comparing the sbove calculations, using the point charge
approximation, with calculations using approximate integrals (all
non-coulombic two-ele?tron and three-centre one-electron ntegrals
approximated) (Tables 17 and 18 (section (2)) we see that the
point charge approximation produces erors of the same order of
magnitude as those produced by approximating integrals by the

Gaussian fitting procedure.
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(b) Methane

SCF MO and SCGF calculations have been performed using all
two-electron integrals over an orthogonalised hybrid basis, and
also using the NDDO and CNDO approximations. The SCF MO results
are given in Tables 1l =13 and the SCGF results in Tables li - 16,

The exact SCGF energy is again slightly lower than the SCF
MO energy. As in water the use of the CNDO approximation and exéct
integrals leads to a reversal of the bond polarity compared with
the exact calculation. The results using the NDDO approximation
are much closer to the exact results, predicting the correct bond
polarity. The conclusions apply equally to both the SCF MO and the
SCGF calculations, the CNDO approximation showing similar deficie
encies in both cases.,

(2) Use of Integral Approximations

On a small computer it is possible to calculate exactly at
most all the two-centre integrals of the type (ii'ljj');_the rest
must be approximated. Even with larger computers a similar point
is soon reached as molecular size is increased, Calculations on
water and methane have therefore been repeated with both Caussian
and Mulliken-type approximation of the many-centre integrals, The

three-centre nuclear attraction integrals have also been approxi-
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mated, though these have been calculated exactly by numerical

integration in later calculations.

(a) Gaussian Approximation

The integrals were approximated by expanding the Slater
orbitals in terms of Gaussian orbitals(h) (one Gaussian for each
P type and two for each s type Slater Qrbital). The integrals
over the Gaussian orbitals are available from a modification of
the MIT Polyatom program (adapted for a small computer).

The results for methane (Table 17) were encouraging as the
charge and bond orders do not differ as much from those obfained
in the exact SCF calculation as these do from those obtained in
the group function calculation(3) (section (1)), The results for
vater (Teble 18) vere unfortunately not as good as this, though
the differences between this calculation and the exact SCF calcu~
lation are not as great as those produced by the use of the point
charge approximation (section (1)). However if both the Gaussian
approximation and the point charge approximation are used then the
results are much worse (Table 19), the bonds being hardly polar.
It can be seen that the errors are in this case to some extent

additive.,
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An attempt was made to improve the approximation of the
two-electron integrals over the hybrid basis. The procedure used

was to rescale the charge clouds

where

~

Si5 = (815)stamer / (513) caussTAN APPROXTMATION

It was hoped that this factor, a measure of the error in approxi-
mating the overlap density,would partially compensate for the
errors involved in the calculation of the two-electron integrals.
This procedure did not give substantially betfer results and in
the water calculation had the undesirable effect of producing a
larger draining away of charge from the lone pair orbitals.

The calculations have been repeated using the NDDO approxi-
mation which includes only (ii'[jj') integrals over the orthogo-
nalised hybrid basis., The changes produced by the use of this
approximation are simiiar to the changes produced by its use in

the exact calculation (Tables 20 and 21).

(b) Mulliken Approximation

The integrals were approximated by the Mulliken method(S)

Ss s
(i,§) = "'%'l (i2 + i?)
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where
85 = f i*(1) j(1) ar,

This method allows any two-electron integral to be approxi-
mated by a combination of coulomb integrals which are used in the
calculation. For this reason the approximation is relatively
simple to use. The integrals were approximafed over & hybrid basis,

The Mulliken method involves the approximation of a smaller
number of integrals than the Gaussian method but the fesults are
not so good as will be seen below, If the aim is to extend the
procedure to larger molecules in a semi-empirical manner then the
nunber of two-electron intgrals soon becomes unwieldy unless it is
reasonable to neglect many of them. Bul as concluded previously,
the neglect of two-electron integrals is only reasonable if an
orthogonal basis is used. For this reason the integrals have been
transformed even though this is not a necessity with the systematic
use of the Mulliken approximation.

The approximated integrals for water are compared with the
exact integrals and the Gaussian approximated integrals, for the
hybrid basis in Table 22 and for the orthogonalised hybrid basis
(i.e. after transformation of the integrals for non-orthogonal

hybrids to symmetrically orthogonalised hybrids) in Table 23,
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For the larger integrals, the Mulliken approximation is not as
good as the Gaussian epproximation, but still gives some estimate
of the magnitude. It doeé not, however, give & reasonsble
estimate of the smaller integrals.

The results for water and methane are given in Tables 24
and 25. The results for water are far worse than those cbtained
using the Gaussian approximation. The results for methane, however,
are almost as good as the Gaussian results and are very close to
the exact SCF results. As in the Gaussian calculation this is
presumably due to the very high symmetry of the molecule,

The calculations were repeated using only (aa'|bb') two-
electron iptegrals over the orthogonal hybrid basis., The results
were similar to the sbove calculation for the water molecule
(Table 26) but were very different for methane (Table 27).

The methane results are now very far from the exact SCF results,
This did not happen in the exact calculation or the Caussian
calculation when only (aa'|bb') integrals were used, s0 it

appears that it may bé necessary to use all two-electron integrals
when using the Mulliken approximation.

As stated sbove, the calculations were performed by approxi-

mating the non-coulombic integrals over a hybrid basis. A

L]
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calcﬁlation was also performed for methane by epproximating the
non-coulombic integrals over a basis of s and p orbitals and then
transforming to an orthogonal hybrid basis. In this case the
results were far worse. Even the (aalbb) two-electron integrals
over the orthogonal hybrid basis were nowhere near the exact

values as can be seen from the table below,

Exact Value: Mulliken Approximation
Integral | (over orthogonal

hybrid basis) hybrid basis | s & p basis
hjhjhih, 0,6943 0.7155 0.9121
hohyhihy 0.2432 0.2491 0.1706
bybyhyhy 0.4791 0.537T7 0.8328
b;byhyh, 0.3441 0.33k46 0.2023
byb1bby 0.7726 0.8501 1.1915
bybyby by 0.6825 0.58k2 0.4176
k k hyh; 043986 0.3855 0.3855
k k byb; 0.9101 0.8820 0.8820
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(3) Semi-Empirical Adjustment of Integrals

The use of the Gaussian approximation takes a prohibitively
long time for large molecules (unless a large computer is avail-
able), as it involves the calculation of a large number of
integrals over the Gaussian basis, this being larger than the
minimal basis set, followed by a large two-electron transformation.
Even the Mulliken approximation, which involves the approximation
of a smaller number of integrals and a smaller two-electron transe
formation, soon becomes unwieldy., It would not be feasible there-
fore to do calculations on larger molecules using these approxima-
tions. For this reason an attempt was made to produce a simpler
scheme for approximating two-electron integrals over an
orthogonalised hybrid basis directly. Also in w-electron theory
the semi-empirical estimation of the two-electron integrals has
played a larger part in itsvsuccess.

In order to study the effect of estimating the two-electron
integrals directly, other approximations have been excluded. Thus
the one-electron Hamiltonian over the orthogonalised hybrid basis
has been calculated exactly, the inner shell electrons have been
included explicitly and not implicitly by the use of the core

approximation or point charge procedure., The core approximation
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has been seen to be very accurate (section (1)). But since many
of the terms in it were approximated or neglected completely a
study of whether this approximation can be used to reduce the
problem without meking substential differences to the results was
left until later.,

It can be seen from the results given in section (1)
that the use of exact two-electron integrals over an orthogonalised
hybrid basis together with the CNDO scheme does not reproduce the
electron density pattern of the full calculation at all well. In
both methane and water the bond polarities, indicated by the differ-
ence of populations of the hydrogen and bonding hybrid orbitals,
are the opposite of those obtained from the full calculation.,

The results using exact two-electron integrals over an orthogonal-
ised hybrid basis but with the NDDO approximation are much more
encouraging. The electron density is much closer to that of the
full non-empirical calculations and the bond polarities agreé
rather well, in both direction and magnitude, with those from the
full calculations. ﬁesults for formaldehyde using exact integrals
given in Chapter 6 (Tables 8, 10 and 1l1) also suggest that the
CNDO is not really satisfactory. Thus in the SCFLMO calculations

the use of the CNDO approximation produces a very large bond order
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between the two hydrogen atoms (0.464) and & m group very highly
polarised towards the carbon atom. The use of the NDDO approxi-
mation does not produce this large bond order between the hydrogen
atoms or the very highly polarised m group.

The above results appear to show that CNDO is not a good
approximation, even when used to simulate the properties of exact
integrals over an orthogonal basis, It does not therefore seem
to provide a suitable foundation for a satisfactory semi-empirical
scheme. It is clear that in the sbove examples the one-centre
exchange integrals play a crucial role in determining the
electron distribution in the molecuie, even to the extent of
detemining polarities of bonds. The general conclusion from
this series of calculations is that the NDDO scheme is quite
accurately valid as a means of simulating the results of calcula~
tions employing a basis of symmetrically orthogonalised hybrid
orbitals. The use of this scheme appears to yield relisable
molecular wave functions in the examples given above,

The integrals. that are retained are in one-one correspon-
dence with those for which closed expressions are available in

the non-orthogonal case, namely those which represent the coulomb



interaction between monocentric charge distributions. Unfortunately,

however, they are related through the equation

(I I3 3") = ) T Tsj (rs|tu) Tex Tus

ry8,t,u

to the full set of integrals over the non-orthogonal basis and not
just to the integrals representing coulomb interactions between
monocentric charge distributions. To make progress towards a
semi-empirical theory it is therefore necessary to have a simple
prescription for obtaining good approximate values of the NDDO
integrals. To this end the exact integrals over the non-orthogenal
and orthpgonal hybrid bases were compared for the water and methane
molecules (Teble 28). A definite pattern was seen to emerge; the
general effect of orthogonalisation can be summed up as foilovs: ‘
(a) One-centre integrals of the form (iAiAIjAjA) (where

i® is an orbital on centre A) are incressed by 9 -

14% except where it = k, 7, £ and jA =k, mor 4
(where k, v, & are used to denote 1s, m and lone pair
orbitals resﬁectively). One-centre integrals of the
form (i%54|x*4?) are also incressed, though the per-
centage increases are more variable., These integrals,

however, are not so important as those of the
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(iAiAIjAjA) type, having smaller values,

(b) Two-centre integrals of the form (iAiAIijB) are
decreased by 9 - 14% when A and B are near neigh-
bours, except when ih = k, 7™ or £ and jB =k, 7 or
L. Two-centre integrals of the form (iAjAIkBg.B) are
also decreased but again are not so important as
they have relatively small values.

BMiBe®) form

(c) Integrals which are not of the (iAj
assume negligible values,
These conclusions mn be understood easily in a qualitative
manner. At first sight, it might appear that the orthogonalised
orbitals are less well localised than the free atom AO's since

they contain parts from orbitals on all the centres, Thus to first

order in overlap:
2

- A 1 .
1 =213 J S..
jczi) Jt .

end 1 therefore contains in general e negative cusp on neighbour-

(6)

ing nuclei, McWeeny has pointed out however that the cusps
occupy a very small part of space and that the main effect of
orthogonalisation is to compress each AO more tightly sbout its

nucleus by "cancelling out" its outer parts and then renormalising,
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This increase in concentration of charge explains the increase in
value of the repulsion between two charge cbuds both on the same
centre i.,e. the increase in integrals of the form (iAjAlkAlA)b

It also explains the decrease in the mutual repulsion between two
monocentric charge clouds on different centres i.e. the decrease
in integrals of the form (iAjAlkBEB).

So the general effect of symmetric orthogonalisation can
be simulated by increasing the (iAiAlejA) integrals and decreas-
ing the (iAiAlijB) integrals by approximately 12% and estimating
all other (iAjAlkBEB) integrals by their non-orthogonal values.
Though this will lead to errors of up to 5% in the larger of the
estimated integrals it is hoped that this will be accurate enough
to predict the change of properties in a series of molecules,

As a first test of the method calculations were performed
on methane using the exact one-electron Hamiltonian and estimate
ing the two-electron integrals by the procedure described ebove,
The results are given in Tables 29 (SCF MO) and 30 (SCGF) and
comparison with the éxact results (Tables 11 and 14) shows that
the predicted density matrix is quite close to that predicted by

the exact calculations. The atom densities are in fact closer to

the exact results than are the atom densities predicted by the
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use of exact integrals and the NDDO approximation. This is of
course just chance, since the results should really be compared
with those of the calculation ﬁsing exact integrals and the NDDO
approximation. The calculation was repeated exactly as above but
the smaller two-electron integrals of the (iAjAlszB) type were
estimated by their non-orthogonal values increased or reduced by
12%. The results were very close to those of the above calculation

and so the calculatins described in the next chapter were done

using the simpler procedure.
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TABLE 1

WATER, Exact integrals over orthonormal hybrid basis, full
calculation. SCF MO,

b, h, B, B, 1, z, k
0.884 ~0,024 0.992 «0.003 =0.026 =0.026 =0,007
0.884 =0.003  0.992 =0,026 «0,026 =0.00T

1.116 0.025  0.02k 0.024 0.006

- 1,116 0,024 0.024 0.006

E = -81‘ .81" BsU, 20000 -0.00.1 0.000

Ny = 0.884 2.000 0,000

NO = 80232 2,000
TABLE 2

WATER. Exact integrals over orthonormal hybrid basis and NDDO
approximation. SCF MO.

B, B, 5, 5, I, 1, k
0,893 «0.1T2 0,948 <0.050 0.172 0.172 =0,008
0.893 =0.050 0.948 0.172 0.172 «0,008

l.lsh 00218 "’00120 -00120 0.005

1.15% -0,120 -0.,120 0.005

E =.84.74 a.u. 1.954 ~0,046 0,002
N, = 0.893 1.954 0,002
No = 8.308 2,000
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TABLE 3

WATER., Exact integrals over orthonormal hybrid basis and CNDO
approximation., SCF MO,

E E, 5, 5, 1, 1, K
1.095 =-0,308  0.91% -0.001  0.172  0.172  0.010
1,095 =0.001  0.914  0.172  0.172  0.010
0.95% 0,358 =0.170 =0.170 -0.008

- 0,954  =0,170 =0,170 =0.008

E = ~83.98 au 1,950 0.050 =0,003

Ny = 1.095 1,950 «0,003

Ng = T.908 ‘2.000
TABLE L

WATER., Exact integrals over orthonormal hybrid basis full
calculati On. SCCF .

E i, 5, 5, 1
0.850 0,000 0,972 0,000 0,000 0,000 0,000
0.850 0,000  0.972 0,000 0,000  0.000

1.150  0.000  0.000  0.000  0.000

1.150 0.000 0.000 0,000

E = -Bh.88 aou. 20000 00000 0‘000
NH = 0,850 2,000 0,000
No = 8,300 2,000
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TABLE 5

WATER., Exact integrals over orthonormal hybrid basis and NDDO
approximation. SCGF.

g £, - B, 5, 1, 1, K
0.881  0.000  0.971  0.000 0,000 0,000  0.000
0.881 0.000 0,971 0.000 0.000 0,000
" 1,119 0,000 0,000  0.000 0,000

+ 1.119 0,000 0,000 0.000

E = «84,69 a.u. 2.000 0.000 0.000

NH = 0,881 2.000 0.000

No = §,238 2,000
TABLE 6

WATER., Exact integrals over orthonormal hybrid basis and CNDO
approximation., SCGF,

R, R, E, g, 1, 1

1.0L0 0,000 0.976 0.000 0.000 0.000 0.000
1.040 0,000 0,976 0,000  0.000  0.000

0.960 0,000 0.000 0,000 0.000

0,960 0.000 0.000 0.000

E = -83.93 a.u, - 2.000 0,000 0.000
NH = 1,040 2,000 0,000
Ny = 7.920 2.000
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TABLE T

WATER. Exact integrals over orthonormal hybrid basis and core

approximation., SCF MO,

B, h, 5, B,

0.88% -0,024 0.992 =0,00k4

0.884 -0,004 0.992

1,117  0.025

E = =84.83 a.u. 1.117
Ng = 0.88k
Ng = 6.234

TABLE 8

-0,028

-O [ 028
0,025
0.025

1.999

-0,028
-0.028
0,025
0.025
-0.001

1.999

WATER, Exact integrals over orthonormal hybrid basis and

charge approximation.,

R R 5

2 1

0.955 0.00k 0.983
0.955 =0.016
1.076
E = -84,09 a.u.
Ny = 0.955

No = 6,152

SCF MO.

5,

0.983
0.026

1.076
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0.126

1

0.126
-0.117
«0,117

1.999

0.126
0.126
=0,117
-0.117
=-0.030

1.999

point



TABLE 9

WATER., Exact integrals over orthonormal hybrid basis and point
ion., (No Schmidt orthogonalisation to

charge approximat
1ls orbital.) SCF

El HZ
0.945  0.07h

0.9&5 -

E = =87.01 a.u.
Ng = 0.945

No = 6.108

MO,

5 5

2

0.938 =0.054 =0.133

0.054 0.938 -0,133

1.165 0.037 0.210

1.165 0.210

TABLE 10

1.889

EZ
-0.133
-0.133
0.210
0.210
-0.111

1.889

ORBITAL ENERGIES (OF THE SCF MO CALCULATIONS)

Point Charge Approx.
Exact Effective (aa'|bb')
Calculation | Hamiltonian | Schmidt | No Schmidt | Integrals only
Orth. Orth,
-20,501 «-20.377
-1 0298 -1 . 301 -1 0805 "2 [ 1&1&0 "l 0511
-0,635 -0.636 «0.6414 -0,629 ~0.452
-0.“20 -O.h20 -0.1808 -0.!&35 "0.’4‘21
0.391 0.391 0.506 0.316 0.356
0.605 0,606 0,631 0,605 0.629




TABLE 11

METHANE. Exact integrals over orthonormal hybrid basis complete

calculation. SCF MO,

El Ez 53 ﬁq El {2

0.915 0,024 0,024 0.024 0,996 0,001

0.915 0.024 0.024 0,001 0,996

0.915 0,024 0,001 0,001

0.915 0,001 0,001

Em -53.h5 8ele 1.085 -0.02h

Ng = 0.915 1.085
Ng = 6.340

TABLE 12

METHANE. ' Exact integrals over orthonormal

approximation. SCF MO.
i, & & & %
‘ Oc975 -00035 -00035 -0.035 00998

00975 -0.035 -00035 -0.002
0.975 =0,035 -0,002

0.975 "00002
1.025
E = -52071 &sle
NH = 00975
"N = 6.100
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-0,.,002
0.998
=0.002
=0.002
0.035
1.025

£

0.001
0.001
0.996
0.001

-0.024

~0.,024
1.085

.
0.001
0.001
0.001
0.996

-0,024

-0 002’4

-0,024
1.085

-0.008
-00008
-00008
=0,008
0.008
0.008
0.008
00008
2,000

hybrid basis and NDDO

2

-00002
-0.002
0.998
=-0,002
0.035
0.035
1.025

g,

-0.002
-0,002
-0,002
0.998
0.035
0.035
0,035
1.025

-00008
~0,008
-00008
~0.,008
0.007
0.007
0.007
0.007
1.999



TABLE 13

METHANE, Exact integrals over orthonormsl hybrid basis and CNDO
approximation, SCF MO,

i, &, K & % % %, T, E

1,101 =-0.065 =-0.065 =0.065 0,988 0.002 0,002 0.002 0,013
1.101 =-0.065 =0.065 0.002 0.988 0.002 0.002 0.013

1.101 =-0.065 0.002 0.002 0.988 0,002 0.013

1.101 0,002 0.002 0,002 0.988 0.013

0.899 0.065 0.065 0.065 0,002

E = -52038 .U 03899 00065 00065 0.002

) | 0.899 0,065 0,002

Ny = 1.101 0.899 0.002

NC = 50798 2.000
TABLE 14

METHANE, Exact integrals over orthonormal hybrid basis, complete
calculation. SCGF.

E1 B2 E3 Eh zl E2 €3 £H k

0.921 0,000 0,000 0,000 0.983 0,000 0.000 0.000 0.000
0.921 0,000 0,000 0.000 0.983 0,000 0.000 0,000

0.921 0,000 0,000 0.000 0,983 0.000 0,000

-0.921 0,000 0.000 0,000 0.983 0.000

0.921 0.000 0,000 0,000 ;000

E = ‘53-’48 8ol 10079 0.000 0,000 0.000

1.079 0.000 0,000
Ng = 0.921 1.079 0.000
N¢ = 6.316 2.000
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TABLE 1

METHANE, Exact integrals over orthonormal hybrid basis and NDDO
approximation. SCGF.

h, h, hy h, %, %, t, t, k

0.954 0 0 0  0.972 0 0 0 0

0.954 0 0 o] 0.972 0 0 0

0.95k 0 0 0 0.972 .0 : 0

0.954 0 0 0 0.972 0

1.046 . 0 0 0 0

E 3 52,76 a.u. 1.046 oh6 0 0

‘ 1.0 0 0

Ny = 0.954 1.046 0
NC = 6018h 20000

TABLE 16

METHANE. Exact integrals over orthonormal hybrid basis and
CNDO approximation. SCGF.

i, & & & % % §, f £

1.056 o} 0

) 0.972 0 0 0 0

1.056 0 0 0 0.972 0 0 0

1,056 O 0 o} 0.972 0 0

1,056 0 0 0 0.972 0

0.9k 0 0 0 0

E = «52,41 a.u. 0.944 0 0 0
Nc = 5.776 2,000
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TABLE 1

METHANE. Gaussian approximation of integrals. SCF MO.

R, & & K 5 5 5, 5 £

0.902 0,085 0,085 0.085 0,984 0,001 0.001 0,001 0,000
0.902 0.085 0.085 0.001 0.984% 0,001 0.001 0.000

0.902 0.085 0,001 0.00L 0,984 0,001 0,000

0,902 0,001 0,001 0,001 0.98% 0,000

1.098 -.085 -,085 -,085 0,000

E = «53,70 a.,u, ‘ 1.098 =.085 =.085 0.000

NH = 0.902 1'098 '0085 0.000
~ 1,098 0.000

NC = 60392 . 2.000
TABLE 18

WATER. Gaussian approximation of integrals, SCF MO,

R, &, B, 5, 1, 1, E
0.931 -0.03k4 0.986 =0.009 =0.106 ~0,106 0
1.091 =0.,012 0.100 0.100 0
1.091 0.100 0.100 0
E = <85,k a,u, 1.978 -0.021 0
Ny = 0.931
2,000
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TABLE 19

WATER, Gaussian and point charge approximations. SCF MO,

K, &, B 5, 1 1

1.009 0,076 0.984 ~0.,014 00.115 0.115

2

1.009 -0.01’4 0.981& Oolls 00115

1,020 ~0,0k7 =0.,122 0,122

E = -8’4.69 B+, . 10020 . -00122 -0.122

Ny = 1.009 1.971 «0.029

No = 50982 10971
TABLE 20

METHANE. Gaussian and NDDO approximations., SCF MO.

ﬁ H 1-{3 EH S1 s2 s3 sk E
0.927 =0.025 =0.025 =0.025 0.996 =~0,003 =0.003 =0.003 -0.009
0.927 =0,025 =0,025 =0.003 0.996 =0,003 =0.003 -0,009
0.927 =0,025 =0.003 -0.003 0.996 =0,003 0,009
0.927 «0,003 «0.003 =0,003 0,996 =0,009

1.074 0,025 0,025 0.025 0,008

1 2

E = =52,62 awue 1.07h 0.025  0.025 0,008

- o, 1.07h  0.025 0.008
Ng = 0.927 1.07%  0.008
Ng = 6.296 2.000
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TABLE 21

WATER., Gaussian and NDDO approximations.

b, R, b
0.899 ~0.,133 0.942

1

00899 "000’-‘9

1.135

E = -8"‘-22 Ba.Us
Ny = 0.899

NO = 8 «202

b

-0,049

2

0.9k2
0.267

1.135
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SCF MO,

1, i,
0.150 0.150
0.150 0.150
-0,100 =0,100
=0.100 «0,100
1,966  -0,034
1,966

-0.007
-0.007
0,005
0.005
0.002
0,002

2.000



WATER

TABLE 22

NON-COULOMB INTEGRALS OVER HYBRID BASIS

Totegral | fiiny | OpRiop pErore | Muiken Joproc.
hohihihy | L1757 | .1717 -2 1791 2
hohihohy | L0685 | L0661 - 33 | .06T1 -2
b,hihihy | 3617 | L3267 =10 .3288 -12
bjhjhoh; | L1117 | 1016 -9 .1012 -9
bihjhohy | L2111 | L1961 -7 .2108 0
bjhybyhy | L2502 | .2217 -11 +2035 -183
bjhohyhy | 2064 | .1076 1 L0694 -35
bihohoh; | L0373 | .0382 3 .0281 -25
bhhsh, | 0702 | .OT63 9 0807 15
b,hb;h; | L0814 | .0T95 -2 OLTT -ko
bhbih, | L0354 | L0367 3% | .ouk1 -60
bbb, | .2122 | L2113 - 13 | .1950 -9
bybybyhy | WUSM5 | L4396 - 4 L4237 - 63
bybybyh, | 1465 | 41539 5 1071 =17
boh,bh, | .OL85 | .OLBL 0 0496 2
b,hbh, | 0210 [ .0225 8 0129 -ko
boh,b;b, | L1055 | .1112 5 .1028 2}
byh,bihy | J1428 | L1250 -12 1465 1
bohsbib; | W3252 | 3070 -6 +3310 2
byb,hoh; | L0148 | L0156 5 0097 -35
bobybhy | L0265 | 0260 -2 .0150 ~L5

- 104 -




TABLE 22 (CONTD.)

Integral %3;33: (?.au?ﬂ s; agrﬁggrox . Muliigegrigirox .
b,b,byh, | 0281 | 0294 5 .00k2 -85
ghihh, | L0838 | .0913 +0959 14
2.hihohy | 40295 | ,0312 5% +0310
£ihyhoh, | L0661 L0715 T3 0695
24h,bjhy | L0580 [ L0579 0 .0589
£,h,bh, | JOLLL | 016k 14 014k
2ihybyb, | L1260 L1331 53 1221 -3
Zhboh, | .0083| .0105 25 0154 85
2,h,boh, | 0439) .0k39 0 0483 1
2,h,b,b; [=,0121| -,0127 -.0008 =97
2ihybob, | WJ1107T( 41170 1092 -1
21h,2h, | 0384 .OLOK 6 0203 =47
2,h,2,h, | 0390 .0358 -8 0179 =55
£,b,hoh, | W00k} ,0011  -20 +0019 50
21b,b)hy [ L0316 L0311 -1 Q0179 =5
21b;byh, | L0152  .0156 3 0011 =95
f50,h, |-.0121| ~.0128 5 .0003
2,b,boh, |-,0224} -,0231 3 -.0130  -k2
2,b,2,h, | .0236| .02u48 5 L0047 =75
2,b,2/h, | 0066| .0066 03 0000 =100
218 hoh, | .1826] .1800 - 13 1651 =~ 10
242,b)hy | 3171 .2986 - 6 .3263 3
2,2,byh, | L0865] L0912 6 0907 5
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TABLE 22 (CONTD.)

Integrar | Giact | Oavgeep hoprox. | Milikes Approx.
£,2,2,h, (1678 |  .176k 6 01293 25
22h,2:h, [ L0099 | L0125 25 .0183 83
2,h,2h, | L,0038| 0113 200 0159 300
Lzh2b; [ =.0145] <,0152 5 -.0009 =90
20,80, | =.0203 [ -.0215 6 -.0056 =75
2,h,2,8, | 1035 .1092 01072 3
2,b,4,h, | =.0203| =-,0215 6 -.0056  =T0
2,800, | =¢0116| -.0129 12 -.0093 20
2,8,b;h, | «.0264| =-.0190 -28 -.0165  ~LO
2,2, b, | -.0202| -,0215 63 -.0043  -80
2,812k | 0080  .00T9 2 0001 =100
2,8,4,h, | .1035( .1092 5 .1072 3
k hhh, .0318 0266 =17 0346 8
k hyh,h, [ .0134f .0112 -16 0113 -153
k hyhph, [ 00307 .0262  -15 0256 =16
k hybh, 0257| .,0203 =26 0235 -8
k hybh, [ .0082] .0072  =-13 0059 =30
k hybb, | .0681] .0537 =20 0525 =22
k hybh, .0076{  .0068 =10 0062 =173
k hib,h, | J02k2} ,0196 20 0199 . =19
k hpb,b, [ .0003]  ,0005 ko 0008 150
k hjb,b, | .0655| .0525 =20 0481 o35
k hy2,h, | .0090| .0082 94 00Th =16
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TABLE 22 (CONTD.)

tcearal | Tie | O R | e
k hitih, .0088 .0081 -9 0066 -25
k h121b, 0004 0006 35 .0010 170
k hi2,2; 0652 0524k =20 0LT9 -30
k hi%y8; | =.0010 | =.0001 =90 -.0007 =30
k hik h) .0090 +007T -15 .0060 «35
k h2k h) .0090 L0077 =15 .0057 =35
k byhoh, .0015 .0013 =15 .0013 =13}
k bbh, 0146 .0073 =50 .0080 =50
k bijbjh, .0090 .00k2 55 0013 -85
k bjLjhy | =-.0006 .0002 =60 -.0005 «25
k bjihy | =.0033 | =.0010 =70 -.0016 =50
k bk h) | -.00k2 -.0022 =45 - ,0059 40
k bk hy | -.0056 -.0027 -50 -.0063 15
k 2,2;h; | .0078 .0039 =50 0015 -85
k k bjh, .12k0 +1327 T 1233 3
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TABLE 23

WATER COULOMB INTEGRALS OVER THE ORTHOGONALISED HYBRIDISED BASIS

Exact | Gaussian Approx. | Mulliken Approx.

Integral | yvalue & % Error & % Error
hihh b, | 0.6520 | 0.6810 L3 0.6760 4
bbby | 1,0355 | 1,0100 - 2} 1.0930 6 |
212,22, | 0.9999 [ 0.9955 -3 1.0320 3
hyhohhy | 0.2779 | 0.2810 1 0.2760 =1
byb,hhy | 0.4997 | 0.4996 0 0.5620 12
b,bhoh, | 0,3980 | 0.3960 -3 0.k1ko 4

2,%,hh; | 0.3884 | 0.3850 -1 0.3900 3
2,%,b,b, | 0.8001 [ 0.7982 0 0.7960 -1 |
kk hh) [0.04353 | o.k261 -2 0.k1ko -5
k k bb, | 1.2152 | 1,2110 0 1.1830 =3
0
0

kk 2,4, [ 1.1364 [ 1.1330 1.1360 0

b,bobib, | 0.8448 | 0.8420 0.8380 =1
b;b,h by | 0.0200 | 0.0180 =10 0.0388 95
byb,bb; | 0.0339 | 0.0290 =15 0.065k o5 |
b,b,b,b, | 0,0860 | 0,08k2 =3 0.,1331 55
2,0,hihy | 0.0262 | 0.0252 - b 0.0k11 60
2)bjhyh, | =.0165 | =-.0156 =5 -.0347 110
2ib)b)b, | 0.0407 | 0.0355  ~12 0.0647 60
/bbb, | 0,0009 | 0.0010 10 0.0020 115
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TABLE 23 (CONTD.)

totesrel | Yoo | i e | M e
2,bybb, | =.0211 | -,0207 =2 -.0297 30
£,b,2,b; ( 0,0788 { 0.0776 -2 0,1012 32
£,b,%,b, [ =.0123 | =,0122 -1 -.0116 T
2,2/bb, | -.0340 | -,0356 5 -.0k20 2k
2,24, [ 0,0285 | 0.0260 -8 0.0488 67
k byh;h, | 0,0097 | 0.0142 L5 0.011k4 17
k bjhyh, | «.0029 | -,0066 130 -,0013 =60
k bbb, | 0.0199 | 0.0324 T0 0.0372 90
k bbb, | 0,0085 | 0.0122 50 0.01L6 65
k bbb, [ =.0117 | =.01k1 20 =.0036 200
k v,2,0, [ 0.0102 | 0.0127 25 -.0028 ~180
k b;2,b, | =.0087 | =.0122 50 -.0119 ]
k bj2;2) | =.018 | -,0141 -5 -.0028 90
k bk b; | 0.0354 | 0.0418 26 0,0459 30
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TABLE 2L

WATER., Mulliken epproximation of integrals, SCF MO,

b, R, £, g, %, %, k
0.728 =0.016 0.947 =0.020 0.126 0.120 =0.008
0.728 -0.020  0.947 0,120  0.120 -0.008
1.29% 0,038 -0.08% -0,08% 0,006

1.294 -0,08% 0,084 0,006

E = -8’4.22 8.Us 10978 =0,022 0.001
Ny = 0.728 1.978  0.001
TABLE 25 |

METHANE., Mulliken epproximation of integrals. SCF MO,

0.89% 0.019 0,019 0.019 0.994 0,001 0,001 0.001 =0.020
0.89% 0,019 0,019 0,001 0.99% 0,001 0,001 «0.020

0.894 0,001 0,001 0,001 0,994 =0.,020

1.107T =0,018 «0.018 «0.018 0.019

E = =52,59 a.u. _ 1,107 -0,018 -0,018 0.019

) 1,107 =0,018 0.019
Ny = 0.89h 1.107 0.019
Nc = 6.h28 2,000
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TABLE 26

WATER., Mulliken and NDDO approximations.

El 52 S1
0,690 0,015 0.931
0.690 =0,015

1.338

E = -85.02 AU
Ny = 0.690

NO = 8.622

£, T,
-0,015 0,10
0.931 0.1k0
0,014 =~0.099
1,338 -0,099
1.973
TABLE 27

METHANE. Mulliken and NDDO epproximations.

5, B, K &,

0.592 0,078 0,078 0,078
0.592 0,078 0.078
0.592 0,078
0.592
Es= -5309h el
NH = 00592
Ng = T.631

3

0.901
0.027
0.027
0.027
1.k09
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B,

0.027
0.901
0.027
0,027
=0.077
1.409

SCF MO.
%, k
0.140  0.002

0.140 0,002

-00099 "0.002

-0.099 0,002

-0.029 0.000

1.973 0.000

2,000
SCF MO,

5, 5, K
0.027 0,027 0,038
0,027 0.027 0,038
0,901 0,027 0,038
0.02T7 0,901 0,038
-0 o077 -0 . 077 "0 . 032
=0.077T =0.077 =0.,032
1,409 =0,077 =0,032
lohog -00032
1.995



TABLE 28

COULOMB INTEGRALS OVER HYBRID BASIS

Integral | NOU-OFtH | OXth | Non-Ortn | Orth # pire.
2 2 4 4 | HpO | CHy
hyhyhihy | 0.6250 | 0.6523 | 0.6250 | 0.6943 | L} | 12
hohhhy | 0.3313 | 0.2779 | 0.2891 | 0.2h32 | =16 | =16
b,byhyhy | 0.5912 | 0.4997 | oO.5k6h | 0.4T9L | -15 | -12
bybyhoh, | 04483 | 043980 | 0.3765 | 0u34k1 | -11 | -9
bb;byb; | 0.9760 | 1.0355 | 0.7063 | 0.7726 6 9
b,b,hh; | 0.0260 | 0,0200 | 0.0232 | 0.0283 | =25 | 22
b,b,byb, | 0.0295 | 0.0339 | 0.0209 | 0.0282 | 1k | 36
b,b,b,b, | 0.0735 | 0.0860 | 0,0515 | 0.0702 | 1T | 37
bbby, | 0.7756 | 0.8848 | 0.5463 | 0.6285 91 15
20,0,k | 0.0309 | 0.0262 -16
21byhoh, | =,0210 | -.0165 -23
2,b;byb, [ 0.,0350 | 0.04O7 16
£,0b,0, | -.0008 | 0.0009
L1b;bob, | =40275 | -.0211 -2k
2,0,2,, [ 0.0731 | 0.0788 8
21b,2)b) [ -.0122 | -.0123 0
2,%;byhy | O.4kOT | 0,388 -12
2,2,byb; | 0.7657 | 0.8001 L
212,b,b; | -.0343 | -.0340 -1
218,2,%; | 0.9969 | 0.9999 0
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TABLE 28 (CONTD.)

Integral No;li-grth OII{‘tg N o:é;{Orth OrCIfih % Dirf,

2 2 4 “ [ H0 | cH,y
2,80 h, | -.02k6 -.0185 -2l
2,2,b;b; | =,0319 -.0298 - T
222,b,0, | =.0383 -.0k1k 8
2,4;b,b, | =.0391 =.0298 -2k
L,8,8,0, | -.01k6 -.0159 9
L0188, | 0.0265 0.0255 -k
2,%1%,%, | 0.0680 0.0655 - b
2,2,8,2, | 047511 0,7L485 0
L,0,8,8, | 0.0265 0.0255 -4
k byh b, | 0.0097 0.0082 | 0.0102 0.0088 | =15 | -1k
k byhoh, | =.0029 -.0025 | =.0039 -.0033 | =1k | <15
k byb,b; | 0.0199 0.0220 | 0.0138 0.0153| 10| 11
k bbb, [ 0.0085 0.0104 | 0.0052 0,0071 | 21| 38
k bbb, | =.0117 -.01kk | -,0096 -.0137| 25| Lo
k b;&;b; [ 0.,0109 0.0117 5
k b;2;b, | =.0087 -.0104 22
k b,;2,2, | -.0148 -.0165 11
k byl,%; | =-.010h4 -.0117 12
k bk b, | 0,0355 0.0440 | 0.02k7 0.,0358 | 24| Lk
k bk b; | 0.,0018 0.,0129 { 0,007h. | 0.,0126| 28| 4o
k 2;h;h; | -.0035 - .0025 -28
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TABLE 28 (CONTD.)

Integral No}r;-grth O;tg Norcx:;IOrth iOg;h % Diff.
2 2 4 4 H,0 | CH,

k 2b;b;, | =.0139 | «.0160 16

k 2bb; | =-.0087 | -.0101 11

k 2,2;b; | 0.,0054 | 0.0053 -2

k 2,2,2, | 0.0201 | 0.0197 -1}

k %2)%,%; | 0,006k | 0,0056 -13

k 2,k b, | 0.0108 | 0.01kk 35

k &,k £, | 0.0393 | 0.0415 5

k 2,k &, | 0,006k | 0.0151

k k hjhy | 0,5099 0.4353 | 0.4589 | 0.3986 | -15 | =13

k kbbb, [ 1.130% | 1.2152 [ 0.,8081 | 0.9101 T 13

k k b,b, | 0.0009 | 0,0139 | 0.0006 | 0.0166

k k £,b, | 0,0006 | 0.0188

kk 24 | 1,1307 | 1.136h }

k k 22¢; | 0,0021 | 0.,0078

kkkby [ -.2040 | =.2335 | -,1583 | -.1976 | 15 | 26

kkk & | -.2bb0 | -.259% “ 10 |

kkkk L.8125 | 4.8125 [ 3.5625 | 3.5625 0 0

bibibsby -.0056 -.0061 9

b3biboba -.0248 | -.0242 -2}

bsbohh -,0240 -,0300 25
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METHANE, Integrals as described in text.

By Ry By

0.9k2 -0,049 =-0.049

0,942 =0.049
0,942
E = =52.79 a.u.
NH = 0,942
NC = 6.232

METHANE, Integrals as described in text.

E, &, &,

0.917 0,000 0.000
0,917 0.000
0.917

2

E= -52 081‘ BslUe
Ny = 0.917
NC = 6.331‘

TABLE 2

B,

-0,049
-0,049
-0,049

0,942

t

00,998
-0.005
"0 0005
-0.005

1,058

TABLE 30

B,

0.000
0.000
0,000
0.917

A3

0.968
0,000
0.000
0.000
1.083
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t,

0,005
0.998
-0 .005
~0,005
0,049
1.058

t2

0.000
0.968
0.000
0.000
0.000
1,083

SCF MO,

t;3

=-0,005
0.998
-0.005
0.0L49
0.0L49
1,058

SCGF.

i

Ty

«0,005
«0,005
0.998
0.0L49
0.0k49
0.049
1,058

g,

0.000 0.000
0.000 0,000
0.968 0,000
0.000 0,968
0.000 0.000
0.000 0,000
1.083 0,000

1,083

k

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

-0.003
=-0.003
-0.003
0.002
0.002
0.002
0.002
2,000

2.000



CHAPTER SIX'

FINAL CALCULATIONS

At the end of the last chapter an empirical scheme was
proposed for the estimation of the larger two-electron integrals
over an orthogonal hybrid basis, The integrals were estimated
by a procedure based on the study of the effects of symmetric
orthogonalisation on integrals over a non-orthogonal hybrid basis,
for the water and methane molecules. The method proposed for the
approximation of the integrals over an orthogonal basis from the
integrals over a non-orthogonal hybrid basis was:

(a) The NDDO approxiﬁation is used, that is only integrals of
the form (EAEAIEBEB) are given non-zero values, Table 23

gives some comparisons of integral values of the non=-

coulombic type over a hybrid and an orthogonal hybrid basis,

for the water molecule, Comparison with Table 28 of Chapter

5 shows that the largest of these integrals over an orthogonal

basis are much smaller than the largest of the integrals of the

form (lA‘]AlkBlB) for i # j end/or k # ¢

tThis Chapter closely follows the presentation given in a joint paper
by Cook, Hollis and McWeeny (submitted for publication in Molecular

Physics) but also presents new and independent calculations on other
molecules,
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(b) (1 iAIEBEB) is obtained from the corresponding integral over

the non-orthogonal bases (iAiAlijB) by increasing it by 12%

if A=B and decreasing by 12% if A¥#B and A and B are near
neighbours. However, if ;A =k, m or £ and 3A =k, " or %
(vhere k, m, % denote 1s, pi and lone pair orbitals respectively)
then (IAEAIEBEB) tskes its non-orthogonal value.
(¢) All other integrals of the form (EAEA‘EBEB) take the value of
the corresponding integral over the non-orthogonal basis
(iAjAlszB).
Two-electron integrals estimated in the above manner and exact
one-electron integrals over the orthogonal hybrid basis were used
in the last chapter to perform SCF MO and SCGF caleulations on methane,
The results were very good for methane and so the scheme wes examined
for a larger system. .
The two-electron integrals over the orthogonal hybrid basis
were calculated for ethylene, using the Mulliken spproximation for
the estimation of the many-centre two-electron integrals over non-
orthogonal hybrids (tpe one- and two-centre integrals were calculated
exactly), followed by transformation to an orthogonal basis. Although
the integrals over the orthogonal basis are not accurate, it has been
seen in Chapter 5 that the larger integrals of the form (EAEA EAEA)

are reasonably close to the exact values. So these integrals cen

probably be used to give a general idea of the effect of orthogonalisation,
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The two-electron integrals over the non-orthogonal hybrid basis
are given in Table 1; only integrals of the (iAiAlejA) type are
given (it has been pointed out in Chapter 5 that the effect of
scaling the smaller non-orthogonal integrals, in the methane calculation,
was small)., It can be seen from Table 1 that the effect of
orthogonalisation, in this molecule, is remarkably similar to
the effect in the water and methane molecules.
Results

The procedure outlined sbove, for the approximation of
integrals, was next used to perform calculations on the hydro-
carbons, ethylene, acetylene and ethane and on two systems containing
a heteroatom, formaldehyde and hydrogen cyanide.
Ethylene

A calculation has been performed on ethylene using the

following coordinate system (in a.u.): C=C =-2,55116 a.u.

b'4 Yy 'z
C1 ~1.27558 o 0
2 | 1.27558 0 0
H1l -2,286595 1.75113 0

H2 -2,286595 -1,75113 0
H3 2.,286595 1.75113 0
Hh4 2.286595 =1,75113 0
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(1)

Moskowitz and Harrison have given very extensive
results for ethylene using various Gaussian basis setsj up to
forty basis orbitals have been used. These very accurate cal-
culations are useful for purposes of comparison. The approximate
results are compared below with the calculation using the largest
Gaussian basis set (MO orbitals).,

The electronic structure of ethylene can be described
as resulting from double occupation of eight MO's belonging to the
irreducible representation of the group D2h' The symmetry of the

MO's for ethylene is shown in the table below. The ground state

1
configuration ( Ag) of ethylene is
1,2 ,1 2 42 2 ,2 2 41 2 43 32 41 2 (1 2
(as) (o ) (ag) (bsu) (o, ) (ag) (blg) (blu)

The orbitsals blu b, are pi bonding and entibonding orbitals.

2g
The other MO's describe the o=-core.
In the table below the SCF MO orbital and electronic

energies are given:
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M.0, Gaussian Approximate
lag -11.2539  =10.99)
1b "1102526 -100993
3u
Zag -1,0584 -1,017
2b3u -0.8067 -0.934
1
b, -0.610k ~0.375
3ag -0.5829 -0.356
1
blg -0.517h ~0.355
1
LI -0,3814 =0,173
lbzg 0.1518 0.282
Electronicl .4y 55p) -110.56T
Energles

It cen be seen that the order of the energy levels is

the same as the accurate calculation except that the

b2u orbitals are in a different order. They are however almost
degenerate in the approximate calculation,

the ionisation potential (IP) is given by minus the energy of the

=120~

By Koopman's theorem




highest occupied orbital. The experimental IP is 0,386. The
Gaussian calculation gives a very good estimate of this quantity
- 0.381 a.u. = but the approximate calculation gives a very poor
one = 0,173 a.u. This result is disappointing, since in this
cese the NDDO approximation does not give results close to those of
exact calculations. A similar discrepancy is seen, for formaldehyde,
later, though it should be noted that in this case the use of the
CNDO approximation gives extremely bad results. These results are
probably due to the cumulative effect of neglecting so many small
integrals giving poor absolute energy values, This is less likely
to affect the spacing of the levels (i.e. the relative values): thus
the higher levels exact and approximate are almost brought into
coincidence if the energy zero for the latter is shifted by asbout
0,15 a.u. The discrepancies for bonding and enti-bonding partners
are opposite in magnitude; this could be due to a poor B value
(resulting from neglect of integrals in defining the SCF Hamiltonian).,
All the Gaussian calculations show well-defined o-m separations, as
does the approximate calculation. The Gaussian calculation using
4O orbitals predicts a separation of 0,136 a.u. and the approximation
calculation 0,181 a.u.

The predicted charge densities, the gross atomic
populations (N) and the overlap populations (n) are given in the

table below:
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. Approximate | Approximate
Gaussien (SCFMO) (SCGF)
N(C) 6.330 6.407 6.368
N(H) 0.835 0.796 0.816
n(Co-CO) 0-9h3 00893 0.990

It can be seen that the charges are reasonably close to those pre-
dicted by the calculation using a very large set of Gaussian
orbitals. The complete density metrices for the SCF MO and the
SCGF calculations are given in Tables 2 and 3,

A calculatio; has been performed on acetylene using
Rog = 2+268 a.u. end Ry = 2,004 a,u. A minimal basis calculation
using Slater orbitals has been performed by McLean(e).and a
Caussian calculation using 34 basis functions has been performed
by Moskowitz(3). The orbital and electronic energies for the

approximate SCF MO calculation are compared with those from the

exact calculations in the table below:



epproximate calculation is the same as in the exact calculations.

Gaussian Slater Approximate
1°s -11,265 | -11.k00 ~11,108
lcu -11.,261 | =11.397 -11.106
2°g -1.042 -1.041 -0.945
%0, -0.759 ~0.776 -0.663
3°s -0.671 -0.682 -0.613
1uu -0,402 ~0.kk1 -0.267

Electronic | =101.479 | -101.283 | - =101,0L0

The experimental ionisation potential is 0.419 a.u.

lene the approximate calculation does not give a good estimate of

this.,

It can be seen that the order of the energy levels for the

As in ethy-

Again the o-7 separation predicted by the approximate

calculation, 0,346 a.u., is greater than that predicted by the

exact calculations, 0.268 a.u. (Gaussian) and 0.239 a.u. (Slater).

The predicted gross atom populations are given in the table below:
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Gaussien | Slater Ap€§g;§g?te Apfgg;;?ate
N(H) 0.795 | 0.775 0.716 0.755
N(c) 6.205 6.225 6.283 6.245

The atom populations predicted by the approximate method are
not as close to those predicted by the exact calculation as they
are in ethylene, but they are still reasonable.

density matrices for the SCF MO and SCGF calculations are given in

Tables L and 5.

Ethane

A calculation on ethane was performed using Roy = 24286592

and R

in the table below:

oo = 24910212 a.u. (1.54 &°). The coordinate system is given

Atom b 4 y z

C1 -1.455106 0 0

c2 1.455106 0 0

H1 | -2.1k48013 0 -1.959837
H2 | -2,148013 | 1.697270 [ 0.979918
H3 | -2.148013 | -1.697270 0.979918
HY4 -2.148013 0 1.959837
H5 | -2,148013 | =1.697270 | -0.979918
H6 -2.148013 1.697270 | =0.979918

- 1

24 -

The complete



A minimal basis calculation using Slater orbitals has been
performed by Pitzer and Lipscomb(h). The orbital and electronic
energies for the approximate SCF MO calculation are compared with

those for the exact calculations in the tsble below:

Exact Approximate
1
8, -11,346 ~11.040
laZu =11.346 =11,039
L - =1,0k0 -1.2ko
232u -00859 -l.l3h
la, -0.627 -0.358
‘ag -0.536 =0.357
lag -0.515 ~0.346
Electronic | =120.923 | =120.255

The order of the energy levels for the approximate calcula-
tion is the same as in the exact calculation though the absolute
energies are not very close. The predicted gross atom populations

for the exact calcuiation and for the approximate calculations are

given below:
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Approximate | Approximate
Exact (SCF MO) (SCGF)
N(H) | 0.887 0.890 0.87h
N(c) | 6.339 6.321 6.377

The atom populations predicted by the approximate methods
are very close to those predicted by the exact calculation. The
complete density matrices for the SCF MO and SCGF calculations are
given in Tables 6 and T.

Formaldehyde

Exact lntegrals over an AO basis set were available from

(5)

previous work'”’’, The following bond distances, bond angles and

orbital exponents were used:

RCO = 2,30 a.u. RCH = 2,00 a.u, LHCH = 1200
[ = L) = L)
Clsh = 1.2 Clsc 5.7 Clso TeT
= = 1062 = = 2,2
CZSC Czpc 5 c28° czpo 75

The results of exact SCF MO and SCGF calculations are given in
Tables 8 and 9. As expected the SCGF calculation again gives a
lower total electronic energy than the SCF MO method. As in

previous exact calculations on formaldehyde the n=bond is slightly

- 126 -



polarised in the C-N direction, SCF MO calculations were also
carried out using exact integrals and the NDDO and the CNDO
approximations. As pointed out in Chapter 5, the CNDO calculation
gives a very large bond order between the two hydrogen atoms and
also the m=bond is now extrmely polar in the C-N direction. These
drawbacks do not occur in the NDDO calculation, though as in the
CNDO calculation there is a reasonably large bond order between
the sp, orbital on carbon directed towards oxygen and the hydrogen
atoms .

As noted earlier in this chapter, the energy of the highest
occupied orbital is considerably less when the NDDO approximation
is used than in the complete calculation. Table 12 gives the
orbital energies for the full calculation and the calculations
employing the NDDO and CNDO approximations. It cen be seen that
the energy of the highest occupied orbital using the CNDO approxi-
mation is very poor indeed and is mwt very good using the NDDO
approximation. In fact ¢4, the highest occupied orbital, which
in the exact calculation consists almost entirely of a lone pair
on the oxygen atom, is no longer a lone pair orbital in the
approximate calculations.,

The two-electron integrals of the form (iAiAlijB) over a
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non-orthogonal and an orthogonal hybrid basis are given in Table
13. It can be seen that these integrals fit in very well with

the scheme proposed for the estimation of two-electron integrals
over an orthogonal hybrid basis from the corresponding integrals
over the non-orthogonal basis. The results of SCF MO and SCGF
calculations using this scheme are given in Tables 1L and 15.

For purposes of comparison wave functions have also been calculated

using the Pople and Santry approximations(6’7)

and the SCF MO
NDDO method. Two methods have been used, denoted by Pople and
Santry as CNDO/1 and CNDO/2, which differ slightly in the approxi-
mations used to estimate the diagonal matrix elements of the cne-
electron Hamiltonian, The results of these calculations are given
in Tables 16 and 17. These approximate calculations were carried
out usiné a hydrogen orbital exponent of 1.2, so that the results
could be compared with those of the calculations using exact
integrals, The gross atom populsations predicted by the exact and

approximate calculations are given below:
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N(E) | N(c) | n(0)
Exact calculation SCGF 0.892 | 6,169 | 8,047
Exact calculation SCF MO 0.937 | 6.122 | 8,014
Exact calculation SCF MO (NDDO) | 0.876 | 6.22L4 | 8.020
Exact calculation SCF MO (CNDO) | 0.822 | 6.565 | T.792
This work SCGF 0.805 | 6.089 | 8.301
This work SCF MO 0.766 | 6.207 | 8.221
Pople and Santry CNDO/1 ‘l.057 5.882 | 8.004
Pople and Santry CNDO/2 1.011 | 5.791 | 8.186

It can be seen that the scheme proposed in this work gives
& low hydrogen atom population and a high charge on the oxygen

atom, while Pople and Santry's method overestimates the hydrogen

atom charge and gives a low carbon atom population.

Hydrogen Cyanide

Calculations have been carried out on hydrogen cyanide using

the following bond distances and orbital exponents:

= 2,0070 a.u.

Roy = 21872 awu. Ry
Tygy = 140
Cig, T 5T B % ap T 1.625
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&, = 1,950

CISN = 607 Cz pN

SN
The results of approximate SCF MO and SCGF calculations,
estimating the two-electron integrals in the manner described at
the start of the chapter, are given in Tables 18 and 19. Results
of SCF MO calculations using Pople and Santry's CNDO/1l and CNDO/2
scheme are given in Tables 20 and 21. The gross atom populations
predicted by the approximate calculations are given in the table
below. The populations predicted by an exact calculation using
Slater orbitals and the coordinates and exponents given above

(McLea.n(B)) are also given.

N(H) N(c) N(m)

Exact Calculation 0,761 | 6,156 | T.082

This work (SCF MO) | 0.685 | 6.139 | 7.176

This work (SCGF) 0.682 | 6.091 | T7.227
CNDO/1 0.926 | 6.099 }| 6,975
CNDO/2 0.982 | 5.912 | 7,105

The method proposed in this work overestimates the nitrogen
atom population while Pople and Santry's method gives a very high

charge on the hydrogen atom.
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Discussion

As expected, the total electronic energy of all the calcula=
tions is quite close to that reported for the full calculation,
The charges on the hydrogen atoms calculated using the approximate
method described at the start of this chapter are given in the
table below, For comparison the charges calculated by exact
minimal basis SCF MO calculations, by Pople and Segal's SCF MO
CNDO/1 method, and by Hoffman's'?) extended Hiickel method are also

given.

CHy, | CpHg | CoHy | CoH, | CH,O HCN

Exfggpcggsulatl°“ 0.916 | 0.887 | 0.835 | 0.775 | 0.900%| 0.761

This work (SCFMO) | O.942 | 0.890 | 0.800 | 0.716 | 0.766 | 0.685
This work (SCGF) 0.920 | 0.874 | 0.816 | 0.755 | 0.805 | 0.682

Pople and Segal's
CNDO/1 0.965 | 0.966 | 0.954 | 0.893 | 0.958 | 0.847

Extended Hiickel 0,867 | 0.881 | 0.887 | 0.843

¥ See reference 10

For the hydro carbons CH,, CyHg, CoH, CoH, it is found that
<
the C-H bond polarities are all C-H and that the magnitude of the

polarity increases along the series, the hydrogen atom becoming
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progressively less shielded by electrons. While this is known to
be the correct trend for the last three members of the series,
less is known sbout the relative polarities of the CH bonds in
methane and ethane. The full non-empirical calculation indicates
that the ethane bond is the more polar, and this result is
reproduced by the present calculations. The results of Pople and
Santry and Segal predict the opposite trend. The only physical
evidence available suggests that the ethane bond is in fact the
more polar, the ethane prqton resonance occurring at lower field
than in methane(ll). This fact indicates, assuming that anisotropy
effects for methane and ethane are small, that the protons in
ethane are less shielded by electrons than those in methane,

The results of the Hiickel calculations are not in agreement
with the exact minimal basis results or with experimental evidence
Thus the Hlckel results would predict that ethylene would lose a
proton less readily than ethane and methane which is certainly
contrary to experimental evidence. It also predicts that the
hydrogen atom charge in methane is less than that in ethane, cone
trary to the evidence of NMR spectra given sbove,

In hydrogen cyanide the present method gives an atom

population on hydrogen close to exact result, but in formaldehydeA
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the predicted charge on hydrogen is much lower than in the exact
calculation.,

Comparison of SCF MO and SCGF methods

From the results given above it can be seen that the elecw-
tronic energies and electron distributions in polyatomic molecules,
_ as predicted by the SCF MO and SCGF calculations, are usually in
close agreement. In this section the two methods are compared
in detail.

When the molecule contains one or more w bonds the SCGF
method predicts & much lower m bond order than the SCF MO calcula-
tion., At first sight this difference is surprising. It should be
remembered,‘ hovever, that when the bond order is defined formally
s an off-diagonal density matrix element (and not as a ratio
between‘ the values of some index for the given bond and for that
in ethylene) there is no reason for close agreement. For ethylene
the m-bond order (density matrix element) is unity in an MO calcu~
lation based on orthogonal AO's; with non-orthogonel AO's an MO
treatment gives (1+5)~! while Heitler-London theory gives S(1+s)~L,
In the SCGF calculation full configuration interaction is admitted
for each electron pair and the optimum bond order is closer to the
Heitler-Loﬁdon value; although the present calculation employs

orthogonal orbitals a similar result is cbtained, the Heitler-London
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value being lower than the MO value by a factor close to the over-
lap integral for the non-orthogonal AO's. So for the SCGF method
the ratio Prs/Pcc (ethylene), which is essentially a fractional
double-bond character, should be compared with the = bond order
in the SCF MO calculation. The low 7 bond index in the SCGF
calculations thus merely reflects the relatively low overlap
integral for m type AO's,

A noteworthy feature of the SCGF calculation is the simple
form of the density matrix, whose non-zero elements refer only to
real chemical bonds. With a realistic choice of hybrids, the
wave function, besides being of considerable accurecy, conforms
closely to the description adopted in qualitative valence theory,
each bond being associated with a strongly over-lapping pairxof
orbitals., The MO density matrix, on the other hand, contains many
small off-diagonal elements connecting orbitals on different atoms:
physical meaning has sometimes been attributed to these elements
(esgs in the interpretation of NMR coupling congants), but in fact
they are only very indirectly related to the energy and it is
possible that their values are often completely spurious, ‘The soé
called "long-renge bond orders" between non-bonded atoms must

occur in any MO calculation in order that the matrix R (=}P)
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may be idempotent, and are thus related to the orthogonality
requirement for MO's; their values fluctuate widely in SCFvgalcula-
tions (cf Tables 8 - 11), without appreciasble effect on the energy,
and their physicg; significance appears to be dubious. It is of
course true that the SCGF calculation will lead to good results
only with well-chosen hybrids and that for some molecules (e.g.
those with "pent" bonds) this choice may not be obvious., This

matter has been investigated in recent work(la)

s but for the
molecules discussed here thg prescription for settiné up ortho=-
normal hybrids is reasoanbly satisfactory.

Perhaps the most importent advantage of the SCGF method,
for present purposes, is its particular suitability for semi-
empirical development: for the only one-electron matrix elements
required are the diagonal elements and those that link bonded
pairs of atoms. Thus, in ethane, only two distinct B's are needed,
as compared with 22 in the SCF MO calculation., This may not reduce
the calculation of the one-electron Hamiltonian very much in non-
- empirical work, but is clearly an important factor when such
quantities are to be adopted as empirically fitted parameters.

In this connection, Teble 22 is of considersble interst. It shows,

for example, that the approximation of meking B's (by implication
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over orthogonal orbitals) proportional to overlap integrals (over
corresponding non-orthogonal orbitals), which is commonly used in
semi-empirical work, has little justification; thus < ocllhlhl >

has almost the same value as < bllhlh1 > while the corresponding

overlap integrals differ by a factor of almost five.

Finally, it should be noted that the SCGF method lends
itself to calculations on large molecules, with a minimum of come
putational effort. A conventional SCF MO calculation for a system
with, say, 50 basis orbitals, requires a fairly large computer and
(even assuming reassonable convergence of the process) is expensive
in computing time. The SCGF calculation, on the other hand,
requires only the diagonalisation of one small matrix (in the
present case 3x3) for each electron pair, and is a rapidly con-
vergent process. Moreover, besides being relatively small, the
SCGF computing time is roughly linear in the number of distinct
electron groups, while that for an SCF MO calculation is at least
cubic in the number of orbitals used. The calculations reported in
this work were in fact performed using an IBM 1620 computer, the
computing times for the two types of calculation being in the

ratio 4O:1l for the larger molecules.
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Conclusiong
The main conclusions that emerge from this research are as
follows:

1) By using a suitable set of orthonormalised hybrid orbitals
it is permissible to neglect all two-electron integrals
except the one- and two-centre coulomb integrals and the
one-centre exchange integrals. The neglected integrals
correspond formally to those which are discarded, without
justification, when defiqed over non~orthogonal AO's in
the NDDO scheme; their values are in fact so small that
their neglect does not significantly affect the results
of complete many-electron calculations. Those integrals
which are not neglected must be estimated rather accurately:
the invariance requirement of Pople, Santry and Segal, dis=-
cussed in Chapter 2, which would force equality upon
various groups of integrals,is too restrictive for this
purpose and must be rejected.

2) The one~-electron integrals over the orthonormalised hybrids
must be calculated fairly accurately in order to reproduce
the results of complete non-empirical calculations; it is

not possible, for example, to neglect three-centre
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potential energy integrals over the non-orthogonal AO's
prior to orthogonalisation.

3) The results of SCF MO and SCGF calculations are in fairly
close agreement for the molecules considered so far, the
SCGF results being slightly the better at least for the
ground states. The SCGF method has considerable comput g=
tional advantages and leads to a somewhat simpler descrip~
tion of the electron distribution, emphasising the
localised=-bond picture and being appliceble without
difficulty (in its semi-empirical form) to much larger
molecules.

4) In the molecules so far considered, satisfactory results
are obtained by using hybrids that point along the bonds.
In céses vhere there is no intuitively obvious choice of
hybrid orbitals (as in "strained" molecules where it is
not always possible to find mutually orthogonal hybrids
of this kind unless the bonds are regarded as bent)
there is an important optimisation problem, namely to
find the optimum set of hybrids with which to construct
an SCGF wave function.

The methods developed in this work are now being applied to a vari-

ety of larger molecules, including strained systems for which the

problem of optimising the hybrids is receiving attention(lz).
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TABLE 1

ETHYLENE -« COULOMB INTEGRALS OVER HYBRID BASIS

TWO=-CENTRE INTEGRALS

Integral | Non=-Orthogonal | Orthogonal Diff.
hohh by .280 .229 -18
0,0,h;h, .367 332 -10
0,0,h4h, +306 +256 -17
b,b;h)h, 559 518 -1
b,b;hoh, .367 327 -11
bbhsh, 241 23k -3
b,bihh, 214 .190 -11
m,mhh, 406 «370 -9
m,mhgh, 242 221 -9
kik,hh, 467 .386 -17
k,khghg 251 229 -8
0,0,06,0, 643 637 -1
0,0,b,b, L1 .389 -6
0,0, T, 457 1433 -6
0,0,k k, 545 L77 -13
bybgbb, .289 .305 8
bibb,b, .269 258 -4
T,oMob by «303 «302 0
LPLPLPL .3k2 +330 -3
k,k,b,b, .322 .323 0

- 1%0 -




TABLE 1 (CONTD.)

E‘I‘HYLENE - COULOMB INTEGRALS OVER HYBRID BASIS

ONE-CENTRE INTEGRALS

Integral | Non-Orthogonal | Orthogonal | % Diff.
hihihih 625 +690 10
01010101 JT1T JOUT 17
b,b;b;b, TLT .8k9 17
T 636 LT 2
kikkk, 3.562 3.562

b,b,0,0, +527 594 13
T, 7,0,0, 572 627 10
7Mbb, 572 .625 10
b,b,b;b,; 527 579 10
k,k 0,0, .308 906 12
k,k,b;b, .808 896 11
kk,mm, .807 816 1
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TABLE 2

ETEYLENE -~ INTEGRALS AS DESCRIBED IN TEXT. SCF MO.

0.796 0.013 =0.056 0,06k 0,226 0.948 -0.020 0.000
0.796 0,064 -0.056 0,226 -0.020 0.948 0,000

0.796 0.013 0.001 -0.013 0,013 0.000

0.796 0,001 0,013 =0.,013 0.000

1.019 0.041 0.0kl 0.000

1.194% =0.023 0.000

1.194 0.000

1.000

E = -110.57 S.Us
No = 6.407

-0.004 0,001 -0,013 0.013
-0,004 0,001 0,013 -0,013
-0,001 0.226 0,948 -0.020
-0,001 0,226 -0,020 0,948
0.005 0.893 -0.219 -0.219

0.003 =0.219 0.109 -0.011

0.003 =0,219 =0,011 0,109

0.000 0.000 0,000 0.000

2,000 -0.002 0,002 0,002

1.019 0.0k1 o0.041

1.194 -0.023

1.194

0.000
0.000
0.000
0,000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
1.000

=0.001
=0,001
-0,004
-0.004
-0,002
0.002
0.002
0.000
0.000
0.005
0.003
0.003
0.000
2.000
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TABLE 3

ETHYLENE - INTEGRALS AS DESCRIBED IN TEXT. SCGF.

Ll

B K2 by By CH 5, 5, ™ 1 P b, b, & k,
0.816 0,000 0.000 0,000 0,000 0,960 0,000 0,000 0,000 0,000 0,000 0.000 0.000 0.000
0.816 0.000 0.000 0.000 0.000 0.960 0.000 0,000 0,000 0,000 0.000 0.000 0.000
0.816 0.000 0.000 0.000 0.000 0,000 0,000 0,000 0.960 0.000 0.000 0.000
0.816 0.000 0,000 0,000 0.000 0,000 0,000 0.000 0.960 0.000 0.000
1,000 0,000 0,000 0,000 0,000 0.990 0.000 0.000 0.000 0.000
1.184+ 0,000 0.000 0,000 0.000 0.000 0,000 0.000 0.000
1.184 0.000 0.000 0.000 0,000 0.000 0.000 0.000
1.000 0.000 0,000 0,000 0.000 0.655 0,000
2,000 0,000 0,000 0,000 0.000 0.000
E = =110.42 g.u. 1.000 0.000 0.000 0.000 0.000
Ny = 0.816 1.18% 0.000 0.000 0.000
Ko = 6.368 1.184 0.000 0.000
1,000 0.000

2.000



- T -

TABLE k4

ACETYLENE - INTEGRALS AS DESCRIBED IN TEXT. SCF MO,

B B, 9 b, ™ P k) P b, Ty
0.716 0.057 0.391 0.853 0,000 0,000 =0,005 0.175 =0.062 0,000
0.T16 0.175 =0.062 0.000 0,000 =0.003 0,391 0.853 0.000
0.904 =0,033 0.000 0,000 0,011 0.833 =0.333 0.000
1.379 0.000 0,000 0,002 -0.333 0,109 0.000
1.000 0.000 '0.000 > 0.000 0.000 1,000
1.000 0.000 0.000 0.000 0.000
2,000 =0,00T 0.004 0,000
E = -101.04 a.u. 0.904 =0.033 0.000
Ng = 0.716 1.379 0.000
No = 6.283 1.000

Ty
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000

-1.000

1

~0.003

-0.005

~0.,007
0.00k
0.000-
0.000
0.000
0.011
0.001
0.000
0.000
2,000
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TABLE 5

ACETYLENE - INTEGRALS AS DESCRIBED IN TEXT. SCGF.

E1 H2 51 Bl T‘l ;2 El 32 82 1-‘3
0.755 0.000 0,000 0.948 0,000 0.000 0.000 0.000 0,000 0.000
0.755 0,000 0.000 0.000 0.000 0.000 0.000 0,948 0,000

1,000 0.000 0.000 0.000 0.000 0.99% 0,000 0.000

1.245 0,000 0.000 0.000 0,000 0.000 0.000

1.000 0.000 0.000 0.000 0.000 0.855

. 1.000 0.000 0.000 0.000 0,000

2,000 0.000 0.000 0.000

E = 2100.7T7 a.u. 1.000 0.000 0.000
Ng = 0.755 1.245 0.000
Ng = 6.245 1.000

=
+

0,000
0.000
0.000
0.000
0.000
0.855
0.000
0.000
0.000
0.000
1.000

i

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2,000



TABLE 6

ETHANE - INTEGRALS AS DESCRIBED IN TEXT, SCF MO.

i, & &, &, B K 5 B

0.890 -0.089 ~0.089 0.070 -0.001 =0,001 0.220 0,956
0.890 -0.089 -0.001 0,070 0,001 0,220 =0,040

0.890 -0.001 -0,001 0,070 0.220 =0,0L40

0.890 =0.089 -0,089 0,048 =0.001

0.890 =0,089 0,048 =0,001

E = =120.26 a.u. 0.890 0,048 -0.001
Nc = 6.321 1.11%

5, 5 E§ 3, b, B 5 E

-0,040 =0.040 =0,003 0,048 =0,001 =0,001 =0.001 =0,001
0,956 -0,040 «0,003 0,048 =0,001 =0,001 =0,001 =0,001
~0.040 ~0.956 =0.003 0,048 =0,001 «0,001 ~0,001 =-0,001
-0.001 -0.001 =0.001 0.220 0.956 =0.040 «0.040 =0.003
=0,001 =0,001 «0,001 0,220 =0,040 0,956 =0,040 =0.003
-=0.001 =0,001 =0,001 0,220 =0,040 =0,040 0,956 =0,003
0.020 0,020 0,003 0.840 =0,200 =0.,200 -0,200 =~0,001
0.09% 0.094 0.002 -0.,200 =0.001 =0.001 -0,001 0,001
1.114 0.094 0.002 -0.200 =0.001 =0,001 =0,001 0,001
1.114 0,002 -0.200 =0.001 =0,001 -0,001 0,001

2,000 -0,001 0,001 0,001 0,001 0,000

0.979 0.031 0,020 0,020 0,003

1.114 0,094 0,094 0.002

1l.114 0,094 0,002

1,114 0,002

2,000
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TABLE 7T

ETHANE - INTEGRALS AS DESCRIBED IN TEXT.

SCGF,

B, B, B & 9§ B B,

0.874 0.000 0.000 0.000 0.000 0.000 0,000 0.964 0.000
0.8T4 0.000 0.000 0.000 0.000 0,000 0.000 0.96k4

E = =119,85
HH =0 0871"
Ec = 6 . 377

0.874 0,000 0,000 0.000 0,000 0,000 0,000
0.874 0.000 0.000 0.000 0.000 0.000
0.87h4 0.000 0.000 0.000 0.000

0.87h 0.000 0.000 0.000

1.000 0.000 0,000

1.126 0,000

1.126

by

0.000
0.000
0.96k
0.000
0.000
0.000
0.000
0.000
0.000
1.126

k)

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
2.000

92
0.000 0.000
0.000 0,000
0.000 0.000
0.000 0.964
0.000 0,000
0.000 0.000
0.973 0.000
0.000 0,000
0.000 0,000
0.000 0,000
0.000 0,000
1.000 0.000

1.126

by,

,65

0.000
0.000
0.000
0.000
0.964
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.126

s6

0.000
0.000
0.000
0.000
0.000
0.964
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1,126

lal]

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.000
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FORMALDEHYDE - EXACT INTEGRALS OVER AN ORTHONORMAL HYBRID BASIS

TABLE 8

FULL CALCULATION. SCF MO.
h,; B, oc B, b, ;c EC 30 Ilo Izo ;o
0.937 =0.053 0,035 0.975 0.016 0.000 =0.007 =0.010 -0,127 0.158 0,000
0.937 0.035 0.016 0.975 0.000 =0,00T =~0.010 0,158 -0,127 0,000
0.88% 0.019 0.019 0,000 -0.,009 0.991 =-0.02% -0,024 0,000
1,103 0.012 0,000 0,007 =0,036 0.122 -0,148 0,000
1.103 0.000 0.007 =0,036 =0.148 0.122 0.000
1.032 0,000 0,000 0.000 0.000 0.999
1.999 0,008 0,000 0,000 0.000
E = -144.89 a.u. 1.119 0,021 0.021 0.000
Ng = 0.937 1.959 0.03% 0.000
Ng = 6.122 1.959 0.000
No = 8.01k4 0.977

el

0
0.000
0.000

-0.009
0,000
0,000
0.000
0.000
0.008
0.000
0.000
0.000
1.999
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TABLE 9

FORMALDEHYDE — EXACT INTEGRALS OVER AN ORTHONORMAL HYBRID BASIS

FULL CALCULATION. SCGF.

5, & 5 5 B, § K, 3
0.892 0.000 0,000 0.987 0.000 0.000 0.000 0.000
0.892 0.000 0.000 0,987 0.000 0.000 0,000

0.887 0.000 0.000 0.000 0,000 0.986

1.108 0.000 0.000 0.000 0.000

1.108 0.000 0.000 0.000

1.066 0.000 0.000

2.000 0.000

E = «144.92 a.u. 1.113

Ny = 0.892
Nc = 6 0169
NO = § .01‘7

10

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.000

el

20

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2,000

L

0,000
0.000
0.000
0.000
0.000
0.878
0.000
0.000
0.000
0.000
0.934

)

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2,000
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TABLE 10

FORMALDEHYDE - EXACT INTEGRALS OVER AN ORTHONORMAL HYBRID BASIS

AND NDDO APPROXIMATION. SCF MO.
R, h, oc b, ?2 ER Ec A 215 [P

0.876 0,048 0.270 0.950 =0.043 0.000 =0.007 0.034 -0.011 0.055

0.876 0.270 =-0.043 0,950 0,000 -0,00T 0.03% 0.055 -0.011

0.877 0.061 0,061 0,000 0.005 0.892 =0.132 -0.132

1,117 0.037 0.000 0,005 =0.272 0.046 -0,015

1.117 0.000 0.005 <-0.272 -0.015 0.046

1114  0.000 0.000 0.000 0,000

2.000 0,000 0,000 0.000

1.172 0.109 0.109

- E = =143.89 a.u. 1.982 -0.01k

N = 0.876 1.982
Ng = 6.224

;O
0.000
0.000
0.000
0.000
0.000
0.993
0.000
0.000
0.000
0.000
0.885

EO
-0.002
=0,002
=0.005
0.003
0,003
0.000
0.000
0.005
-0.001
=0.001
00.000
2.000



- IST -

FORMALDEHYDE - EXACT INTEGRALS OVER AN

TABLE 11

ORTHONORMAL HYBRID BASIS

AND CNDO APPROXIMATION. SCF MO.

R, b, EC B, b, ;c EC Eo Elo Izo ?0 EO
0.822 0.k64 0.237 0.819 0.053 0.000 0.018 -0.099 O0.0T+ 0.085 0.000 0.000
'0.822 0.237 0.053 0.819 0.000 0,018 -0.099 0.085 0.074 0.000 0.000
0.99% 0.069 0.069 0,000 -0,004 0,860 =0.,265 -0.265 0.000 0.002
1,137 =0.505 0.000 =0,025 =0,215 =0,004% =0,009 0,000 =0.001
1.137 0.000 =0.025 =0.215 =0,009 =-0.00k 0.000 =0.001
1.298 0,000 0.000 0,000 0.000 0.955 0,000
2,000 =0,002 =0,002 -0.002 0.000 0,000

E = -143,05 a.u.
Ny = 0.822
Ng = 6.565
No = T.792

1.232 0.221 0.221 0.000 =0.002
1.929 <0.071 0.000 0,000

1.929 0.000 0.000

0.702 0.000

2,000



TABLE 12.

FORMALDEHYDE - ORBITAL ENERGIES OF SCF MO CALCULATIONS

Complet? NDDO ] ' CNDO )

Calculation Calculation Calculation
¢ -20.588 -20.365 -20.377
¢, -11.338 | -11.07h -10,863
¢3 -1,360 -1.177 -1,043
b, -0.830 -0,859 -0.571
¢5 ~0.6Th -0.388 -0.547
¢ -0.563 -0,231 -0,058
¢, -0.468 -0,311 -0,089
¢g ~0.384 -0.k97 =04375
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TABLE 13

FORMALDEHYDE - COULOMB INTEGRALS OVER HYBRID BASIS
ONE-CENTRE INTEGRALS

Integral | Non-Orthogonal | Orthogonal | % Diff,
h;h h,h,y 0.750 0.8L45 12,66
99909 0.727 0.718 ~1.04
b)b,00, 0.530 0.613 16.36
b,bib)b, 0.727 0.778 8,47
b,b,b,b, 0.530 0.625 18.69
ToMeOcoe 0.575 0.605 5.70
“c"cblbl 0.575 0.620 8.41
LRLILIOLES 0.636 0.6k4 1.26
kckeoeoe 0.807 0.883 9.22
kckcbib) 0.807 0.918 13.60
kekemeTe 0.807 0.815 0.94
kekekcke 3.5625 3.5625 0.00
0490905 1.017 1,114 11,12
21210090 Ou7h2 0.801 8.6k
2121212 1.017 1.012 =0.49
L2%228181 O.Tk2 0.736 -0.81
TomoR141 0.805 0.811 0.75
ToToToTo 0.890 0.90k4 1.48
kokop0g 1.130 1.288 13.85
Kokol12) 1.130 1.1k0 0.77
kokoToTo 1,130 1.1L3 1.17
kokokoko k.,8125 b.8125 0.00
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TABLE 13 (CONTD.)

FORMALDEHYDE - COULOMB INTEGRALS OVER HYBRID BASIS
TWO-CENTRE INTEGRALS

Integral | Non-Orthogonal | Orthogonal | % Diff.
h,h,h by 0.286 0.253 ~11.84
Ocdchlhl 00376 00371 "1.33
blblhlhl 0.599 0.507 «15.29
UOOOhlhl 00310 00279 -10.0’4
00909¢oC 0.718 0.589 -17.T1
oogoblbl O.h23 0.428 1,40
. 0QoQTeTC 0.475 0.hk43 =6.76
OOOchkc 00575 00530 "7 0615
2,%,hh, 0.262 0.2k49 =527
2,2 h,h, 0.236 0.225 -4,63
lllldccc 00’496 0.’431 -13001
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TABLE 13 (CONTD. )

FORMALDEHYDE -~ COULOMB INTEGRALS OVER HYBRID BASIS
TWO=-CENTRE INTEGRALS

Integral | NohaOrthogonal | Orthogonal | % Diff,
2,2/b b, ofszh 0.339 ~h.9k
2,2b,b, 0,304 0.324 6.88
LA 0.345 0.343 ~0.35
2,2 kcke 0.37h 0.361 2.12
momoh by 0.262 0.246 -6.08
TOTQOCOC 0.545 0.467 -1L4,.58
TomOb by 0.336 0.353 k.92
ToTaTeTg 0.380 0.373 -2,11
Tomokcke 0.k11 0.409 -0.46
Kokoh b 0.268 0.252 -6.01
kokoococ 0.61k4 0.511 -17.05
kokob,b, 0.348 0.370 6.10
kKokqToTg 0.389 0.385 -1.19
kokokcke 0.435 0.435 0.00
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TABLE 1k

FORMALDEHYDE - INTEGRALS AS DESCRIBED IN TEXT, SCF MO.

h, h,  oc 5)

0.736 0.118 0.292 0.893
0.736 0.292 =0,020

' 0.757 =0.020

1.328

E =-1Lh .24 a,u.

NH = 00736
No = 6.207
No = 8.221

82

-00020
0.893

-0,020

1.328

0.000
0.000
0.000
0.000
0.000
0.800

=0.007
=0.007
0.010
0.00k
0.00k
0.000
2.000

%0
0.147
“Q.1h7
0.844

~0,282

-0.282
0.000
-0.00k4
1.19%

20
-0.096
0,048
-0,164
0.099
0.003
0.000
0.001
0,154
1.963

Ezo
0.048
-0.096
~-0,164
0.003
0.099
0.000
0.001
0.154
-0,022
1.963

7'0
0.000
0.000
0.000
0.000
0.000
0.979
0.000
0.000
0.000
0.000
1.201

EO
-0.002
=-0,002
=0.001

0.002
0.002
0.000
0.000
0,002
-0.001
-0.001
0.000
2.000
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TABLE 15

FORMALDEHYDE — INTEGRALS AS DESCRIBED IN TEXT. SCGF.

i, h, EC 12 b, ;c EC 30 Elo IZO
0.805 0.000 0.000 0.950 0.000 0.000 0.000 0.000 0.000 0.000
0.805 0.000 0.000 0.950 0.000 0.000 0.000 0.000 0.000

0.660 0,000 0,000 0.000 0.000 0,933 0.000 0.000

1.195 0.000 0.000 0,000 0,000 0.000 0.000

1.195 0.000 0.000 0.000 0,000 0.000

1.039 0.000 0.000 0.000 0.000

E = -144.06 a.u. 2.000 0.000 0.000 0.000
Ny = 0.805 1,340 0.000 0.000
Ne = 6.089 2.000 0.000
No = 8,301 2.000

A1

0

0.000
0.000
0.000
0.000
Q:OOO
0.700
0.000
0.000
0.000
0.000
0.961

0
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.000
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TABLE 16

FORMALDEHYDE - USING POPLE AND SEGAL'S APPROXIMATION CNDO/l. SCF MO.

B, B, &g
1.057 =0.128 0.578

1.057 0.578
1.064

Ng = 1.057
No = 6.00’4

xc

0.402
0.402
0.056
0.932

0.770
=0.T70
0.000
0.000
0.898

0.000
0.000
0.000
0.000
0.000
0.988

0.013
0.013
0.273
-0.460
0.000
0.000
1.735

-0.0LY
-0,0kk
0.500
-0.676
0.000
0.000
~0.416
1.340

-0.18%4
0.184
0.000
0.000
0.302

70.000
0.000
0.000
1.917

20
0.000
0,000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
1.012
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TABLE 17

FORMALDEEYDE - USING POPLE AND SEGAL'S APPROXIMATION CNDO/2. SCF MO.

E1 E2 EC
1.011 =-0.114 0.580
1,011 0.580
1,071
Ng = 1.011
Nog = 3.791
Ng = 6.186

0.395
0.395
0.084
0.931

0.680
-0.680
0.000
0.000
0.9Lk4

0.000
0.000
0.000
0.000
0.000
0.845

0.012
0.012
0.278

-0.468

0.000
0.000
1.732

-0.037
-0,037
0.487
~0.676
0.000
0.000
-0.409
1.369

-0.17h
0.174
0.000
0.000
0.271
0.000
0.000
0.000
1.930

290

'0.000

0.000
0.000
0.000
0.000
0.988
0.000
0.000
0.000
1.155
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TABLE 18

HYDROGEN CYANIDE - INTEGRALS AS DESCRIBED IN TEXT. SCF MO.

h, Ec B, m ., kq SN EN Ty T,
0.685 0.424 0,805 0.000 0.000 =0,006 0.264 =0.055 0.000 0.000
0.794% =0.010 0.000 0.000 0.014 0,790 =0.391 0.000 0.000
1.,k49 0,000 0,000 0,001 =0,366 0,129 0,000 0,000
0.948 0.000 0,000 0,000 0,000 1.000 0.000
0.948 0.000 0.000 0.000 0.000 1,000
2.000 -0.008 0,004 0.000 0.000
E = ~116,16 a.u. 1.231 0.3k 0.000 0.000
Ng = 0.685 1.841 0.000 0.000
Ng = 6.139 1.052 0.000
Ny = T.176 1.052

«0.003
=0.002
0.002
0.000
00.000
0.000
0.003
-0.001
0.000
0.000
2,000
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TABLE 19

HYDROGEN CYANIDE - INTEGRALS AS DESCRIBED IN TEXT. SCGF.

h, EC b, EN T, EC GN iN Ty , EN
0.682 0.000 0.931 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000
0.671 0.000 0.000 0,000 0.000 0.941 0.000 0.000 0.000 0.000
1.318 0.000 0.000 0,000 0.000 0,000 0.000 0,000 0.000
1.051 0.000 0.000 0,000 0.000 0.850 0.000 0.000
1.051 0.000 0.000 0.000 0.000 0.850 0.000

2,000 0,000 0,000 0.000 0,000 0.000

E = -115.825 a.u. 1.329 0.000 0.000 0.000 0.000
Ng = 0.682 2,000 0.000 0.000 0.000
Re = 6,091 : 0.949 0,000 0,000
Ny = 7.227 0.949 0.000

2.000



TABLE 20

HYDROGEN CYANIDE - USING POPLE AND SEGAL'S APPROXIMATIONS

CNDO/1. SCF MO,

h sg Xg Ye zg sy xy YN

© 0.926 0.698 =0,701 0.000 0.000 0.023 0,122 0.000 O,
1,121 -0.,0k1 0,000 0,000 0,361 =0,605 0.000 O,
0.962 0.000 0.000 0.468 =0,535 0,000 O,

1.008 0,000 0,000 0,000 1,000 O,

0.

1.008 0.000 0.000 0,000 1.

Ny = 0.926 | 1.655 0.469 0.000 oO.

NC = h0099 13336 0.000 o.

Ny = 4.975 0.992 0.
TABLE 21

HYDROGEN CYANIDE ~ USING POPLE AND SEGAL'S APPROXIMATIONS

CNDO/2. SCF MO.

h s¢ Xg ¥c Zg Sy Xy YN

0.982 0.698 -0.704 0.000 0,000 0,033 0,121 0,000 O.
1.082 -0.,023 0,000 0.000 0,369 -0.607 0.000 O.

0.928 0.000 0.000 0.475 -0,522 0,000 O.

0.951 0.000 0,000 0.000 0,999 O.

, 0.951 0.000 0,000 0.000 O.

Ng = 0.982 1.649  0.464 0.000 0.
Ng = 3.912 1.358 0.000 O,
Ny = 5.105 1.049 O,
1,

- 162 -

000
000
000
000
000
000
000
000
992

000
000
000
000
999
000
000
000
Okg
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TABLE 22

ETHYLENE - ONE~ELECTRON HAMILTONIAN, ORTHOGONAL HYBRID BASIS

) B, b,
~4,691 =0.004 0.021

-4,691 =0,01
4,691

R, 9, B, b,
~0,01 <0.256 -0.278 =0.190
0,021 =0,256 =0,190 -0.278
-0.004 0,016 -0.009 =0,013
-4,691 0,016 -0,013 -0,009
-T.897 -0.112 -0,112
-T.326 0.196
-7.326

0.000 -0.018 =0.016 =0.009 =0.013
~0,016 =0,013 =0,009
=0.,256 =0.278 =0.190
=0,256 =0.190 -0.278

0.000 -0,018

0.000 0,001

0.000 0,001

0.000 0.107

0.000 0.181

0.000 0.181

-T.036 0.000
-21.800

-0.k4ok

0.000
0.005
=7.987

0,000 0.000
-0,010 -0,010
-0,112 =0,112
~T.326 0.196

-T.326

0.000
0.000
0.000
0.000
0.000
0.000
0.000
-0,0U6
0.000
0.000
0.000
0.000
-T.036

-0.001
-0.001
-0.018
-~0.018
-0.005
~0.010
-0.010
0.000
0.000
0.107
0.181
0.181
0.000

-21.800



TABLE 23

NON=~COULOMBIC INTEGRALS FOR WATER MOLECULE

Integral

Non-Orthogonal
Hybrid Basis

Orthogonal
Hybrid Basis

(hhyfhyhy)
(hohy|hoh))
(byhy[hyhy)
(b, [hshy)
(byhy [bhy)
(byhy|byhy)
(byhyfhghy)
(byhy|hghy)
(bhy fhphy)
(byhy [byhy)
CRUPSLPLPY
(byb) [hohy)
(byby [byhy)
(byb [byhy)
(bohy [byRy)
(byhy [byhy)
(bohy [byby)
(bohy|byhy)
(boh, [byby)
(bb) [nghy)
(byby [byhy)
(bby [byhy)
(boby[byhy)
(byby [byhy)
(24hy [hyhy)
(g)h) [hohy)

o 1757
+0685
«3615
+1118
+2116
«2507
.1069
.0374
.0699
.0822
.0359
$2124
4582
.1501
+0490
.0212
+1079
1442
.3283
+0150
0272
+0285
.3283
»1079
+0337
.0298

-.0119
+0029
«0246
+ 0004
+0063
«0143
.0167
+ 0007

-,0081
0017
+0050

~.0045
.0228
+0334

-,0010
+0002
.0181
+0017
+0002
+0020
+0077

-.0003
.0002
,0181

-,0205
+0003
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TABLE 23 (CONTD.)

NON=COULOMBIC INTEGRALS FOR WATER MOLECULE

Integral

Non=Orthogonal
Hybrid Basis

Orthogonal
Hybrid Basis

(2qh) |hhy)
(21hy [byhy)
(g0 [byhy)
(230 [byby)
(g,hy [b5hy)
(2;hy [bohy)
SILINLPLIY
(240 |boby)
(21h) |21hy)
(203 ]2.h0y)
(210 |Bohy)
(210 |byhy)
S LILPY
(21b, |bohy)
(21by [bohy)
(210, f2,b))
(2P, ]218))
(2y2 [hoh,)
(2921 byhy)
(2,21 [byhy)
(2121210
(2,2 [hoh))
(2524 byBy)
(222 [byhy)
(252 ]2,B))
(252,|2B))

+0669
+0586
«0149
«1291
.0089
.0451
-,0121
01142
»0391
.0399
+0016
.0326
«0158
-.0121
-.0218
+0241
+0072
.1829
+3204
+0893
«1723
=,0115
.0261
-.0210
+0086
«1069

+0050
-,0012
=,0007
+0075
,0011
-.0004
-.0071
.0187
«0045
.0108
=.0004
«0069
+0069
-.0061
=,0055
-.0022
+0049
-.0026
=-.0022
.0228
.0310
=.0007
-.0076
~-.,0001
.0062
.0165
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APPENDIX

OUTLINE OF PROGRAM SYSTEM

During the course of the work described in this thesis a
considerable body of program§ was developed. The scheme of
these programs is described below. Details of the function of the
programs and of the data required are given and the ovér#ll scheme
is illustrated in flow diagram form.
The series consists of
(1) Programs to calculate the one-eléctron Kamiltonian
and the tvc—eléctron repulsion integrals over a
standard orbital basis (p.56). (Note that & program
wvas developed for the coulomb type two-electron
integrals and other two-electron integrals were
approximated in various ways described in Chapter 5).
(2) A program to calculate the transformation matrix
from the standard orbital to an orthogonalised
hybrid basis.
(3) A pfogram to transform the one-electron and,tw§~

electron integrals over the standard orbital basis to



1ntegrals over the orthogonallsea hybrld vasis.
(4) SCF programs to obtaln the self-consistent wave

function using the integrals over the orthogonalised

hybrid basis.

The Jaccbi diagonalisafion routine~and the SCFMO progr&ms‘l
used were already available. The SCéF program'anduthe three- °
centre ngmerical‘integration programs were developed by colleagues
vith some help from the author. The other programs’described. |
the one-electron Hamiltonian, thé overlap integrﬁls,“the two-}
electron coulomb integrais, the transférmation to a standard
orbital and hybrid basis, the transfcrmatioﬁ matri%_frém #»
standard orbital to an orthogonaliaed hybrid vasis, and the
transformation programs, were devaloped by the authof during the
course of the work described in this thesis. |

(1) The calculation of the one-elactron Hamlltonian intagraxa
over & standard orbltal basis

Input Coord;nates, orbltal exponents and nuclear charga fcr each
centre and the three-centre nuclear attractlon 1ntegrals ‘ 

for the system.

The one- and two-centre parts of the Hamiltonian are'caiedm::

lated over a sip Slater orbital basis and the three-centre



integrals are calculatéd sepérately, by numerical‘inpegrétion,k
and added in‘to the oné- and two-centrevparts. The integrals‘are
then transformed to a standard orbital basis or alternatively to
a hybrid basis (the hybridisation is specified by dat&).

(2) The calculatlon of the coulomb type _two-electron integrals over
a standard orbital basis

Input Coordinates, orbital exponents and nuclear charge for each

centre.

Again the,integrals,afe calculated over & sigma-pi basis
and then transforﬁed,to & standard 6fbital 5asis orfélhernativeiy
to a_hybrid basis (#he hybridigation is‘speqified by d&ta){ “Tha
two-electron transformation requiréd is built into the program. |

(3) The calculation of the transformation m&trix,,WUSw"%, between
the standard orbital and the orthogonlaised hybrid basis

§ is the matrix of overlap intggr@ls for the Schmidt
orthogcnaiised hybrid basis, ¥ hﬁe‘ﬁraﬁséérmation matrix to a
Schmidt orthogon&lised basis, and U to a hybrid basis. Th§~pi9&?am
consists of the following steps: | |
(a) The overlasp matrix S over the standard orbital basis is

calculated. Input Coordinates, orbital exponents and

iii -



nuclear charges for each centre.

(v) Calculation of W Input Overlap matrix .

(c) Calculation of U Input Data specifying hybrids.

(d) Transformation of overlap integrals to a Schmidt orthogonalised
hybrid basis 5. Input S, W and U.

(e) Formation of § -3 by using Jacobi diagonalisation, the diagonal-

C . . < =8 -
isation process being terminated when ‘gpq,max =10 ". Input §

(f) Formation of W.S“%- Input W, U and :é:-i

(4) The transformation of the one-electron and two-electron integrals
to an orthogonalised hybrid basis

Input One-electron Hamiltonian and two-electron repulsion integrals
over a standard orbital basis. Transformation matrix Eggfi'
All one-electron integrals over the transformed basis are

obtained. For the two-electron integrals, there is a choice of

obtaining all integrals over the transformed basis, or of obtaining

only those which are non-zero in the CNDO or the NDDO approximations.

(5) Self-Consistent Field Programs

Input The one-electron Hamiltonian and the two-electron repulsion

integrals over an orthogonalised basis. An initial matrix

-1V -



R of atom éharges and bond orders.

This form of input is required for both the molecular
orbital and group function methods. In the’case of the group
function program, orbitals belonging to each group must also be
specified; in addition,'sincg not all the available integrals are
required in this approach, a sorting program is first entered to
select those needed for the calculation. With these preliminaries
completed, the main group function progrem, described on p.68, is
then entered.

The self-consistency procedure is terminated when izj bmij
»
in a cycle :.,10-h and the self-consistent atom charges, bond

orders, orbital and total energies are then given.



1 FLOW DIACRAM ILIUSTRATION CALCULATICH OF THTEGRALS OVER A STANDARD ORBITAL BASIE

{ Data: coordinates, orbital exponents and nuclear charge for each centre

Calculation of
three-centre

integrals over
sigma-pi basis

Y

)

Calculation of one-
and two-centre parts
of the one-electiron
Familtonian over
sigma-pi basis

Calculation of two-
electron coulomb
integrals over sigma-
Pi basis

v

Y

Addition of three-
centre integrals to
one- and two-centre

parts

Transforration to a
standard orbital basis
or alternatively to a
hybrid basis (data
required to specify
hybridisation).

Transformation to a
standard orbital |
basis or alterna-
tively to a hybrid
basis (data required
to specify hybridi-
sation).




" II FLOW DIAGRAM FOR CALCULATION OF TRANSFORMATION MATRIX

‘ 1
(wu'é“é) FROM STANDARD ORBITAL TO ORTHOGONALISED HYBRID BASIS

Data: coordinates, orbital exponents and nuclear
charge for each centre

A 4

Calculation of matrix of overlap integrals over
sigma-pi basis, followed by transformation to
standard orbital basis

Y

Calculation of transformation matrix from standard
orbital basis to Schmidt orthogonalised basis W
(overlap integrals required as data) -

o

Calculation of transformation matrix from Schmidt
orthogonalised basis to hybrid basis U (data
required to spcify hybridisation).

Y

Transformation of matrix of overlap integrals over
standard orbital basis §, to Schmidt orthogonalised
bybrid basis S.

4

Formation of Efa (using Jacobi diagonalisation)

¥

=3

Formation of WUS




I1I FLOW DIAGRAM ILLUSTRATING OVERALL SCHEME OF THE PROGRAMS

One~-electron: Two-electron Transformatjon

Hamiltonian integrals | matrix WUS

] =

S

Transformation Program

,////’////‘L

One-electron

/

Hemiltonian
over ortho-

Two~electron integrals over
orthogonalised hybrid basis

gonalised
hybrid basis

X

All integrals NDDO integrals CNDO integrals

—

SCF programs, also
require an initial
R matrix

Self-consistent R
matrix (charges and
bond orders) orbital
and total energies
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