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Abstract

We develop a new asymptotic model of the dynamic interaction between
an elastic structure and a system of gyroseéepic spinners that make the
overall multi-structure chiral. Anlimportant result is the derivation and
analysis of effective chiral boundary eenditions describing the interaction
between an elastic beam and a'gyroscopic spinner. These conditions are
applied to the analysis of waves, in systems of beams connected by gy-
roscopic spinners. A newmasymptotic and physical interpretation of the
notion of a Rayleighgyrobeam is also presented. The theoretical findings
are accompanied by illustrative numerical examples and simulations.

1 Introduction

Chirality, the property of an object whereby it is not congruent to its mirror
image, oCecurs'both through natural and man-made means in various areas of
scieneés, The useful and striking effects of chirality have received much attention
in récent years, in particular in the development of optical metamaterials [1]. In
mechanigs; chirality may be introduced by gyroscopic spinners connected to a
multi-structure, which may incorporate several elastic components. The present
paper utilises an asymptotic analysis to develop a new type of chiral boundary
conditions and a subsequent study of a class of spectral problems for chiral
elastic multi-structures.

The concept of chiral flexural elements, known as gyrobeams, was introduced
in [2]. These chiral elements can be used for controlling the attitude and shape
of spacecraft during flight [3]. A gyrobeam can be interpreted as a beam with
additional stored angular momentum whose effects are controlled by a spatial
function governing the “gyricity” of the element. This function allows for the
coupling of the principal transverse motions in the beam. Several illustrations of
the effect of gyricity on the modes and stability of a beam have been presented in



[2-5]. Dynamic gyroelastic continuous models that utilise micropolar elasticity
have been developed in [6,7] for one- and two-dimensional flexural media.

When waves propagate through civil engineering structures, such as bridges,
pipeline systems and buildings, large deformations may occur that can lead to
the collapse of the structure [8]. Simplified discrete models offer ways in under-
standing possible vibration [9,10] and collapse [11-13] modes of such structures.
These models may be easily adapted to include the effects of support systems
capable of negating or re-routing the effects of unwanted vibrations generated;
for instance, by seismic activity [14,15]. In addition, gyrobeams were recently
used in a numerical model of seismic protection systems for civil enginéering
structures in [16], where a bridge support system composed of gyrobeariis, capa-
ble of diverting low-frequency waves was proposed.

A new class of chiral boundary conditions has been introducéd in [17} for
a gyro-hinge connecting a gyroscopic spinner and an elastic béam. “Addition-
ally in [17], an infinite beam resting on a periodic distribution of gyro-hinges
was used to approximate the low-frequency behaviour eof*a periodically sup-
ported gyrobeam with constant gyricity. However, exactlyshow one quantifies
the “gyricity” of a gyrobeam in terms of known mechanical/quantities is an
interesting question. This is addressed in the presént paper.

Gyroscopic spinners have also found useful applications in the design of sev-
eral two-dimensional chiral elastic structuressthat-act as novel wave-guiding
tools. Analysis of waves in a discrete triangular lattice whose nodes were at-
tached to spinners was carried out in [18]"In _thé time-harmonic regime, this
lattice was shown to have novel filtering and polarising properties. In addition,
the homogenised material associated \with this lattice was used as an efficient
cloaking and shielding device. Aftin-depth analysis of the dispersive nature and
strong dynamic anisotropic properties of this chiral structure was carried out
in [19]. A heterogeneous arrangement of gyroscopic spinners can lead to sur-
prising wave propagation effects; In particular, it has been shown in [20] that
a triangular lattice, attachedsto/two types of gyroscopic spinners, admits wave-
forms localised in aSingle line, whose orientation can be controlled by adjusting
the arrangement f spinners.

The approach developed in [18] was used in [21,22] for numerical simulations
of finite hexagonal systems resting on gyroscopic spinners for the purpose of de-
signing a.robust topological insulator. Experimental evidence demonstrating
the topological insulation properties of a hexagonal lattice connected to gyro-
scopic spinners was given in [23]. Further examples where chirality has been
built into a'discrete medium include systems of coupled pendula that have been
used to generate the mechanical analogue of the quantum Hall effect [24, 25],
and tilted resonators that have been embedded in a triangular lattice to create
localisation and interfacial waveforms [26,27].

Chirality can yield counter-intuitive behaviour in the static response of a ma-
terial. Examples of this include [28], where honeycomb structures composed of
rigid rings linked by slender ligaments were modelled and experimentally anal-
ysed. Structures of this type are auxetic and their microstructure can be tuned
to allow their effective behaviour to mimic a homogeneous material possessing a
negative Poisson’s ratio. Wave propagation in such structures has been investi-
gated in [29]. A static micro-polar continuous model has been used in [30] as a
homogenised representative of an auxetic material with a hexagonal microstruc-
ture. Homogenisation models for hexagonal and square cell chiral materials were



presented in [31], where the dependency of the effective moduli on the underly-
ing microstructural properties, including chirality, was examined. Chiral lattices
containing inertial rings, capable of generating low-frequency stop-bands for the
structure, have been modelled in [32].

In aerospace engineering and applications related to the dynamic response
of airframes, gyroscopic effects are often considered to be important (see, for
example, [33,34]). Examples of challenging industrial problems are studied
in [33], where ply-angle anisotropic tubes are connected to a rotor and numerical
solutions of a linearised spectral problem are analysed in detail. In addition,
in [34] it was noted that the presence of a rotor connected to an Euler-Bernoulli
beam subjected to an external longitudinal force affects the stabilityof the
elastic system. In [34], the problem is solved with the Rayleigh-Ritzemethod.

With a rotor that spins at a variable rate, the gyroscope represents.a tran-
sient mechanical system that can nutate and precess, which brings additional
physics to the problem. The precession and spin rates in general are mot con-
stant, but as we show in the present paper their sum .an be. approximated
as constant if one assumes the nutation angle of the gyroscope to be small.
Moreover, we derive an analytical closed form solution ‘ef the spectral problem
concerning the dynamics of an Euler-Bernoulli beam. connected to a gyroscopic
spinner. We also develop chiral boundary conditions‘and chiral junction con-
ditions, which are used to perform the Bloch=Floquet analysis of an infinite
periodic chiral multi-structure, composed of Euler-Bernoulli beams connecting
small gyroscopes.

With the spinners being absent, the free end of the Euler-Bernoulli beam
would be subjected to standard boundary conditions of zero shear forces and
zero bending moments. However;y,with jthe spinners in place, a new lower-
dimensional asymptotic model has been introduced to incorporate a set of chiral
boundary conditions, which“éouple moments and hence rotational and flexural
motion. Analysis of elastie waves in such systems incorporating chiral junctions
is the main aim of the present study.

The gyroscopic metion of a single gyroscope is described by a system of non-
linear differentialequations; well studied in the literature (see, for instance, [35]).
When connectéd to,a deformable solid, such as an elastic beam, a gyroscopic
spinner produces a response which incorporates precession and nutation, com-
bined with the elastic vibrations of the supporting structure.

In Figure 1 we show two examples of the transient behaviour of a multi-
strueture’ consisting of an elastic beam, clamped at the base, and a rotating
gyroscopic §pinner attached to the upper end of the beam (details are given in
Section 2). Subject to the physical parameters of the system and to the initial
conditions, the transient process may give different trajectories of the upper
end of the beam. The example (a) in Figure 1 corresponds to a trajectory of a
gyroscopic spinner placed on the top of a massless elastic beam. The pattern
is a linear combination of four types of time-harmonic motions, as explained in
Section 2.3. In some cases, an appropriate choice of initial conditions may lead
to a periodic motion with a circular trajectory of the elastic multi-structure.
An example of such a motion is shown in part (b) of Figure 1. The direction
of motion depends on the spin orientation of the gyroscopic spinner. Such a
periodic motion is well described by a class of eigenvalue problems for a chiral
multi-structure, discussed formally in this paper. In particular, a linearised
formulation will be discussed for the case when the angle of gyroscopic nutation
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Figure 1: Transient motion of an elastic massless beam connected to a gyroscopic
spinner: (a) non-circular motion, (b) periodic circular motion. The)motion of
the system in (a) is a linear combination of four time-harmonic metions and an
example of such a periodic motion is given in (b). The undeférmed configuration
is shown as the dashed line. The gyroscope is represented-by the thick black
line and the trajectory of the tip of the gyroscopé is indicated by the contour
at the top of the each diagram.

is small.

The structure of the article is as'follows.. In Section 2, we present the for-
mulation of the governing equations and derive the chiral boundary conditions.
We also compare the analytical lower-dimensional asymptotic model with a full
three-dimensional transient_non-linear numerical simulation incorporating an
elastic beam connected tofa spinner. In Section 3, we analyse the time-harmonic
motion of this system, and investigate how the presence of the gyroscopic spin-
ner influences the eigenfrequencies and eigenmodes of the beam. In Section
4, we consider a system of/beams connecting small, equally spaced gyroscopic
spinners and weé show that this system approximates a Rayleigh beam with an
additional distribution of angular momentum. Finally, in Section 5, we give
some conclusions from the present work.

2 ~Goyverning equations and chiral boundary con-
ditions

We /consider an Euler-Bernoulli beam, which is clamped at its base and is con-
nected to a gyroscopic spinner at the other end (see Figure 2(a)). It is assumed
that the connection is such that the spinning motion of the spinner is not trans-
mitted to the beam. We also assume that the fixture is such that the slope of
the beam at the beam tip and the inclination of the spinner are the same at any
time during the motion. In addition, we neglect the effect of gravity throughout.
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Figure 2: (a) A béa ey'line) with a gyroscopic spinner connected to its tip.
The beam is fixedhat its'base that is situated at the origin O of a coordinate
system Ox an inertial frame &. (b) The gyroscopic spinner and the local
coordina m O'z'y’ 2, which moves with the spinner as it precesses through
an an n tates through an angle 6. The coordinate system O'x’y’2’ is
associated with the moving frame %’ with origin O’ at the base of the spinner.



2.1 A chiral lower-dimensional model for an elastic beam

Let the beam have length L and the beam’s cross-section have identical second
moments of area with respect to the xz- and y-axes. In what follows the cross-
section is assumed to be square. Here (x,y, z) denote the principal coordinates
associated with an inertial frame &%, whose origin coincides with the base of the
beam. The coordinate in the direction of the beam’s neutral axis is denoted
by z, where 0 < z < L (see Figure 2(a)). Let u(z,t), v(z,t) and w(z,t) be the
displacement components in the x, y and z directions, respectively, of the beam
at a point z and at time ¢. The displacements u(z,t), v(z,t) and w(z,t) satisly
the following governing equations for 0 < z < L and ¢t > O:

EJu""(z,t) + pAii(z,t) =0, (1)
EJv"" (z,t) + pAi(z,t) =0, (2)
Ew”(zat) - ,DII/(Z,t) =0, (3)

where F, J, p and A denote the Young’s modulus, second=moment of area,
density and cross-sectional area of the beam, respectively. Here the prime and
dot denote differentiation with respect to the spatidl coordinate z and the time
t, respectively.

At z = 0, we assume that the beam is clamped:

u(0,t) = v(0,th= w(0;%) =0, (4)
u'(0,t) = v/(0,t)= 0 (5)

The formulation (1)—(5) is accompanied by a set of boundary conditions
at the top of the beam, which correspond to conditions set at the connection
between the tip of the beam and the base of the gyroscopic spinner. These
conditions will be referred to as chiral boundary conditions.

These effective boundary conditions represent the interaction between the
elastic beam and thé gyroscopic spinner. These boundary conditions reflect
on the coupling between the displacements v and v and their derivatives and
incorporate diréctional preference associated with the angular velocity of the
gyroscopic spinner. It,is also noted that the term “chiral boundary conditions”
can be exténded to other types of elastic systems that involve a rotational pref-
erence./ In theypresent paper, the term “chiral boundary conditions” will be
used. Comsistently with reference to the effective junction conditions between an
elastic beam’and a gyroscopic spinner.

For a/spinner having a small nutation angle, the boundary conditions repre-
sentingthe balance of forces (see (17) and (18)) are

mii(L,t) + mcli' (L, t) = EJu" (L, t) ,

mi(L,t) + meld' (L, t) = EJv" (L,t) ,
mw(L,t) = —FEAw'(L,t) , (8)

—~
~N O
~—_

and the chiral boundary conditions that correspond to the balance of moments
at the tip of the beam (see (33)) are given by

—Iyi' (L, t) — Q' (L, t) = EJu"(L,t) , 9)
—Iy¥' (L, t) + LW/ (L, t) = EJv"(L,t) . (10)



Here m and [ are the mass and length of the gyroscopic spinner, respectively.
We consider an axisymmetric gyroscopic spinner, whose centre of mass lies on
the symmetry axis at a distance ¢l from its base, where 0 < ¢ < 1. The
quantities Iy and I are the moments of inertia of the spinner about the principal
transverse and vertical axes, respectively, of the local system Ox'y’z’ associated
with the spinner (see Figure 2(b)). The parameter ) is called the “gyricity”
of the spinner, representing the combination of the spinner’s initial spin and
precession rates as in [17]. The conditions (9) and (10) show that the gyricity
provides the coupling between the functions v and v at the tip of the beam.
The derivation of (6)—(10) is given in Section 2.2.
The initial conditions are

u(z,0) = u0), e 0)=uM(), v(0) =0 (:), T () Lu(?)
ow
w(z0) =00 ), 22(z,0) = w0 (2,

(11)
where v, v w) | j=0,1, are given functions. Hereyu? and v, j = 0,1,
and their first order derivatives with respect to z satisfy the homogeneous con-
ditions at z = 0, in order to be consistent with equations/(4)—(5). Additionally
w), j = 0,1, are zero for z = 0.

Moreover, as a result of the connection of theé\gyroscopic spinner to the beam
at z = L (discussed in more detail in Sectiom2.2.1Y, the functions u¥) and v/,
7 = 0,1, are subject to the conditions

1, (0) 0)
O (1) = 0(0) sin 603 2= (1) = ~0(0) cos(6(0))

u®) (1)

M) = 2 dg(n) R W (1) =~ 0ty costot) R

(12)
where ¢ and 6 are two of the Euler angles used to define the motion of the
gyroscopic spinner (see Figure 2(b)).

2.2 Perivation of the chiral boundary conditions

Herépthe chiral boundary conditions (6)—(10) are derived from first principles.
The equations of motion of the gyroscopic spinner representing the balance of
linear and angular momentum are combined with the dynamic response of the
elastic beam. Linearisation is carried out, based on the assumption that the
angle of nutation is small.

2.2.1 Linear momentum balance for the gyroscopic spinner

In this derivation we use the inertial frame % and the non-inertial frame &’
as shown in Figure 2. With respect to the basis associated with the inertial
frame %, the motion of the spinner can be determined through its precession
¢(t), nutation 6(¢) and spin ¥ (t) (see Figure 2(b)). We introduce a non-inertial
frame &’ with coordinate system O’z’y’z’, as shown in Figure 2(b), with O’ at
the tip of the beam and the z’-axis lying along the symmetry axis of the spinner.



The frame %’ undergoes translations determined by the displacements u(L,t),
v(L,t) and w(L,t). This frame also rotates through the motion of the spinner
as the latter nutates and precesses. Note that this frame %’ does not spin with
the spinner.

The frame &%’ may be obtained by a rotation of coordinates applied to the
frame &% . Indeed, the frame &’ is obtained first by applying a rotation of
coordinates through ¢ anticlockwise about the z-axis, followed by a rotation of
coordinates in this new system through 6 anticlockwise about the transformed
z-axis. Thus, the centre of mass of the gyroscopic spinner at a given time ¢ .can
be stated with respect to the frame & as

R, = (cl sin(0) sin(¢) + u(L, t))e1 + (U(L, t) — clsin(0) cos(¢)>e2
—i—(cl cos(0) + w(L,t) + L) e;, (13)

where {e1, eq, e3} is the Cartesian basis set for (z,y, 2).

Due to the axial symmetry of the gyroscopic spinnersand the fact that the
axes in the frame &’ are a set of principal axes, the moment of inertia tensor
of the spinner is diagonal. Let Iy be the moment of inertia of the spinner about
the 2’- and y’-axes and let I; be the moment of4nertia about the axis of the
spinner, all in frame %’.

In %', we use the time-dependent basis {efje5yef}. This basis can be written
in terms of the basis {e;, e2,e3} as follows:

e} = cos(¢(t))er +sin(¢(t))es , (14)
ey, = —cos(0(t)) sin(¢(t))er Feos(8(t)) cos(p(t))es + sin(0(t))es , (15)
e; = sin(0(t)) sin(¢(t) )epmsin(O(t)) cos(p(t))es + cos(0(t))es . (16)
We use the vector Q to represent the.shear forces in the beam
Q(z, )= —EJu" (2,t)e; — EJv" (2, t)es . (17)

Together with the axial forcealong the beam in the z-direction the total internal
force F is

F(Z,t) = Q(z,t) + EAW (2, t)es . (18)
The balance-of linear,momentum for the gyroscopic spinner, with respect to its
centre of mass, takes the form

~F(L,t) = mA, , (19)

where theyleft-hand side represents the forces applied to the spinner by the tip
of the beam (see (18)), and A, is the linear acceleration of the centre of mass
of the spinner. The latter relation holds in the inertial frame % .

By use of (13) the linear acceleration is given by

Ag = Agl)el -+ Ag(]2)ez + A53)837 (20)
where
A = (L, t) + cl[f cos() sin(¢) — 67 sin(6) sin(¢)
+20¢ cos(0) cos(@) + ésin(@) cos(¢) — $? sin(#) sin(¢)] ,
Agz) = §(L,t) + cl[—0 cos() cos(¢p) + 62 sin(0) cos(¢)

+26¢) cos(8) sin(¢) + ¢ sin(6) sin(¢) + ¢ sin(8) cos(¢)] ,



and
AB) = (L, t) — cl[fsin(8) + 67 cos(0)] .
Substitution of (18) and (20) into (19) gives the linear equations of motion:
mii(L, t) + mel[f cos(8) sin(¢) — 62 sin(0) sin(¢p)
4206 cos(6) cos(¢) + ¢sin() cos(¢) — ¢ sin(0) sin(p)] = EJu" (L, t) ,
mi (L, t) + mel[—6 cos(0) cos(¢) + 67 sin(6) cos(¢) 9,

4206 cos(6) sin(¢) + ¢sin() sin(¢) + ¢ sin(0) cos(p)] = EJv™ (L, #).,
(22)

and

mai(L, t) — mel[f sin(f) 4 62 cos(9)] = —EAw' (DY’ (23)

Linearisation with respect to the nutation angle

We assume that the nutation angle and its derivatives'satisfy the conditions

‘ d76(t)

T ’<<1, 0<j<2.

Under these conditions, the left-handisides of (21)—(23) can be linearised, to
leading order, giving the following equations:

mii(L, t) + mel [(é — 0¢2) sin(d)+ (260 + 60) cos(¢>)] = BJu"(L,t),

(24)
mi(L,t) + ml [ X6 —09?) cos(d) + (240 + ¢0) sin(qﬁ)} = EJv"(L,t) ,
(25)
and
mi(L,t) = —EAw'(L,t) . (26)

Notethat/(26) corresponds to the equation of longitudinal motion of a mass at
the’end oftan’ elastic rod. This demonstrates with (3) that, within the linearised
model, the motion of the beam in the z direction is not affected by the spinner.

Consider the boundary conditions arising from the balance of linear momen-
tuni for the gyroscopic spinner. According to [17], the rotations of the beam at
z-= L may be linked to the parameters 6 and ¢ via

u'(L,t) = 0sin(¢p) and ' (L,t) = —0cos(¢) . (27)

This is a consequence of the slopes of the gyroscopic spinner and of the beam
being equal at their connection. Thus we have

W' (L,t) = gsin(¢) - 9525 cos(®), . (28)
i/ (L,t) = 0sin(p) + 20¢ cos(¢p) + O cos(p) — 06 sin(¢) | (29)



and

V'(L,t) = —6 cos(¢) + Odsin(¢) (30)
¥'(L,t) = —0 cos(¢) + 200 sin(p) + 0dsin(¢) + 0¢% cos(d) . (31)

The relations (27)—(31) can be used in (24)—(25) to obtain the linearised bound-
ary conditions written in terms of the beam displacements, as

mii(L,t) +mecli' (L, t) = EJu" (L,t) ,

mi (L, t) + meld’ (L, t) = EJv"(L,t) ,
together with (26). This completes the derivation of (6)—(8). It is noted, that
these conditions do not couple the displacements of the beam. This coupling
appears in the boundary conditions connected with the angular momentum

balance for the spinner at the beam tip and they are developed in the next
section.

2.2.2 Angular momentum balance for the gyréscopic spinner

Here we derive the linearised boundary conditions“which cerrespond to the bal-
ance of angular momentum of the gyroscopic Spinnery,.This balance is given
by

“M(L, 1) = L(t)\ (32)
where

L(th= 1w,
I is the moment of inertia tensorsgiven by the diagonal 3 x 3 matrix

I:diag{lo,lo,ll} , Io,Il >O,

and w is the angular velocity measured with respect to the inertial frame &. In
the frame &, the veetor, M tepresenting the internal bending moments in the
beam is given by

M(z,t) = —EJv"(z,t)e; + EJu" (2, t)es . (33)

Note thatthe moment component in the es-direction is equal to zero, since the
beam is'not spinning about the z-axis.

As'shown in [35], to derive the conditions (9)—(10) it is appropriate to write
thé quantitiés appearing in (32) with respect to the basis in %', since in this
frame the inertia tensor is diagonal. The angular velocity w of the gyroscopic
spinner’can be written in the following form

w = 0e) + ¢sin(h)el + (¢ cos(d) + 1)eb .
Combining this with (32), the Euler angles {¢, 0,1} satisfy (see [17,35])

M = Ioé“—}— dﬁsin(&)[.—jfogi‘)cos(e) + -{1 (925 cos(0) + 1/))} )
M) = Io[qﬁusin(uﬁ) + 200 cc')s.(ﬂ)] — 10(pcos(0) + ) ,
—M = I (¢) + ¢cos(f) — ¢0sin(h)) .

The left-hand sides in the preceding equations are the moments imposed by the
tip of the beam on the gyroscopic spinner. The quantities M J’ , 1 <5 <3, are the

10



components of the vector M in (33) in the basis e, 1 < j < 3 (see (14)-(16)),

that is M = 23:1 Me};, where

M| = EJ[—v"(L,t) cos(¢) +u" (L, t)sin(¢)] ,
M} = EJ cos(0) [v"(L,t)sin(¢) + u” (L, t) cos(¢)] ,

and
M} = EJsin() [—v"(L,t)sin(¢) — v (L, t) cos(9)] .
The initial conditions for the Euler angles are
$(0) = ¢, $(0) =™, 6(0) =6, 6(0) =6,

and

Y(0) =9, (0) =y,
The conditions for the precession and nutation define the initial rotations of the
beam at its tip and their angular velocities (see (11)«(12)).

By repeating similar steps from [17], after changing the basis from {ef, e}, €5}
to {e1, ez, e3} and applying a linearisation with{respect to the small nutation
angle, we can also obtain the boundary conditions‘for the moments at the tip
of the beam in the form

—Ioii' (L, t) — QU (L, ty=EJu" (L, 1), (34)
—Io¥' (L, t) + 1/ (Lyt) = EJv"(L,t) , (35)

where the gyricity is .
) =1 +¢ = Const .

This completes the derivation of (9)-(10). The boundary conditions (34)—(35)
show that the gyricity”’couples the functions u and v. These conditions are the
same as those derivéd in' [17] for the case of a gyro-hinge, where the base of the
gyroscopic spinner doesinot translate.

2.3 Linearised’ transient motion of a massless beam con-
nected to a gyroscopic spinner

In this section, we study the transient motion of a massless beam, clamped at
it§ base and connected to a gyroscopic spinner at its tip. Since longitudinal
vibrations of the beam are decoupled from transverse vibrations, the latter can
be considered separately.
For a massless beam (p = 0), the governing equations are given by (see
(1)-(2))
u"(z,t) =0, v"(2,t)=0, (36)

whose solutions are cubic functions of z. Using the boundary conditions (4)—(5)
at the clamped end for w and v, the solutions of (36) take the form

u(z,t) = Uy ()22 + Ua(t)2%, w(z,t) = Vi(t)2 + Va(t)22 . (37)

The time-dependent coefficients U; (t), Ua(t), V1(t) and Va(t) can be expressed
in terms of the displacements and rotations of the beam at the connection

11



with the gyroscopic spinner, denoted as u®(t) = u(L,t), v¢(t) = v(L,t) and
05 (t) = —v'(L, ), 05(t) = u'(L,1), respectively. Accordingly, the functions (37)
are given by

() = — <2u°’(t) B 9§(t)> 5y (3u°‘(t) - 9;@)) o

QvZ:Et) 9‘3[/(?5) 3v€(2t) Hcft) (38)
v(z,t)—( 3 +22>Z3+(L2+IL>22.

Substituting (38) into the chiral boundary conditions (6)—(7) and (9)—(10); we
obtain

mL%i°(t) + mel L305(t) + 12EJu(t) — 6 EJ LY (
mL30°(t) — mel L3S (t) + 12EJve(t) + 6 EJLOS (¢
—IoL?65(t) + LQL?05(t) + 6 EJu®(t) — AEJLOZ(
IoL205(t) + LIQL20S(t) + 6EJve(t) + 4B J Log(
which is a system of four second-order ordinary differential equations in the
variables u®(t), v°(t), 05 (t) and 0 (t).
The general solutions of (39) can be expressed aslinear combinations of four
time-harmonic solutions:

iwst iwgt

U(t) = cree1e™' + couse™?! + cz13€’ ! + cquqe

+ CeTET —iwit —— “lwot — —iwst — —iwgt (40)
51 1€ + cgtze +crwse + cgwqe ,

where % (t) = (u®(t),v°(t),05(t), Qg(t))T and the bar denotes the complex con-
jugate. In (40), the frequencies +w;,”j = 1,...,4, are the roots of the charac-
teristic equation

[ToL*m&* 22EJL(61 + L(3cl + 21)m)w? + 12E.J?)?

41
— [ Lw(BEmto* — 12E1)Q)> =0 (1)
and wj, j =A%, ., 4, xepresent the corresponding eigenvectors. The eight coef-
ficients ¢;; ji=/1,...,8, can be determined from the eight initial conditions
u(0) =ug, v(0)=wvy, 05(0)=05,, 0,0)=0,,, (42)
a°(0) =, °(0) =145, 05(0)=05,, 65(0)=05,,

where ug, vg, 050, 050, UG, UG, 6¢ , and é;o are given values.

In order to obtain a motion of the system corresponding to a single time-
harmonic mode, we choose the initial conditions to be consistent with a linear
combination of the corresponding eigenvector and its complex conjugate. For
example, to obtain a time-harmonic mode of frequency w; we can choose ¢; = ¢5
and take all the other coefficients in (40) to be zero. Then the initial conditions
(42) are chosen to be consistent with the eigenvector «;. In general the motion
of the system will not be periodic in time unless w;/wg, j,k = 1,...,4, are
rational.

As an illustrative example for a single time-harmonic mode of motion, we
take L =1m, cl =01m, EJ =1Nm?, Iy = 1kgm?, I; = 0.5 kgm? and
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Figure 3: The behaviour of a massless beam, clamped at.the basé¢ and with
a gyroscopic spinner connected to its tip, as described,insSection 2.3. The
computation is performed over a time interval of 100%s. In (a) we show the
profile of the beam and the orientation of the spinmer, indicated by the thick
black line. The trajectory taken by the tip of the spinner and the direction in
which it traverses this path is shown by thescircular contour and the arrow,
respectively. In (b) we present the view of the structure from above.

Q = 15 rad/s. In order to have ¢y =%e3 =\cx = ¢ = ¢y = ¢g = 0, we impose
the following initial values: u§ =0 mj v= —0.01 m, 67, = 0.02 rad, 0, =0
rad, 4§ = —0.00131 m/s, o5 = 0 ni/s, 0%, = 0 rad/s and 6, = —0.00262 rad/s.
The results are shown in Figure 3. Irpanel (a), it is possible to see the profile
of the beam and the trajectory of the top end of the spinner (shown by the
circular contour at the*topief the diagram). A view of the system from above
is presented in panel(b)

From Figure 3/ it can be seen that the tip of the beam moves in a circle with
radius 0.01 m @ndicentre at (0,0). The radius of the trajectory coincides with
the initial valtie of theidisplacement given to the beam tip. The tip of the spinner
follows a cireular trajectory with centre at (0,0) and radius approximately 0.015
m. Thesystemitakes t = 47.972 s to complete a period of its motion, with this
time, corrésponding to the radian frequency w = wy; = 0.131 rad/s.

The motion of the system can also be observed in the Video 1 included in
the Supplementary Material. The video shows that the entire system rotates
clockwise and all points in the system move along a circular trajectory.

The above example confirms that the linearised transient motion of a gyro-
seopic spinner connected to an elastic massless beam is represented as a linear
combination of four time-harmonic motions, and an appropriate choice of the
initial conditions provides a periodic solution where the tip of the gyroscopic
spinner moves along a circular trajectory. The transient problem becomes more
complicated when the beam has a non-zero mass density. In this case, a solution
of the transient problem is written as an infinite series where individual terms
correspond to certain time-harmonic model problems.

In Section 3, we present the modal analysis of the chiral multi-structure for
the more general case when the beam density is non-zero.
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Figure 4:, (a)ySchematic diagram of the solid model for a beam with a gyroscopic
spinner” attached-to its tip that is modelled in COMSOL 5.2a. The beam has
length Tum and has a square cross-section with side length 30 mm. The Young’s
modulus 18770 GPa (corresponding to an aluminum beam) and the mass density
of \the beam is negligible. For the spinner, the mass density is 7850 kg m—3
(corfesponding to a steel gyroscope). The moments of inertia are I; = 1.6 x 1073
kg m?, Iy = 3.2 x 1073 kg m?. The spinner’s mass is 0.943 kg and its height is
071 m. (b) The displacement u in the a-direction for the beam tip as a function
of time. (c) The displacement v in the y-direction for the beam tip as a function
of time. Initially, the tip of the beam is given a velocity in the x-direction of 1
ms~!. The initial values of the spinner’s precession and spin rates are both 250
rad s~!. All other quantities are set to zero. Both results from COMSOL and
those based on the analytical model presented here are shown.
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2.4 Independent transient simulation

Are there any numerical simulations which could provide some support
for the theory? To answer this question, we have constructed a full three-
dimensional transient model in the multi-body dynamics module of COMSOL
5.2a. An illustrative example, which provides additional support for the analyt-
ical model developed here, includes a comparison of the COMSOL computation
with the transient analytical model in Section 2.3, as shown in Figure 4. In the
COMSOL simulation, the beam is modelled as a three-dimensional solid with
brick elements and the gyroscopic spinner is modelled as a rigid element./The
computational geometry for the beam and the gyroscope is shown indFigute
4(a). The connection is set in such a way that the beam contains a cylindrical
hole at its tip and the base of the gyroscope is nested inside this hele, as shown
in Figure 4(a). This connection enables the gyroscope to spim. Thie contact
surface between the base of the gyroscope and the interior of the small eylinder
is frictionless.

The simulation presents a solution of an initial botindary value problem
where the non-zero initial conditions are set for the spin rate of the spinner and
the z-component u of the velocity at the tip of the beam.\Th€e numerical values
of the parameters used in the simulation are givén in, the/caption of Figure 4.
As outlined in the figure caption, the initial lateral velocity is chosen to be
small, while the initial spin rate of the spinneris set to be sufficiently high. The
mass density of the beam is assumed to be negligible so that all of the inertia
is associated with the gyroscope. We note\thatjdue to precession, the spin rate
changes with time but the sum of the precession and spin rates is approximately
constant.

The transient simulation shows, that, the lateral displacements and the angle
of nutation remain small. In the particular case when the gyricity is equal to
zero, only the x-displacement u is observed, while the y-displacement v remains
zero. Generally, for non-zere gyricity the motion of the elastic gyroscopic system
is accompanied by precession and both u and v are non-zero.

In Figures 4(b)~and 4(¢), we show the time-histories of the displacement
components u_and v at the tip in the z- and y-directions resulting from the
COMSOL computations and from the analytical model developed in Section 2.
The low-frequency response, describing precession of the massless beam con-
nected to the gyroscopic spinner at its tip, shows good agreement between the
analytical/lower dimensional model of Section 2.3 and the multi-body dynamics
simulatiomyin’ COMSOL 5.2a. It is expected that the full three-dimensional sim-
ulation and the lower dimensional asymptotic approximation differ in the high
frequency regime as displayed by small amplitude ripples in Figure 4(c).

37 Modal analysis for a beam connected to a gy-
roscopic spinner
Here, we concentrate on the transverse vibration modes for an inertial beam

with a fixed base and with a gyroscopic spinner connected to its tip in the
time-harmonic regime.
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3.1 Normalised form of the boundary conditions

We introduce normalisations to retrieve a dimensionless form of the boundary
conditions. This is carried out with the following change of variables

N pAL* .
=L t= t
FERs VBT

u(z,t) = Lu(z,t), wv(zt) = Lo(z,1),

and the normalisations

Il = pALdfl s IO = pALdfo .

The eigenfrequencies of the multi-structure and the gyricity aré then normalised
by
EJ EJ

= _— Q:
w=w DAL and ATy

e}

respectively. We also introduce the parameters

m l
o = —_—, = N s

pAL p D
representing the mass contrast between the/beam and the spinner and the con-
trast between the length of the spinner-and the length of the beam, respectively.
In addition, the parameter v, given by

represents the contrast inbthe principal moments of inertia for the spinner. Using
the above, the nopmalised form of the boundary conditions (6)—(7) and (9)—(10)
are expressed as

acBi’ (1,t) + aii(1,t) = u"'(1,t) , (43)
acBi’(1,t) + ai(1,t) = "' (1,t) , (44)
IO[—ﬂ/(l,t) - ’79’0/(1’75)] = U//(Lt) ’ (45)
Io[yQui'(1,1) — (1, ¢)] = v"(1,1) , (46)

where the symbols “tilde” have been omitted for ease of notation and will be
omitted in the non-dimensional development in the sections 3.2-3.5.

3.2 Transcendental equation for the eigenfrequencies

In this section, we consider the time-harmonic response of the system described
in Section 2. In this case, we assume that the complex displacements u and v
take the form

u(z,t) = U(2)et |, v(z,t) = V(z)e“?,
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where (under the normalisation of Section 3.1) the amplitudes U and V are
solutions of the equations

UV(2)—w?U(z) =0, VWV(2)=w?V(z)=0, 0<z<1, (47
which lead to their representations as

U(z) = A; cos(vwz) + Az sin(y/wz) + Az cosh(y/wz) + Ay sinh(vwz) ,
V(2) = By cos(v/wz) + By sin(y/wz) + Bz cosh(v/wz) + By sinh(vwz) .
(48)

These amplitudes should also satisfy the clamped boundary conditions.at z'= 0,

(50)=0. (Hi)-0 o

and the boundary conditions at z = 1 (see (43)—(46))

(Vo)) =meenr (Vi) JAe (80 ) - oo

u'a \ w = U'(1)
( V(1) > IO“’( i R Vi) ) (51)
After satisfying the conditions (49)y weluse (50)—(51) to derive a compact
representation of equations for the,remaining constants A;, A, By and Bs

(4 2)(2)-o

where
a=(A;,4)", b= (B,B)7", (53)
and
7]0&]3/2T2 - Tg Iow3/2T3 - T4
A = w 9
—WI2Ty + awT) + acBuw 2Ty w'2T) + awTy — acfuw?/?Ty
B = IyyQw®/? ( *g 2 %3 ) : (54)

In the above, T}, 1 < j <4, are functions of w only and
Ty = sin(y/w) — sinh(yw) , Tz = cos(v/w) — cosh(v/w) ,
T3 = sin(v/w) + sinh(yw) , Ty = cos(v/w) + cosh(v/w) .

The transcendental equation linked to system (52)—(54) can be derived in the
form

[ ()] = [Tow! />4 QX (@)]* =0, (55)
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with

d(w) = det(A)/(2w"/?)
= acfwsin(vw) sinh(vw) 4+ Ipw®?X (w) — Z(w) , (56)

X(w) = aywlcos(vw)cosh(y/w) —1]
+ cos(yv/w) sinh(v/w) + cosh(y/w) sin(vw) , (57)

and

Z(w) = 1+ cos(vw)cosh(yw)
+ay/w(cos(yv/w) sinh(v/w) — cosh(v/w) sin(vw)] . (58)

3.3 Variation of eigenfrequencies with gyricity

Figure 5 shows the eigenfrequencies of a massless beam as fumetions of the
gyricity, determined from (41). For the sake of comparison; Figure 6 shows the
eigenfrequencies of an inertial beam with the same properties as functions of
the gyricity 2, obtained from (55). The values of\the parameters chosen in
Figure 5 lead to the normalised parameters in Figure 6"éxcept for the density
of the beam that is zero for Figure 5.

In Figures 5 and 6(a), we see that as the gyricity is increased, two branches
emerge from a double eigenfrequency (indicated by the dashed line emanating
from the left of Figure 6(a)), which charactérises the beam without spinner (see
Section 3.4.1). One branch is a monatonic increasing function of the gyricity,
while the other branch is a monotenic decreasing function of gyricity. Both
branches are bounded by the eigenfrequencies (indicated by the dashed lines
on the right of Figure 6) and these eigenfrequencies correspond to those of the
problem discussed in Sec¢tion 3.4.2. The lower branch appears to be very flat in
Figure 6(a), but one/can seeithe variation in the eigenfrequency as a function
of Q in Figure 6(b); which provides a magnification of the branches within the
dashed box of Figure 6(a)!

It is noted that the first two curves in Figure 5 are indistinguishable from
those shown in|Figure 6(b). Indeed, according to the general theory of multi-
scale elastic structures [36], within a finite range of frequencies adjacent to the
origing the'eigenfrequencies of an inertial beam can be asymptotically approxi-
mated byithese computed for the case of a massless beam.

It is also of interest to investigate the influence of the parameters v (the
eontrast/in the moments of inertia of the spinner), a (the ratio of the mass
of the spinner to the beam’s mass) and S (the contrast in the length of the
spinner to the beam’s length) on the eigenfrequencies of the system. Figures 7,
8 and 9 show how changing the parameters v,  and (3, respectively, affects the
behaviour of the eigenfrequencies as functions of the gyricity. We note that, for
all cases, the trends in the branches observed for 2 > 0 remain the same. We
also mention that:

e the limits at 2 = 0, corresponding to a beam without the spinner (see Section
3.4.1), and the limit eigenfrequencies obtained when 2 — oo (see the problem
of Section 3.4.2) are independent of 7. The variation of the eigenfrequencies
for the system with gyricity, for different values of -, can be seen in Figure
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Figure 5: Eigenfrequencies as functions of gyricity assless beam clamped

at the base and with a gyroscope attached Computations are per-
formed for the parameters ¢ = 1/2, I, = 0.5 kg\m?, Iy = 1 kg m?, m = 1 kg,
L=1m,l=1m, EJ=1Nm? and are

o

o =4 M ®w A O N o ©

Figure 6: (a) Eigenfrequencies of an inertial beam with a clamped base at one
end and a gyroscopic spinner at the other end, as functions of gyricity. The
normalised parameter values, as in Section 3.1, are: c=v=1/2, [ =a ==
1. The line defined by w = v is also shown, which corresponds to the case
of gyro-resonance discussed in Section 3.4.4. (b) A magnification of the dashed
box in part (a).
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Figure 7: (a) Eigenfrequencies as functions of gyricity for an inertial beam with
a clamped base and a gyroscopic spinner connected to its tip. The influence of
~ (the ratio of the principal moments of inertia of the spinser) on the behaviour
of the eigenfrequencies is shown. The normalised parameters are: ¢ = 1/2,
Ip=a=p=1,and v =1/2, 1 and 3/2, represented by, the solid, dashed and
dotted curves, respectively. (b) A magnification 6f the dashed box in Figure
7(a).

7. As vy increases the rate with which the.upperjand lower branches approach
the limits for 2 — oo is also increased.

e Figure 8 shows that increasing « lowets the values of the limits obtained for
Q =0 and € — oo, as expected from Sections 3.4.1 and 3.4.2. Increasing «
corresponds to an increase in the mass of the gyroscopic spinner, resulting in
a decrease of the eigenfréquencies of the whole system.

e Figure 9 demonstrates that if 5 is increased only the eigenfrequencies for
the limits when €= 0 ingcrease (see the problem for zero gyricity in Section
3.4.1). On the/ther hand, the limit values for 2 — oo are independent of 3,
as shown in‘the problem in this limit in Section 3.4.2. The rate with which
the upper”and lower branches converge to these values as {2 — oo decreases
with increase in 8. Similar effects can be observed if only the parameter c
governing, thecentre of mass is increased.

We note that the parameters o and [ are associated with the linear mo-
mentum balance. The values of o and 8 chosen in this section (that are O(1))
are im“the range of validity of (43) and (44) derived under the assumption of
the/small nutation angle. Indeed, one can perform the linearisation of Section
272 after applying the normalisation of Section 3.1. If the nutation angle and
its time derivatives are assumed to be bounded by a dimensionless parameter
e < 1, then the terms neglected in deriving (43) and (44) are O(a3e?).

3.4 Special model problems

Here we outline several cases, where the boundary conditions at z = 1 simplify
or degenerate for a special choice of physical parameters and the values of the
gyricity. In particular, we consider extremal cases when the gyricity is zero or
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Figure 8: (a) Eigenfrequencies as functions of gyricity for aninertial beam with
a clamped base and a gyroscopic spinner connected totits tip. The influence of
a (the mass contrast ratio between the gyroscopi¢ spintier and the beam) on
the eigenfrequencies is shown. The normalised parameters are: ¢ = v = 1/2,
Ipn=08=1,and a =1/5, 1 and 5, represented by the solid, dashed and dotted
curves, respectively. (b) A magnification of the,dashed box in Figure 8(a).

Figure 9: (a) Eigenfrequencies as functions of gyricity for an inertial beam with
a clamped base and a gyroscopic spinner connected to its tip. The influence of
B (the length contrast ratio between the spinner and the beam) on the eigen-
frequencies is demonstrated. The normalised parameters are: ¢ = v = 1/2,
Ip=a=1,and 8 =1/5,1 and 5, represented by the solid, dashed and dotted
curves, respectively. (b) A magnification of dashed box in Figure 9(a).
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large as well as cases of negligibly small moments of inertia. In the last part of
the current section we address the state of a gyro-resonance, which is illustrated
in the computational example in Figure 6. The limit values of w as a function
of gyricity are used in Figures 6-9. In the first three cases of this section, the
effect of chirality is absent i.e. there are no cross terms connecting U and V' in
the boundary conditions at z = 1.

3.4.1 The case of zero gyricity

When Q = 0, the multi-structure exhibits double eigenfrequencies, as shown in

Figures 6-9. In this case, the body connected to the tip of the beam does not

spin and has rotational inertia Iy around the principal transverse directions.
The boundary conditions for {2 = 0 are

(1) =0 (V)

along with (50), whose form is not altered by varying thle gyricity. The condi-
tions above correspond to a body connected at the tip.of the beam, which can
translate with respect to, and rotate about, the principal\transverse directions,
while not precessing or spinning.

When 2 > 0 the double eigenfrequencies mentioned above split into pairs.
The distance between eigenvalues within these pairs-increases as the gyricity
is increased, as demonstrated in Figure 6. The"same splitting effect was also
encountered in [17] for a beam with a gyro-hinge.

3.4.2 The case of infinite gyricity

When 2 — oo, the eigenfrequencies,of the structure approach the natural fre-
quencies of a beam with amassiat its tip and a sliding end, which can translate
but cannot rotate. Eigenfrequencies linked to this problem are shown in Figure
6(a) as the dashed linés at the right of the figure, and this limit is also achieved
in the cases considered in Figures 7-9. Indeed, as the spin rate becomes large,
the nutation angle of the gyroscopic spinner becomes smaller and this results in
small rotation‘at the connection between the spinner and the beam. We note
that the lowest, branch in Figure 6(a) tends to zero as 2 is increased, and this
limit is enly téached when €2 — oco. The limit here corresponds to the trivial
mode.associated with the sliding end problem and is not an eigenvalue.

The zeros’ of X (w) in (55) and (57) determine the eigenfrequencies of the
problem (47), together with the boundary conditions (49) and

U'(1) 1\ _ U™(1) 2 UM)  _
( V(1) ) =0, ( V(1) + aw V) )= 0. (59)
These conditions represent a beam with a mass and a sliding end at its tip.

3.4.3 The case of negligibly small moments of inertia

In the limit when all moments of inertia tend to zero, the problem becomes
non-chiral (¢ = Iy = v = 0), and the boundary conditions (50) and (51) reduce
to become the second condition in (59) together with

()
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We also note that the equation (55) is reduced to the form Z(w) = 0, where
the function Z(w) is defined in (58).

The corresponding physical problem represents a beam with a clamped base
and a point mass at the upper tip.

3.4.4 The case of gyro-resonance

We say that the elastic chiral system is in the state of a gyro-resonance if the
gyricity of the spinner €2 and the radian frequency w are related by

1
Q= -w. 61
9= 7 (61)

With this particular choice of the gyricity, the matrix in the rightéhand side of

(51) becomes degenerate. In Figure 6, we plot the line corresponding.to (61).
Two cases of gyro-resonance can be identified by referring to the transcen-

dental equation (55). Using (61) and substituting (56) into(55), we Obtain

[aefw sin(v/w) sinh(vw) — Z(w)]
X [aefw sin(v/w) sinh(v/w) 4 2lw?/2X (w) Z(Ww)] =0 . (62)

In the first case of gyro-resonance, the eigenfrequencies are defined as zeros
of the first factor in (62), and the boundary cenditions at the upper tip of the
beam become (50) and (60).

The second case corresponds to zeros, of ‘the second factor in (62). The
boundary conditions at z = 1 take the,form of (50) together with

vty T (et )

In both cases, the moinents at the tip of the beam are coupled:

U'(1)»=7FiV"(1) when Q= :I:%w .

The solutions ©f (62) are shown in Figure 6, as intersections of the straight
lines (61) with the curves representing the eigenfrequencies w as functions of
the gyricity €«

3.5 Remarks on chiral waveforms

We discuss the eigenmodes corresponding to the eigenfrequencies obtained for an

arbitrarily chosen value of gyricity. In Figure 10, these eigenmodes are computed

for the eigenfrequencies corresponding to a gyricity 2 = 30 (see Figure 6(a)).
We observe that:

e with reference to Section 3.3, the first two eigenmodes are asymptotically
equivalent to those obtained for the case of the massless beam connected to
the gyroscopic spinner. For these frequency regimes the inertial contribution
for the elastic beam is negligibly small.

e As the eigenfrequency of the system increases, the number of inflection points
in the beam (where the internal moment is zero) form a monotonic increasing
sequence.
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Figure 107 Eigenmodes of an inertial beam with a clamped base and a gyro-
scopic spinner gonnected to its tip. The computations presented in (a)—(j) are
the modes corresponding to the system’s eigenfrequencies w (indicated in each
figure) foria’gyricity Q@ = 30 (see Figure 6(a)). The beam deformations with
respect to the undeformed configuration (dashed lines) are given. The inflection
points*where the internal moments are zero are shown by dots along the profiles.
The trajectory of the tip of the beam during a single period of the system is
represented by a circle at the top of each configuration together with an arrow
indicating the direction in which the system rotates.
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e The direction of the rotation of the system alternates as the eigenfrequencies of
the system increase. For particular eigenfrequencies (stated in Figures 10(f)-
(1)), we observe the time-harmonic motion of the system as the eigenfrequency
of the system is increased in Videos 2-5 in the Supplementary Material. The
modes in these videos have been computed assuming A; = 107> in (48).
From these videos it is apparent that the beam rotates in opposite directions
in moving from one eigenfrequency of the system to the next largest eigenfre-
quency, while keeping the gyricity constant the same. In relation to Figure
6(a), the eigenfrequencies obtained from the monotonic decreasing branches
correspond to a clockwise rotation of the system about the undeformed axis
of the beam, whereas those associated with the increasing branches“provide
an anticlockwise rotation.

e The displacement of the beam tip from the undeformed configutation de-
creases as the eigenfrequency of the system increases. It is also apparent from
Videos 2-5 in the Supplementary Material that any point along/the entire
system moves through a circular trajectory as the system cempletes a period
of 27 /w, with w being the eigenfrequency of the mode.

4 Discrete model of a Rayleigh gyrobeam

The results of the previous sections are used to derive a discrete approximation of
a dynamic Rayleigh gyrobeam. The notion of amelastic gyrobeam was introduced
formally in [2] through a system of differential equations that couple different
transverse vibration modes. In the recent, paper [17], a periodically constrained
gyrobeam was approximated by a“discrete elastic system containing so-called
gyro-hinges.

In this section, we consider the discrete approximation of an elastic gyrobeam
with an additional rotational inertia. We refer to this structural element as a
Rayleigh gyrobeam. /The approximation is carried out under the assumption
that the variation,ofithie displacements and rotations at the junctions of the
system are small.

4.1 Diserete system of beams connected by gyroscopic
spinners

We-consider the structure shown in Figure 11(a), which is composed of mass-
less beams connected by small identical gyroscopic spinners. The spinners are
locatedat z = nL, n € Z, with L being the length of the beams (see Section
2.1), By a small spinner we mean a spinner possessing mass and moments of
inertia, but its length [ is small compared to the length of a beam L. In this
case, (i) the spinners allow for the continuity condition for displacements be-
tween neighbouring beams to be employed and (ii) the moments generated by
the shear forces coming from the beam are small. For simplicity, we assume that
each gyroscopic spinner possesses the same gyricity {2 and the same moment of
inertia tensor. In addition, the gyroscopic spinners do not transmit any spinning
motion to neighbouring beams and the inclination of the spinner and rotations
of the beams at the junction are the same at any time during the motion.
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Figure 11: (a) A structure composed of small gyroseopic'spinners, with positions
z = Ln, n € Z, connected by massless Euler-Bérnoulli beams of length L. (b)
The positive directions for displacements, rotations, internal bending moments
and shear forces in the beam emanating fromuthe n-th junction.

We introduce a local coordinate z2\="2"— Ln (see Figure 11(b)). Here, U,
and V,, are the displacements in the,z- and y-directions, respectively, in the n-th
beam. In the same beam, letathe internal bending moments

M" :Mfel +M2”e2
with the components

d?V,(2)
dzz

2 ~
My = gy L0 (63)

M= —EJ
1 dz2

and internal shiear forces
Q" = Qe + Qe
with
n U, (%) n d*Vi(2)
1=—-FEJ IR b=—-EJ— .

The functions U, and V,, in the n-th massless beam can be written as

(64)

3

Un(z) = [(QZ-H + 9%)[/ = 2(Ung1 — un)]

22

3
_[(9%4-1 +20%)L = 3(un+1 — un)] 12
3

z
3
2

(0511 + 205 L+ 3(vnss —va)) 75 — 05z + v, (66)

+ 6%z +u, , (65)

Vn(Z) = _[(92+1 +05) L+ 2(vpg1 — Un)]
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where at the n-th junction of the structure the displacements w, and v, are

defined as
un = u(nL,t) =u(nL —0,t) = u(nL +0,t) ,

vy, =v(nL,t) =v(nL —0,t) =v(nl +0,t),
and rotations 07 and 07 are given by
0¥ = 0,(nL,t) =u'(nL,t) =u'(nL —0,t) = u'(nL +0,t) ,
0 = 0,(nL,t) = —v'(nL,t) = —v'(nL — 0,t) = —v'(nL +0,1) .
It can be verified with (65) and (66) that
Un(0) =un, Uy(0)=6}, Un(L)=tns1, Up(L)=611)

and

Va(0) = vy, Vi(0)=—0p, Va(L)=vny1, VilL) =iy, .

Using a similar approach to that employed in obtaining (6)-(7), (9)—(10)
and balancing forces and moments about the n-th4gyroscopic spinner, we have

that the equations governing the linear momentim of the/spinner are
mii, = Q1 (0) = QyTHL) ,  min=Q3(0) — Q3 (L),
and those determining the rotational motion efthe spinner are

1% — 1,067 03 10) — My~ (L) |
1067 + L= M7 (0) — My (L) .

Then, the above can be rewritten using (63)—(66), in terms of the quantities

associated with the n-th“junction in the structure, as

Mmily, = %‘Z[(ag,l = 0% )L+ 2(Ung1 + up—1 — 2uy,)] ,
i S0y — 070D+ 2ot + oo = 200)],
and
To0¥'= 1/00% = —%[(9Z+1 + 0,1 +407)L — 3(unt1 — up—1)]
2EJ

150° + 1,Q6Y = — 02 o1 4+ 071 +407)L + 3(vpt1 — V)] -

72

4.2 Continuum approximation

We now assume that the displacements and rotations in the structure vary
slowly with respect to the longitudinal variable z in the structure. In this case,
we will show below that the behaviour of the effective medium is described by

the partial differential equations

peAii(z,t) + Dot (2,t) — Joii" (2,t) — et (2,t) =

0
poAi(z,t) + Dov"" (2, t) — Jo0" (2,t) + hott” (2,t) = 0
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for z € R, t > 0, where

pe:%, D.=EJ , Je:% and he:%

represent the effective density, flexural stiffness, rotational inertia of the beam’s
cross-section (about the principal axes) and gyricity for the medium, respec-
tively. Here A is the cross-sectional area of the beam.

It should be noted that the system (71), (72) representing the effective
medium for a structure composed of massless beams connected by small-and
equally spaced gyroscopic spinners, describes a Rayleigh beam with a constant
distribution of gyricity. This Rayleigh beam has a non-zero effective density
and rotational inertia brought by the uniform distribution of the Small gyro-
scopes of mass m and moment of inertia Iy about the transversejaxeszThe
Rayleigh beam is a generalisation of Euler-Bernoulli beam theoéry thatincorpo-
rates the effect of rotational inertia of the beam’s cross section (sed the third
terms in (71) and (72)). These mechanical elements have recently-found appli-
cations in the design of novel structured flexural materials“in [37-39]. Further,
a system similar to (71), (72) has also been identified in\40541] in the analysis
of the whirling dynamics of a spinning Rayleigh beam.

The gyricity constant h, in (71) and (72) will be related below to the gyric-
ity  of the spinners. When the gyricity Q- is sufficiently large, h, becomes
sufficiently large and the chiral terms in (71), (72) become dominant compared
to the non-chiral terms representing the rotational inertia. For the case of large
gyricity the equations (71), (72) appfoximate a classical gyrobeam as in [2].

The homogenised equations

We derive (71) and (72) assuming-that the displacements and rotations at
the junctions are sufficiently smooth functions of space and time.

We assume there is,a finite interval Lr = L/e, where e = 1/N with N being
the number of masses innthisyinterval and 0 < € < 1. In addition, we assume
the displacementsfandirotations at the junctions vary slowly according to the
change in the dimensionless spatial variable Z = en = z/Lpg, so that

Un = un(z,t) , L Un = Un(éat) s 9% = 0%(&” ) 92 = ai(évt) . (73)

Firstly,»we obtain a non-dimensionalised form of (67)—(70). We introduce
the-nermalisations

mL3, .
n=1L Ana n =1L Anv t= Rt7 74
u rl v rO VsEJ (74)
. ) EJ
Ij =mL3I;, j=0,1, Q:‘/m%

Here, the normalisation for ¢ indicates the considered motion takes place over a
sufficiently long period. Using these normalisations, we obtain from (67)—(70)

and

joR

. (75)
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the following

. 6
etl, = 5—3[(9%_1 — 00 1)e+ 2(Ung1 + Uup—1 — 2uy)], (76)
, 6 ® x
EUn = ?[_(ah—l — 05 1)€ + 2(Vng1 + vp—1 — 20)], (77)
N . 2
1059% — 11\5992 = —?[(92_’_1 + 9%_1 + 49%)6 — 3(Un+1 — un_l)] s (78)
; ) 2
Toef? + I1\/e00) = *;2[(9&1 + 07 1 +467)e + 3(vpg1 — vi—1)]44(79)
where the symbol “*” has been omitted for ease of notation. The parameter.Lp

defines the length scale in the structure over which variation of the displacements
and rotations occur. The finite differences appearing in (76) and (77) may be
replaced by derivatives of the functions w, v, 6, and 6, with respect to the
dimensionless spatial variable. This procedure in (76) and*(77)yields

cii(z, 1) = —g{%(z, £) — (2, 8)} +e{u"(2,£) = 200z 0¥ + O(E®) ,  (80)

ei(z,t) = 1?2{0;(27 )+ 0" (2, )} + {0 (250) 4207 (2, 1)} + O(e®) ,  (81)

whereas in (78) and (79) we obtain

0,(2,t) = u'(zt)— %—z[foﬁéy(z, t) — 1100, (z,1)]
—%[0;’(2, t) — u"(z,1)] + O(eY) (82)
and
O, (2, tp = —vt(z,t) — %[Io\@éw(z, t) + 1,90, (2,1)]
—%[eg(z, t) + 0" (z,t)] + O(e") , (83)

where the variables in these relations are dimensionless. Substituting the last
two relations into the first terms in the right-hand sides of (80) and (81) gives

ii(z,t) + u" (2,t) — Iof, (2, t) + e /1190, (2,t) + O(e?) =0,

i(z,t) + 0" (2,) + Lofly(2,1) + e 21Q0,(2,1) + O(e?) = 0.

The preceding equations allow one to obtain the gyrobeam if it is assumed
I, = O(Ve), j = 0,1, and Q = O(1). However, if I; = O(1), j = 0,1, and
Q = O(/2), one can obtain the Rayleigh gyrobeam.

Thus, we now take the leading order terms in the above equations and sub-
stitute (82) and (83). Then, we return to the dimensional variables through
(73)—(75) and obtain (71) and (72) to leading order. This completes the ho-
mogenisation process.
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4.3 Dispersion of waves in the Rayleigh gyrobeam

Waves of the form
U(Z,t) — %ei(wt—kz) , ’U(Z, t) — Qei(‘”t_kz) ,

propagating through the Rayleigh gyrobeam, can be found by substituting these
relations into (71) and (72), to obtain the homogeneous system

—peAw? + (Dck? — Jow?)k? iwk2he € \ _ 0
—iwk?he —peAw? + (Dok? — Jow?)k? D L)

for the amplitudes € and &. Non-trivial solutions of this problem then corres
spond to roots of the determinant of the preceding Hermitian matrix, which atre
represented by the dispersion relations

L) (he + /4Do(Jk? + poA) + h2)k?
°c 2(Jok2 + peA)

(84)

In Figure 12, we show how the gyricity h, influences the'dispersive nature of the
Rayleigh beam. It is shown that the presence of gyricity in the Rayleigh beam
causes the dispersion curve (representing double’eigenfreguencies) for this beam
(the light grey solid line) to split into two curvessas k is increased from zero.
One curve always remains above this line, the‘ether below. In addition, for a
given k, the distance of these curves from the grey line monotonically increases
as the gyricity increases. The group vélocity’of waves in the Rayleigh gyrobeam
are bounded by /D, /J, for waves with,sufficiently large wavenumber. In fact

this bound is uniform for all k fot*waves associated with the relation wl™. As
follows from (84), all waves exhibit'zero group velocity for k = 0. For small k,
one can find that the gyricity significantly affects the upper bound for the group

velocity of the waves asSociated with wéH. For example, concentrating on the

results produced for wg+), the dashed curve is much steeper than the dash-dot
curve for approximately 0.5/< k < 1. By increasing the gyricity we can increase
the group velocity, of waves in the structure.

We note that for,small values of k equation (84) shows that the values of
w are closéyto those of the gyrobeam, where the Rayleigh inertia terms are
neglected.

This, concludes the comparison between the system of beams and gyroscopic
spifiners and’ a gyrobeam (or a Rayleigh gyrobeam). This is an interesting
point raised in the previous work [17] where the structure was periodically con-
strained. The constraints have been removed now and the present illustration
shows clearly that gyrobeams and Rayleigh gyrobeams represent a continuum
approximation of multi-structures incorporating linear flexural elements and
gyroscopic spinners.

5 Conclusions
A new class of chiral boundary conditions has been derived and analysed for elas-
tic multi-structures incorporating elastic beams connected to gyroscopic spin-

ners. A linearised version of this model was obtained by assuming that the
nutation angle of the spinner is small.
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Figure 12: Dispersion curves for an infinite Rayleigh gyrobeam, for different
gyricities ho,. Computations are based on (84) for w') . JThe solid light grey
curve is the dispersion curve for the Rayleigh beani(h, =0Ns). The solid curve
is for the case he = 1 Ns. The dash-dot curves.and dashed curves correspond to
he = 5Ns and he = 10 Ns, respectively. All otherphysical parameters are set to

unity.

An explicit analytical solutionishas'been derived and periodic motions have
been identified for transient probléms corresponding to massless elastic beams
connected to gyroscopic spimmers. Furthermore, the case of distributed inertia
was studied and the medal analysis of the chiral elastic system was carried
out. Several dynamic/Tegimes have been identified including the case of gyro-
resonance, which corresponds/to a degeneracy in the chiral boundary conditions.

The study iséxtendedto the case of a periodic elastic structure composed
of beams connecting equally spaced gyroscopic spinners. In the continuum
limit, we obtained a chiral system approximating a Rayleigh gyrobeam with
distributed rotational inertia and gyricity.

We/envisagerthat the present study opens a new pathway for modelling
chiral elastic systems incorporating thin elastic solids connected to gyroscopic
spinners. An important part of the study is the derivation and analysis of
chiral boundary and junction conditions. Potential applications are foreseen
in aerospace engineering for the control of space flight and in civil engineering
for /the design of novel earthquake protection systems. Moreover, due to the
induced chirality brought by the gyroscopes, the discrete system proposed in
this paper can lead to the design of new topological insulators that at certain
frequencies prevent wave propagation through a finite domain.

We note that the stability and load bearing capacity of the multi-structures
introduced here remain an interesting open question in engineering applications
related to earthquake protection as well as energy dissipation.
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