
This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to

quote extensively from the work, permission must be obtained from the
copyright holder/s.

Detection of suspicious URLs in online social networks using
supervised machine learning algorithms

Mohammed Fadhil Zamil Al-Janabi

Submitted for the degree of

 Doctor of Philosophy

December 2018

Keele University

ii

TABLE OF CONTENTS

LIST OF FIGURES ... VII

LIST OF TABLES ...XI

GLOSSARY OF TERMS .. XIII

ACKNOWLEDGEMENTS ... XVII

ABSTRACT ... XIX

 INTRODUCTION .. 21

1.1 Introduction .. 22

1.2 Background .. 23

1.3 Motivations ... 24

1.4 Problem statement .. 25

1.5 Objectives ... 25

1.6 Research questions ... 26

1.7 Main contributions of thesis ... 26

1.8 Structure of thesis ... 28

 LITERATURE REVIEW .. 31

2.1 Technical background .. 32

2.2 What is spam content? .. 33

2.2.1 Twitter’s spam rules ... 35

2.3 Spam mechanism .. 37

2.3.1 Sybil attacks and fake accounts .. 39

2.3.2 Fake accounts and the black market ... 40

2.3.3 What are spambots? ... 41

2.4 Countermeasures .. 42

iv

2.4.1 Blacklist .. 42

2.4.2 Introduction to machine learning methods ... 44

2.4.3 Machine learning algorithms .. 49

2.4.4 Ensemble learning algorithms .. 54

2.5 Features used to build spam classifiers .. 58

2.5.1 Twitter accounts and content features .. 59

2.5.2 URL, hosting and web page features ... 63

2.6 Conclusion .. 67

 RESEARCH METHODOLOGY .. 69

3.1 Background .. 70

3.2 Data sources and labelling methods ... 73

3.2.1 Data collection process... 74

3.2.2 Data labelling process .. 75

3.2.3 Data preparation and unbalance issue .. 81

3.3 Feature extraction and engineering .. 82

3.3.1 Features used in building classifiers... 84

3.4 Model selection .. 96

3.4.1 Model selection criteria .. 97

3.5 Hyperparameter tuning ... 101

3.5.1 Feature selection methods .. 102

3.6 Discussions ... 103

 USING SUPERVISED MACHINE LEARNING ALGORITHMS

TO DETECT SUSPICIOUS URLS IN TWITTER 106

4.1 Introduction .. 107

v

4.2 Model selection .. 108

4.3 Model performance enhancement .. 110

4.3.1 Model enhancement through parameter tuning 111

4.3.2 Experiment summary ... 117

4.3.3 Hyper-parameter tuning and overfitting ... 119

4.4 Model enhancement by feature selection ... 120

4.5 Enhance model performance by adding more training data 126

4.6 Conclusion .. 127

 MORE INFORMATIVE FEATURES AND ENSEMBLE

LEARNING METHODS USED TO DETECT MALICIOUS URLS ON

TWITTER .. 129

5.1 Introduction .. 130

5.2 New dataset and new features deployed .. 130

5.3 Ensemble learning methods ... 131

5.4 Experiment methodology ... 133

5.5 Results and evaluation .. 135

5.6 More data, better performance ... 140

5.7 Conclusion .. 142

 ‘SUSPECTRATE’ – A SPAM DETECTION SYSTEM 144

6.1 Introduction .. 145

6.2 Design goals ... 146

6.3 System flow and structure .. 147

6.4 Building and training models ... 151

6.5 Deploying and maintaining models .. 153

vi

6.6 System data input ... 154

6.7 Feature extraction ... 155

6.8 Decision-making and output presentation .. 156

6.9 Implementation details ... 158

6.10 Conclusion .. 160

 CONCLUSION AND FUTURE WORK .. 161

7.1 Conclusion .. 162

7.2 Research limitation ... 164

7.3 Future work .. 165

APPENDIX A EXAMPLE OF A TWEET JSON DATA SAMPLE 167

APPENDIX B PYTHON LIBRARIES USED IN BUILDING THE SYSTEM . 171

APPENDIX C EXAMPLE OF A VISUALISED TREE MODEL 173

REFERENCES ... 174

vii

LIST OF FIGURES

Figure 1.1 Thesis structure ... 29

Figure 2.1 Spamming units and stages [15] ... 36

Figure 2.2 Search results for ‘buy Twitter accounts’ on Google search 40

Figure 2.3 Supervised machine learning general scheme [65] Figure consist two main

parts training and prediction ... 46

Figure 2.4 Unsupervised machine learning general scheme [65] The coloured boxes

represent the different clusters the dataset is split into ... 47

Figure 2.5 Model complexity against testing and training performance [69] Increasing

complexity could enhance the prediction to a limit where the test sample error

gets higher... 48

Figure 2.6 SVM trained with samples from two classes green point are the support

vectors that used to create the hyperplane to separate the two classes. 51

Figure 2.7 K-NN example with k=5 As the circle represents unknown class data need

to be predicted. ... 51

Figure 2.8 Random Forest generic mechanism. The whole dataset is divided into n

samples and each sample is used for building a singular DT. Then in the final

stage, each model prediction is combined for the final prediction 55

Figure 2.9 Boosting general mechanism the whole dataset used in all n iterations of

the training of boosting models .. 56

Figure 3.1 Key phases of the research methodology. The collection phase is where

tweets are imported into the database. This is followed by feature extraction and

selection, and then building models and evaluating them. 72

viii

Figure 3.2 General techniques used and their flow the flow represents the sequence of

techniques used in processing incoming data till storing it in the database 75

Figure 3.3 Data collection and features extraction workflow crossed tweets represents

tweet that got deleted by twitter ... 76

Figure 3.4 Labelling method used to build DS2 ground truth dataset, that involved

extra manual validation .. 78

Figure 3.5 Labelling tool developed and used in labelling the dataset In the bottom

right corner of the screen shot image there are three buttons: green (normal), red

(spam) and yellow (unsure) .. 79

Figure 3.6 Cross-validation sampling method ... 82

Figure 3.7 Selenium web drivers web browsers logos represents the capability of

selenium to use different software web drivers .. 87

Figure 3.8 Malicious/spam content hidden content behind multiple redirected URLs

starting by un-blacklisted URL and ending with blacklisted one 90

Figure 3.9 Example of a popup window used for advertising 92

Figure 3.10 Example of ads abusive web page two column web page as both contains

ad text and banners ... 94

Figure 3.11 Research methodology key phases ... 104

Figure 4.1 The effect of the number of trees parameter on the performance of the

spam classification .. 113

Figure 4.2 The effect of the tree max depth parameter on the performance of the spam

classification ... 115

Figure 4.3 The effect of the leaf size parameter on the performance of the spam

classification ... 116

ix

Figure 4.4 RF classification performance based on the selected features. The vertical

axis is the performance in Recall and the horizontal axis shows number of

features as it is decreasing from left to right. The yellow horizontal line is the

model performance using all the features. .. 125

Figure 4.5 RF incremental learning curve according to DS1 random forest

performance according to the size of training data used 126

Figure 5.1 Comparison of DS1 and DS2 features importance based on two feature

ranking methods ... 131

Figure 5.2 Models’ performance according to F1 metric model on the left XGB is the

highest model compared with varied combined models groups 137

Figure 5.3 Methods used for combining predictions of several machine learning

models ... 138

Figure 5.4 Top models vs top combined model ... 140

Figure 5.5 Learning curves for ensemble learning models using the F1 metric. The

figure shows the classifiers’ performance behaviour as more data is used for

training. ... 141

Figure 6.1 System's main components flow starts from system web interface and ends

by sending email to the client, small grey area represents the internal retraining

process that conducted periodically .. 148

Figure 6.2 Feature extraction internal processes extracting feature process start by

retrieving URL from the database and ends back with all extracted features to the

database. ... 150

Figure 6.3 System’s ability to add new models green box shows a new deep learning

model added to the classifiers stack ... 153

x

Figure 6.4 Input file one column csv file, each row contains a tweet ID 154

Figure 6.5 Web form for uploading the dataset three fields required name, email and

dataset file ... 155

Figure 6.6 Output file two columns csv file, first contains tweet id then suspicious rate

 .. 157

Figure 6.7 Web form to get the status of user order two fields required (email and

serial number) to retrieve order status .. 157

LIST OF TABLES

Table 2.1 Examples of distance measurement metrics .. 52

Table 2.2 List of Twitter features adopted by previous studies [90]–[93]................... 60

Table 2.3 List of lexical, host-based and page-content features [56][110] 64

Table 2.4 Example of phishing URLs [112] .. 65

Table 3.1 Comparison between DS1 and DS2... 80

Table 3.2 Sources of features used in building machine learning models 83

Table 3.3 Common features used in literature ... 84

Table 3.4 User information features .. 85

Table 3.5 Tweet features .. 86

Table 3.6 Redirections’ observation features and web page content 88

Table 3.7 WHOIS information features ... 95

Table 3.8 Confusion matrix ... 98

Table 4.1 Overall performance (average of ten experiments) using one classifier for

all attributes .. 109

Table 4.2 Random forest main hyper-parameters .. 111

Table 4.3 Ranking of features based on information gain, Gini index and mean

decrease average ... 123

Table 5.1 Common features and classifiers used in the literature (algorithm with

highest performance identified by bold type) ... 132

Table 5.2 Definition of metrics .. 135

Table 5.3 Results of models using stratified 10-fold cross-validation method 136

xii

Table 5.4 Model sets used in combination methods ... 137

Table 6.1 Models used in first version of SuspectRate system 152

GLOSSARY OF TERMS

Term Definition

OSN Online social network, e.g. Twitter, Facebook and

LinkedIn

Cybercrime Crime that involves a computer and a network

Spam Unwanted content typically sent to a large number of

users for the purposes of advertising, phishing and

spreading malware (Oxford Dictionary)

Dataset All the data collected during the study, such as tweets

and crawled web pages

ML Machine learning

URL Uniform resource locator

VirusTotal Internet antivirus and internet security checker service

Domain name Examples: microsoft.com and google.com

Web server Where a website is hosted

RF Random forest

XGBoost eXtreme Gradient Boosting

Botnet Network of connected software/devices used for illegal

purposes

xiv

Spambot Software hosted on a victim’s computer or a controlling

social network account that is owned and controlled by

a spam master

IP address Internet protocol address

GitHub Source code storing and version control using Git

SVM Support vector machine

Domain

WHOIS Info

Information about a registered domain name, such as

registrants, registrar, registration date, and expiry date

HTML Hypertext markup language

Retweet Twitter term meaning that a user shares another person’s

tweet to his followers

Followers (Twitter) They see your tweets in their Home timeline whenever

they log in to Twitter1

Following (Twitter) Following someone on Twitter means subscribing to

their tweets as a follower

K-NN k-nearest neighbours algorithm

NB classifier Naïve Bayes classifier

Sub-domains A name that could be added to the original domain but

separated with a full stop. For example, in

scholar.google.co.uk, scholar is a sub-domain

CSS Cascading Style Sheets

1 https://help.twitter.com/en/using-twitter/following-faqs

xv

Python High-level programming language

Web crawler Software with the purpose of opening URLs and reading

and storing opened web pages

Selenium WebDriver

API

Using programming language to automate a web

browser (Chrome, Firefox, etc.) as if a normal user is

using the browser

Web page A document commonly written in one or several

languages such as HTML, CSS and JavaScript. A web

page is accessible through the internet or other networks

using an internet browser

DS1 Dataset used in training and testing experiments in

chapter 4

DS2 Dataset used in training and testing experiments in

chapter 5

Twitter account

suspension

Twitter internal detection system that aims to delete

accounts that are not following Twitter’s rules.

Suspension can be due to spam activities, hate speech,

etc.

Ad blocker Web browser extension that works on filtering and

denying contents based on predefined lists that mainly

block advertisements in the web pages

xvi

Twitter protected

account

Twitter account where their owners do not want to share

their tweets and activities with the public, so only

approved followers will be able to see the tweets

Twitter verified account A blue badge attached to public interest people account

for authentication2

ReliefF Feature ranking algorithm

LightGBM Open source gradient boosting tree algorithms built by

Microsoft

CatBoost Open source gradient boosting tree algorithms built by

Yandex Technologies

Popup window Window that opens alongside web pages with the

loading, unloading or any other actions

MongoDB An open source NoSQL database management system

Tweet ID A unique number that every tweet in Twitter has to have

as an identification

2 https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts

xvii

ACKNOWLEDGEMENTS

I would like to thank my country Iraq and my scholarship provider, the Ministry

of Higher Education and Scientific Research, Republic of Iraq, for offering me the

opportunity to undertake this study.

I would like to express my sincere gratitude to my advisor Prof. Peter Andras

for his continuous support during my PhD study and for his patience, motivation and

immense knowledge. His guidance helped me throughout the research and the writing

of this thesis.

I would also like to thank my co-supervisor Dr Ed de Quincey for his constant

support and availability and his constructive suggestions. Special thanks to Mr David

Collin for his support, especially during the first year of this research.

I would like to extend my thanks to all the staff and students at Keele University

and the School of Computer Science for their advice along the way. Special thanks to

Keele IT Services for providing me with a virtual private server.

My deepest gratitude goes to my beloved parents Fadhil and Iman. I would have

achieved nothing without their love, support and encouragement. Special thanks to my

brother Safaa and my beloved nephews Mustafa and Muwafaq.

To my wife Huda, who will always be a source of support and love, I thank you

for being patient and understanding. The most important contribution to my PhD was

my daughter Jana, who joined us for the first year of this journey. Thank for your smiles

and joy. You will always be my little princess.

xviii

All praise and gratitude are due to Almighty God for everything.

Mohammed Al-Janabi

2018, Newcastle-under-Lyme, UK

ABSTRACT

This thesis proposes the use of several supervised machine learning

classification models that were built to detect the distribution of malicious content in

OSNs. The main focus was on ensemble learning algorithms such as Random Forest,

gradient boosting trees, extra trees, and XGBoost. Features were used to identify social

network posts that contain malicious URLs derived from several sources, such as

domain WHOIS record, web page content, URL lexical and redirection data, and

Twitter metadata.

The thesis describes a systematic analysis of the hyper-parameters of tree-based

models. The impact of key parameters, such as the number of trees, depth of trees and

minimum size of leaf nodes on classification performance, was assessed. The results

show that controlling the complexity of Random Forest classifiers applied to social

media spam is essential to avoid overfitting and optimise performance. The model

complexity could be reduced by removing uninformative features, as the complexity

they add to the model is greater than the advantages they give to the model to make

decisions.

Moreover, model-combining methods were tested, which are the voting and

stacking methods. Both show advantages and disadvantages; however, in general, they

appear to provide a statistically significant improvement in comparison to the highest

singular model. The critical benefit of applying the stacking method to automate the

model selection process is that it is effective in giving more weight to more top-

performing models and less affected by weak ones.

xx

Finally, 'SuspectRate', an online malicious URL detection system, was built to

offer a service to give a suspicious probability of tweets with attached URLs. A key

feature of this system is that it can dynamically retrain and expand current models.

21

Introduction

22

1.1 Introduction

Online social networks (OSNs) have become one of the main mediums of

communication. Statistics show that in the first quarter of 2018, Twitter had around 336

million active users monthly generating more than 500 million tweets per day [1]. This

number made it a fertile environment for the dissemination of malicious content and

illegal monetary gain by spammers [2]. Social network administrators are responsible

for protecting OSN users from being exposed to malicious or spam content in networks.

In total, 60 per cent of social network users have received or been exposed to spam

content [3]. Spam is the generic term for all types of unsolicited and harmful content,

which includes phishing links, malware or links to illegal or fake products [4], that is

typically sent to a large number of users. Some additional social network activities

could also be described as spamming, such as gaining fake popularity and following or

liking a large number of users or content to gain attention.

 The ability to distribute content in real time to thousands of recipients has made it

difficult to resolve the issue of spreading unwanted content and suspicious links,

especially that OSNs dealing with big data [5]. Specifically, the ease of creating

accounts on OSN sites and the simplicity of the distribution process make them a

perfect environment for the dissemination of spam content. For example, studies show

that the proportion of spam in all Twitter content has reached an all-time high that

stands at approximately 10 per cent of all content produced [6]. Coupled with the

rapidly increasing number of active OSN users, this has emphasised the need for secure

OSN platforms whereby operators frequently monitor any ‘abnormal’ activities in their

network to detect attacks [7]. However, cybercriminals search continually for attack

opportunities, which rely on previously undiscovered vulnerabilities, for which there is

23

no effective defence. A newly deployed attack technique is called a zero-day attack on

the day that it is first applied [8]. Furthermore, the complexity of such activities is

exacerbated by the social nature of OSNs, whose users tend to trust content that has

originated or emerged from their peers' content [9]. This adds further difficulties to the

missions of security administrators and detection systems.

At the heart of the problem is the emergence of black markets, which increasingly

facilitate the spreading of illegal services, such as the deployment of spam campaigns

and the selling/buying of fake accounts, compromised accounts or even infected

computers. An increasingly important way in which cybercriminals engage in illegal

activities is through the simple creation of fake OSN accounts [10]. There is a constant

war between cybercriminals and security experts, as every time OSN operators detect

and block a spamming attack, cybercriminals find a new way to leverage social

networks and abuse their services. There is a gap of time which cybercriminals can take

advantage of before the OSNs are able to detect new attacks. In particular, due to the

real-time nature of social networks, this makes it more difficult to monitor and protect

users and content.

1.2 Background

The use of OSNs now exceeds that of email in the propagation of harmful

communications (e.g. fake news, advertising for illegal services, unwanted adverts)

[11]. The same study shows that between 2013 and 2014, spam content in social

networks increased by 658 per cent. Studies indicate that the main vehicle used to

propagate malicious attacks in emails is the same attack botnets used by more

conventional email attacks [11], [12]. A botnet is a group of compromised

computers/accounts that are under the control of a cybercriminal [13].

24

The ease with which OSNs can be used for malicious activities and the relatively

long time needed to detect/suspend them [14] make a compelling business case for such

criminals. The consequent profitability has led to the expansion of a new industry

catering to the needs of cybercriminals who target OSNs [15]. To protect users’

personal data and privacy, many issues should be considered to address several key

challenges in OSNs, including:

 Preventing spammers from creating accounts and/or suspending them in the

shortest possible time

 Detecting spam campaigns and stopping them before they reach a bigger

audience

 Detecting abuse such as spreading irrelevant content to trending hashtags or

accounts

 Detecting fake followers which are gained by using illegal methods.

1.3 Motivations

Many studies have attempted to analyse and tackle the high and rapidly increasing

spam content in recent years [16]–[18]. Although researchers are seeking to mitigate it,

to date, no work has succeeded in eliminating it. According to Nexgate's statistics,

OSNs’ spam content increased by six times since mid-2013 [11]. These problems

(described in section 1.1) have been the principal motivation for this research, which

seeks to reduce or even eliminate spam content in OSNs.

25

1.4 Problem statement

Based on the discussion in the preceding sections, this research classifies spam from

two perspectives: OSN user and operator. Accordingly, this has led to several problems,

which are summarised below:

(i) User’s perspective – this refers to unwanted content that is distributed by fake and

compromised accounts for commercial reasons or malicious activities. Such content

could have Uniform Resource Locator (URLs) that link to harmful software or

phishing sites.

(ii) Operator’s perspective – spam increases the load on an OSN platform and creates

a significant drain on resources in addition to the loss of trust by its users.

Consequently, this research proposes to resolve these problems by detecting spam

content that emerged from both fake and compromised accounts.

1.5 Objectives

The main aim of this research is to develop a computational framework to reduce

the spread of spam content by proposing a practical approach to identifying spam tweets

in Twitter based on the selected features and characteristics. The main objectives of this

research are:

 To identify, study and analyse methods and features that enable the

identification of spam content on OSN platforms. An important part of this work

entails the review of the impact of key parameters on the learning process, with

particular attention to avoiding overfitting.

 To develop efficient and scalable OSN spam detection framework with

predictive data analytics which are capable of summarising and describing

26

patterns in the collected data. In particular, the objective is to identify data

analysis methods that make possible the development of high performance,

dynamically adapting spam identification and filtering.

1.6 Research questions

1. What combination of features enables improved detection of spam on social

networks compared to current approaches?

2. How can the performance of combinations of classification methods such as

random forest and gradient boosting trees classification methods be improved

for spam detection in the context of social networks?

3. How can a system be designed using an optimised set of features and an

optimised combination of classification algorithms to deliver high usability

combined with improved spam detection in the context of social networks?

1.7 Main contributions of thesis

The primary aim of the thesis was to develop a spam detection system based on machine

learning models that are adaptable to future spamming tricks and activities. The points

listed below are the main contributions of this research:

1. It built two ground truth datasets using different labelling standards that would

help researchers’ in training models. These datasets are downloadable on

GitHub via the following URL: https://github.com/mohfadhil/suspectrate-

datasets. Both datasets were collected through Twitter real-time stream tweets;

however, each used a different labelling mechanism. Dataset 1 assumed that all

tweets that are deleted are spam tweets with no manual process. Dataset 2 used

the previous labelling mechanism but with extra manual validation.

27

Furthermore, more features were introduced and features were discarded from

Dataset 1 due to the pilot study conducted on the effectiveness of the features.

(Chapter 3)

2. It developed the first labelling method, which is introduced in chapter 3, where

three validation processes used Twitter suspension, VirusTotal blacklists and

manual labelling, as this method showed more accurate labelling standards.

(Chapter 3)

3. It conducted a systematic analysis of the most important parameters in random

forest that could make a difference in the model’s performance and

overfitting/underfitting status. (Chapter 4)

4. It applied new algorithms that have been studied and shown good performance

compared to traditional algorithms to the datasets. Moreover, it gave details

about the algorithms’ hyper-parameters assigned to support the research

reproducibility and open science. (Chapter 4)

5. It used stacking and voting methods to automate the process of model selection,

so a human decision will not be needed to choose the best model. (Chapter 5)

6. The proposed novel set of features were derived from web page content and

behaviour. The novelty is that the author consider content that appears at the

landing web page and while reaching the landing page. (Chapter 3)

7. The system was built from scratch using Python and many other 100 per cent

open source libraries. The developed framework applied the main machine

learning system components by collecting data and extracting and selecting

features. Then the problem of model selection and evaluation was handled by

using extra meta classifier. SuspectRate was able to retrieve tweets with URLs

28

and store them in a database and then perform analysis and use it against a

pretrained model or combined models. The system is open source at the

researcher GitHub repository: https://github.com/mohfadhil/suspectrate.

(Chapter 6)

8. The research experiments have been published in two peer-reviewed conference

papers:

o Al-Janabi, M., Quincey, E., & De Andras, P. (2017). Using supervised

machine learning algorithms to detect suspicious URLs in online social

networks. Proceedings of the 2017 IEEE/ACM International Conference

on Advances in Social Networks Analysis and Mining 2017 (pp. 1104–

1111).

o A systematic analysis of random forest based social media spam

classification, Mohammed Al-Janabi, P Andras, International

Conference on Network and System Security, 427-438.

9. Several talks have been/will be given regarding this research:

o Four talks at postgraduate research (PGR) days from 2014 to 2018

o Three talks at the Keele symposium of postgraduate studies in 2016,

2017 and 2018.

o Posters presented at the Keele symposium of postgraduate studies in

2016, 2017 and 2018.

1.8 Structure of thesis

In chapter 1, the research questions and aims are stated. Chapter 2 outlines in detail the

situation of current spam and anti-spam detection mechanisms and the author’s role to

reduce the spam percentage in OSNs. Furthermore, all the machine learning models

29

mentioned in this thesis are described in chapter 2. Several related studies have been

reviewed and categorised the models used in building their machine learning models

based on their selected features.

Chapter 3 describes the road map of the main experiments that the researcher conducted

during this study, how data was collected, and the feature extraction and labelling

process. It also describes how the model selection process was conducted. In this

chapter, the technical process and tools used in the feature extraction and storing the

dataset are also outlined.

Chapter 4 describes the first pilot study conducted using several machine learning

algorithms to gain a better understanding of which algorithms would better suit the

research classification problem and dataset. It also describes the model enhancement

procedures conducted, such as model hyper-parameter tuning and feature selection.

Figure 1.1 Thesis structure

Ch.1

Introduction

Ch.2

Technique reviews
and algorithms

Ch.3

Research
methodology

Ch.4

Model selection
and optimisation

Ch.5

Ensemble and
combined learning

Ch.6

System design

Ch.7

Conclusion

30

Chapter 5 focuses more on ensemble learning algorithms and compares the top

algorithms in the field. It describes two experiments on combining boosting and

bagging trees in one stacking and bagging model.

Chapter 6 shows the developed system to rate suspicious URLs to help users,

researchers and companies to label their data or at least clean it.

The discussion and the limitations of the thesis are presented in chapter 7. The

main conclusion of the thesis and suggestions for future work are also presented in

chapter 7. The future work offers recommendations for new research studies that have

similar research aims.

31

Literature Review

32

2.1 Technical background

Generally, the mechanism of posting content and how it reaches other users on the

network is quite similar in most OSNs, i.e. following users aggregate the content they

produce into a personalised news feed. Furthermore, OSNs have search capabilities that

enable a user to search for certain keywords in the content of followed accounts or

public content. In addition to the search feature, there is an aproach that has been used

in OSNs to make following a certain thread or topic easier, which is called a hashtag.

A hashtag is non-separated characters that refer to a certain topic or trending event. It

starts with the symbol ‘#’, which is followed by a string of characters. Hashtags were

first used on Twitter [19]; however, this technique is now used in most user-generated

data websites [20]. In this thesis, Twitter was used as the OSN case study; however, the

concept of this work could be used in any other OSN if it has a similar structure for

distributing content. The common reason for using the Twitter platform as a data source

is that Twitter’s data mostly has public access. However, there are accounts called

protected accounts3; their data and tweets are protected and cannot be reached by

collection software. These protected accounts make up less than 6 per cent of all

accounts, which means that almost 94 per cent of all Twitter data is public [21]. Twitter

supports researchers by providing software tools to facilitate the data collection process.

Moreover, the openness of Twitter and the huge amount of data that can be accessed

3 Public and protected tweets https://help.twitter.com/en/safety-and-security/public-and-protected-

tweets [accessed April 2018]

33

are vital features that motivate most researchers in this field to use Twitter as a data

source.

In this chapter, there will be a review of general threats that OSN users might be

exposed to and the current mitigating techniques used, such as blacklists and machine

learning-based detection models, to provide a clear understanding of the advantages

and disadvantages of each detection technique. Moreover, there will be a review of

several relevant studies and techniques/methods used in building spam/malicious URL

detection systems.

2.2 What is spam content?

In general, spam is defined as the unwanted content that is sent to a large number

of users. This definition is used for spam in emails; however, the main concept of spam

is the same in any other messaging or content-sharing platform. In the context of OSNs,

spam could be any unwanted content or even duplicated content. Spam content can be

in many forms, such as illegal product advertisements, false news, phishing or URLs

that lead to drive-by download attacks [22], [23]. To understand why these types of

content are considered as spam in OSNs, the following types of content are considered.

Phishing sites: phishing sites are cloned websites of real popular websites such

as facebook.com, twitter.com or even the popular banks. Online scammers spread

content with URLs attached over OSNs to thousands and sometimes millions of

accounts in OSNs to lure the account holders to visit these cloned sites. Many users

might notice that there are some suspicious characteristics in these phishing sites, for

example, the URL path contains sub-domains such as ‘twitter.com.twt.com/login.php’.

Unfortunately, however, a percentage of users will not notice and log their

username/password, which goes directly to the spammers/hackers. This attack is one of

34

the most popular attacks of spammers because of the simplicity of creating cloned sites

to obtain users’ account usernames and passwords.

Fake software: like phishing websites, fake software or trojan horse software

is software that falsely claims that it will give users services such as boosting the speed

of their devices or increasing the RAM or hard disk space. There are even cases where

the fake software pretends that it has found some viruses on the user’s devices and

cleans the devices. This type of software is usually promoted on sites with a very low

reputation that spammers created and advertised using their fake/compromised account

to OSN users.

Fake news: fake news is when someone posts on OSNs or publishes on his

website partly falsely edited facts or total fake news [24]. This was started by people

who lure users to visit their site. They post exaggerated titles and could even attach

posts with maniplated photos that attract the user to click on attached URLs. It started

as a way to gain more internet traffic to obtain increased website ad earnings; however,

it has been used for other reasons as well as to gain profits. Currently, there are

investigations relating to whether this unlawful way of spreading news has been used

to target a large population on very specific events, such as a presidential election (e.g.

the United States presidential election, 2016) [25], [26].

Clickjacking web pages: Clickjacking is one of the new browser attacks that

online scammers use to hijack users’ clicks. A scammer can build web pages that have

clickbait pictures or links that lure users to click on them, but in reality, they are clicking

on some other JavaScript trigger event [27]. This technique is used for ‘likejacking’,

which is one of the illegal ways that scammers increase the number of followers of a

certain account/Facebook page. There is a black market paid service for increasing

35

Facebook page likes or Twitter followers, so they take users’ clicks and use them as if

the user is clicking to like a page script code or following an account on Twitter.

Illegal advertising: although most OSNs provide a legal channel for promoting

content on their network, spammers illegally flood the network with advertisements.

The reason for this is either that they want a cheaper method of advertising or that the

content they want to promote is not accepted (i.e uncertified medical equipment or

medicine).

Pornography, dating and adult content sites in general are among the sites that

have a high percentage of spam content distributed over social networks. Social

networks have different rules on this type of content; however, in general, there is a

restriction on spreading this type of content in OSNs. Pornographic pictures are usually

used as click-bait to lures users to click the URL to get more content or watch a full

porn video. Moreover, porngraphic content could be hidden as it needs a Flash Player

to view it in the user’s browser, so the user is redirected to a phishing website to

download a fake Flash Player.

2.2.1 Twitter’s spam rules

None of the spam types mentioned in the previous section are accepted to be

posted on Twitter. Furthermore, Twitter monitors users’ behavour to detect any abusive

activities in the network, which is metntioned in Twitter rules page4. Consequently, an

account could be suspended due to its content or its actions in the networks [28].

4 The Twitter Rules, https://support.twitter.com/articles/18311 [accessed May 2018]

36

According to Twitter’s suspension rules web page, there are three major reasons to

suspend a user’s5 account or delete a tweet:

1. breaking copyrights

2. abusive tweeting activity

3. spreading malicious and harmful content.

Twitter has also restricted the spreading of sexual/nude pictures over the

network and tried to hide them and give sensitive media warnings to users. Moreover,

Twitter does not allow users to use nude pictures as profile or cover images, and users

are not allowed to send messages containing pornographic content to people. If nude

pictures or sexual text are used as part of click-bait strategies by a spammer, Twitter

tries to stop this.

a) Spreading Nodes c) Spamming Goals
b) Malicious Activities d) Spamming Results

Figure 2.1 Spamming units and stages [15]

5 There is also the chance that the user deletes the tweet.

Fake Accounts Compromised accounts

External URL Fame/misleading information

Hashtag Hijacking

Fake Likes

Direct messages SPAM

Follow SPAM

Retweet SPAM

1 Fake Software Phishing Site Advertising/ads sites

Creating or buying

…

(a)

(b)

(c)

(d)

37

2.3 Spam mechanism

To understand these activities and the measures used to counter them, a

definition of the key terms used in relation to social networks needs to be provided and

the most common practices need to be explained. An explanation of how fake accounts

are created and how accounts are compromised will be provided. Figure 2.1 [15]

illustrates how fake accounts play a key role in spam content distribution and describes

the main spamming elements.

Spreading Nodes: Every account in an OSN is considered as a node, and every

node has a relationship with others [29]. The more nodes spammers have, the more

spam content they can spread [30]. Therefore, spammers are one of the major causes of

the increase in fake/compromised accounts in OSNs. Due to detection systems that

OSNs have developed to prevent spam content spreading, many associated accounts

are suspended every day [31]. The illicit industry of creating and selling accounts is

still active to recover suspended accounts and help spammers to have enough active

accounts for their spam campaigns [32]. As shown in Figure 2.1, compromised accounts

also play a role in spreading spam content although they have originated in a different

way. Compromised or infected accounts are legitimate; they are created by normal

users, but somehow spammers have the ability to control them. In the spamming

industry, infected accounts are more valuable than fake ones [32], as it is more difficult

for OSNs’ detection systems to detect and suspend compromised accounts compared to

fake ones. Therefore, spammers tend to focus their effort on infecting legitimate

accounts with the aim of increasing the number of compromised accounts under their

control.

38

Spammers often also use fake accounts, which are cheap to buy in online black

markets, to conduct their spam campaigns. Several studies show that about 10 per cent

of all OSN accounts are fake accounts [33]. Cybercriminals control these fake accounts

using computer programs to perform automated operations using bots, which act as

legitimate users. Bots employed in this way have become known as social bots. They

are essentially programs which simulate the activity of a typical user on a social

network [4], [7], [34]. For example, they are able to post, message, vote and share [35].

Malicious Activities: Spammers have various techniques and tricks to increase

their audience in OSNs; one of the most commonly used techniques is known as hashtag

hijacking [35]. Spammers exploit trending topics by posting/tweeting using these

trending keywords or hashtags, giving them a wider audience who follow those trending

topics [36]. Furthermore, many malicious activities could be conducted by spammers

to lure users to click on their malicious URLs.

Spamming Goals: Deliver spam content to the targeted users is the primary

task, which is done by redirecting the user to a suspicious source outside the OSN site.

The URL usually used had been shortened once or several times. This link can refer to

a phishing page, scam or drive-by download attacks. Recently, a study has shown that

the high number of URLs that are spread by a Twitter account can often be under the

control of a spambot [35],[37]. The high percentage of spam tweets that contain external

links or URLs gives an indication that spreading URLs is a major task for spammers.

Moreover, some OSN activities that can come under the classification of spam are fake

likes, fake followers, and spam retweets. Some spammers also use spamming services

to get more attention or to increse their followers number (fake fame) on OSNs or

spread misinformation [38].

39

Spamming Results: The primary objective of spam campaigns is not only to

let users see spam, but also to get them to click on the attached links. Encouraging users

to click on those URLs requires several tricks by spammers to deceive them by luring

them with pornography, celebrity scandals, free software, discounts codes or bargains

deals [6]. These links may point to web pages that lead to drive-by download malware

attacks to steal users’ information using fraud or phishing sites [37][2][39].

There are several method that spammers can use to create new URLs with no historical

profile, such as:

 URL-shortening services: these are web services that after submitting a URL

to the services, provide a new short URL that points to the same original URL

[20]. These short URLs are mainly used in social networks with a limited

content length such as Twitter. Currently, many shortening services, for

example, bit.ly and tinyurl.com, are commonly used in OSNs [40].

 Cheap domain and hosting services [41]: creating new websites requires two

main elements, which are a domain name and online space to host websites files.

Domain names are cheap nowadays, and spammers can buy a domain name for

less than £10 [42], [43].

The above services are responsible for a high percentage of the spam content

distributed over social networks. Although Twitter uses blacklists, which are suitable

for real-time detection, unwanted content still finds its way into the network [44].

2.3.1 Sybil attacks and fake accounts

Spam industry based on the number of accounts controlled by spammers, these

account as stated could be either compromised or fake accounts [45]. The method that

40

attackers use to create fake accounts in OSNs using fake identities is called a Sybil

attack. This type of attack is very common in OSNs, in which a single user can have

thousands of fake accounts so they gains higher visibility by spreading more content in

the network [46]. According to a previous study that focused on the Sybil accounts in

Twitter, it was found that out of the total accounts monitored, around 2 million or 9 per

cent get suspended as they are considered to be Sybil accounts [47]. This is close to the

10 per cent that Twitter officially announced as the spam percentage in the content [48].

2.3.2 Fake accounts and the black market

As discussed in the previous section, in general, the spamming industry relies

entirely on the nodes (accounts) used to spread spammers’ content. As OSNs suspend

accounts that are involved in spamming activities, the spamming industry needs to

generate enough accounts for their spam campaign. Creating accounts and offering

them for sale in the black market has reinforced the spam industry. Thomas [15]

conducted a study on the impact of the black market and how it facilitated the process

of spreading spam content using fake accounts.

Figure 2.2 Search results for ‘buy Twitter accounts’ on Google search

41

The researcher studied the value of fake Twitter accounts and found that its

market worth was between US$0.01 and US$0.20 [15] for one account. He also

reported that it has become increasingly easy to purchase fake accounts in bulk

(generally thousands) online. The continuity and availability of fake accounts have

contributed to spamming activities in social networks. Figure 2.2 is a screenshot of

Google search results using the term ‘buy Twitter accounts’ in April 2015, showing

many web sites that promise to sell verified twitter fake accounts as a service.

2.3.3 What are spambots?

What makes the problem of the high percentage of Sybil/fake accounts in OSNs

more complicated is the smart programs (bots) that control those fake accounts. In

general, bots are computer programs that can automate actions and responses based on

certain rules prespecified by the person who controls the bots, who is referred to as a

‘botmaster’. Bots are assigned to control the thousands (sometimes millions) of fake

accounts that belong to the spammer who is the botmaster of those spambots. Bots are

also used for different attacks such as botnet attacks by controlling infecting machines

and deploying attacks such as distributed denial of service (DDoS) and or use them as

email servers for spamming.

A spambot in Twitter is a computer program that is used to perform in a similar way to

a normal OSN user to perform normal activities such as tweet, retweet, favourite, and

follow/unfollow accounts. Automating these actions has helped many spammers to

control their large number of fake accounts. Moreover, the near to normal behaviour

that the current smart bots use to mimic normal users is making it difficult for them to

get caught by the Twitter suspension system. Later in this chapter, some evading tricks

42

that spambots use to make it less likely that they will be detected by current detection

methods will be discussed.

2.4 Countermeasures

Historically, countermeasures have gone through a similar evolution to that

which has occurred in attempting to deal with email spammers. As the attacks become

more sophisticated, new countermeasures need to be adopted to address such attacks.

Two general methods are used to reduce or stop malicious content spreading

through email and OSNs, which are knowledge engineering and machine learning [49].

Knowledge engineering is described as a group of predefined rules and limits

for allowing and denying content [50]. The blacklist technique is a common example

of knowledge engineering methods that are used in OSNs. OSNs use blacklists to accept

or discard any content that does not follow the rules. These rules need to be regularly

updated to cover all the new evading techniques that spammers use. Unlike blacklists,

machine learning does not need pre-set rules, as it learns implicitly from the thousands

of input samples. The next section will discuss in detail the blacklist and machine

learning techniques used in OSNs.

2.4.1 Blacklist

The blacklist-based technique is widely applied in Web 2.0 sites, that is, sites

used to facilitate the generation and sharing of users’ content [15]. The spam filtering

process requires several methods and layers, and the real-time blacklist technique is

used as a first line of defence [51]. In terms of websites and social networks, a blacklist

is a simple access control rule that allows user-generated content to be published if it

does not contain any blacklisted keywords, text, images or URL [52]. Many products

43

have been used to detect malicious pages, such as Google Safe Browsing6, AVG

Linkscanner, McAfee SiteAdvisor7, PhishingTank, URIBL, SURBL, and Web of

Trust8 (WOT). This technique is based on users’ content and account properties, which

could be IP addresses, emails, and domain names [53].

The Google Safe Browsing API has more than 600 million users [54]. It

is used every day, directly or indirectly, in browsers such as Google Chrome, Firefox,

and Safari. Google Safe Browsing is a public blacklist database which has an API that

facilitates the process of looking up and verifying URLs. The Google Safe Browsing

blacklist is constantly updated with newly detected malicious sites, phishing, and

malware pages. If a URL matches an entity in the blacklist, it will give an early warning

and prevent the user from clicking on or accessing the site [55]. In addition to Google,

several security companies produce blacklist detector products, such as AVG

LinkScanner and McAfee SiteAdvisor. Both are free tools provided to protect users

based on a blacklist technique. However, WOT depends on the crowd-sourced

reputation gathered by internet users’ experience in websites. All the services

mentioned are capable of detecting URLs that are already known for malicious

activities. This technique offers real-time detection with a low false positive rate.

Despite the features mentioned, blacklist techniques cannot detect malicious content

that has never been detected before. The blacklist databases vary in terms of sourse of

updates, it could be accept users feedback (i.e web of trust) or rely only on their mainter

security research centres.

6 Safe Browsing by Google, https://safebrowsing.google.com [accessed May 2018]
7 McAfee WebAdvisor, https://www.siteadvisor.com [accessed May 2018]
8 Web of Trust, https://www.mywot.com/ [accessed May 2018]

44

Currently, OSNs use blacklist detection systems to check users’ content, such

as posts, tweets and links, before publishing any content [56][12]. Conceptually,

blacklists are a simple method applicable to all web services that accept users’ content.

The blacklist real-time detection feature is vital in the age of high-speed data exchange.

However, the false negative rate due to the zero-hour attacks is the main shortcoming

of this technique [57]. Blacklist solutions consider any URL that is not blacklisted as

benign, but this decision might not be valid permanently. Due to the real-time feature

of social networks, spam campaigns achieve 90 per cent of their goal within the first 48

hours [12]. The main shortcoming of the blacklist technique is the time gap between

detecting the ‘unblacklisted’ spam content, or the zero-hour threat, and the publishing

time.

Due to the critical issue mentioned above, there is a significant need to upgrade

this list on a regular basis, daily or hourly [15]. Upgrading the list is the responsibility

of researchers or cyber security companies depending on who maintains these blacklist

solutions. Blacklists used in all OSNs are useful to remove the content that has already

been discovered and listed; however, the real challenge is when the platform’s detection

system receives a new unlisted URL/domain with no history. URLs/domains with no

history get past the blacklists’ filter and are distributed in real time to thousands of

users. The time gap between content with suspicious content attached being distributed

through the network and listing it on a blacklist is what security centres and researchers

are trying to narrow [58].

2.4.2 Introduction to machine learning methods

The volume and complexity of data exchanged in OSNs and their real-time

nature [59] make automated data analysis essential. Therefore, the need has arisen to

45

apply methods to enable machines to monitor and detect malicious content without any

human intervention. The process of making a machine learn how to make decisions on

its own is called ‘machine learning’. Machine learning refers to a group of methods

focused on designing systems that can learn, predict and make decisions based on the

input data [60], for example, discovering patterns in given data or acquiring training

models by analysing sample data and then using these models to classify or predict

subsequent data [61]. Machine learning methods are divided into supervised,

unsupervised and semi-supervised learning [62]. In supervised learning, a training stage

is required using predefined (labelled) data for the training stage [63]. Unsupervised

learning algorithms are different in that they do not require training with pre-labelled

data. These unsupervised learning algorithms attempt to extract insights and patterns

often from huge amounts of unlabelled datasets and then cluster datasets into sub-

groups. Semi-supervised learning training datasets, however, contain less labelled data

and larger amounts of unlabelled data, so the model uses the small labelled data to train

a model and then label the rest of the dataset. Each method has its own advantages and

disadvantages, so choosing a method need to be after a comprehensive study of the

problem and availability of labelled dataset.

Due to the lack of labelled training data, the labelling stage is usually performed

manually by the authors [36]. For example, one would [64][36] manually label a portion

of the collected data as either normal or spam.

46

Figure 2.3 Supervised machine learning general scheme9 [65]

Figure consist two main parts training and prediction

In this section, several machine learning algorithms are investigated, Figure 2.3

and Figure 2.4 show the two main types, supervised and unsupervised, the main

difference being that the first type required a pre-labelled dataset to train on to build the

model. Pre-labelled data means an acceptable amount of data is predefined into

categories (discreet numbers i.e. spam/non-spam and handwritten digit recognition) if

the goal is classification or have a target of continues number (i.e. salary and age) if

regression. Training is conducted by finding the best formula from the features and

target labelled so that a machine learning model can generalise rules learned from the

training phase and apply them to an unseen dataset. The unseen data is data that has

never been involved in any of the stages of building and training the model. However,

in the unsupervised machine learning method, no labelled dataset required as model

built based on how a dataset can be sub grouped into two or more groups each have

commonality based on giving features.

9 http://www.nltk.org/book/ch06.html

47

Figure 2.4 Unsupervised machine learning general scheme10 [65]
The coloured boxes represent the different clusters the dataset is split into

Both methods require pre-processing stage on inserted data whether data is

labelled or unlabelled. Generally, one of the important aspects of machine learning is

feature extraction and selection, which is the process of identifying sensitive

characteristics from the input data [66]. So, after all before data inserted into a machine

learning model it needed to be transformed into vector of numbers, which is the only

format of data that machine learning can handle. Features selection is important stage

in building any machine learning models but some models have advantages of handling

features selection as a part of the internal model processing. For example, deploying

deep learning models would not require feature selection in the pre-processing stage,

as it performs the process of extracting and selecting features internally.

The features in the context of machine learning are prominent characteristics

that contribute later in the discrimination phase. For this, choosing the best set of

features available is an essential process. Selecting the most efficient set of features can

10 http://www.nltk.org/book/ch06.html

48

have significant impact on the performance of the machine learning algorithm [67]. The

common feature selection methods identified in the literature include information gain,

the chi-squared, and the F-Score [68][67].

 Building a model with less important features has an impact on the model’s

simplicity and the time required for training and building. In general, the higher the

number of features available, the higher the chance that the model can fall into the

problem of ‘overfitting’, which often occurs as a result of the complexity of the model,

when the model tries to customise to all the features and data cases in the dataset [66].

Therefore, the model performance will have very low bias and high variance. Although

training shows the best performance, in the testing validation, it shows very poor

performance.

Figure 2.5 Model complexity against testing and training performance [69]
Increasing complexity could enhance the prediction to a limit where the test

sample error gets higher

49

Underfitting is when the model does not get the maximum discrimination power

from features as the model is too simple compared to the dataset. As this model has low

variance but high bias, this means that the model performance during training and

testing is quite similar and it does not perform well.

2.4.3 Machine learning algorithms

Machine learning algorithms are applied for spam classification and detection.

Learning algorithms have proven [70] their ability to enhance the accuracy of spam

detection in emails and OSNs. Selecting a suitable learning algorithm for a specific

dataset requires study, as algorithms behave differently for different datasets. Much of

the recent literature has used supervised machine learning algorithms, which, as will be

mentioned later, require a preliminary training stage. Based on the review of the

literature, several supervised learning algorithms used in a spam detection context are

Naïve Bayes (NB), k-Nearest Neighbours (k-NN), Support Vector Machine (SVM) and

Decision Tree (DT) classifications.

The NB classifier is a probabilistic model based on the Bayes rule. ‘Naïve’

refers to the assumption of conditional independence among given vector features X =

{𝑥ଵ,𝑥ଶ,..,𝑥௡}.

𝑷(𝑪𝒊|𝑿) =
𝑷(𝑪𝒊) ∗ 𝑷(𝑿|𝑪𝒊)

𝑷(𝑿)

(1)

By using Bayes’ law, the probability of x belonging to category ci can be found,

which, in the context of this research is C is either spam or not spam by calculating the

posterior probability of P(C୧|X) by knowing P(C୧),P(X) and P(X|C), where P(C୧) is the

prior probability of Ci and P(X) is the probability of finding the feature’s value X, while

P(x|Ci) is the likelihood of an existing certain feature X in category Ci. Calculating the

50

likelihood depends on the probability distribution of X. X as a vector of features could

contain variant types such as words, numbers or categorical variables. For this, different

models may be used to represent X, for example, a multinomial model for discrete

variables and a Gaussian one for continuous variables. The prior probability P(Ci) is

calculated by dividing the number of documents D (i.e. tweet, email, web page) that is

classified as Ci by the total number of training data.

The assumption that features are independent of each other is not always valid;

however, studies [71] generally report that the NB classifier works well with dependent

and independent feature sets.

An SVM is a supervised learning algorithm that has been used by researchers

on many classification problems. An SVM maps the training dataset vectors in higher

dimensional space and then tries to find an optimal separating line (hyperplane) by

dividing the vectors into classes. The optimal hyperplane is the hyperplane with the

maximum margin; this is done by finding the maximum of (
ଶ

||௪||
) that separates the

training data classes. Support vectors are the point in the training data that are needed

for determining the maximum margin.

Figure 2.6 outlines SVM determining support vectors, which are the green

points. These are needed for finding the maximum margin. As data may not be linearly

separable, SVM performs a so-called kernel trick. If SVM cannot find a hyperplane to

linearly separate a dataset in R2, it can transform the same data to a higher dimensional

space where it can find a separable hyperplane.

51

Figure 2.6 SVM trained with samples from two classes
green point are the support vectors that used to create the hyperplane to

separate the two classes.

K-NN is a simple learning algorithm. It is a supervised learning method used in

classification problems. K-NN maps the training input feature vectors X= {𝑥ଵ,𝑥ଶ,...,𝑥௡}

in n-dimensional space, then classifies new data based on the majority class for the k

neighbours. k refers to the number of training samples closest to the point of entry.

Figure 2.7 K-NN example with k=5
As the circle represents unknown class data need to be predicted.

52

Figure 2.7 shows an example where k=5 K-NN, which means that the K-NN

finds five neighbours for the new point. There are multiple metrics for measuring the

distance between points X1 = {𝑥ଵ,𝑥ଶ,..,𝑥௡} and X2 = {𝑥ଵ,𝑥ଶ,...,𝑥௡}. Choosing the

appropriate one is dependent on the type of data. There are multiple metrics to measure

distance, such as Euclidean, which is the most commonly used; or the Hamming which

is used in the case of categorical data. For example, the distance between 𝑋ଵ 𝑎𝑛𝑑 𝑋ଶ

can be obtained by the equations in the Table 2.1 below:

Table 2.1 Examples of distance measurement metrics

Continuous variables Categorical variable

Euclidean Manhattan Hamming

 ඩ෍(𝑥ଵ௜ − 𝑥ଶ௜)
ଶ

௡

௜ୀଵ

 ෍(𝑥ଵ௜ − 𝑥ଶ௜)

௡

௜ୀଵ

෍|𝑥ଵ௜ − 𝑥ଶ௜|

௡

௜ୀଵ

𝑥ଵ = 𝑥ଶ ⇒ 0

𝑥ଵ ≠ 𝑥ଶ ⇒ 1

Determining the appropriate k parameter plays a key role in optimising the

accuracy of the classifier. Choosing the inappropriate k value could reduce the accuracy

of the classifier through data noise or merging group boundaries. Therefore, heuristic

techniques are required to obtain an adequate k value. The simplicity of K-NN makes

it one of the most common algorithms used in the spam classification problem.

The DT is a classification method that creates a tree structure called a decision

tree, appendix C show example of a decision tree model. It breaks down training

datasets into smaller groups to produce similarly labelled subsets and determines the

most distinctive attributes that can enable the separation of the data into discrete

53

subsets. DT algorithms commonly rely on entropy and information gain to choose the

highest impact to construct the decision tree [72]. Generally, entropy and information

gain measure the homogeneity of a subset for each of the candidate’s splitting features.

Building a tree requires identifying several key parameters [73], such as the

number of features to use, the tree depth [74], and the minimum leaf size. The number

of features is given by the dimensionality of the data that is used. The maximum tree

depth is the maximum number of consecutive binary decisions that a decision tree is

allowed to have. The minimum leaf size is the minimum number of data items that are

expected to belong to the data subset associated with any leaf node of the decision tree.

If the further splitting of the subset associated with a leaf node results in a leaf node

that would have fewer data items associated with it than the minimum leaf size, the

splitting does not take place and the node stays as a leaf node.

Each decision tree represents a tree of binary decisions that split subsets of the

data into two. At each decision step, the most informative data feature is chosen

(according to an informative or importance metric, e.g. information gain) for the subset

of the data associated with the corresponding node of the decision tree. The dataset is

split into two disjoint subsets according to this feature and two nodes are added to the

decision tree, each having one of the two resulting subsets of the data associated with

it. When a node is added to the tree, the node is initially a leaf node. If the data subset

associated with the node is split further into two subsets, then the node becomes an

internal node of the tree. The DT continues to split the training sample until it gets the

same labelled dataset or there are no more features left for splitting. The fewer decisions

that the model makes the better, as a complex tree could cause overfitting [75].

54

2.4.4 Ensemble learning algorithms

According to the literature (see Table 5.1), the ensemble learning method is one

of the common algorithms and has the best performance. Ensemble learning aims to

build machine learning models with better performance by combining several models.

In general, researchers [76] have shown that combining several models is more likely

to get better prediction than a single model. Many of the recent data science

competitions have been won using ensemble method algorithms such as random forest

(RF) and XGBoost11 [77], [78].

Bootstrap aggregating (bagging) is an ensemble method that uses a collection of

bootstrap data samples to fit multiple models usually from the same algorithm family,

such as decision trees [79]. Fitting several models based on different views of the main

dataset and then averaging their predictions helps to reduce the instability of the

predictions. The bootstrapping method of sampling work involves getting random

samples from the original dataset with replacement. Training on different bootstrap

samples results in a different learning hypothesis on a certain instance, and by averaging

those predictions or opinions, better overall performance can be achieved. This method

demonstrates increased effectiveness on noisy data compared to using a singular model

because of the random sampling of data [2].

The RF is an ensemble-based classifier, which means that it consists of a

collection of sub-models that are used to make a joint decision. RF has several decision

tree classifiers. These trees are built using a bootstrapping samples of the full training

dataset, which results in potential differences between the trees, as the importance

11 https://github.com/dmlc/xgboost

55

ranking of features may differ for different trees. The reliance on multiple decision trees

to come up with a judgement makes RF classifiers more robust and less prone to

overfitting than single decision trees and other non-ensemble methods [80].

Figure 2.8 Random Forest generic mechanism.

The whole dataset is divided into n samples and each sample is used for building
a singular DT. Then in the final stage, each model prediction is combined for the

final prediction

RF is one of the well-known examples of a bagging method [79]. Bagging

learning methods generally work by having multiple equally weighted base learners,

and each learner is trained on a subset of the whole dataset. RF has an additional step

to the traditional concept of bagging methods, which is selecting a subset of features

instead of using the whole feature list. Predicting new unseen data in the case of RF is

conducted by submitting the feature list of the unseen example to all m trees in the

forest, getting the prediction results, and then creating a final prediction based on the

average of all the trees’ predictions. Compared to a singular decision tree, RF is better

at handling noisy data and less prone to overfitting.

56

Extremely randomised trees [81] is another example of a bagging method. This

algorithm has a similar methodology to RF but with some differences in feature set

selection and finding the optimal cut-off point. This algorithm differentiates itself from

RF as it does not calculate the best feature to be the split node or the split value of the

selected features. Therefore, the term ‘extremely random’ refers to the selection of

features and the cut-off point.

Figure 2.9 Boosting general mechanism
the whole dataset used in all n iterations of the training of boosting models

Boosting is an ensemble learning method that aims to improve the performance

of a weak model by giving weight to the misclassified instances [82]. A weak model in

the context of boosting learning means a model that has no previous guides about the

data, so its performance more likely to be low. Boosting works by repeatedly training

this weak model on the same training dataset, but in every iteration, the algorithm adds

57

extra weight to the examples that the model could not classify correctly. The final

classifier is produced by a series of enhancements and adjustments on the first weak

learner to make an ensemble model that is likely to give higher performance [83].

Unlike bagging, boosting algorithms do not bootstrap samples from the dataset

or any kind of sampling the dataset. Boosting algorithms use the whole dataset for

training but training examples are adjusted in every iteration. Every time the model is

trained on the dataset, it evaluates itself and increases the weight of the misclassified

examples, then passes these back into the model; the number of iterations being

specified by the user is based on acceptable performance levels. This focus on

misclassified examples makes boosting one of the best ensemble learning methods.

Although this technique could show robustness to classify difficult examples, the

performance will decrease dramatically when noisy or misclassified examples exist in

the dataset, as boosting algorithms will try to weight highly noisy examples to try to fit

the model.

The Adaptive boosting algorithm (AdaBoost) is another boosting-based

concept. This is an algorithm that starts with a weak learner trained on a dataset and

then the output is evaluated, giving more weight to the misclassified examples. The

number of iterations of training and weighting misclassified examples is specified by

the user. Finding the right values for these hyper-parameters is done by using tuning

methods such as MDA and grid search. Compared to RF, this method can show better

results depending on the dataset used. Small and noisy datasets are better fitted by RF

than AdaBoost, as it is prone to give too much weight to the noisy examples [79].

eXtreme gradient boosting, known as XGBoost [78], is a new implementation

of the gradient boosting trees algorithm. Enhancements include producing improved

58

learning or tree learning algorithms and making it faster and better in terms of

scalability. Due to its high performance and ability to work in a distributed

environment, it has become popular in many data science competitions.12 The library is

open source and well documented,13 and have supported and implemented for multiple

programming languages (i.e. R language and Python).

Generally, the main difference between boosting and bagging is that bagging

uses different bootstrapped samples to train several models and then applies equally

weighted voting. Boosting works by training one model several times on all datasets

but adjusts misclassified samples every time. Voting in boosting is weighted based on

the performance of the model at every learning iteration. These differences make

boosting and bagging quite different in their learning hypothesis and predictions.

2.5 Features used to build spam classifiers

This section provides a review of related studies on building machine learning-

based spam detection models. The studies are classified by the type/source of features

used in the machine learning method.

Features intended to appear in the context of this research are all traits (i.e. a URL

points to a blacklisted domain) that are found in a tweet and attachments that increase

the probability of correct classification as spam or non-spam of the tweet. Spammers

try to keep their presence in social networks free from any suspicious behaviour as far

as possible to avoid being detected [84][85]. So, researchers are keen to use features

that cannot easily be disguised by spammers. Spammers use deceptive methods to

12 https://www.kaggle.com/competitions
13 https://xgboost.readthedocs.io/en/latest/

59

normalise their behaviour in OSNs. The role of the researcher is to discover traits that

reveal the spam content or at least restrict the activity of the spammers.

The aim of the security investigation is to find the best group of features that

make sense in the security context and have strong distinguishing power when building

the machine learning model. More time was invested to validate a group of features that

were used in previous studies [86] [45] [87], such as Twitter metadata and web content.

However, in the security context, features could lose their power due to the change in

techniques that spammers used to deploy their spamming campaigns. This problem is

called feature drift or fabrication, where spammers make content more benign by

tweaking content spam features [88], [89]. Consequently, features adopted from

previous studies need to be validated and features based on this investigation, such as

page response to click actions or shortest domain age in redirection chain, need to be

tested.

The efforts of researchers in the field of detecting spam content in OSNs have

not been oriented towards finding novel classification methods as the majority of the

previous studies aimed to find a novel feature set. Moreover, because there is no

benchmark dataset and even no standard of labelling, researcher contributions varied in

each step, starting by collecting and labelling dataset, features extraction/selection and

method used to build models. In this section, related work considering the features used

to build the detection models will be reviewed.

2.5.1 Twitter accounts and content features

Account-based heuristics use features of user behaviour to derive decisions

about tweets. The method facilitates the process of observing suspicious behaviour seen

in fake or infected accounts in OSNs [56]. Researchers have to observe real spam

60

content to know what features and characteristics to depend on in order to differentiate

suspicious accounts from normal ones [90]. Researchers assess observations to come

up with the most relevant set of salient features. Fake accounts’ functions differ in

OSNs, and these differences are reflected in their posting pattern and/or profile

properties. Researchers have claimed to identify automated and suspicious behaviour

through certain features [9] that are gathered from users’ profiles and/or their published

content.

Table 2.2 shows the features researchers [90]–[93] used in their machine

learning methods. The first column shows features collected from Twitter user accounts

and the second column presents a group of properties that could be found in the tweets’

content.

Table 2.2 List of Twitter features adopted by previous studies [90]–[93]

User features Studies Content features Studies

Length of profile name [94] Number of tweets posted per day [9][95]

Length of profile description [90] [95] Number of tweets posted [9]

Number of followings [9] [95] Retweet count [92]

Number of followers [9] [95] Tweet content similarity [45][96]

Account age (days) [9] [64] [92] Mentions [97][96][64]

Ratio of number of
followings and followers

[36] [9] Tweet language [95]

Real name [98] Number of hashtags [9][64]

User verified [99] Number of URL links [9][64]

All the characteristics mentioned in Table 2.2 can be collected using the Twitter

stream API [100], which is provided by Twitter to allow researchers to access random

portions of tweet feeds and profiles’ metadata. Researchers use subsets of the

61

mentioned features to build classifiers based on the selection algorithm they have used.

Several studies [9][36][96] have agreed that fake accounts tend to follow more accounts

than they have followers for their own account. The analysis of this noticeable

difference due to fraudulent accounts does not attract the attention of genuine users,

and to attract them, they follow, mention, and favourite them. The high ratio of URLs

in user content is also an indicator of spamming activities. One of the features that has

been focused on by researchers is content/URL similarity. It is obvious that spam

campaigns are run by a large number of accounts; based on this fact, many researchers

have attempted to detect similar content in OSNs [101][102][36]. Stringhini [45]

employed similarity in users’ content and attached URLs to cluster users that might be

deploying a spam campaign. Analysis was required to identify compromised accounts

that are involved in this campaign. By building a behavioural profile of each suspected

account, if the content is not consistent with the user’s behaviour, then the user is

identified as having a compromised account. Although this method could be useful to

cluster tweet text content, in terms of URLs, spammers could evade original URLs

using multiple shortened URLs.

Cresci et al. [103] used 49 distinct features derived from Twitter-only

lightweight features. Lightweight features are those that do not require complicated pre-

processing operations or significant resources to be extracted, e.g. age of account and

number of followers. Chen et al. [86] extracted 12 lightweight features and build six

different classification algorithms – BayesNet, NB, DT (C4.5), k-NN, SVMs and RF –

which are ordered here in terms of their F-measure scores. RF had the highest

performance at 93.6 per cent in the F-measure using an evenly distributed dataset. In

the case of highly imbalanced datasets, however, such as a 1:19 ratio for spam/non-

62

spam, the performance dropped to 56.6 per cent. Classifiers that have been trained on

imbalanced data are more likely to be subject to bias by majority class results.

McCord et al. [104] used lightweight features to classify user content into spam

or normal. The features were extracted from Twitter account information (e.g. number

of followers/following) and tweet content information, such as the number of mentions

and hashtags. Similar to previous studies, the authors used several machine learning

algorithms to compare their performance. The algorithms used were RF, SVM, NB,

and k-NN. The authors found that the RF algorithm achieved the highest precision (95.7

per cent) and F-measure (0.957).

Although this is a passive detection method, researchers were able to detect

fake/infected accounts or spam tweets that had not been discovered before, providing

an advantage over the blacklists technique. The spam detection process requires it to be

near to real time to stop spam from spreading on real-time content-sharing platforms

such as Twitter and Facebook. Time is necessary for this technique to

study the characteristics of an account or build a profile of behaviour.

There are some potential obstacles to the effective implementation of this

method; spammers have ways to disguise the features that would raise suspicion of their

fraudulent accounts. For example, examining the ‘following ratio’ feature, which has

been used with previous notable studies [36] [9], becomes ineffective. Spammers start

unfollowing those who do not follow them back; this is how they sustain the following

rate as average [105]. Alternatively, spammers overcome the ratio of following to

followers by making their ‘fake’ accounts connect with other fake accounts, increasing

the follower and following numbers [106]. URL ratio is another indicator that has been

evaded by some smart social bots. By monitoring real spam accounts, it has been found

63

that spamming accounts tweeting content with links pointing to malicious pages are

also tweeting genuine tweets at the same average rate to tamp down suspicion aroused

due to a high URL ratio.

The HSpam14 [107] dataset contains 14 million tweets that are labelled as spam

and ham. The dataset labelling was conducted using several methods (heuristics,

clustering and manual). These methods generated approximately 3.3 million spam and

10.7 ham examples. The main features that can be extracted from this dataset are

Twitter-based features such as tweet content (text, hashtags, mentions and URLs). The

study focused on spam injection on hashtags, as spammers seek to gain a bigger

audience by attaching popular hashtags to their content. Studies [107], [108] that rely

on only text only and twitter metadata and does extract features from attached URLs

(domain WHOIS and webpage content) have the advantage of a larger dataset can

create, but in the same time, they could miss essential spam traits in the attached URLs.

Compounding the difficulty of detecting anomalies in users’ behaviour and

characteristics are social bots, which are becoming smarter over time, adapting, and

continuing to improve in simulating genuine users. Spambots have helped to overcome

many effective features in a spam detection classifier. For example, by analysing text

content that researchers use to cluster the tweets and try to find the spam campaign,

spammers now use some machine learning algorithms to produce and paraphrase text

to bypass string matching/clustering and blacklists [109].

2.5.2 URL, hosting and web page features

Researchers’ work on most detection techniques is based upon discovering

attributes or signs that help to detect malicious content in OSNs. Spammers try to avoid

displaying any abnormal features so as not to be marked as suspicious. Consequently,

64

security researchers have expanded the domain of features to cover new aspects

that have not been studied before. To overcome the previous techniques’ weaknesses,

researchers aim to make detection near to real time by finding traits that can be

considered as conclusive evidence. Working with this technique does not require

complicated historical behavioural study or detecting anomalies in users’ behaviour; it

involves dealing with the features that can be extracted from attached links [45]. The

following table contains common attributes used by researchers [56][110] that serve to

detect malicious URLs, and the table is divided into three types of features. The first

relates to the URL’s lexical features, the second involves the data that can be extracted

from the website hosting server, and the last one refers to the web page content traits to

which the URL refers.

Table 2.3 List of lexical, host-based and page-content features [56][110]

Lexical Host-based Page-content

Hostname WHOIS Info Popup messages

Primary domain Server IP address HTML Content

Path tokens Geographic JavaScript events

Sub-domains IP hosting Page screenshots

Although there is no feature that provides a 100 per cent accuracy rate for

detecting malicious URLs, researchers studying these many features collected from

various sources can give the overall probability and an indication of the existence of

malicious content. Researchers [110][111] have found that fraudsters have ways to lure

users to click on links that are designed to be similar to the websites they trust or use.

65

Table 2.4 Example of phishing URLs [112]

Example of Phishing URLs

http://login.paypal.com.nedgy.com

www.secure-paypal.com

Table 2.4 shows two examples of phishing URLs that many internet users

thought were PayPal, which is an online electronic banking service. Blum et al. [111]

worked on the lexical features of URLs by splitting them into three sections – protocol,

domain and path – and try to detect the lexical features. The advantage of this detection

method is the lightweight quality and speed of implementation without the need for the

complexities of server information or page content. However, Thomas [15] expanded

upon sources of features to include lexical hosting information and web page content,

which has made it a comprehensive system. Feature extraction was done from multi-

sources, such as web browsers, domain name system (DNS) resolvers, and IP analysis;

most of the delay occurs when crawling URLs are using browsers as a service

technique. The time required to analyse all the resources attached to a web page (i.e.

JavaScript and CSS, images and web page screenshot) was an obstruction for

researchers. For example, researchers have been trying [113][114] to detect phishing

sites by finding visual similarities of web page screenshots of phishing and legitimate

sites; however, the high computation resource and time required for this procedure was

not commensurate with the nature of the big data that OSNs are dealing with. The

primary restricting factor in this type of work is the high cost and time required,

especially when it applies to real-time communication like that in platforms such

as social networks.

66

Gupta et al. [87] proposed a mechanism to identify malicious URLs shortened

by the bit.ly shortening service in particular. This shortening service is often used by

spammers, who automatically generate malicious short URLs and spread them using

their fake accounts on Twitter. Gupta et al. [79] built three models (NB, DT and RF)

based on features of the landing page’s domain information (WHOIS) and bit.ly

features such as link creating hour and link clicks statistics information. The models

were compared in terms of their classification performance. The authors reported that

the RF classifiers showed the best performance for the considered data.

The deeper and specific features needed the greater number of resources to

extract. A study has gone beyond monitoring web browsers by monitoring local system

behaviours [115]. Burnap et al. used features of this type to detect malicious URLs.

They deployed a high-interaction honeynet14 to collect system state changes, such as

the sending/receiving packets and CPU usage. The training dataset contained 2,000

examples with a 1:1 ratio for spam/non-spam. Ten attributes were used to build a

classifier that reflected system status changes after opening the tweet’s URL. Burnap

et al. [80] investigated the shortest time required to give a preliminary warning of the

existence of malicious content in a specific URL. The best result was reported for a

multilayer perceptron (MLP) using features acquired after 210 seconds (0.723 in the F-

measure metric). The features used by Burnap et al. [80] require complex data analysis;

however, they make it difficult for spammer sites to disguise their true nature.

The advantage of this focused group of features (system behaviour features) is

its ability to detect zero-hour spam content/URLs. Studies that do not consider

14 https://www.honeynet.org/

67

analysing the historical profile of the accounts or not doing text similarity/clustering to

detect spam campaigns are not waiting for enough information to make a decision. This

technique could assess each entity individually regardless of other content that could

be evaded and affect a classifier’s decision. Furthermore, this technique can be used as

a complementary technique for blacklist methods by updating its databases with the

latest undiscovered spam.

In this thesis, the previous studies were investigated and clustered based on the

group of features used for building their models. Each group of features has strengths

and weaknesses in terms of its effectiveness or the resources required for extracting the

features. It is also shown that features that are derived from sources such as domain,

web page attachment and hosting cost spammers for disguising and renewing them

when they are put on blacklists. Therefore, they are considered robust but cannot only

be considered for discriminating spam and non-spam as spammers can renew hosting

and domain names for each spam campaign. Therefore, the researchers needed to come

up with group of features that can sense the behaviour of spamming accounts from

social networks according to the way they lead users to the landing page. These

combined features show different views of spamming activity – first the account

spamming behaviour pattern, and then the pattern of content distributed.

2.6 Conclusion

There are several types of spam content; each has its indicators and there are some

general traits that could group them. Moreover, the way of conducting spamming is

varied among multiple techniques targeting several types of people in OSNs.

Consequently, no one solution or detection method, algorithm or group of features can

detect all the spam content in OSNs. Generally, previous studies were limited to the

68

spam type that was used and trained on, so there is a new trend to cover as many feature

sets as possible to develop a comprehensive detection classifier. Furthermore, detection

systems that were created using different methods need to be integrated in a way that

they complement each other.

Although machine learning-based solutions are considered one of the methods

with high potential to mitigate spam content in OSNs, most studies have built a model

using a ground truth dataset, and eventually, the model became outdated and expired.

One of the main important features that spam/suspicious content detection systems need

to have is the ability to be adaptable to future methods and tricks used by spammers.

Data sharing among research groups and security centres is needed so that these systems

would be able to do retraining.

In the next chapter, the process of conducting the experiments in this thesis is

outlined, and the experimental procedure, including the data collection and labelling

and the process of evaluating and selecting the models, is discussed.

69

Research Methodology

70

3.1 Background

To detect spam accounts in OSNs, along with spam content and activities, it is

important to gain an understanding of the methods and techniques used to deploy spam.

Second, a new countermeasure system to detect spam content in near to real time needs

to be designed. To achieve the first goal, further investigation on current spam

campaigns needs to be conducted and a computational workflow needs to be used to

extract indicators and spatiotemporal features from real-time streaming tweets. To do

this, data collection is the first phase to extract new, reliable spam-indicative features

from the collected data. In this thesis, several investigations are conducted to assess

features that are derived from various sources of data (i.e. web page content and

redirection behaviour) to come up with a novel set of features. Unlike most of the

previous studies, the scope of this research is not limited to one feature source. One of

the contributions of the thesis is the data pre-processing experiments conducted, such

as the methods used in feature collection and extraction, as extracting from multi-source

data sources and types required several techniques such as web crawling, text

processing and parsing, entity extraction, and dealing with unstructured and multi-

languages data that was derived from WHOIS records of URLs’ domain names. To

evaluate how useful features are for discriminating, information gain and mean

decrease accuracy (MDA) will be used as feature selection methods. Based on the

selected features, a classifier needs to be built which can classify collected tweets as

either spam or non-spam. In this research, the author plan to employ three popular

71

supervised classification algorithms and implement them using Scikit-learn15 (Python

machine learning library). Furthermore, the author investigated what type of algorithm

types that have been investigated by previous researchers [75], [86], [87] and suit the

research problem and dataset in this thesis. The chosen algorithms have completely

different ways of building models. Therefore, several different algorithms were chosen,

RF, LR, NB and KNN, to determine which can give high performance and does not

require high tuning effort. As the researchers’ main aim is to build a dynamic detection

system that performs the retraining process daily with new data, the less time needed

for tuning and building the model the better. Later, the performance of each algorithm

will be evaluated and comparisons will be made using the same ground truth dataset

and selected set of features. To maintain efficacy, the classifier needs to be able to allow

for periodic updates, extract new features and renew the training dataset so that it is

adapted to new spamming strategies. Figure 3.1 illustrates the main phases of the

workflow of the general experiments.

The proposed computational workflow can be divided into four consecutive phases. The

first phase was data collection; the primary research data is from Twitter. Many researchers

use the Twitter platform to collect data as most of Twitter's data is public. Moreover,

Twitter provides APIs to facilitate the collection process. The aim of the second phase is to

extract features from the collected data. Multiple feature sources will be considered in the

extraction process, such as account, URLs attachments, and tweet content. Features will

then be evaluated and ranked based on their discrimination power, with features that do not

15 scikit-learn: machine learning in Python, http://scikit-learn.org/ [accessed November 2014]

72

play a role in the discrimination process being discarded. Furthermore, features will be

verified regarding whether the they were chosen by the authors’ analysis or adapted from

previous studies. As features lose their discriminating power for several reasons, analysis

and validation are essential to check their effectiveness so that they can have a positive

impact on building the model’s accuracy rate.

Figure 3.1 Key phases of the research methodology.
The collection phase is where tweets are imported into the database. This is followed
by feature extraction and selection, and then building models and evaluating them.

In the third phase, a classifier was built based on the features that were selected in

phase two. In this phase, features were subject to further analysis to determine which

combination of features increased the classifier performance. Further investigation was

performed to come up with high performance models using adequate settings of hyper-

73

parameters. Each set of parameter values or modifications applied to algorithms was

analysed, and high-precision manually labelled ground truth data was used as a

benchmark for the evaluation. Then, a system was developed that involved the selected

features and the combination of methods and integrated into a usable interface. The

final phase was where the overall system evaluations were applied. Two main criteria

applied for the evaluation: system detection and features extraction speed. To measure

the classification efficiency of the model, evaluation criteria adopted by previous

relevant studies [116][117][118][9], such as recall, precision, accuracy, and F-measure,

were used.

3.2 Data sources and labelling methods

This section explains how the data collection process was conducted and how the

ground truth dataset of malicious and benign tweets was built. The data collection

involved three steps: (i) collecting tweets that have URLs; (ii) crawling each URL using

native web browsers controlled by Selenium WebDriver16 API; and (iii) labelling the

URLs as malicious or benign.

Figure 3.1 shows that collecting data is the first thing to do to build the machine

learning classifier. The main aim of this research is to build a classifier that can detect

suspicious URLs spread over user-generated content websites. Several social network

platforms suffer from a high percentage of spam content in their network. Facebook,

Twitter, Pinterest and YouTube could be used as sources from which to collect data;

however, their regulations and policies vary. In this thesis, the source used to collect

16 https://www.seleniumhq.org/projects/webdriver/

74

data is Twitter, although the study can be applied on any other social network that

accepts users’ text data with attached URLs.

3.2.1 Data collection process

Twitter has several connection channel APIs to obtain data from, such as real-time

tweets, Ads API, Search API, Direct Message API, and filter real-time tweets (public

stream API). Since the focus was on collecting new real-time data, public stream API

(standard) and Twitter's public streaming API were chosen for tweet collection that give

access to 1 per cent of the total stream [115]. A Python script was written to connect to

the Twitter stream API and retrieve tweets that contained at least one URL. This

returned a random fraction sample of new tweets to the developer in JavaScript Object

Notation (JSON) format (see Appendix A). The only filtering rule used are that the

tweet language should be English and there must be at least one URL attached to the

tweet. After the collection software retrieved tweets and the above two conditions were

applied to the stream tweets, the tweets were stored in a MongoDB17 database.

MongoDB is a NoSQL database in which each row is a key and a document. The key

is the unique ID that usually is auto-generated by MongoDB and each document is not

required to follow a unified schema. NoSQL is perfect for data that is non-structured

[119], which means that each document could have different fields and lengths, for

example. This is different from a relational database when data should be validated

and checked to match a certain schema to be inserted into the database. The dataset

(tweets and URLs) in this research is unstructured, for instance, a tweet could have

17 https://www.mongodb.com/

75

information fields for attached images (media) or hashtags, so the document will have

more fields than another tweet that does not contain any media attachments.

Tweets Filters applied Storing

Figure 3.2 General techniques used and their flow
the flow represents the sequence of techniques used in processing incoming data

till storing it in the database

Figure 3.3 shows the stage of collecting tweets, starting by connecting to the

Twitter stream API, then applying the two filter rules specified, which are English

tweets and tweets should have at least one URL attached. Around two million tweets

were collected in the study from mid-2015 to mid-2018; however, scraping and

extracting features from URLs attached to tweets required more time than obtaining

data from tweets and storing it in the database. Therefore, tweets were stored in

MongoDB as the first step, then another developed software solution was used for

analysing and extracting URLs attached to tweets.

3.2.2 Data labelling process

When building a supervised machine learning model, a labelled dataset is needed.

In this study, this meant labelling each tweet in the dataset as either ‘spam’ or as a

‘normal’ tweet. A ground truth dataset should be highly accurate and reliable enough

to build supervised machine learning classifiers.

The lack of standard benchmark datasets in certain domains often forces researchers

to build their own training datasets. Labelling a dataset is a challenging and time-

76

consuming, since there are no standard methods to follow. Researchers in this domain

have used several ways to build the ground truth dataset for training their models. For

example [87], [120] used third-party blacklist services such as VirusTotal and Google

Safe Browsing to label tweets that contained blacklisted URLs as spam/malicious

tweet. VirusTotal provides an API for retrieving information about URLs using up to

50 reputable online blacklists, such as Google Safe Browsing (Google), Bitdefender,

Dr.Web Link Scanner, Kaspersky URL Advisor (Kaspersky), PhishTank (OpenDNS),

Spam404, and Trend Micro Site Safety Centre (Trend Micro18).

Figure 3.3 Data collection and features extraction workflow
crossed tweets represents tweet that got deleted by twitter

18 https://global.sitesafety.trendmicro.com/

77

Other researchers have used Twitter’s own spam detection system for labelling [93],

[121]. However, this is often delayed, as when accounts are deleted or suspended (for

spam), the tweets that were posted from them can be labelled as spam. According to

Twitter19, it cannot always be guaranteed that the reason for the suspension is related to

spam, as there are several abusive activities that it acts upon. However, many studies

indicate that the suspension is more often due to spamming activities [122]–[124].

Using blacklists and twitter suspension for labelling could help save time and effort for

researchers compared to manual labelling. By reading the content of each tweet and

browsing any URLs included, manual labelling produces more accurate datasets.

In this study, two datasets were collected; the first dataset (DS1) was used for the

preliminary experiments and the second one was collected with a different labelling

mechanism and features. The DS1 labelling mechanism relied on Twitter suspension

and VirusTotal, so any tweet was considered that was deleted because of account

suspension or had any attached URL that existed in the VirusTotal database as a spam

tweet. This method saved time and effort, so it was possible to create a 15k ground truth

dataset divided into 12k non-spam examples and 3k suspicious examples, which ranged

from malware, phishing, scam pages, and overloaded ads to low-quality web pages.

The dataset was also validated periodically using the two methods mentioned above, as

some spam URLs required longer to be blacklisted or deleted by Twitter.

19 https://help.twitter.com/en/managing-your-account/suspended-twitter-accounts

78

Figure 3.4 Labelling method used to build DS2 ground truth dataset, that
involved extra manual validation

The second dataset (DS2) was labelled using a different mechanism. It was

manually labelled by the researcher and refined using Twitter’s account suspension and

VirusTotal to add a further refinement process to the dataset. The DS2 labelling process

is illustrated in Figure 3.4. The 6k tweets that were manually labelled were reduced to

4k during the process due to manually removing spam labelled tweets which were

deleted by Twitter or removing duplicate examples. The dataset was then checked using

the Twitter suspension information, so every positive labelled tweet (spam tweet) was

validated. It is assumed that for negative examples (non-spam), their source must stay

active and online. Although the additional validation stage limited the size of the

training dataset, it was considered important for the quality of the data, which is

79

essential for building valid machine learning models. Consequently, a ground truth

dataset of 4112 examples was created, with nearly balanced classes as there are 2195

normal tweets and 1917 spam. Class imbalance in this context of study is common

[125] due to the difficulties in detecting or manually labelling suspicious URLs.

DS2 tweets that contained URLs were labelled using a labelling tool developed

specifically for this purpose to help researchers examine each screenshot and meta

information to make a decision. Figure 3.5 shows the process of reviewing what was

done manually by the author, who browsed the tweets using a bespoke program written

in Python and Flask (web framework for Python) which showed the tweet content,

tweet metadata (i.e. followers and account age) and domain/page features (i.e. number

of windows opened and domain age). It also showed viewing pages’ screenshots on the

labelling tool page so that the features and screenshots could help the researcher to

make the decision to label a tweet as spam or non-spam.

Figure 3.5 Labelling tool developed and used in labelling the dataset
In the bottom right corner of the screen shot image there are three buttons:

green (normal), red (spam) and yellow (unsure)

80

Table 3.1 Comparison between DS1 and DS2

 Dataset 1 Dataset 2

Abbreviation DS1 DS2

Number of
Features

34 45

Features
Categories

 Twitter information
 WHOIS (Domain Age only)
 No text features
 Focused only on landing page

 WHOIS (3 Features)
 Text analysis
 Get features from all pages opened

while/during reaching landing page

Noise/Duplicates
Unique tweets but there is a

percentage of duplicate web page
No duplicates

Labelling
process

Twitter suspension Manual + Twitter suspension + VT

Data time range Mid 2015 – end of 2016 End of 2016 – May 2018

Pros
 Easy to label
 Larger dataset
 Features low cost to extract

 More accurate and less noisy
 Features are more reliable, based on

features ranking method.

Cons
 Less Accurate due to the labelling

process
 Simple features (easier to fabricate)

 Smaller size, due to the manual
labelling process for validation

 Required more computing resource
for features extraction

Size 55739 4112

Classes size
 Normal: 29956

 Spam: 25783

 Normal: 2195

 Spam: 1917

In the additional refinement stage, each benign example in the dataset, i.e. a tweet

containing a URL that was not blacklisted, was checked to determine whether it had

been deleted by Twitter, as this may indicate whether that tweet contained malicious

URLs that are not on a blacklist. According to Twitter’s deletion rules20, there are three

major reasons to delete a user’s21 tweet: breaking copyright, abusive tweeting activity,

and that it is spam from Twitter’s perspective. To check whether a tweet had been

deleted, the Twitter Streaming API was used to retrieve a specific tweet (using its ID).

If nothing was retrieved via the API, then it was considered as deleted. This procedure

20
 https://support.twitter.com/articles/18311

21 There is also the chance that the user deletes the tweet.

81

was repeated several times during data collection, with the last check carried out in

December 2016 for DS1 and May 2018 for DS2. The differences between the two

datasets are summarized in Table 3.1.

3.2.3 Data preparation and unbalance issue

Preparing data for training, validation and evaluation is an essential process since

the author can use the whole dataset for training. Furthermore, several issues need to

be settled before using the dataset, for example, removing noise data such as redundant

and missing values. For this, tools such as Pandas22 were used to check duplication and

remove records that have full or almost full duplicate records.

For training and validation, the stratified cross-validation method was used where

the dataset was split into k folds, with each fold having approximately the same target

class percentage of the whole dataset. For example, if k assigns to 10, then training will

be conducted ten times, each time trained on nine green split samples (as shown in

Figure 3.6) and then tested on the tenth sample. The overall cross-validation evaluation

was calculated by obtaining the average of all the k folds. The cross-validation method

helps in mitigating falling into the overfitting problem by using the whole dataset for

training and evaluating so that the model will be more generalisable. As the general aim

of building a machine learning model is to help in predicting (classification or

regression) new unseen data, methods such as cross-validation will help in achieving a

22 https://pandas.pydata.org/

82

more reliable evaluated performance, as in cross-validation all the data is used for

training and testing.

Figure 3.6 Cross-validation sampling method

On the other hand, in the context of spam detection in OSNs, many researchers have

noted the problem of unbalanced datasets [126]. To solve this issue, in this study, the

researchers performed undersampling of the negative examples (the dominant class) by

removing the redundant and semi-redundant examples. Moreover, machine learning

models that are better at handling class unbalance were chosen later, for example,

ensemble methods that combine several classifiers demonstrating improved handling

of unbalanced datasets [125]. Metrics that are also used for evaluation were chosen to

support this issue. F-measure (F1) and area under the curve (AUC) are both more suited

to handling class unbalance in their evaluation.

3.3 Feature extraction and engineering

Each row in the dataset contains several columns; each column is a feature. The

better the features set describes the data points, the more distinguishable the data points

will become, improving the classification performance in determining spam and non-

spam tweets. Stored data was transferred into a features vector that a machine learning

model can understand. A machine learning model use a vector of numbers, which each

vector represents an example of input data point. Thus, a model uses these numbers to

83

make a classification decision. Features can be extracted from several data formats,

such as text, HTML, images, and URL chains. The complexity of extracting features

varies, with some requiring several processing stages to convert them into a format

suitable for machine learning. For example, features contained in the Twitter metadata,

such as number of followers, were easily accessed in the returned data from the Twitter

Streaming API. However, to obtain the full domain WHOIS record, requests to the

registry's WHOIS databases had to be made and then the response data had to be parsed

to extract the relevant group of features needed. To extract features related to the web

page content that was pointed to by tweets’ URLs, it was necessary to use a headless

browser, Selenium 23 , to automate browsing behaviour and content download. As

Selenium provides API-controlled native web browsers, the author opens all tweet

attached URLs via a programming language (in this research, Python was used).

Table 3.2 Sources of features used in building machine learning models

Source Features

Twitter network Twitter profile and tweet features

Web browser All web page source code

Web browser actions
JavaScript events occur while crawling website (popups windows,
alerts, etc.)

URL behaviour Number of redirections

Domain WHOIS
information

Domain WHOIS record that contains information such as registrar
and dates related to domain registration and expiration

Studies [127] and [37] have shown that using multiple sources of features could

help to increase the classification power [58]. Therefore, in this study, features that were

derived from several sources were explored, as shown in Table 3.2. The investigation

23 http://www.seleniumhq.org/

84

was conducted by monitoring real spamming accounts on Twitter and studying their

produced tweets. Moreover, browsing and analysing tweet-attached URLs was

performed to gain an understanding of the tricks that spammers used. Features that were

derived from previous studies’ classifiers were also assessed.

3.3.1 Features used in building classifiers

In this section, a description of the features that were used is provided.

Twitter network:

Although recent studies have shown a decrease in the detection power of features

that derived from Twitter, it was still possible to detect a percentage of attacks by using

features of this type. The Twitter platform provided thousands of tweets in seconds of

random real-time tweets; however, this rate could be lower depending on the filters

used in the Twitter stream API. Due to the simplicity and high rate of tweets that Twitter

offers to the public, many researcher have used Twitter as a primary data source for

relevant studies [86][91][104]. Using their API, it was possible to retrieve records of

information about users and tweets. Some Twitter metadata could be in numeric format,

which is preferable for a machine learning model.

Table 3.3 Common features used in literature

Feature Features Description Ref

Account age Number of days since account created [86][91]

No. of followers Number of accounts connected to this account [86][91][104]

No. following Number of accounts connected to this account [86][91][104]

No. of user favourites Number of favourite tweets [86]

No. of tweets Number of posted tweets [86][91][2]

85

Table 3.3 shows examples of numerical Twitter features that have been commonly

used in previous studies [86][91]. The advantage of using this type of lightweight

features is that it does not require a high level of extraction and transformation.

User information:

Table 3.4 User information features

Feature

1 Ratio of age to number of tweets (Twitter)

2 User statuses count (Twitter)

3 User friends count (Twitter)

4 Account age (Twitter)

5 User followers count (Twitter)

6 User favorites count (Twitter)

7 User listed count (Twitter)

8 User name length (Twitter)

9 User name digits (Twitter)

10 User name signs (Twitter)

11 Default profile image (Twitter)

12 Is user account verified? (Twitter)

13 Is user account protected? (Twitter)

Features such as created date (account age in days), number of tweets that account

generated since it was created, and number of followers and following accounts can

represent the user who posted the tweet. Furthermore, account username and biography

description text can be used as text features. New features can be created by combining

features using arithmetical procedures such as feature no.1 in Table 3.4, which is the

value of the division of number of tweets by account age. This ratio could indicate

86

account activity, as a spam account could have much higher activity compared to the

average normal users. Feature engineering can be used to create another feature based

on existing features, for example, [128] used the user reputation/fame feature, which is

high when an account has higher followers count than following count.

Tweet metadata:

Table 3.5 Tweet features

Feature

1 Number of hashtags (Twitter)

2 Does tweet have media? (Twitter)

3 Number of mentions (Twitter)

4 Is tweet a reply tweet? (Twitter)

5 Number of URLs (Twitter)

6 Is user account geo-enabled? (Twitter)

Tweet text is not the only piece of data that can be obtained, as tweets can have

many types of other metadata attached, such as hashtags, mentions, tweet type (reply,

retweet and standard tweet), and, most important to this study, URLs. URLs are one of

the features that have been examined in previous studies, such as [87][91], which

investigated similarities in tweet text to find a spam campaign. This could be important

for checking against a pre-trained text classifier that was trained on thousands of spam

and genuine tweets.

Web page content and behaviour:

Going deeper to follow spammers to their end landing page where they want to lead

targeted users is an essential process to understand what the content is that they want to

spam about. To collect this content and extract relevant features, author automate the

process of crawling all tweets’ attached URLs and handle all further redirections that

87

happened. Interacting with landed web pages and resolving redirection could require

building a smart crawler that is able to handle all these obstacles (i.e. HTTP and

JavaScript redirection).

Figure 3.7 Selenium web drivers
web browsers logos represents the capability of selenium to use different

software web drivers

For this purpose, the Selenium WebDriver API was used, which enabled researchers

to have full monitoring of web browsers’ actions and properties from loading to

unloading the web page. The author assigned normal browsers (i.e. Firefox and

Chrome) to open URLs and by using this library (Selenium), were able to gather page

content and behaviour, such as the redirection hubs, and get the final landing web page.

Figure 3.7 shows how the web scraper component exploits the Selenium driver to

control web browsers and pass tweets’ URLs to them. Finally, when browsers open

URLs, all the web pages’ data and behaviours are stored back to the database.

88

Table 3.6 Redirections’ observation features and web page content

Feature

1 Number of external links (web page)

2 Number of links (web page)

3 Number of images (web page)

4 Number of dots in link

5 Ratio of words to external links (web page)

6 Number of input forms (web page)

7 Number of words (web page)

8 Link length (URL)

9 Number of link signs (web page)

10 Number of ad blocked links (web page)

11 Does link contain ‘www’24?

12 Does web page have password input? (web page)

13 Link letters (URL)

14 Is https protocol used in URL? (URL)

15 Popup windows

16 Alert and dialog messages

A high-speed connected machine and high processing speed were used to retrieve

all URLs in the dataset. A Python code connecting with the Selenium API was set up

to control web browsers on a Core i7 32GB RAM machine to visit each tweet's URL to

collect additional source data. Features were extracted from web pages that opened with

and during opening of the original URL. Table 3.6 shows all features extracted from

the process of crawling URLs. Features ranged from ready to use (i.e. number of links

24 http://www.yes-www.org/why-use-www/

89

and number of images) to features that required further processing to be extracted, such

as number of ad blocks.

Unlike previous studies, the features in this study were derived from pages’ content

and behaviour during page redirection until the redirection chain reaches the final

landing page. As this study is based on real examples of spam content/URLs, some

tricks used by spammers show spam content on the way to the landing page, then lead

users to the legitimate web page. Using this trick helps them to overcome systems that

rely on analysing the web page content of the landing page that URLs are pointing to.

Therefore, this thesis presents the novel features that could help to detect such attacks

and tricks used by spammers to bypass detection systems.

Redirection feature:

A user could open a link which could start with a benign and clean web page then

suddenly be redirected to a harmful malicious web page. Redirection is one of the

common tricks that spammers use to overcome detection systems that investigate the

landed page’s URL or content [93][87][129]. Moreover, requesting a page using a URL

could be redirected once or more. Consequently, the researchers built a component that

extracts the full redirection chain and stores all content and URLs that come through

the redirection process. Redirection could be done through multiple techniques, such as

HTTP header, JavaScript action or timers, so the author needed to use a smart tool that

follows all redirections that happened. Features such as number of redirections could

be a good indicator that something is not normal in the page. This motivated us to invest

more in collecting data during page redirection, as some spammers inject malicious

web pages in the middle of the redirection chain.

90

The software used for crawling and handling the redirection needs to be static for

all URLs, since changing the network, device or location could change the redirection

behaviour. For example, opening a URL from Iraq could lead to or get a different route

to the landing page if open it from the UK. Therefore, changing the URL entry point in

terms of the device or location could change the redirection route. Consequently, to

have an unbiased training dataset, in this thesis the author used the same device and

network for crawling all the dataset URLs.

Figure 3.8 Malicious/spam content hidden content behind multiple redirected
URLs

starting by un-blacklisted URL and ending with blacklisted one

Figure 3.8 shows an example of a drive-by download attack evaded in several

redirection processes. As spammers can exploit public shortening services to conceal

their suspicious URLs, if the user opens a URL that looks benign, then this URL is

redirected to another server/domain and then to another page, and this page could

contain scam content to try to convince the user to download software (i.e. Flash player,

antivirus). This software could lead to the user’s device being infected and controlled

by an attacker/hacker.

Web page content features:

Once the developed extraction process reached the final landing web page, further

analysis was conducted to try to extract features from its source code content. This

Normal web pageBenign
URL

Another
normal page

Benign
URL

Page asking user
to download file

Unkonwn
URL

Infected
computer

Drive-by-
download

91

landing page should be the page that is intended to be reached by targeted OSN users.

Therefore, the author focused on several features on this page, such as number of

images, URLs, external URLs, and distinct domain name URLs. Some features, such

as number of images, scripts and href tags, were extracted using text processing and

HTML parsing functions. Beautiful Soup 425 (BS4) is a Python library used for parsing

web page source code text data into HTML parsed code, so the author were able to do

a search and pull data easily. All web pages’ content was stored in the MongoDB

database for later use in case it was necessary to extract further features from their

source code.

Web page behaviour:

A web page comprises three main elements: HTML, Cascading Style Sheets (CSS),

and JavaScript. HTML is a standard markup language used for creating the strructre

and content of web pages. CSS is used for describing the presentation of the structure

and content of the page. JavaScript is responsible for the web page behaviour regarding

events and interactions with users. Web page behavioural features are those which

represent page events’ load and unload page messages and popup windows. In the stage

of collecting and extracting features, three events and actions were considered: page

loading, mouse click on the HTML body tag, and page unloading. During these three

actions, some web pages behaved differently, so the author wanted to determine how

the majority of legitimate/normal and suspicious web pages behave in responding to

these actions.

25 https://www.crummy.com/software/BeautifulSoup/

92

Popup windows, iframes and alerts:

Web browsers have the ability to load another web page window/tab to users who

clicked on the attached URL in a tweet. A web page using several techniques can show

alerts, popup windows, and iframes. Loading another web page or open popup windows

could be an unpleasant action, especially if there was no real need for it. Showing more

content than the user is expecting from a web page is itself an annoying action [130].

Figure 3.9 shows an example of a popup window that contains a potential scam

advertisement luring users to click.

Figure 3.9 Example of a popup window used for advertising

Some popup windows needed a trigger to be opened, for example, mouse

movement, window loading, or closing or clicking on a certain part of the page or

sometimes on any part of the page. The author is not suggesting that any web page that

has popup windows is suspicious; however, this could be one of the features that could

enhance the prediction performance of the classifier decision. As popup windows with

annoying ads could be a sign of a low-quailty web page, the author performed further

investigation to study the existence of popup windows and suspicious web pages.

93

Again, the content of these popup windows’ frames opened as a result of loading the

original link and landing page that were stored in the database.

Excessive amounts of advertising:

As stated earlier, suspicious content in a page can be in many forms, one of which

is pages that are only seeking to make money by having small, low-quality, clickbait

content or even false news and the rest of the web page is annoying ad blocks. Some of

the previous studies [64], [122] categorised web pages that expose users to excessive

advertisement content that is either legal or illegal content as low-quality suspicious

web pages. These ads could be injected directly into the main landed web page inside

a div tag used specifically for advertisement content or the content could be loaded in

an isolated iframe. Iframes are an HTML document loaded as popup content with an

HTML document (parent document). Advertisers prefer using an iframe when

delivering their advertised content to ensure that it appears in the same way as they

designed it regardless of what the parent document design is [131].

Therefore, to obtain feature 10 from Table 3.6, which is number of ads blocked in

a web page, the author needed to build a Python code using AdBlock parser library that

uses an updating list called Easylist, which includes a list of domains that are known

for advertising or certain pattern ad codes can be found in the web page source code.

By using Adblock and Easylist rules, the author was able to detect advertising blocks

in the web page and the attached pages such as iframes and popup windows while

loading/unloading the main web page.

94

Figure 3.10 Example of ads abusive web page
two column web page as both contains ad text and banners

Domain WHOIS information:

WHOIS is a protocol used for querying domain and internet protocol (IP) address

registration information databases. Each domain has a record of information hosted in

the DNS registrar server. This information is provided as plain text information

presented under different syntax and headlines, and it could be in different languages,

so parsing and extracting information is a challenge. The information could include

registrar company and important dates such as when the domain was registered and

updated and will expire. Domain owner name, registrar name and technical

administrator contact address are usually stored in the domain WHOIS record. The

WHOIS record is one of the sources of information to extract one of the top features,

which is the creation date of the domain (domain age). Domain age is the number of

days from when the domain was created to the day the tweet was created. The oldest

95

domain name was created on 15/03/1985, so it is 33 years old in 2018 (approximately

11,800 days), which belongs to symbolics.com26. The lowest value for domain name

could be one day, which means that a tweet with a URL attached has a domain name

that was created on the day that the tweet was tweeted. Registrar name represent the

name of the company that sells the domain to the registrant, who is the domain buyer.

Table 3.7 WHOIS information features

Feature

1 Domain age

2 Distinct domain name in redirection chain

3 Registrar name (text)

4 Number of valid fields in retrieved WHOIS data

As a part of the development of the system, a code was developed that parses

domain WHOIS information and extracts the features described in above table.

The features mentioned in this chapter are essential in building a robust

discriminative model. Features ranged from simple extracted features such as those

derived from the Twitter stream API JSON data format to those that required pre-

processing several times and handling all unexpected actions such as popup windows

and alert messages in web page content features. In this thesis, the author used the term

‘lightweight features’ to represent features that did not require pre-processing work and

the term ‘deep features’ for those that needed more effort and pre-processing. Based on

investigations conducted on real spam examples, spammers can easily overcome

26 https://www.whois.com/whois/symbolics.com

96

detection methods that rely on lightweight feature models by using shortened URLs

and disguising text to make it more like a legitimate tweet. Overcoming this obstacle

requires few resources and little cost; however, deep feature-based models cost

spammers more to overcome as those models dig deeper into domain name and web

page content or even analyse attachments. Buying thousands of fake accounts could

cost around £10 and each account can reach thousands of OSNs users, but buying one

domain name also costs around £10. Therefore, it costs spammers more to disguise

features extracted from domain names and web pages. Consequently, choosing the right

features could make a difference in the detection performance, so it requires an

understanding of current spamming campaigns and attacks to understand how spam

mechanisms and the industry work.

3.4 Model selection

In machine learning, there are three learning methods, supervised, semi-supervised

and unsupervised, which researchers choose according to the nature of their research

problem and dataset. Supervised learning is suitable in cases when there is prior

knowledge about the labels and in cases when there is availability of a labelled dataset.

Furthermore, the ratio of classes can have an impact on choosing the method. For

example, cases of fraud transaction detection and network intrusion detection system

data unbalance are considered as huge; therefore, the applied algorithm needs to be well

analysed to ensure that the model is not only biased to the majority class. For instance,

anomaly detection algorithms would be suitable for highly unbalanced datasets such as

those that have very low positive examples. On the other hand, if there is no enough

labelled dataset, semi-supervised or unsupervised learning algorithms are likely the

optimal options.

97

In this thesis, the aim is to detect suspicious URLs that are spread over social

networks (Twitter) which are labelled as either spam or not spam. Based on the nature

of the problem and the availability of labelled spam/non-spam, the common learning

method used in the literature for the spam detection problem is supervised machine

learning algorithms [132], [133].

3.4.1 Model selection criteria

As shown earlier, supervised machine learning is what the author will use to build

the spam detection classifier; however, there are several supervised machine learning

algorithms. Model selection in the machine learning context is the process of choosing

the best model among different models or even the same model using different hyper-

parameters or feature sets. Model evaluation is not limited to classification performance

only, as several characteristics can be used to assess models. These characteristics are

outlined below.

Classification performance

Several metrics, such as accuracy, recall and precision, are used to assess

classifier performance. Each evaluation metric has advantages based on the

classification problem and dataset class ratio. In spam detection, the researchers need

to build a classifier that has very high spam detection performance and very low false

positives, since the effect of labelling a normal tweet as spam would annoy users more

than seeing some spam content from time to time [49]. Therefore, precision needs to be

a higher priority than recall. Moreover, class unbalance is a common issue, so using a

metric such as accuracy can sometimes be misleading. For example, if there is a

classifier that classifies every tweet as non-spam tweet and the dataset has a normal to

98

spam ratio of 10:1, in this case, the classifier accuracy will be 90 per cent.

Consequently, evolution metric that suits the spam problem and dataset needed to be

found. To evaluate the classifiers, the commonly used evaluation metrics of accuracy,

precision, recall and F-score were used.

Table 3.8 Confusion matrix

Dataset
Classifier Decision

Spam Not Spam

T
ru

e Spam True Positive False Negative

Not Spam False Positive True Negative

o AUC represents the classifier’s ability to detect classes. If the AUC is 1, this means

that the classifier perfectly detects class labels, whereas 0.5 is equal to random

selection. AUC performance metric has proved its ability in providing reliable

performance even when dataset is imbalanced or cost sensitive problems dataset

[134][135][136].

o Precision is the ratio of the true level of positive or negative detection of the

classifier to overall test samples.

Precision = TP / (TP + FP) (2)

o The recall is the ratio of correct true positive classifier decisions to all the true

positive examples in the test set.

Recall = TP / (TP + FN) (3)

o F1 represents the previous metrics’ precision and recall combined as follows:

F1 = 2 * (precision * recall) / (precision + recall) (4)

99

Ease of understanding the model outputs

It can be difficult to understand how decisions in complex machine learning models

are made. For example, deep learning models are considered to be one of the types of

models that were proved to have high performance for many classification and

regression problems. However, it is difficult to determine how a decision is made based

on complex weight computing on several layers of neural networks. However, in a DT

model, researchers can follow each case to see how the splitting until it reaches the final

leaf, where the final probability is computed. Knowing which features and values

impact the decision could a required feature in some machine learning-based systems

(i.e. medical and military systems).

In the context of internet security, there is a trade-off problem between having

transparent versus opaque models. Therefore, spammers are keen to extract the rules

and internal decisions that happen in the model so that they can find ways to hidden

features that would cause their content to be detected. Consequently, the model

transparency can be a useful feature in less critical cases where no adversarial attacks

are expected. However, this feature can be considered as a drawback or an advantage

based on the task that the model is applied to.

Building and tuning

The increase in machine learning libraries and projects that are supported by highly

regarded open source communities has enhanced the productivity of researchers.

100

Libraries such as Scikit-learn 27 , TensorFlow 28 and XGBoost 29 have boosted the

building of machine learning models and led researchers to focus on the area where

those models are applied. However, researchers are required to have some knowledge

of how the algorithms work and how to tune its hyper-parameters them.

Algorithms have parameters that the algorithm itself tunes during the training

process, and there are hyper-parameters where the researcher needs to be involved and

determine the hyper-parameter settings. Machine learning algorithms are varied in

terms of the number of hyper-parameters and the complexity and effort required to find

the best values and options. It generally requires time and resources to find the best

configuration to build a model. Currently, there is a trend to make models that require

less human involvement in tuning and selecting features, so the less human intervention

required, the better.

Resources and costs

Choosing the best model also depends on the available resources and expertise.

Therefore, when choosing an algorithm to build a spam detection classifier, it is

necessary to study and understand the resources and expertise required to choose an

adequate algorithm. For example, algorithms such as ensemble learning and deep

learning algorithms could require high training computing resources, as ensemble

learning could build thousands of learners during the training phase.

27 http://scikit-learn.org/

28 https://www.tensorflow.org/

29 https://github.com/dmlc/xgboost

101

Consequently, the model selected in this study was chosen based on several

preliminary experiments. The experiments show that the training time for the research

dataset is acceptable for most supervised machine learning models due to the medium

size of the data. The details and information relating to these experiments are presented

in chapter 4.

3.5 Hyperparameter tuning

After choosing a classification algorithm to use to build the model, more time was

invested in optimising the model’s performance. Each model has internal parameters

and external parameters, in other words, hyper-parameters. Internal parameters are

computed internally during model training. For example, in the neural network model,

during the training process the neural weight is assigned internally by the algorithm

without human intervention. Alternatively, the researcher chooses the hyper-

parameters for the model, for example, in the decision trees model the researcher

assigns the maximum depth of the tree before the training process. So, hyper-

parameters are not calculated through the model, but they are chosen by the modeller.

Finding the best combination of hyper-parameters can enhance and optimise

classification performance. There are several methods to obtain the best values/options

of parameters, such as mixing them up to come up with the best combination, which is

called a grid search, ideal for a small data size. Random search, which basically does x

random combinations of parameters then chooses the best performance, can be used

when it is difficult to test all the parameter combinations due to either the huge number

of options or the huge size of the dataset. Moreover, one of the methods that can be

used in such cases is the Bayesian optimisation method, where another algorithm can

be used for estimating and evaluating performance, and based on previous performance,

102

a better hyper-parameters setting can be set until a satisfactory state is reached. Tools

such as MOE and Spearmint30 can be useful in applying the Bayesian optimisation

method on different models.

3.5.1 Feature selection methods

As mentioned in section 3.3, the higher distinguish power features are, the better

the classification performance will be. The feature selection procedure was conducted

in two stages. In the first stage, each feature in the original feature set was evaluated by

applying several available feature selection metrics such as Chi square and information

gain. In the second stage, the top k features were chosen which should have the highest

discriminative power (i.e. domain age, account age, and number of redirects) [38].

Evaluating features, which is also known as the feature importance score, is an essential

process to understand the dataset that used to build models. Moreover, it enables a

researcher to distinguish between good features and irrelevant features. Eliminating

redundant and noisy features could cause performance improvement [39]. There are

three generic methods to for feature selection, such as the filter, embedded and wrapper

method [40]. Several feature selection algorithms were applied to the dataset in this

research. This thesis needed to validate the selected group of features developed or

adopted from previous studies. All the experiments and results are presented in chapter

four, section 4.4.

30 https://github.com/HIPS/Spearmint

103

3.6 Discussions

This research aims to detect tweets that have implicit spam content in the tweet

text or metadata and/or the content that tweets with attached URLs are pointing to.

Since the research aims to mitigate the risks of opening suspicious URLs in OSNs, the

researchers focused on tweets that contain attached URLs. As spammers could easily

evade spam content behind very benign tweet text but the attached URL is pointing to

a suspicious web page, in the analysis the author needed to go beyond analysing tweet

text only.

Several steps are required to build a machine learning model to detect suspicious

URLs spreading over social networks. The first step is having a high-quality dataset to

distinguish features extracted. The researcher manually investigated hundreds of real

spamming accounts to gain an understanding of the techniques and tricks used by

spammers alongside methods used for evading spam web pages. Extracting features is

one step in finding the best group of features that make sense in the security context

and have strong distinguishing power when building the machine learning model.

Based on the model, these features needed to be tested to determine whether they had

a positive impact on the model’s performance. This is due to the fact that in the security

context, features could lose their power due to the change in techniques that spammers

used to deploy their spamming campaigns.

Since machine learning models are very sensitive to the trained data, most of the

researcher’s effort goes into building a dataset and extracting and engineering features.

Figure 3.11 shows the steps of the research methodology in building the spam

classification model.

104

Starting by collecting dataset as the first step, then several method of feature

extraction and crawling used on collected tweets and their attached URLs. Features

extraction component can be grouped into twitter, reduction, web page

content/behaviour and domain WHOIS record features.

Figure 3.11 Research methodology key phases

Several algorithms were used for building models. The model selection stage

here needed to decide which model would be deployed finally. However, before

deploying the model, further optimising methods needed to be applied, such as feature

selection and model tuning. As the main flaws that machine learning models can fall

into are overfitting and underfitting, further evaluation and validation processes were

required to ensure that the model will perform in a similar way with future unseen data.

Most pre-processing methods explored in this chapter are feature extraction

procedures that aim to extract useful features to be deployed later in machine learning

models. The data collecting and pre-processing stages are the most important part of

building a machine learning system, as building a reliable dataset that is free from noise

and misclassified examples will have a high impact on the model performance.

• Tweets
• Web page

scraping

Data
collection

• Tweet features
• Web page

featues
• URL redirceiton
• Domain whois

Features extraction
• Naive baise
• Random forest
• Logistic

regression

Model
selction

• Grid search
• Combing models
• Best features set

Model
optimizing • F1

• AUC
• Precision

Evaluation

105

Features used in building a model can be classified into two generic types based

on the effort and pre-processing required for extraction and transformed into a machine

learning acceptable format. Novel features have been discussed in this chapter such as

content that is generated through the way to reach the final landing page. In general, in

this research, the aim is to explore features that require high effort from spammers to

disguise and hide them, as it seems to be easy for legacy features such as tweet text and

metadata to be manipulated by spammers. Furthermore, the general idea is to take

advantage of using the combined features derived from several sources.

The next chapter provides a comparison of some of the supervised machine

learning algorithms. It also outlines the tuning and feature selection methods applied to

enhance the algorithm with the best performance.

106

Using supervised machine learning algorithms

to detect suspicious URLs in Twitter

107

4.1 Introduction

There are several supervised machine learning algorithms that focus on a binary

classification problem (for example in this work spam/normal); preliminary experiments

were conducted to find the best algorithm (using default hyper-parameters) that suits the

classification problem and dataset in this research. All preliminary experiments in this

chapter are based on DS1, which is the first version dataset collected (see chapter 3,

section 3.5). To determine the best algorithms for the spam classification, the

performance was evaluated using several metrics and other criteria that have been

discussed in chapter 3 were explored. The algorithms investigated are the top common

algorithms used in related work, which are DT, RF, LR, NB, and k-NN. Finding the best

algorithm was based on the easiness to understand, performance, tuning, and resources

required in building and training the model. After finding the best algorithm, more time

was spent on investigating what the key tuning hyper-parameters and feature reduction

methods are. The experiments in this chapter can be summarised as follows:

1. Several models were built using different algorithms with a minimum tuning

process (Sklearn default hyper-parameters were used). Then the models were

evaluated using several metrics to select the model that performed the best

with minimal tuning required, as the aim of this experiment is only to come

up with a classification algorithm family that suits the problem and dataset

in this research.

2. The selected model from step 1 was further investigated regarding its main

hyper-parameters and how they can play the main role in its performance.

Selected hyper-parameters will not be generalised for any other dataset, but

the workflow can be applied to any other machine learning solution.

108

3. The final experiment was conducted on the effectiveness of using several

feature selection methods such as filters and wrappers on the performance of

the model by reducing the dimension of the dataset to see how the model

behaved against a changing feature set size.

The following sections describe in detail how the previous experiments were

implemented.

4.2 Model selection

It is common in the context of spam detection for researchers to compare several

machine learning algorithms to select the best algorithm for their collected dataset [86]

[58] [137]. Researchers have mainly used supervised machine learning algorithms such

as NB, k-NN, RF, and LR for spam classification. For the comparison, the same DS1

dataset was used (see chapter 3, section 3.4). In terms of model performance on

classification of spam and non-spam URLs associated with tweets, the top four common

algorithms reported in the previous chapter (see section 3.4) were used. All algorithms

were implemented using scikit-learn31, which is an open source machine learning library

in Python.

In the preliminary experiment, four classifiers trained and tested using the same

set of 36 features and the same training and testing datasets. To evaluate the models, the

ground truth dataset was randomly divided into a 75% training and 25% testing set. The

Scikit-learn train/test split function generated the training and testing samples of the

whole dataset. Ten samples were generated using different random seeds, with

31 http://scikit-learn.org/stable/

109

remaining the class percentage as possible by activating stratify option while generating

the samples using the Sklearn library. The four classifiers (RF, LR, k-NN and NB) were

trained and tested. The models chosen are examples of different types of algorithms.

Although the author is aware of the new implementations of ensemble learning

algorithms such as XGBoost and CatBoost, the aim in this stage of the study is to

determine what type of method suits the nature of the data and the classification problem

in this research. The Scikit-learn default parameter values were used for all four

algorithms. To give the overall performance of each metric, the researcher averaged the

performance over ten experiments.

Table 4.1 Overall performance (average of ten experiments) using one classifier
for all attributes

Model AUC F1 Precision Recall

RF 0.92 0.92 0.96 0.89

LR 0.67 0.63 0.67 0.60

NB 0.58 0.62 0.51 0.78

k-NN (k=2) 0.80 0.78 0.79 0.76

The results shown above confirm that RF had the best performance. This aligns

with most of the studies in the literature [91][138], which conclude that RF gives higher

classification performance than the other supervised machine learning algorithms based

on their dataset. Although one of RF’s main advantages is that it does not require a fine-

tuning process for its parameters [139] to achive high performance, choosing the right

values of hyperparameters avoids overfitting/underfitting. If there is no limit in tree

depth the resulting very long and complex trees may over fit the data.

In terms of performance, the results show that the RF classifier with scikit-learn

default parameters (10 trees, undefined max depth and leaf size) reached 92 per cent in

110

the AUC and F1 performance metrics. Although other models might perform better if

the researchers reconsidered tuning the models’ hyper-parameters, as a first pilot study,

the researchers in this study just wanted to find the best models by only using the default

parameters that come with Scikit-learn. Therefore, in terms of performance, it is clear

that RF outperformed all the other trained supervised learning algorithms. Nevertheless,

in general, the pilot study and most of the previous studies agree that RF is one of the

top algorithms that could help in this type of data and classification problem.

4.3 Model performance enhancement

One of the main stages in building a practical machine learning model is model

evaluation and optimisation, i.e. tuning its hyper-parameters with the aim of improving

its performance while at the same time avoiding overfitting. Tuning a model is a trade-

off, as increasing the complexity of the model could make the model behave very well

on the ground truth training dataset but very poorly on validation of the unseen dataset,

which causes the overfitting problem. However, oversimplifying the model would also

give a poor result, especially when used for a complex problem like spam detection

where many features may be involved in decision-making. Simple models might miss

learned important insights and features of the trained dataset, so the model would show

poor prediction performance. Therefore, the researchers needed to build a well-balanced

model configuration, which could be achieved by hyper-parameter tuning and feature

selection and reduction.

To enhance the model, an experiment was conducted to reduce the number of

features used in building the model. The fewer features used, the less complex the model

will be, which leads to fewer chances to produce overfitted models. For feature selection,

two types of method were used, which are filtering and wrapper, each of which might

111

give a similar but not identical feature set due to their different ways of ranking features.

The following sub-sections will show in detail what procedures were needed to find the

best model configuration and eliminate features that would enhance the model other than

complexity.

4.3.1 Model enhancement through parameter tuning

Despite the extensive use of RF classification for detection of spam/malicious

content in OSNs, there is a lack of detailed information about how this method is used

in terms of parameter settings [86]. Not giving clear information regarding the hyper-

parameters used in building/training models could limit the reproducibility of the

reported results and validation. This practice also makes it difficult to understand the

impact of parameters on the performance of RF classification applications for OSN spam

detection. Although RF does not require high effort in fine-tuning, setting improper RF

hyper-parameters could lead to an over-fitted/under-fitted model, which could give low

detection performance when tested on new data. To explain the process of tuning the

highest-ranked algorithm in the first experiment, which is RF, first, the author needed to

identify the top hyper-parameters that have a high impact on the RF model. Based on

the literature review, the most important performance-affecting RF hyper-parameters

[73][74] are tree number, maximum depth and minimum leaf size, which are mostly

specified as the depth of trees could grow (stopping criteria) (as shown in Table 4.2).

Table 4.2 Random forest main hyper-parameters

Parameter Description

Tree number Number of trees in building the RF classifier

Max depth The maximum depth that the tree can grow

Min leaf size The minimum number of leaves a branch can have

112

As there is only two free hyper-parameters, maximum depth and minimum leaf

size, trees are numbered logically, and the more trees in RF the better. To find the best

parameter values for the model, the Scikit-learn grid search method was used. Using this

approach, the parameters could be varied based on a range of pre-specified values. All

options for all parameters cannot be considered, especially those that can be infinite,

such as tree number and maximum depth. Therefore, in the following tuning

experiments, high, medium and low numbers were assigned for such infinite hyper-

parameters.

In this experiment the following hyper-parameters of RF classification

considered: the number of trees, the maximum depth of trees, and the minimum size of

leaf nodes (i.e. of the data subset associated with such nodes). The number of data

features (i.e. data dimensionality) was kept unchanged, features selection/reduction will

be discussed later in section 4.4. For each parameter setting, 20 experiments were run

with randomly generated samples (stratified by target) for training and test datasets. To

analyse the impact of parameter settings on the classification performance, the average

performance and the standard deviation of the performance metric across the 20

experiments were calculated. The performance of the classifiers was measured in terms

of recall, precision, and F-measure. The performance results were compared using the t-

test to determine whether the difference in mean performance is statistically significant

at the significance level of p=0.05. For the comparison of standard deviations (in fact,

variances), the F-test was used with the significance level at p=0.05.

113

The number of trees

Generally, it is expected that the greater the number of trees, the better the

performance [140]. This was confirmed by the results (see Figure 4.1). The results also

show that the standard deviation of the performance values decreases as the number of

trees increases. These results are valid for all settings of maximum tree depth and leaf

node size.

Figure 4.1 The effect of the number of trees parameter on the performance of the
spam classification

 The leaf size and the maximum depth of trees are different constant values in the four panels: A) max
depth = 10, leaf size = 10; B) max depth = 44, leaf size = 10; C) max depth = 10, leaf size = 300; D) max
depth = 44, leaf size = 300.

114

The effect of the increase in the number of trees is most prominent in terms of

mean performance for random forests with large maximum tree depth. For small

maximum tree depth, adding more trees to the random forest improves the performance

in terms of reducing the standard deviation, although there is not much improvement in

terms of mean performance. In all considered cases, the mean performance does not

improve statistically significantly beyond nine trees in the random forest.

The standard deviation of the performance improves more for random forests

with smaller maximum tree depth than for those with larger maximum tree depth. The

improvement is statistically significant (at p = 0.05) up to 25 trees and becomes

insignificant beyond that.

Maximum tree depth

Maximum tree depth is one of the variables that determine the complexity of the

RF classifier. Trees can be built without any depth limit; however, in general, it is

recommended to control the tree depth to avoid overfitting [141]. Here, the effect of

varying maximum tree depth was analysed, while considering a range of fixed

combinations of the number of trees and minimum leaf size.

The results show that the maximum depth of trees has a major effect on

classification performance in the context of the spam detection problem in this research

for all considered combinations of number of trees and minimum leaf size values (see

Figure 4.2). It was found that the mean performance of the classifiers improves with the

increase in the maximum depth of the trees. This improvement is statistically significant

(at p = 0.05) up to maximum depth 16 for random forests with large minimum leaf size

and up to maximum depth 24 for random forests with small maximum leaf size. It was

115

also found that the standard deviation of performances gets smaller as the maximum

depth is increased and that this effect is the strongest for RF classifiers with large

minimum leaf size and few trees.

Figure 4.2 The effect of the tree max depth parameter on the performance of the
spam classification

The leaf size and the number of trees are different constant values in the four panels: A) number of trees

= 3, leaf size = 10; B) number of trees = 41, leaf size = 10; C) number of trees = 3, leaf size = 300; D)

number of trees = 41, leaf size = 300.

These results show that setting the maximum tree depth too low leads to low

classification performance irrespective of the minimum leaf size and the number of trees

(see Figure 4.2 for maximum tree depth below 8 in all four panels). Setting the maximum

tree depth high may not lead to trees with that depth due to the limit on the minimum

116

leaf size; however, setting low leaf size and high maximum depth could lead to overly

deep and complex trees that could show high performance on the training dataset but

poorly when tested on unseen examples.

Minimum leaf size

Figure 4.3 The effect of the leaf size parameter on the performance of the spam
classification

The maximum tree depth and the number of trees are different constant values in the four panels: A)

number of trees = 3, max depth = 8; B) number of trees = 3, max depth = 44; C) number of trees = 41,

max depth = 8; D) number of trees = 41, max depth = 44.

The minimum leaf size controls the complexity of the decision trees by setting a

size limit for the data subsets associated with leaf nodes, consequently preventing the

adding of further decision nodes to the tree after the nodes reach this limit. The effect of

117

changing the minimum leaf node size have been investigated while keeping the number

of trees constant and the maximum tree depth for RF classifiers applied to the spam

detection task.

The results show that the increase in the minimum leaf size reduces the

performance of the classifier in all cases (see Figure 4.3). This effect is much more

pronounced in the case of classifiers with high maximum tree depth than in the case of

classifiers with low maximum tree depth. This because the similar effect of both

parameter, short trees have large leaf size and vice versa. The effect is similar for

different numbers of trees in the classifiers, the only difference being that for a large

number of trees, the standard deviation of performance is lower than for a small number

of trees.

For RF classifiers with low maximum tree depth, the minimum leaf size has a

statistically significant effect on the performance if it is larger than 30 (number of trees)

or 50 (few trees). This indicates that in these cases, the limited depth of the trees implies

the limited performance of the classifiers for smaller minimum leaf sizes. Conversely,

for classifiers with high maximum tree depth, the effect of the leaf size is statistically

significant for all values of this (i.e. larger minimum leaf size implies significantly

reduced performance).

4.3.2 Experiment summary

The experiments’ analysis shows that the parameters of the RF classifiers, number of

trees, maximum tree depth and minimum leaf size, are important determinants of the

performance of these classifiers. In the context of the spam detection task in this

research, the classifiers that were built perform very well if the number of trees is

sufficiently large, the maximum tree depth is sufficiently high, and the minimum leaf

118

size is sufficiently low. However, the generalising power of the classifier could be

affected by how deep trees are and minimum leaf size. Although the number of trees is

always better to support performance and make the classifier less over-fitted to the

dataset, performance enhancement could indicate the feasibility of increasing trees in

random forest.

The results show that the number of trees has a relatively small impact and that

beyond certain number of trees, however more trees could stabilise the performance of

random forest classifier. The minimum leaf size has more effect, especially for

classifiers with high maximum tree depth, for which even small changes in the minimum

leaf size have a significant impact on the performance. Finally, the maximum tree depth

has a significant effect on the performance for low values of this parameter and the effect

diminishes below significance for depth values above 16 or 24 for small and big

minimum leaf size respectively.

This implies that the number of trees and maximum tree depth should be set to

moderate values to achieve good performance without an excessive computational

burden and be less prone to overfitting. A minimum leaf size that is too small combined

with a maximum tree depth that is excessively large is likely to lead to overfitting (note

that the overfitting is because of the trees and not because of the forest arrangement of

the trees [79], [142]). Therefore, controlling the minimum leaf size is important, and

again it should be set to a moderate value to avoid overfitting and excessive unnecessary

computation. The experiment results show that the performance changed dramatically

by changing certain hyper-parameters, for example, the depth size in one tree model or

number of trees hyper-parameter in a random forest model. Therefore, clearly stating the

119

hyper-parameters of the machine learning model would help other researchers to

replicate models.

4.3.3 Hyper-parameter tuning and overfitting

Overfitting is a potential problem for decision tree learning [142] and

consequently for RF classifiers as well (note that the number of trees does not cause

overfitting by itself [79]). Dealing with this is important, since excessively good results

generated by overfitting decision tree solutions of classification problems are

misleading. In particular, this is an important issue in the context of OSN spam

classification because of the popularity of RF classification in this application domain

and the potential impact of incorrect classification of social media messages.

The results confirm the expectation that imposing a limit on the maximum depth

of the decision trees and on the minimum size of the data subsets associated with leaf

nodes of the trees reduces the potential for overfitting. The results quantify these limits

and the impact of going beyond these limits in the context of the particular dataset of

non-spam and spam tweets.

The number of trees in the RF classifier mainly impacts the standard deviation

of the classification results. The number of trees also has an impact on the amount of

time required to train the classifier (the required time is proportional to the number of

trees). This means that at the expense of the computation time, the robustness of the

classification results can be improved by adding trees to the random forest. However,

the results also show that the gain in reduction of the standard deviation of the

classification performance becomes insignificant beyond a certain number of trees.

The work in this study implies that in general, when RF classification is applied

to spam detection in OSNs, the impact of maximum tree depth, leaf node size and

120

number of trees should be assessed to determine the sufficient values of these so that

overfitting is avoided and performance gains are realised. This also means that the results

of such applications should be reported with sufficient metadata about the application,

including the number of trees, maximum tree depth, minimum leaf size, and any other

parameters that have an impact on the performance of the RF classifier for which results

are reported.

Naturally, the results in this study are limited in terms of specific values that

were found for RF classification parameters regarding the tweet dataset that was used.

However, the main conclusions from the analysis illustrate the importance of the

determination and reporting of RF parameters. Moreover, this process is not limited to

this classification problem but is also valid for any classification application of this

method.

4.4 Model enhancement by feature selection

Selecting the top feature set is one of the important parts of building a machine

learning model, as reducing features reduces the complexity of the model and the

overfitting risk. However, the method used to remove features needs to be studied since

the model is primarily built on good features, so removing them could lead to a rapid

decrease in the model’s performance. Evaluating features, which is also known as the

feature importance score, is an essential process to understand the dataset that

researchers rely on to build models. Moreover, it enables the researcher to distinguish

between good features and irrelevant features. Eliminating redundant and noisy features

could cause performance improvement [143]. There are several existing methods to

perform feature selection, such as the wrapper and filter methods [144]. The feature

selection procedure was conducted in two stages. In the first stage, each feature in the

121

original feature set was evaluated by applying a number of available feature selection

metrics. Second, top k features were chosen which should have the highest

discriminative power and ignored features that have negative impact on the model’s

performance [67].

The wrapper method concept is based on model performance, and every chosen

subset of features is used to build a classifier and evaluate its performance until the

optimal subset is found with the lowest error rate. For a high-dimensional dataset, the

wrapper method could be a costly and time-consuming method; however, the wrapper

method is one of the highly efficient methods as its feature evaluation relies directly on

the classifier performance. It has been shown [145] that the wrapper method achieves

higher classification accuracy than the filter method. Despite the high computational

resources required, it is recommended that the wrapper method is applied for such

classification problems when the number of features is within the computing capability.

As the aim of this research is to increase the detection performance, and the number of

features is within the computational resources the system used, this method was

considered for further investigations.

The MDA [146] is determined by ranking features based on the decrease in

performance value after removing features one at a time. Essential features should show

a negative impact when they are removed. Conversely, less important features should

have no significant negative impact when removed. However, as mentioned earlier,

some features acting as noise could have a negative impact on the model. Removing

such features might improve the performance of the model.

As feature correlation is an issue in building a machine learning model,

multicollinearity happens when some features have a correlation with each other.

122

Features could have a different shape or relation such as correlated and causal, redundant

or noisy. Therefore, it is important to have domain knowledge to understand features

and their relations. Features could rationally understand the logic correlation such as

account age and tweet number, so a newly created Twitter account should have a low

tweet number. On the other hand, it could be more complicated to discover some

correlations without statistical tests and feature selection algorithms. Feature selection

would also help to get rid of such correlated features that have a negative impact on

models. When a decision tree-based model is built, if there are correlated features when

the tree is split on one of the correlated features, the importance of the other one will be

reduced as its affect has already been applied by the correlated feature. However, the

importance of RF features will give unreliable feature importance as both correlated

features will be giving a somewhat relevant feature importance, which is due to the

sampling.

 The method used in feature selection in this thesis could handle the issue of

multicollinearity by removing features and measuring whether removing a feature

whether would have a negative, positive or even no effect. Therefore, removing

correlated features may not show any effect on the model or it could enhance the model

performance. The negative impact of this method is that the model might lose semi-

correlated features that needed to be pre-processed, for example, combining them in a

feature dimension method such as principal component analysis.

The filter method uses importance measurement methods to assess the

information content of features and possibly their correlation with the target

classification. Unlike the wrapper method, the filter method does not rely on classifier

performance to rank features’ importance, making its application much faster. Table 4.3

123

shows the features’ importance ranking based on three methods, information gain, Gini

Index (filter methods) and MDA, which is a wrapper method. It worth mentioning that

the results below are from the first dataset (DS1) collected during the study.

Table 4.3 Ranking of features based on information gain, Gini index and mean
decrease average

Feature Info. Gain Gini Index MDA

1 Domain age (WHOIS) 1 2 1

2 Number of digits in link (URL) 2 1 2

3 Number of external links (web page) 7 6 5

4 Ratio of age to number of tweets (Twitter) 3 3 8

5 Link letters (URL) 4 5 11

6 Number of links (web page) 8 7 7

7 Number of images (web page) 11 9 4

8 Number of dots in link 13 13 6

9 Ratio of words to external links (web page) 6 10 12

10 Number of input forms (web page) 12 12 3

11 Number of words (web page) 10 11 10

12 Link length (URL) 5 8 13

13 User statuses count (Twitter) 9 4 15

14 Number of link signs (web page) 14 14 14

15 Number of ad blocked links (web page) 20 18 9

16 User friends count (Twitter) 15 15 16

17 Account age (Twitter) 17 16 17

18 User followers count (Twitter) 16 17 22

19 User favourites count (Twitter) 18 19 18

20 Number of hashtags (Twitter) 21 21 20

21 User listed count (Twitter) 19 20 24

22 Does link contain ‘www’32? 25 24 19

32 http://www.yes-www.org/why-use-www/

124

Feature Info. Gain Gini Index MDA

23 Does web page have password input? (web page) 27 25 21

24 Link letters (URL) 22 23 27

25 Does tweet have media? (Twitter) 28 27 23

26 Number of mentions (Twitter) 23 22 26

27 User name length (Twitter) 24 26 30

28 Is https protocol used in URL? (URL) 26 28 25

29 User name digits (Twitter) 29 29 31

30 Is tweet is a reply tweet? (Twitter) 33 31 28

31 Number of URLs (Twitter) 32 33 29

32 User name signs (Twitter) 30 30 33

33 Is user geo-enabled? (Twitter) 31 32 32

34 Default profile image (Twitter) 34 34 34

35 Is user account verified? (Twitter) 35 35 35

36 Is user account protected? (Twitter) 36 36 36

The features’ importance is varied; each method ranks features’ importance

somewhat differently, although there is general agreement on the top and bottom, which

are the best and worst features. In this stage, the author aimed to select the top k features

that give the best classification performance. To conduct feature selection, first, the

lowest-ranked features were eliminated from the three ranking lists that were produced

by three different evaluating techniques. Therefore, at each number of features, an RF

classifier was built based on the new feature set, then compared it to the original

performance achieved by using the feature set with all the original 36 features. The

stopping criterion was whenever the performance was statistically less than the

performance of the first classifier the researchers built using all features, which was 0.89

in the recall. Figure 4.4 shows the performance of classifiers against the number of

125

features used. Each time the RF classification model was evaluated, 10-kfold cross-

validation method was used to evaluate classifiers based on the recall metric.

Figure 4.4 RF classification performance based on the selected features.
The vertical axis is the performance in Recall and the horizontal axis shows

number of features as it is decreasing from left to right. The yellow horizontal
line is the model performance using all the features.

In Figure 4.4, the horizontal axis represents the number of top features used to

build the classifier, and the vertical axis represents the performance in recall. To assess

the impact of features on the classification performance, features removed one by one

from the three ranking lists, starting from the original 36 features. The performance of

the classifier that was built using the original feature set (with 36 features) is shown as

the horizontal line fixed with the performance at 0.897 in recall in Figure 4.4. This was

used as a benchmark performance to assess the extent of improvement or degradation in

classification performance caused by elimination of features. Figure 4.4 does not show

classifiers’ performance for less than six features, as the performance drops considerably

with further reduction of the number of top features. The classifier performance

126

improved as the lower-ranking features were removed. The filter methods reached their

peak performance (0.908) for 13 features for the Gini impurity features ranking list and

for 12 features (0.907) for the information gain features ranking list. Conversely, the

MDA-based elimination of features reached its best classification performance (0.916)

for nine features. All subsets of features that were generated from different methods

show improved classifier performance compared to the model built using all the features.

4.5 Enhance model performance by adding more training data

The more data used for training, the better the model will perform. However, in

some cases, the resulting performance enhancement is small compared to the difficulty

of acquiring accurate labelled data. Figure 4.5 illustrates the model’s behaviour

according to the size of the data used in training. It shows that models reach a point

where the chance of overfitting becomes less likely. However, the model improvement

reaches a point where adding more data does not significantly change the performance.

This led to further investigations being conducted to improve the performance further.

Figure 4.5 RF incremental learning curve according to DS1
random forest performance according to the size of training data used

127

 From 20,000 training data points onwards, the cross-validation performance did

not change significantly, which means that adding more training data points would not

lead to significant performance improvement. Therefore, better descrimantive features

needed to be found instead of continuing to collect/extract the same features used in

DS1. That is why DS2 was collected, which has a higher number of features and was

labelled with an extra manual validation stage to develop an accurate ground truth

dataset. DS2 was used in all the experments described in the next chapter so that a better

model could be built using a dataset with higher dimensions. The next chapter will

discuss the use of more complex models that was investigated. More advanced and

complex models can be achieved by adding more discriminative features to the dataset

used [146].

4.6 Conclusion

In this preliminary experiment, the author first investigated several supervised

machine learning models to find which type of algorithm gives good results without

going further into tuning it. Further time and effort was invested to optimise the chosen

algorithm (RF) and come up with the best hyper-parameters for the dataset, the highest

performing model using the smallest number of features and the smallest structural

parameters (tree number, max tree depth and maximum leaf size), to find the least

complex but high-performing classifier.

As RF showed the highest performance among the compared algorithms, the

researchers went further to determine the main hyper-parameters that limit the model’s

performance and complexity. Experiments show that the tree number hyper-parameter

in RF gives more stable results; however, it could reach a point when more trees do not

add any significant impact to the performance. However, trees’ stopping criteria hyper-

128

parameters, such as tree depth and minimum sample leaf, have a direct impact on the

model complexity, so choosing the optimal values that give good results but are not

overfitted to the trained dataset is essential for model evolution. For parameter tuning,

the aim was to determine the best setting for the number of trees, the size of leaf nodes

and the depth of the trees in the RF classifier. However, these numbers would be suitable

only for the training set used.

Then another experiment was conducted to study three feature selection methods

that belong to two techniques, which are the filter and wrapper methods. First, the

required minimal structural hyper-parameter values of RF were determined. Following

this, a model was built using all the features and the feature set was reduced to the

minimally required set. The best feature set reduction was achieved using the

computationally costly MDA wrapper method; however, relatively similar performance

(although statistically significantly lower) and feature set reduction was achieved by

using the two chosen filtering methods as well.

In summary, the results show that the process of hyper-parameter tuning is

essential and can make a difference in terms of finding the balance of high performance

and encountering an overfitting problem. Furthermore, the feature selection process

could enhance performance and reduce the resources required for extracting expensive

unnecessary features or by reducing the dataset dimension. Focusing on using only

important features in building the classification model reduces the model’s unnecessary

complexity. It is also important to report the parameter values and the details of the

feature set optimisation method that was applied to guarantee the reproducibility of the

results reported in studies.

129

More Informative Features and Ensemble

Learning Methods Used to Detect Malicious

URLs on Twitter

130

5.1 Introduction

The previous chapter gives a clear understanding of what is required when

building a machine learning-based detection method, such as model selection, tuning,

and feature selection. As an ensemble-based model (RF) showed better results, further

investigations were conducted by studying several ensemble methods using tree-based

models. More ensemble learning models are used in this chapter’s experiments, such as

XGBoost, extra random trees and gradient boosting trees. Moreover, in the second part

of these experiments, several ensemble learning models were combined using two

methods of combination. Combining models could aid in optimising performance by

producing an even better model or/and could contribute to the process of model

selection. Therefore, in this chapter the aim is to investigate the possibility of achieving

both or at least one of the previous goals.

It was also shown in the previous chapter that the model enhancement reached a

point where no further improvement could be achieved even when more data was used

in training. Therefore, to overcome this issue, all the experiments applied in this chapter

are based on DS2, which contains deeper features extracted from several sources. To

obtain further information about the nature of this dataset and what new features were

added and what features were eliminated, see section 3.3 in chapter 3.

5.2 New dataset and new features deployed

The previous dataset and model could not get higher than a certain performance

regardless of how much more data was presented, which can be solved by building a

more advanced model. The model complexity can be adjusted by the hyper-parameters

or by adding more features. As building a supervised machine learning classifier requires

a highly accurate and reliable ground truth dataset, in this experiment the researchers

131

used another dataset (DS2), which has higher discriminative power features and of

which the labelling process was more robust and precise.

A) Information Gain ranking B) ReliefF ranking [34]

Figure 5.1 Comparison of DS1 and DS2 features importance based on two
feature ranking methods

Figure 5.1 shows a comparison between DS1 and DS2 features importance

measured using two different methods information gain and relief. Using both features

importance ranking method DS2 have shown it has higher features importance compared

to DS1 and also more features. Due to this robustness and more complicated features

being extracted, DS2 is smaller (6,000 tweets/URLs) than DS1 (the majority of features

come from the social network side). More details about the labelling and the features

extraction methods that applied in collecting and building both DS1 and DS2 are

outlined in section 3.3.

5.3 Ensemble learning methods

Several learning algorithms have been investigated in the domain of spam

content detection on OSNs. Among the most common algorithms used in previous

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Info. Gain DS2

Info. Gain DS1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

ReliefF DS2

ReliefF DS1

132

studies [58][86], the ensemble learning algorithm RF more often outperforms others

such as a solo learner (k-NN, DT and NB). In studies such as [86][58][17], algorithms

that are based on ensemble techniques such as RF and boosting trees showed better

performance than a single model. This is consistent with previous observations which

show that ensemble models show better performance than individual models [76].

Table 5.1 Common features and classifiers used in the literature (algorithm with
highest performance identified by bold type)

Study Learning Algorithms Features

[86] SVM, k-NN, RF, DT and NB Twitter meta features (text not used)

[58] LR, k-NN, RF and NB URL, Twitter, web page content

[17] XGBoost, LogitBoost and RF
OSN metadata and behaviours (worked on fake
likes)

[147]
RF, C4.5 (DT) and Combined
classifiers (built using different
datasets)

Statistical features derived from Twitter
metadata

[148]
Regularised SVM and Regularised
Logistic Regression

Twitter metadata, text similarities

[137] RF, SVM, k-NN, GBM and XGBoost Posting pattern

According to the literature review, RF is one of the most common algorithms

used in this domain. In terms of performance against other supervised learning

algorithms, it is often ranked highest (this also aligns with the researchers’ preliminary

study). However, several ensemble learning algorithms recently started to compete with

RF and gradient boosted trees, which are XGBoost [78], LightGBM, and CatBoost. All

new implementations of the gradient boosted tree method have started to attract

increased interest and give better accuracy and speed in learning.

Ensemble models consist of several models which could all be built using the

same or different types of machine learning algorithms. The classification decision is

made based on the ensemble method used, which can use unweighted or weighted

voting. Unweighted voting means that there are not priorities for classifiers and all have

133

the same decision power. Ensemble learning aims to perform better and be less prone to

overfitting than a single model [76]. For more details of all the ensemble learning

algorithms used in this experiment, see chapter 2, section 2.4.4. Boosting and bagging

are both ensemble learning techniques. Bagging uses several base learners trained on

different samples, whereas boosting is a single model repeatedly trained on a weight-

adjusted dataset. These differences mean that they might develop different learning

hypotheses on the same dataset, which in this study suggests that it is potentially possible

to integrate the two methods’ algorithms into one stacked model, which could result in

an even better model that complements each method.

5.4 Experiment methodology

This chapter’s experiments aim to find a way to use several models and combine

them in a way that can make them work in calibrated methods. Coming up with such a

way would avoid the stage of selecting and comparing models, as the main aim of the

thesis is to develop a system that can automatically retrain and select models. Other

experiments also investigated in more detail more advanced ensemble learning

algorithms that belong to boosting and bagging methods. The experiments in this

chapter can be summarised as follows:

1. Ensemble (boosting and bagging) and non-ensemble learning algorithms

were built using DS2 and evaluated and ranked based on their

performance.

2. Models were sub-grouped into three groups based on the range of their

performance (all models, top five models, and top three models).

134

3. All groups were combined using two methods that were equally

weighted, the voting and stacking methods, as this experiment will help

in finding a way to automate the model selection process by combining

them.

4. The combined method was examined to determine which one will be

more suitable to take the role of model selection in SuspectRate.

As ensemble learning is a promising approach, in this study, the author has

investigated several ensemble methods applied to the problem of malicious URL

detection on OSNs. Therefore, in this chapter, the experiments started by comparing the

most common and new ensemble learning tree-based models to see which give better

results with the dataset and nature of the problem in this research.

Using the DS2 ground truth dataset, several bagging and boosting classifiers

were built: RF, extra trees (extremely randomised trees), AdaBoost, and XGBoost. For

each model, the author used stratified 10-fold cross-validation, as this is considered an

efficient way to prevent the overfitting problem [149]. The experiment was repeated 20

times by varying the stratified 10-fold seed every time.

In this experiment, unified common hyper-parameters were used for all the

classification algorithms using decision trees as the base learner. For research

reproducibility, the parameters used to build the base classifiers and overall ensemble

models are as follows. The number of trees used in RF and extremely randomised trees

was 333. The author also used 333 to represent the number of boosting iterations before

combining the models’ predictions. Regarding the tree’s maximum depth, in the

boosting model, the number was fixed at 6, but 10 was set in the RF trees and extremely

135

randomised trees. Trees in RF and extremely randomised trees grew until they reached

a leaf with a minimum of 30 leaves. These numbers were chosen after conducting

experiments on tuning each classifier’s number of hyper-parameters. Generally,

boosting methods use weak base classifiers (short trees) for training, unlike RF

algorithms, which build full deep tree classifiers [83]. RF, AdaBoost, extra trees and

gradient boosting algorithms were implemented using Scikit-learn (an open source

machine learning library in Python). However, XGBoost was implemented using an

open source library in Python and R [78].

In the second part of the experiment, the aim was to study two ways of combining

methods which are better in terms of overall performance and require less human

intervention. The first method averaged the individual predictions; the second method

used the stacking ensemble method to come up with the final prediction from all the

predictions inputted into the meta-learner classifier. The models used were derived from

different methods of learning, such as trees, nearest neighbour and logistic regression,

and the detection performance could range from high to low classifiers.

5.5 Results and evaluation

To evaluate the classifiers, the commonly used evaluation metrics of ROC-AUC,

Logloss, and F-score were used. Table 5.2 provides a brief definition of the evaluation

metrics used in this study.

Table 5.2 Definition of metrics

Metric Brief definition

F1 score
(weighted)

The average of recall and precision (weighted by the percentage of each class).
Weighted means that each class score is averaged based on its percentage in the
test dataset.

Logloss Represents the certainty of model prediction probability as the best value is 0.

Roc-auc See sub-section Classification performance on page 97.

136

Table 5.3 presents the overall performance of all the implemented models. The

models with the highest performance are highlighted in bold according to the metric,

and those that are underlined came second. Ensemble learning classification algorithms

came first in terms of performance.

Table 5.3 Results of models using stratified 10-fold cross-validation method

Model Logloss F1 ROC-AUC

XGBoost 0.2258 0.9080 0.9056

RF Classifier 0.2906 0.9055 0.9037

Gradient Boosting
Classifier

0.3221 0.9050 0.9028

Extra Trees Classifier 0.4654 0.8617 0.8541

AdaBoost Classifier 0.6771 0.8916 0.8896

Gaussian NB 0.7914 0.7468 0.7372

Logistic Regression
Classifier

0.5086 0.7507 0.7411

K-Neighbours Classifier 0.6143 0.6597 0.6513

All ensemble classifiers achieved at least 85 per cent in ROC-AUC (with Extra

Trees showing the lowest performance). Generally, non-ensemble models show lowest-

performing classifiers which are Gaussian NB, K-Neighbours Classifier, and Logistic

Regression Classifier. The Scikit-learn implementation of gradient boosting trees

performed slightly worse than bagging RF; however, XGBoost was ranked first when

using the same trees numbers with an increase in classification performance to 0.904.

The majority of all the metrics used to compare the performance of models showed that

the top three performing algorithms were XGBoost, RF, and Gradient Boosting

Classifier.

The results of the second part of the experiment are presented in Figure 5.2,

showing several sets of models built and combined using averaging and stacking

137

methods. Three sets of models were studied to determine which combination method

suits the dataset and nature of the problem in this research. Table 5.4 shows the three

model sets used in this part of the experiment. Figure 5.2 shows that the averaging top

selected models work better than the stacking method. However, when there is diversity

in a model’s performance, the averaging method performance declines; this happened in

the group of the best five and the set with all the models.

Table 5.4 Model sets used in combination methods

Model Set Models Involved

All Models All models in Table 5.3

Top 3 Models XGBoost, Gradient Boosting trees and RF

Top 5 Models XGBoost, Extra Trees, RF, Gradient Boosting and AdaBoost

Figure 5.2 Models’ performance according to F1 metric
model on the left XGB is the highest model compared with varied combined

models groups

138

Although combining methods such as the voting method (soft) and stacking did

indicate a statistically significant improvement, there were relatively small advantages

compared to the best singular model, which is XGBoost. However, the advantages of

these methods will be clearly shown when the model is used later in the SuspectRate

spam detection systems to automate the process of model selection. A framework was

being developed that supported automating the process of model selection by stacking

several heterogeneous or homogeneous. models. However, preferably, stacked models

have a different learning methodology or are even built using different hyper-parameter

settings. The author aims to use the model selection/combining method that can exploit

each model’s strengths and is not significantly affected by the model’s weaknesses.

Figure 5.3 Methods used for combining predictions of several machine learning
models

The stacking method shows better performance in integrating different models

in terms of method of learning and performance. At the same time, the stacking method

does not decline rapidly (as averaging methods do) when weak classifiers are stacked up

with the models. This is due to stacking split datasets into subsamples and using

Dataset

XGBoost

GB

RF

LR

Voting
Classifie

Prediction

Random
Forest

Prediction

139

evaluated features (first stage classifier predictions) for each sample, so it is unlikely that

one classifier is always the best for each random sample. Therefore, weak classifiers will

not be chosen unless they show some advantages on the subsample of the dataset, where

they could be chosen and help the overall prediction performance. Voting classifiers

which work on averaging the predictions output of the input classifiers achieve better

and more stable performance when input is limited on top classifiers only. However, the

process of model selection is necessary to filter out all the weak classifiers before

averaging the top ones to achieve better performance.

 In general, combining models using bagging, boosting or stacking helps in

achieving better results. Regarding how to choose among different models using

different ensemble methods, in this study, two methods could be used to fully and

partially automate the process of model selection among several available models.

Figure 5.4 shows the top three models’ and top two combined models performance using

F1, accuracy and roc-auc and it show two possible ways to combined heterogeneous

models voting and stacking. Top three models voting mainly used if the main priority is

selecting the highest performance, an extra step is needed for ranking and evaluating the

models. In the case of stacking model, when there is no need to evaluate the models, the

predictions should be given to another machine learning model to make the decision of

selecting the best combination of models. As the aim is to build an automated spam

detection system, the stacking method will be used that shows more robustness in

dealing with heterogeneous models even when weak classifiers exist in the stacked

classifiers. Therefore, the next chapter will describe the developed framework

‘SuspectRate’ and explain how the stacking method helped in automating the process of

model selection.

140

Figure 5.4 Top models vs top combined model

5.6 More data, better performance

 To gain a full understanding of the classifiers used, the author compared the

experiment and its behaviour while increasing the training data size. In the previous

chapter, the researchers did test the impact of adding more data for training. Although

DS1 was larger, it reached a point when adding more data showed no significant

improvement.

Figure 5.5 shows the top three models (RF, XGBoost and Gradient boosting

trees) and top voting and stacking models performance behaviours on the vertical axis

over the horizontal axis, which represents the used percentage of the training dataset.

Figure 5.5 shows the top three ensemble models’ learning curves; each curve plots the

F1 value against the number of training examples. The points of the curves represent the

F1 average of stratified 10-fold cross-validation. Figure 5.5 shows the models’

performance using the F1 metric, where it is evident that at the first training split, most

0.902

0.904

0.906

0.908

0.91

0.912

0.914

GB RF XGB Vote3 stackall

accuracy_score f1_score roc_auc_score

141

models had very similar performance, and then the stacking model and combined top

three classifiers model started to outperform in almost all the portions of the training

dataset.

Figure 5.5 Learning curves for ensemble learning models using the F1 metric.

The figure shows the classifiers’ performance behaviour as more data is used for

training.

The learning curves of the algorithms on the dataset have similar trends among

the algorithms. As Figure 5.5 shows, F1 performances increases in an almost constant

value when the number of training instances is increasing. When these learners learned

more than a quarter of the dataset, the combined model tended to outperform other

142

models. The results obtained indicate that in general, the models’ performance is

enhanced when more training instances are provided. Furthermore, compared to the

previous experiment in section 4.5, better results were achieved with a small amount of

data but more informative features and using more advanced ensemble models.

5.7 Conclusion

Several experiments are reported in this chapter, which starts by comparing the

two datasets built during this research and how they differ in terms of the number of

features and their importance. One of the main methods to build even more complex and

advanced models is using more and better discriminative power features or by using

more training dataset.

Then further ensemble classification algorithms that rely on different learning

mechanism such as boosting, bagging and stacking were used. Boosting and bagging

algorithms such as XGBoost, gradient boosting trees and RF gave the models with the

highest performance. For stacking, the researchers aimed to find a model with even

better performance that combined several boosting and bagging models and performed

as one calibrated model. The aim was to find a method to abstract the process of selecting

the best model.

As there are many different types of spam content, such as advertisements,

pornography and fake software or malware distribution, no single classifier can be

suitable for all these types of spam. Different algorithms respond differently to dataset

characteristics, such as class imbalance, noise, and outliers. For example, boosting gives

better results than bagging when trained on purer datasets, whereas bagging algorithms

are better for handling noisy (collection and features extraction errors) datasets because

of the bootstrapping process [150], [151]. This is the advantage of combining several

143

ensemble classifiers and using the strengths and weaknesses of each to support the others

in the decision-making process [152]. Thus, the researchers can contribute to the process

of building smart detection systems that integrate more than one machine learning

algorithm based model and able to retrain classifiers periodically. Each classification

algorithm could look at the data from a distinct perspective, so a system could be used

for different types of spam.

The majority of previous studies that have compared several algorithms for spam

detection in social networks have shown that ensemble learning algorithms achieve the

best performance. In this chapter, two ways of combining models were tested, which

showed that it is possible to achieve better and more stable performance by combining

several heterogeneous models (boosting, bagging and non-ensemble-based models) than

rely on solo model. Besides the enhancement archived by combining models, used

combining methods can be used to automate the model selection process.

144

‘SuspectRate’ – a Spam Detection System

145

6.1 Introduction

Social networks accept content of users that has an attached URL leading to more

details or referring to an external page outside the social network platform. Those URLs

lead to external content which can pose various types of threat to the users, ranging from

compromising their connected devices to exposing them to low-quality content.

Although the blacklists used in all OSNs are useful to eliminate the content that has

already been discovered and listed, the real challenge is when the OSNs’ system receives

a new spam URL/domain with no history. Spam URLs/domains with no history get

passed by the blacklists filter and are distributed to thousands of users in real time. The

time gap between content with suspicious content attached being distributed through the

network and being detected and listed on a blacklist is what security centres and

researchers are trying to narrow.

Consequently, a system designed and developed to reduce this gap and provide

decision support for a security administrator to update blacklists in a shorter time. The

system’s goal is to be near to the real time, reliable and able to generalise to detect newly

suspicious content with high accuracy. SuspectRate, is a tweet (with URL) analysis

system that developed by the author. SuspectRate can crawl URLs and extract features

to check them against pre-trained machine learning models.

A decision in the developed system is based on features that were previously

studied and proved their effectiveness in chapters four and five. The features are based

on analysing the lexical and URL structure. In addition to features that represent the

behaviours of the web pages, JavaScript events that were triggered by a page

loading/unloading event were used. Moreover, web page behaviours were used against

events that the developed system generated to test the web page, such as mouse click

146

and page closing event. As there has been a rise in popup windows leading users to

different pages, this could be the real threat that the attacker wanted to lead the OSN

users to.

In this system, when the researchers refer to suspicious URLs or content, this means

any content that could range from low-quality untruthful content to harmful malware or

virus content. Adult content (pornography sites) is considered as spam content based on

Twitter terms. Therefore, the goal of this system is to provide a suspicious rating for

every attached URL in streamed content in OSNs.

6.2 Design goals

As discussed in section 2.6, one of the drawbacks in current machine learning-

based solutions is that they are built and trained on a constant ground truth dataset that

could represent the spam methods and tricks at that time, but spammers are continually

developing new tricks that can bypass those systems. Therefore, there is a need to build

a framework that makes the proposed machine learning models adaptable and does not

lose its effectiveness over time. The researchers plan to provide OSN platforms with a

tool to detect suspicious content and remove it. The design goals can be summarised in

these main points:

1. To automate the process of deploying a machine learning model to detect

suspicious content on Twitter

2. To have the ability to be adaptive to the new techniques and tricks that

spammers use to bypass systems

3. To have the ability to auto retrain internal machine learning models

4. To automate the process of model selection

5. To provide highly accurate and reliable classification

147

6. To have the ability to be updateable in terms of data use for training and

models.

Currently, the systems work as software as a service (SaaS), where users are

required to send links of their timeline and keywords they want to follow or collect and

the system will assess and send tweets’ IDs back to the users with an associated number

that represents the tweet suspect rate. The practical value of the system at its current

development status is to be used for collection and labelling tool for those who rely on

social network as a data source. For example, researchers or analysis companies who

rely on Twitter need to spend high effort on collecting and cleaning tweets and its

attached data before performing further analysis. As twitter could contain high

percentage of spam and low-quality content that have no real impact on studying real

human interaction on social media. For thus, this system can be useful for collecting data

from twitter and each tweet will be evaluated from zero as genuine to one as suspicious,

so researchers will have the ability to assign the best threshold percentage to accept or

discarded tweets. Saving researchers time in collecting and cleaning and make them

more focussing on building better models would enhance research productivity.

But one of the future work plans is make an API access to this system, so several

solutions can be built on the top of this service. For example, web browsers extension

that automatically send post/tweets URLs to SuspectRate via API requests and give early

warning to users if it has high suspicious rate.

6.3 System flow and structure

The system’s main components can be divided into external components that

users connect to and internal components where the system does all the training and

148

model evaluation and selection. To help users to connect to the system, a web interface

was built that has forms for submitting a task and checking the status of the submitted

task. Internally, there are several components, tweet collection, feature extraction, and

data preparation and classification, which are presented in Figure 6.1. All the

components are shown in Figure 6.1, and the components and flow of the system are

described in detail in this section.

Figure 6.1 System's main components
flow starts from system web interface and ends by sending email to the client,

small grey area represents the internal retraining process that conducted
periodically

All components are developed from scratch starting from building a web

interface and uploading datasets to the system host and then importing data into a

database. Collecting data depends on the type of source, which could be direct tweet IDs

or monitoring specific keywords or hashtags. Then feature extraction components (see

Figure 6.2) are developed as each one requires specific and customised methods to

obtain the required data. Moreover, system models are maintained and an automatic

149

retraining schedule is internally programmed to be run daily. Finally, the results are

prepared and the applicant is notified that the results are ready to download.

Task input (using Web GUI): The system’s web interface is the main port to

use the researchers’ prototype system. Users can submit their task through simple forms

that require name, email and file, keyword or hashtag. Users can submit tweet IDs for

the researchers to carry out the collection and sequences process or if users want to

collect data from the tweet stream that contains specific keywords or hashtags. After a

user submits a task to the system, they will receive a confirmation that contains details

of the task ID and the expected finishing time or date. They will also be referred to the

status page where they can check the task completion percentage.

Tweet collection, feature extraction and data preparation: Connecting to

Twitter to retrieve a task tweet is the first thing the system does, and then all retrieved

tweets are stored in a database (called requests DB). The feature extraction component

starts once a new tweet is added to the table. This component contains several

subcomponents that focus on extracting groups of features from various sources. Figure

6.2 shows in detail the inner process applied to each request to get into this component,

starting with getting the final landing page from the unshortened tweet’s URL (if shorted

link) and ending with the process of combining all the features and transforming them

into an accepted machine learning format.

150

Figure 6.2 Feature extraction internal processes
extracting feature process start by retrieving URL from the database and ends

back with all extracted features to the database.

The URL redirection feature shows the number of redirection URLs included

before reaching the landing page. The pages opened during this URL redirection process

were stored. Once the researchers reach the landing page, they start crawling the page

using Selenium WebDriver (Google Chrome and Firefox). The landing page domain

name is then passed to WHOIS feature extraction, which does domain WHOIS

information requests and parses response data to obtain valuable information about

domain ages and registrar information. In the final process of the feature extraction

component, the system’s feature validation and transformation component carry out the

final data validation to check whether all the features that needed to be used in the

detection model exist and have been transformed into an accepted machine learning

format, which is called the machine learning domain features vector. The process of

151

checking features’ formats is done automatically without any human intervention.

Features should follow certain criteria and validate them before being inserted back into

the database.

Finally, all the features and data collected are returned to the requests database;

however, this time it is flagged as ready to be used against the system detection model.

For further information about the features used in this system and the implementation

and techniques involved, see chapter 3, section 3.3.1.

Classification stage: This stage contains pre-trained machine learning models

which will be used to give the suspicion probability for each tweet (with URLs attached).

In the back end of the system, there is already a specific component of which the main

goal is to conduct model training and model selection. The next section will give more

details about how the models were built and trained. In general, the task in this stage is

to retrieve flagged requests and apply them to the deployed model or models depending

on the method used. Requests should have a similar number of features and format to

the ground truth dataset used in training the models. The classification output is a

probability number that represents how suspicious the content is. The value of suspicion

level ranges from 0 to 1, 0 being not suspicious at all and 1 being very suspicious of

being a spam tweet.

6.4 Building and training models

After evaluating several machine learning classification algorithms in previous

chapters, choosing the best for their classification was a challenge. Explored algorithms

ranged from simple linear classification algorithms such as logistic regression to more

complicated ensemble learning-based models. Based on preliminary studies (chapter 6),

152

ensemble-based models showed high performance in the researchers’ ground truth

dataset. Moreover, as the designed system aimed to detect suspicious content, which can

come in different forms such as pornography, illegal advertising, scam and phishing, no

one model can be perfect for all these types of suspicious/spam content. Therefore, in

this detection system, the aim was to automate the problem of choosing the best classifier

by using stacking and voting methods which have been used and tested on real a dataset

in section 5.5 in the previous chapter. The ensemble stacking method, where several

heterogeneous machine learning algorithms are combined into one model, was used.

Table 6.1 Models used in first version of SuspectRate system

Models Ranking

XGBoost 1

RF Classifier 2

Gradient Boosting Classifier 3

Extra Trees Classifier 4

AdaBoost Classifier 5

Gaussian NB 6

Logistic Regression Classifier 7

K-NN Classifier 8

The models used in this first version of the developed system are shown in Table

6.1. All the models were derived from supervised method machine learning algorithms.

They will all be involved in making the classification, and the model’s vote will be

weighted based on the performance of each model.

153

6.5 Deploying and maintaining models

One of the important characteristics of the designed system is maintaining and

retraining models. Models are built differently according to the training dataset, so when

new labelled data points are added, the system will retrain the models. The researchers

aim to make the system retrain itself every time a certain amount of data is added. Since

the system’s decision is made using several models’ decisions, the researchers needed

to produce a new combined model to be used for classification. The system will not be

affected by the retraining process since it will continue to use the old model until the

new model is ready for deployment. Each model used will be stored with a date name to

keep backup models in case any model is trained using corrupted or mislabelled data.

Figure 6.3 System’s ability to add new models
green box shows a new deep learning model added to the classifiers stack

 Furthermore, one of the key features of the designed system is its ability to add

new machine learning models in the future. For example, the researchers aim to add deep

learning and deep forest models to be used with stacked models. Therefore, the system

will be able to be enhanced in two ways, either by adding new training data or by adding

new models that have proven to be suitable for the researchers’ system classification

problem.

154

6.6 System data input

 The input stage is when users want to contact the system to send tweets that need

to be assessed by the system machine learning model. Currently, the system has one

input channel which is via web form, but in the future feature, it is planned to make the

system connected through an HTTP API. Figure 6.5 shows the developed web interface

that enables the user to send a file that contains a list of tweet IDs. The requirements are

simple name and email, and then the file can be uploaded. The email field is compulsory

as the system will send an automatic email to the user when the file has been fully

analysed. The submitted file is simply a file that contains tweet IDs in each row.

Figure 6.4 Input file
one column csv file, each row contains a tweet ID

After the tweets are receive, the system filters them and accept only tweets that

have at least one external URL and store it in the system database (MongoDB). As

described in section 6.3, tweet collection, web scraping and feature extraction are

components that always in checking requests DB for any new requests. Once a new

tweet is received, this component starts by obtaining the tweet using the tweet API and

then extracts all the tweet information and attached URLs.

Tweet ID1

Tweet ID2

…

Tweet ID3

Tweet ID4

155

Figure 6.5 Web form for uploading the dataset
three fields required name, email and dataset file

6.7 Feature extraction

This stage is a highly time-consuming stage due to the multiple sources for

features that need to be extracted. Several techniques are required to obtain a tweet’s

URL and open the landing page while recording all extra pages and popup windows that

show during reaching the landing page. All web page features are recorded starting with

taking a screenshot for each page and then reading the WHOIS information of the URL

domain name. SuspectRate needs features derived from Twitter, web page

content/behaviours, and domain WHOIS information. The most straightforward features

are those that derived from Twitter. Twitter provides data in JSON format with keys that

are understandable and easy to access. Some of these features, such as number of

followers or friends, come in a numeric format which can be used without any

conversions.

156

Web page content and behaviour features can be one of the complicated features,

and the designed system took on average 20 to 30 seconds to extract them for each URL

(this period varied based on internet speed and resources). Due to the need to crawl the

URLs in a way that makes the bot get into the intended landing page, the majority of

tweets’ attached URLs are shortened. Therefore, a Python code needed to be built that

handles a redirection (JavaScript and http redirections) web page opener that mimics

real user behaviours of having a real web browser and follows the URL redirection.

Moreover, during this web scraping process, the system is stating whether any popup

windows or Java events occur. Events can be automatically triggered, timer’s events or

event based on reaction to user actions such as mouse click or even movement.

To open a web page automatically, the author used Selenium web browsers.

Selenium enabled the researchers to automate the opening of URLs in real web browsers

such as Firefox and Google Chrome. Furthermore, the researchers could obtain

screenshots of the web pages, running time, content and even pages’ behaviours, such

as windows or messages that appeared.

6.8 Decision-making and output presentation

After all the tweets’ features are extracted and presented in vector format, they

are presented to a pre-trained model to obtain the suspicion probability. The probability

ranges from 0 to 1, with 0 indicating non-spam and 1 indicating spam. Although some

studies prefer to give a direct decision of spam or non-spam, the author in this study

preferred to return a probability and enable users to decide what threshold is appropriate

for the problem. There is always a trade-off issue between recall and precision, as some

problems could accept false positive more than false negative and vice versa.

157

Consequently, the researchers leave the threshold tweaking to the user; however, the

default value is 0.5.

Figure 6.6 Output file
two columns csv file, first contains tweet id then suspicious rate

Finally, tweets and their suspicion probability are arranged in an output file, and then

the system automatically sends an email to the user telling them that their file been fully

analysed, and the results are ready. The user could also check the status of their requested

task using the system status page by providing their email and dataset’s submission serial

number. The system then shows a page that indicates the current percentage of

completion.

Figure 6.7 Web form to get the status of user order
two fields required (email and serial number) to retrieve order status

Tweet ID1, 0.9

Tweet ID2, 0.11

…

Tweet ID3, 0.44

Tweet ID4, 0.96

158

6.9 Implementation details

 System built using python3 with up-to-date open source libraries and

tools so that system can be open source and compatible with all the different platforms.

The system components are all built from scratch starting with the web interface and

system dataset importing and extracting features. Several text processing and parsing

stages are required to extract entities from the web page source code and domain WHOIS

record. Furthermore, one of the major parts of the system redirection handling is required

to understand what type of redirection method is used so that proper method is used.

Moreover, handling popup windows is an essential feature in this system as there is a

percentage of spam content shown during the process of redetection to the landing page

and not in the landing page itself.

The system speed depends on the number of web pages opened and redirection

handled though the feature selection process. Some pages send users to endless windows

or dialogs, which annoys users and makes it difficult for them to deal with it. Therefore,

the system is pre-programmed to deal with such web pages in case it puts the system in

an endless loop of redirection or popup windows. A time and a number of redirections

threshold are specified so that the system can exit such cases. In general, the time the

system required in its current state is 20–30 seconds on average to extract and predict

new tweet/URLs imported into the system. The system detection performance has

already been evaluated in chapter 5, although the detection performance could be

decrease/increase depending on the maintaining of the system by adding new verified

labelled data for the retraining process.

159

SuspectRate is hosted and built on a Windows server (a virtual private server

provided by Keele University33). The system was developed using Python and many

other libraries. The list below contains the essential technologies, open source tools and

libraries used to build this system:

 Twitter API – used to establish the communication between the designed system and

Twitter to obtain a content stream

 Python 3 – the language used to program the system

 Flask Python web framework – used to design the labelling tool and URL checking

page

 MongoDB – the NoSQL database used to store tweets and the extracted features

 Windows server – the system used to host the designed system

 Selenium WebDriver – used to drive a browser natively

 Scikit-learn – a machine learning library used to build most models

 XGBoost – a library originates by a research project at University of Washington34

that gave an API presentation of the extreme boosting trees algorithm.

 Server to host the system (system can work on any Windows/Linux server)

 High-speed internet to speed up to process of web page scraping.

 High traffic network bandwidth to give the ability to open multiple web pages at the

same time.

 Since the designed system was built using Python and all the system

dependencies are Python libraries, the system is theoretically platform-independent.

33 https://www.keele.ac.uk/
34 http://dmlc.cs.washington.edu/xgboost.html

160

However, the researchers have only tried it on a Windows environment. Further details

about dependent libraries and tool versions are provided in APPENDIX B.

6.10 Conclusion

In the social networks, the spam detection task requires a fast response to the

new emerging techniques and tricks that hackers use. Building a machine learning model

is a step not a goal, as maintaining the model performance by retraining the model using

an updated dataset is an essential process to keep the system reliable. Moreover, the

feature set needs to be updated and re-evaluated periodically to cover more spam

activities and content that current features cannot distinguish. Just like in internet

security and the spam detection domain, there are no constant robust features, as features

that used to be highly discriminative can become less effective if spammers change their

methods or content. To continue to maintain the machine learning model, the researchers

need to ensure that it is built on reliable and validated feature sets to achieve high-quality

performance. To help researchers, companies and even normal users to collect data from

Twitter, the researchers who conducted this study offer them a service to assess collected

tweets to help them include or exclude tweets.

161

Conclusion and Future Work

162

7.1 Conclusion

The extent of suspicious links in OSNs poses a high risk for a huge number of

users. The attackers lure social network users to click their links by using trending,

sensitive subjects, controversies in society or sexual material. The crux of the problem

of why OSNs cannot detect these URLs when the content is submitted is that OSNs use

blacklists as the first validation stage. Since blacklists are capable of detecting only pre-

known malicious URLs and most of the links spammers use are either new or shortened,

blacklists will be easily avoided by spammers using these newly created URLs.

Consequently, there is a crucial need to use systems that are smart enough to detect

even new URLs by finding a pattern from previous detected URLs. In this thesis, a

machine learning algorithm was used to build a model for spam/suspicious content

detection by training the model on pre-known suspicious/normal URLs and content.

Although some common supervised learning algorithms are used in building

spam detection models, generally, ensemble learning algorithms show the best

performance. However, the challenge in relevant studies is not only the model selection,

but also what features that they have extracted and the method of labelling their training

dataset. Finding highly discriminative attributes is difficult, as data comes from several

sources and in several types, such as text, images, numbers, and behaviours. Here, the

role of researchers involves finding the best combination of features to build a machine

learning model that is capable of discovering as much spam content as possible.

In this work, the researcher has collected properties from several sources and of

various types. The features extracted range from lightweight to heavyweight features.

In addition to the lightweight features that the researchers could easily obtain from

Twitter, they used texts of tweets, web pages, and information properties of the domain

163

WHOIS record. Using this combination of features shows up to 0.9055 per cent F1

score using RF and 0.9080 per cent F1 score using XGBoost.

The features used in this study were chosen based on research on current

spamming activities and the features that are pre-known from the preliminary studies.

Moreover, the feature set used changed during the study, as in DS1 the features were

focused more on social network information (lightweight features), whereas in DS2

more powerful features were introduced that were manly derived from URL behaviour

and the domain WHOIS record. The need for a more accurate dataset with better

features was identified when the researchers tried to achieve better performance by

adding more training data. Therefore, examining the classification problem and

improving the model accuracy should be done from all aspects (tuning, feature selection

and data revision). Tuning the model in favour of model complexity and increasing the

accuracy could lead to an overfitted model. Furthermore, evaluating the features used

is essential, since even highly sophisticated models need a reliable feature set to achieve

reliable results.

In this research, the author aimed to build a sustainable spam detection system that can

maintain its performance even when encountering new spamming. Machine learning-

based models in the field of spam detection are not permanent solutions due to the

never-ending war between spammers and security researchers. As the researchers used

the characteristics employed in previous studies, they found that many of the features

lost their value and their discriminatory power. In this domain, researchers do not deal

with the naturally derived data, but with the data created by spammers which is

modified and created to fool OSN detection systems and even users. Therefore, the

developed system can perform model retraining and feature evaluation and selection

164

periodically. Moreover, the system will be regularly trained on new data that is added

to the training database. Since machine learning models are being developed and

enhanced rapidly, the system is capable of being connected with a new model in the

future without the need for any core changing or building.

Finally, the process of selecting a model from several available models is a challenge

for researchers, where the comparison of the model requires more than one performance

factor. Therefore, to enhance the automation, in this study, the author has proposed the

merging of all the models in a calibrated manner. Giving models’ probabilities to

another machine learning model to be trained on the models’ decision would help to

make the algorithm decide which model gets higher weight in the decision-making, and

the top layer model will identify the best separation point (threshold).

In general, the spammers are always ahead in inventing ways to bypass filter and

detection systems, so researchers’ duty is to reduce the gap. Reducing the gap means

fewer victims, which leads to less profit for spammers. The main concept of

SuspectRate is being dynamic, as spammers do not rely on one method or one source

of data. There is a need to build a system that periodically retrains its models and

evaluates features and characteristics so that it eliminates less-effective ones. Having

different types of models will make it difficult for spammers to fool all models, each of

which could have different priorities of features and diverse building methods.

7.2 Research limitation

The process of collecting a high-precision training dataset with heavyweight

features is expensive in terms of the computing resources required. A manual labelling

process can be used to increase the quality of the training data, however typically this

leads to the reduction of the size of the available data. Obtaining more data may produce

165

a more accurate and efficient model. Due to the time constraints, the author has not

been able to explore all promising feature options, such as web page screenshot images.

Furthermore, the researchers could not try promising new algorithms, such as deep

learning classification.

7.3 Future work

Several tools could be deployed that researchers can use in the context of building

machine learning-based spam detection systems. First, a deep learning model could

help in reducing the overhead of selecting features, as deep learning models have the

ability to internally give higher weights to good features and low weights to

unimportant ones. Therefore, researchers could focus more on optimising the model

hyper-parameters and model structures of deep learning models. Regarding the hyper-

parameters, researchers could use the Bayesian optimisation algorithm to optimise the

selection of tuning hyper-parameters.

This research opens up further research opportunities to increase detection system

performance, scalability and usability. One of the never-ending challenges for internet

security domain expert is coming up with new and discriminative features. As

lightweight features are weakened by spammers finding ways to overcome this,

researchers are seeking more in-depth features which can be derived from web pages

and their attached files and images. The system can store web pages’ screenshots which

can be used in the future. Applying deep learning-based models to features of this type

could show improvement, as deep learning algorithms have proven effective on visual

data.

Another research opportunity is enhancing the system’s scalability, as the rapid

spread of content in social networks requires a scalable system that can analyse content

166

and make a decision in real time or near to real time. Therefore, there is a need to build

the system on a scalable environment such as a serverless environment. Moreover, there

is an opportunity to apply this research to do certain users content assessment to detect

spam fake accounts.

167

APPENDIX A

Example of a Tweet JSON data sample

{
 "created_at":"Sun Apr 29 17:55:11 +0000 2018",
 "id":990650721220603904,
 "id_str":"990650721220603904",
 "text":"It was amazing experience #PyDataLDN, great talks and meet new
friends. Well done @pydatalondon https://t.co/oqRlDYelDO",
 "truncated":false,
 "entities":{
 "hashtags":[
 {
 "text":"PyDataLDN",
 "indices":[26, 36]
 }
],
 "symbols":[],
 "user_mentions":[
 {
 "screen_name":"pydatalondon",
 "name":"PyData London",
 "id":2431816790,
 "id_str":"2431816790",
 "indices":[82, 95]
 }
],
 "urls":[],
 "media":[
 {
 "id":990647145345806336,
 "id_str":"990647145345806336",
 "indices":[96, 119],

"media_url":"http://pbs.twimg.com/media/Db98VHwXcAA7xGm.jpg",

"media_url_https":"https://pbs.twimg.com/media/Db98VHwXcAA7xGm.jpg",
 "url":"https://t.co/oqRlDYelDO",
 "display_url":"pic.twitter.com/oqRlDYelDO",

"expanded_url":"https://twitter.com/mhdfadhil/status/990650721220603904/photo/1",

168

 "type":"photo",
 "sizes":{
 "thumb":{ "w":150,"h":150, "resize":"crop"},
 "small":{ "w":403, "h":680, "resize":"fit" },
 "large":{ "w":1213,"h":2048,"resize":"fit" },
 "medium":{"w":711,"h":1200,"resize":"fit" }
 }
 }
]
 },
 "extended_entities":{
 "media":[
 {
 "id":990647145345806336,
 "id_str":"990647145345806336",
 "indices":[96,119],

"media_url":"http://pbs.twimg.com/media/Db98VHwXcAA7xGm.jpg",

"media_url_https":"https://pbs.twimg.com/media/Db98VHwXcAA7xGm.jpg",

 "url":"https://t.co/oqRlDYelDO",
 "display_url":"pic.twitter.com/oqRlDYelDO",

"expanded_url":"https://twitter.com/mhdfadhil/status/990650721220603904/photo/1",

 "type":"photo",
 "sizes":{
 "thumb":{"w":150, "h":150, "resize":"crop" },
 "small":{"w":403,"h":680, "resize":"fit"},
 "large":{"w":1213,"h":2048,"resize":"fit"
 },
 "medium":{ "w":711, "h":1200,"resize":"fit"}
 }
 },
 {
 "id":990650691621355520,
 "id_str":"990650691621355520",
 "indices":[96,119],
 "media_url":"http://pbs.twimg.com/media/Db9_jiqWAAArgNb.jpg",

"media_url_https":"https://pbs.twimg.com/media/Db9_jiqWAAArgNb.jpg",
 "url":"https://t.co/oqRlDYelDO",
 "display_url":"pic.twitter.com/oqRlDYelDO",

"expanded_url":"https://twitter.com/mhdfadhil/status/990650721220603904/photo/1",
 "type":"photo",
 "sizes":{
 "large":{"w":1040, "h":780, "resize":"fit" },

169

 "thumb":{"w":150, "h":150, "resize":"crop" },
 "small":{ "w":680, "h":510, "resize":"fit" },
 "medium":{ "w":1040, "h":780, "resize":"fit" }
 }
 }
]
 },
 "source":"<a href=\\"http://twitter.com/download/android\\"

rel=\\"nofollow\\">Twitter for Android",
 "in_reply_to_status_id":null,
 "in_reply_to_status_id_str":null,
 "in_reply_to_user_id":null,
 "in_reply_to_user_id_str":null,
 "in_reply_to_screen_name":null,
 "user":{
 "id":104074179,
 "id_str":"104074179",
 "name":"Mohammed Fadhil",
 "screen_name":"mhdfadhil",
 "location":"Stoke-on-Trent, England",

"description":"PhD student at Keele university, Interested in Web scraping, Machine
Learning and internet security.",

 "url":"https://t.co/92yeKvCHIA",
 "entities":{
 "url":{
 "urls":[
 {
 "url":"https://t.co/92yeKvCHIA",
 "expanded_url":"http://www.scm.keele.ac.uk/staff/m_al-janabi/",
 "display_url":"scm.keele.ac.uk/staff/m_al-jan\\u2026",
 "indices":[0, 23]
 }
]
 },
 "description":{
 "urls":[]
 }
 },
 "protected":false,
 "followers_count":353,
 "friends_count":859,
 "listed_count":17,
 "created_at":"Tue Jan 12 04:59:33 +0000 2010",
 "favourites_count":484,
 "utc_offset":null,
 "time_zone":null,
 "geo_enabled":true,

170

 "verified":false,
 "statuses_count":215,
 "lang":"en",
 "contributors_enabled":false,
 "is_translator":false,
 "is_translation_enabled":false,
 "profile_background_color":"1A1B1F",

"profile_background_image_url":"http://abs.twimg.com/images/themes/theme9/bg.gif
",
"profile_background_image_url_https":"https://abs.twimg.com/images/themes/theme
9/bg.gif",
"profile_background_tile":false,
"profile_image_url":"http://pbs.twimg.com/profile_images/696827523615821824/Uw
FpZ9Fp_normal.jpg",
"profile_image_url_https":"https://pbs.twimg.com/profile_images/696827523615821
824/UwFpZ9Fp_normal.jpg",
"profile_banner_url":"https://pbs.twimg.com/profile_banners/104074179/1413384703
",

 "profile_link_color":"2FC2EF",
 "profile_sidebar_border_color":"181A1E",
 "profile_sidebar_fill_color":"252429",
 "profile_text_color":"666666",
 "profile_use_background_image":true,
 "has_extended_profile":true,
 "default_profile":false,
 "default_profile_image":false,
 "following":false,
 "follow_request_sent":false,
 "notifications":false,
 "translator_type":"none"
 },
 "geo":null,
 "coordinates":null,
 "place":null,
 "contributors":null,
 "is_quote_status":false,
 "retweet_count":2,
 "favorite_count":9,
 "favorited":false,
 "retweeted":false,
 "possibly_sensitive":false,
 "possibly_sensitive_appealable":false,
 "lang":"en"}

171

APPENDIX B

Python libraries used in building the system

adblockparser 0.7

beautifulsoup4 4.6.0

datefinder 0.6.0

dateparser 0.6.0

eli5 0.8

flask-bootstrap 3.3.7.1

flask-cors 3.0.2

flask-mysqldb 0.2.0

flask-wtf 0.14.2

flask 0.12

matplotlib 2.0.0

mlxtend 0.11.0

mysqlclient 1.3.12

nltk 3.2.2

numpy 1.14.3

pandas-profiling 1.4.1

pandas 0.23.1

pip 10.0.1

plotly 2.7.0

pymongo 3.4.0

requests-file 1.4.1

requests-oauthlib 0.8.0

172

requests 2.12.4

scikit-learn 0.18.1

scipy 1.1.0

seaborn 0.7.1

selenium-requests 1.3

selenium 3.4.3

spyder 3.2.4

tldextract 2.0.2

tweepy 3.5.0

wtforms 2.1

xgboost 0.6

xlsxwriter 0.9.6

173

APPENDIX C

Example of a visualised tree model

174

REFERENCES

[1] Twitter Inc., “Twitter usage / Company Facts,” 2016. [Online]. Available:

https://about.twitter.com/company. [Accessed: 03-Jun-2015].

[2] M. Fire, R. Goldschmidt, and Y. Elovici, “Online Social Networks: Threats and

Solutions Survey,” IEEE Commun. Surv. TUTORIALS Online, vol. 16, no. 4, pp.

1–20, 2013.

[3] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cybersecurity,”

J. Comput. Syst. Sci., vol. 80, no. 5, pp. 973–993, Aug. 2014.

[4] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, “The rise of social

bots,” Commun. ACM, vol. 59, no. 7, pp. 96–104, Jun. 2016.

[5] M. B. Zafar, P. Bhattacharya, N. Ganguly, K. P. Gummadi, and S. Ghosh,

“Sampling Content from Online Social Networks,” ACM Trans. Web, vol. 9, no.

3, pp. 1–33, 2015.

[6] Networked Insights, “How Dirty is Big Data ?,” 2015. [Online]. Available:

http://info.networkedinsights.com/Dirty-Data-LP.html. [Accessed: 02-Jun-

2015].

[7] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, “The socialbot

network,” in Proceedings of the 27th Annual Computer Security Applications

Conference on - ACSAC ’11, 2011, p. 93.

[8] L. Bilge and T. Dumitras, “Before We Knew It,” Proc. 19th ACM Conf. Comput.

Commun. Secur. - CCS ’12, p. 833, 2012.

[9] X. Zheng, Z. Zeng, Z. Chen, Y. Yu, and C. Rong, “Detecting spammers on social

175

networks,” Neurocomputing, vol. 159, no. 0, pp. 27–34, Jul. 2015.

[10] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection of fake

accounts in large scale social online services,” in NSDI’12 Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation,

2012, p. 15.

[11] R. Wolf, “Redefining the concept of insulation,” Technical Textiles

International, 1996. [Online]. Available: http://nexgate.com/wp-

content/uploads/2013/09/Nexgate-2013-State-of-Social-Media-Spam-

Research-Report.pdf. [Accessed: 28-Apr-2015].

[12] C. Grier, K. Thomas, V. Paxson, and M. Zhang, “@spam: The Underground on

140 Characters or Less,” in Proceedings of the 17th ACM conference on

Computer and communications security - CCS ’10, 2010, p. 27.

[13] J. Echeverria and S. Zhou, “Discovery, Retrieval, and Analysis of the ‘Star Wars’

Botnet in Twitter,” in Proceedings of the 2017 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining 2017 -

ASONAM ’17, 2017, pp. 1–8.

[14] K. Lee, J. Caverlee, K. Y. Kamath, and Z. Cheng, “Detecting collective attention

spam,” in Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web

Quality - WebQuality ’12, 2012, p. 48.

[15] K. Thomas, “The Role of the Underground Economy in Social Network Spam

and Abuse,” University of California at Berkeley, 2013.

[16] J. Cao, Q. Fu, Q. Li, and D. Guo, “Discovering Hidden Suspicious Accounts in

Online Social Networks,” Inf. Sci. (Ny)., vol. 394–395, pp. 123–140, 2017.

[17] P. R. Badri Satya, B. Satya, K. Lee, D. Lee, and J. J. Zhang, “Uncovering Fake

176

Likers in Online Social Networks,” ACM Trans. Internet Technol., 2016.

[18] A. Tewari, A. K. Jain, and B. B. Gupta, “Recent survey of various defense

mechanisms against phishing attacks,” J. Inf. Priv. Secur., vol. 12, no. 1, pp. 3–

13, 2016.

[19] Y.-R. Lin, D. Margolin, B. Keegan, A. Baronchelli, and D. Lazer, “#Bigbirds

Never Die: Understanding Social Dynamics of Emergent Hashtag,” Proc. 7th

Int. AAAI Conf. Weblogs Soc. Media (ICWSM 2013), vol. 8, no. Disasters, Mar.

2013.

[20] S. Stieglitz and L. Dang-Xuan, “Social media and political communication: a

social media analytics framework,” Soc. Netw. Anal. Min., vol. 3, no. 4, pp.

1277–1291, Dec. 2013.

[21] N. Azman, “Dark Retweets: An Investigation of Non-Conventional Retweeting

Patterns,” UNIVERSITY OF SOUTHAMPTON, 2014.

[22] X. Zhang, S. Zhu, and W. Liang, “Detecting spam and promoting campaigns in

the Twitter social network,” Proc. - IEEE Int. Conf. Data Mining, ICDM, pp.

1194–1199, 2012.

[23] M. Verma, D. Divya, and S. Sofat, “Techniques to Detect Spammers in Twitter-

A Survey,” Int. J. Comput. Appl., vol. 85, no. 10, pp. 27–32, Jan. 2014.

[24] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, “Detection and

Resolution of Rumours in Social Media: A Survey,” vol. 51, no. 2, 2017.

[25] H. Allcott and M. Gentzkow, “Social Media and Fake News in the 2016

Election,” J. Econ. Perspect., vol. 31, no. 2, pp. 211–236, 2017.

[26] S. Stieglitz, F. Brachten, D. Berthel, and M. Schlaus, “Social Computing and

Social Media. Human Behavior,” in Social Computing and Social Media.

177

Human Behavior, 2017, vol. 10282, no. December, pp. 379–395.

[27] N. Nikiforakis, F. Maggi, G. Stringhini, M. Z. Rafique, W. Joosen, C. Kruegel,

F. Piessens, G. Vigna, and S. Zanero, “Stranger Danger: Exploring the

Ecosystem of Ad-based URL Shortening Services,” in Proceedings of the 23rd

international conference on World wide web - WWW ’14, 2014, pp. 51–62.

[28] A. Almaatouq, E. Shmueli, M. Nouh, A. Alabdulkareem, V. K. Singh, M.

Alsaleh, A. Alarifi, A. Alfaris, and A. ‘Sandy’ Pentland, “If it looks like a

spammer and behaves like a spammer, it must be a spammer: analysis and

detection of microblogging spam accounts,” Int. J. Inf. Secur., vol. 15, no. 5, pp.

475–491, 2016.

[29] Webopedia.com, “What is AAA? A Webopedia Definition,” 2015. [Online].

Available: http://www.webopedia.com/TERM/A/AAA.html. [Accessed: 03-

Jun-2015].

[30] R. a. Haraty and S. Massalkhy, Security and Privacy Preserving in Social

Networks. Springer Science & Business Media, 2013.

[31] E. Zangerle and G. Specht, “‘Sorry, I was hacked,’” in Proceedings of the 29th

Annual ACM Symposium on Applied Computing - SAC ’14, 2014, pp. 587–593.

[32] K. Thomas, F. Li, C. Grier, and V. Paxson, “Consequences of Connectivity:

Characterizing Account Hijacking on Twitter,” in Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, 2014, pp. 489–

500.

[33] E. Protalinski, “Facebook estimates that between 5.5% and 11.2% of accounts

are fake,” The Next Web, 2014. [Online]. Available: http://tnw.to/b4ZyU.

[Accessed: 03-Jun-2015].

178

[34] S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi, “The

Paradigm-Shift of Social Spambots,” in Proceedings of the 26th International

Conference on World Wide Web Companion - WWW ’17 Companion, 2017, pp.

963–972.

[35] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “Who is tweeting on Twitter,”

in Proceedings of the 26th Annual Computer Security Applications Conference

on - ACSAC ’10, 2010, p. 21.

[36] Z. Chu, I. Widjaja, and H. Wang, “Detecting social spam campaigns on Twitter,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 7341 LNCS, pp. 455–472, 2012.

[37] C. Cao and J. Caverlee, “Detecting Spam URLs in Social Media via Behavioral

Analysis,” in Advances in Information Retrieval, vol. 9022, A. Hanbury, G.

Kazai, A. Rauber, and N. Fuhr, Eds. Springer International Publishing, 2015, pp.

703–714.

[38] D. Bock Clark, “The Bot Bubble: How Click Farms Have Infiltrated Social

Media Currency,” 2015. [Online]. Available:

http://www.newrepublic.com/article/121551/bot-bubble-click-farms-have-

inflated-social-media-currency. [Accessed: 03-Jun-2015].

[39] T. N. Jagatic, N. A. Johnson, M. Jakobsson, F. Menczer, B. T. N. Jagatic, N. A.

Johnson, and M. Jakobsson, “SOCIAL PHISHING.,” Commun. ACM, vol. 50,

no. 10, pp. 94–100, Oct. 2007.

[40] F. Klien and M. Strohmaier, “Short Links Under Attack: Geographical Analysis

of Spam in a URL Shortener Network,” in Proceedings of the 23rd ACM

conference on Hypertext and social media - HT ’12, 2012, p. 83.

179

[41] D. S. Silnov, “An analysis of modern approaches to the delivery of unwanted

emails (spam),” Indian J. Sci. Technol., vol. 9, no. 4, pp. 1–4, 2016.

[42] P. Ponce-Cruz and F. D. Ramírez-Figueroa, Intelligent Control Systems with

LabVIEWTM. London: Springer London, 2010.

[43] S. Wen, Z. Zhao, and H. Yan, “Detecting Malicious Websites in Depth through

Analyzing Topics and Web-pages,” in Proceedings of the 2nd International

Conference on Cryptography, Security and Privacy - ICCSP 2018, 2018, pp.

128–133.

[44] C. Chen, J. Zhang, Y. Xiang, W. Zhou, and J. Oliver, “Spammers Are Becoming

‘Smarter’ on Twitter,” IT Prof., vol. 18, no. 2, pp. 66–70, Mar. 2016.

[45] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, “Towards Detecting

Compromised Accounts on Social Networks,” IEEE Trans. Dependable Secur.

Comput., vol. 14, no. 4, pp. 447–460, Jul. 2017.

[46] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai, “Uncovering

Social Network Sybils in the Wild,” ACM Trans. Knowl. Discov. Data, vol. 8,

no. 1, p. 2:1–2:29, 2014.

[47] P. Gao, N. Z. Gong, S. Kulkarni, K. Thomas, and P. Mittal, “SybilFrame: A

Defense-in-Depth Framework for Structure-Based Sybil Detection,” Comput.

Res. Repos., p. 17, 2015.

[48] I. A. Bara, C. J. Fung, and T. Dinh, “Enhancing Twitter spam accounts discovery

using cross-account pattern mining,” Proceedings of the 2015 IFIP/IEEE

International Symposium on Integrated Network Management, IM 2015. pp.

491–496, 2015.

[49] K. Tretyakov, “Machine Learning Techniques in Spam Filtering,” Data Min.

180

Probl. Semin. MTAT.03.177, no. May, pp. 60–79, 2004.

[50] Y. Zhang and Y. Tong, “Mining trust relationships from online social networks,”

J. Comput. Sci. Technol., vol. 27, no. 3, pp. 492–505, 2012.

[51] P.-A. Vervier and O. Thonnard, “SpamTracer: How stealthy are spammers?,” in

2013 Proceedings IEEE INFOCOM, 2013, pp. 3477–3482.

[52] A. Nakulas, L. Ekonomou, S. Kourtesi, G. P. Fotis, and E. Zoulias, “A review of

techniques to counter spam and spit,” in Lecture Notes in Electrical Engineering,

vol. 27 LNEE, no. VOL.1, Springer, 2009, pp. 501–510.

[53] S. K. Dehade and A. M. Bagade, “A Review on Detecting Automation on Twitter

Accounts,” Eur. J. Adv. Eng. Technol., vol. 2, no. 2, pp. 69–72, 2015.

[54] Chris Richardson, “Google Discusses Its Safe Browsing Record |

WebProNews.” [Online]. Available: http://www.webpronews.com/google-

discusses-its-safe-browsing-record-2012-06. [Accessed: 03-Jun-2015].

[55] G. Developers, “Safe Browsing API,” Developers.Google.Com, 2015. [Online].

Available: https://developers.google.com/safe-browsing/?hl=en. [Accessed: 03-

Jun-2015].

[56] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and evaluation of

a real-time URL spam filtering service,” in Proceedings - IEEE Symposium on

Security and Privacy, 2011, pp. 447–462.

[57] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong, and C. Zhang, “An

Empirical Analysis of Phishing Blacklists,” in 6th Conference on Email and

Anti-Spam, 2009.

[58] M. Al-janabi, E. De Quincey, and P. Andras, “Using supervised machine

learning algorithms to detect suspicious URLs in online social networks,” in

181

Proceedings of the 2017 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining 2017, 2017, pp. 1104–1111.

[59] J. Tang, Y. Chang, and H. Liu, “Mining Social Media with Social Theories: A

Survey,” SIGKDD Explor. Newsl, vol. 15, no. Iid, pp. 20–29, 2014.

[60] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press,

2012.

[61] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag

New York Inc, 2007.

[62] S. Yoo, Y. Yang, F. Lin, C. Moon Ii, S. Acm, and S. Acm, “Mining social

networks for personalized email prioritization,” 15th ACM SIGKDD Int. Conf.

Knowl. Discov. Data Mining, KDD ’09, pp. 967–975, 2009.

[63] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learning: A review

of classification and combining techniques,” Artif. Intell. Rev., vol. 26, no. 3, pp.

159–190, 2006.

[64] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, “Detecting spammers

on twitter,” Collab. Electron. Messag. anti-abuse spam Conf., vol. 6, p. 12, 2010.

[65] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, 1st

ed., vol. 43. Beijing: O’Reilly, 2009.

[66] F. Maiorana, “Feature Selection with Kohonen Self Organizing Classification

Algorithm,” Int. J. Comput. Electr. Autom. Control Inf. Eng., vol. 2, no. 9, pp.

47–52, 2008.

[67] G. Forman, “An Extensive Empirical Study of Feature Selection Metrics for Text

Classification George,” CrossRef List. Deleted DOIs, vol. 1, no. 7–8, pp. 1289–

1305, 2000.

182

[68] L. Zhang, J. Zhu, and T. Yao, “An evaluation of statistical spam filtering

techniques,” ACM Trans. Asian Lang. Inf. Process., vol. 3, no. 4, pp. 243–269,

Dec. 2004.

[69] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.

Springer New York, 2009.

[70] T. S. Guzella and W. M. Caminhas, “A review of machine learning approaches

to Spam filtering,” Expert Syst. Appl., vol. 36, no. 7, pp. 10206–10222, Sep.

2009.

[71] R. Matsumoto, “Some empirical results on two spam detection methods,” Proc.

2004 IEEE Int. Conf. Inf. Reuse Integr. 2004. IRI 2004., pp. 198–203, 2004.

[72] V. Zorkadis, D. A. Karras, and M. Panayotou, “Efficient information theoretic

strategies for classifier combination, feature extraction and performance

evaluation in improving false positives and false negatives for spam e-mail

filtering,” Neural Networks, vol. 18, no. 5–6, pp. 799–807, Jan. 2005.

[73] A. Liaw, M. Wiener, and J. Hebebrand, “Classification and regression by

randomForest,” R news, vol. 2, no. 3, pp. 18–22, 01-Dec-2002.

[74] V. Lempitsky, M. Verhoek, J. A. Noble, and A. Blake, “Random forest

classification for automatic delineation of myocardium in real-time 3D

echocardiography,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 5528, pp. 447–456, 2009.

[75] M. Alsaleh, A. Alarifi, A. M. Al-Salman, M. Alfayez, and A. Almuhaysin,

“TSD: Detecting sybil accounts in twitter,” Proc. - 2014 13th Int. Conf. Mach.

Learn. Appl. ICMLA 2014, pp. 463–469, 2014.

[76] T. G. Dietterich, “Ensemble Methods in Machine Learning,” MCS ’00 Proc.

183

First Int. Work. Mult. Classif. Syst., pp. 1–15, 2000.

[77] S. Hara and K. Hayashi, “Making Tree Ensembles Interpretable: A Bayesian

Model Selection Approach,” in Proceedings of the Twenty-First International

Conference on Artificial Intelligence and Statistics, 2018, vol. 84, pp. 77–85.

[78] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc.

22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’16, pp. 785–

794, 2016.

[79] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[80] M. Pal, “Random forest classifier for remote sensing classification,” Int. J.

Remote Sens., vol. 26, no. 1, pp. 217–222, Jan. 2005.

[81] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach.

Learn., vol. 63, no. 1, pp. 3–42, 2006.

[82] J. R. Quinlan, “Bagging, boosting, and C4.5,” Proc. Thirteen. Natl. Conf. Artif.

Intell., vol. 5, no. Quinlan 1993, pp. 725–730, 2006.

[83] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp.

1–39, 2010.

[84] B. Viswanath, M. A. Bashir, M. Crovella, S. Guha, K. P. Gummadi, B.

Krishnamurthy, and A. Mislove, “Towards Detecting Anomalous User Behavior

in Online Social Networks,” in 23rd USENIX Security Symposium (USENIX

Security 14), 2014, pp. 223–238.

[85] S. Dinh, T. Azeb, F. Fortin, D. Mouheb, and M. Debbabi, “Spam campaign

detection, analysis, and investigation,” Digit. Investig., vol. 12, no. S1, pp. S12–

S21, 2015.

[86] C. Chen, J. Zhang, X. Chen, Y. Xiang, and W. Zhou, “6 million spam tweets: A

184

large ground truth for timely Twitter spam detection,” IEEE Int. Conf. Commun.,

vol. 2015–Septe, pp. 7065–7070, 2015.

[87] N. Gupta, A. Aggarwal, and P. Kumaraguru, “Bit.ly/malicious: Deep dive into

short URL based e-crime detection,” eCrime Researchers Summit, eCrime, vol.

2014–Janua. pp. 14–24, 2014.

[88] T. Wu, S. Wen, S. Liu, J. Zhang, Y. Xiang, M. Alrubaian, and M. M. Hassan,

“Detecting spamming activities in twitter based on deep-learning technique,”

Concurr. Comput. , vol. 29, no. 19, pp. 1–11, 2017.

[89] S. Liu, J. Zhang, and Y. Xiang, “Statistical Detection of Online Drifting Twitter

Spam,” Proc. 11th ACM Asia Conf. Comput. Commun. Secur. - ASIA CCS ’16,

pp. 1–10, 2016.

[90] B. Wang, A. Zubiaga, M. Liakata, and R. Procter, “Making the most of tweet-

inherent features for social spam detection on twitter,” CEUR Workshop Proc.,

vol. 1395, pp. 10–16, 2015.

[91] A. Aggarwal, A. Rajadesingan, and P. Kumaraguru, “PhishAri: Automatic

realtime phishing detection on twitter,” eCrime Res. Summit, eCrime, pp. 1–12,

2012.

[92] Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang, “Twitter spammer

detection using data stream clustering,” Inf. Sci. (Ny)., vol. 260, pp. 64–73, Mar.

2014.

[93] S. Lee and J. Kim, “Warning bird: A near real-time detection system for

suspicious URLs in twitter stream,” IEEE Trans. Dependable Secur. Comput.,

vol. 10, no. 3, pp. 183–195, 2013.

[94] S. J. Soman and S. Murugappan, “Detecting malicious tweets in trending topics

185

using clustering and classification,” in 2014 International Conference on Recent

Trends in Information Technology, ICRTIT 2014, 2014, pp. 1–6.

[95] K. Lee, J. Caverlee, and S. Webb, “Uncovering social spammers: social

honeypots + machine learning,” SIGIR’10, July 19–23, 2010, Geneva, Switz., no.

i, pp. 435–442, 2010.

[96] A. A. Amleshwaram, N. Reddy, S. Yadav, G. Gu, and C. Yang, “CATS:

Characterizing automation of Twitter spammers,” 2013 5th International

Conference on Communication Systems and Networks, COMSNETS 2013. pp.

1–10, 2013.

[97] A. Valdes, A. Valdes, K. Skinner, and K. Skinner, Recent Advances in Intrusion

Detection, vol. 1907, no. October. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2000.

[98] F. Li, M. Huang, Y. Yang, and X. Zhu, “Learning to identify review spam,” in

Proceedings of the twenty-second international joint conference on artificial

intelligence, 2011, pp. 2488–2493.

[99] W. Guan, H. Gao, M. Yang, Y. Li, H. Ma, W. Qian, Z. Cao, and X. Yang,

“Analyzing user behavior of the micro-blogging website Sina Weibo during hot

social events,” Phys. A Stat. Mech. its Appl., vol. 395, pp. 340–351, Feb. 2014.

[100] Twitter, “The Streaming APIs | Twitter Developers,” 2015. .

[101] H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. Chudhary, “Towards Online Spam

Filtering in Social Networks,” in Network and Distributed System Security

Symposium, 2012, pp. 1–16.

[102] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao, “Detecting and

characterizing social spam campaigns,” in Proceedings of the 10th ACM

186

SIGCOMM conference on Internet measurement, 2010, pp. 35–47.

[103] S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi, “Fame for

sale: Efficient detection of fake Twitter followers,” Decis. Support Syst., vol. 80,

no. July 2012, pp. 56–71, 2015.

[104] M. McCord and M. Chuah, “Spam detection on twitter using traditional

classifiers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 6906 LNCS, pp. 175–186, 2011.

[105] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “Detecting automation of

Twitter accounts: Are you a human, bot, or cyborg?,” IEEE Trans. Dependable

Secur. Comput., vol. 9, no. 6, pp. 811–824, 2012.

[106] H. Shen and X. Liu, “Detecting Spammers on Twitter Based on Content and

Social Interaction,” Proc. - 2015 Int. Conf. Netw. Inf. Syst. Comput. ICNISC

2015, pp. 413–417, 2015.

[107] S. Sedhai and A. Sun, “HSpam14: A Collection of 14 Million Tweets for

Hashtag-Oriented Spam Research,” Proc. 38th Int. ACM SIGIR Conf. Res. Dev.

Inf. Retr. - SIGIR ’15, pp. 223–232, 2015.

[108] E. M. Clark, J. R. Williams, C. A. Jones, R. A. Galbraith, C. M. Danforth, and

P. S. Dodds, “Sifting robotic from organic text: A natural language approach for

detecting automation on Twitter,” J. Comput. Sci., vol. 16, pp. 1–7, 2016.

[109] S. Stieglitz, F. Brachten, D. Berthel, and M. Schlaus, “Social Computing and

Social Media. Human Behavior,” in Social Computing and Social Media.

Human Behavior, 2017, vol. 10282, no. December, pp. 379–395.

[110] C. Whittaker, B. Ryner, and M. Nazif, “Large-Scale Automatic Classification of

Phishing Pages,” in Ndss ’10, 2010, vol. 10.

187

[111] A. Blum, B. Wardman, T. Solorio, and G. Warner, “Lexical feature based

phishing URL detection using online learning,” Proc. 3rd ACM Work. Artif.

Intell. Secur. - AISec ’10, no. August 2016, p. 54, 2010.

[112] M. Khonji, A. Jones, and Y. Iraqi, “A novel Phishing classification based on

URL features,” 2011 IEEE GCC Conference and Exhibition, GCC 2011. pp.

221–224, 2011.

[113] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing

detection,” in Proceedings of the 4th international conference on Security and

privacy in communication netowrks - SecureComm ’08, 2008, p. 1.

[114] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and X. Deng, “Detection of phishing

webpages based on visual similarity,” Spec. Interes. tracks posters 14th Int.

Conf. World Wide Web - WWW ’05, no. September 2015, p. 1060, 2005.

[115] P. Burnap, A. Javed, O. F. Rana, and M. S. Awan, “Real-time classification of

malicious URLs on Twitter using machine activity data,” in Proceedings of the

2015 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining, ASONAM 2015, 2015, pp. 970–977.

[116] T. S. Guzella and W. M. Caminhas, “A review of machine learning approaches

to Spam filtering,” Expert Syst. Appl., vol. 36, no. 7, pp. 10206–10222, 2009.

[117] A. D’Ambrogio, “Computer and Information Sciences - ISCIS 2005,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 3733, pp. 371–381, 2005.

[118] M. Singh, D. Bansal, and S. Sofat, “Detecting Malicious Users in Twitter using

Classifiers,” 7th Int. Conf. Secur. Inf. Networks, p. 247, 2014.

[119] A. B. M. Moniruzzaman and S. A. Hossain, “Nosql database: New era of

188

databases for big data analytics-classification, characteristics and comparison,”

arXiv Prepr. arXiv1307.0191, vol. 6, no. 4, pp. 1–14, 2013.

[120] L. Invernizzi, S. Miskovic, R. Torres, S. Saha, S.-J. Lee, M. Mellia, C. Kruegel,

and G. Vigna, “Nazca: Detecting Malware Distribution in Large-Scale

Networks,” Netw. Distrib. Syst. Secur. Symp., pp. 1–16, 2014.

[121] D. Wang, S. Navathe, L. Liu, D. Irani, A. Tamersoy, and C. Pu, “Click Traffic

Analysis of Short URL Spam on Twitter,” Proc. 9th IEEE Int. Conf. Collab.

Comput. Networking, Appl. Work., pp. 250–259, 2013.

[122] K. Thomas, C. Grier, D. Song, and V. Paxson, “Suspended accounts in

retrospect: an analysis of twitter spam,” in Proceedings of the 2011 ACM

SIGCOMM Conference on Internet Measurement Conference, 2011, pp. 243–

258.

[123] S. Gupta, A. Khattar, A. Gogia, P. Kumaraguru, and T. Chakraborty, “Collective

Classification of Spam Campaigners on Twitter: A Hierarchical Meta-Path

Based Approach,” 2018.

[124] N. Chavoshi, H. Hamooni, and A. Mueen, “Identifying Correlated Bots in

Twitter,” in Social Informatics, 2016, vol. 10046, no. November, pp. 14–21.

[125] S. Liu, Y. Wang, J. Zhang, C. Chen, and Y. Xiang, “Addressing the class

imbalance problem in Twitter spam detection using ensemble learning,”

Comput. Secur., vol. 69, pp. 35–49, 2017.

[126] M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and H. Al Najada,

“Survey of review spam detection using machine learning techniques,” J. Big

Data, vol. 2, no. 1, 2015.

[127] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision Combination in Multiple

189

Classifier Systems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 1, pp.

66–75, 1994.

[128] W. Herzallah, H. Faris, and O. Adwan, “Feature engineering for detecting

spammers on Twitter: Modelling and analysis,” J. Inf. Sci., p.

016555151668429, 2017.

[129] F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross, C. Kruegel, and

G. Vigna, “Two years of short URLs internet measurement: security threats and

countermeasures,” Proc. 22nd Int. Conf. World Wide Web, pp. 861–872, 2013.

[130] K. Krol, M. Moroz, and M. A. Sasse, “Don’t work. Can’t work? Why it’s time

to rethink security warnings,” 2012 7th Int. Conf. Risks Secur. Internet Syst., pp.

1–8, 2012.

[131] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and G. Vigna, “The

Dark Alleys of Madison Avenue,” Proc. 2014 Conf. Internet Meas. Conf. - IMC

’14, pp. 373–380, 2014.

[132] C. C. Aggarwal, “Opinion Mining and Sentiment Analysis,” in Machine

Learning for Text, Cham: Springer International Publishing, 2018, pp. 413–434.

[133] S. Saumya and J. P. Singh, “Detection of spam reviews: a sentiment analysis

approach,” CSI Trans. ICT, vol. 6, no. 2, pp. 137–148, 2018.

[134] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory Undersampling for Class

Imbalance Learning,” IEEE Trans. Syst. Man Cybern., vol. 39, no. 2, pp. 539–

550, 2009.

[135] H. He and Y. Ma, Imbalanced learning: foundations, algorithms, and

applications. Wiley-IEEE Press, 2013.

[136] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27,

190

no. 8, pp. 861–874, 2006.

[137] G. M. Tavares and G. M. Tavares, “User Classification on Online Social

Networks by Post Frequency User Classification on Online Social Networks by

Post Frequency,” no. June, 2017.

[138] C. Yang, R. C. Harkreader, and G. Gu, “Empirical evaluation and new design

for fighting evolving twitter spammers,” IEEE Trans. Inf. Forensics Secur., vol.

8, no. 8, pp. 1280–1293, 2013.

[139] J. C. Ross and P. E. Allen, “Random Forest for improved analysis efficiency in

passive acoustic monitoring,” Ecol. Inform., vol. 21, pp. 34–39, 2014.

[140] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A comparison

of decision tree ensemble creation techniques,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 29, no. 1, pp. 173–180, 2007.

[141] C. A. Provan, L. Cook, and J. Cunningham, “A probabilistic airport capacity

model for improved ground delay program planning,” AIAA/IEEE Digit. Avion.

Syst. Conf. - Proc., pp. 1–12, 2011.

[142] J. P. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. E. Brodley, “Pruning

decision trees with misclassification costs,” in Machine Learning: ECML-98:

10th European Conference on Machine Learning, vol. 1398, C. Nédellec and C.

Rouveirol, Eds. Chemnitz, Germany: Springer Berlin Heidelberg, 1998, pp.

131–136.

[143] Q. Xu, E. W. Xiang, Q. Yang, J. Du, and J. Zhong, “SMS Spam Detection Using

Noncontent Features,” IEEE Intell. Syst., vol. 27, no. 6, pp. 44–51, Nov. 2012.

[144] M. Dash, H. Liu, M. Dash ’, and H. Liu, “Feature selection for classification,”

Intell. Data Anal., vol. 1, no. 3, pp. 131–156, 1997.

191

[145] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation operator

for feature selection using decision tree applied to spam detection,” Knowledge-

Based Syst., vol. 64, pp. 22–31, 2014.

[146] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding variable

importances in forests of randomized trees,” Adv. Neural Inf. Process. Syst. 26,

pp. 431–439, 2013.

[147] X. Zhang, S. Zhu, and W. Liang, “Detecting spam and promoting campaigns in

the Twitter social network,” Proc. - IEEE Int. Conf. Data Mining, ICDM, vol.

10, no. 1, pp. 1194–1199, 2012.

[148] R. Zafarani and H. Liu, “10 Bits of Surprise,” in Proceedings of the 24th ACM

International on Conference on Information and Knowledge Management -

CIKM ’15, 2015, pp. 423–431.

[149] P. Domingos, “A few useful things to know about machine learning,” Commun.

ACM, vol. 55, no. 10, p. 78, Oct. 2012.

[150] T. G. Dietterich, “An Experimental Comparison of Three Methods for

Constructing Ensembles of Decision Trees,” Mach. Learn., vol. 40, pp. 139–157,

2000.

[151] J. A. Sáez, M. Galar, J. Luengo, and F. Herrera, “Tackling the problem of

classification with noisy data using Multiple Classifier Systems: Analysis of the

performance and robustness,” Inf. Sci. (Ny)., vol. 247, pp. 1–20, 2013.

[152] S. B. Kotsiantis and P. E. Pintelas, “Combining Bagging and Boosting,” Comput.

Intell., vol. 1, no. 4, pp. 324–333, 2004.

	etheses coversheet 2017.pdf
	Al-Janabi PhD 2018.pdf

