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Abstract

An experimental study is conducted on localized bulging of inflated latex rubber tubes of

a range of wall thicknesses and tube lengths, guided by newly emerged analytical results.

In the case when the tube has one free closed end that may or may not be subjected to

a dead weight, the initiation pressure for localized bulging is determined by a bifurcation

condition, and the propagation pressure is determined by Maxwell’s equal-area rule. It is

shown that after bulge initiation the pressure will decrease monotonically towards, but will

never reach, the propagation pressure, and it is when the pressure is sufficiently close to

this propagation pressure that rapid propagation of the bulge in the axial direction takes

place. It is found that the experimentally observed initiation pressure is around 15% below

the theoretical prediction, which is consistent with the fact that bulging initiation is a sub-

critical phenomenon and is therefore sensitive to imperfections. The experimentally observed

propagation pressure is always very close to the theoretical prediction, which confirms the

insensitivity of this pressure to imperfections and demonstrates the predictive power of the

material model fitted from our own experiments on equibiaxial stretching. In the other case

when the tube is first stretched and then fixed at both ends, bulge initiation takes place in the

same manner as in the previous case, but the propagation pressure is no longer determined

by Maxwell’s equal-area rule. After bulge initiation the pressure will first decrease to a

minimum and then rises slowly, and it is on the latter ascending path that the bulge starts

to propagate rapidly in the axial direction. A semi-analytical method is proposed for the

determination of the minimum pressure. Numerical simulations with the use of the software

Abaqus are also conducted to verify the theoretical predictions.
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1. Introduction

Localized bulging in an inflated cylindrical tube is an important prototypical problem

that exhibits the three distinct phases of initiation, growth, and propagation shared by a
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variety of other localization problems (Kyriakides and Chang 1990). The earliest study

dates back to Mallock (1891) who used the existence of a pressure maximum in uniform

inflation as an explanation for this phenomenon. Subsequently, this topic has continuously

been studied both theoretically, numerically, and experimentally; see Yin (1977), Chater and

Hutchinson (1984), Kyriakides and Chang (1990, 1991), Shi and Moita (1996), Gent (2005),

Pamplona et al (2006), Goncalves et al (2008), and the references therein. The topic is

relevant to a variety of applications, and is experiencing a revival due to increased attention

paid to human health and use of soft devices in hi-tech applications. Recent studies include

continuum-mechanical modelling of aneurysm initiation/suppression in human arteries and

energy harvesting devices (Ren 2007; Fu et al 2012; Bucchi and Hearn 2013a,b; Alhayani

et al. 2013, 2014; Rodrguez-Martnez it et al 2015; Varatharajan and DasGupta 2017), and

localized bulging under the additional effects of swelling (Demirkoparan and Merodio 2017),

viscoelasticity/chemorheology (Wineman 2015, 2017), plasticity (Takla 2018), and electric

actuation (Lu et al 2015; An et al 2015; Wang et al 2017). The topic is closely related to

the so-called limiting point instability that has also been much studied in the literature; see,

for instance, Alexander (1971), Kanner and Horgan (2007), Mao et al (2014), Horny et al

(2015), Wang et al (2018), and the references therein. It is also an ideal testing ground for

strain-gradient theories (Lestringant and Audoly 2018).

On the theoretical side, since localized bulging was first recognized as a bifurcation phe-

nomenon (Fu et al 2008), much progress has been made in understanding the roles played

by imperfections (Fu and Xie 2012), constitutive laws (Pearce 2012), wall thickness (Fu et al

2016), fibre-reinforcement (Wang and Fu 2018), an internal mean flow (Fu and Ilichev 2015),

and surface texture (Guo et al 2016). In particular, we highlight the following main results:

(i) localized bulging is a subcritical bifurcation phenomenon and so is very sensitive to im-

perfections; (ii) although in the case of fixed axial force the initiation pressure corresponds

to the maximum pressure in uniform inflation, localized bulging in the case of fixed axial

length is much less intuitive: it is possible even if pressure in uniform inflation is monotonic,

and the propagation pressure is no longer determined by Maxwell’s equal area rule; (iii) if

the tube is isotropic, then theoretical predictions for the initiation and propagation pres-

sures based on the membrane theory are valid even for moderately thick tubes, but when

fibre-reinforcement is introduced, the membrane theory must be used with caution.

There exist two major sets of experimental studies, Kyriakides and Chang (1990, 1991),

Pamplona et al (2006) and Goncalves et al (2008), that are concerned with fixed axial force

and fixed axial length, respectively; these studies have already provided a lot of insight into

the bulging phenomenon. The case of fixed axial force refers to the situation where one end

of the tube is closed and is free from any displacement restrictions although a dead weight

may be attached to exert an extra stretching force; see Figure 11. The other case refers to

the situation where the tube is first stretched and then both ends are fixed when inflation

is carried out; see Figure 18. Our current work is intended to complement what has been
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achieved previously, and is motivated by the fact that the above-mentioned experimental s-

tudies were carried out without the benefit of the theoretical results that have only emerged

more recently, and as a result comparison with theory in these studies is inevitably limited

in its scope. For instance, when Kyriakides and Chang conducted their experiments (Kyri-

akides and Chang 1990, 1991), it was not yet known what the theoretical initiation pressure

should be and how sensitive it is to imperfections, and so they compared their initiation pres-

sure with the critical pressure associated with the first sinusoidal bifurcation mode. When

Pamplona et al (2006) and Goncalves et al (2008) conducted their experiments more recently

for the case of fixed axial length, they were only able to compare their experimental studies

with a numerical simulation since it was not yet known how the initiation and minimum

pressures could be determined. In the present study, we conduct a new set of experiments,

guided by the analytical results that are now available. Comparisons between experiments

and theoretical predictions are made in order to elucidate the imperfection sensitivity of the

initiation pressure, the robustness of the propagation pressure, and how these results depend

on end conditions (whether it is the axial force or axial length that is fixed). Our objective

is to update the existing experimental studies and present state of the art on this topic.

The rest of this paper is organized as follows. After formulating the problem and summa-

rizing the necessary analytical results, we describe in Section 2 a semi-analytical method for

determining the minimum pressure in the case of fixed axial length. In Section 3 we explain

our experimental set-up and material characterization. This is then followed in Section 4 by

a detailed comparison between the theoretical predictions and experimental results, aided

also by numerical simulations. The paper is concluded with a summary and some further

discussions.

2. Problem formulation and summary of analytical results

Consider a hyperelastic, isotropic, and incompressible cylindrical tube that initially has

inner radius A, outer radius B, and length 2L. When it is uniformly stretched in the axial

direction and inflated by an internal pressure P , the inner and outer radii become a and b,

respectively. The three principal stretches associated with the uniform inflation are given

by

λ1 ≡ λ =
r

R
, λ2 = λz, λ3 = 1/(λ1λ2),

where R and r are the radial coordinates in the initial and inflated configurations, respec-

tively, and λz is the constant stretch in the z-direction. The dependence of r on R can be

determined by the condition of incompressibility.

We assume that the constitutive behavior of the tube is described by a strain-energy

function W (λ1, λ2, λ3), and define a reduced strain-energy function w by

w(λ, λz) = W (λ, λz, λ
−1λ−1z ). (2.1)
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Then the internal pressure P and the net axial force F at any cross section are given by

P =

∫ λa

λb

w1

λ2λz − 1
dλ, (2.2)

F ≡ 2π

∫ b

a

σ22rdr − πa2P = πA2(λ2aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (2.3)

where w1 = ∂w/∂λ, w2 = ∂w/∂λz, σ22 is the principal Cauchy stress in the axial direction,

and the two limits λa and λb are defined by

λa =
a

A
, λb =

b

B
.

See, e.g., Haughton and Ogden (1979). It follows from incompressibility that λa and λb are

related to each other by

λ2aλz − 1 =
B2

A2
(λ2bλz − 1). (2.4)

With λb eliminated with the use of this equation, P and F can both be viewed as functions

of λa and λz. It was shown in Fu et al (2016) that the bifurcation condition for localized

bulging takes the simple form

J(P, F ) ≡ ∂P

∂λa

∂F

∂λz
− ∂P

∂λz

∂F

∂λa
= 0, (2.5)

which states that the Jacobian of P and F vanishes. Mathematically, this is the condition

under which the expressions for P and F can no longer be inverted to express λa and λz

uniquely in terms of P and F . Other forms of this bifurcation condition can be found in Fu

et al (2018).

We observe that the bifurcation condition (2.5) is independent of the conditions imposed

at the ends of the tube. In the experimental studies of Kyriakides and Chang (1990, 1991),

Pamplona et al (2006) and Goncalves et al (2008), the two typical cases of fixed F and fixed

axial length are considered, respectively. If, for instance, one of the two ends is closed, and

is pulled by a dead weight with unrestricted movement, then F is fixed and is equal to the

dead weight. In this case λz can be expressed in terms of λa with the use of (2.3), and it can

then be shown (Fu and Ilichev 2015) that the bifurcation condition reduces to dP/dv = 0

where v is the enclosed volume in the deformed configuration. The propagation pressure

is determined by Maxwell’s equal area rule (Chater and Hutchinson 1984). Thus, in this

case a necessary condition for localized bulging is that the inflation pressure as a function

of v has a limiting/turning point, and the bulge will start to propagate rapidly in the axial

direction after having almost reached a maximum radius (or equivalently, when the pressure

is sufficiently close to its Maxwell value). We remark that the maximum radius can never

be reached exactly since a kink state (or a heteroclinic orbit) can only exist in an infinite

domain. As the maximum radius is approached, a small further reduction in pressure will

induce a large extension of the bulged section.

In the other case of fixed axial length, the tube is first stretched from its original length

2L to λz0(2L), say, and the latter length is then fixed during subsequent inflation. With
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end effects neglected, the initial inflation may be considered to be uniform with fixed axial

stretch λz0. However, as soon as a bulge has initiated, the λz near the two ends will decrease

(i.e. unloading will take place) even though it may still be taken to be approximately

independent of Z outside a boundary layer. Bulging can take place even if P in uniform

inflation is monotonic (as for arteries), and the propagation pressure is no longer determined

by the equal area rule. This will be discussed in more detail later.

Defining the wall thickness H, averaged radius Rm, and scaled wall thickness ε through

H = B − A, Rm = (A+B)/2, ε = H/Rm,

we may expand (2.2), (2.3), and (2.5) in terms of ε to obtain

P = ε
w1

λmλz
+O(ε3),

F

2πRmH
= w2 −

λmw1

2λz
+O(ε2), (2.6)

and

Ω(0) +O(ε2) = 0, Ω(0) ≡ λm(w1 − λzw12)
2 + λ2zw22(w1 − λmw11), (2.7)

where all the partial derivatives of w are evaluated at the principal stretches in the mid-

surface where the stretch in the azimuthal direction is denoted by λm (the axial stretch is

still λz). The leading order terms in the above expansions correspond to the membrane

theory. It was shown in Fu et al (2016) with the use of these expansions that the membrane

theory gives good predictions for the initiation pressure for localized bulging, with a relative

error less than 5%, for values of ε up to 0.67. This will be confirmed by our experimental

and numerical simulation results to be presented later.

In view of the expressions in (2.6), we shall in the rest of this paper scale all lengths by

Rm, the pressure by µε, and the axial force F by 2πRmHµ, where µ is the ground state

shear modulus. Thus, for instance, r(0) will denote r(0)/Rm, and ε = H from now on. The

scaled P and F are then both independent of H under the membrane assumption.

In the rest of this section, we shall use the membrane theory to explain the differences

in the inflation behaviour between the two loading scenarios. The advantage of using the

membrane theory is that the entire bulging process can be described analytically or semi-

analytically. In particular, we shall show how the minimum pressure in the case of fixed

axial length can be computed semi-analytically. In this case the propagation pressure can

only be estimated; it cannot be determined exactly.

To describe both the uniformly inflated and bulging solutions under the membrane as-

sumption, we now consider a generally axisymmetric deformation described by

r = r(Z), θ = Θ, z = z(Z), −L ≤ Z ≤ L, (2.8)

where r is now the deformed radius of the mid-surface scaled by Rm, and Z and z are the

scaled axial coordinates in the initial and inflated configurations, respectively. The principal

directions of stretch coincide with the lines of latitude, the meridian and the normal to the

deformed (middle) surface. Thus, the principal stretches are now given by

λ1 = r, λ2 =
√
r′2 + z′2, λ3 = 1/(λ1λ2), (2.9)
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where the indices (1, 2, 3) are used for the latitudinal, meridional and normal directions

respectively, and the primes indicate differentiation with respect to Z.

It can be shown that the equilibrium equations may be written in the form

λ′1 = λ2 sinφ,

λ′2 =
w1 − λ2w12

w22

sinφ, (2.10)

φ′ =
w1

w2

cosφ− Pλ1λ2
w2

,

where φ is the angle between the meridian and the Z-axis, and w now denotes Hw/µ (that is

the strain energy per unit surface area in the undeformed configuration, scaled by the ground

state shear modulus µ). We assume that the crown of any bulging solution corresponds to

Z = 0. It can be deduced from (2.10)3 that

P =
w1

λ1λ2
, wherever φ = 0 and φ′ = 0. (2.11)

In particular, this expression is valid at the crown of the bulge, or where the solution is

uniform.

It is well-known (Pipkin 1968) that the above equilibrium equations have two integrals,

given by

w − λ2w2 = K1,
w2z

′

λ2
− 1

2
Pλ21 = K2, (2.12)

where K1 and K2 are integration constants. We are only concerned with localized bulging

solutions, and will assume that the tube is sufficiently long so that the two principal stretches

near the two ends may be assumed to be uniform, which we denote by λ1∞ and λ2∞. This

assumption is justified by the fact that a bulging solution is effectively a static solitary wave

with amplitude decaying exponentially away from its crown. The constants K1 and K2 can

then be determined by evaluating (2.12) at the uniform state. A further evaluation of (2.12)

at Z = 0 then yields two algebraic equations for λ1(0) and λ2(0), which we write symbolically

as

f(λ1(0), λ2(0), λ1∞, λ2∞) = 0, g(λ1(0), λ2(0), λ1∞, λ2∞) = 0, (2.13)

where f and g are known functions. For each set of (λ1∞, λ2∞), these two equations can be

solved to find λ1(0) (6= λ1∞ ) and λ2(0) (6= λ2∞), assuming that such a non-trivial solution

exists. These values together with φ(0) = 0 can then be used as the initial conditions when

(2.10) is integrated to find the bulging solution. For the case of fixed F , both λ2∞ and P

can be expressed in terms of λ1∞ (it is more convenient to use λ1∞ as the control parameter

since it decreases monotonically during the entire inflation process). As a result calculation

of the bulging solution is straightforward to implement on Mathematica (Wolfram Research,

Inc. 2015); see Pearce and Fu (2010). In Figure 1(a), we have shown the dependence of

λ1(0) on λ1∞ when F = 0. The intersection of the non-trivial branch with the trivial branch

λ1(0) − λ1∞ = 0 gives the bifurcation value λ1cr of λ1∞. As λ1∞ is reduced from λ1cr,

the radius r(0) at the crown of the bulge grows until it has almost reached its maximum
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(corresponding to point K in the figure). The final stage of radius growth towards its

maximum is accompanied by rapid propagation of the bulged section in the axial direction.

Theoretically, the maximum of r(0) can only be reached when the bulged section has become

infinitely long. When r(0) reaches its maximum, we have r′′(0) = 0 as well as r′(0) = 0 so

that the state at the crown becomes a second fixed point of the dynamical system (2.10).

The associated bulging solution becomes a “hat” solution represented by the joining of two

kink solutions which are mirror images of each other. A kink solution in the dynamical

systems theory is a heteroclinic orbit that approaches two different fixed points of the the

dynamical system as Z → ±∞. The state at Z = 0 being also a fixed point of (2.10) is

represented by the fact that

w1(λ1∞, λ2∞)

λ1∞λ2∞
=
w1(λ1(0), λ2(0))

λ1(0)λ2(0)
, (2.14)

which, in conjunction with (2.13), can be used to determine the values of λ1∞, λ1(0), and

λ2(0), and hence the propagation pressure (λ2∞ is determined by the closed-end condition).

Geometrically, this propagation pressure satisfies the equal-area rule (Chater and Hutchinson

1984). At any stage of the inflation process, the bulging solution can be obtained by a single

integration of the dynamical system (2.10) since the starting values of the dependent variables

at Z = 0 are already determined as explained above.

1.0 1.2 1.4 1.6 1.8
λ1∞

1

2

3
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5

6

7

λ1(0)-λ1∞

K

0.9 1.0 1.1 1.2 1.3 1.4 1.5
λ1∞

1

2

3

4

5

6

7

λ1(0)-λ1∞

K

(a) (b)

Figure 1: Solutions of (2.13) when the strain-energy function is given by the Gent-Gent material model

(3.16) with Jm = 88.43, µ = 0.2853, C2 = 0.1898. (a) The case of fixed axial force F = 0 for which λ1cr is

1.6318, and the turning point K corresponds to λ1∞ = 1.1258, λ2∞ = 1.0038, λ1(0) = 5.8834, λ2(0) = 4.1241.

As λ1∞ decreases from λ1cr to 1.1258 at K, the λ2∞ decreases monotonically from 1.0966 to 1.0038. (b)

The case of fixed axial stretch λ2∞ = 1.6 for which λ1cr is 1.2904 and the turning point corresponds to

λ1∞ = 0.8980, λ1(0) = 5.3861, λ2(0) = 4.1635. Note that in this imaginary case one end of the tube must be

extended to maintain the constant axial stretch there.

In the other case when the tube is first stretched and then the ends are fixed during

subsequent inflation, λ2∞ and P can no longer be expressed in terms of λ1∞ alone. As a

result, the starting values of λ1(0) and λ2(0) cannot be determined beforehand for each λ1∞,

and a shooting procedure needs to be employed in integrating the governing equations (2.10).

However, the assumption that the tube is sufficiently long and the two principal stretches

near each end are uniform still enables us to provide a semi-analytical, and sufficiently
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accurate, description of the entire inflation process. In our experiments, both ends of the

tube are completely fixed, and a boundary layer exists near each end where the deformation

is non-uniform. Such boundary layer effects are neglected in our calculations, and the error

associated with this approximation will be assessed later with the aid of fully numerical

simulations using Abaqus.

We denote the initial axial pre-stretch by λz0. As soon as the bulge begins to grow in

diameter after its initiation, the axial stretch λ2∞ near the ends of the tube will decrease.

This is manifested through the fact that if the initial stretch λz0 or tube length L is not

large enough, the tube may very quickly experience Euler-type buckling (Goncalves et al

2008). Thus, λ2∞ varies as the bulge grows and its value is determined by the fixed-length

condition ∫ L

0

z′(Z)dZ =

∫ L

0

λ2 cosφdZ = λz0L. (2.15)

A shooting procedure with (2.15) as the target condition is therefore required to determine

the bulging solutions. A good starting point for this shooting procedure is to take λ2∞ = λz0,

since in the limit L → ∞, the reduction in λ2∞ due to bulge formation should become

negligible and λ2∞ → λz0. To avoid the numerical difficulty that the bulging solution may

start to grow after decaying for a range of Z values, we only integrate (2.10) from Z = 0

up to a value of Z, Z∗ say, where r(Z∗)− λ1∞ has become less than 10−8. For Z > Z∗, we

simply replace λ2 by λ2∞ and φ by 0 in the evaluation of the second integral in (2.15).

We first explain the determination of the propagation pressure for each fixed λ2∞ without

having to satisfy the fixed-length condition (2.15). This is an imaginary situation in which

the tube is allowed to extend in the axial direction in order to maintain the constant λ2∞

near the two ends, but it is a building block for our subsequent calculations. With λ1∞ as

the control parameter and λ2∞ fixed, the two equations (2.13) can be solved to find λ1(0)

and λ2(0), and a typical solution with λ2∞ = 1.6 is shown in Figure 1(b). As in the case

of fixed F , the intersection of the two solution branches (one of them is the horizontal axis)

defines the bifurcation point, and at point K the extra condition (2.14) is also satisfied, and

can be used to determine the associated value of λ1∞, which we denote by λ1k. The latter

quantity is obviously a function of λ2∞. We will eventually need to find the value of λ2∞ at

which the fixed-length condition (2.15) is also satisfied.

We note that the values of λ1(0) and λ2(0) at K cannot be used as initial conditions

for (2.10) in order to obtain the kink solution since the state associated with K is a fixed

point of the dynamical system (2.10). Neither is it realistic to determine the kink solution

exactly because such a solution is defined over an infinite domain. A good approximate

representation of the kink solution is the bulging solution corresponding to λ1∞ = (1+δ)λ1k,

where δ is a sufficiently small and positive number. From now on we shall refer to this solution

as the near-kink solution, and the associated state as the near-kink state. The relative error

in approximating the maximum value of r(0) is of the order δ1/2 since the curve near K is

locally parabolic. We take δ = 10−8 in our calculations. A typical such near-kink solution is

shown in Figure 2 using the same scale for both axes in order show the actual appearance of
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z

r

Figure 2: A near-kink solution of (2.10) when the strain-energy function is given by the Gent-Gent material

model (3.16) with Jm = 89.6, µ = 0.285, C2 = 0.19, λ1∞ = (1 + δ)λ1k, λ2∞ = 1.5, and L = 30. With the

same scale used for both axes, it shows the actual appearance of the tube in the current configuration.

0.95 1.00 1.05 1.10 1.15 1.20 1.25
λ1∞

5

10

15

20

z(L)-λz0L

Figure 3: Dependence of end extension on λ1∞, showing that it tends to infinity in the limit λ1∞ → λ1k,

that is δ → 0. The dot on the curve corresponds to δ = 10−8, and the associated pressure value is taken to

be the (approximate) propagation pressure.

the bulged tube. We note that the middle section in Figure 2 would become infinitely wide

in the limit δ → 0; see Figure 3. This is because the exact kink solution is defined over an

infinite interval.

With the above procedure for finding the near-kink solution for each fixed value of λ2∞

established, we may now consider the case when the tube length is fixed, that is when (2.15)

is imposed. The actual λ2∞ is expected to be smaller than λz0, and is determined by iteration

with the use of the target condition (2.15). In Figure 4, we have shown the dependence of

λ2∞ and the associated propagation pressure on L when the near-kink state is reached. It is

seen that both λ2∞ and the associated propagation pressure approach their respective limits

as L→∞ although quite slowly .

We next compute the bulging solutions before the kink state is reached in order to

understand the variation of the inflation pressure. It is found that as the bulge amplitude

r(0) grows, the λ2∞ decreases monotonically, but the variation of λ1∞ is not monotonic. This

is in contrast with the case of fixed F for which both λ1∞ and λ2∞ decrease monotonically as

the bulge grows. Thus, it is convenient to decrease λ2∞ in small steps, and at each step we

determine the associated λ1∞, λ1(0), and λ2(0) by satisfying the three conditions in (2.15)

and (2.13). More precisely, for each λ2∞ ∈ (λzk, λz0), where λzk is the value of λ2∞ when
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Figure 4: Dependence of λ2∞ and the associated propagation pressure on L when the strain-energy function

is given by the Gent-Gent material model (3.16) with Jm = 89.6, µ = 0.285, C2 = 0.19. The dashed

line is the theoretical result in the limit L → ∞. When L = 400, the actual values of λ2∞ and the

associated propagation pressure differ from their asymptotic limits with relative errors equal to 3% and

0.7%, respectively. The axial stress at the end of the tube becomes negative when L is approximately equal

to 30, meaning that the tube would suffer Euler-type buckling if L < 30.
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Figure 5: Dependence of scaled pressure P on the bulge amplitude r(0) as the bulge grows. (a) The case of

fixed F = 0. (b) The case of fixed length λz0L with λz0 = 1.6, Rm = 3.75 mm, H = 0.4, L = 30. The dots in

(a) and (b) correspond to the kink state and near-kink state, respectively.

the near-kink state is first reached, we iterate on λ1∞ so as to satisfy the fixed end condition

(2.15), and for each set of (λ1∞, λ2∞), the bulge amplitude is determined by solving the two

conditions (2.13). In Figure 5(b), we have shown the dependence of pressure on the bulge

amplitude up to the point when the near-kink state is reached. In this plot the part before

the pressure maximum corresponds to uniform inflation, and the part after the pressure

maximum corresponds to the bulging solution. As a comparison, we have also shown in

Figure 5(a) the counterpart of Figure 5(b) when F is fixed, the segment corresponding to

the bulging solutions being obtained by following the solid line in Figure 1(a). In the two

plots, the dots corresponds to the exact kink state and near-kink state, respectively.

Figures 5(a) and (b) are obviously different. In the case of fixed axial force, the pressure

decreases monotonically, and when the pressure becomes sufficiently close to the Maxwell

value, the bulge will rapidly propagate in the axial direction. In contrast, in the case of fixed
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tube length, the pressure first decreases monotonically to a minimum before it increases

monotonically to reach its value corresponding to the near-kink state. For the case considered

in Figure 5(b), the pressure maximum and minimum are found to be 0.6194 and 0.3473,

respectively. To validate these results, we have also run a numerical simulation using the

software Abaqus for a tube of the same material properties. All of our Abaqus simulations

here and hereafter are based on the exact three-dimensional nonlinear elasticity theory. The

inner radius, outer radius and half-length L of the tube are assumed to be equal to 3.5,

4, and 112.5 units, respectively. This corresponds to a scaled L equal to 30, and a scaled

wall thickness H = ε = 0.13 so that the tube wall is quite thin. We have considered the

following three different types of imperfections to make sure that the bulge will initiate at

the central section of the tube (Z = 0): (1) The radial movement at each end is un-restricted

but in-plane rotation at four equally spaced points on the outer surface is restricted. This

mimics the assumptions behind our semi-analytical computations. We introduce a very small

weakening of the material properties by assuming that the value 0.2853 of µ0 given by Table

2 is replaced by 0.2850 for one eighteenth of the total length of the tube around Z = 0 while

the values of Jm and C2 remain unchanged; (2) We introduce the same material weakening

as in (1), but the in-plane movement at both ends is completely restricted. (3) We restrict

completely in-plane movement at both ends, but no material weakening is introduced, which

mimics the situation in our experiments. The restrictions at the ends serve as imperfections

and because of symmetry the bulge will tend to initiate at Z = 0. It is found that the results

from these three different approaches differ from each other by less than 0.2%. Thus, all

the subsequent Abaqus simulations are based on the third approach which is the simplest

to implement. For the current case, Abaqus yields the values 0.6177 and 0.3480 for the

scaled pressure maximum and minimum, respectively, and our semi-analytical results differ

from these results by less than 0.3%. We have run simulations for three other tubes with

increasingly larger and larger wall thickness but the same scaled half-length 30. These tubes

have inner and outer radii (A,B) given by (3, 4.5), (2.5, 5), and (2.25, 5.25), respectively.

The results are summarized in Table 1. The 3D theory used to compute the initiation

pressure refers to the theory of Fu et al (2016) so that the initiation pressure (i.e. pressure

maximum) is determined by (2.5), and a cross signifies the fact that this theory cannot

compute the pressure minimum. In addition to confirming the claim in Fu et al (2016) that

the membrane theory can be used to accurately predict the initiation pressure for thin and

moderately thick rubber tubes, these typical computations also confirm that the current

semi-analytical approach is also accurate in predicting the pressure minimum for thin and

moderately thick rubber tubes for the intended end conditions, but it under-predicts the

pressure minimum by 8% when the scaled wall thickness becomes as large as 0.67.
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Table 1: Comparison with numerical simulations using Abaqus

Membrane theory Abaqus (fixed ends) 3D theory

Pcr with ε = 0.13 0.6194 0.6177 0.6199

Pmin with ε = 0.13 0.3473 0.3480 X

Pcr with ε = 0.40 0.6194 0.6220 0.6248

Pmin with ε = 0.40 0.3473 0.3577 X

Pcr with ε = 0.67 0.6194 0.6296 0.6367

Pmin with ε = 0.67 0.3473 0.3779 X

Pcr with ε = 0.80 0.6194 0.6358 0.6374

Pmin with ε = 0.80 0.3473 0.3945 X

3. Experimental set-up and material characterization

A set of latex rubber tubes were purchased from a commercial company together with

a large membrane sheet with thickness 0.5 mm. Six groups of tubes are used in the exper-

iments. Tubes in different groups have the same inner diameter 6 mm but different outer

diameters equal to 9, 10, 11, · · · , 14 mm, respectively, and are believed to have the same ma-

terial properties as the membrane sheet provided. Thus, the corresponding thickness/radius

ratio ε for the six tubes is equal to 0.4, 0.5, 0.59, 0.67, 0.74, 0.8, respectively. Tubes in the

first four groups can be classified as membrane tubes for which the membrane theory should

provide a good approximation for the exact 3D theory (Fu et al 2016). In particular, for the

initiation pressure the relative error should be less than 5%.

(a) (b)

Figure 6: Final stages of (a) pure shear and (b) biaxial extension.

To characterize the material properties, we use the membrane sheet to prepare samples

to conduct uni-axial tension, pure shear, and equi-biaxial extension, following the protocol

described by Treloar (1944a). In particular, for uni-axial tension, the effective sample size
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in the dumb bell shaped sample is 6 mm × 33 mm, and the maximum longitudinal stretch

reached is 6.5. For pure shear, the effective sample size is 5 mm × 100 mm; the sample is

clamped along the long sides by two rigid plates and then the plates are pulled apart (see

Figure 6(a)), the maximum stretch reached in the pulling direction being 6.4. For equi-biaxial

extension, we inflate a circular plane membrane by using it to seal a cylindrical gas chamber

(see Figure 6(b)). The effective test area is of diameter 90 mm. It is well-known that as

the pressure in the gas chamber is increased, the membrane will be inflated into a spherical

shell approximately, and near the pole the deformation can be viewed to be equi-biaxial

(Treloar 1944b), the maximum stretch reached being 5.5. All samples are pre-stretched or

pre-inflated a number of times to minimize Mullins’ effects following the standard practice,

and all experiments were conducted at a room temperature of 20±1o C. All stretches are

obtained by high-precision image processing. More details on the equi-biaxial experiments

can be found in Zhou et al (2018).

Five sets of valid results were obtained for each type of deformation. In view of the

comparative studies presented in Pucci and Saccomandi (2002) and Ogden et al (2004), we

fit our experimental data to the Gent-Gent material model given by

W = −µ0

2
Jm ln(1− I1 − 3

Jm
) + C2 ln(

I2
3

), (3.16)

where

I1 = λ21 + λ22 + λ23, I2 = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3,

and µ0, Jm, C2 are constants. The ground state shear modulus µ associated with this model

is given by

µ = µ0 +
2

3
C2. (3.17)

In particular, we chose this model on the grounds that there exists a unique solution in

the data fitting, and it overcomes the shortcoming that the original Gent model cannot

accurately capture the behaviour at moderate values of stretch. Moderate values of stretch

are precisely where localized bulging initiates. Recent studies by Mangan and Destrade

(2015) and Zhou et al (2018) have provided more supporting evidence that the Gent-Gent

model is superior to the original Gent model.
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Figure 7: (a) Five sets of experimental data on uniaxial tension, and (b) one of them fitted to the Gent-Gent

model
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Figure 8: (a) Five sets of experimental data on equi-biaxial tension, and (b) one of them fitted to the

Gent-Gent model

14



Table 2: Averaged values of material constants from data fitting

Jm µ0(MPa) C2(MPa) µ(MPa)

Uni-axial tension 79.65 0.2903 0.3802 0.5438

Pure shear 76.22 0.2718 0.2280 0.4238

Equi-biaxial extension 88.43 0.2853 0.1898 0.4118

1 2 3 4 5 6 7
0

1

2

3

4

N
om

in
al

 s
tre

ss
 (M

P
a)

Stretch ratio
1 2 3 4 5 6 7

0

1

2

3

4

N
om

in
al

 s
tre

ss
 (M

P
a)

Stretch ratio

 Test data
 Fit to pure shear

(a) (b)

Figure 9: (a) Five sets of experimental data on pure shear, and (b) one of them fitted to the Gent-Gent

model

The experimental data giving the nominal stress against the corresponding stretch are

shown in Figures 7−9. In the right part of each figure, we show a typical result of fitting the

above Gent-Gent model to one set of experimental data. The averaged values of the material

constants are presented in Table 2. In view of the fact that the equi-biaxial extension test is

closest to the deformation of localized bulging, we shall use the averaged material constants

based on equi-biaxial extension to produce theoretical predictions; that is, in the rest of this

paper we shall take Jm = 88.43, µ0 = 0.2853 (MPa), C2 = 0.1898 (MPa). In Figure 10, we

compare the theoretical predictions based on this set of material constants with a typical

set of experimental data for uni-axial tension and pure shear. The maximum error in each

case is around 12%, which is typical for such cross comparisons; see, for instance, Ogden et

al (2004).

15



1 2 3 4 5 6 7
0

1

2

3

4

N
om

in
al

 s
tre

ss
 (M

P
a)

Stretch ratio

 Test data of uni-axial tension
 Theoretical prediction 

1 2 3 4 5 6 7
0

1

2

3

4

 

 

N
om

in
al

 s
tre

ss
 (M

P
a)

Stretch ratio

 Test data of pure shear
 Theoretical prediction 

(a) (b)

Figure 10: Theoretical prediction (solid line) based on Jm = 88.43, µ0 = 0.2853, C2 = 0.1898 for (a) uni-axial

extension, and (b) pure shear. The dots are a representative set of experimental results.

4. Comparison of analytical and experimental results

We use an air pump to inflate the tubes, a high-speed camera to record the images, and

a synchronous measuring system to record the internal pressure in all of our experiments.

In the case of fixed force, the camera records 200 frames per second, and in the case of fixed

stretch it is 100 frames per second (the sample rate is lowered to reduce data size). Since it

is not possible to measure the inner radius of the tube during inflation, the radius referred

to in the subsequent discussion is the outer radius. The high contrast between the white

tube and the black background enabled MATLAB’s image processing tools to be used to

quantify the outer diameter for every captured image. In the image processing, each row of

pixels was scanned to obtain the first and last white pixel locations. The largest difference

between pixel locations was taken as the bulge diameter and converted from pixels to mm.

To remove Mullins’ effect, each tube is inflated three times first and data are only collected

at the fourth inflation. It is found that the initiation pressure and the propagation pressure

or minimum pressure will both decrease further, although very slowly, as the number of

inflations is increased. Typically, the initiation pressure at the 25th inflation is around 9%

lower than its value at the 4th inflation, whereas with the propagation or minimum pressure,

the corresponding reduction is around 6%. We have also checked whether it will make any

difference if the tube is axially stretched a number of times before the first inflation. It is

found that such pre-stretching has a noticeable effect on the first inflation, but has little

effect on the fourth inflation. To ensure that localized bulging takes place near the middle

section of the tube, we always carry out the first inflation on a longer tube, and then cut

the tube to the specified length with the bulged section centred around the middle of the

tube. Because of the slight residual deformation left by the first inflation in the bulged area,

bulging in subsequent inflations tends to occur in the same area. For each data point, we
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carry out inflation on three identical tubes, and the final value adopted is the average of the

three values collected.

Before considering the two loading cases separately, we first make some general observa-

tions. In all subsequent comparisons, the theoretical initiation pressure is calculated based

on the 3D exact bifurcation condition (2.5). In the case of fixed F , the theoretical prop-

agation pressure is calculated with the aid of Maxwell’s equal area rule using the pressure

given by (2.2). In the case of fixed ends, the theoretical minimum pressure is calculated

using the procedure explained in Section 2. All our Abaqus simulations are based on the

3D exact nonlinear elasticity theory. As expected, the initiation pressures given by theory

and Abaqus are graphically indistinguishable for all cases considered. This is also true for

the propagation pressure in the case of fixed F . However, for the minimum pressure in the

case of fixed ends there is some discrepancy between theory and Abaqus due to the fact

that the theoretical minimum pressure is based on the membrane theory and hence tends to

underpredict the actual value.

4.1. The case of fixed F

We first present a typical set of experimental results corresponding to the case when

Rm = 3.75 mm (corresponding to inner radius 3 mm, outer radius 4.5 mm, ε = 0.4),

2L = 60, and F = 0.2785 (recall that L and F have been non-dimensionalized). The nine

marked points in each of the Figures 12-14 correspond to the nine configurations in Figure

11. Figure 12 shows that the outer radius approaches its maximum value much more slowly

than the pressure approaches its Maxwell value (i.e. the propagation pressure). This can be

explained by the fact that near the kink point in Figure 1 the λ1∞, and hence the pressure,

are each a parabolic function of the bulge amplitude. The inflation pressure P decreases

monotonically towards its Maxwell value, but will never reach the Maxwell value because,

as remarked earlier, this can only be achieved when the bulge has become infinitely long.

This is consistent with the theoretical prediction noted in the previous section. It can also

be seen in Figure 12 that the pressure drops from its maximum to 0.45 in 7 recording frames

(each thick dot on the curve represents a recording), that is in about 7/200 seconds. This

demonstrates the fact that the initial stage of bulge initiation and growth is unstable even

under mass control (Fu and Xie 2010). In Figure 13, we have also marked our theoretical

predictions for the initiation and propagation pressures. The experimental value 0.65 for the

initiation pressure is about 11% lower than the theoretical prediction 0.73, whereas for the

propagation pressure the experimental and theoretical values are 0.36 and 0.38, respectively,

the relative difference being 5.3%. This is consistent with the theoretical prediction that the

initiation pressure is sensitive to imperfections whereas the propagation pressure is not.

17



 

Figure 11: A representative set of configurations of a tube with inner diameter 6 mm, outer diameter 9 mm,

length 225 mm (so that H = 0.4, L = 30), in the case of fixed F = 0.2785.
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Figure 12: Evolution of pressure and bulge amplitude with time for the same tube as in Figure 11. The nine

marked points correspond to the nine configurations in Figure 11.
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Figure 13: Dependence of pressure on the bulge amplitude. The rrmo in the horizontal axis label is the outer

radius of the tube.
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Figure 14: Evolution of bulge profile. The nine profiles correspond to the nine configurations in Figure 11.

The next three figures show the effects of axial force, wall thickness and tube length on the

initiation and propagation pressures. Figure 15 shows that as the axial force F is increased,
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the initiation and propagation pressures measured experimentally follow the same trend as

the theoretical predictions, both decreasing monotonically. For the initiation pressure the

experimental value is consistently between 10-19% lower than the theoretical prediction,

whereas for the propagation pressure there is good agreement between the experimental

results and theoretical predictions, showing again the imperfection sensitivity of the former

and the robustness of the latter. Figure 16 displays the dependence of the two pressures on

the wall thickness, and it is seen that the two pressures are increasing functions of H. It is

seen that the gap between the experimental and theoretical values for the initiation pressure

is getting smaller as the wall thickness is increased. This seems to indicate that the initiation

pressure is more sensitive to imperfections for thin-walled tubes than for thick-walled tubes.

It is also seen that for the propagation pressure the experimental value is slightly smaller

than the theoretical value for the first two H values, but the relation is reversed for the

other four higher H values. Figure 17 shows the dependence of the two pressures on the

tube length. It is seen that the two pressures are insensitive to the values of the tube length

considered. This can be explained by the fact that the bulging solution is effectively a static

solitary wave which has amplitude decaying exponentially towards the two ends of the tube.

Finally, we remark that although results corresponding to F = 0.2785, H = 0.4, L = 30 are

given in both Figures 15 and 17, the experimental results are not necessarily identical since

they correspond to different physical tubes. In other words, to produce the results in Figure

17, we have used a fresh set of tubes with different specified lengths.
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Figure 15: Dependence of the initiation and propagation pressures on F when H = ε = 0.4, L = 30.
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Figure 16: Dependence of the initiation and propagation pressures on wall thickness when F = 0, L = 30.
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Figure 17: Dependence of the initiation and propagation pressures on the tube length when H = 0.4, F =

0.2785

.

4.2. The case of fixed ends/length

In this case the initiation pressure is determined by the same bifurcation condition as

in the previous case, but in contrast with the previous case the concept of a propagation
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pressure no longer applies. The pressure would reach a minimum first before it rises again to

approach the value corresponding to the near-kink state defined in the previous section. We

also note that once the tube has reached the near-kink state, further propagation of the bulge

will still be restricted by the fixed ends. As an infinitesimal part dZ of the narrower section

is converted into the wider section, it will elongate by (λ2(0) − λ2∞)dZ which is positive.

Since such an elongation is not allowed to happen due to the fixed ends, the narrower section

must unload itself further to reach a lower λ2∞ value. This lower value of λ2∞ must be such

that the total tube length is shorter than λz0L, the amount of shortening being equal to

the extension associated with the conversion of a part of the narrower section into the wider

section. Thus, we may alternatively decrease L and compute the associated near-kink state,

and hence the value of r(0). Such a calculation shows that the pressure will increase slowly

beyond the dot shown in 5(b). This is consistent with what is observed in our experiments

to be presented later. This propagation stage is terminated when either the ends are reached

or the axial stress at the ends becomes negative, in which case the tube will buckle.

We also remark that under the assumption that Euler-type buckling will occur if the axial

stress at the ends becomes negative, the initial stretched length 2λz0L must be sufficiently

large to ensure that the tube will not buckle by the time when the near-kink state is reached.

It is found that to satisfy this condition, when λz0 = 1.6 we must have L > 26, and when

L = 30 we must have λz0 > 1.5, both inequalities being approximate. These results are used

to guide the design of our experiments.

 

Figure 18: A representative set of configurations of a tube with inner diameter 6 mm, outer diameter 9 mm,

length 225 mm (so that L = 30, H = ε = 0.4), and initial stretch λz0 = 1.6.

Figure 18 shows a typical set of tube configurations as inflation proceeds, with Figures 19

and 20 showing the associated variation against time of pressure and outside radius at the

crown of the bulge, respectively. Figure 21 displays the corresponding bulging profiles. Both

Figures 19 and 20 show the fact that the pressure starts to rise as soon as it has reached a

minimum, in contrast with the case of fixed F . In Figure 20 we have marked the theoretical
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predictions for the initiation pressure and the minimum pressure. The experimental initi-

ation pressure 0.52 is less than the theoretical prediction 0.62 by about 16% , whereas the

experimental pressure minimum 0.32 is less than its theoretical counterpart 0.33 by 3%.
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Figure 19: Evolution of pressure and bulge amplitude with time. The nine marked points correspond to the

nine configurations in Figure 18.
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Figure 20: Dependence of pressure on bulge amplitude. The nine marked points correspond to the nine

configurations in Figure 18.
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Figure 21: Bulge profiles corresponding to the nine configurations in Figure 18.
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Figure 22: Dependence of the initiation and minimum pressures on λz0 when H = 0.4, L = 30.

The next three figures show the dependence of the initiation and minimum pressures

on the pre-stretch λz0, the scaled wall thickness, and the scaled tube length. Figure 22

displays the effect of λz0 for a tube of moderate wall thickness (ε = 0.4) that is chosen to

have the same dimensions as the tube in Figure 15 for comparison. As in Figure 15, the

experimental initiation pressure is consistently smaller than its theoretical counterpart by

about 8% to 21%. The theoretical predictions for the pressure minimum are slightly lower

than the numerical simulation results. This is because the theoretical predictions are based

on the membrane theory which tends to underestimate the pressure. It is also seen that the
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experimental minimum pressures are noticeably lower than the numerical simulation results.

We are not able to suggest any convincing explanations since very little is known about

the character of the pressure minimum. For instance, it is not known whether the pressure

minimum is also sensitive to imperfections. Our experimental results seem to suggest that

it is sensitive to imperfections, but to a less degree than the initiation pressure.
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Figure 23: Dependence of initiation and minimum pressures on wall thickness when L = 30, λz0 = 1.6.

In Figure 23, we have shown the dependence of the two pressures on the scaled wall

thickness. As the wall thickness increases, our numerical simulation results and the corre-

sponding experimental results follow the same trend, but there are some minor fluctuations

in our experimental results. Interestingly, the behaviour of various pressure values is very

similar to the behaviour in Figure 16 for the other case. In particular, for the four larger

values of H, the gap between the theoretical initiation pressure and its experimental coun-

terpart is getting smaller, and the experimental minimum pressure lies slightly above the

theoretical minimum pressure. The theoretical pressure minimum based on the membrane

theory is independent of H, and as H increases it gradually diverges from the numerical

simulation results as expected.

Finally, we consider the dependence of the two pressures on the tube length. Figure

24 shows that when the tube length is larger than 20, both experimental and numerical

simulation results become insensitive to the tube length. The initiation pressures given by

theory and by experiments differ by about 8%, the gap being slightly smaller than for lower

values of H, as has already been observed in Figure 23.
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Figure 24: Dependence of the initiation and minimum pressures on the tube length when H = 0.59, λz0 =

1.6.

5. Conclusion

Localized bulging of an inflated rubber tube is a classical problem in nonlinear elasticity,

but it has been studied as a bifurcation problem only recently. In this paper, we have

provided an updated summary of the newly emerged results, and have conducted a series of

experiments to validate them. Complementing the existing experimental results, our current

study has clarified the sensitivity of the initiation pressure to imperfections, and has provided

a more precise description of how the bulge propagates in the axial direction, especially in

the case when the axial length is fixed.

We focused on the case when the tube is sufficiently long so that the end conditions

have a negligible effect on the initiation pressure. This is verified with the aid of numerical

simulations using Abaqus. For tubes whose length is more than 40 times greater than the

averaged radius (i.e. L/Rm > 20), the initiation pressure obtained by Abaqus and the

exact value based on an infinite tube differ from each other by less than 0.4%. Once this is

established, the only imperfections that are present are those arising from the manufacturing

of the tubes. It is confirmed that the initiation pressure is indeed sensitive to imperfections:

the values measured experimentally are consistently lower than the theoretical predictions by

about 15%. The largest gap occurs for tubes with the smallest wall thickness, which seems

to suggest that localized bulging of thin-walled tubes is more sensitive to imperfections

than thick-walled tubes. It is also confirmed that the scaled initiation pressure increases

monotonically with respect to wall thickness, but the effect of bending stiffness is only

marginal for thin and moderately thick tubes. These results are valid for both the case

of fixed axial force and the case of fixed tube length. However, the pressure variation for

the two different end conditions exhibit quite different behaviour. In the case of fixed axial
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force, the pressure first reaches a maximum at which the bulge initiates and then decreases

monotonically to a constant value (the Maxwell pressure), whereas in the other case after

reaching a maximum where a bulge initiates, the pressure decreases to a minimum and then

rises monotonically. This is observed in our experiments and also predicted analytically. Our

experiments and numerical simulations confirm that the propagation pressure is insensitive

to imperfections, but suggest that the pressure minimum in the case of fixed length might

be sensitive to imperfections although to a less degree than the initiation pressure.
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