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Abstract—Hybridization of electricity, heat power and trans-
portation energy combines the advantages of multi-energy
sources. This paper proposes the combined use of fuel cell,
combined heat and power units (CHP), hot water tank storage,
gas boiler and photovoltaic (PV) generators to meet the electrical,
thermal and transportation electrification energy demands in an
eco-friendly multi-energy microgrid. An optimal energy balance
methodology is proposed in this paper for sizing the capacity of
fuel cell, CHP, gas boiler and PV. The method is to minimise the
total annual cost and emissions of the whole system, based on
hourly electrical and thermal load profile. The methodology can
be used as a planning tool for multi-energy systems.
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I. INTRODUCTION

Low carbon multi-energy systems have gained increasing
attention recently, due to their efficiency, flexibility and en-
vironmental impact. The generation of a multi-energy system
can mix a wide range of power sources including renewable
energy, CHP, fuel cell and storage. Hybridization of different
technologies that complement each other can guarantee both
reliability and economy.

One of the challenges for planning and operation of this
multi-energy system is that the supply of heat and electricity
energy is a highly coupled co-optimisation problem. Fig. 1
shows the configuration of a multi-energy microgrid system.
The fuel cell and electric heater make the heat and elec-
tricity energy highly coupled. Extensive work has been done
on optimal operation of multi-energy systems. An integrated
strategy for supplying heating, cooling and power in small
scale distributed networks which incorporates renewables is
proposed in [1]. An integrated power and heating energy
system, including a detailed CHP model is adopted in [2], [3]
to accommodate more wind powers. Reference [4] is focused
on utilizing customers’ flexible energy demand, including both
heat demand and electricity demand, to provide balancing
resources and relieve the difficulties of integrating variable
wind power with the CHP. In [5], a scenario-based approach
is proposed for the stochastic operation of integrated electric
power, natural gas and heat delivery systems. However, the
scope is limited to a subset of resources and does not provide
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Fig. 1. Configuration of Multi-energy Microgrid.

a framework of designing a microgrid with multi-energy carrier
systems.

A reasonable design considering the optimal operation of
the system is an important premise for stable, economical and
efficient operation of a multi-energy system. In [6], the authors
propose a tri-level collaborative optimizing strategy for the
integrated design of hybrid cooling, heating and power system.
A power source sizing strategy with integrated consideration
of wind turbine, PV, CHP and Electric Vehicles (EVs) is
presented in [7] to calculate the optimal configuration of
energy storage. Reference [8] developed a mixed integer linear
program for the optimal design of distributed energy systems,
but Electric Vehicles were neglected in the analysis.

Recently, several studies focused on the design and opera-
tion of microgrid with Electric Vehicles [7]. EVs in the UK are
expected to increase dramatically in the coming years. Refer-
ence [9] predicts that by the year of 2040, more than half of the
vehicles running on the road will be electric. The propagation
of EVs could help the government achieve its reduced carbon
and emissions targets, particularly if most of the electricity
used to power EVs is from renewable generations. However,
the widespread adoption of EVs will bring some challenges
to the grid and one of the biggest is that vehicle charging
will significantly change the electricity demand profile. Thus,
it is necessary to consider the EV integration in the sizing
and energy management study. However, from the analyzed
literature on multi-energy systems, there is relatively little
consideration of EV integration.

In this paper, we introduce the use of fuel cells, CHP, gas
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boilers, hot water tank storage and PV to meet the electrical
and thermal demand considering the transport electrification
in an eco-friendly multi-energy microgrid. The main contribu-
tions of the paper are:

1) The paper proposes a mixed integer linear optimization
model for the design and operation of a low carbon multi-
energy system by using mixed low carbon technologies.
The simulation includes: a grid scale fuel cell model based
on MCFCs (Molten Carbonate Fuel Cells), a detailed
dynamic thermal model for a house, and a two mass
composite model of a thermal storage which considers
the stratification of the hot water tank.

2) A model of transportation electrification considering both
uncontrolled and smart charging of EVs is proposed based
on the UK national travel survey data. The smart charging
model for EV proposed in the paper employs a novel
and simple demand-profile based method, which requires
minimal communication.

The rest of the paper is organized as follows. The models
of the fuel cell, a house and thermal storage are described
in Section II. The model of transportation electrification is
presented in Section III. In Section IV, an optimal sizing
and operation modelling framework is proposed. Simulation
results are provided in Section V, with conclusions presented
in Section VI.

II. SYSTEM MODEL

A. Fuel cell model

The fuel cell power plant can provide high quality baseload
electric and heat power using natural gas or anaerobic digester
gas as fuel. Compared with traditional combustion CHP units,
some key features and advantages of the fuel cell power plant
include: 1) No active cooling requirement in case of missing
thermal off take; 2) Higher electrical efficiency (up to 60%
NET) to any competing CHP system; 3) Low noise emissions
due to no vibration; 4) Reduced maintenance; 5) Constant
emission and efficiency level, even at reduced output; 6) Toxic
exhaust far below any emission threshold. The heat and power
output of the fuel cell are coupled and restricted within certain
boundaries. The operation constraints of fuel cell are modelled
as follows:

1) Power ramp limits of fuel cell: The power output variabil-
ity of the fuel cell is affected by its ability to maintain stable
temperatures during transitions, as the stack and balance of
plant components can be damaged if the operating temperature
is changed too quickly. During normal operation, the fuel cell
power output Pfc(t) with ramp up or down at rates of 10%
per hour stages is defined as:

−0.1Pmax
fc ≤ Pfc(t) − Pfc(t− 1) ≤ 0.1Pmax

fc , (1)

where Pmax
fc = nP cap

fc is the power output limit of fuel cell with
n the number of fuel cells and P cap

fc the capacity of individual
fuel cell.

2) Power capacity limit: The fuel cell system can produce
up to a capacity limit at full load and can be throttled back to
50% of the capacity, which is modelled as:

0.5Pmax
fc ≤ Pfc(t) ≤ Pmax

fc . (2)

3) Relationship between electric and heat power: Regarding
the relationship between power and heat, firstly, please note
that as the stack ages, electrical output decreases and heat
output increases. The thermal to electric output ratios of the
fuel cell stack and fuel cell sub-system are shown in the
following equation. The heat rejection from the stack increases
with decreasing electric efficiency.

Hfc(t) = rTE(t)Pfc(t), (3)

where Hfc(t) is the waste heat available from the fuel cell
system at time t and rTE(t) is the thermal to electric output
ratio of the fuel cell system; this ratio will gradually increase
by 10% by the end of the stack ages (normally 5 years).

B. CHP model
The relationship between the heat and electric power gen-

eration of CHP plant is stated as:

QCHP (t) = PCHP (t) · 1 − ηCHP (t) − η1
ηCHP (t)

(4)

where PCHP (t), QCHP (t) are the electric and heat power
generated by CHP at time t, respectively; ηCHP , η1 are the
efficiency and heat loss factor of CHP, respectively.

The natural gas consumption related to the electric output
of CHP can be obtained as follow:

GCHP (t) =
PCHP (t)

LCHP · ηCHP
(5)

where LCHP is the low heating value of natural gas
[kWh/m3].

C. Dynamic thermal model of a house
A thermal model of a house created in Simulink is adopted

to calculate the thermal consumption. The model includes the
outdoor environment, the thermal characteristics of the house,
and the house heating system. The room temperature of a
house is determined by the heat flow from the heater and the
heat losses to the environment. Heat losses, denoted by Qlosses,
and room temperature, denoted by Troom are expressed by

dQlosses

dt
=
Troom − Tout

Req
, (6)

dTroom

dt
=

1

cMair
(
dQheater

dt
− dQlosses

dt
), (7)

where Mair is the mass of air inside the house; Req is the equiv-
alent thermal resistance of the house; c is the heat capacity of
air at constant pressure; Tout is the outdoor temperature; and
Pheat(t) = dQheater

dt is the heater power.
The state-space model in continuous time (7) can be trans-

formed into the equivalent first-order state-space discrete time
model by using Euler discretisation with a sampling time of
Ts [10], [11] as

Troom(t+ 1) = aTroom(t) + bPheat(t) + U (8)

where a = 1 − 1
cMairReq

, b = 1
cMair

and U = Tout
cReqMair

is an
input variable. The discrete time thermal dynamic model (8)
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will be used in construction of the optimization problem. The
constraints of the room temperature are represented as follows:

Tmin
room ≤ Troom(t) ≤ Tmax

room, (9)

where Tmin
room and Tmax

room are the lower and upper bounds of the
room temperature limits considering the comfort range (e.g.,
Tmin

room = 21◦C, Tmax
room = 26◦C) respectively.

D. Mathematical model of thermal storage
A two mass composite model is adopted to simulate the

dynamic thermal process of a thermal storage using a hot water
tank. The water in the tank can be modelled as a stratified
system layer of the hot water at the top and cool water at
the bottom [12]. We assume that each storage layer has a
constant temperature and a variable mass; the upper layer of
the tank has a uniform temperature close to temperature setting
(hot water) and the lower compartment of water has another
uniform temperature close to inlet water temperature (cold
water) [13]. This simple model is used to calculate the ratio
of the hot water layer inside the tank, which has the same
function as the state of charge (SoC) in a battery. The heat
power balance of the upper layer and lower layer are obtained
as

TaCp
dma

dt
= Q̇elec − ṁCpTa − Q̇loss,a, (10)

TbCp
dmb

dt
= ṁCpTb − Q̇loss,b, (11)

Q̇loss,a = 2πrhk(Ta − Tamb), (12)
Q̇loss,b = 2πrk(H − h)(Tb − Tamb), (13)

where Q̇loss,a is the loss of upper layer; Q̇loss,b is the loss of
lower layer; Q̇elec is the heat power of the resistor in the water
heater; Tamb is the outside temperature of the tank; r is the
radius of the tank; h,H are the height of hot water layer and
the tank, respectively; k is the thermal conductivity coefficient;
Cp is the specific heat capacity of water; Ta (Tb) is the water
temperature of the upper (lower) layer; ma (mb) is the water
mass of the upper (lower) layer; and ṁ is the water mass flow
rate.

Assume the mass flow rate entering the tank is equal to the
mass flow rate exiting the tank and the temperature Tamb =
Tb. Thus, the mass conservation laws can be represented as
dma

dt + dmb

dt = 0 and (10), (11) may be rewritten as

(Ta − Tb)Cp
dma

dt
= Q̇elec − Q̇load − (Ta − Tb)2πrhk, (14)

where Q̇load = ṁCp(Ta − Tb). We denote by η = h/H the
ratio of hot water layer to the tank height; then by using (14)
we have

dη

dt
= c(Q̇elec − Q̇load) − dη, (15)

where c = 1/[H(Ta − Tb)CpρA] and d = 2πrk/CpρA. The
discretised state space model of (15) can be obtained as

η(t+ 1) = (1 − d)η(t) + c(Q̇elec − Q̇load). (16)

III. MODEL OF TRANSPORTATION ELECTRIFICATION

The electrification of personal transport stands to drastically
increase household demand for electricity. There are several
steps involved in predicting the power demanded by a partially
electrified fleet of personal vehicles. First, the usage of the resi-
dential EVs must be predicted. Second, the resulting electricity
consumption of the EVs needs to be estimated. Finally, the
charging behaviour of the vehicle owners must be modelled,
to convert the power demanded of the EV battery to the power
demanded of the grid.

A. Vehicle usage

As EVs have only recently become available, only very
limited usage data is available. As their prevalence increases
the behaviour of EV drivers is likely to converge with that
of conventional vehicle drivers, which has been studied for
many years. By sampling from a large travel survey (e.g.
[14]) relevant usage profiles can be extracted; profiles which
were observed in similar areas and at similar times to those
under investigation. The usage profiles constitute a journey
log, where the times, distances, and purposes of all journeys
undertaken by the vehicle are recorded.

Once a subset of profiles have been gathered they must
be scaled to represent the required number of vehicles. The
required number of vehicles is determined by scaling the total
number of vehicles by the percentage assumed to be electric.
If the number of profiles exceeds the required number then a
random subset are chosen. If not, then the power demanded
by each of the vehicles is scaled by the ratio of the number
of required vehicles to number of profiles.

In this paper a small town in the South East of the UK was
chosen. Profiles from this region and of the relevant rural-
urban classification were isolated. Separate simulations were
done for each weekday and month and the predictions were
combined to create a year round usage profile.

B. Electricity Consumption

Given the distances travelled by a vehicle, we need to
estimate the electricity which would’ve been used completing
it. In reality this will depend on many factors, including
driver style, vehicle make and ambient conditions - information
which we do not have. Here we use the model defined in
[15], which uses vehicle and seasonal parameters to map the
distance covered into an energy expenditure. This non-linear
model uses standard drive cycles to capture different styles of
driving - such as urban and motorway.

The energy used by the vehicle is not exactly equal to
that required from the network; losses in charging need to
be accounted for. The energy demanded from a network is
assumed to be given by:

Edemand =
1

ηc
Ereq, (17)

where Ereq is the amount of energy required to replenish the
battery and ηc is the charging efficiency. An efficiency of 90%
was used for the simulation, as this level has been observed
in situations similar to at home charging [16].
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Fig. 2. Flowchart of the charging assumptions.

C. Charging assumptions
The way in which vehicles are charged will significantly af-

fect the household power demand profile. Only uni-directional
charging is allowed, meaning the possibility of the EV to
provide vehicle-to-grid services has been ignored. Two types
of charging mode are consider in the paper: 1) Uncontrolled
Charging; 2) Smart Charging, which are shown in Fig. 2.

1) Uncontrolled Charging: we assume that each vehicle
charges every day in which it is used, and charges until full.
Charging is assumed to begin immediately after the completion
of a vehicles’ final journey and is carried out at a slow-charging
rate of 3.5 kW, which is a typical power rating for at-home
chargers.

These assumptions result in a coincidence of the vehicular
charging and existing household demand peaks, however this
is far from the worst-case scenario. Assuming that each vehicle
charges every day means most charges are short, which reduces
the likelihood of a large number of EVs charging simultane-
ously.

2) Smart Charging: A simple smart charging control
method, which requires minimal communication is adopted in
the analysis. An illustration of the control scheme is shown in
Fig. 3 and the procedure of the method is described below:

(I) estimate the shape of the aggregated electricity profile
which you wish to valley-fill;

(II) invert the profile, giving the total demand profile which
the aggregated vehicles should follow in order to com-
pletely flatten the overall demand;

(III) The individual vehicle applies its timing constraints
(red dotted lines) and calculates the energy under the
remaining charging profile;

(IV) The profile is scaled so that the vehicle will receive
exactly the amount of energy it requires so that it will
be fully charged just before it is next needed.

Fig. 3. Illustration of smart charging.

Fig. 4. Framework of the proposed algorithm.

IV. OPTIMAL SIZING AND OPERATION MODELLING
FORMULATION

In this section, we propose an integrated power and heat
optimisation model, which includes general model structure,
objective function and constrains.

A. General modelling framework
The general framework is shown in Fig. 4. The inputs

include hourly power demand, hourly ambient temperature and
irradiation data. The outputs include costs and emissions. The
objective function of the problem is to minimise the costs
of the system, including equipment cost and operational cost
of fuel cell, CHP, gas boiler and PV. The constraints that
are taken into account represent: power ramp limits of fuel
cells; relationship between power and heat (e.g. as the stack
ages, electrical output decreases and heat output increases);
energy balance; heat balance; fuel cells operation constraint;
and ratings of fuel cells. The resulting optimisation problem
is a mixed integer linear program which describes the joint
operation of power and heat system on an hourly basis,
considering the thermal storage.

B. Objective Function
The objective function includes total equipment costs of fuel

cell, thermal storage and fuel costs of fuel cells.
1) Annual investment cost of the whole system: The annual

investment costs of the whole system are defined by the
following equation:

Cinv = a(NfcCfc+Ppv,cCpv+NchpCchp+NboilCboil) (18)
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where Cfc, Cpv, Cchp, Cboil are the investment costs of the
fuel cell, PV, CHP unit and gas boiler, respectively. An annual
factor a is adopted to calculate the annual investment cost of
each equipment, which is defined as:

a =
(1 + i)n · i

(1 + i)n − 1
(19)

where i is the interest rate and n is the project lifetime.
2) The operation and maintenance cost: The annual O&M

cost is defined as

Com = Cfc,om + Cchp,om + Cboil,om (20)

where Cfc,om, Cchp,om, Cboil,om are the operation and main-
tenance cost of fuel cell, CHP and gas boiler, respectively.

3) Cost of power exchanging (in grid-connected mode): The
annual cost of purchasing power from the grid Cgim and the
revenue of selling power to the grid Cgex are defined as

Cgim =
NT∑
t=1

Pgridim
(t) · pim(t) (21)

Cgex =
NT∑
t=1

Pgridex
(t) · pex(t) (22)

where pim(t), pex(t) are the price of selling power to the grid
and purchasing power from the grid, respectively.

4) Cost of Carbon Emission: The annual cost of the carbon
emission depends on the generation output of fuel cell, CHP,
gas boiler and imported electricity from grid.

Ccarbon = p · (gfc

NT∑
t=1

Pfc(t) + gchp

NT∑
t=1

Pchp(t)

+ gboil

NT∑
t=1

Qboil(t) + ggrid

NT∑
t=1

Pgridim(t)) (23)

where p is the carbon emission price per tone.
gfc, gchp, gboil, ggrid are the coefficients of carbon emission
per kWh for fuel cell, CHP, gas boiler and grid, respectively.

5) Total Costs of the System: The annual total costs for the
whole system Ctotal are defined as

Ctotal = Cinv + Com + Cgim − Cgex + Ccarbon. (24)

C. System constraints
The system constraints include both equality and inequality

constraints.
1) Electric power balance: The sum of the power output

from the fuel cell and PV generators is equal to the electrical
load at every time instance t

Pfc(t) + Ppv(t) + Pgridim(t) + PLSE(t) + Pstoout(t) =

Pload(t) + Pheat(t) + Pstoin(t) + Pgridex
(t) (25)

where Ppv(t) is the power output of PV at time t; Pload(t) is the
electric load consumption at time t; Pgridim(t), Pgridex(t) are
the power import and fed into grid at time t, when it is working
on grid-connected mode, respectively; and Pheat(t) is the excess
electricity to be used for heat up the water tank; PLSE(t) is
the load curtailment at hour t; Pstoout(t) and Pstoin(t) are the
output and input power of storage at time t, respectively.

2) Heat Power Balance: The heat power output of the fuel
cell and electric heating equals the sum of heating load at every
time instance t

ηhHfc(t) +Hheat(t) +Hstoout(t) =

Hsp(t) +Hhw(t) +Hgrid(t) +Hstoin(t) (26)

where Hheat(t) = ηhPheat(t) with ηh the conversion effi-
ciency from electric heating to thermal energy; Hfc(t) is the
heat power output of fuel cell at time t; Hsp(t), Hhw(t) are
the heat power output load of space heating and hot water
usage at time t, respectively; and Hgrid(t) is the slack variable;
Hstoout(t) and Hstoin(t) are the output and input power of
thermal storage at time t, respectively..

3) PV ramp limit: The output of PV generators to the utility
grid are restricted by regulations to maintain necessary power
quality and reliability in the network, which may be modelled
as

−0.1Pmax
pv ≤ Ppv(t) − Ppv(t− 1) ≤ 0.1Pmax

pv . (27)

4) Power Exchange Limit (in Grid-connected mode): The
electric power exchanging between community and grid should
satisfy:

Pmin
grid ≤ Pgridim ≤ Pmax

grid (28)

Pmin
grid ≤ Pgridex

≤ Pmax
grid (29)

where Pmin
grid , P

max
grid are the minimum and maximum power

exchanging limit, respectively.

D. Reliability assessment
1) Reliability indices: To assess the reliability of the system,

four well-known reliability indices are adopted: expected load
not supplied (ELNS), expected energy not supplied (EENS),
loss of load expectation (LOLE) and loss of load probability
(LOLP), which are defined as follows:

ELNS =
∑
s

∑
t

ps,t · L′s,t (30)

EENS =
∑
s

∑
t

ps,t · E′s,t (31)

LOLE =
∑
s

∑
t

ps,t · t′s,t (32)

LOLP =

∑
s

∑
t ps,t · t′s,t
T

× 100% (33)

where L′s,t, E
′
s,t are the amount of load and energy not

supplied due to the outage of component of s, respectively;
t′s,t is the time duration of the s component outage; T is the
number of time blocks within a year; ps,t is the probability of
unavailability of each component s at hour t can be obtained
as:

ps,t = FORs ×
∏
s′ 6=s

(1 − FORs′) (34)

The equipment forced outage rate (FOR) is statistically
calculated forced outage probability of the unit for a long time
period. In this paper, only FOR of PV is considered to lower
the computational burden.
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We use equation (35) to define the time steps in which the
loads of electricity are curtailed. ue,t is used to indicate the
state of curtailment. It would be 1 if the load is curtailed at
time t.

M · ue,t ≥ PLSE(t) ≥ 0 (35)

2) Reserve constraints: To provide backup power when
equipment outage is considered, the reserve capacity is uti-
lized. The available reserve capacity is limited by the com-
ponent maximum capacity and maximum ramp up, which are
defined in (36) and (37), respectively.

Rs,t ≤ Pmax
s,cap (36)

0 ≤ Rs,t ≤ R̄R
max
s (37)

where Rs,t is the reserve capacity of component s at hour t;
R̄R

mas
s is the maximum ramp up of component s; Pmax

s,cap is the
maximum capacity of component s.

The total reserve capacity of the system Rtot,t is expressed
as:

Rtot,t =
∑
s

Rs,t (38)

3) Reliability constraints: According to (30) and (34), the
ELNS can be obtained as:

ELNS =
∑
s

∑
t

FORs ×
∏
s′ 6=s

(1 − FORs′) · ue,t

× (Qs,t +Rs,t −Rtot,t) (39)

ELNS is still nonlinear and we can use the technique
mentioned in [20] to linearize it.

Based on (33) and (34), the LOLP can be expressed as:

LOLP =

∑
s

∑
t us,t · FORs ×

∏
s′ 6=s(1 − FORs′)

T
× 100%

(40)
Since the calculation results of ELNS is proportional to

EENS, in this paper, only ELNS and LOLP indices are used to
qualify the reliability of the muti-energy system. The obtained
ELNS and LOLP at each year should be less than the targeted
value of ELNStar,LOLPtar, which are modeled in equation
(41) and (42), respectively.

ELNS ≤ ELNStar (41)

LOLP ≤ LOLPtar (42)

E. Overall framework

The integrated optimisation problem can be modelled as
follows:

min
Pfc(t),Ppv(t),Hfc(t)

Pchp(t),Qchp(t)

Ctotal

subject to

(1) − (3), (8) − (9), (16), (25) − (42). (43)

V. CASE STUDIES

We propose a framework to determine the optimal size and
operation strategy of a multi-energy microgrid. The optimiza-
tion model is built based on the Python open source modelling
language Pyomo [17] and is solved by Mixed Integer Linear
Optimization Programming (MILP) provided by the CPLEX
solver [18].

The method is tested on an Eco-town in the UK which is
planning to build a 1700-households community. To capture
the weekly and seasonal effects in the analysis, we use
electrical load profiles based on the reports of the UK Energy
Research Centre [19]. Hence the number of time blocks used
to represent the load variation are 10 years × 4 seasons ×
3 weekday/saturady/sunday × 48 hours = 5760. The space
heating and hot water usage are summed up for the thermal
load profile. For the space heating load, we take a reasonably
modern end-of-terrace house insulated to standards suggested
in the Building Regulations for England and Wales, and the
load is calculated by (8) based on the ambient temperature. The
hot water demand data is obtained from an Energy and Saving
Trust (EST) study. We use an NREL developed tool, so-called
PVWatts, to determine the output of PV generation [21].

The targeted reliability indices ELNStar and LOLPtar are
chosen as 1 and 0.1%, respectively. The forced outage rate
(FOR) of PV is 2% in the analysis.

To demonstrate application of the proposed model, four sce-
narios (S1,S2,S3 and S4) including 19 test cases are presented
in Table I. S1 is base case which uses CHP and gas boiler to
meet the load. S2, S3 and S4 are the low, medium and high
carbon scenarios, respectively.

A. Sizing and Operation Results
Fig. 5 shows the comparison results of optimal sizing and

costs of different cases. The average costs of S4 is still less
than S2 and S3, by about 66.07% and 27.85% respectively,
although the carbon emission cost is included in the objective
function. The mainly reason is that the equipment cost of fuel
cell is expensive.

The costs on grid connected mode is always cheaper than
off-grid mode, as the electricity from the grid is cheaper than
from local generators. Comparing the costs of uncontrolled
charging with smart charging when EV is integrated, smart

TABLE I. DESCRIPTION OF TEST SCENARIOS.

S. Case. EV Grid-Con. Technologies
S1 1 No Yes CHP + Back-up Gas Boiler

2 No No Fuel Cell + PV + Gas Boiler
3 No Yes Fuel Cell + PV + Gas Boiler

S2 4 Yes No Fuel Cell + PV + Gas Boiler
5 Yes Yes Fuel Cell + PV + Gas Boiler
6 Smart* No Fuel Cell + PV + Gas Boiler
7 Smart Yes Fuel Cell + PV + Gas Boiler
8 No No Fuel Cell + CHP + PV + Gas Boiler
9 No Yes Fuel Cell + CHP + PV +Gas Boiler

S3 10 Yes No Fuel Cell + CHP + PV + Gas Boiler
11 Yes Yes Fuel Cell + CHP + PV + Gas Boiler
12 Smart No Fuel Cell + CHP + PV + Gas Boiler
13 Smart Yes Fuel Cell + CHP + PV + Gas Boiler
14 No No CHP + Gas Boiler
15 No Yes CHP + Gas Boiler

S4 16 Yes No CHP + Gas Boiler
17 Yes Yes CHP + Gas Boiler
18 Smart No CHP + Gas Boiler
19 Smart Yes CHP + Gas Boiler

*Smart charing mode
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Fig. 5. Optimal sizing results and system costs of different cases.

Fig. 6. Carbon emission results and costs of different cases.

charging mode is always less than the the uncontrolled charg-
ing mode. For example, the cost of case 18 is reduced by
12.45%, compared with case 16, as the smart charging smooths
the electric load profile, as shown in Fig. 5.

The hourly power output for each type of the power genera-
tion for case 3 is shown in Fig. 7. During the winter season, the
peak thermal load is almost twice as much as the peak load of
electric power. Thus, almost all the electric power is supplied
by the fuel cell during the winter to secure the required source
of heat demand. During the summer periods, the peak thermal
load is mainly the hot water usage which is almost the same
as the peak electric power load. Part of the electric power
is generated by the PV generators and the gas boiler power
undertakes the peak heat demand.

In Fig. 8, the hourly energy balance for January and July for
case 5 is depicted. When EVs are integrated with uncontrolled
charging, the peak electric load increases by 25%, compared
with case 3 without EVs. The integration of EVs increases
the cost of the system by 27.47%. Fig. 10 shows the hourly
energy balance for January and July for case 7. When EVs

are integrated with smart charging, the maximum level of
electric load doesn’t change too much and the minimum level
of the load increases by 50%, compared to without EVs. The
integration of smart charging EVs saves the cost of the system
by 20.42%, compared with case 5.

B. Carbon Emission Results
The results of carbon emissions and the relative carbon costs

for different cases are summarized in Fig. 6. Case 2 has the
lowest carbon emissions, as it adopts low carbon technologies,
such as fuel cell, PV and is running off-grid. The average
carbon emission costs of S2 decreases by about 17.09 % and
23.04 % respectively, compared with S3 and S4.

The carbon emission of off-grid mode is always less than
grid connected mode, as the electricity from the grid is often
generated from coal-fired plants. In this paper, we assume ev-
ery kWh electricity from grid can emit 0.537kg CO2, based on
information from the British Gas website, however this number
will decrease as more renewables are integrated. Comparing
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Fig. 7. The hourly energy balance of case 3: (a) Electric power balance
in January; (b) Heat power balance in January; (c) Electric power balance in
July; (d) Heat power balance in July.

the carbon emissions of uncontrolled charging with smart
charging of EVs, smart charging mode is always marginally
less than the uncontrolled charging mode. For example, the
carbon emissions of case 18 is reduced by 3.89%, compared
with case 16.

C. Reliability assessment
To analyze the effect of reliability indices on the sizing

results, different scenarios by using different reliability index
(i.e. LOLPtar) are studied and the results are shown in Fig. 9.
The system costs are increasing due to the higher level of
reliability. Slightly changing the value of LOLPtar will only
influence the operation costs, not the investment cost.

D. Investment suggestions
Based on the obtained results of all the scenarios, Case 8 and

Case 9 are selected as two of the best options for off-grid and
grid-connected modes, considering both the total costs and the
carbon emission results. The best configuration of the system
is Fuel cell: 1*400kW; CHP:903kW PV: 1050kW; Gas boiler:
776; TS: 500units.

Fig. 8. The hourly energy balance of case 5: (a) Electric power balance
in January; (b) Heat power balance in January; (c) Electric power balance in
July; (d) Heat power balance in July.

Fig. 9. System costs for different reliability indices.
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Fig. 10. The hourly energy balance of case 7: (a) Electric power balance
in January; (b) Heat power balance in January; (c) Electric power balance in
July; (d) Heat power balance in July.

By combining different technologies in cases 8 and 9, the
proposed model can take advantage of both the eco-friendly
component such as PV and the energy efficient equipment such
as CHP, by utilizing the proposed optimization method.

VI. CONCLUSIONS

In this paper, an Eco-town based multi-energy system in
UK was simulated to find the optimal size and operation
strategy of mixed technologies such as fuel cell, CHP, gas
boiler and PV to meet the electric and thermal loads. A simple
transportation electrification model which considers both the
uncontrolled and smart charging of EVs is proposed based
on the UK national travel survey data. To illustrate how the
proposed method works, several cases which adopt different
low carbon technologies are compared. Simulation results
of several cases show that by utilizing mixed technologies
(e.g. case 9 combining CHP, fuel cell, PV, gas boiler and
storage) the proposed model is able to reduce carbon emission
dramatically, while maintaining cost effectiveness to some
extent. In addition, comparison of the results between smart
charging and uncontrolled charging modes show that the costs
when considering smart charging will reduce by around 12%.

The proposed model can be utilized to help the plan-
ners determine the best combination of different low carbon
technologies along with their sizes in order to meet energy
demands (both heat and electricity). The proposed model can
not only minimize the costs and carbon emission, but also
fulfill the system reliability requirements.
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