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ABSTRACT 

The ab initio calculation of wave functions for small poly­

atomic molecules is now feasible but is time-constuning, expensive 

and Hmi ted in accuracy. The most frequently used approach is 

that of molecular orbital (MO) theory, using the self-consistent 

field (SCF) method with a linear combination of atomic orbitals 

(LCAO) approximation to the HO's. On the other hand, semi­

empirical methods have been widely used and have yielded extremely 

interesting results in spite of the fact that they have often been 

based on flimsy theoretical foundations. The first and best known 

calculations of this type were of course initiated by Huckel and 

refer to the n-electrons of conjugated molecules. Later semi­

empirical SCF LeAO HO calculations, in which electron interaction 

effects are more properly taken into account, were done on n­

electron systems. Then the lIuckel ty~ LCAO MO method, and later 

the approximate SCF HO scheme, were applied to more general 

systems • 

In this work a new semi-empirical SCF scheme is presented 

in which an attempt is made to produce a method as close to ab 

initio procedures as possible. A particular basis of orthogon~ 

lised orbitals is chosen to render valid, with a reasonable degree 



of accuracy, the integral approximations made. The use of a 

particular set of integral approximations allows the simulation 

of the results of non-empirical calculations. The semi-empirical 

calculations described in this work are less empirical than any 

previously performed on more general systems; this allows the 

scheme to be built on a sounder basis than other semi-empirical 

schemes which indude all electrons. Results are presented to 

show that with a relatively simple method of estimating the 

larger two-electron integrals, over an orthogonal basis, reasonable 

results can be obtained for small polyatomic molecules. As well as 

gi ving good res ults the method is used as a basis for examining the 

foundations of more empirical calculations. 

Two approaches are used to obtain wave functions, the SCF MO 

LCAO and the self-consistent group function (SCGF) method. It is 

found that SCGF method has several advantages OYer the ordinary 

SCF HO LCAO method in the performance of semi-empirical 

calculations. 

• 



CHAPTER ONE 

INTRODUCTION 

The Theory of Self-Consistent Molecular Orbital and Group 
Function Methods 

The general aim of this work was to perform semi-empirical 

calculations on molecules, including all electrons. 

This chapter describes the two methods, SCFMO and SCGF, which 

have been used in this work to obtain approximate solutions to the 

Schrodinger equation 

... 
where H is the Hamiltonian operator for the electronic part of the 

system* 

... r h( i) + ~ t H • l/r •• 
i i ,j 1J 

h(i) :: _~~2(i) + veil 

V(i) :: - t Z fr. n 1n n 

i denotes an electronic coordinate and n a nuclear coordinate 

.. * For typographical convenience a letter with a roof, e.g. H, 

denotes an operator. 
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(atomic units are used e=l. m=l. h/2'1T=1). 

The MO method is an extension of the Bohr theory of electronic 

configurations from atoms to molecules. Each electron is assigned 

to a one-electron wave function or MO. An approximate N-electron 

wave function is then built up as an antisymmetrised product (AP) 

of MO's. 

t may also be represented as 

$1(1) +!(l) •••• $N(l) 

$1(2) $2(2) •••• $N(2) 

•••••••••••••••••••••• 

•••••••••••••••••••••• 

in which the sum P is over all permutations of the N: distinct 

electrons amongst themselves and {-l)P is +1 if the permutation 

involves an even number of pair interchanges. -1 if it involves an 

odd number. The MO's are products of a function depending on the 

space coordinates of the electron only and a function depending on 
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the spin coordinates onlyt 

l/I,,{i) .. ~ (x.;y.;z.) n,,{i) 
... K 1. 1. 1. ... 

where 

( . ) a( i) 
nK 1 .. { B(i) 

The spatial functions and the spin functions are assumed orthonormal 

J ~.*(l)~.(l) dx1 • 0 .. 
1 J lJ 

J l1i (B 1 ) nj (B 1) ds 1 .. 0ij 

If the original space orbitals are not mutually orthogonal 

(4) 

then they can alwayB be transformed to an orthogonal basis. The form 

of the wave function (3) requires that all the lwlO's must be linearly 

independent, since otherwise the determinant vanishes. So only two 

MO's can contain th~ same Bpatial function and they must then have 

different Bpin~; such a pair of MO's are said to form a closed 

electron shell. A closed shell structure then refers to an AP com-

pletely composed of cloBed shells. Most moleculeB in the ground 

state have a closed shell structure in the MO approximation. 

t The term MO is here used to denote the spin-orbital product -

not just the spatial factor. 
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In the group function method, various lone pairs and bond 

pairs are recognised from the start and the wave functions is written 

as an antisymmetrised product of localised two-electron functions. 

More generally one considers also many-electron groups of 

electrons (such as a ~-electron system). 

The closed shell molecular wave function is written 

~R is called a group function for the NR electrons of group R. It 

is assumed that the group functions are individually antisymmetric 

in the variables to which they refer. A completely antisymmetrical 

function results when the summation in (5) excludes the sub-group 

of permutations which leave every electron in its original group. 

If there are v permutations in the remaining distinct cosets, the 

normalising factor M is (vl)-~, provided the group functions are 

normalised and orthogonal in the sense 

I ~R·(l,i,j'···)~s(l.k.l, ••• ) dl 1 • 0 

The wave function for group R, ~R' is written as a linear 

combination 9f NR-electron basis functions for the electrons of 

group R, 4>R 
\.I 
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m 

~R = L 
~=l 

(6) 

R where the ~~ are constructed from orbitals r 1.r2 •••• of group R 

(e.g. a Slater determinant or suitably' coupled set of determinants). 

r. are basis orbitals of group R (e.g. suitably orthogonalised AO's 
l. 

or hybrids). 

Variation Theorem 

For a normalised trial wave function 'l' we can calculate 

... 
'i'* H 'l' dT 

which is the expectation value of the energy of the system in state 

'l'. By the variation theorem this expectation value cannot be less 

than the exact energy of the system in its lowest energy state 

> 
E • E~ (7) 

Proof Expanding the trial function 'l' in terms of the complete set 

of orthonormal eigenfunctions of H. and assuming that IjI is normalised 

then 

and m 
E· L 

i ,j 
c.* c. H •• 

l. J l.J 
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where 

H •• 
1J = J 1/Ii*(1) 

A 

H 1/Ij(1) dTl 

Now since 
A 

H 1/1. III E. 1/1. 
J J J 

H •• • E. J I/Ii *( lhj (1) dTI III E. IS •• 
1J J J 1J 

So 
m 

E III L c.* c. E. 
j J J J 

(8 ) 

But as ,~ is normalised, substitution in I ~*~ dT • 1, multiplication 

by El end subtraction from (8) gives 

But every term on the right is positive since El is the lowest 

energr 'value end (7) therefore follows. 

In the variation method ~ contains parameters which can be 

varied until E has its. lowest value for the particular type of 

function chosen. This is en extremely useful method since we know 

that variation of parameters in the wave function cannot give a lower 

energy then the exact energy, so that it is reasonable to assume that 

lowering the energy produces a better wave function which is a more 

adequate description of the system. There are no analogous theorems 
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for such properties as dipole moment or charge distribution so that 

it would be very difficult to use these properties to decide upon a 

good wave function. 

The SCF MO method for closed shell systems 

The SCF MO method for closed shell systems has been developed 

by Roothaan(l). Hall(2) and Mcweeny(3). 

The total energy for the closed shell system is 

E • f t* H t dT 

where H is given by equation (2) and t by equation (3). 

E • f t* L. h(i) ~ dT + J t* (1/2 Lt l/r •• ) t dT 
1 i.j 1J 

• I + G 

Now 

Since each permutation P simply affects the labelling of the 

variables of integration we have Nl identical terms 
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Now since L h(i) is a sum of one-electron operators, any non-trivial 
i 

permutation Q produces two non-coincidences of spin orbitals, one of 

which must integrate to zero by equation (4), so 

since all the factors mUltiplying these terms integrate to unity 

by equation (4). 

For the electron repulsion terms the reduction is the same 

except that since l/rij is a two-electron operator the only permu­

tations Q which result in non-zero terms are the identity and 

single interchanges. 

G • I 

• ~ r i,j 

.~ L (j .. -k .. ) 
•• lJ l.J 
l. .J 

So 

E • I h. + ~ L (j .. - k .• ) 
• l. " l.J l.J 
1. 1,J 
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For the closed shell case the MO's occur in pairs with the 

same space functions and different spin functions. We can reduce 

equation (9) further by integrating over spin coordinates. We 

define the following integrals over space coordinates only: 

J .. 
l.J 

~.*(1)~.*(2) -1- ~.(1) •. (2) 
1 J. r 12 l. J 

K •• 
l.J 

'.*(1)~.*(2) -1- '.(2)~.(1) 
1 J r 12 l. J 

When the spin integration is performed hi is alw~s equal to Hi' 

j .. is alw~s equal to J •• and k .• is equal to K .. if ~. and ~. have 
l.J l.J l.J l.J l. J 

the same spin factor, and zero otherwise. So contributions to H., 
l. 

J •. and K .. arise from the following combinatiops of spin factors: 
l.J lJ 

~.* 
l. ,.* 

J 
,. 

1. 
~. 
J 

h. a a 
l. e B 

j .. a a a a 
l.J e e B S 

a a a e 
s a 6 a 

k •• a a a a 
l.J S 6 ·6 a 
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So the energy expression (9) reduces to 

E = 2 l H. + l (2J •• - K .• ) 
1 " lJ lJ i 1.J 

(10) 

To obtain the AP for which the energy is a minimum we have 

to minimise (10) by varying the MO's with the constraint that the 

MO's form an orthonormal set. 

If we use the approximation that our MO's are linear combin­

ations of atomic orbitals (LeAO) 

~ ... L X T. 
1. P P plo 

Where the ~'s are normalised atomic orbitals (AO's) 

f Xp*(l}Xp(l) dTl - 1 

(11) 

then we have to find thecoetficients T . for which the energy ot the pl 

AP is a minimum. Writing equation ell) in matrix notationT 

where 

t For typographical convenience an underscored letter denotes a 

matrix 
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and 1: is an mxn matrix, each co1unm containing the AO coefficients 

of a given MO. 

We then de fine 

E,-2R 

where P is the charge and bond order matrix(4). The orthonormality 

requirements may then be written 

for then 

is satisfied when 

and it can be shown that (12) is both necessary and sufficient for 

the existence of a T with this property. 

Introducing expression (11) into the expression for the 

energy (10) we get 

E = 2 r r T .* T . f X *(1) hell X (1) dTI 
p, q i plo q1 P q 

+ r .r. Tpi* Tqj*TriTsj(2(prlqs)-(pslqr») 
p,q,r.s l..J 

where 
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Now since by definition 

then 

n 
Rn",· r T .T . * 

'\Lt" i-l ql. plo 
(n occupied orbitals) 

E = 2 L R H + r R R (2(pr!qs)-(ps!qr») 
P.q qp pq p.q.r.s rp sq 

where 

Now if we define 

(J(R»)rs" r Rtu(rslut) 
t.u 

(K(B») • r Rt (rtlus) 
rs t u .u 

then we have 

E = L R H + r R {2(J(R») - (K(R») } 
P.q qp pq p.r rp pr pr 

or 

E = 2 tr R H + tr R G -- --
where 
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G = 2 J(R) - K(R) - -- --
Now we must minimise the energy expression (13) by the 

variation of the matrix! subject to the idempotency condition 

(12). Assume that we have an initial R matrix satisfying equation -
(12) and consider a variation 

R .. R + oR - -
then to first order 

Now 

since 

E(l) a 2 tr oR H + tr oR G + tr R oG ---- --- --

tr oR G • tr R oG -- --

R 6G sr rs 

= r r Rrs ORtu(2( rs lut) - (rtlus») 
r,B t,u 

a r oR r Rsr(2(utlrs) - (trlus») 
t tu .u s,r 

= tr G ISR --
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So 

where 

Now since 

where 

E(l) = 2 tr o! (l!. + Q) 

= 2 tr O!!l 

hF a H + G - - -

T = (£A I t I .... It) 

•••• 

it follows that 

tr 11!:,.F • 2 L tr ~ ~t !:,.F 
x 

= 2 1 tr £xt h,F £X 
x 

=: E :\.,.. say. oru 

(14) 

Here the quantity £ is the expectation value for an electron in 
x 

orbi tal x of the Hartree-Fock Hamiltonian whose matrix is t. and 

is called an orbital energy. So to first order the change in 

energy is equal to the change in the total orbital energy, 

E b = 2 L EX: 
or x 
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<sE(l) = <SE 
orb 

Now if we choose the orbitals as eigenvectors of hF we shall 

automatically minimise E ;\.. by the variation theorem. So the or", 

condition for minimum energy <SE(l) = 0 may be satisfied by solving 

hF C • E C - - -
a one-electron eigenvalue problem. 

However since hF depends on the elements of R and hence on - -
the solutions, an iterative procedure is necessary. An initial R 

satisfying equation (12) is chosen and hF calculated, the eigenvalue 

problem is then solved and the solutions used to set up a new R mat--
rix and so to recalculate '!;.F. When the.!!. formed from the solutions 

of the eigenvalue equation differs very little from that used in 

forming '!;.F then the solution is self-consistent and the procedure 

is terminated. 

The SCaF method for closed shell systems 

The SCaF method has been developed by Parks and Parr (5) and 

MCweeny(6). The derivation of the equations which determine the 

''best'' wave function (in the variational sense) will be outlined 

below • 
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Different groups are assumed to be "strong orthogonal" in 

the' sense (using the notation discussed earlier in this chapter) 

f ~R*(l.i.j •••• ) ~S(l.k.l •••• ) dTl • 0 (RIJIS) 

This is true provided 

Which may be ensured by building different group functions from 

mutually orthogonal sets of orbitals: 

I ri*(l)Sj(l) dTl • 0 (rfs) 

(16) 

The total energy using a wave function of the form given in 

equation (5) can be derived using a procedure similar to that 

employed in the derivation of the SCF MO equations. The total 

energy 

can be reduced using the orthogonali ty condition given in equation 

(16). 

where 
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A \ A 1 \ HO = L h(i) + ~ L' (l/r .. ) 
i(R) i,j(R) lJ 

where i(R). for example. refers to summation over variables (i) in 

group R. dT represents integration over all variables and the 

operator p( i ++j) interchanges i and j in the functions succeeding 

it. 

The aim is to obtain a good one-configuration approximation 

to the molecular ground state by optimising each GF t t E• The best 

approximation is that which minimises the energy of each group in 

an effective field provided by the other groups. An effective 

Hamiltonian for group R in the field of all other groups is given 

by 

AR \ AR. \ 
Heff{I.2 •••• N). L h ff(l) + ~ L' (l/r .. ) 

i(R) e i,j(R) lJ 
(17) 

where 

AR AR 
The coulomb and exchange operators J (i) and K (i) are given by 
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· where dT represents integration over all variables except i and the 

operator P(i~j) replaces i by j in the functions succeeding it. 

These operators can be reduced further(7), in terms of the one­

electron density matrix for group R, p~(i;j): 

RC· .) 
PI 1; J 1jI( j ) (an integral operator) 

r .• lJ 

It can be shown (7 ) that the condition for station~ry total 

energy is 

I "'R 
~R*·Heff ~R dT • stationary value, 

that is the energy of each group in the effective field provided by 

the other groups is a minimum. 

The wave function for the group R is written as a linear 

combination of basis functions for the electrons of group R as in 

equation (6). 
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The basis functions (cjl~) to be used will depend on the 

nature of the group but two cases of special importance serve to 

illustrate the ~neral procedure. For describing a non-localised 

~-electron system, it is convenient to emplo,y just one cjlR, a one­
\.I 

determinant function whose orbitals are linear combinations of the 

basis orbitals. 

In order to discuss bond properties in detail, it is 

necessary to have a more flexible function. For a bond function 

constructed from two orbitals we can ~orm three independent singlet 

functions 

,~. {1//:2)lr1a rlBI 

,~. (1/2) {lr1a r2el-lr1B r2al} 

,~ • (1//:2) \r2a r2el 

If all three are admitted the choice of basis orbitals will be 

arbitrary. If r 1 and r 2 are AC's at opposite ends of a bond the 

cjlR in (19) will represent "covalent" and "ionic" structures. 
\.l 

(19) 

Variational determination 01' the coefficients cR in equation 
\.I 

(6) is carried out by an iterative procedure. adjusting the groups 

one at a atime. To determine the best group function tR at a given 
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stage, all other group functions being specified at that stage, a 

linear variational problem with Hamiltonian H~ff must be solved. 

This leads of course to the secular equations for the coefficients 

\/-1,2, ••• m 

The wave function for the other groups enter this equation through 

the operators jS(i) and is(i) in equation (18). 

With group functions of the form described above it is easy 

to write down explicit expressions for the matrix elements of the 

effective Hamiltonian (HRf~) • e .I. }.IV 

The GF approach has immediate chemical appeal because it 

stresses the individuality of different bonds and other chemically 

recognisable groups. It can transcend the limitations of the 

Hartree-FoCk theory because some measure of correlation is admitted 

within each elect~onic group. 
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CHAPl'ER TWO 

REVIEW OF PREVIOUS WORK 

w-Electron Calculations 

A very large number of semi-empirical calculations have been 

performed on w-electron systems. These systems were treated first 

for historical reasons and because the calculations were compare.-

tively simple. The bonding in conjugated systems had interested 

chemists ever since Kekule. The properties of 'If-electron systems 

had been extensively investigated and the characteristic properties 

of these compounds, such as their stability, reactivity and spectra, 

were of great interest. The calculations were relatively simple as 

the w group of electrons were treated separately from other 

electrons. The 'If-electrons are treated separately from the a-

electrons, the effects of which may be allowed for (in principle) by 

the use of an effective Hamiltonian 

n,.. 

H,..(l,2, ••• n1l') • l Hcore(~) + ~ 
~ 

This assumption is consistent with the use of a wave function of the 

form 

'l' = A('l' 'l') 
(1 1f 
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where '¥ a is an antisymmetric function for the sigma part of the 

system and '¥ 1f is an antisymmetric function describing the pi part • 
... 

The product function is fully antisymmetrised by the operator A 

(see section on group functions in Chapter 1). 

A 1f-electron wave function '¥ 1f is then sought which minimises 

the 1f-electron energy 

E af,¥*H 11 11 11 '¥ dtl f '¥ * ~ dt 
'If 1f 11 

This minimisation problem has been dealt with using an MO form of 

'¥n in Chapter 1 where the problem was reduced to a set of one-

electron equations 

h,F £. :11 £ £. 

Tllese SCF equations for the 'If group alone are deduced using an 

orthonormal set of AO's. This is reasonable since it is usually 

assumed in semi-empirical methods that the 'If MO's are formed from 

a linear combination of2P'lf AO's and that the overlap integrals 

between AO's are zero. 

In Huckel theory equation (1) is not used, but the much 

simpler form 

- 23 -



"eff is employed, where H (~) incorporates the effect of the electron 

repulsion terms in some average way. As yhe terms which represent 

the interaction of electrons are not included explicitly in the 

lliickel method. an iterative procedure is no'longer necessary and 

the problem is reduced to a set of linear equations. Equation (3) 

can then be written 

Le. (He ff - £.) III 0 
q ql pq l. 

which has non-trivial solutions when the E. are the roots of the 
l. 

secular equation 

I "eff I H - E. .. 0 pq 1. 

where 

for the atomic orbitals Xp and Xq• 

The final assumption of Huckel theory concerns the values of 

"eff the integrals H pq 

"eff H .. a pp p 

where a depends only on the nature of the atom p concerned 
p 

Heff .. B pq pq 

where B i-s an empirical property of the bond pq and is zero if pq 
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p and q are not neighbours. 

The total energy is assumed to be equal to the total orbital 

energies, so that for the closed shell case 

E". • 2 ~ £. 
1 1 

The Huckel method has been very successfully applied to a 

very large number of conjugated systems. It has been very useful 

in correlating properties such as reacti vi ties. bond lengths and 

electron distribution, and has the advantage of being very simple 

to use. Perhaps its biggest practical drawback is the fact that it 

does not give a reasonable interpretation of spectra, singlet and 

triplet excited levels not being split. Huckel theory also has the 

disadvantage that the quantities involved, the Hamiltonian matrix 

elements, are not exactly defined, and no basis set is actually 

specified. As McWeeny{l) has pointed out, the Huckel parameters 

for alternant hydrocarbons are to be compared with the elements of 

the self-consistent Hartree-Fock Hamiltonian in which the C-C bond 

orders are given a common average value and the "formal" orders 

between more distant atoms are neglected. In this case however the 

total energy and excitation energies cannot be expressed as simple 

sums and differences of orbital energies, and different values for 
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the Huckel parameters are needed in discussing different properties. 

In systems containing hetero-atoms the nature of the parameters is 

even less clear. 

In the SCF LCAO MO theory. the Hamiltonian of equation (1) 

is not approximated. that is the electron repulsion is included 

explicitly and the SCF equations (3) are solved by the procedure 

outlined in Chapter 1. Approximations are however made in the cal-

culation of the integrals. The one-electron integrals are approxi-

mated in the following We::! 

f .. J rr 

f rs 

.. J X *1_~V2 + V + I V Ix dT 
r r s(;r) s r 

.. J X *1_~V2 + V + V + L V Ix dT 
r r s t(;r.s) t s 

• e rs 

where Yrs is the repulsion integral between 2pw type charge clouds 

on r and s 
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The framework field Vs due to the fr8Jl1ework ion s is approximated 

by that of a charge Zs (the number of n-electrons contributed by 

atom s) smeared out with 2Pw-like density, so that the interaction 

between a ~-electron and this field can be approximated by the 

electronic repulsion integral between two n-cha.rge clouds. Illr is 

roughly minus the ionisation potential from the orbital, of atom 
r 

r in the framework, so that wr is approximately a characteristic 

of the atom r in any conj ugated framework. Similarly Sra is 

expected to be characteristic of the bond r-s. 

Early calculations using theoretical values for y did not 
rs 

give very good results. Moffit (195l){2) and Pariser (1954){3) 

proposed that these integrals should beestimated from spectroscopic 

data. If we consider the following energy change 

• • ft _ •• + 
C+C+C +C 

where the dots are 1f-electrons, then the energy change in this 

theoretical reaction is the energy of the components on the right 

hand side minus the energy of those on the left. 
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energy on right hand side • -2 IC (valence state ionisation potential) 

+ YCC 

energy on left hand side • -2 IC 

Thus ignoring core energy changes the energy change is Yec' But the 

energy needed to perform this reaction is -IC (to ionise an electron) 

+ Ae (the electron affinity, for the electron to be received by the 

neutral carbon atom). So Yee should be equal to IC - AC' It was 

therefore proposed that the theoretical value should be adjusted by 

setting 

Yee =- IC - AC 

and reducing the other repulsion integrals to roughly maintain 

relati ve values. 

seF 71' theory has been very successful, particularly in 

explaining the electronic spectra of cyclic hydrocarbons. It has 

been less successful forheterocyclic compounds, mainly due to the 

difficulty of deciding on good one-electron parameters. It should 

be noticed that the explicit introduction of electron repulsion 

does make the calCUlations considerably more complicated than 

Hackel calculations. 
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Calculations including all electrons 

As in n-electron calculations the first sigma electron 

calculations were of the Huckel type with electron repulsion not 

treated explicitly. Calculations of this type have been performed 

by sandorr,y(4). YOShizumi(5). Fukui et al(6-l0). Hoffmann(11-14) and 

Pople and santry(15 .16) • 

Sandorfy in 1955 performed extended lIiickel calculations on 

saturated hydrocarbons and their derivatives using three different 

procedures: 

(1) inclusion of only the sP3 orbitals necessary to 

describe the carbon skeleton; 

(2) implicit inclusion of hydrogen atoms by also 

including sP3 hybrids directed towards the 

hydrogen atoms i 

(3) explicit inclusion of ls orbitals on the hydrogen 

atoms • 

Using method (l) Sandorfy found that the effect of an 

electron attracting substituent X was mainly to alter the charge 

in the carbon orbital contributing to the C-X bond. As the 

orbital charges alternate and there are two orbitals on each atom 

the small alterations of charge on other atoms are further damped. 
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Using method (2) he found that almost all the charge pulled 

on to an electron-attracting substituent X comes from the carbon 

orbital bonded to it and also from the orbitals directed towards 

hydrogen on that carbon. He found that the charge on the carbon 

atoms decreased in the order 1 a.ry, 2ary • 3a.ry. 

In method (3), H orbitals were introduced explicitly for the 

first time into a semi-empirical calculation. 

Sandorfy found it difficult to consider actual substituents 

realistically as new parameters are needed and it is necessary to 

find a wa:y of introducing lone pairs. This was probably the first 

time that any charges and bond orders had been derived for the 

a-bonded hydrocarbons and their deri vati ves. 

Also in 1956 Yoshizumi considered hydrocarbons and their 

derivatives by including only the carbon skeleton of sP3 orbitals 

(equi valent to method (1) of Sandorfy). Using the polarisabili ties 

of Coulson and Longuet-Higgins he concluded that effect of a small 

change in a is limited within the neighbouring bond which is in 

agreement with Sandorf'y's results. He therefore predicted that 

the value of the dipole moment for C2HSX was a limiting one. This 

tendency was observed for CR. but not for Br and I. He therefore 

concluded that in the latter cases the effect of heteroatoms could 
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not be expressed properly by a change in a only. so that this 

method would not be applicable without modification. 

Yoshizumi only treated linear compounds. In 1960 Fukui et 

al treated linear. branched chain and cyclic compounds by the same 

carbon skeleton method. As they treated non-linear compounds they 

had of course to introduce new parameters. They calculated the 

ionisation potentials of paraffins from the C-C orbitals. For the 

n-paraffins they obtained good agreement with experiment except in 

the case of ethane. For cycloparaffins the agreement was not so 

good, and the greater the deviation of the actual C-C-C angle from 

the normal one the worse the agreement. They concluded that this 

was because steric factors had been left out of consideration. 

They calculated the total electronic energies and obtained 

approximately the same total energy per CH2 group for ethane to 

n-heptane in accord with experimental data on the heats of forma­

tion of these compounds. They neglected nuclear repulsion in this 

calculation and concluded that discrepancies m~ have been due to 

this. This seems extremely unlikely, as the energy per CH2 group 

in the above molecules would certainly not be approximately the same 

if nuclear repulsion had been included. This point will be dis­

cussed in more detail later in the chapter when Hofflnann' s work is 

examined. 
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Fukui et al have also performed calculations including 

the hydrogen atoms explicitly and using sp 3 hybrids. They have 

done calculations on the o-structures of unsaturated compounds and 

have calculated a-electron densities and a dipole moments. From 

the energy gaps (between the highest occupied and lowest unoccupied 

orbitals) calculated, they concluded that in most of the molecules 

the gap was easily large enough to accommodate all the ~ MO's. In 

some exceptional cases, for instance chlorobenzene, however, they 

concluded that it is possible that the lowest vacant a MO may be 

below the lowest vacant 11' MO. This may have an important bearing 

on the nature of chemical reactions and on physical processes such 

as polarographic reduction. 

It should be noted that it is very dangerous to obtain 

molecular properties by the addition of separately calculated a 

and 11' molecular properties. Thus accurate SCF LCAO minimal basis 

calculations on formaldehyde (to be discussed later) predict that 

the 1I'-electron density is greater on the carbon atom than on the 

oxygen atom. This is of course contrary to what is usually assumed. 

Of course the effect of the a-electrons on the 1I'-electrons should 

be taken into account in a self-consistent procedure. 

One of the dangers of semi-empirical procedures is that we 

only get fram the calculations what we expect." This is illustrated 
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by the case of formaldehyde mentioned above. where the semi­

empirical one-electron parameters for carbon and oxygen are so 

chosen that the oxygen atom will have greater n-electron charge 

than the carbon atom. This weakness of course can only be overcome 

by approximate procedures which retain as much as possible of the 

exact procedures. 

Pople and Santry have also performed calculations inVOlving 

the explicit introduction of hydrogen atoms and using sP3 hybrids. 

For saturated hydrocarbons they derived SUfficient conditions for 

a transformation to completely localised orbitals for C-H and C-C 

bonds and they then used a perturbation approach to study the 

extent and causes of partial delocalis ation of the bonding electrons. 

They found that long range bond orders. a measure of electron de­

localisation. could be quite large and could extend over several 

bonds. They also applied the method to unsaturated hydrocarbons 

including both a and 'If electrons in contrast to Fukui et al. This 

perturbation technique does predict that the electronic charge on 

the hydrogen atom decreases in the series ethane, ethylene and 

acetylene in agreement with SCF LCAO MO minimal basis calculations 

and with experimental evidence. It will be seen below that this is 

not true in Hoffmann's extended HUckel calculations. Like Sandorf'y. 
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Yoshizumi and Fukui et al. Pople and Santry used the Longuet­

Higgins and Roberts(17) method of estimating off-diagonal 

Hamiltonian matrix elements 

H •• 1:1 K S •• 
1.J 1.J 

where Sij is the overlap integral between orbitals ~i and ~j. 

Hoffmann has performed calculations including hydrogen 

atoms explicitly and using s and p orbitals rather than sp 3 

hybrids. He treated a very large number of organic and inorganic 

compounds, both saturated and unsaturated, linear and cyclic, homo 

and hetero. He treated molecules as large as decalin and 

anthracene. 

As Hoffmann treated general polyatomic molecules (not only 

hydrocarbons) he needed specific values for the diagonal elements 

of the Hamiltonian matrix elements Hii • The H .• were chosen as 
1.1. 

valence state ionisation potentials. The off-diagonal matrix 

elements were calculated using the WOlfsberg-HelmhOltz(i8) 

approximation 

H •• 1:1 O.5K (H •• +H •• ) S •• 
lJ 1.l JJ lJ 

where s .. is the overlap integral between orbitals i and j. 1.J 

The method predicts the bond distance in methane very 

accurately when the nuclear repulsion term is excluded from the 
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total energy calculation. If the nuclear repulsion term is 

included then the minimum disappears completely. We have seen 

earlier in this chapter that good results have been obtained using 

the Huckel method and calculating the total energy simply as a sum 

of orbital or one-electron energies. Slater(19) has pointed out 

that the sum of the one-electron energies of the Hartree-Fock 

Hamiltonian is equal to the total energy minus the nuclear-nuclear 

repulsions. plus the electron-electron repulsions. The last two 

terms cancel roughly and so the sum of the one-electron energies 

is approximately equal to the true total energy. The predicted 

bond distances in acetylene, ethylene and ethane however are less 

satisfactory and the water molecule is predicted to be linear. 

The calculations fail to predict any strain energy in small rings 

and tend to overestimate steric repulsions. This finally leads to 

incorrect isomerisation energies for pentanes and hexanes. The 

theory does in general lead to the correct assignment of equilibrium 

conformation and predicts barriers to rotation in ethane and other 

molecules, though the barriers are very inaccurate and even their 

qualitative behaviour from one molecule to another is often wrong. 

Many of the charges and bond orders for the molecules have been 

calculated for the first time. Hoffmann is apparently confident 
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of the charge distributions since simple Huckel theory indicates 

that these are quite insensitive to the choice of parameters. 

Results to be presented later suggest thtt; the predicted charges 

should be viewed with some suspicion. Simple Huckel theory only 

indicates that the charges in alternant hydrocarbons are insensi-

tive to a change of parameters, but this is surely because the 

charges are mainly dependent on the topology of the molecule. 

This is not the case for molecules containing heteroatoms and when 

hydrogen atoms are included explicitly all the calculations become 

equi valent to such calculations. Thus Hoff'mann' s charges in the 

molecules methane, ethane, ethylene and acetylene are not in 

agreement with the results of exact SCF LCAO MO minimal basis 

calculations or with experimental evidence. This point is discussed 

further in Chapter 6. 

In n-electron calculations the major step taken after the 

lIuckel method had been introduced was the use of semi-empirical 

SCF LCAO MO theory. In calculations involving 0- or both 0- and 

n-electrons the analagous step was taken by Pople, Santry and 

S 1(20,21) ega • 

Pople, Santry and Segal examined the invariance of various 

approximate SCF procedures under simple transformations of the AO 
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basis set, such as rotation of axes or replacement of s and p 

orbitals by hybrid orbitals. They believe that it is important 

that any approximate theory should be independent of choice of 

axes system as in the full SCF theory. They also believe that the 

approximate theory should be invariant with respect to the hybrid­

isation of AO's. In order to satisty these criteria they suggested 

that the approximate coulomb integrals for p orbitals on centres 

A and B should be independent of orientation 

but the actual integrals do not of course have this property and 

the imposition of such equali ties represents a dangerous over-

simplification. The only real invariance requirement is that all 

physical properties are invariant against the change of description 

in which one set of basis orbitals is replaced by a new set, related 

to the· old by a non-singular linear transformation (as for instance 

in changing the axes with respect to which the p orbitals are 

defined. or in changing from a non-orthogonal to an orthogonal 

basis). This does not imply that approximations made in one basis 

will be equally valid when applied to the corresponding quantities 

in another basis. In fact the invariance of physical properties 

would almost certainly require that the approximations should be 
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different. There is no physical law re~uiring invariance of 

approximations. 

They concluded that there are only two internally consistent 

approximations to the full SCF equations. These are the use of (i) 

only (a~lbb) two-centre integrals, that is the complete neglect of 

differential overlap (CNDO), and (ii) neglect of differential over-

lap except for two-centre integrals of type (aa'lbb'), where a and 

a' (or b and be) are orbitals on the same centre, that is neglect 

of diatomic differential overlap (NDDO). Also if S.. is chosen to lJ 
be proportional to the overlap integral S .• , then the constant of 

lJ 
proportionali ty must be independent of the type of orbital i or j 

and only dependent on the nature of the two participating atoms. 

This criterion is not satisfied by the Wolfsberg-HelmhOltz(9) 

approximation used by Hoffmann. It is satisfied by the Longuet­

Higgins and Roberts(l1) approximation 

S .• • SAB S •• lJ lJ 

where S AB depends only on the nature of the atoms a and b and i 

and j are orbitals on centres a and b respecti vel.y. 

In the CNDO method Pople, Santry and Segal suggest that 

further approximations have to be made to restore invariance under 

hybridisation or other local rotations, as discussed above, which 
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is destroyed when CNDO is assumed. It has to be assumed that y •• lJ 
depends only on the atoms to which orbitals i and j belong and not 

on the type of orbitals involved. They assumed that all y are 
IJA"B 

equivalent irrespective of the nature of the orbitals )..lA and "B' 

and are equal to y 2S 2S • 
A B 

The calculations predict reasonable bond angles though like 

Hoffmann's extended Huckel calculations they do not predict bond 

distances reasonably. The charges on the hydrogen atoms in the 

series methane, ethane, ethylene, acetylene are in agreement with 

experimental evidence except for the fact that methane and ethane 

have almost the same charge on the hydrogen. This point will be 

discussed in more detail in Chapter 6. The theory predicts 

barriers to rotation in molecules such as ethane and though the 

absolute values of the barriers are much too low the relative 

magnitudes in a series of molecules are correct. It was seen 

earlier that this was not the case with Hoffmann's extended HUckel 

calculations. 

Pople and Segal performed a large number of semi-empirical 

SCF calCulations. The approximations used in w-electron calcula-

tions are not necessarily applicable to calCulations including 

a-electrons. 

- 39 -



Thus in o-electron calculations the CNDO approximation 

involves the neglect of one and two-centre repulsion integrals of 

the form (aa' Ibb') where a and a', and b and b t. are orbitals on 

the same centre. This is not the case in n theory since there is 

only one orbital on each centre. 

Pople, Santry and Segal appear to require by their invari­

ance procedure described above that the approximations used should 

be the same regardless of the basis set used. This invariance of 

approximations does not appear to be essential as it is obvious 

that CNDO is only a reasonable approximation for an orthogonal 

basis set and not just for any basis. Thus over a Slater AO basis 

of s and p orbitals the CNDO approxima.tion would involve the neglect 

of integrals as large as 0.25 - 0.35 atomic units which would 

obviously be very unsatisfactory. When these integrals are trans­

formed to a symmetrically orthogonalised hybrid basis they are 

reduced in value and their neglect becomes more reasonable. though 

still questionable, since the largest of them, of the form (aa'laa'), 

are approximately 0.075 atomic units or 2 electron volts. So in 

fact even using an orthogonal basis it would appear desirable to 

retain integrals of the form (aa' Ibb'). This point will be dis­

cussed in more detail in Chapter 5 where the effect of various 
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approximations is examined. 

However in spite of these two objections the method does 

gi ve reasonable results. as has been seen above. and it is useful 

to examine why this is so. 

Pople and Segal have calculated the one-electron Hamiltonian 

matrix elements in the following way: 

(a) a's are calculated using spectroscopic data and so 

a reasonable difference between the a's for s and 

p orbitals on one centre and for a's on different 

centres are obtained. 

(b) a's are calculated by fitting CNDO diatomic cal­

culations with variable a to give results closest 

to those of the exact minimal basis calculations. 

In this way the a's are chosen to be reasonably 

close to the exact values over an orthonormal basis 

as can be seen in the Tables below giving Pople and 

Segal's one-electron integrals for water and the 

exact integrals for the non-orthogonal and orthogonal 

bases for comparison (the effective Hamiltonian 

approximation has been used, since Pop le and Segal 

do not include the ls orbital explicitly). 
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Pople and Segal's One-Electron Hamiltonian for Water 

hI h2 2s 2px 2p 2pz Y 

-3.471 -0.124 -0.374 -0.156 -0.203 0 

-3.471 -0.374 -0.156 0.203 0 

-6.313 0 0 0 

-5.715 0 0 

-5.715 0 

-5.715 

Exact One-electron Hamiltonian for Water (Non-Orthogonal Basis) 

hI 

-3.9198 

hI 

-3.2839 

h2 28 2px 2p 
Y 

-1.7401 -2.8193 -1.1532 -1.3890 
-3.9198 -2.8193 -1.1532 1.3890 

-5.9154 0 0 

-5.3794 0 

-5.4434 

Exact One-electron Hamiltonian for Water 
(SymmetriCally Orthogonalised Basis) 

h2 2s 2px 2py 

-0.1489 -0.4570 -0.2324 -0.2122 

-3.2839 -0.4570 -0.2324 0.2122 

-5.7845 0.0932 0 

-5.3245 0 

-5.4281 

- 42 -

2pz 

0 

0 

0 

0 

0 

-5.2878 

2pz 

0 

0 

0 

0 

0 

-5.2878 



It is clear that Pople and Segal's one-electron integrals 

correspond most closely to the values calculated for an orthogonal 

basis. for which the CNDO approximation is reasonable. Also their 

prescriptbn for estimating the one-electron matrix elements by 

fi tting diatomic CNDO to exact calculations compensates to some 

extent for the errors introduced by the use of the CNDO 

approximation. 

The S values used, which simulate values over an ortho-

gonalised basis, remain reasonable parameters for molecules other 

. . •. . (22) .• 
than diatoml.cs • as noted by Lowdin • Thus for a diatoID.l.c with 

hybrid orbitals on the two centres 

h2 • 52 - ~p x2 

the orthogonalised hybrids are (to first order in overlap) 

for then 

and 

Sn n - S - ~S - ~S • 0 
1 2 

(to first order in overlap). So S over the orthogonalised basis 

is given by 
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Now consider the effect of bringing up a point charge. The a term 

alters by f 1~112 V dv = X and the B term by f ~l* ~2 V dv, that is 

approximately SX. So we have 

a ..... a + X 

8 ..... B + SX 

So 

] :: 8 + SX - S ( a+ X) 

:: S - Sa 

This explains why 'S can be taken over from diatomic to 

polyatomic molecules since to first order it does not alter with 

external molecular environment. 

The success of the Pop le Segal calculations is apparently 

not due to the invariance restrictions but rather is achieved in 

spite of them. The calculations give reasonable results because 

they simulate the use. of an orthogonal basis, for which the CNDO 

approximation is reasonable, and they have to some extent allowed 

for the use of the CNDO approximation, and the more drastic approx-

imation of setting all YIJ3 equal, by fitting the S values used to 

give results close to exact diatomic calCulations. 

- 44 -



REFERENCES 

CHAPTER TWO 

1. R. McWeeny. "MO's in Physics. Chemistry and Biology" (Academic 

Press. N.Y •• 1964) p.305 

2. w. Moffit. Proc.Roy.Soc. ~. 224 (1951) 

3. R. Pariser. J.Chem.Phys. ~. 568 (1953) 

4. C. SandorfY. Can.J.Chem. 11. 1337 (1955) 

5. H. Yoshizumi. Trans. Farad~ Soc. 21, 125 (1957) 

6. K. Fukui et al. Bul1.Chem.Soc. Japan 33. 1197 (1960) -
7. K. Fukui et al. Bul1.Chem.Soc. Japan 12.. 38 (1962) 

8. K. Fukui et al. Bull.Chem.Soc •• Japan ~. 47 (1963) 

9. K. Fukui et al. Bull.Chem.Soc. Japan ~. 217 (1963) 

10. K. Fukui et al. Bul1.Chem.Soc. Japan ~. 541 (1963) 

11. R. Hoftmann. J.Chem.Phys. ~. 1397 (1963) 

12. R. Hoftmann, J.Chem.Phys. ~. 2745 (1964) 

13. R. Hoffmann, J.Chem.Phys. !£. 2474 (1964) 

14. R. Hoffmenn, J.Chem.Phys. !£, 2480 (1964) 

15. J.A. Pople and D.P. Sentry, Mol.Phys. 1. 269 (1964) 

16. J.A.Pople and D.P. Santry, Mol.Phys. 2, 301 (1965) 

17. Longuet-Higgins and M. de V. Roberts. Proc.Roy.Soc.,~. 336 (1954) 

- 45 -



18. M. Wdfsberg and L. Helmholz, J.Chem.Phys. ~, 837 (1952) 

19. J.C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hi11 

Book Co., N.Y., 1963) Vol. I. p.108 

20. J.A. Pop1e, D.P. Santry and G.A. Segal. J.Chem.Phys. ~. S129 

(1965) 

21. J.A. Pop1e and G.A. Sega1, J.Chem.Phys. ~, S136 (1965) 

22. P-O. LOwdin. J.Chem.Phys. ~, 365 (1950) 

- 46 -



CHAPTER THREE 

AIMS AND REVIEW OF PRESENT WORK 

In recent years ab initio calculations on diatomic molecules 

and semi-empirical calculations including all electrons have been 

performed. These semi-empirical calculations have been described 

in the previous chapter. They have either not considered electron 

repulsion explicitly (extended Huckel calculations) or incorporated 

a large number of approximations and semi-empirical elements. The 

success of the Parr-Pari se r-P op le semi-empirical n-electron theory 

encourages the study of minimal basis calculations including all 

electrons with the aim of producing a more complete semi-empirical 

theory than those which have so far been used. This is the aim of 

the present study. 

With this aim in view, it is first necessary to perform ab 

initio minimal basis calculations on simple polyatomic systems. 

Two main methods were used: (i) SCF LCAO MO calculations, and (ii) 

"group function" calculations in which individual bonds, inner 

shells, etc. are dealt with as localised units. The computational 

background is to a large extent common to both methods. Since com­

putational facilities have so far been severely limited, the 

necessary pilot calculations have employed integrals accurately 
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calculated elsewhere, or else less accurate integrals which may 

often serve for comparative calculations using the different 

quantum mechanical methods. When accurate and approximate integrals 

are both available it has been possible to gain valuable insight 

into the.effects of approximation. 

The calculations have been performed with a view to eventually 

producing a semi-empirical scheme. It is of course obvious that 

unless a large proportion of the two-electron integrals are neg­

lected the number of parameters becomes completely unwiel~ even for 

the smallest molecules. It is therefore necessary to choose an 

orbital basis in which most of the two-electron integrals take 

very small va.lues. It remains to be seen whether or not a basis 

can be found in which the CNDO. or the less stringent NDDO approxi­

mation. gives a reasonable representa.tion of the facts, when there 

are several AO's on each centre. Experience suggests that such a 

basis will consist of orthogonal orbitals possessing maximum 

localisation. The problem of making reasonable integral approxima.­

tions is inseparable from that of how best to choose a basis in 

which the orbitals will exhibit orthogonality and a high degree of 

localisation. 

The s,p,d •••• orbitals on each centre although orthogonal 
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by symmetry, do not exhibit high localisation; 2s and 2p AO's for 

example occupy roughly the same region of space and are orthogonal 

only because of their nodal properties. It is, however, possible 

to improve the localisation by mixing. for example the four sp3 

hybri?s are concentrated mainly in four tetrahedrally disposed 

regions and are thus not only orthogonal but also substantially 

"non-overlapping". Various criteria have been devised for defining 

such orbitals, but in this work suitably chosen hybrids were con-

sidered adequate, as well as having strong chemical appeal. Thus 

in qualitative valence theory chemical bonds are commonly associated 

wi th overlapping pairs of hybrids and so by choosing these we retain 

close contact with the simple pictorial concepts. Hybrids on 

different centres are not of course orthogonal, those which point 

towards each other having a particularly large overlap. they may, 

however, be symmetrically orthogonalised by the Lowdin (1) prescrip­

tion and then remain as close to the simple hybrids (in the least 

squares sense(2)) as is permitted by orthogonality. 

The follOlling approximations, which are often used in perfor-

ming semi-empirical calculations. have been examined: 
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(i) Neglect of 'inner-shell' electrons: 

(a) allowing for inner-shell electrons by replac-

ing the complete one-electron Hamiltonian by 

an effective Hamiltonian 

(b) replacing the inner-shell electrons by point 

charges centred at the nuclei. 

(ii) Neglect of certain two-electron integrals over an 

orthogonalised basis set: 

(a) CNDO approximation. the neglect of all but 

(~.~. I~.~.) integrals 
l. l. J J 

(b) NDDO approximation, the neglect of all but 

(~·~·'I~.~.') integrals, where ~., ~.' (and 
1.1. JJ 1. 1. 

~ .• ~.') are different orbitals on the same 
J J 

centre. 

In Parr-Pariser-Pople n-electron theory the approximation 

is used. 

In n-electron calculations there is only one orbital on each 

centre, but when all electrons are included the situation is 

different because the charge density (~.~.) may involve different 
l. J 

orbitals on the same centre. Approximation (a) would then involve 
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the neglect of most one-centre integrals. For this reason this 

approximation seems rather too drastic when all electrons are 

included. So calculations using an NDDO approximation (b) have 

also been performed and the effects of the two approximations have 

been compared. 

The approximation of integrals by the Mulliken method(3) 

and by the fitting of Slater orbitals with Gaussian orbitals(4) 

have also been examined. Experience gained in the use of these 

approximations and in the use of exact two-electron integrals has 

then been used in an attempt to produce a much simpler scheme for 

the approximation of the two-electron integrals over an orthogona-

lised hybrid basis. This approximation, which has involved the 

study of the effect of orthogonalisation on the two-electron 

integrals, has been used in performing a large number of semi-

empirical calculations. 

All previous approximate SCF schemes have taken all or part 

of the one-electron Hamiltonian matrix from experimental data. 

The usual procedure is to take the one-centre parts of the "core" 

Hamiltonian (for an electron in the presence of a single nucleus 

and inner shell electrons) from atomic data and to obtain from 

these a complete framework Hamiltonian by allowing in some way for 
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the attraction of other atomic centres in the molecule. This 

procedure appears to be unsatisfactory for two reasons: 

(a) The one-centre contributions are estimated without 

ever specifying the basis orbitals. Consequently. 

it is not clear how the data (referring to free 

atoms) is related to the quantities appearing in 

the theory (referring to atoms or ions in a 

molecular environment). 

(b) If one assumes that the empirical one-centre 

terms refer to orthonormalised AO's (for which 

the neglect of certain two-electron integrals may 

be a reasonable approximation) then the addition 

of "framework corrections" must be over the same 

basis. This actually involves the calculation of 

the whole framework Hamiltonian matrix over the 

non-orthogonal basis (including three-centre 

parts) and transformation to an orthogonal basis. 

In the calculations so far performed. efforts have been made to 

calculate all ~-electron integrals accurately for the reasons dis­

cussed above and for the following reasons: 
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(i) These integrals, unlike the two-electron integrals, 

are not disturbed by the approximate admission of 

correlation effects. 

(ii) There are not many of these integrals and the problem 

of calculating them only:increases as N2 as the dimen­

sion of the problem, U, increases. 

(iii) The only one-electron integrals which do involve a 

large amount of computing time are the three-centre 

nuclear attraction integrals. There are closed ana­

lytical expressions for all others. However, the 

three-centre integrals appear to pl~ a large part 

in determining the final one-electron Hamiltonian 

over an orthogonalised basis, and errors in them can 

have a large effect; attempts to estimate them 

adequately (e.g. by the Mulliken approximation) 

were unsucceSSful. These integrals have therefore 

been calculated exactly. 

(iv) There has been great difficulty in n-electron theory 

in obtaining one-electron parameters by semi­

empirical procedures. A more systematic approach in 
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which such parameters are calculated exactly is 

n~ ur~ntly needed. 

After obtaining the basic integrals, exact or approximate, 

the calculation of SCF MO or group function wave functions is 

completed. Before discussing results, it is useful to comment on 

some of the computational details involved. 
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CHAPTER FOUR 

COMPUTATIONAL DETAILS 

In order to perform the calculations described, a lar~ 

number of computer programs have been developed. The integral 

programs are slanted towards minimal basis calculations involving 

hydrogen and first row elements. Thus two types of centres can 

be chosen, 'heavy atoms' and hydrogens. In calculating the 

diatomic integrals an appropriate 'sigma-pi' orbital set 

(2s, 2Pa' 2pw' 2P1t ls) is automatically placed on each pair of 

heavy centres and rotated to a 'standard orbital' set (2s, 2px' 

2p , 2p , Is) defined by the global coordinate system (see diagram y z 

below) • A Is orbital is placed on each hydrogen. 

The programs fall into the following parts: 

(i) The calculation of the one-electron Hamiltonian integrals 

This program calculates the matrix of integrals for the 

sigma.-pi Slater orbital basis on an arbitrary three-dimensional 

array of centres. Since the integrals are calculated for one pair 

of centres at a time the problem is split into the evaluation of 

integrals for a number of diatomic problems. These can easily be 

calculated by the method of Roothaan (1). The program then trans­

forms to the standard orbital basis or any specified hybrid basis. 
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Trans formation to stanc.a rd orbit al and hybri d basis 

In the diagram below, the line AJ3 and the p orbitals fix z 

the plane z . p is chosen in the bond direction, p perpendicular 
. cr ~ 

to AB in plane z and 1>: perpendicular to AJ3 and normal to plane z . 
1T 
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If the standard orbitals on centre x are 

( XX x x x) 
1x = 2s • 2px ' 2py• 2pz • ls and the local rotated orbitals are 

loc' • (2s
x

• 2P~. 2P~. 2Pi. laX). then 

where R is the matrix of direction cosines of the rotated orbitals 

wi th respect to the standard axes. The one-electron integrals in 

the two bases are then related by (note that !! is real orthogonal. 

!i-l • !it) 

f • (tI. t f cL) • R (dI t, f dI ')R- t • R f 'R_ t 
-AB J..A """B -A J..A ..t.B -.o.B -A -AB ~ 

Considering the P orbitals on centre A as vectors we can 

determine the 'vectors' of the rotated bases • 

( a) 
... 

Po :: AB :: (c l ,c 2.c 3)/R (where(cl'c 2.c 3) are the coordinates 

of B with respect to A as origin and R is the distance between 

A and B) 

(b) P'If is . perpendi cular to Pz (0,0,1) and Po 

PlT :: (YltY2'Y3) 

(P'lf°pz) • Y3 • 
0 

(PlToPo) = Ylc 1 + Y2c 2 = 0 

PlT :: (+C2' tCI' O)/A 
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(The sign convention for p 
1f 

and Pi is arbitrary, any choices giving the same final result for 

the rotation.) 

We can then write the specific form of RA and of ~ which 
-+ 

the same except that Po is in the direction of the vector BA • 

(-cl t -c 21-c3)/R. 

1 0 0 0 0 1 0 0 0 0 

0 =.l -C2 -c IC 3 0 0 -Cl -c2 -clc 3 0 
R p;- AR R A AR 

R = 0 =.l =.l -C2C 3 0 ~= 0 -c2 Cl -c2c 3 0 A R A AR If"' r AR 
0 C3 0 

A 0 0 -c3 0 A 
0 R R If" R 

0 0 0 0 1 0 0 0 0 1 

If B is a hydrogen atom then.!AB and.!tu3' are 5)(1 matrices and 

.!AB • !A !AB ' 

If le =~!x where le is the hybrid basis and ~ is the standard 

orbi tal basis then if A and B are carbon type atoms 
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III (YA t BA).!AB' <'!ir/ la) 

III C.~At yA)t ~' (lls t ~) 

If B is a hydrogen atom then 

1 II(R t V)t f , 
-=-AB -A -A . -AB 

Since there are no closed analytical expressions for the 

three-centre nuclear attraction integrals the program assumes that 

these have already been calculated. These integrals were at first 

approximated, but were finally calculated using a three-centre 

numerical integration program. The method used is to transform each 

diatomic electron density into elliptical coordinates (t, n, ,) and 

to integrate over n and • using the finite-interval Gauss numerical 

quadrature method and over t using the infinite-interval Gauss-

Laguerre quadrature. 

(ii) The calculation of coulomb type (ijlsli'j') integrals 

As in (i) the integrals over the sigrna-pi basis are 

calCUlated(l) and are then transformed to a standard orbital basis 

or any specified hybrid basis. This two-electron transformation 
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will be discussed in detail in section (i v). 

(iii) The calculation of the transformation matrix between the 
standard basis and the set of orthogonaHsed hybrids 

The transformations involved: 

( a) Schmi dt orthogonalis ati on. 

cL = tt._W -'6chmi dt orth. ~ 

All valence orbitals on all atoms are orthogonalised to the inner 

shell ls orbitals. 

This is necessary in order to keep the la orbitals uncon-

taminated by other orbitals. This has been discussed by McWeeny 

and Ohno(2) and by Klessinger(3). They have found that when the 

inner shell orbitals are made to mix with the valence orbi tala 

then the resultant loss of inner-shell energy is not compensated 

by the gain in bonding energy of the outer shells. The best total 

energy is obtained by Schmidt orthogonalising the valence orbitals 

to the inner shell orbitals so that they remain unchanged during 

symmetric orthogonalisation (see section (c)). 

The general e~uation for the Schmidt orthogonalised function 

~n which is a linear combination of '1.'2 •... 'n and is orthogonal 

to '1.'2 •... n-l is needed: 
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1Ji III ~ + n n 

n-l r c. ~. 
i=l 1. 1. 

n-l 
< ~. 11Ji >. 0 III S. + r c. S •. 

J n In i-l 1. 1.J 
for j-l.2 •••• n-l 

So we have a set of linear equations to be solved 

n-l r c. S .. - -S. 
i-l 1. 1.J In 

for j-l.2 •••• n-l 

or in matrix notation 

cA. B 

where c is a raw matrix of dimension n-l. A is a square matrix 

containing the first n-l rows and columns of ~. the overlap matrix. 

and ! is a raw matrix containing the first n-l elements of the nth 

raw of.§.. Equation (1) can be solved to obtain the ci's by any of 

th e A-l • the standard methods. In l.S case _ was determned by diagona,.. 

lising ! using Jacobi method to get Anag' taking the reciprocal of 

the elements of~.: and transforming £; with the eigenvectors 
~ag. ~ag 

of! 

~.: • Vt A V --y..a.ag ... ---

A-l _ V A-~ Vt 
- --ru.ag-

c • B A-l --
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(b) Hybridisation 

ell. .;: cL. U 
.J;{].ybrl.d ..I£chnudt orth. - . 

Note that U is in general a ~-unitary matrix. In most cases 

hybrids are set up to point along the bonds and the lone pair 

hybrids are then determined by orthogonalisation requirements. 

This is not the case in molecules such as formaldehyde where the 

hybrids are not uniquely defined by the requirement that they 

point along the bonds (e.g. s,p-mixing at the o~gen atom). In 

this case sP2 hybridisation was arbitrarily assumed for the sake 

of simplicity. 

(c) Symmetric orthogonalisation 

- -~ ... • ... . S 
..!. .!nyb rl. d -

where ~ is the overlap matrix for the hybrid orbitals. It is 

desirable to keep the orthogonal orbitals as close as possible to 

the localised hybrid orbitals. This procedure, first proposed for 

molecules by LOwdin(4). produces the set of orthogonal orbitals(5) 

closest (in the least squares sense) to the original AO's. 

The total transformation is thus 
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, 
The program to get (WUS-~) thus involves the calculation of overlap 

integrals by a program identical in design to that which calculates 

the one-electron Hamiltonian. It also involves a general Schmidt 

orthogonalisation procedure and transformation of the overlap 

integrals to a Schmidt orthogonalised hybrid basis. The square 

root of the inverse of the overlap matrix is obtained by diagona.-

lising the matrix to get S~.: • taking the reciprocal square root "'"'U.&.ag 

of the elements of ~.: and transforming ~J with the eigenvec- ' 
~ag ~ag 

tors of S: -
~.: • Vt S V 
--u..ag - --

S-~ • V S-~ Vt 
- =-diag-

(iv) The transformation of one- and two-electron integrals 

(rlfls) • ~ T. T • (ilrlj) Lrl ' sJ i.j 
* 

(2) 

* In this section a transformation of orbital bases is represented 

by 
R • T I --

where .!! and 1 are column vectors of orbitals. Previously in this 

chapter the convention 

where i and I are row vectors had been used. 
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where 1: is the transfonnation matrix. The method used is to split 

the sum into smaller parts, thus for the two-electron integrals 

the steps involved are 

rs c .. = T • T • 
lJ rl SJ 

rs ~ C~ (iJ· Ik1) 'Yk.t· L lJ 
i.j 

and for one-electron integrals 

c~ < i I ilj > 
lJ 

(4) 

This procedure reduces the direct evaluation of expression {2}, 

involving Na operations, to two processes (3) and (4) involving N6 

operations, N being the number of orbitals. A further reduction is 

obtained by storing and calculating only the distinct two-electron 

integrals e.g. i ~ j, k ~ 1, (ij) ~ (k1). In this w~ the number 

of operations is reduced from N6 to M3, where M is N(N+l)/2. As 

only di~tinct integrals are stored, they are not implicitly 

labelled by their position in a matrix but are labelled explicitly 

by storing them together 'With a ~abel consisting of four integers 

stored in a decimal word. This labelling technique allows also for 
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the storing of only non-zero integrals or of any subset of 

integrals which may be required. 

If only distinct integrals are used then as each integral is 

used it must be multiplied by a numerical factor to allow for the 

non-distinct integrals which are equal to it. The table below 

gi ves the various types of distinct integrals for i ~ j. k ~ 2. and 

(ij) ~ (k2.) and the non-distinct integrals which are equivalent to 

them. 

Integral Equi valent Integrals 

(H lii) 

(ii Ijj) (jj lii) 

(ij lij) (ij Iji) (ji lij) (ji Iji) . 
(ii Ik2.) (H l2.k) (k2.lii) (tklii) 

(ij Ikt) (ij I tk) (ji Ikt) (ji I Lk) 

(k1Iij) (k2.jji) (Lk lij) (Lklji) 

", The use of only distinct integrals can be allowed tor by 

replacing the expression for C~ by 
l.J 

c~ • T .T . + (1 - 5 .. ) T .T . 
l.J rl. sJ l.J 8l. rJ 
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· . () ddi" b rs d rs . 1n expreSS10n 3. a ng 1nto oth Ykt an Yij for an lntegral 

(ij!k~) if (ij) , (k~) and summing only over i ~ j in (3) and 

k ~ ~ in (4). 

The transformation can be performed to get (i) all integrals 

over the transformed basis; (ii) only ( r as a ! ~'i> ) integrals over 

the transformed basis; and (iii) only (rara!sbsb) integrals over 

the trans formed basis; where r a is an orbital on centre a. 

For diatomic coulomb integrals on centres a and b (see 

section Gi)) this would involve a transformation with matrices 

of order (loxlO). Since blocks of integrals of the general 

form 

are calculated separately, they are also transformed separately. 

So there is a reduction to at most four transformations involving 

matrices of order (5 x5) 

(v) SCF programs 

Closed shell SCF MO programs(6.7) involving either the 

eigenvalue technique or steepest descent procedure have been used. 

The eigenvalue technique has been modified by the near diagonalis&-
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tion of the Hartree-Fock Hamiltonian li by the eigenvectors Q 

obtained in the previous cycle according to 

if = ut H U - ---
The diagonalisation process is then entered with the near-diagonal 

if and initial eigenvectors U. so diagonalisation is very quick. - -
Also, as the process approaches self-consistency li becomes more 

nearly diagonal, so that successive iterations take less and less 

time. 

Closed shell SCGF programs have been used, the method lend-

ing itself to calculations on large molecules with a minimum of 

computational effort. A conventional SCF MO calculation for a 

system with, say, 50 basis orbitals requires a fairly large com­

puter and (even assuming reasonable convergence of the process) is 

expensive in computing time. The SCGF calculation, on the other 

hand, requires only the diagonalisation of one small matrix (in 

the present case 3)(3) for each electron pair, and is a rapidly con-

vergent process. Moreover, besides being relatively small the 

SCGF computing time is roughly linear in the number of distinct 

electron groups, while that for an SCF MO calculation is at least 

cubic in the number of orbi tala used. The calculations reported 
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in this work were in fact performed using an IBM 1620 computer, 

the computing time for the two types of calculation being in the 

ratio 40:1 for the larger molecules. 

Program Testing 

The two-electron transformation program can be tested 

systematically by using various transformation matrices and 

integral values. The following tests have been made: . 

(a) All integrals equal to one, transformation matrix 

is the unit matrix. Obviously all trans formed 

integrals must be one. 

(b) All integrals equal to one, all elements of 

transformation matrix equal to one 

n 
(rsltu). ~ T.T. (ijlk.2.) TtkT n • . rl SJ u~ l,J,k,.2. 

• nit 

Various other tests of the same nature were used. First the 

elements of the transformation matrix were varied systematically, 

all integrals having a constant value. Then the integral values 

were varied, all elements of the transformation matrix having the 
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same value. Finally both the elements of the transformation 

matrix and the values of the integrals were varied. All these 

results are easily checked by hand calculation. The tests were 

completed by recalculating the two-electron integrals for water 

over an orthogonalised hybrid basis (3) • 

The one-electron transformation was tested in a similar 

manner. 

Integral programs, however, cannot be tested in such a 

systematic manner. It has been seen that the integrals (overlap, 

one-electron Hamiltonian and two-electron coulomb) are calculated 

for one pair of centres at a time and so the problem is in tact a 

diatomic problem. The diatomic parts ot the various programs have 

been tested by comparison with the iri:egrals obtained from J. Miller 

andJ.C. Browne's diatomic package(8). Thus the heavy centre-

hydrogen parts have been tested using CH, and the heavy centre-

heavy centre parts using N2 and CO. The full one-electron 

Hamiltonian program including three-centre nuclear attraction 

integrals was then tested on water and methane and compared with the 

calculations at Klessinger and McWeeny(3, 9). who have used 

Barnett-Coulson programs(lO). 

The various parts ot the transtormation matrix tormation 
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were tested separately. Thus the Schmidt orthogonalisation and .. 
the hybridisation matrices can easily be check.ed by hand. The 

formation of .§.-~ was checked by forming the matrix product 

The programs were then tested by recalculating the transformation 

matrices used by Klessinger and McWeeny in their water and methane 

calculations (3. g) • 

The least accurate part of the calculation, the three-

centre program, gave results agreeing at worst to three decimal 

places with the test data. This was with a network of (lOxlOxlO) 

quadrature points over the elliptical coordinate system. The 

results of the transformation programs. the one-centre and two-

centre integral programs and the programs calculating transforma­

tion matrices were in agreement to the full number of significant 

figures (most of the test data was quoted to six decimal places). 
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CHAPTER FIVE 

PRELIMINARY CALCULATIONS 

The approximations discussed in Chapter 3, neglE;,~t of 

inner-shell electrons (i a,b) and neglect of certain two-electron 

integrals (ii a,b). were investigated using the SCF MO and SCGF 

methods. The effect of using approximate integrals was then 

examined. Finally a scheme for the approximation of two-electron 

integrals over an orthogonalised hybrid basis is proposed. The 

preliminary calculations have been performed on the water and 

methane molecules. for which exact integrals were available, over 

a minimal AO basis. from previous work. These basic integrals 

have been transformed to an orthogonal hybr~d basis. 

(1) Exact Integrals 

For these calculations a minimal basis of Slater orbitals 

was employed. the values of the exponents being 

carbon 

oxygen 

r;(ls) • 5.7 

r;(ls) • 7.7 

~(2s) • C(2p) • 1.625 

~(2s) • C(2p) • 2.275 

hydrogen r;( ls) • 1.0 

For water the bond length was taken to be 1.8103 a.u. 
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(experimental value) and the bond angle to be 1050
• For methane 

the bond length used was 2.067419 a.u. (experimental value) and 

the configuration tetrahedral. The construction of' the ortho­

normal basis f'ollows section (iii) of' Chapter 4. All valence 

orbitals were Schmidt orthogonalised against the oxygen ls 

orbi tal. The oxygen s and p orbitals were then hybridised, the 

bond orbitals set up to point along the bonds and the lone pair 

hybrids determined by the orthogonalisation requirements. 

Finally 'all orbitals were symmetrically orthogonalised. 

(a) Water 

The results of' the calculation are conveniently expressed 

in terms of' the spinless one-electron density matrix P whose 

elements completely determine the electron density, orbital and 

overlap populations etc. 

The SCF MO total energy and density matrix were obtained 

f'or the exact calculation, in close agreement with those of' 

McWeeny and Ohno(l) (Table 1). 

The CNDO approximation in which only (~.~. I~.~.) integrals 
~ 1 J J 

are included led, in the SCF MO calculation, to a reversal of bond 

polarity, as indicated by the orbital populations, the electrons 

being drawn towards the hydrogen atoms, and an energy 0.86 a.u. 
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too high (Table 3). but the NDDO approximation which includes 

($.~. ,I~.~.,) integrals gave more encouraging results, with the 
1. 1. J J 

correct l'olarity and an energy only 0.105 a.u. too high. But 

there is a loss of bond density and of atom charge from the lone 

pair orbitals (Table 2) ~ The integrals neglected, using an ortho­

normalised hybrid basis. are mostly very small, but in view of their 

large number it is not surprising that the total energy mQY be 

substantially affected. This in itself is no cause for concern 

if the aim is to obtain- a reasonable wave function with which to 

dis cuss other mole cular properties. 

The above calculations were also performed using the SCGF 

method. The results for the exact calculation and the calcul&-

tions involving the CNDO and NDDO approximations are given in 

Tables 4 - 6. The exact SCGF calculation gives total electronic 

energy slightly lower than the SCF MO calculation, as expected 

since the SCGF method introduces Bome measure of correlation 

between electrons in the same group. The results are reasonably 

close to those of the SCF MO method. though the densi 1¥ of charge 

on the hydrogen atom is consistently lower. The density matrix 

elements predicted using the NDDO approximation are again 

reasonably close to the exact results while the CNDO approximation 
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again leads to a reversal of bond polarity. 

The exact SCF MO calculation was modified in that the 18 

electrons were not included in the SCF calculation and this 'core' 

was allawed for by replacing the one-electron Hamiltonian by an 

, '1' heff (' k t d effectl. ve Hanu tonl.an ,where USl.ng 0 enote the Is 

orbital) 

h~~f • h., + 2(kk\ij) - (ki\kj) 
l.J l.J 

This reduction may be used whenever part of an antisymmetrised 

product function referring to a number of electrons is regarded 

as fixed (2). It would seem very reasonable from a chemical view-

point to fix the Is ele ctrons. This core approximation gives 

excellent results, very close to the exact calculation, the 

valence electron energy being poorer by only 0.001 a.u. and the 

density matrix in close agreement (Table 7). But all the 

integrals have still to be calculated and the only saving is in 

a reduced SCF problem. For this reason the approximation of 

representing the ls electrons as simply a point charge at the, 

nucleus was examined. 

The point charge calculation differs from the exact SCF MO 

calculation in that the ls electrons were replaced by a point 

charge -2e at the nucleus. This means that the nuclear charge 
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on the oxygen atom was put equal to Z-2. The only integrals 

which differ from those used in the exact calculation are the 

one-electron integrals through the alteration of Zoxygen in the 

nuclear attraction operator. The procedure is the same as the 

exact calculation except that the 18 electrons are not included 

in the SCF calculation (or at least only indirectly in that the 

2s, h It h2 are Schmidt orthogonalised to the 18). 

The resulting SCF density matrix and total electronic 

energy are given in Table 8. The use of the point charge approxi­

mation has quite a large effect, the energy being poorer by 0.75 

a.u., but the main features of the charge density (including the 

direction of bond polarity) are still reproduced. It is necessary 

in the complete calculation to Schmidt orthogonalise all orbitals 

to the ls orbital before symmetriCally orthogonalising. This is 

because a higher total energy is obtained if the ls orbital is 

contaminated by valence shell orbitals. This constraint does not 

necessarily apply when the ls electrons are not explicitly con-

sidered. 

It may be that when the ls is represented by a point charge. 

the 2s orbital should be orthogonal to a Dirac delta function at 

the nucleus since the ls has been shrunk into this. The Slater 

2s orbital is of course already orthogonal in this sense. 

- 77 -



So the above calculation was repeated without Schmidt 

orthogonalising 2s, h, h' to a ls orbital. The resulting SCF 

density matrix and total electronic energy are given in Table 9. 

The total energy is seen to be very low. 2.7 a. u. lower than the 

exact calculation. A comparison of the orbital energies for the 

SCF MO calculations (Table 10) for the above runs shows that the 

lowest orbital energy in this calculation is lower than in the 

other calculations described above. This could be ascribed to a 

slight tendency of the lower orbital to 'collapse' into a 1s 

orbital. It can be looked at from an alternative point of view. 

The atomic orbital energy of the Slater 2s is less than that of 

the Slater 2p while that of the Schmidt orthogona1ised 2s is 

about the same as the 2p. So we would expect that the lowest 

orbital energy would be less when the 2s is not Schmidt orthogo­

na1ised than when it is. 

Comparing the above calculations, using the point charge 

approximation, with calculations using approximate integrals (all 

non-coulombic two-electron and three-centre one-e1ectronmtegrals 

approximated) (Tables 17 and 18 (section (2» we see that the 

point charge approximation produces erors of the same order of 

magnitude as those produced by approximating integrals by the 

Gaussian fitting procedure, 
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(b) Methane 

SCF MO and SCGF calculations have been performed using all 

two-electron integrals over an orthogonalised hybrid basis, and 

also using the NDDO and CNDO approximations. The SCF MO results 

are given in Tables 11 -13 and the SCGF results in Tables 14 - 16. 

The exact SCGF energy is again slightly lower than the SCF 

MO energy. As in water the use of the CNDO approximation and exa.ct 

integrals leads to a reversal of the bond polarity compared with 

the exact calculation. The results using the NDDO approximation 

are much closer to the exact results, predicting the correct bond 

polarity. The conclusions apply equally to both the SCF MO and the 

SCGF calculations. the CNDO approximation showing similar defi ci­

encies in both cases. 

(2) Use of Integral Approximations 

On a small computer it is possible to calculate exactly at 

most all the two-centre integrals of the type (ii t Ijj t); the rest 

must be approximated.. Even with larger computers a similar point 

is soon reached as molecular size is increased. Calculations on 

water and methane have therefore been repeated with both Gaussian 

and lvlulliken-type approximation of the many-centre integrals. The 

three-centre nuclear attraction integrals have also been approxi-
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mated, though these have been calculated exactly by numerical 

integration in later calculations. 

(a) Gaussian Approximation 

The integrals were approximated by expanding the Slater 

orbitals in terms of Gaussian orbitals(4) (one Gaussian for each 

p type and two for each s type Slater orbital). The integrals 

over the Gaussian orbitals are available from a modification of 

the MITT Polyatom program (adapted for a small computer). 

The results for methane (Table 17) were encouraging as the 

charge and bond orders do not di ffer as much from those obtained 

in the exact SCF calculation as these do from those obtained in 

the group function calculation(3) (section (1». The results for 

water (Table 18) were unfortunately not as good as this, though 

the differences between this calculation and the exact SCF calcu-

lation are not as great as those produced by the use of the point 

charge approximation (section (1». However if both the Gaussian 

approximation and the point charge approximation are used then the 

res ul ts are much worse (Table 19), the bonds being hardly polar. 

It can be seen that the errors are in this case to some extent 

additive. 
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An attempt was made to improve the approximation of the 

two-electron integrals over the hybrid basis. The procedure used 

was to rescale the charge clouds 

where 

It was hoped that this factor. a measure of the error in approxi­

mating the overlap density, would partially compensate for the 

errors involved in the calculation of the two-electron integrals. 

This procedure did not give substantially better results and in 

the water calculation had the undesirable effect of producing a 

larger draining away of charge from the lone pair orbitals. 

The calculations have been repeated using the NDDO approxi­

mation which includes only (ii ' Ijjl) integrals over theorthogo­

nalised hybrid basis. The changes produced by the use of this 

approximation are similar to the changes produced by its use in 

the exact calcula.tio~ (Tables 20 and 21). 

(b) Mulliken Approxima.tion 

The integrals were approximated by the Mulliken method(5) 
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where 

This method allows any two-electron integral to be approxi-

mated by a combination of coulomb integrals which are used in the 

calculation. For this reason the approximation is relatively 

simple to use. The integrals were approximated over a hybrid basis. 

The Mulliken method involves the approximation of a smaller 

number of integrals than the Gaussian method but the results are 

not so good as will be seen below. If the aim is to extend the 

procedure to larger molecules in a semi-empirical manner then the 

number of two-electron in~rals soon becomes unwieldy unless it is 

reasonable to neglect many of them. But as concluded previously t 

the neglect of two-electron integrals is only reasonable if an 

orthogonal basis is used. For this reason the integrals have been 

transformed even though this is not a necessity with the systematic 

use 01' the Mulliken approximation. 

The approximated integrals for water are compared with the 

exact integrals and the Gaussian approximated integrals, for the 

hybrid basis in Table 22 and for the orthogonalised hybrid basis 

(i.e. after transformation 01' the integrals for non-orthogonal -
hybrids to symmetrically orthogonalised hybrids) in Table 23. 
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For the larger integrals, the Mulliken approximation is not as 

good as the Gaussian approximation, but still gives some estimate 

of the magnitude. It does not, however, give a reasonable 

estimate of the smaller integrals. 

The results for water and methane are given in Tables 24 

and 25. The results for water are far worse than those obtained 

using the Gaussian approximation. The results for methane, however, 

are almost as good as the Gaussian results and are very close to 

the exact SCF results. As in the Gaussian calculation this is 

presumably due to the very high symmetry of the molecule. 

The calculations were repeated using only (aa' \bb') two­

electron integrals over the orthogonal hybrid basis. The results 

were similar to the above calculation for the water molecule 

(Table 26) but were very different for methane (Table 27). 

The methane results are now very far from the exact SCF results. 

This did not happen in the exact calculation or the Gaussian 

calculation'when only (aa'\bb') integrals were used, so it 

appears that it may be necessary to use all two-electron integrals 

when using the Mulliken approximation. 

As stated above, the calculations Were performed by approxi­

mating the non-coulombic integrals over a hybrid basis. A 

- 83 -



calculation was also performed for methane by approximating the 

non-cou1ombic integrals over a basis of s and p orbitals and then 

transforming to an orthogonal hybrid basis. In this case the 

results were far worse. EVen the (aalbb) two-electron integrals 

over the orthogonal hybrid basis were n~here near the exact 

values as can be seen from the table below. 

Exact Value· Mu11iken Approximation 
Integral (over orthogonal 

hybrid basis) hybrid basis s Bc p basis 

hlhlhlhl 0.6943 0.1155 0.9121 

h2h2hlhl 0.2432 0.2491 0.1106 

b1b1h1h1 0.4191 0.5311 0.8328 

b lb lh2h2 0.3441 0.3346 0.2023 

b1b1b1b1 0.1126 0.8501 1.1915 

b2b2b l b l 0.6825 0.5842 0.4116 

k k hlhl 0.3986 0.3855 0.3855 

k k blb1 0.9101 0.8820 0.8820 
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(3) Semi-Empirical Adjustment of Integrals 

The use of the Gaussian approximation takes a prohibi ti vely 

long time for large molecules (unless a large computer is avail­

able), as it involves the calculation of a large number of 

integrals over the Gaussian basis, this being larger than the 

minimal basis set, followed by a large two-electron transformation. 

Even the Mulliken approximation, which involves the approxi.mation 

of a smaller number of integrals and a smaller two-electron trans­

formation. soon becomes unwieldy. It would not be feasible there­

fore to do calculations on larger molecules using these approxima­

tions. For this reason an attempt was made to produce a simpler 

scheme for approximating two-electron integrals over an 

orthogonalised hybrid basis directly. Also in lI'-electron theory 

the semi-empirical estimation of the two-electron integrals has 

played a larger part in its success. 

In order to study the effect of estimating the two-electron 

integrals directly, other approximations have been excluded. Thus 

the one-electron Hamiltonian over the orthogonalised hybrid basis 

has been calculated exactly, the inner shell electrons have been 

included explicitly and not implicitly by the use of the core 

approximation or point charge procedure. The core approximation 
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has been seen to be very accurate (section (1». But since many 

of the terms in it were approximated or neglected completely a 

study of whether this approximation can be used to reduce the 

problem without making substantial differences to the results was 

left until later. 

It can be seen from the results given in section (1) 

that the use of exact two-electron integrals over an orthogonalised 

hybrid basis together with the CNDO scheme does not reproduce the 

electron density pattern of the full calculation at all well. In 

both methane and water the bond polari ties. indicated by the differ-

ence of populations of the hydrogen and bonding hybrid orbitals, 

are the opposite of those obtained from the full calculation. 

The results using exact two-electron integrals over an orthogonal-

ised hybrid basis but with the NDDO approximation are much more 

encouraging. The electron density is much closer to that of the 

full non-empiriCal calculations and the bond polarities agree 

rather well, in both direction and magnitude, with those from the 

full Calculations. Results for formaldehyde using exact integrals 

gi ven in Chapter 6 (Tables 8, 10 and 11) also suggest that the 

CNDO is not really satisfactory. Thus in the SCF MO calculations 
• 

the use of the CNDO approximation produces a very large bond order 
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between the two hydrogen atoms (0.464) and a 1T group very highly 

polarised towards the carbon atom. The use of the NDDO approxi­

mation does not produce this large bond order between the hydrogen 

atoms or the very highly polarised 1T group. 

The above results appear to show that CNDO is not a good 

approximation. even when used to simulate the properties of exact 

integrals over an orthogonal basis. It does not therefore seem 

to provide a Bui table foundation for a satisfactory semi-empirical 

scheme. It is clear that in the above examples the one-centre 

exchange integrals pl8¥ a crucial role in determining the 

electron distribution in the molecule. even to the extent of 

detennining polari ties of bonds. The general conclusion from 

this series of' calculations is that the NDDO scheme is quite 

accurately valid as a means of' simulating the results of calcula­

tions employing a basis of' symmetrically orthogonalised hybrid 

orbi tals. The use of this scheme appears to yield reliable 

molecular wave functions in the examples si ven above. 

The integrals that are retained are in one-one correspon­

dence with those for which closed expressions are available in 

the non-orthogonal case. namely those which represent the coulomb 
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interaction between monocentric charge distributions. Unfortunately, 

however, they are related througn the equation 

(.l. ·l.'IJ· "J') == ~ T * T * ( It) T T L ri sj rs u tk ut 
r.s .t.u 

to the full set of' integrals over the non-orthogonal basis and not 

just to the integrals representing coulomb interactions between 

monocentric charge distributions. To make progress towards a 

semi-empirical theory it is therefore necessary to have a simple 

prescription f'or obtaining good approximate values of' the NDDO 

integrals. To this end the exact integrals over the non-orthogonal 

and orth;>gonal hybrid bases were compared for the water and methane 

molecules (Table 28). A definite pattern was seen to emerge; the 

general ef'fect of' orthogonalisation can be summed up as f'ollows: 

(a) One-centre integrals of' the form (iAiAljAjA) (where 

.A . . 1 A)' l. l.8 an orbl. ta on centre are lncreased by 9 -

4% .A ft·A 1 except where 1 == k, w, ~ and J • k. w or t 

(where k, w, t are used to denote la. w and lone pair 

orbi tale respectively). One-centre integrals of' the 

f'orm (iAjAlkAtA) are also increased, though the per-

centage increases are more variable. These integrals, 

however, are not so important as those of the 
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( .A.A\.A.A) t h' 11 1 1. 1. J J ype, anng sma er va ues. 

( ) . l' ( . A. A \ .B .B) b Two-centre l.ntegrals of the orm 1. 1. J J are 

decreased by 9 - 14% when A and B are near neigh-

h · A Jl. d·B k bours, except w en 1. = k, n or an J = ,n or 

. form (1..AJ.A 1kBJl.B) are 1. Two-centre l.ntegrals of the 

also decreased but again are not so important as 

they have relatively small values. 

(c) Integrals which are not of the (iAjA\kBtB) form 

assume negligible values. 

These conclusions am be understood easily in a qualitative 

manner. At first sight, it might appear that the orthogonalised 

orbitals are less well localised than the free atom AO's since 

they contain parts from orbitals on all the centres. Thus to first 

order in overlap: 
It 

I = i -

and i therefore contains in general a negative cusp on neighbour­

ing nuclei. Mcweeny(6) has pointed out however that the cusps 

occupy a very small part of space and that the main effect of 

orthogonalisation is to compress each AO more tightly about its 

nucleus by "cancelling out" its outer parts and then renormalising. 

- 89 -



This increase in concentration of charge explains the increase in 

value of the repulsion between two charge cbuds both on the same 

centre i.e. the increase in integrals of the form (iAjAlkAtA). 

It also explains the decrease in the mutual repulsion between two 

monocentric charge clouds on di fferent centres Le. the decrease 

, , . (,A,AlkBnB ) In lntegrals of the form 1 J ~. 

So the general effect of symmetric orthogonalisation can 

, ,,(,A,AI,A,A) , t be slmulated by J.ncreaslng the 1 1 J J In egrals and decreas-

, (,A,AI,B.B) , • % " lng the 1 l. J J lntegrals by approxlmately 12 and estlmatJ.ng 

( ,A,A1kB B) , . all other 1 J R. lntegrals by the1r non-orthogonal values. 

Though this will lead to errors of up to 5% in the larger of the 

estimated integrals it is hoped that this will be accurate enough 

to predict the change of properties in a series of molecules. 

As a first test of the method calculations were performed 

on methane using the exact one-electron Hamiltonian and estimat-

ing the two-electron integrals by the procedure described above. 

The results are given in Tables 29 (SCF MO) and ,30 (SCGF) and 

comparison with the exact results (Tables 11 and 14) shows that 

the predicted density matrix is quite close to that predicted by 

the exact calculations. The atom densities are in fact closer to 

the exact results than are the atom densities predicted by the 
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use of exact integrals and the NDDO approximation. This is of 

course just chance, since the results should really be compared 

wi th those of the calculation using exact integrals and the NDDO 

approximation. The calculation was repeated exactly as above but 

the smaller two-electron integrals of the (iAjAlkB£B) type were 

estimated by their non-orthogona1 values increased or reduced by 

12%. The results were very close to those of the above calculation 

and so the calculatins described in the next chapter were done 

using the simpler procedure. 
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TABLE 1 

vlATER. Exact integrals over orthonormal hybrid basis. fUll 
calculation. SCF MO. 

hI h2 hI h2 11 12 k 

0.884 .0.024 0.992 -0.003 .0.026 -0.026 -0.007 

0.884 -0.003 0.992 -0.026 -0.026 -0.007 

1.116 0.025 0.024 0.024 0.006 

1.116 0.024 0.024 0.006 

E = -84.84 a.u. 2.000 -0.001 0.000 

NH 11 0.884 2.000 0.000 

NO = 8.232 2.000 

TABLE 2 

WATER. Exact integrals over orthonorma1 hybrid basis and NDDO 
approximation. SCF MO. 

hI h2 h1 °2 11 12 k 

0.893 .0.172 0.948 -0.050 0.172 0.172 -0.008 

0.893 .0.050 0.948 0.172 0.172 -0.008 

1.154 0.218 .0.120 -0.120 0.005 

1.154 ·0.120 -0.120 0.005 

E ••• 84.74 a.u. 1.954 -0.046 0.002 

NH • 0.893 1.954 0.002 

NO 11 8.308 2.000 
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TABLE 3 

WATER. Exact mtegrals over orthonormal hybrid basis and CNDO 
approximation. SCF MO. 

hI h2 El E2 11 12 k 

1.095 -0.308 0.914 -0.001 0.172 0.172 0.010 

1.095 -0.001 0.914 0.172 0.172 0.010 

0.954 0.358 -0.170 -0.170 -0.008 

0.954 -0.170 -0.170 -0.008 

E • ~83.98 au 1.950 0.050 -0.003 

NH 1:1 1.095 1.950 -0.003 

NO 1:1 7.908 2.000 

TABLE 4 

WATER. Exact integrals over orthonormal hybrid basis full 
calculation. SCOF. 

hl n2 El E2 11 12 k 

0.850 0.000 0.972 0.000 0.000 0.000 0.000 

0.850 0.000 0.972 0.000 0.000 0.000 

1.150 0.000 0.000 0.000 0.000 

1.150 0.000 0.000 0.000 

E • -84.88 a.u. 2.000 0.000 0.000 

NU • 0.850 2.000 0.000 

NO • 8.300 2.000 

- 94 -



TABLE 5 

WATER. Exact integrals over orthonormal hybrid basis and NDDO 
approximation. SCGF. 

n1 112 b 1 b2 11 12 k 

0.881 0.000 0.971 0.000 0.000 0.000 0.000 

0.881 0.000 0.971 0.000 0.000 0.000 

1.119 0.000 0.000 0.000 0.000 

.. 1.119 0.000 0.000 0.000 

E 11 -84.69 a.u. 2.000 0.000 0.000 

NH a 0.881 2.000 0.000 

NO • 8.238 2.000 

TABLE 6 

WATER. Exact integrals over orthonormal hybrid basis and CNDO 
approximation. SCGF. 

51 52 b1 D2 11 12 k 

1.040 0.000 0.976 0.000 0.000 0.000 0.000 

1.040 0.000 0.976 0.000 0.000 0.000 

0.960 0.000 0.000 0.000 0.000 

0.960 0.000 0.000 0.000 

E • .83.93 a. u. 2.000 0.000 0.000 

NH • 1.040 2.000 0.000 

NO • 7.920 2.000 
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TABLE 7 

WATER. Exact integrals over orthonormal hybrid basis and core 
approximation. SCF MO. 

nl n2 
0.884 -0.024 

0.884 

E • -84.83 a.u. 

NH 11 0.884 

NO :Ill 6.234 

°1 °2 

0.992 -0.004 

-0.004 0.992 

1.117 0.025 

1.117 

TABLE 8 

- -11 12 

-0.028 -0.028 

-0.028 -0.028 

0.025 0.025 

0.025 0.025 

1.999 -0.001 

1.999 

WATER. Exact integrals over orthonorma1 hybrid basis and point 
ch arge approximati on. SCF MO. 

0.955 

E • -84.09 a.u. 

NH 11 0.955 

NO • 6.152 

°1 °2 
0.983 -0.016 

-0.016 0.983 

1.076 0.026 

1.076 
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0.126 0.126 

0.126 0.126 

-0.117 -0.117 

-0.117 -0.117 

1.999 -0.030 

1.999 



TABLE 9 

WATER. Exact integrals over orthonormal hybrid basis and point 
charge approximation. (No Schmidt orthogonalisation to 
18 orbital.) SCF MO. 

Ii 1 Ii2 °1 °2 1. i2 1 

0.945 0.074 0.938 -0.054 -0.133 -0.133 

0.945 -0.054 0.938 -0.133 -0.133 

1.165 0.037 0.210 0.210 

E • -87.01 a.u. 1.165 0.210 0.210 

1.889 -0.111 

1.889 

TABLE 10 

ORBITAL ENERGIES (OF THE SCF MO CALCULATIONS) 

Point Charge Approx. 
Exact Effective (aa'lbb') 

Calculation Hamiltonian Schmidt No Schmidt Integrals only 
Orth. Orth. 

-20.501 -20.377 
-1.298 -1.301 -1.805 -2.440 -1.511 
-0.635 -0.636 -0.644 -0.629 -0.452 
-0.470 -0.469 -0.423 -0.529 -0.438 
-0.420 -0.420 -0.408 -0.435 .0.421 

0.391 0.391 0.506 0.316 0.356 
0.605 0.606 0.631 0.605 0.629 

- 97 -



. 

TABLE 11 

METHANE. Exact integrals over orthonorma1 hybrid basis complete 
calculation. SCF MO. 

hI h2 h3 h4 £1 

0.915 0.024 0.024 0.024 0.996 0.001 0.001 0.001 -0.008 
0.91$ 0.024 0.024 0.001 0.996 0.001 0.001 -0.008 

0.915 0.024 0.001 0.001 0.996 0.001 -0.008 
0.915 0.001 0.001 0.001 0.996 -0.008 

E III -53.45 a.u. 1.085 -0.024 -0.024 -0.024 0.008 

NH :I 0.915 1.085 -0.024 -0.024 0.008 
1.085 -0.024 0.008 

Ne III 6.340 1.085 0.008 
2.000 

TABLE 12 

METHANE. Exact integrals over orthonorma1 hybrid basis and NDDO 
approximation. SCF MO. 

hI n2 h3 h4 tl t2 t3 t4 It 

0.975 -0.035 -0.035 -0.035 0.998 -0.002 -0.002 -0.002 -0.008 
0.975 -0.035 -0.035 -0.002 0.998 -0.002 -0.002 -0.008 

0.975 -0.035 -0.002 -0.002 0.998 .0.002 -O.ooa 
0.975 -0.002 -0.002 -0.002 0.998 -0.008 

1.025 0.035 0.035 0.035 0.007 
E = -52.71 a.u. 1.025 0.035 0.035 0.007 

IlH = 0.975 1.025 0.035 0.007 
1.025 0.007 

NC III 6.100 1.999 
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TABLE 13 

METHANE. Exact integrals over orthonormal hybrid basis and CNDO 
approximation. SCF MO. 

hi h2 h3 hit - t2 t3 tit It tl 

1.101 -0.065 -0.065 -0.065 0.988 0.002 0.002 0.002 0.013 
1.101 -0.065 -0.065 0.002 0.988 0.002 0.002 0.013 

1.101 -0.065 0.002 0.002 0.988 0.002 0.013 
1.101 0.002 0.002 0.002 0.988 0.013 

0.899 0.065 0.065 0.065 0.002 
E = -52.38 a.u. 0.899 0.065 0.065 0.002 

NR = 1.101 0.899 0.065 0.002 
0.899 0.002 

NC = 5.798 2.000 

TABLE 14 

METHANE. Exact integrals over orthonormal hybrid basis. complete 
calculation. SCGF. 

hl h2 h3 hit tl t2 t3 tit It 

0.921 0.000 0.000 0.000 0.983 0.000 0.000 0.000 0.000 
0.921 0.000 0.000 0.000 0.983 0.000 0.000 0.000 

0.921 0.000 0.000 0.000 0.983 0.000 0.000 
·0.921 0.000 0.000 0.000 0.983 0.000 

0.921 0.000 0.000 0.000 G,"ooo 
E == -53.48 a.u. 1.079 0.000 0.000 0.000 
NH := 0.921 1.079 0.000 0.000 

1.079 0.000 
NC 1:1 6.316 2.000 

- 99 -



TABLE 15 

METHANE. Exact integrals over orthonormal hybrid basis and NDDO 
approximation. SCGF. 

hI n2 h3 nlf tl t2 t3 tlf It 

0.954 0 0 0 0.972 0 0 0 0 
0.954 0 0 0 0.972 0 0 0 

0.954 0 0 0 0.972 .0' 0 
0.954 0 0 0 0.972 0 

1.046 0 0 0 0 
E :::a -52.76 a.u. 1.046 0 0 0 

NH :11 0.954 
1.046 0 0 

1.046 0 
NC • 6.l84 2.000 

TABLE 16 

METHANE. Exact integrals over orthonorma1 hybrid basis and 
CNDO approximation. SCGF. 

nl n2 n3 nlf tl t2 t3 tlf It 

1.056 0 0 0 0.972 0 0 0 0 
1.056 0 0 0 0.972 0 0 0 

1.056 ' 0 0 0 0.972 0 0 
1.056 0 0 0 0.972 0 

0.944 0 0 0 0 
E :11 -52.41 a.u. 0.944 0 0 0 

NH III 1.056 0.944 0 0 
0.944 0 

NC • 5.776 2.000 
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TABLE 17 

METHANE. Gaussian approximation of integrals. SCF MO. 

hI n2 n3 nit °1 °2 °3 °4 It 

0~902 0.085 0.085 0.085 0.984 0.001 0.001 0.001 0.000 
0.902 0.085 0.085 0.001 0.984 0.001 0.001 0.000 

0.902 0.085 0.001 0.001 0.984 0.001 0.000 
0.902 0.001 0.001 0.001 0.984 0.000 

1.098 -.085 -.085 -.085 0.000 
E ::I -53.70 a.u. 1.098 -.085 -.085 0.000 
NH .. 0.902 1.098 -.085 0.000 

1.098 0.000 
NC III 6.392 2.000 

TABLE 18 

WATER. Gaussian approximation of integrals. SCF MO. 

hI n2 °1 °2 11 12 It 

0.931 -0.034 0.986 -0.009 -0.106 -0.106 0 

0.931 -0.009 0.986 -0.106 -0.106 0 
1.091 -0.012 0.100 0.100 0 

1.091 0.100 0.100 0 
E :11 -85.44 a.u. 1.978 -0.021 0 
NH III 0.931 

1.978 0 NC :I 8.138 
2.000 

- 101 -



TABLE 19 

WATER. Gaussian and point charge approximations. SCF MO. 

hI h2 D1 D2 -1 1 12 

1.009 0.076 0.984 -0.014 00.115 0.115 

1.009 -0.014 0.984 0.115 0.115 

1.020 -0.047 -0.122 -0.122 

E .. -84.69 a.u. 1.020 -0.122 -0.122 

NU • 1.009 1.971 -0.029 

NO = 5.982 1.971 

TABLE 20 

METHANE. Gaussian and NDDO approximations. SCF MO. .. 

hI h2 h3 hit b 1 b2 b3 bit it 

0.927 -0.025 -0.025 -0.025 0.996 -0.003 .0.003 -0.003 -0.009 
0.927 -0.025 -0.025 -0.003 0.996 -0.003 -0.003 -0.009 

0.927 -0.025 -0.003 -0.003 0.996 -0.003 -0.009 
0.927 -0.003 -0.003 -0.003 0.996 -0.009 

1.074 0.025 0.025 0.025 0.008 
E .. -52.62 a.u. 1.074 0.025 0.025 0.008 

NU • 0.927 1.074 0.025 0.008 
1.074 0.008 

NC = 6.296 2.000 
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TABLE 21 

WATER. Gaussian and NDDO approximations. SCF MO. 

hI h2 hI h2 11 12 It 

0.899 -0.133 0.942 -0.049 0.150 0.150 -0.007 

0.899 -0.049 0.942 0.150 0.150 -0.007 

1.135 0.267 -0.100 -0.100 0.005 

1.135 -0.100 -0.100 0.005 

E • -84.22 a.u. 1.966 -0.034 0.002 

NH =- 0.899 1.966 0.002 

NO • 8.202 2.000 
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TABLE 22 

WATER NON-COULOMB INTEGRALS OVER HYBRID BASIS 

Integral Exact Gaussian Approx. Mulliken Approx. 
Value le % Error le % Error 

h2h Ih Ih 1 .1757 .1717 - 2 .1791 2 
h2hlh2hl .0685 .0661 1 

- 3~ .0671 - 2 
b1h1hlhl .3617 .3267 -10 .3288 -12 

b Ih Ih2h 1 .1117 .1016 - 9 .1012 - 9 
b 1hlh2h2 .2111 .1961 - 7 .2108 0 

blhlblhl .2502 .2217 -11 .2035 -18~ 

b Ih2hlhl .1064 .1076 1 .0694 -35 
blh2h2hl .0373 .0382 3 .0281 -25 

b Ih~2h2 .0702 .0763 9 .0807 15 

b Ih 2b lh I .0814 .0795 - 2 .0477 -40 
b 1b 2b 1h 2 .0354 .0367 3~ .0141 -60 
b 1b 1h 2h 1 .2122 .2113 - 1~ .1950 - 9 
b1b1b1h 1 .4545 .4396 - 4 .4237 - 6! 
b 1b 1b 1h 2 .1465 .1539 5 .1071 -17 
b 2h 1b 1h 1 .0485 .0484 0 .0496 2 

b~lblh2 .0210 .0225 8 .0129 -40 
b 2h 1b 1b 1 .1055 .1112 5 .1028 2~ 

b 2h 2b 1hl .1428 .1250 -12 .1465 1 

b~2b Ib 1 .3252 .3070 - 6 .3310 2 
b 2b 1h2hl .0148 .0156 5 .0097 -35 
b2b lb lh l .0265 .0260 - 2 .0150 -45 
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TABLE 22 (CONTD.) 

Integral 
Exact Gaus si an Approx. Mulliken Approx. 
Value Bc % Error Bc % Error 

b 2b 1b 1h 2 .0281 .0294 5 .0042 -85 

~;lhlhih 1 .0838 .0913 9 .0959 14 

11hlh2hl .0295 .0312 5~ .0310 5 

11hlh2h2 .0661 .0715 7~ .0695 5 
1 1h 1b 1h 1 .0580 .0579 0 .0589 2 

1 1h Ib Ih2 .0144 .0164 14 .0144 0 

11h 1b 1b 1 .1260 .1331 5~ .1221 - 3 
11hlb2hl .0083 .0105 25 .0154 85 

11hlb~2 .0439 .0439 0 .0483 11 

1 1h 1b 2b 1 -.0121 -.0127 5 -.0008 -97 
1 1h 1b 2b 2 .1107 .1170 5 .1092 - 1 
11h 11 1h 1 .0384 .0404 6 .0203 -47 

11h2tlhl .0390 .0358 - 8 .0179 -55 
t 1b 1h 2h 1 .0014 .0011 -20 .0019 50 
1 1b 1b 1h 1 .0316 .0311 - 1 .0179 -45 
1 1b 1b 1h 2 .0152 .0156 3 .0011 -95 
11b Ib 2hl - .0121 -.0128 5 .0003 

11blb~2 -.0224 -.0231 3 -.0130 -42 
1 1b 11 1h 1 .0236 .0248 5 .0047 -75 
1 1b 11 1h 2 .0066 .0066 o~ .0000 -100 

1111h2hl .1826 .1800 - 1~ .1651 - 10 
111 1b 1h 1 .3171 .2986 - 6 .3263 3 
t 1t 1b 1h 2 .0865 .0912 6 .0907 5 
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TABLE 22 (CONTD.) 

Integral Exact Gaussian Approx. Mulliken Approx. 
Value & % Error & % Error 

1111R.lh1 .1678 .1764 6 .1293 -25 

12hll1h1 .0099 .0125 25 .0183 83 

12h 1 R. 1h2 .0038 .0113 200 .0159 300 

R.2h 111b 1 -.0145 -.0152 5 -.0009 -90 

12hll1b 2 -.0203 -.0215 6 -.0056 -75 

12hl R.1 11 .1035 .1092 5 .1072 3 

1 2b 11 1h 2 -.0203 -.0215 6 -.0056 -70 

R.2R.1 h2h 1 -..0116 -.0129 12 -.0093 20 

1 2R. 1b 1h 1 -.0264 -.0190 -28 -.0165 -40 

R. 21 1b 1h 2 -.0202 -.0215 62 -.0043 -80 

1211R.lh1 .0080 .0079 2 .0001 -100 

R.21211hl .1035 .1092 5 .1072 3 

k hlhlh1 .0318 .0266 -17 .0346 8 

k hlh2hl .0134 .0112 -Hi .0113 -15~ 

k h1h2,h2 .0307 .0262 -15 .0256 -16 

k h1b1h 1 .0257 .0203 -26 .0235 - 8 
k h 1b 1h2 .0082 .0072 -13 .0059 -30 

k h1b1b 1 .0681 .0537 -20 .0525 -22 
k h 1b 2hl .0076 .0068 -10 .0062 -17~ 

k h 1b 2h2 .0242 .0196 -20 .0199 -19 
k hlb 2b 1 .0003 .0005 40 .0008 150 
k h 1b 2b 2 .0655 .0525 -20 .0481 -35 
k h 1l 1h 1 .0090 .0082 9~ .0074 -16 
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TABLE 22 (CONTD.) 

Integral 
Exact Gaussian Approx. Mulliken Approx. 
Value & % Error & % Error 

k hlR.lh2 .0088 .0081 - 9 .0066 -25 
k hlR.lbl .0004 .0006 35 .0010 170 

k hlR.IR.I .0652 .0524 -20 .0479 -30 

k hlR.2R.I -.0010 -.0001 -90 -.0007 -30 

k h lk hI .0090 .0077 -15 .0060 -35 
k h2k hI .0090 .0077 -15 .0057 -35 
k b Ih2hl .0015 .0013 -15 .0013 -13~ 
k blblhl .0146 .0073 -50 .0080 -50 
k blblh2 .0090 .0042 -55 .0013 -85 

k blR.lhl -.0006 .0002 -60 -.0005 -25 

k blR.lh2 -.0033 -.0010 -70 -.0016 -50 
k b lk hI -.0042 -.0022 -45 -.0059 40 

k b lk h2 -.0056 -.0027 -50 -.0063 15 

k R.ltlhl .0078 .0039 -50 .0015 -85 
k k b 1h2 .1240 .1327 7 .1233 2 
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TABLE 23 

WATER COULOMB INTEGRALS OVER THE ORTHOGONALISED HYBRIDISED BASIS 

Integral Exa.ct Ga.ussian Approx. Mulliken Approx. 
Value & % Error & % Error 

hlhlhlhl 0.6520 0.6810 4~ 0.6760 4 
b 1b 1b 1b 1 1.0355 1.0100 - 2~ 1.0930 6 

R,1R,1R,1 1 1 0.9999 0.9955 -~ 1.0320 3 

h2h2hlh 1 0.2779 0.2810 1 0.2760 """ 1 
b 1b 1hlhl 0.4997 0.4996 0 0.5620 12 

b 1b Ih2h2 0.3980 0.3960 -~ 0.4140 4 

R,1R,lh l h l 0.3884 0.3850 - 1 0.3900 ~ 
R,1R,lb lb l 0.8001 0.7982 0 0.7960 -~ 
k k hlhl 0.4353 0.4261 - 2 0.4140 - 5 
k k b Ib 1 1.2152 1.2110 0 1.1830 - 3 
kk 1111 1.1364 1.1330 0 1.1360 0 
b 2b 2b 1b 1 0.8448 0.8420 0 0.8380 - 1 
b 1b 2hlh 1 0.0200 0.0180 -10 0.0388 95 
b 1b 2b 1b 1 0.0339 0.0290 -15 0.0654 95 
b 1b 2b 1b 2 0.0860 0.0842 - 3 0.1331 55 
R, lb 1hlhl 0.0262 0.0252 - 4 0.0411 60 

11 b 1h2h2 -.0165 -.0156 - 5 -.0347 110 
1 1b 1b 1b I 0.0407 0.0355 -12 0.0647 60 
R, lb 1b 1b 2 0.0009 0.0010 10 0.0020 115 
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TABLE 23 (CONTD.) 

Integral Exact Gaussian Approx. Mul1iken Approx. 
Value 8. % Error 8. % Error 

i. 1b Ib 2b 2 -.0211 -.0207 - 2 -.0297 30 

i. 1b 1 i. 1b 1 0.0788 0.0776 - 2 0.1012 32 

i. 1b 1 i. 1b 2 -.0123 -.0122 - 1 -.0116 7 
i. 1 i. 1b Ib 2 -.0340 -.0356 5 -.0420 24 

i. 111i. 1b 1 0.0285 0.0260 - 8 0.0488 67 

k b1h1h 1 0.0097 0.0142 45 0.0114 17 

k b 1h2h2 -.0029 -.0066 130 -.0013 -60 

k b1b1b 1 0.0199 0.0324 70 0.0372 90 

k b 1b 1b 2 0.0085 0.0122 50 0.0146 65 

k b 1b 2b 2 -.0117 -.0141 20 -.0036 200 

kb1i.1b 1 0.0102 0.0127 25 -.0028 -180 

k b 111b2 -.0087 -.0122 50 -.0119 45 
kb 111l1 -.0148 -.0141 - 5 -.0028 90 

k b1k b 1 0.0354 0.0418 26 0.0459 30 
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TABLE 24 

WATER. Mulliken approximation of integrals. SCF MO. 

h1 h2 °1 1>2 11 12 it 

0.728 -0.016 0.947 -0.020 0.120 0.120 -0.008 

0.728 -0.020 0.947 0.120 0.120 ~0.008 

1.294 0.038 -0.084 -0.084 0.006 

1.294 -0.084 -0.084 0.006 

E = -84.22 a.u. 1.978 -0.022 0.001 

NH = 0.728 1.978 0.001 

NO = 8.544 2.000 

TABLE 25 

METHANE. Mulliken approximation of integrals. SCF MO. 

h1 h2 h3 hit 40 1 40 2 °3 bit it 

0.894 0.019 0.019 0.019 0.994 0.001 0.001 0.001 ·0.020 
0~894 0.019 0.019 0.001 0.994 0.001 0.001 -0.020 

0.894 0.019 0.001 0.001 0.994 0.001 -0.020 
0.894 0.001 0.001 0.001 0.994 -0.020 

1.107 -0.018 -0.018 -0.018 0.019 
E • -52.59 a.u. 1.107 .0.018 -0.018 0.019 
NH III 0.894 1.107 -0.018 0.019 

1.107 0.019 
NC III 6.428 2.000 
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TABLE 26 

WATER. 14u1liken and NDDO approximations. SCF MO. 

hl h2 °1 °2 11 12 It 

0.690 0.015 0.931 -0.015 0.140 0.140 0.002 

0.690 -0.015 0.931 0.140 0.140 0.002 

1.338 0.014 -0.099 -0.099 -0.002 

1.338 -0.099 -0.099 -0.002 

E 18 -85.02 a.u. 1.973 -0.029 0.000 

NR • 0.690 1.973 0.000 

NO • 8.622 2.000 

TABLE 27 

14ETHANE. Mulliken and NDDO approximations. SCF MO. 

h1 h2 h3 hit °1 °2 °3 0,+ It 

0.592 0.078 0.078 0.078 0.901 0.027 0.027 0.027 0.038 
0.592 0.078 0.078 0.027 0.901 0.027 0.027 0.038 

0.592 0.078 0.027 0.027 0.901 0.027 0.038 
0.592 0.027 0.027 0.027 0.901 0.038 

1.409 -0.077 -0.077 -0.077 -0.032 
E • -53.94 a.u. 1.409 -0.077 -0.077 -0.032 

NR • 0.592 1.409 -0.077 -0.032 
1.409 -0.032 

Ne • 7.631 1.995 
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TABLE 28 

COULOMB INTEGRAIS OVER HYBRID BASIS 

Non-Orth Orth Non-Orth Orth 
% Ditt. 

Integral H2O H2O CHit CHit H2O CR4 

hlhlhlhl 0.6250 0.6523 0.6250 0.6943 42 12 

h2hillhl 0.3313 0.2779 0.2891 0.2432 -16 -16 

b1b1h1h l 0.5912 0.4997 0.5464 0.4791 -15 -12 

blblh2~2 0.4483 0.3980 0.3765 0.,3441 -11 - 9 

b1b1b1b l 0.9760 1.0355 0.7063 0.7726 6 9 

b 2b Ihlhl 0.0260 0.0200 0.0232 0.0283 -25 22 

b 2b 1b lb l 0.0295 0.0339 0.0209 0.0282 14 36 

b 2b 1 b 2b 1 0.0735 0.0860 0.0515 0.0702 17 37 
b 2b 2b lb l 0.7756 0.8848 0.,463 0.'6285 9 15 

II b 1 hlhl 0.0309 0.0262 -16 
t l b 1h 2h 2 -.0210 -.0165 -23 

tlblblb l 0.0350 0.0407 16 

i. lb 1b 2b 1 -.0008 0.0009 
11b 1b 2b 2 -.0275 -.0211 

. 
-24 

tlbll l b l 0.0731 0.0788 8 
t l b 2t l b l -.0122 - .0123 0 
i. 1i. 1h 1h 1 0.4407 0.3884 -12 
l 1i. 1b 1b 1 0.7657 . 0.8001 4! 
1 11 1b 2b 1 -.0343 -.0340 - 1 
ll l 11111 0.9969 0.9999 0 
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TABLE 28 (CONTD.) 

Non-Orth Orth Non-Orth Orth % Ditt. 
Integral 

H2O H2O CHit CHit H2O CHit 

1211h 1h 1 -.0246 -.0185 -24 

1211b 1b 1 -.0319 -.0298 - 7 

1211b2b l -.0383 -.0414 8 

1211 b2b 2 -.0391 -.0298 -24 

121112b 1 -.0146 -.0159 9 

12111111 0.0265 0.0255 -4 

12111211 0.0680 0.0655 - 4 

12121111 0.7511 0.7485 0 

12121211 0.0265 0.0255 - 4 

k b 1hlhl 0.0097 0.0082 0.0102 0.0088 -15 -14 

k b 1h2h2 -.0029 -.0025 -.0039 -.0033 -14 -15 

k b 1b 1b 1 0.0199 0.0220 0.0138 0.0153 10 11 

k b 1b 2b 1 0.0085 0.0104 0.0052 0.0071 21 38 
k b 1b 2b 2 -.0117 -.0144 -.0096 -.0137 25 40 

k b 111b 1 0.0109 0.0117 5 

kb 111b2 -.0087 -.0104 22 

k b 11111 -.0148 -.0165 11 

k b 11211 -.0104 -.0117 12 

k b1k b 1 0.0355 0.0440 0.0247 0.0358 24 44 

k b 2k b 1 0.0018 0.0129 0.0074 . 0.0126 28 40 

k 11h1hl -.0035 -.0025 -28 
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TABLE 28 (CONTD.) 

Non-Orth Orth Non-Orth ·Orth % Dirr. 
Integral 

H2O H2O CH4 CH4 
H2O CH4 

k l1b 1b 1 - .0139 -.0160 16 

k lIb 2b 1 -.0087 -.0101 11 

k 11 lIb 1 0.0054 0.0053 - 2 
k 111111 0.0201 0.0197 -1~ 

k 111211 0.0064 0.0056 -13 

k l1k b 1 0.0108 0.0144 35 

k l1k 11 0.0393 0.0415 5 

k 12k 11 0.0064 0.0151 

k k h Ih 1 0.5099 0.4353 0.4589 0.3986 -15 -13 

k k bIb 1 1.1304 1.2152 0.8081 0.9101 7 13 
k k b 2b 1 0.0009 0.0139 0.0006 0.0166 

k k l1b 2 0.0006 0.0188 

k k 1111 1.1307 1.1364 ~ 
k k 1211 0.0021 0.0078 

k k k bl -.2040 -.2335 -.1583 -.1976 15 26 

k k k 11 -.2440 -.2594 10 
k k k k 4.8125 4.8125 3.5625 3.5625 0 0 
b3b lb 2b l -.0056 -.0061 9 
b 3blb2b2 -.0248 -.0242 -2~ 

b3b 2hlhl -.0240 -.0300 25 
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TABLE 29 

METHANE. In te grals as described in text. SCF MO. 

hI h2 h3 h4 tl t2 t3 t4 it 

0.942 -0.049 -0.049 -0.049 00.998 -0.005 -0.005 -0.005 -0.003 
0.942 -0.049 -0.049 -0.005 0.998 -0.005 -0.005 -0.003 

0.942 -0.049 -0.005 .0.005 0.998 -0.005 .0.003 
0.942 -0.005 -0.005 -0.005 0.998 .0.003 

1.058 0.049 0.049 0.049 0.002 
E = -52.79 a.u. 1.058 0.049 0.049 0.002 

NH ... 0.942 1.058 0.049 0.002 
1.058 0.002 

NC == 6.232 2.000 

TABLE 30 

METHANE. Integrals as described in text. SCOF. 

hI h2 h3 h4 - t2 t3 t4 It tl 

0.917 0.000 0.000 0.000 0.968 0.000 0.000 0.000 0.000 
0.917 0.000 0.000 0.000 0.968 0.000 0.000 0.000 

0.917 0.000 0.000 0.000 0.968 0.000 0.000 
0.917 0.000 0.000 0.000 0.968 0.000 

1.083 0.000 0.000 0.000 0.000 
E .. -52.84 a.u. 1.083 0.000 0.000 0.000 

NH .. 0.917 1.083 0.000 0.000 
1.083 0.000 

NC • 6.334 2.000 
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CHAPTER SIXt 

FINAL CALCULATIONS 

At the end of the last chapter an empirical scheme was 

proposed for the estimation of the larger two-electron integrals 

over an orthogonal hybrid basis. The integrals were estimated 

by a procedure based on the study of the effects of symmetric 

orthogonalisation on integrals over a non-orthogonal hybrid basis, 

for the water and methane molecules. The method proposed for the 

approximation of the integrals over an orthogonal basis from the 

integrals over a non-orthogonal hybrid basis was: 

(a) The NDDO approximation is used. that is only integrals of 

the form (iAjAlkBIB) are given non-zero values. Table 23 

gives some comparisons of integral values of the non-

coulambic type over a hybrid and an orthogonal hybrid basis. 

for the water molecule. Comparison with Table 28 of Chapter 

5 shows that the largest of these integrals over an orthogonal 

basis are much smaller than the largest of the integrals of the 

form (iAJAlkBiB) for i , j and/or k , t 

tThis Chapter closely follows the presentation given in a joint paper 
by Cook, Hollis and McWeeny (submitted for publication in Molecular 
Physics) but also presents new and independent calculations on other 
molecules. 
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(b) (-:A-:AI":'B":'B). bt· d f th d·" t 1 1 1 J J 15 0 alne rom e correspon lng In egra over 

( .A.AI·B.B) b· ·"t b 12% the non-orthogonal bases 1 1 J J Y lncreaslng 1 yo 

if A=B and decreasing by 12% if AIB and A and 13 are near 

neighbours. " -:A ":'A However, lf 1 = k. n or t and J = k. n or 1 

(where k. n. t denote 15, pi and lone pair orbitals respectively) 

then (iAiAljBjB) takes its non-orthogonal value. 

(c) All other integrals of the form (IAJAlkBiB) take the value of 

the corresponding inuegral over the non-orthogonal basis 

Two-electron integrals estimated in the above manner and exact 

one-electron integrals over the orthogonal hybrid basis were used 

in the last chapter to perform SCF NO and SCGF calculations on methane. 

The results were very good for methane and so the scheme was examined 

for a larger system. 

The two-electron integrals over the orthogonal hybrid basis 

were calculated for ethylene, using the Mulliken approximation for 

the estimation of the many-centre two-electron integrals over non-

orthogonal hybrids (the one- and two-centre integrals were calculated 

exactly), followed by transformation' to an orthogonal basis. Although 

the integrals over the orthogonal basis are not accurate, it has been 

seen in Chapter 5 that the larger integrals of the form (iAIAIJAJA) 

are reasonably close to the exact values. So these integrals can 

probably be used to give a general idea of the effect of orthogonalisation. 
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The two-electron integrals over the non-orthogonal hybrid basis 

, 'Tabl 1 l' 1 f th (,A,A1,A,A) t are glven ln e; on y lntegra s 0 ell J J ype are 

given (it has been pointed out in Chapter 5 that the effect of 

scaling the smaller non-orthogonal integrals, ln the methane calculation, 

was small). It can be seen from Table 1 that the effect of 

orthogonalisation, in this molecule, is remarkably similar to 

the effect in the water and methane molecules. 

Results 

The procedure outlined above, for the approximation of 

integrals, was next used to perform calculations on the hydro-

carbons, ethylene, acetylene and ethane and on two systems containing 

a heteroatom, forma.ldehyde and hydrogen cyanide. 

Ethylene 

A calculation has been performed on ethylene using the 

following coordinate system (in a.u.): C-C =2.55116 a.u. 

x y z 

Cl -1.27558 0 0 

C2 1.27558 0 0 

HI -2.286595 1.75113 0 

H2 -2.286595 -1.75113 0 

H3 2.286595 1.75113 0 

H4 2.286595 -1.75113 0 
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goskowitz and Harrison(l} have given very extensive 

results for ethylene using various Gaussian basis sets; up to 

forty basis orbitals have been used. These very accurate cal-

culations are useful for purposes of comparison. The approximate 

results are compared below with the calculation using the largest 

Gaussian basis set (40 orbitals). 

The electronic structure of ethylene can be described 

as resulting from double occupation of eight 1'40's belonging to the 

irreducible representation of the group D • The symmetry of the 
2h 

HO's for ethylene is shown in the table below. The ground state 
1 

configuration ( Ag) of ethylene is 

The orbitals b b
2 

are pi bonding and antibonding orbitals. 
lu g 

The other MO's describe the a-core. 

In the table below the SCF MO orbital and electronic 

energies are given: 
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M.O. Gaussian Approximate 

I 
-11.2539 -10.994 a g 

I 
-11.2526 -10.993 b s u 

2a -1.0584 -1.017 g 

~3U -0.8067 -0.934 

I 
b2U -0.6104 -0.375 

3a -0.5829 -0.356 g 

Ib 
19 

-0.5174 -0.355 

I 
b Iu -0.3814 -0.173 

Ib 
2g 0.1518 0.282 

Electronic -111.2024 -110.567 Energies 

It can be seen that the order of the energy levels is 

3 the same as the accurate calculation except that the a
g 

and 

Ib2 orbitals are in a different order. They are however almost u . 

degenerate in the approximate calculation. By Koopmants theorem 

the ionisation potential (lP) is given by minus the energy of the 
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highest occupied orbital. The experimental IP is 0.386. The 

Gaussian calculation gives a very good estimate of this quantity 

- 0.381 a.u. - but the approximate calculation gives a very poor 

one - 0.173 a.u. This result is disappointing. since in this 

case the NDDO approximation does not give results close to those of 

exact calculations. A similar discrepancy is seen. for formaldehyde. 

later. though it should be noted that in this case the use of the 

CNDO approximation gives extremely bad results. These results are 

probably due to the cumulative effect of neglecting so many small 

integrals giving poor absolute energy values. This is less likely 

to affect the spacing of the levels (i.e. the relative values): thus 

the higher levels exact and approximate are almost brought into 

coincidence if the energy zero for the latter is shifted by about 

0.15 a.u. The discrepancies for bonding and anti-bonding partners 

are opposite in magnitude; this could be due to a poor a value 

(resulting from neglect of integrals in defining the SCF Hamiltonian). 

All the Gaussian calculations show well-defined a-n separations. as 

does the approximate calculation. The Gaussian calculation using 

40 orbitals predicts a separation of 0.136 a.u. and the approximation 

calculation 0.181 a.u. 

The predicted charge densities. the gross atomic 

populations (N) and the overlap popu1ations (n) are given in the 

table below: 
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Gaussian Approximate Approximate 
(SCFMO) (SCGF) 

N(C} 6.330 6.407 6.368 

N(H} 0.835 0.796 0.816 

n{C -C ) a a 0.943 0.893 0.990 

n(C-H) 0.839 0.948 0.960 

It can be seen that the charges are reasonably close to those pre-

dicted by the calculation using a very large set of Gaussian 

orbitals. The complete density matrices for the SCF MO and the 

SCGF calculations are given in Tables 2 and 3. 

Acetylene 

A calculation has been performed on acetylene using 

RcC III 2.268 a.u. and RCR III 2.004 a.u. A minimal basis calculation 

using Slater orbitals has been performed by McLean (2) and a 

Gaussian calculation using 34 basis functions has been performed 

by Moskowitz(3}. The orbital and electronic energies for the 

approximate SCF MO calculation are compared with those from the 

exact calculations in the table below: 
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Gaussian Slater Approximate 

la -11.265 -11.400 -11.108 g 
la -11.261 -11.397 -11.106 u 
20 -1.042 -1.041 -0.945 g 

20 
u -0.759 -0.776 -0.663 

30 -0.671 g -0.682 -0.613 

I1T -0.402 -0.441 -0.267 u 

Electronic -101.479 -101.283 -101.040 

It can be seen that the order of the energy levels for the 

approximate calculation is the same as in the exact calculations. 

The experimental ionisation potential is 0.419 a.u. As in ethy­

lene the approximate calculation does not give a good eaimate of 

this. Again the a-1T separation predicted by the approximate 

calculation. 0.346 a.u •• is greater than that predicted by the 

exact calculations, 0.268 a.u. (Gaussian) and 0.239 a.u. (Slater). 

The predicted gross atom populations are given in the table below: 
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Gaussian Slater Approximate Approximate 
(SCFMO) (SCGF) 

N{H) 0.795 0.775 0.716 0.755 

N(C) 6.205 6.225 6.283 6.245 

The atom populations predicted by the approximate method are 

not as close to those predicted by the exact calculation as they 

are in ethylene. but they are still reasonable. The complete 

density matrices for the SCF MO and SCGF calculations are given in 

Tables 4 and 5. 

Ethane 

A calculation on ethane was performed using RCH • :!.286592 

and RCC • 2.910212 a.u. (1.54 aO). The coordinate system is given 

in the table below: 

Atom x Y z 

Cl -1.455106 0 0 

C2 1.455106 0 0 

H1 -2.148013 0 -1.959837 
H2 -2.148013 1.697270 0.979918 

H3 -2.148013 -1.697270 0.979918 
H4 -2.148013 0 1.959837 

H5 -2.148013 -1.697270 -0.979918 
H6 -2.148013 1.697270 -0.979918 
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A minimal basis calculation using Slater orbitals has been 

performed by Pitzer and Lipscomb(4). The orbital and electronic 

energies for the approximate SCF MO calculation are compared with 

those for the exact calculations in the table below: 

Exact Approximate 

1 a1g -11.346 -11.040 

1 a2U -11.346 -11.039 

2 a 1g -1.040 -1.240 

2 a2u -0.859 -1.134 

la 
u -0.627 -0.358 

3 a1g -0.536 -0.357 

la g -0.515 -0.346 

Electronic -120.923 -120.255 

The order of the energy levels for the approximate calcula­

tion is the same as in the e~act calculation though the absolute 

energies are not very close. The predicted gross atom populations 

for the exact calculation and for the approximate calculations are 

gi ven below: 
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Exact Approximate Approximate 
(SCF MO) (SCGF) 

N(H) 0.881 0.890 0.814 

N(C) 6.339 6.321 6.311 

The atom populations predicted by the approximate methods 

are very close to those predicted by the exact calculation. The 

complete density. matrices for the SCF MO and SCGF calculations are 

gi ven in Tables 6 and 1. 

Formaldehyde 

Exact :i1tegrals over an AO basis set were available from 

previous work ( 5 ). The following bond dlslBnces. bond angles and 

orbi tal exponents were used: 

RCO • 2.30 a.u. LHCIi • 1200 

1.2 

1.625 

The results of exact SCF MO and SCGF calculations are given in 

Tables 8 and 9. As expected the SCGF calculation again gives a 

lower total electronic energy than the SCF MO method. As in 

previous exact calculations on formaldehyde the 1f-bond is slightly 
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polarised in the C-N direction. SCF MO calculations were also 

carried out using exact integrals and the NDDO and the CNDO 

approximations. As pointed out in Chapter 5. the CNDO calculation 

gi ves a very large bond order between the two hydrogen atoms and 

also the ~-bond is now extrmely polar in the C-N direction. These 

drawbacks do not occur in the NDDO calculation, though as in the 

CNDO calculation there is a reasonably large bond order between 

the sP2 orbital on carbon directed towards oxygen and the hydrogen 

atoms • 

As noted earlier in this chapter, the energy of the hignest 

occupied orbital is considerably less when the NDDO approximation 

is used than in the complete calculation. Table 12 gives the 

orbital energies for the full calculation and the calculations 

employing the NDDO and CNDO approximations. It can be seen that 

the energy of the hignest occupied orbital using the CNDO approxi­

mation is very poor indeed and is rot very good using the NDDO 

approximation. In fact ~8' the highest occupied orbital, which 

in the exact calculation consists almost entirely of a lone pair 

on the oxygen atom, is no longer a lone pair orbital in the 

approximate calculations. 

The two-electron integrals of the form (iAiAljBjB) over a 
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non-orthogonal and an orthogonal hybrid basis are. given in Table 

13. It can be seen that these integrals fit in very well with 

the scheme proposed for the estimation of two-electron integrals 

over an orthogonal hybrid basis from the corresponding integrals 

over the non-orthogonal basis. The results of SCF MO and SCGF 

calculations using this scheme are given in Tables 14 and 15. 

For purposes of comparison wave functions have also been calculated 

, d S ' t' (6,7) d h SCF M uSlng the Pople an antry approxlma lons an t e 0 

NDDO method. Two methods have been used, denoted by Pople and 

Santry as CNDO/l and CNDO/2, Which differ slightly in the approxi-

mations used to estimate the diagonal matrix elements of the one-

electron Hamiltonian. The results of these calculations are given 

in Tables 16 and 17. These approximate calculations were carried 

out using a hydrogen orbital exponent of 1.2, so that the results 

could be compared with those of the calculations using exact 

integrals. The gross atom populations predicted by the exact and 

approximate calculations are given below: 
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N(H) N(e) N(O) 

Exact calculation SCGF 0.892 6.169 8.047 

Exact calculation SCF MO 0.937 6.122 8.014 

Exact calculation SCF t.1O (NDDO) 0.876 6.224 8.020 

Exact calculation SCF MO ( CNDO) 0.822 6.565 7.792 

This work SCGF 0.805 6.089 8.301 

This work SCF MO 0.766 6.207 8.221 

Pople and Santry CNDO/l 1.057 5.882 8.004 

Pople and Santry CNDO/2 1.011 5.791 8.186 

It can be seen that the scheme proposed in this work gives 

a low hydrogen atom population and a high charge on the oxygen 

atom. while Pople and Santry's method overestimates the hydrogen 

atom charge and gi ws a low carbon atom population. 

Hydrogen Cyanide 

Calculations have been carried out on hydrogen cyanide using 

the following bond distances and orbital exponents: 

RCN == 2.1872 a.u. RCH == 2.0070 a.u. 

1;1Sh == 1.0 

1;16 • 5.7 r; • I; == 1.625 
c 2sc 2pc 
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The results of approximate SCF MO and SCGF calculations. 

estimating the two-electron integrals in the manner described at 

the start of the chapter, are given in Tables 18 and 19. Results 

of SCF MO calculations using Pople and Santry' s CNDO/l and CNDO/2 

scheme are given in Tables 20 and 21. The gross atom populations 

predicted by the approximate calculations are given in the table 

below. The populations predicted by an exact calculation using 

Slater orbitals and the coordinates and exponents given above 

(MCLean(8» are also given. 

N(H) N(C) N(N) 

Exact Calculation 0.761 6.156 7.082 

This work (SCF 1>10) 0.685 6.139 7.176 

This work (SCGF) 0.682 6.091 7.227 

CNDO/l 0.926 6.099 6.975 

CNDO/2 0.982 5.912 7.105 

The method proposed in this work overestimates the nitrogen 

atom population while Pople and Santry's method gives a very high 

charge on the hydrogen atom. 

- 130 -



Discussion 

As expected, the total electronic energy of all the calcula.-

tions is quite close to that reported for the full calculation. 

The charges on the hydrogen atoms calculated using the approximate 

method described at the start of this chapter are given in the 

table below. For comparison the charges calculated by exact 

minimal basis SCF MO calculations, by Pople and Segal's SCF MO 

CNDO/l method, and by Hoffman 's (9) extended HUckel method are also 

given. 

CH4 C2H6 C2H4 C2H2 CH 2 0 HCN 

Exact calculation 0.916 0.887 0.835 0.775 0.900* 0.761, (SCF MO) 

This work (SCFMO) 0.942 0.890 0.800 0.716 0.766 0.685 

This work (SCGF) 0.920 0.874 0.816 0.755 0.805 0.682 

Pople and Se gal 's 0.965 0.966 0.954 0.893 0.958 0.847 CNDO/l 

Extended Huckel 0.867 0.881 0.887 0.843 

* See reference 10 

+ 

the C-H bond polarities are all C-H and tha.t the ma.gnitude of the 

polarity increases along the series. the hydrogen atom becoming 
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progressively less shielded by electrons. While this is known to 

be the correct trend for the last three members of the series, 

less is known about the relative polarities of the CH bonds in 

methane and ethane. The full non-empirical calculation indicates 

that the ethane bond is the more polar. and this result is 

reproduced by the present calculations. The results of Pople and 

Santry and Segal predict the oppoai te trend. The only physical 

evidence available suggests that the ethane bond is in fact the 

more polar, the ethane proton resonance occurring at lower field 

than in methane (11). This fact indicates, assuming that anisotropy 

effects for methane and ethane are small, that the protons in 

ethane are less shielded by electrons than those in methane. 

The results of the Huckel calculations are not in agreement 

wi th the exact minimal basis results or with experimental evidence 

Thus the Huckel results would predict that ethylene would lose a 

proton less readily than ethane and methane which is certainly 

contrary to experimental evidence. It also predicts that the 

hydrogen atom charge in methane is less than that in ethane, con-

trary to the evidence ot N14R spectra given above. 

In hydro~n cyanide the present method gives an atom 

population on hydrogen close to exact result, but in formaldehyde 
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the predicted charge on hydrogen is much lower than in the exact 

calculation. 

Comparison of SCF MO and SCGF methods 

From the results given above it can be seen that the elec­

tronic energies and electron distributions in polyatomlc molecules, 

as predicted by the SCF MO and SCGF calculations, are usually in 

close agreement. In this section the two methods are compared 

in detail. 

When the molecule contains one or more ~ bonds the SCaF 

method predicts a much lower 'If bond order than the SCF MO calcula­

tion. At first sight this difference is surprising. It should be 

remembered, however, that when the bond order is defined formally 

as an Off-diagonal density matrix element (and not as a ratio 

between the values of some index for the given bond and for that 

in ethylene) there is DO reason for close agreement. For ethylene 

the w-bond order (density matrix element) is unity in an MO calcu­

lation based on orthogonal Aa's; with non-orthogonal AO's an MO 

treatment gives (l+S)-l while Heitler-London theory gives S(l+S)-l. 

In the scaF calculation full configuration interaction is admitted 

for each electron pair and the optimum bond order is closer to the 

Reitler-London value, although the present calculation employs 

orthogonal orbi tals a similar result is obtained, the Rei tler-London 
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value being lower than the MO value by a factor close to the over-

lap integral for the non-orthogonal AO's. So for the SCGF method 

the ratio P Ip (ethylene), which is essentially a fractional 
rs cc 

double-bond character, should be compared with the '11' bond order 

in the SCF MO calculation. The low '11' bond index in the SCGF 

calculations thus merely reflects the relatively low overlap 

integral for '11' type AO's. 

A noteworthy feature of the SCGF calculation is the simple 

form of the density matrix, whose non-zero elements refer only to 

real chemical bonds. With a realistic choice of hybrids, the 

wave function. besides being of considerable accuracy, conforms 

closely to the description adopted in qualitative valence theory, 

each bond being associated with a strongly over-lapping pair of 

orbi tals. The MO density matrix, on the other hand. contains many 

small off-diagonal elements connecting orbitals on different atoms.: 

physical meaning has sometimes been attributed to these elements 

(e.g. in the interpretation of NMR coupling conSBnts). but in fact 

they are only very indirectly related to the energy and it is 

possible that their values are often completely spurious. The so-

called "long-range bond orders" between non-bonded atoms must 

occur in any MO calculation in order that the matrix R (.~p) 
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m~ be idempotent, and are thus related to the orthogonality 

requirement for MO's; their values fluctuate widely in SCF calcula­

tions (cf Tables 8 - 11). without appreciable effect' on the energy, 

and their physical significance appears to be dubious. It is of 

course true that the SCaF calculation will lead to good result~ 

only with well-chosen hybrids and that for some molecules (e.g. 

those with ''bent'' bonds) this choi ce may not be obVious. This 

matter has been investigated in recent work(12) , but for the 

molecules discussed here the prescription for setting up ortho-

normal hybrids is reasoanbly satisfactory. 

Perhaps the most important advantage of the SCaF method, 

for present purposes, is its particular suitability for semi-

empirical development: for the only one-electron matrix elements 

required are the diagonal elements and those that link bonded 

pairs of atoms. Thus, in ethane, only two distinct et s are needed, 

as compared with 22 in the SCF MO calculation. This may not reduce 

the calculati'on of the one-electron Hamiltonian very much in non-

empiriCal work, but is clearly an important factor when such 

quanti ties are to be adopted as empiriCally fitted parameters. 

In this connection, Table 22 is of considerable interst. It shows, 

for example, that the approximation of making S's (by implication 
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over orthogonal orbitals) proportional to overlap integrals (over 

corresponding non-orthogonal orbitals), which is commonly used in 

semi-empirical work, has little justification; thus < a Ihlhl > 
Cl 

has almost the same value as < bllhlh1 > while the corresponding 

overlap integrals differ by a factor of almost five. 

Finally, it should be noted that the SCGF method lends 

itself to calculations on large molecules, with a minimum of corn-

putational effort. A conventional SCF MO calculation for a system 

with, say, 50 basis orbitals, requires a fairly large computer and 

(even assuming reasonable convergence of the process) is expensive 

in computing time. The SCGF calculation, on the other hand, 

requires only the diagonalisation of one small matrix (in the 

present case 3x3) for each electron pair, and is a rapidly con-

vergent process. Moreover, besides being relatively small, the 

SCGF computing time is roughly linear in the number of distinct 

electron groups. while that for an SCF 1-10 calculation is at least 

cubic in the number of orbitals used. The calculations reported in 

this work were in fact performed using an IBM 1620 computer, the 

computing times for the two types of calculation being in the 

ratio 40:1 for the larger molecules. 
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Conclusions 

The ma~n conclusions that emerge from this research are as 

follows: 

1) By using a sui table set of orthonormalised hybrid orbi tale 

it is permissible to neglect all two-electron integrals 

except the one- and two-centre coulomb integrals and the 

one-centre exchange integrals. T~e neglected integrals 

correspond formally to those which are discarded, without 

justification, when defined over non-orthogonal AO's in 

the NDDO scheme; their values are in fact so small that 

their neglect does not significantly affect the results 

of complete many-electron calculations. Those integrals 

which are not neglected must be estimated rather accurately: 

the invariance requirement of Pople, Santry and Segal, dis­

cussed in Chapter 2. whi ch would force equali ty upon 

various groups of integrals, is too restrictive for this 

purpose and must be rejected. 

2) The one-electron integrals over the orthonormalised hybrids 

must be calculated fairly accurately in order to reproduce 

the results of complete non-empirical calculations; it is 

not possible, for example, to neglect three-centre 
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potential energy integrals over the non-orthogonal AO's 

prior to orthogonalisation. 

3) The results of SCF NO and scaF calculations are in fairly 

close agreement for the molecules considered so far, the 

scaF results being slightly the better at least for the 

ground states. The SCaF method has considerable computa-

tional advantages and leads to a somewhat simpler descrip-

tion of the electron distribution, emphasising the 

localised-bond picture and being applicable without 

difficulty (in its semi-empirical form) to much larger 

molecules. 

4) In the molecules so far considered, satisfactory results 

are obtained by using hybrids that point along the bonds. 

In cases where there is no intui ti vely obvious choice of 

hybrid orbitals (as in "strained" molecules where it is 

not alw~s possible to find mutually orthogonal hybrids 

of this kind unless the bonds are regarded as bent) 

there is an important optimisation problem, namely to 

find the optimum set of hybrids with which to construct 

an scaF wave function. 

The methods developed in this work are now being applied to a vari­

ety of larger molecules, including strained systems for which the 

problem of optimising the hybrids is receiving attention(12). 
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TABLE 1 

ETHYLENE - COULOMB INTEGRALS OVER HYBRID BASIS 

TWO-CENTRE INTEGRALS 

Integral Non-Orthogona1 Orthogonal % Dirr. 

h~~lhl .280 .229 -18 

°101h1h 1 .367 .332 -10 

°101h~3 .306 .256 -17 

b1b1h1h 1 .559 .518 - 7 

b 1b 1h2h2 .367 .327 -11 

b 1b 1h 3h 3 .241 .234 - 3 
b 1b 1h 4h 4 .214 .190 -11 

1fl1flhlhl .406 .370 - 9 

1f11flh~3 .242 .221 - 9 

klklh Ih 1 .467 .386 -17 

klklh~3 .251 .229 - 8 

° 2° 2° 1 ° 1 .643 .637 - 1 

°20 2b 1b 1 .411 .389 - 6 
°2021f11fl .457 .433 - 6 
°20 2k lk l .545 .417 -13 

b 3b 3b Ib 1 .289 .305 8 

b3b 3b 2b 2 .269 .258 - 4 
1f21f 2b 1b 1 .303 .302 0 

1f21f21fl1fl .342 .330 - 3 
k2k 2b 1b 1 .322 .323 0 
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TABLE 1 (CONTD.) 

ETHYLENE - COULOMB INTEGRALS OVER HYBRID BASIS 

ONE-CENTRE INTEGRALS 

Integral Non-Orthogonal Orthogonal % Di:f':f'. 

h Ih Ih Ih 1 .625 .690 10 

°1°1°1°1 .717 .847 17 
b 1b 1b 1b 1 .717 .849 17 

'11'1'11'1'11'1'11'1 .636 .647 2 

klklklkl 3.562 3.562 0 
b 1b 10 1o1 .527 .594 13 

'11'1'11'1°1°1 .572 .627 10 

'II'l'll'1b lb l .512 .625 10 

b 2b 2b Ib 1 .527 .579 10 

k1k1010 1 .808 .906 12 

k 1k 1b 1b 1 .808 .896 11 

klk1'11'1'11'1 .807 .816 1 
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TABLE 2 

ETHYLENE - INTEGRALS AS DESCRIBED IN TEXT. SCF MO. 

hI -o} '6 2 
-1rl b 1 h2 h3 h4 k} -

°2 b3 b4 1r2 K2 

0.796 0.013 -0.056 0.064 0.226 0.948 -0.020 0.000 -0.004 0.001 -0.013 0.013 0.000 -0.001 

0.796 0.064 -0.056 0.226 -0.020 0.948 0.000 -0.004 0.001 0.013 -0.013 0.000 -0.001 

0.796 0.013 0.001 -0.013 0.013 0.000 -0.001 0.226 0.948 -0.020 0.000 -0.004 

0.796 0.001 0.013 -0.013 0.000 -0.001 0.226 -0.020 0.948 0.000 -0.004 

1.019 0.041 0.041 0.000 0.005 0.893 -0.219 -0.219 0.000 -0.002 

E = -110.57 a.u. 

NH = 0.796 

Ne = 6.407 

1.194 -0.023 0.000 

1.194 0.000 

1.000 

0.003 -0.219 0.109 -0.011 0.000 

0.003 -0.219 -0.011 0.109 0.000 

0.000 0.000 0.000 0.000 1.000 

2.000 -0.002 0.002 0.002 0.000 

1.019 0.041 0.041 0.000 

1.194 -0.023 0.000 

1.194 0.000 

1.000 

0.002 

0.002 

0.000 

0.000 

0.005 

0.003 

0.003 

0.000 

2.000 



TABLE 3 

ETHYLENE - INTEGRALS AS DESCRIBED IN TEXT. SCGF. 

HI h2 h3 hit - 1>1 1>2 - kl - 1>3 bit - k2 °1 11'1 °2 11'2 

0.816 0.000 0.000 0.000 0.000 0.960 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.816 0.000 0.000 0.000 0.000 0.960 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.816 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.960 0.000 0.000 0.000 

0.816 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.960 0.000 0.000 
I 

..... 1.000 0.000 0.000 0.000 0.000 0.990 0.000 0.000 0.000 0.000 
~ 
w 1.184 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
I 

1.184 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.000 0.000 0.000 0.000 0.000 0.655 0.000 

2.000 0.000 0.000 0.000 0.000 0.000 

E = -110.42 a.u. 1.000 0.000 0.000 0.000 0.000 

NH :11 0.816 1.184 0.000 0.000 0.000 

NC == 6.368 1.184 0.000 0.000 

l.;000 0.000 

2.000 



TABLE 4 

ACETYLENE - HlTEGRALS AS DESCRIBED IN TEXT. SCF MO. 

h1 h2 -
°1 

- - k1 -
°2 

- - k2 °1 'lr1 1r2 °2 113 114 

0.716 0.057 0.391 0.853 0.000 0.000 -0.005 0.175 -0.062 0.000 0.000 -0.003 

0.716 0.175 -0.062 0.000 0.000 -0.003 0.391 0.853 0.000 0.000 -0.005 

0.904 -0.033 0.000 0.000 0.011 0.833 -0.333 0.000 0.000 -0.007 

1.379 0.000 0.000 0.002 -0.333 0.109 0.000 0.000 0.004 
~ 1.000 0.000 -0.000 : 0.000 0.000 1.000 0.000 0.000, ~ 
~ 

I 1.000 0.000 0.000 0.000 0.000 1.000 0.000 

2.000 -0.007 0.004 0.000 0.000 0.000 

E • -101.04 a.u. 0.904 -0.033 0.000 0.000 0.011 

NR = 0.716 1.379 0.000 0.000 0.001 

NC = 6.283 1.000 0.000 0.000 

-1.000 0.000 

2.000 



TABLE 5 

ACETYLENE - INTEGRAlS AS DESCRIBED IN TEXT. SCGF. 

h1 h2 °1 
- - k1 - °2 - - k2 °1 'If 1 'If 2 °2 1r3 'If 4 

0.155 0.000 0.000 0.948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.155 0.000 0.000 0.000 0.000 0.000 0.000 0.948 0.000 0.000 0.000 

1.000 0.000 0.000 0.000 0.000 0.994 0.000 0.000 0.000 0.000 

I 
1.245 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

..... 1.000 0.000 0.000 0.000 0.000 0.855 0.000 0.000 

.f:'" 
Vl 

• 1.000 0.000 0.000 0.000 0.000 0.855 0.000 

2.000 0.000 0.000 0.000 0.000 0.000 

E = -100.77 a.u. 1.000 0.000 0.000 0.000 0.000 

NH • 0.155 1.245 0.000 0.000 0.000 

Ne = 6.245 1.000 0.000 0.000 

1.000 0.000 

2.000 



TABLE 6 

ETHANE - INTEGRALS AS DESCRIBED IN TEXT. SCF MO. 

n1 n2 n3 nit -'n s nG '01 b1 
0.890 -0.089 -0.089 0.010 -0.001 .0.001 0.220 0.956 

0.890 -0.089 -0.001 0.010 0.001 0.220 -0.040 

0.890 -0.001 -0.001 0.010 0.220 -0.040 

0.890 -0.089 .0.089 0.048 -0.001 

E III -120.26 a.u. 
0.890 .0.089 0.048 -0.001 

0.890 0.048 -0.001 

0.979 0.031 NH III 0.890 

NC III 6.321 1.114 

.0.040 .0.040 -0.003 0.048 .0.001 -0.001 -0.001 -0.001 

0.956 .0.040 .0.003 0.048 .0.001 -0.001 -0.001 -0.001 

-0.040 0.956 -0.003 0.048 -0.001 -0.001 -0.001 -0.001 

-0.001 -0.001 -0.001 0.220 0.956 -0.040 -0.040 -0.003 

-0.001 -0.001 -0.001 0.220 -0.040 0.956 -0.040 -0.003 

-0.001 -0.001 -0.001 0.220 -0.040 -0.040 0.956 -0.003 

0.020 0.020 0.003 0.840 -0.200 -0.200 -0.200 .0.001 

0.094 0.094 

1.114 0.094 

1.114 

0.002 -0.200 -0.001 -0.001 -0.001 

0.002 -0.200 -0.001 -0.001 -0.001 

0.002 -0.200 -0.001 -0.001 -0.001 

2.000 -0.001 0.001 0.001 0.001 

0.979 0.031 0.020 0.020 

1.114 0.094 0.094 

1.114 0.094 

1.114 
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0.001 

0.001 

0.000 

0.003 

0.002 

0.002 

0.002 

2.000 
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TABLE 7 

ETRAllli - INTEGRALS .AS DESCRIBED IN TEXT. SCGF. 

h1 h2 h3 h4 h5 h6 01 b1 b2 b3 k1 02 b4 bS b6 k2 

0.874 0.000 0.000 0.000 0.000 0.000 0.000 0.964 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.874 0.000 0.000 0.000 0.000 0.000 0.000 0.964 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.874 0.000 0.000 0.000 0.000 0.000 0.000 0.964 0.000 0.000 0.000 0.000 0.000 0.000 

0.874 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.964 0.000 0.000 0.000 

0.874 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.964 0.000 0.000 

0.874 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.964 0.000 

1.000 0.000 0.000 0.000 0.000 0.973 0.000 0.000 0.000 0.000 

1.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.126 0.000 0.000 0.000 0.000 0.000 0.000 

E a -119.85 

BH a 0.874 

NC == 6.317 

2.000 0.000 0.000 0.000 0.000 0.000 

1.000 0.000 0.000 0.000 0.000 

1.126 0.000 0.000 0.000 

1.126 0.000 0.000 

1.126 0.000 

2.000 



TABLE 8 

FORMALDEHYDE - EXACT INTEGRALS OVER AN ORTHONORMAL HYBRID BASIS 
FULL CALCULATION. SCF MO. 

hI h2 - 1>1 1)2 - kC - 110 120 - kO °c 'll'e °0 11"0 

0.937 -0.053 0.035 0.975 0.016 0.000 -0.007 -0.010 -0.127 0.158 0.000 0.000 

0.937 0.035 0.016 0.975 0.000 -0.007 -0.010 0.158 -0.127 0.000 0.000 

0.884 0.019 0.019 0.000 -0.009 0.991 -0.024 -0.024 0.000 -0.009 

1.103 0.012 0.000 0.007 -0.036 0.122 -0.148 0.000 0.000 

..... 1.103 0.000 0.007 -0.036 -0.148 0.122 0.000 0.000 
~ 
ex> 1.032 0.000 0.000 0.000 0.000 0.999 0.000 
I 

1.999 0.008 0.000 0.000 0.000 0.000 

E = -144.89 a.u. 1.119 0.021 0.021 0.000 0.008 

HH = 0.937 1.959 0.039 0.000 0.000 

Ne .. 6.122 1.959 0.000 0.000 

1'0 =- 8.014 0.977 0.000 

1.999 



TABLE 9 

FORMALDEHYDE - EXACT INTEGRAlS OVER AN ORTHONORl-iAL HYBRID BASIS 
FULL CALCULATION. SCGF. 

hl h2 -
°1 °2 - kC -

120 
-

kO aC 11'C aO 11.10 11'0 

0.892 0.000 0.000 0.987 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.892 0.000 0.000 0.987 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.887 0.000 0.000 0.000 0.000 0.986 0.000 0.000 0.000 0.000 

1.108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

..... 1.108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

.;:-
\0 1.066 0.000 0.000 0.000 0.000 0.878 0.000 
I 

2.000 0.000 0.000 0.000 0.000 0.000 

E :I -144.92 a.u. 1.113 0.000 0.000 0.000 0.000 

NH :I 0.892 2.000 0.000 0.000 0.000 

Ne = 6.169 2.000 0.000 0.000 

NO = 8.047 0.934 0.000 

2.000 



TABLE 10 

FORMALDEHYDE - EXACT II~TEGRALS OVER AN ORTHONORMAL HYBRID BASIS 
AND NDDO APPROXIMATION. SCF MO. 

hI ii2 - b1 b2 
- ke - 110 120 - kO °e 'ne 0 0 'lro 

0.876 -0.048 0.270 0.950 -0.043 0.000 -0.007 0.034 -0.011 0.055 0.000 -0.002 

0.876 0.270 -0.043 0.950 0.000 -0.007 0.034 0.055 -0.011 0.000 -0.002 

0.877 0.061 0.061 0.000 0.005 0.892 -0.132 -0.132 0.000 -0.005 

1 
1.117 0.037 0.000 0.005 -0.272 0.046 -0.015 0.000 0.003 

~ 1.117 0.000 0.005 -0.272 -0.015 0.046 0.000 0.003 
\on 
0 la14 0.000 0.000 0.000 0.000 0.993 0.000 

2.000 0.000 0.000 0.000 0.000 0.000 

1.172 0.109 0.109 0.000 0.005 

. E :: -143.89 a.u. 1.982 -0.014 0.000 -0.001 

HH :: 0.876 1.982 0.000 -0.001 

Ne :: 6.224 0.885 00.000 

NO :: 8.020 2.000 



TABLE 11 -
FO~EHYDE - EXACT INTEGRAlS OVER AN ORTHONORMAL HYBRID BASIS 

AND CNDO APPROXIMATION. SCF MO. 

hI h2 - b1 b2 
- ke - 110 120 - ko °e we °0 Wo 

0.822 0.464 0.237 0.819 0.053 0.000 0.018 -0.099 0.074 0.085 0.000 0.000 

0.822 0.237 0.053 0.819 0.000 0.018 -0.099 0.085 0.014 0.000 0.000 

0.994 0.069 0.069 0.000 -0.004 0.860 -0.265 -0.265 0.000 0.002 

1.131 -0.505 0.000 -0.025 -0.215 -0.004 -0.009 0.000 -0.001 
~ 1.137 0.000 -0.025 -0.215 -0.009 -0.004 0.000 -0.001 V1 .... 

1.298 0.000 0.000 0.000 0.000 0.955 0.000 

2.000 -0.002 -0.002 -0.002 0.000 0.000 

E = -143.05 a.u. 1.232 0.221 0.221 0.000 -0.002 

NH .. 0.822 1.929 -0.071 0.000 0.000 

Ne .. 6.565 1.929 0.000 0.000 

llO :a 7.792 0.102 0.000 

2.000 



TABLE 12· 

FORMALDEHYDE - ORBITAL ENERGIES OF SCF MO CALCULATIONS 

, Complete NDDO I CNDO 
Calculation Calculation Calculation 

~l -20.588 -20.365 -20.377 

~2 -11.338 -11.074 -10.863 

~3 -1.360 -1.177 -1.043 

~4 -0.830 -0.859 -0.571 

~5 -0.674 -0.388 -0.547 

~6 -0.563 -0.231 -0.058 

41 7 -0.468 -0.311 -0.089 

~8 -0.384 -0.497 -0.375 
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TABLE 13 

FORMALDEHYDE - COULOMB INTEGRALS OVER HYBRID BASIS 
ONE-CENTRE INTEGRALS 

Integral Non-Orthogonal Orthogona.l % Dirr. 

h Ih Ih Ih 1 0.750 0.845 12.66 

°CoCoCoC 0.727 0.718 -1 .. 44 

bIb lO'CO'C 0.530 0.613 16.36 

b 1b 1b 1b 1 0.727 0.778 8.47 

b2b2b 1b1 0.530 0.625 18.69 

'lrC'lrCoCO'C 0.575 0.605 5.70 

'lre'lreb1b 1 0.575 0.620 8.41 

'Ire 'Ire 'lrc'Ir C 0.636 0.644 1.26 

kckcO'cO'c 0.807 0.883 9.22 

kckcb Ib 1 0.807 0.918 13.60 

kckc'lre'lre 0.807 0.815 0.94 

kckckckc 3.5625 3.5625 0.00 

0'00'00'00'0 1.017 1.114 11.12 

11 1 10'00'0 0·742 0.801 8.64 

11111111 1.017 1.012 -0.49 

12121111 0.742 0.736 -0.81 

'lr0'lr01111 0.805 0.811 0.75 

'lro'lro'lro1fo 0.890 0.904 1.48 

kokoO'oO'o 1.130 1.288 13.85 

kok01111 1.130 1.140 0.77 

koko1fo1fo 1.130 1.143 1.17 

kokokoko 4.8125 4.8125 0.00 
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TABLE 13 (CONTD.) 

FOm1ALDEHYDE - COULOMB INTEGRALS OVER HYBRID BASIS 
TWO-CENTRE INTEGRALS 

Integral N on-Orthogonal Orthogonal % Dirf. 

h2h2hlhl 0.286 0.253 -11.84 

oCochlhl 0.376 0.371 -1.33 

b1b1h1h 1 0.599 0.507 -15.29 

b1b1h2h2 0.376 0.371 -1.10 

'lTC'II'Chlhl 0.419 0.386 -7.75 

kckchlhl 0.485 0.437 -10.39 

°O°ohlhl 0.310 0.279 -10.04 

°oooococ 0.118 0.589 -17.71 

oooOb1b 1 
0.423 0.428 1.40 

.oOOO'll'C11'c 0.475 0.443 -6.76 

ooookckc 0.575 0.530 -7.64 

R.IR.lhlhl 0.262 0.249 -5.21 
R.l R. 1h2h2 0.236 0.225 -4.63 

R.1R.1oCoC 0.496 0.431 -13.01 
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TABLE l3 (CONTD.) 

FO~~LDEHYDE - COULOMB INTEGRALS OVER HYBRID BASIS 
TWO-CENTRE INTEGRALS 

Integral Noh&.Orthogonal Orthogonal % Dirr. 

• 
.t1t1b1b 1 0.324 0.339 -·4.94 
t 1t 1b 2b 2 0.304 0.324 6.88 

tltl'ITC'lTC 0.345 0.343 -0.35 

tltlkckC 0.374 0.381 2.l2 

'lTO'ITohlhl 0.262 0.246 -6.08 

'lTO'ITOOCOc 0.545 0.467 -l4.58 

'lTO'ITOb Ib 1 0.336 0.353 4.92 
'lTo'ITO'ITC'lTc 0.380 0.373 -2.1l 

'IT 0 'IT ok eke 0.411 0.409 -0.46 

kokohlhl 0.268 0.252 -6.0l 

kokoacoc 0.6l4 0.51l -17.05 

kokoblbl 0.348 0.370 6.10 

koko'ITc'lTc 0.389 0.385 -1.19 

kokokeke 0.435 0.435 0.00 

..: 155 -



TABLE 14 

FO~~EHYDE - IlnEGRALS AS DESCRIBED IN TEXT. SCF MO. 

hI h2 - hI 1)2 - kC - 110 i20 - kO GC Wc °0 Wo 

0.736 0.118 0.292 0.893 -0.020 0.000 -0.007 0.147 -0.096 0.048 0.000 -0.002 

0.736 0.292 ·-0.020 0.893 0.000 -0.007 ·0.147 0.048 -0.096 0.000 -0.002 
• 

0.757 -0.020 -0.020 0.000 0.010 0.844 -0.164 -0.164 0.000 -0.001 

1.328 -0.068 0.000 0.004 -0.282 0.099 0.003 0.000 0.002 

t 1.328 0.000 0.004 ..... -0.282 0.003 0.099 0.000 0.002 
'-" 0.800 0.000 0.000 0.000 0.000 0.979 0.000 0\ 

I 2.000 -0.004 0.001 0.001 0.000 0.000 

E =-144.24 a. u. 1.194 0.154 0.154 0.000 0.002 

NH = 0.736 1.963 -0.022 0.000 -0.001 

Ne = 6.207 1.963 0.000 -0.001 

NO ,. 8.221 1.201 0.000 

2.000 



TABLE 15 

FORMALDEHYDE - INTEGRALS AS DESCRIBED IN TEXT. SCGF. 

hI h2 - b 1 b2 - kC - 110 120 
- kO °c 1TC °0 1T0 

0.805 0.000 0.000 0.950 0.000 0.000 ~o.ooo 0.000 0.000 0.000 0.000 0.000 

0.805 0.000 0.000 0.950 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.660 0.000 0.000 0.000 0.000 0.933 0.000 0.000 0.000 0.000 

1.195 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.195 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
" ..... 1.039 0.000 0.000 0.000 0.000 0.700 0.000 V1 

-4 

E = -144.06 a.u. 2.000 0.000 0.000 0.000 0.000 0.000 

NH == 0.805 1.340 0.000 0.000 0.000 0.000 

NC =- 6.089 2.000 0.000 0.000 0.000 

NO = 8.301 2.000 0.000 0.000 

0.961 0.000 

2.000 



TABLE 16 

FORMALDEHYDE - USING POPLE AND SEGAL'S APPROXIMATION CNDO/1. SCF MO. 

hI h2 - - - - - - - -se Xc Ye ze So Xo Yo Zo 

1.057 -0.128 0.578 0.402 0.770 0.000 0.013 -0.044 -0.184 0.000 

1.057 0.578 0.402 -0.770 0.000 0.013 -0.044 0.184 0.000 

1.064 0.056 0.000 0.000 0.273 0.500 0.000 0.000 
~ 0.932 0.000 0.000 -0.460 -0.676 0.000 0.000 
~ 

0.898 0.000 0.000 VI 0.000 0.000 0.302 co 
I 0.988 0.000 0.000 ~o.ooo 1.000 

NR = 1.057 1.735 -0.416 0.000 0.000 

Ne = 3.882 1.340 0.000 0.000 

NO = 6.004 1.917 0.000 

1.012 



TABLE 11. 

FORMALDEHYDE - USING POPLE AND SEGAL'S APPROXIMATION eUDO/2. SCF MO. 

hI h2 - - - - - - - -Sc Xc Ye Zc So Xo Yo Zo 

1.011 -0.114 0.580 0.395 0.680 0.000 0.012 -0.037 -0.1740.000 

1.011 0.580 0.395 -0.680 0.000 0.012 -0.037 0.174 0.000 

1.071 0.084 0.000 0.000 0.278 0.487 0.000 0.000 

0.931 0.000 0.000 -0.468 -0.676 0.000 0.000 
..... 

0.944 0.000 0.000 0.000 0.271 0.000 V1 

'" I 0.845 0.000 0.000 0.000 0.988 

NH = 1.011 1.732 -0.409 0.000 0.000 

Ne = 3.791 1.369 0.000 0.000 

ll0 = 6.186 1.930 0.000 

1.155 



TABLE 18 

HYDROGEN CYANIDE - INTEGRAlS AS DESCRIBED IN TEXT. SCF MO. 

hI - 1>1 
- - kC - 'IN - - kN °c 111 '11"2 ON '11"3 114 

0.685 0.424 0.805 0.000 0.000 -0.006 0.264 -0.055 0.000 0.000 -0.003 

0.794 -0.010 0.000 0.000 0.014 0.790 -0.391 0.000 0.000 -0.002 

1.449 0.000 0.000 0.001 -0.366 0.129 0.000 0.000 0.002 

0.948 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

0.948 0.000 0.000 0.000 0.000 1.000 00.000 
I-' 
0'\ 2.000 -0.008 0.004 0.000 0.000 0.000 0 

I E = -116.16 a.u. 1.231 0.346 0.000 0.000 0.003 

NH = 0.685 1.841 0.000 0.000 -0.001 

NC = 6.139 1.052 0.000 0.000 

NN = 7.176 1.052 0.000 

2.000 



TABLE 12, 

HYDROGIDI CYANIDE - INTEGRALS AS DESCRIBED IN TEXT. SCGF. 

h1 - 1>1 - - kC - iN 
- - KN a

C "'1 "'2 aN 11"3 "'4 

0.682 0.000 0.931 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.671 0.000 0.000 0.000 0.000 0.941 0.000 0.000 0.000 0.000 

1.318 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.051 0.000 0.000 0.000 0.000 0.850 0.000 0.000 ~ 

~ 1.051 0.000 0.000 0.000 0.000 0.850 0.000 
~ 
~ 

2.000 0.000 0.000 0.000 0.000 0.000 ~ 

I 
E = -115.825 a.u. 1.329 0.000 0.000 0.000 0.000 

NH = 0.682 2.000 0.000 0.000 0.000 

Ne = 6.091 0.949 0.000 0.000 

NIl = 1.221 0.949 0.000 

2.000 



TABLE 20 

HYDROGEN CYANIDE - USING POPLE AND SEGAL'S APPROXIMATIONS 
CNDO/1. SC!" MO. 

Ii - - - - - - - -Sc Xc Yc ze sN xN YN zN 

0.926 0.698 -0.701 0.000 0.000 0.023 0.122 0.000 0.000 

1.121 -0.041 0.000 0.000 0.361 -0.605 0.000 0.000 

0.962 0.000 0.000 0.468 -0.535 0.000 0.000 

1.008 0.000 0.000 0.000 1.000 0.000 

1.008 0.000 0.000 0.000 1.000 

NH = 0.926 1.655 0.469 0.000 0.000 

NC = 4.099 1.336 0.000 0.000 

NIl = 4.975 0.992 0.000 

0.992 

TABLE 21 

HYDROGEN CYANIDE - USING POPLE AND SEGAL'S APPROXIMATIONS 
CNDO /2 • s eF lo~o. 

Ii - - - - - - - -se Xc Ye ze sN xN YN zN 

0.982 0.698 -0.704 0.000 0.000 0.033 0.121 0.000 0.000 

1.082 -0.023 0.000 0.000 0.369 -0.607 0.000 0.000 

0.928 0.000 0.000 0.475 -0.522 0.000 0.000 

0.951 0.000 0.000 0.000 0.999 0.000 

0.951 0.000 0.000 0.000 0.999 

NH = 0.982 1.649 0.464 0.000 0.000 

Nc = 3.912 1.358 0.000 0.000 

UN • 5.105 1.049 0.000 

1.049 
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I-' 
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I 

TABLE 22 

ETHYLENE - ONE-ELECTRON HAMILTONIAN. ORTHOGONAL HYBRID BASIS 

fil E2 E3 E4 ;1 SI ~2 ;1 El ;2 ~3 S4 ;2 E2 

-4.691 ~0.004 0.021 -0.01 -0.256 -0.278 -0.190 0.000 -0.018 -0.016 -0.009 -0.013 0.000 -0.001 

-4.691 -0.01 0.021 -0.256 -0.190 -0.278 0.000 -0.018 -0.016 -0.013 -0.009 0.000 -0.001 

-4.691 -0.004 0.016 -0.009 -0.013 0.000 0.001 -0.256 -0.278 -0.190 0.000 -0.018 

-4.691 0.016 -0.013 -0.009 0.000 0.001 -0.256 -0.190 -0.278 0.000 -0.018 

-7.897 -0.112 -0.112 0.000 0.107 -0.404 -0.024 -0.024 0.000 -0.005 

-7.326 0.196 0.000 0.181 0.024 -0.031 -0.036 0.000 -0.010 

-7.326 0.000 0.181 0.024 -0.036 -0.031 0.000 -0.010 

-7.036 0.000 0.000 0.000 0.000 -0.046 0.000 

-21.800 0.005 -0.010 -0.010 0.000 0.000 

-7.987 -0.112 -0.112 0.000 0.107 

-7.326 0.196 0.000 0.181 

-7.326 0.000 0.181 

-7.036 0.000 

-21.800 



TABLE 23 

NON-COULmmIC INTEGRALS FOR '~ATER HOLECULE 

Non-Orthogona1 Orthogona1 
Integral Hybrid Basis Hybrid Basis 

(h 2h 21h Ih 1) .1757 - .0119 

(h 2h 1 Ih 2h 1) .0685 .0029 

(b Ih 1 Ih Ih 1) .3615 .0246 

(b 1 h 1 Ih 2h 1) .1118 .0004 

(b 1 h 1 Ih 2h 2) .2116 .0063 

(b1h1Ib1h 1) .2507 .0143 

(b 1h21h 1h 1) .1069 .0167 

(b 1 h 2 Ih 2h 1) .0374 .0007 

(b 1h21h2h2) .0699 -.0081 

(b 1h2Ib 1h1) .0822 .0017 

(b 1h21b 1h 2) .0359 .0050 

(b 1b 1 Ih2h 1) .2124 -.0045 

(b 1b 1 Ib 1h 1) .4582 .0228 

(b Ib lib Ih 2) .1501 .0334 

(b 2h 1 I b 1 h 1 ) .0490 -.0010 

(b 2h1Ib 1h2) .0212 .0002 

(b 2h 1 Ib 1 b 1) .1079 .0181 

(b 2h21b 1h 1) .1442 .0017 

(b 2h2Ib 1b 1) .3283 .0002 

(b 2b 1 Ih 2h 1) .0150 .0020 

(b 2b 1 Ib 1 h 1) .0272 .0077 

(b 2b 1 Ib 1h 2) .0285 -.0003 

(b 2b 2 Ib 1h l) .3283 .0002 

(b 2b 21b Ih 2) .1079 .0181 

(~lh1Ihlh1) .0837 -.0205 

(~1hllh2hl) .0298 .0003 



TABLE 23 (CONTn.) 

NON-COULOHBIC INTEGRALS FOR WATER HOLECULE 

Non-Orthogona1 Orthogonal 
Integral Hybrid Basis Hybrid Basis 

( 11h llh 2h 2) .0669 .0050 

(11h l lb Ih l) .0586 -.0012 

(tlhllb Ih 2) .0149 -.0007 

(11h llb Ib 1) .1291 .0075 

(1 1h 1 Ib 2h 1) .0089 .0011 

Ctlhllb2h2) .0451 -.0004 

(11h llb 2b l) -.0121 -.0071 

(11h llb 2b 2) .1142 .0187 

(11h lI11h l) .0391 .0045 

(11h 2I t 1h l) .0399 .0108 

(11bllh2hl) .0016 -.0004 

(11b llb l h l) .0326 .0069 

(11b 1Ib l h 2) .0158 .0069 

(tlb llb 2h l) -.0121 -.0061 

(11b llb 2h 2) -.0218 -.0055 

(11b 1I t lh 1) .0241 -.0022 

(11b lI11h 2) .0072 .0049 

(11 11Ih 2h l) .1829 -.0026 

(1111Ib l h l) .3204 -.0022 

Ctl 11 Ib 1 h 2) .0893 .0228 

(11 11I t 1h l) .1723 .0310 

(12 11Ih 2h l) -.0115 -.0007 

(12 11Ib l h l) .0261 -.0076 

(12 11Ib lh 2) -.0210 -.0001 

(12 111 11h 1) .0086 .0062 

(12 121 t1h 1) .1069 .0165 
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APPENDIX 

OUTLINE OF PROGRAM SYSTEM 

During the course of the work described in this thesis a 

considerable body of programs was developed. The scheme of 

these programs is described below. Details of the function of the 

programs and of the data required are given and the overall scheme 

is illustrated in flow diagram form. 

The series consists of 

(1) Programs to calculate the one-electron Hamiltonian 

and the two-electron repulsion integrals over a 

standard orbital" basis (p.56). (Note that a program 

was developed for the coulomb type two-electron 

integrals and other two-electron integrals were 

approximated in .arious ways described in Chapter 5). 

(2) A program to calculate the transformation matrix 

from the standard orbital to an orthogone.lised 

by'brid basis. 

(3) A program to transform the one-electron and two­

electron integrals over the standard orbital basis to 

- i -



'. ,"" 

integrals over the orthogonalised hybrid basis. 

(4) SCF programs to obtain the self-consistent wave 

function using the integrals over the orthogonalised 

hybrid basis. 

The Jacobi diagonalisation routine and the SCFMO programs 

used were already available. The BCGF program and ,the three­

centre numerical integration programs were developed by colleagues 

with some help trom the author. The other programs described, 

the one-electron Hamiltonian, the overlap integrals, the two­

electron coulomb integrals t the transtormation to a. st.&ndard 

orbi tal and hybrid basis, the transtormation matrix trom a 

standard orbital to an orthogonalised hybrid basis~ and the 

transformation programs, were developed by the author durinc the 

course of the work described in this thesis. 

Input 

The calculatiDnof the one-electron Hamiltonian integrals 
over a standard orbital basi,s, 

Coordinates, orbital exponents and nuclear charge tor each 

centre and the three-centre nuclear attraction integrals ' 

tor the system. 

The one- and two-centre parts ot the Hamiltonian are calCU-

lated over a sir Slater orbital basis and the three-centre 



integrals are calculated separately, by numerical integration, 

and added in to the one- and two-centre parts. The integrals are 

then transformed to.a standard orbital basis or alternatively to 

a hybrid basis (the hybridisation is specified by data). 

(2) The calculation of' the coulomb type two-electron intf§rals over 
a standard orbital basis 

Input Coordinates, orbital exponents and nuclear charge for each 

centre. 

Again the integrals are calculated over a sigma-pi basis 

and then transformed. to a standard orbital basis or alternatively 

to a hybrld basis (the hybridisation is specified by' dat.a).. The 

two-electron transformation required is built into the program. 

(3) The calculation of the transformation matrix.W~ -i t between 
t~e standard orbital and the orthogonlaised pybridbasis 

S is the matrix of overlap integrals for the Schmidt 

orthogonalised hybrid basis,! tAe ~ransformation matrix to a 

Schmidtorthogonil'!.ised basis, and !l. to a hybrid basis. The program 

consists of the following steps: 

(a) The overlap matrix ~ over the standard orbital basis is 

calculated •. Inpu~ Coordinates, orbital exponents and 

iii-



nuclear charges for each centre. 

(b) Calculation of W Input Overlap matrix ~. 

(c) Calculation of Q Input Data specifying hybrids. 

(d) Transformation of overlap integrals to a Schmidt orthogonalised 

hybrid basis S. Input £,! and ~. 

(e) Formation of ~ -~ by using Jacobi diagonalisation, the diagonal­

isation process being terminated when I~Ptlmax ~ 10-8• InEut ~ 
(f) Formation of Wtis~ Input !,!L and §:""!. 

(4) The transformation of the one-electron and two-electron integrals 
to an orthOgonalised hlbrid basis 

Input One-electron F~iltonian a~d two-electron repUlsion integrals 

over a standard orbital basis. Transformation matrix wu~1. 

All one-electron integrals over the transformed basis are 

obtained. For the two-electron integrals, there is a choice of 

obtaining all integrals over the transformed basis, or of obtaining 

only those which are non-zero in the CNDO or the NODO approximations. 

(5) Self-Consistent Field Programs 

Input The one-electron Hamiltonian and the two-electron repulsion 

integrals over an orthogonalised basis. An initial matrix 

- i v -



R of atom charges and bond orders. 

This form of input is required for both the molecular 

orbital and group function methods. In the case of the group 

function program, orbitals belonging to each group must also be 

specified; in addition, since not all the available integrals are 

required in this approach, a sorting program is first entered to 

select those needed for the calculation. With these preliminaries 

completed, the main group function program, described on p.68, is 

then entered. 

The self-consistency procedure is terminated when .r. I~ .. I 
1,J 1J 

in a cycle ~lO-4 and the self-consistent atom charges, bond 

orders, orbital and total energies are then given. 

- v -



I 'FLO~r1 DIAGRPJ-i ILllJSTRATIOU CALCULATIOll OF TIITEGRALS OVER A STANDARD ORBITAL BASIS 

Data: coordinates, orbital exponents and nuclear charge ror each centre 

Lt 

Calculation of 
three-centre 
integrals over 
sigma-pi basis 

• 

__ '!!lr. 

Calculation or one­
and two-centre parts 
of the one-electron 
Hamiltonian over 
sigma-pi basis 

.v 

Addition or three­
centre integrals to 
one- and two-centre 
parts 

. Jr 

Transrormation to a 
standard orbital 
basis or alterna­
tively to a hybrid 
basis (data required 
to specify hybridi­
sation). 

Calculation of two­
electron coulomb 
integrals over sigma­
pi basis 

I.lt 

Transformtion to a 
standard orbital basis 
or alternatively to a 
hybrid basis (data 
required to specify 
hybridisation) • 



11 FLOW DIAGRAM FOR CALCULATION OF TRANSFORMATION HATRIX 

(WS~) FROM STANDARD ORBITAL TO ORTHOGONALIS1'D HYBRID BASIS 

Data: coordinates, orbital exponents and nuclear 
charge for each centre 

+ 
Calculation of matrix of overlap integrals over 
sigma-pi basis, followed by transformation to 
standard orbital basis 

+ 
Calculation of transformation matrix from standard 
orbital basis to Schmidt orthogonalised basis W 
(overlap integrals required as data) . ' -

t 
Calculation of transformation matrix from Schmidt 
orthogonalised basis to hybrid basis U (data 
required to spcify hybridisation). -

t 
Transformation of matrix of overlap integrals over 
standard orbiial basis ~, to Schmidt orthogona~ised 
hybrid basis ~. 

t 
Formation of Fa (using Jaoobi diagonalisation) 

t 
Formation of wS""a 



In FLOW DIAGRAM ILWSTRATING OVERALL SCHEME OF THE PROGRA!·lS 

..--------, 
One-electron 
Hamiltonian 

Tran~fo~ion 
. matrlx WUS 

One-electron 
Hantiltonian 
over ortho­
gonalised 

I TWo-electron integrals OVer 
orthogonalised hybrid basis I 

l hybrid basis 

All integrals 1 [NDDO integrals J 

SCF programs, also 
require an initial 
R matrix 

Self-consistent R 
matrix (charges and 
bond orders) orbital 
and total energies 

i 
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