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Abstract

The protozoan parasite Leishmania causes leishmaniasis; a spectrum of diseases of which

there are an estimated 1 million new cases each year. Current treatments are toxic, expen-

sive, difficult to administer, and resistance to them is emerging. New therapeutics are

urgently needed, however, screening the infective amastigote form of the parasite is chal-

lenging. Only certain species can be differentiated into axenic amastigotes, and compound

activity against these does not always correlate with efficacy against the parasite in its intra-

cellular niche. Methods used to assess compound efficacy on intracellular amastigotes

often rely on microscopy-based assays. These are laborious, require specialist equipment

and can only determine parasite burden, not parasite viability. We have addressed this clear

need in the anti-leishmanial drug discovery process by producing a transgenic L. mexicana

cell line that expresses the luciferase NanoLuc-PEST. We tested the sensitivity and versatil-

ity of this transgenic strain, in comparison with strains expressing NanoLuc and the red-

shifted firefly luciferase. We then compared the NanoLuc-PEST luciferase to the current

methods in both axenic and intramacrophage amastigotes following treatment with a supra-

lethal dose of Amphotericin B. NanoLuc-PEST was a more dynamic indicator of cell viability

due to its high turnover rate and high signal:background ratio. This, coupled with its sensitiv-

ity in the intramacrophage assay, led us to validate the NanoLuc-PEST expressing cell line

using the MMV Pathogen Box in a two-step process: i) identify hits against axenic amasti-

gotes, ii) screen these hits using our bioluminescence-based intramacrophage assay. The

data obtained from this highlights the potential of compounds active against M. tuberculosis

to be re-purposed for use against Leishmania. Our transgenic L. mexicana cell line is there-

fore a highly sensitive and dynamic system suitable for Leishmania drug discovery in axenic

and intramacrophage amastigote models.
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Author summary

The protozoan parasite Leishmania causes a spectrum of diseases collectively known as

leishmaniasis. The parasite is transmitted to humans by the bite of its vector, the sand fly,

following which the parasite invades host white blood cells, particularly macrophages.

Leishmaniasis is classified as a neglected tropical disease, and is endemic in 97 countries.

Symptoms of the disease depend on the species of Leishmania. These include skin lesions,

destruction of the mucosal membranes, and the visceral form which is usually fatal if

untreated. Current therapeutic options for leishmaniasis have a number of associated

problems that include toxicity, the development of drug resistance and poor patient com-

pliance due to lengthy and painful treatment regimens. New therapeutics are therefore

urgently needed. The ability to screen potential drug candidates requires robust screening

assays. Currently, screening the intracellular parasite relies on microscopy-based tech-

niques that require expensive equipment, are time consuming and only detect parasite

burden, not viability. By using a transgenic cell line that expresses the NanoLuc-PEST

luciferase, we show that we have a parasite-specific viability marker that can be used to

measure the efficacy of compounds against the intracellular parasite. We validate the

potential of this cell line by screening the MMV Pathogen Box.

Introduction

The leishmaniases are a spectrum of diseases caused by infection with protozoan pathogens of

the Leishmania genus, with an estimated 1 million new cases per annum. [1] Leishmania para-

sites are transmitted to a mammalian host via the bite of an infected sand fly. Highly motile

metacyclic promastigotes invade host macrophages and differentiate into the amastigote form,

which is highly adapted for intracellular survival. [2] Current treatments for leishmaniasis

(reviewed in [3, 4]) are unsatisfactory due to high associated toxicity, cost, complex adminis-

tration and the emergence of resistant strains. Efforts have greatly increased over the last

decade to identify novel compounds with anti-leishmanial properties, or to repurpose existing

drugs to widen the therapeutic options for this disease. The Drugs for Neglected Diseases ini-
tiative (DNDi) was set up to identify potential lead compounds. This has yielded success with

the identification of three new chemical series that display considerable anti-leishmanial

potential. [5]

Efficient compound screening requires robust, sensitive and reproducible assays that are

suitable for high throughput application. These assays primarily fall into two categories: target

directed screening, and phenotypic screening. Recent advances have been made to bridge this

gap using yeast-based systems, which express leishmanial target proteins for screening. [6–8]

The main argument for phenotypic assays is that they directly measure compound activity

against the target cell. This tends to be determined using either a colourmetric or fluorescent

regent that measures metabolism (e.g. MTT [9] or AlamarBlue [10]), or using a fluorescent

reporter molecule such as GFP [11–13] or mCherry. [14] The metabolism-based reagents are

useful for studying the parasite alone in either its promastigote or axenic amastigote form, but

they cannot distinguish between the parasite and host cells in an in vitro cell infection model.

Parasite-specific fluorescent reporter molecules show the presence and localisation of para-

sites; however the assays used tend to look for the presence of the fluorescent parasite (either

by microscopy or flow cytometry), not parasite viability.

Screening for novel anti-leishmanial compounds using an intramacrophage model is more

relevant, and is likely to provide a better translation of hits. This is because the model
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incorporates both the multiple membranes that the compound must traverse to reach the

amastigote, and the environment within the parasitophorous vacuole. The current methods

for assessing efficacy against the amastigote in its intramacrophage niche involve either flow

cytometric or microscopy-based techniques. These can be scaled up to a high content screen-

ing system, [15] but this requires the use of specialist and expensive equipment. In addition,

these methods can only detect parasite burden, not viability. One technology that can over-

come this hurdle is the use of bioluminescence. Bioluminescence offers a dynamic method for

determining both the viability and location of the tagged cell, and has been applied to a num-

ber of infectious disease models. [16–18] This technology utilises transgenic pathogens that

express one or more luciferases; a diverse group of enzymes that have the ability to generate

light in the presence of a specific substrate. In Plasmodium falciparum, luciferases have proven

to be robust and sensitive reporters in drug screens. [16, 19–22] For kinetoplastid research,

luciferases from the North American firefly (Photinus pyralis) and the sea pansy (Renilla reni-
formis) have been used for drug screening [23–25] and in vivo studies. [26–29] A red-shifted

variant of the firefly luciferase (PRE9) shows significantly improved sensitivity in Trypanosoma
brucei infection in animal models, and has proven to be a powerful technique for detecting low

numbers of parasites in the brain. [30]

Whilst luciferases derived from P. pyralis and R. reniformis are the most commonly used,

other luciferases with differing properties are now being explored. A luciferase isolated from

the deep sea shrimp (Oplophorus gracilirostris), known as NanoLuc, is a relatively small (19

kDa, compared to 61 kDa and 36 kDa for P. pyralis and R. reniformis respectively) and very sta-

ble enzyme that produces a high intensity, glow-type bioluminescence. [31] A modified form

of the enzyme, NanoLuc-PEST (23 kDa), retains high enzymatic activity but has a reduced

intracellular half-life due to fusion of a PEST sequence, which marks the molecule for rapid

degradation. [31] NanoLuc has been successfully expressed in Plasmodium falciparum [32] but

there are no reports to date describing expression of this reporter (or the PEST-fusion deriva-

tive) in kinetoplastids.

New molecular tools, such as the NanoLuc-PEST enzyme, are being used to improve com-

pound screening to aid drug development. [33] This study focuses on the use of transgenic

parasites expressing this enzyme, in both axenic- and intramacrophage-based assays. This new

method, which specifically detects amastigote viability within the macrophage, will help bridge

the gap between axenic and in vivo testing, in a manner that is time efficient and scalable to

high-throughput systems.

Methods

Cell culture

L.mexicana strain MNYC/BZ/62/M379 was maintained in vitro in the procyclic promastigote

stage by culture at 26˚C in Schneider’s medium (Gibco) pH 7.0 containing 10% FBS (Gibco),

100 U/mL penicillin (Lonza) and 100 μg/mL streptomycin (Lonza). Differentiation to the axe-

nic amastigote stage was performed as described previously. [34] Briefly, axenic amastigotes

were cultivated at 32˚C in Schneider’s medium pH 5.5 supplemented with 10% FBS, 100 U/

mL penicillin and 100 μg/mL streptomycin (complete Schneider’s media pH 5.5). The human

monocyte cell line THP-1 [35] was maintained in vitro by culturing at 37˚C with 5% CO2 in

Dutch modified RPMI-1640 (Gibco) containing 10% FBS and 2 mM L-glutamine (Gibco)

(complete RPMI media). Differentiation of THP-1 cells into macrophages was performed by

seeding 2.5 x105 cells/mL in complete RPMI media, supplemented with 20 ng/mL phorbol

12-myristate 13-acetate (PMA). [36] Cells were incubated at 37˚C with 5% CO2 for 24 hours.
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Generation of plasmid constructs and L. mexicana transfection

NanoLuc, NanoLuc-PEST and red-shifted firefly luciferase (PRE9) open reading frames were

amplified by PCR from plasmid DNA templates: pNL1.1, pNL1.2 (Promega) and pCMV-Red

Firefly Luc (Thermofisher) respectively. All oligonucleotide sequences are provided in S1

Table. Amplified genes were digested with BamHI and KpnI and ligated into pSSU-Neo [37]

to produce the constructs pSSU-NanoLuc, pSSU-NanoLuc-PEST and pSSU-PRE9, for consti-

tutive expression in L.mexicana. The pSSU expression vector contains flanking regions for

integration into the rDNA locus of the parasite genome, and has been used in a number of

Leishmania strains. [38–41] The three constructs (PacI/MssI digested) were transfected into

mid-log L.mexicana procyclic promastigotes by nucleofection using a 4b Nucleofector system

(Lonza), as described previously. [42] Transfectants were transferred to M199 agar plates con-

taining 40 μg/ml Geneticin (Life Technologies) and clonal cell lines were established. Integra-

tion of the construct into the genome was assessed by PCR amplification of 50–100 ng total

parasite DNA, using the oligonucleotide primers pSSU-F (region of the 18S gene) and pSSU-R

(splice acceptor site in the pSSU vector). Total parasite DNA was purified from mid-log pro-

mastigote cells using the DNeasy Blood and Tissue Kit (Qiagen).

Analysis of luciferase expression and stability

Parasite growth was counted at 24 hour intervals for 120 hours using a haemocytometer. Sta-

tistical significance was determined using a two way ANOVA, with the Dunnett Post-Hoc test

for multiple comparisons (GraphPad Prism 6.0).

Detection of NanoLuc and NanoLuc-PEST enzymes was performed using the lytic Nano-

Glo Assay (Promega), according to the manufacturer’s instructions. Detection of PRE9 was

performed using either the Firefly Luciferase Glow Assay (Pierce), or the Bright-Glow Assay

(Promega). Bioluminescence was measured using the Promega GloMax Multi Detection Sys-

tem. All data was normalised by subtracting bioluminescence values for the untransformed,

parental line, and all assays done in triplicate.

Cycloheximide assays were performed over 8 hours. Cells were seeded to a cell density of 5

x105 cells/well (100 μL/well). Cycloheximide (Sigma) was added to each well to a final concen-

tration of 100 μM and incubated with cells for a range of time points between 0 and 8 hours.

Bioluminescence was measured as described above, and the half-life of each luciferase was cal-

culated by one phase decay non-linear regression (GraphPad Prism 6.0). Proteosome assays

were performed using the method above with the addition of 5 μM MG-132 (Sigma) for 6

hours. [43] Statistical significance was determined using a paired, two-tailed T-test (GraphPad

Prism 6.0).

Macrophage assays

Toxicity assays were performed over 72 hours. THP-1 cells were differentiated into adherent

macrophages, as described above. Cells were washed once in PBS to remove non-adherent

monocytes, and compounds were added at varying dilutions. Cells were incubated with the

compounds at 37˚C with 5% CO2 for 72 hours. PrestoBlue (ThermoFisher) was added at a

dilution of 1:10 per well. Plates were incubated in the dark at 37˚C with 5% CO2 for 6 hours

before reading on a Promega GloMax Multi Detection System (λex/λem = 525/580-640 nm).

For infection assays, the THP-1 cells were differentiated into adherent macrophages, as

described above. Stationary phase L.mexicana metacyclic promastigotes were added at a ratio

of 10:1 (parasites:macrophages) in complete RPMI media, and incubated at 32˚C with 5% CO2

for 24 hours. Adherent macrophages were washed three times with PBS to remove extracellu-

lar parasites. Cells were then treated with 0.8 μM Amphotericin B (Fungizone, ThermoFisher)
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for 72 hours. Parasite load was determined using two methods; bioluminescence and indirect

immunofluorescence. Bioluminescence was measured using the protocols described above.

For indirect immunofluorescence, cells were fixed with 4% (v/v) formaldehyde (Thermo-

Fisher) for 10 minutes. Cells were permeabilised with 0.1% (v/v) Triton-X 100 (Sigma) for 5

minutes, then blocked for 30 minutes with Image iT FX Signal Enhancer (Life Technologies).

Cells were incubated with anti-HASPB [44] (1:250) for 1 hour, washed three times with PBS,

then incubated with Alexa Fluor 594 conjugated goat-anti-rabbit IgG (Invitrogen) for 1 hour.

Slides were washed three times with PBS, then mounted using Prolong Diamond Antifade

Mountant (Life Technologies). Images were acquired using the EVOS FL Cell Imaging System

(ThermoFisher), and parasite load assessed for a minimum of 100 macrophages per sample

using the following equation:

Infection Index ¼
Infected macrophages ð%Þ � Number of amastigotes

Total number of macrophages

Amphotericin B testing and MMV Pathogen Box screening

The initial MMV Pathogen Box screen was performed on axenic amastigotes. Axenic amasti-

gotes were seeded at a density of 1 x 105/ml in duplicate (50 μl/well) in complete Schneider’s

media pH 5.5. MMV Pathogen Box screening was performed using two concentrations of

each compound: 2 and 10 μM. Hits were defined as compounds that, at a concentration of

2 μM, decreased the relative bioluminescence signal to 5% or less of that produced by the

transgenic parasites incubated in solvent (DMSO) only. Both positive (Amphotericin B) and

negative (equivalent volume of DMSO) controls were included on all plates. Assays were car-

ried out as technical replicates with two independent assays performed (n = 4). Cells were

incubated at 32˚C with 5% CO2 for 72 hours, prior to viability measurements using either fluo-

rescence or bioluminescence-based assays. For the fluorescence-based assays, AlamarBlue

(ThermoFisher) was added at a dilution of 1:10 per well. Plates were incubated in the dark at

32˚C with 5% CO2 for 6 hours before measuring the fluorescence on a Promega GloMax Multi

Detection System (λex/λem = 525/580-640 nm). For bioluminescence, 20 μl of treated axenic

amastigote culture was transferred in duplicate to a white 96-multiwell plate (Greiner, UK)

and 20 μl of luciferase reagent (Nano-Glo Luciferase Assay buffer and Nano-Glo Luciferase

Assay substrate, 200:1) was added to each well. After 3 minutes, the bioluminescence signal

was measured using a Promega Glomax Multi Detection System. Results were analysed using

GraphPad Prism 6.

For all assays, the percentage viability was calculated using the following equation:

Viability %ð Þ ¼ 100 x
½mðsÞ � mð� Þ�

½mðþÞ � mð� Þ�

Where μ(s) = mean value for the sample, μ(+) = mean of the DMSO only control, and μ(-) =

mean of the positive control (2 μM Amphotericin B). For each screening assay, the assay quality

parameters Z0 score and signal:background ratios were calculated as described previously. [45]

Results

Luciferase activity and stability

A panel of transgenic L.mexicana lines was generated that constitutively express either Nano-

Luc, NanoLuc-PEST or PRE9. Correct integration of the luciferase genes into the L.mexicana
genome was assessed by PCR on total parasite DNA using primers complementary to the

rRNA locus and the exogenous DNA (S1 Fig). A product of the expected size (900 bp),
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consistent with integration in the rRNA locus, was amplified from transgenic lines expressing

NanoLuc-PEST and PRE9, but not from the NanoLuc cell line (S1A Fig). Amplification of the

respective luciferase open reading frame was successful for all three lines (S1B Fig), suggesting

that the introduced DNA in the NanoLuc line is episomal rather than integrated. The genera-

tion of an integrated NanoLuc cell line was not pursued as we found that the NanoLuc-PEST

luciferase was a more dynamic indicator of cell viability (see below). Growth of the transgenic

parasite lines was assessed by monitoring procyclic cells over a 5 day time period, and com-

pared to the parental strain (Fig 1A, S2A Fig). There were comparable growth rates in all para-

site lines over this period, showing no gross defects in fitness in the transgenic lines.

Expression of the luciferase enzymes was analysed by measuring bioluminescence in lysed

cells. There was a significant linear correlation between cell number and bioluminescence over

a wide range (5–500,000 cells per assay) in all luciferase-expressing cell lines, in both procyclic

promastigotes and axenic amastigotes (Fig 1B and 1C respectively, S2B Fig). Luciferase activity

(above background levels) was detected at less than 10 cells per well for all three luciferase

enzymes, highlighting the sensitivity of the bioluminescence-based approach. Cells expressing

NanoLuc showed considerably higher bioluminescence than those expressing the other two

luciferases, with levels over 100-fold higher than the equivalent cells expressing PRE9 (S2 Fig).

In comparison, the bioluminescence produced by NanoLuc-PEST was over 10 fold brighter

than PRE9 in axenic amastigotes, whilst the signal intensity was comparable between the two

luciferases in promastigotes (Fig 1B and 1C).

The half-life of each luciferase was determined by treatment with a supralethal dose of

cycloheximide (100 μM), a known eukaryotic protein translation inhibitor. [46] Following an

8 hour incubation with cycloheximide, the bioluminescent signal from NanoLuc-expressing

cells in both life cycle stages remained relatively constant, showing that this reporter is

extremely stable (S2C Fig). In contrast, there was a 10-fold decrease in the bioluminescent sig-

nal after 1 hour in promastigotes and axenic amastigotes from the NanoLuc-PEST-expressing

line (Fig 1D and 1E). DMSO, the solvent for cycloheximide, has no effect on bioluminescence

levels at the volume used in this assay (S3 Fig). The calculated half-life for each of the luciferase

enzymes was calculated to be>8 hours for NanoLuc (both parasite forms), 16 and 9 minutes

for NanoLuc-PEST (axenic amastigotes and promastigotes, respectively) and 163 and 261 min-

utes for PRE9 (axenic amastigotes and promastigotes, respectively). Proteasome targeting of

the NanoLuc-PEST enzyme was assessed in the presence of the proteasome inhibitor MG-132

(S4 Fig). [43] Addition of 5 μM MG-132 produced a statistically significant increase in biolu-

minescence relative to the DMSO control (S4A Fig; p = 0.0272 and 0.0007 in axenic amasti-

gotes and promastigotes respectively). In the presence of both MG-132 and cycloheximide,

bioluminescence values did decrease, but were still significantly higher than in the presence of

cycloheximide alone (S4B Fig; p = 0.0219 and 0.0010 in axenic amastigotes and promastigotes

respectively).

Evaluation of luciferase-expressing L. mexicana cell lines for drug screening

In order to evaluate the NanoLuc-PEST enzyme as a dynamic reporter of anti-leishmanial

activity, we compared this transgenic cell line against a standard resazurin-based fluorescent

viability assay using Amphotericin B and Miltefosine (Table 1, S5 Fig). This was tested in axe-

nic amastigotes. The robustness of the assays was assessed by calculating the Z0 factor and sig-

nal:background (S:B) ratio. The EC50 values obtained from the parental and transgenic line

using both bioluminescence- and fluorescence-based assays was similar (0.20–0.27 μM;

Table 1, S5 Fig), and comparable to the EC50 value of 0.30 ± 0.02 μM previously described for

L.mexicana axenic amastigotes against Amphotericin B. [47] All assays had a calculated Z0
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factor value of� 0.64, demonstrating the robustness of each assay (defined as a Z0 value greater

than 0.5). [48] However, there were marked differences in the S:B ratio. The bioluminescence-

based assay displayed a S:B ratio between 50- and 100-fold higher than the standard fluores-

cence-based assay on the same cell line (Table 1).

We then evaluated the potential of the NanoLuc-PEST cell line to determine parasite viabil-

ity in an intramacrophage assay, and compared this to the standard microscopy-based count-

ing assay. We observed a correlation between the bioluminescence- and microscopy-based

methods (Fig 2); specifically, the infection index and the bioluminescent signal decreased in

the presence of a supralethal dose of Amphotericin B by�99% (Fig 2).

MMV Pathogen Box screening

Our findings indicate that the NanoLuc-PEST transgenic cell line is the most dynamic reporter

of those evaluated here. In addition, it is sensitive and robust in both the axenic and intrama-

crophage assay formats. Consequently, we evaluated this system for compound screening. We

used a two-step process to do this: i) identify hits against axenic amastigotes, ii) screen these

hits using our bioluminescence-based intramacrophage assay. Prior to this, the assay was opti-

mised to reduce the volume and cell concentration while maintaining a linear readout in a

96-well microplate format (S6 Fig). The MMV Pathogen Box resource, comprising 400 diverse

drug-like molecules, was tested at two concentrations (10 μM and 2 μM) on axenic amastigotes

(S7 Fig), and are summarised in Fig 3. Hits were defined as compounds that, at a concentration

of 2 μM, decreased the relative bioluminescence signal to 5% or less of that produced by the

transgenic parasites incubated in solvent (DMSO) only (Fig 3B). The complete dataset is

depicted graphically in S7 Fig, and in S2 Table. A total of 23 hits were identified (Fig 3B), 3 of

which were the reference compounds Buparvaquone, Mebendazole and Auranofin. Of these

23 identified hits, 52% originated fromMycobacterium tuberculosis screening programmes.

All 23 hits were analysed to determine their EC50 (S3 Table), except for Mebendazole

(MMV003152), which could not be resolved. Eight of these compounds displayed an EC50

value less that that observed for Amphotericin B (0.2 μM). Of these 8 compounds, 2 were refer-

ence compounds (Buparaquone and Auranofin). We picked the most potent reference com-

pound (Buparaquone) and the 6 test compounds to screen using the intramacrophage assay in

Fig 1. Characterisation of luciferase-expressing L. mexicana transgenic lines. (A) Promastigote growth curve of parental L.

mexicanaM379 (open square) and transgenic cell lines expressing PRE9 (open triangle) and NanoLuc-PEST (filled square)

monitored over a five day time course. Mean values are shown (n = 3) ± SD. The Y-axis was transformed by log10. (B), (C)

Cell density dilution series on the promastigote and axenic amastigote forms, respectively. Both X- and Y-axes were

transformed by log10 prior to regression analysis. Mean values are shown (n = 3) ± SD. (D), (E) Cycloheximide assay on the

promastigote and axenic amastigote forms, respectively, was monitored over an eight hour time course. The X-axis was

transformed by log10 prior to regression analysis. Mean values are shown (n = 3) ± SD.

https://doi.org/10.1371/journal.pntd.0006639.g001

Table 1. EC50 values and assay parameters following treatment with Amphotericin B and Miltefosine against wild-type and NanoLuc-PEST expressing L. mexicana
(see S5 Fig for full dataset).

Strain Drug Assay EC50 (μM) 95% CI Z0 Signal:Background

Parental Amphotericin B Fluorescence 0.23 0.23–0.29 0.64–0.88 3.2–3.6

Miltefosine 1.11 0.99–1.16 0.68–0.72 2.2–3.3

NanoLuc-PEST Amphotericin B Fluorescence 0.27 0.27–0.28 0.72–0.88 2.4–5.1

Miltefosine 1.99 1.8–2.06 0.70–0.83 4.2–4.5

Amphotericin B Bioluminescence 0.20 0.18–0.20 0.79–0.90 322.5–369.8

Miltefosine 2.19 2.07–2.35 0.84–0.86 192.7–211.5

https://doi.org/10.1371/journal.pntd.0006639.t001
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parallel with Amphotericin B and Miltefosine (Table 2, Fig 4). There was an increase in the

EC50 values from the intramacrophage assay for all 7 compounds when compared to the EC50

values from the axenic amastigote screen (Table 2, S3 Table and Fig 4). EC90 values from the

intramacrophage assay are also included (Table 2). Of these 7 compounds, 5 are known to be

active against kinetoplastids, with 4 of these active against Leishmania spp (Table 2). Our

results for MMV690102 correlate well with the existing data. [49–51] However, our EC50

results for MMV689480 (Buparvaquone) in the intramacrophage assay is at least three times

lower than the previously reported values against L.mexicana. [52] Our results for

MMV688262 (Delamanid) and MMV595321 were higher than previously reported values

against L. donovani (Table 2) [49, 53, 54].

Compounds supplied in the MMV Pathogen Box have been tested for cytotoxicity against

human cell lines, and this information is available online (https://www.pathogenbox.org/

about-pathogen-box/supporting-information). We have summarised this existing data along-

side results from cytotoxicity screens against the THP-1 cell line for the compounds that we

had sufficient available material (S4 Table). Tested compounds displayed an EC50 > 50 μM.

Discussion

A key issue with the anti-leishmanial drug discovery process is the step from axenic amasti-

gotes to in vivomodels. The compromise–using an in vitro intramacrophage assay–involves

the use of laborious and time consuming microscopy-based techniques that assess parasite

Fig 2. Comparison of bioluminescence- and microscopy-based intramacrophage infection assays following treatment with a supralethal dose of Amphotericin B.

(A) The bioluminescence-based assay was used to assess infection of PMA-differentiated THP-1 macrophages by stationary phase L.mexicana NanoLuc-PEST

promastigotes. Infected cells were exposed to 0.8 μM Amphotericin B, or left untreated, for 72 hours. Mean values are shown (n = 4) ± SD. The Y-axis was transformed

by log10, and the data was analysed by paired, two-tailed T-test (p<0.001). (B) The standard microscopy-based counting assay was used to assess infection of PMA-

differentiated THP-1 macrophages by stationary phase L.mexicana NanoLuc-PEST promastigotes Infected cells were exposed to 0.8 μM Amphotericin B, or left

untreated, for 72 hours. Infection indices were calculated as described in the methods. Mean values are shown (n = 4) ± SD. The data was analysed by paired, two-tailed

T-test on the infection index data (p = 0.0017).

https://doi.org/10.1371/journal.pntd.0006639.g002
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burden, but cannot determine parasite viability. This paper describes the use of a tractable bio-

luminescent marker (NanoLuc-PEST) that correlates specifically with parasite viability. This

method uses a simple and robust bioluminescence assay that decreases the time required to

screen compounds against intramacrophage amastigotes in vitro, and provides an environ-

ment that should be more similar to the in vivomodels.

All three of the luciferases tested enabled the detection of less than 10 cells per well (Fig 1B

and 1C, S2 Fig), demonstrating the highly sensitive nature of the bioluminescence approach.

Fig 3. Screening the MMV Pathogen Box against NanoLuc-PEST expressing axenic amastigotes, using

bioluminescence. (A) Relative bioluminescence (compared to untreated controls) of L.mexicana expressing

NanoLuc-PEST was measured following treatment with compounds at two concentrations (2 and 10 μM). Reference

compounds in the MMV Pathogen Box (see S2 Table) are shown as filled circles. Mean values are shown (n = 4). The

dotted line indicates the level of relative bioluminescence (5% or less at 2 μM) that forms our cut off for compounds to

be considered hits. (B) Represents the bottom left of Fig 3A, and shows the 23 compounds identified as hits from our

screen of the MMV Pathogen Box. These compounds are depicted as the MMV Pathogen Box disease set: tuberculosis

(filled triangle), schistosomiasis (open circle), onchocerciasis (open square), malaria (open triangle), kinetoplastids

(filled square) and reference compounds (filled circle). The reference compounds shown here are Buparvaquone,

Mebendazole and Auranofin. Mean values are shown (n = 4) from two independent experiments.

https://doi.org/10.1371/journal.pntd.0006639.g003
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Luciferase activity was not significantly greater in axenic amastigotes relative to promastigotes

for NanoLuc and NanoLuc-PEST lines, although the inserted genes were fused to the CPS

intergenic region, which has previously resulted in the upregulation of GFP in the amastigote

stage. [59] However, the NanoLuc and NanoLuc-PEST luciferases displayed higher biolumi-

nescence signals in the axenic amastigote form when compared to the PRE9 alternative (Fig

1C). There are several factors that may be involved in this. Specifically, the NanoLuc luciferase

was the only one of the three tested that was not genomically integrated (S1A Fig), therefore it

may have higher copy numbers compared to the NanoLuc-PEST and PRE9 enzymes. Differ-

ences in bioluminescence may also stem from the use of different substrates, specifically furi-

mazine (for the NanoLuc and PEST derivative) and beetle luciferin (for PRE9). However, it is

the sensitivity and brightness produced by the NanoLuc enzyme, and its PEST variant, that

makes them highly attractive for screening purposes.

Signal intensity is not the only factor that should be taken into consideration when assess-

ing a reporter molecule. The signal must also correlate with cell viability. The NanoLuc version

of the enzyme is very stable, with a half-life greater than 8 hours (S2 Fig). The addition of the

PEST domain, which is comprised of a proline, glutamic acid, serine and threonine rich

sequence, [60] targets the enzyme for degradation by the 26S proteasome (S4 Fig). [61] This

makes the NanoLuc-PEST variant a more dynamic reporter for cell viability. Whilst the Z0 val-

ues for both the bioluminescence and fluorescence based assays were above 0.5 (the lower

limit for an acceptable screening assay [48]), the S:B ratios for the NanoLuc-PEST transgenic

cell line was 50- to 100-fold higher than the standard fluorescence-based assay (Table 1). The

higher S:B ratio of NanoLuc-PEST reflects the relatively high enzymatic activity and short half-

life of this protein, contributing to the greater dynamic range achieved using this modified

reporter. Consequently, it was the clonal, genomically integrated NanoLuc-PEST cell line that

we felt was most appropriate for further testing.

The main advantage with this bioluminescent technique is its potential for use with intra-

macrophage assays. The current gold standards for intramacrophage compound screening are

microscopy-based assays. The microscopy techniques use nuclear staining, parasite-specific

antibodies or stable reporter molecules. [11–15, 36, 62] These rely on the use of fluorescence,

Table 2. Activity of the six most potent MMV compounds against axenic and intramacrophage amastigotes. Previous EC50 data for compounds against Leishmania
spp. are shown in italics, where available.

Compound EC50 (μM) against amastigotes EC90 (μM) against

amastigotes

MMV Disease Set Known Activity Against Leishmania spp.?

Axenic Intramacrophage Axenic Intramacrophage

Amphotericin

B

0.201

(0.303)

0.105 (0.271/0.009) 0.279 0.185 NA Yes [47, 55]

Miltefosine 1.99 10.87 (15.7) 19.76 37.27 NA Yes [55]

MMV676477 0.069 4.783 0.168 6.107 Tuberculosis No

MMV652003 0.077 3.637 0.104 10.670 Kinetoplastid No–but the compound class is active against T.

brucei [56–58]

MMV011903 0.189 2.015 0.320 2.286 Malaria No

MMV689480 0.002 0.394 (1.25/1.44) 0.011 1.260 Reference Compound

(Buparvaquone)

Yes [52]

MMV595321 0.153

(0.501)

5.295 (3.162) 0.357 11.170 Kinetoplastid Yes [49, 53]

MMV690102 0.060

(0.040)

0.107 (0.100) 0.123 0.160 Kinetoplastid Yes [49–51]

MMV688262 0.033

(0.005)
1.780 (0.0865–

0.298)
0.112 25.070 Tuberculosis (Delamanid) Yes [54]

https://doi.org/10.1371/journal.pntd.0006639.t002
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which can be affected by potential autofluorescence of test compounds. Furthermore, these

methods rely solely on detecting the presence of the parasite, not determining parasite

Fig 4. EC50 responses to seven MMV Pathogen Box compounds in both axenic and intramacrophage assays, compared to Amphotericin B and Miltefosine. The

response of L.mexicana expressing NanoLuc-PEST when screened against seven hit compounds, and the two controls Amphotericin B and Miltefosine. Parasites were

screened as either axenic amastigotes (filled square) or as intramacrophage amastigotes (open circle) in the THP-1 infection model. Mean values are shown (n = 4) ± SD

from two independent experiments. EC50 and EC90 values are detailed in Table 2.

https://doi.org/10.1371/journal.pntd.0006639.g004
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viability. We directly compared the potential of the NanoLuc-PEST cell line using the biolumi-

nescence- and counting-based assays on paired samples. Our results from the biolumines-

cence-based assay mirrored that of the microscopy-based assay (Fig 2); specifically the level of

infection decreased by�99%. Our bioluminescent intramacrophage assay is not only more

sensitive, but has the potential to be automated, and would therefore allow large-scale screen-

ing of compound libraries using a more relevant in vitro assay. The NanoLuc-PEST expressing

cell line thus provides a useful tool to assess compound efficacy against intracellular parasites

without the need for arduous, less sensitive, microscopy-based assays. Expressing the Nano-

Luc-PEST protein in other Leishmania species for screening purposes is also possible, as the

pSSU-Int expression vector has been used successfully in L. donovanni, [39] L.major, [37, 40]

and L. infantum [37, 38, 41].

One limitation of the bioluminescent assay is that it requires cell lysis. This means that the

cells, once measured, cannot then be used in additional, downstream applications. However,

the volumes required for lysis is small (<100 μL per technical replicate), so an aliquot can be

taken and tested from a larger sample, leaving the remaining material for further analysis. A

second limitation is that any extracellular promastigotes present within the well will produce a

signal when lysed. Whilst every care was taken to ensure the macrophages were washed care-

fully, we cannot guarantee that all of the extracellular promastigotes were removed. However,

incubation at 32˚C should induce differentiation into axenic amastigotes, which are less likely

to be retained on the macrophage surface during subsequent wash steps.

We then tested the NanoLuc-PEST cell line against the MMV Pathogen Box. The EC50 val-

ues obtained from the intramacrophage assay were higher than those values obtained from the

screen of the axenic amastigotes alone (Table 2). This is perhaps expected, as the compound

must traverse two additional membranes before it reaches the Leishmania amastigote. How-

ever, all seven compounds displayed an EC50 < 6 μM, which is below the 10 μM limit detailed

for hits against intracellular L. donovani. [63] Of these seven compounds, five are known to be

active against kinetoplastids, with four active against Leishmania spp (Table 2). Our results for

MMV690102 correlate well with the existing data, despite this previous data being gathered

against L. donovani. However, our EC50 results for MMV689480 (Buparvaquone) in the intra-

macrophage assay is at least three times lower than the previously reported values against L.

mexicana. This may indicate the increased sensitivity of our intramacrophage assay, as only

viable parasites within the macrophage are detected. Our results for MMV688262 (Delamanid)

and MMV595321 were higher than previously reported values (Table 2), which may be due to

species variation.

In conclusion, we have demonstrated the use of transgenic L.mexicana expressing a novel

luciferase as a tractable, rapid and sensitive system for compound screening, using the MMV

Pathogen Box as proof of principle. This system has the added advantage of allowing detection

of parasite viability in an in vitro infected macrophage model, a method that has previously

been shown to be advantageous for studying Plasmodium falciparum andMycobacterium
tuberculosis in an intracellular environment. [16, 17] This allows screening programmes to

assess compound activity against the intracellular parasite without the time burden, require-

ment for specialist equipment and post-assay processing associated with the current, micros-

copy-based, techniques.

Supporting information

S1 Fig. Molecular analysis of luciferase-expressing transgenic L. mexicana cell lines. (A)

Integration of the luciferase constructs into the rDNA locus was assessed by PCR amplification

from total parasite DNA using the oligonucleotides pSSU-F and pSSU-R (S1 Table). (B)
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Presence of the specific luciferase genes in the total parasite DNA was assessed by PCR using

the appropriate cloning oligonucleotides (S1 Table). WT; parental, NL; NanoLuc, NP; Nano-

Luc-PEST, PR; red-shifted firefly luciferase (PRE9).

(TIF)

S2 Fig. Characterisation of the episomal NanoLuc luciferase expressed in L. mexicana. (A)

Promastigote growth curve of the parental L.mexicanaM379 (open square) and the cell line

expressing NanoLuc (closed circle). Mean values are shown (n = 3) ± SD. The Y-axis was

transformed by log10. (B) Cell density dilution series on the promastigote (filled circle) and

axenic amastigote (open circle) forms. Both X- and Y-axes were transformed by log10 prior to

regression analysis. Mean values are shown (n = 3) ± SD. (C) Cycloheximide assay on the pro-

mastigote (filled circle) and axenic amastigote (open circle) forms was monitored over an

eight hour time course. The X-axis was transformed by log10 prior to regression analysis.

Mean values are shown (n = 3) ± SD.

(TIF)

S3 Fig. Effect of DMSO on the cycloheximide assay system. (A) DMSO (volume equivalent

to 100 μM cycloheximide) was incubated for eight hours with transgenic promastigote forms

expressing NanoLuc (filled circle), Rluc (open triangle) and NanoLuc-PEST (filled square),

and compared to untreated controls. Mean values are shown (n = 3) ± SD. The Y-axis was

transformed by log10. (B) DMSO (volume equivalent to 100 μM cycloheximide) was incubated

for eight hours with transgenic axenic amastigote forms expressing NanoLuc (filled circle),

Rluc (open triangle) and NanoLuc-PEST (filled square), and compared to untreated controls.

Mean values are shown (n = 3) ± SD. The Y-axis was transformed by log10.

(TIF)

S4 Fig. Proteasome targeting of the NanoLuc-PEST enzyme. (A) Response of the assay sys-

tem to the proteasome inhibitor MG-132 compared to the DMSO control. Mean values are

shown (n = 3) ± SD. The Y-axis was transformed by log10, and the data was analysed by paired,

two-tailed T-test on normalised data (p = 0.0272 and 0.0007 for axenic amastigotes and pro-

mastigotes respectively). (B) Response of the assay system to the protein synthesis inhibitor

cycloheximide in the presence and absence of the proteasome inhibitor MG-132. Mean values

are shown (n = 3) ± SD. The Y-axis was transformed by log10, and the data was analysed by

paired, two-tailed T-test on normalised data (p = 0.0219 and 0.0010 for axenic amastigotes and

promastigotes respectively).

(TIF)

S5 Fig. Amphotericin B and Miltefosine concentration dependent response against paren-

tal, NanoLuc and NanoLuc-PEST axenic amastigotes. (A) Response of the parental M379 L.

mexicana cell line to Amphotericin B (filled circles) and Miltefosine (filled squares), measured

using the fluorescence-based AlamarBlue assay. Mean values are shown (n = 6) ± SD. (B)

Response of the transgenic NanoLuc expressing L.mexicana cell line to Amphotericin B, mea-

sured using both the fluorescence-based AlamarBlue assay (filled circles) and the biolumines-

cence-based assay (open circles). Mean values are shown (n = 6) ± SD. (C) Response of the

transgenic NanoLuc-PEST expressing L.mexicana cell line to Amphotericin B, measured

using both the fluorescence-based AlamarBlue assay (filled circles) and the bioluminescence-

based assay (open circles). Mean values are shown (n = 6) ± SD. (D) Response of the transgenic

NanoLuc-PEST expressing L.mexicana cell line to Miltefosine, measured using both the fluo-

rescence-based AlamarBlue assay (filled squares) and the bioluminescence-based assay (open

squares). EC50 values for the parental and NanoLuc-PEST cell lines are reported in Table 1.

(TIF)

NanoLuc-PEST expressing Leishmania mexicana: A novel drug screening tool

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006639 July 12, 2018 14 / 20

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006639.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006639.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006639.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006639.s005
https://doi.org/10.1371/journal.pntd.0006639


S6 Fig. Miniaturising the Nano-Glo assay. (A) L.mexicana axenic amastigotes (1 x 105 cells/

ml) expressing NanoLuc-PEST were treated with the EC50 dose of Amphotericin B (0.2 μM).

Following a 72 hour incubation, different volumes were taken and added to a fixed volume of

50 μL of the Nano-Glo reagent (lysis buffer and substrate, diluted 200:1), and complete Schnei-

der’s medium pH 5.5 added to a final volume of 100 μL. The data shows a linear response

down to a cell volume of 10 μL. We chose a final cell volume of 20 μL for further screening

assays. Mean values are shown of three technical replicates ± SD. (B) Axenic amastigotes (1 x

105 cells/ml) expressing NanoLuc-PEST were treated with the EC50 dose of Amphotericin B

(0.2 μM). Using the 20 μL cell volume determined in (A), the axenic amastigotes were exposed

to different volumes of the Nano-Glo reagent (up to 2.5x the cell volume). No difference in the

bioluminescence values in any of the assay conditions was observed. A total assay volume of

40 μL, comprised of 20 μL axenic amastigotes and 20 μL Nano-Glo reagent was then selected

for the MMV Pathogen Box Screen. Mean values are shown of three technical replicates ± SD.

(TIF)

S7 Fig. Graphical representation of the complete MMV Pathogen Box screen against L.
mexicana NanoLuc-PEST axenic amastigotes. The relative bioluminescence (%) of the L.

mexicana expressing NanoLuc-PEST when screened against two compound concentrations:

2 μM (filled circle) and 10 μM (open circle). The MMV Pathogen Box contains five plates,

with 80 compounds per plate. The data for each plate is provided as a graph labelled with the

plate identifier. (A) Plate A. (B) Plate B. (C) Plate C. (D) Plate D. (E) Plate E. Dashed lines indi-

cate a decrease in bioluminescence of 5%. Mean values are shown (n = 4) ± SD from two inde-

pendent experiments. Also see S2 Table.

(TIF)

S1 Table. Oligonucleotide sequences for cloning and integration.

(DOCX)

S2 Table. Relative bioluminescence (%) following the MMV Pathogen Box screen at two

compound concentrations (2 μM and 10 μM), against axenic amastigotes expressing Nano-

Luc-PEST. Red values indicate the most potent compounds at 2 μM, blue values indicate the

least potent compounds at 2 μM.

(DOCX)

S3 Table. EC50 values for ‘hit’ compounds, from the axenic amastigote screen. EC50 values

are colour-coded, where red indicates the most potent compounds, and blue indicates the least

potent compounds.

(DOCX)

S4 Table. Cytotoxicity data for ‘hit’ compounds. Data is obtained either from the MMV

Pathogen Box website (a), or experimentally (b).

(DOCX)
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