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Abstract

The work examines response of the upper ocean to time-varying winds. In the

Ekman paradigm the effect of wind is considered as time-varying horizontally uni-

form tangential wind stress applied to the ocean surface and the turbulent diffusion

of momentum is described employing the Boussinesq closure hypothesis via a single

scalar eddy viscosity. In contrast to all previous studies we take into account both

its depth and time dependence and examine effects of density stratification.

We found exact general solution to the full Navier-Stokes equations which describes

dynamics of the Ekman boundary layer in terms of the Green’s function. Several

cases of varying eddy viscosity have been examined:

(a) According to the Zikanov et al. [2003] parameterization (justified by LES) the

eddy viscosity in non-stratified fluid increases linearly with depth in the upper part

of the fluid, reaching the maximum value at some depth specified by the wind speed,

and then decreases linearly with depth in the lower layer. For this model the explicit

analytic solution describing Ekman response to arbitrary wind has been obtained and

thoroughly compared with the available models employing more simple eddy viscos-

ity profiles lacking the LES validation. The range of situations where much simpler

models can be used with acceptable accuracy has been identified.

(b) We considered the simplest model of the upper ocean with mixed layer at the top

and stratified fluid below, which in terms of the Ekman model reduces to a two-layer

model: the top (turbulent) layer is characterized by a high constant value of eddy

viscosity, while the bottom layer has a much smaller viscosity also assumed to be

constant. Basic scenarios such as sharp increase of wind and switch off of the wind

have been analysed from the viewpoint of finding how and when the vertical profile

of stratification affects the surface current caused by wind varying in time. It has

been found under what conditions the surface velocity vector is noticeably affected

by the presence of stratification. The parameter controlling whether the presence of

stratification will manifest itself on the surface is shown to be the non-dimensional

depth of the pycnocline: the surface velocity field is quite sensitive to the depth of

the mixed layer, but is much less sensitive to the strength of stratification. From

the perspective of remote sensing of the characteristics of stratification the using HF

radars, it has been concluded that these findings open new possibilities.

(c) When the eddy viscosity is assumed to be both time and depth dependent, three

basic scenarios have been thoroughly examined: (i) An increase of wind ending up

with a plateau; (ii) Switch-off of the wind; (iii) Periodic wind.



Their analysis shows that accounting for time dependence of eddy viscosity substan-

tially changes the response, compared to the predictions of the models with constant

in time viscosity.

We also report a severe limitation of the Ekman type models employed in modelling

of the oceanic surface boundary layer. The Ekman current caused by a growing

wind quickly becomes unstable with respect to inviscid inflectional instability. These

instabilities are fast, which suggests spikes of dramatically enhanced mixing in the

corresponding parts of the water column. The instabilities also break down a fun-

damental element of the Ekman-type models the assumed spatial uniformity. The

results require a radical revision of the existing paradigm.
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g the gravitational acceleration

τ the shear stress vector

νe the eddy viscosity coefficient
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νei eddy viscosity in the i-th layer (in the Zikanov et al. [2003] and
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ν̃e1(t) time dependent factor in the models with separable viscosity pro-

files νe(z, t) = ν̃e1(t)g(z)

Ω the Earth’s rotation frequency

φ the latitude

f, f̃ the Coriolis parameters (f̃ = 2Ω sinφ, f = 2Ω cosφ)

K the vertical diffusivity coefficient
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Tsd the sidereal day, Tsd = 23 hr 56 min 4.1s

Ti the inertial period

CD the drag coefficient, τ = ρaCD U
2
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U0 the magnitude of the current at the surface

Φ the deflection angle between the current and wind direction

U10 the wind speed measured at 10 m above the still water level

δe the scale of e-fold decay, δe =
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2νe/f

DE the Ekman depth, DE = πδe

l the typical length (depth) scale
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√
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Chapter 1

Introduction

1.1 Background

The ocean-atmosphere system is very sensitive to the processes in the first few meters

below the water surface. In particular, the top 2.5m of water column have the same

heat capacity as the whole atmosphere above (e.g. Gill [1982]), while 50% of the

surface-penetrating solar radiation is absorbed within the first 0.5 m of the ocean

and 50% of the breaking surface wave kinetic energy dissipates within 20% of the

significant wave height from the surface (Soloviev and Lukas [2013]). Knowledge of

the vertical profiles of surface currents is also of prime importance in the context of

modelling horizontal transport of dispersed substances (pollutants, algae, chlorophyll,

etc). Yet another strong motivation for studying the processes linking the ocean

surface processes and its interior is that electromagnetic remote sensing of the ocean

effectively allows us to see only the surface. Fortunately, the physical processes

below produce distinguishable surface signatures which could be deciphered to reveal

the processes beneath. There is a great variety of processes contributing to the

formation of the boundary layer in water ranging from molecular scales to hundreds

of kilometers which include, inter alia, wind, surface gravity and capillary waves

1
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and their breaking, air entrainment, surface films, solar heating, shear instabilities,

formation of turbulence, turbulent diffusion of momentum and heat, formation of

density stratification suppressing the turbulence, Langmuir circulations, subsurface

near-inertial waves (Soloviev and Lukas [2013]).

The progress in understanding dynamics of the boundary layer was slow. One of

the completely unexpected discoveries of Nansen’s polar expedition of 1893–96 was

that the surface current, and, thus, the drift of the ice, was predominantly directed

to the right of the wind direction. Nansen realised that this is a consequence of the

Earth’s rotation and predicted that the current vector would spiral clockwise with

depth (Nansen [1905], Jenkins and Bye [2006]). The first mathematical model of this

phenomenon was proposed in pioneering work (Ekman [1905]). Ekman reduced the

effect of wind to tangential stress and, inter alia, derived a steady solution of the

Navier-Stokes equations describing forced uniform horizontal motion on the f plane

under the assumptions of a constant eddy viscosity. The Ekman’s classical steady

solution predicts the deflection of the surface current due to Earth’s rotation to be

45◦ to the right of the wind direction in the Northern hemisphere (45◦ to the left

in the Southern hemisphere) with the flux integrated over entire depth (’the Ekman

transport’) at ninety degrees to the right/left of wind direction. In (Ekman [1905])

the development of the Ekman boundary layer from rest has been also described

analytically. Within the framework of this model the complete analytical description

of dynamics of the Ekman current generated by an arbitrarily varying wind was

derived in terms of explicit Green’s function by (Gonella [1971]). The model was

extended to finite depth and shallow fluid assuming the bottom to remains horizontal

(Lewis and Belcher [2004]). Jung et al. [2007] developed the time-dependent Ekman

solution for a shallow open sea allowing the water depth to vary with time, this

variation in depth can be caused by, for example, a tide. An overview by Jenkins

and Bye [2006] provides a neat summary of Ekman’s work which has a continuing

influence on oceanography. According to (Wang and Huang [2004]) the total global

energy input into the Ekman layer is massive- 2.4 TW . The detailed measurements

of wind-driven currents showed that the mean velocity does exhibit a smooth spiral

resembling qualitatively the theoretical Ekman spiral (Price et al. [1987]), but the
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spiral is somewhat flatter in appearance (Chereskin [1995]). Substantial quantitative

discrepancies between the predictions of the original Ekman model and observations

have been reported. In particular, as pointed by (e.g. Madsen [1977], Weber [1981])

and (Lewis and Belcher [2004]), the surface current deflection with respect to wind

is usually about 10 − 30◦ , i.e. noticeably smaller than 45◦ predicted by the steady

Ekman solution, while the currents at relatively small (∼5 - 20 m) depths are deflected

significantly stronger compared to the classical Ekman solution. It was also noted by

(Chereskin [1995], Price and Sundermeyer [1999]) that the current speed decreases

with depth more rapidly than the current vector rotates to the right. This mismatch is

important since the all important eddy viscosity is estimated by fitting observations to

formulae of either the decay of speed with depth or of the velocity rotation with depth;

the estimates obtained by these two ways can differ by an order of magnitude (Weller

[1981], Price et al. [1987], Chereskin [1995], Lenn [2006], Elipot and Gille [2009]).

Here we do not aim at reviewing the observations of Ekman currents summarized

in a good overview in (Price and Sundermeyer [1999]), we just note that there is an

inherent difficulty to estimate uncertainty in extracting the forced Ekman component

of the current from observations. Much more observations are needed. However,

the maturing remote sensing techniques, such as, multi-frequency high-frequency

radars (Teague et al. [2001], Zhang and Zebiak [2002]), new generation of ADCPs

(Acoustic Doppler Current Profilers) (Guerra and Thomson [2017]) have the potential

to revolutionize the observations in near future.

On the modelling side, since the eddy viscosity parameterizations and, especially, the

constant eddy viscosity assumption are a strong oversimplification of a very compli-

cated real picture, there were attempts to improve the Ekman model by choosing bet-

ter parameterizations of turbulence. The understanding of turbulence phenomenol-

ogy in the boundary layer, which in itself is an area of intense research (see review of

experimental studies in (Csanady [2001], Soloviev and Lukas [2013]), can be briefly

summarised as follows: (i) adjacent to the surface there is a layer of intense turbu-

lence generated by wave breaking and mechanical mixing caused by breaking, the

layer thickness is of order of significant wave height (Terray et al. [1996]); the current

shear in this layer is very small (Kudryavtsev et al. [2008]); (ii) below it lies the layer
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resembling the wall turbulence one with the eddy viscosity linearly increasing with

depth (Soloviev and Lukas [2013]); however, in contrast to the true wall turbulence

layer the eddy viscosity is starting to decrease below a depth scaled as u∗/f , where

u∗ is the friction velocity and f is the Coriolis parameter. The fundamental question

on how good are the eddy viscosity closure and the corresponding parametrization of

momentum transfer for this boundary layer, nobody has even dared to ask in writing.

This crucial issue has been partially addressed by means of large eddy simulations of

steady Ekman boundary layers by (Zikanov et al. [2003]). The work does not simulate

waves and their breaking and, hence, ignores the layer adjacent to the surface where

mechanical mixing caused by breaking waves makes the vertical shear very weak, but

it confirms existence of the wall-like layer below and predicts where the eddy viscos-

ity starts to decrease. Thus, at least for steady regimes it provides a simple depth

and latitude dependent parametrization of the eddy viscosity which is theoretically

justified for depths exceeding significant wave height, but still far above the seasonal

pycnocline depth. It is a work in progress to create good models able to take into

account the presence of stratification (either due the air bubbles entrainment near

the surface, or diurnal and seasonal pycnoclines) which suppresses the turbulence

and thus strongly affects the momentum transfer.

On the theoretical side the attempts to modify the Ekman model to improve its

performance while retaining its elegance and simplicity have never stopped. Models

with vertical eddy viscosity linearly varying with depth have two major advantages:

first, the corresponding reduction of the Navier-Stokes equations can be solved exactly

in terms of the Bessel functions (e.g. Madsen [1977], Lewis and Belcher [2004]) and,

crucially, the solution for the flow velocity yields a logarithmic boundary layer profile,

which, in a certain range of depths, agrees well with available observations (e.g.

Csanady [2001]). The first model with the linearly depth dependent eddy viscosity

was proposed for steady Ekman currents in shallow water by Thomas [1975], eddy

viscosity increases linearly with depth from zero at the bottom, it depends on the

bottom roughness and the flow itself. This model predicts a logarithmic velocity

profile near the bottom. Another model for steady wind-induced currents in shallow

water with a more difficult to justify exponential depth-dependent eddy viscosity
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was suggested in (Witten and Thomas [1976]). The advantages of models with eddy

viscosity linearly growing with depth were further exploited by Madsen [1977] to

describe time-dependent Ekman boundary layer in water of infinite depth. Lewis

and Belcher [2004] extended the model further by considering eddy viscosity growing

linearly with depth with nonzero value at the surface in both deep and finite depth

water. Following the idea first put forward by Huang [1979] the authors also took

into account the Stokes drift due to waves; the resulting theoretical predictions better

agree with observations of the angular deflections of the steady-state current. Note

that the classical steady Ekman solution was found to be unstable with respect to

finite wavelength perturbations; linear stability analysis carried out by (Leibovich

and Lele [1985]) on the non-traditional f−plane has identified the critical Reynolds

numbers and parameters of the most unstable modes; however, since the analysis

is confined to the classical Ekman model with constant eddy viscosity, crucially,

assumed to be the same for the basic flow and the perturbations, it is not clear

how relevant are these viscous instabilities for realistic situations. The potentially

important idea of instability of Ekman layer has not been pursued further.

The ability of the existing models of Ekman currents to capture response of oceanic

boundary layer to varying in time wind stress was thoroughly examined by (Elipot

and Gille [2009]) by comparing modelling with nine different Ekman-type models

(three types of eddy viscosity depth dependence and and three forms of boundary

conditions at the bottom of the mixed layer aimed to mimic the effect of strati-

fied layer below) against the Southern ocean drifter observations carried out within

the framework of the ongoing Global Drifter Program (Siedler et al. [2001], see also

http://www.aoml.noaa.gov/phod/dac/index.php). The ageostrophic component of

near-surface velocity was computed by subtracting altimeter-derived geostrophic ve-

locities from observed drifter velocities corresponding to 15-m depth. Then the trans-

fer function was computed to link these ageostrophic velocities to the observed wind

stresses. Some of the tested Ekman-type models proved to be surprisingly successful

in describing the variability in the drifter data. However, the reasons why the least

likely particular models happened to perform better are not clear; the huge scale of

this experiment does not allow one to dismiss these findings as a mere coincidence
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and calls for further study.

For illustrative purposes, in the next section we provide a summary of a series of

Ekman-type models and a brief review of their continuing impact. These models re-

mains an important part in physical oceanography literature and they are considered

as a natural start to understand the processes in the upper ocean, although they

are considered to be highly idealised models where there is no an explicit buoyancy

forcing is taken into account and the turbulent diffusion of momentum is parame-

terized by adopting the Boussinesq closure hypothesis. Furthermore, the presence of

the surface waves and the behaviour of the turbulent flow in the subsurface layer of

the ocean, in particular, Stokes drift, can affect the structure of the Ekman currents

(the magnitude of the current surface velocity and the angle of its deflection from the

wind) (Craik and Leibovich [1976]; Leibovich [1977a]; Leibovich [1977b]; McWilliams

et al. [1997]).

1.2 Review of existing Ekman models

This section includes some of Ekman-type models with different eddy viscosity profiles

and different boundary conditions at the base of the boundary layer.

1.2.1 The equation of motion

For a stratified, viscous and rotating flow, the governing equations (Stewart [2008])

on the non-traditional f -plane are:

x− momentum : ρ

(
du

dt
+ f̃w − fv

)
= −∂p

∂x
+
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
, (1.1a)

y −momentum : ρ

(
dv

dt
+ fu

)
= −∂p

∂y
+
∂τxy

∂x
+
∂τ yy

∂y
+
∂τ yz

∂z
, (1.1b)

z −momentum : ρ

(
dw

dt
− f̃u

)
= −∂p

∂z
− ρ g +

∂τxz

∂x
+
∂τ yz

∂y
+
∂τ zz

∂z
, (1.1c)

continuity equation :
dρ

dt
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0 , (1.1d)

density equation :
dρ

dt
= K ∇2ρ , (1.1e)
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where the standard Cartesian frame with axis directed: x-eastward, y-northward

and z-downward is used, z = 0 is chosen to be at the free surface of the ocean.

u, v, w are the velocities components in the directions of x, y, z, respectively, τ terms

are the normal and shear stresses, ρ is the fluid density, p is the pressure, g is

the gravitational acceleration, K is the diffusivity coefficient, f = 2Ω sinφ and

f̃ = 2Ω cosφ (Ω = 7.292× 10−5 radians/s is the Earth’s rotation frequency and φ is

the latitude) are the vertical and horizontal Coriolis parameters respectively, and

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

is the material derivative.

If the flow is incompressible, eq.(1.1d) simplifies to:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (1.2)

Figure 1.1: Sketch of the rotation vector Ω at latitude φ, giving rise to the
Coriolis components f = 2Ωv and f̃ = 2Ωh

1.2.2 Approximations

This subsection includes a brief description of some approximations (e.g. Phillips

[1977]; Cushman-Roisin and Beckers [2007]).
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1.2.2.1 The rigid-lid approximation

The ocean surface is considered to be constant and level and this implies that the

elevations of the surface are neglected and there is no flow through it, so that the

vertical velocity at the free surface will be zero, w = 0, while the horizontal velocities

are non-zero and determined by solving the equations. This is the so-called “the

rigid-lid approximation”.

1.2.2.2 Boussinesq Approximation

The Boussinesq approximation is based on the assumption that the variation in den-

sity, ρ′(x, y, z, t), is small compared to its average value, ρ0, and in this case the

actual density ρ, ρ = ρ0 + ρ′; |ρ′| � ρ0, can be replaced by its reference value in

every term in the momentum equations except when it is multiplied by gravitational

acceleration.

1.2.2.3 The Reynolds stresses

Consider a fluid flow of the form:

u = U + u′; v = V + v′; w = W + w′; p = P + p′ . (1.3)

where (U, V,W, P, ρ0) describe the mean flow and (u′, v′, w′, p′, ρ′) describe the tur-

bulent disturbances. The mean flow velocity, for example U , is found by averaging

over time or space:

U = 〈u〉 =
1

T

∫ T

0

u(t)dt or U = 〈u〉 =
1

X

∫ X

0

u(x)dx .

Here, there is an implicit assumption that there is a gap between turbulent scales

and the scales of the mean flow.

The non-linear terms in the momentum equation in the x-direction can be written
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as follows:

〈
(U + u′)

∂(U + u′)

∂x

〉
=

〈
U
∂U

∂x

〉
+

〈
U
∂u′

∂x

〉
+

〈
u′
∂U

∂x

〉
+

〈
u′
∂u′

∂x

〉
=

〈
U
∂U

∂x

〉
+

〈
u′
∂u′

∂x

〉
, (1.4)

where 〈
U
∂u′

∂x

〉
=

〈
u′
∂U

∂x

〉
= 0 .

and similarly for the other non-linear terms. Substituting the mean and turbulent

components (1.3) into the equation (1.1d) gives:

∂U

∂x
+
∂V

∂y
+
∂W

∂z
+
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0 . (1.5)

The previous equation can be divided to two equations as follows:

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 , (1.6)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0 . (1.7)

The x- momentum equation for the mean flow is

dU

dt
− fV = − 1

ρ0

∂P

∂x
+ ν∇2U − ∂〈u′ u′〉

∂x
− ∂〈u′ v′〉

∂y
− ∂〈u′w′〉

∂z
. (1.8)

where ν is the molecular viscosity. The effects of the turbulence fluctuations on the

mean flow are presented by the last three terms on the right-hand side of equation

(1.8). The previous equation can be rewritten as follows

dU

dt
− fV = − 1

ρ0

∂P

∂x
+

∂

∂x

[
ν
∂U

∂x
− 〈u′ u′〉

]
+

∂

∂y

[
ν
∂U

∂y
− 〈u′ v′〉

]
+

∂

∂z

[
ν
∂U

∂z
− 〈u′w′〉

]
, (1.9)

where the term ( − ∂
∂x
〈u′ u′〉− ∂

∂y
〈u′ v′〉− ∂

∂z
〈u′w′〉 ) represents an additional frictional

force per unit mass caused by the turbulence, the expressions −〈u′ u′〉,−〈u′ v′〉 and
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−〈u′w′〉 are called Reynolds stresses (turbulent stresses).

Similarly, the average of the momentum equations in the y− and z− direction over

the turbulent fluctuations gives:

dV

dt
+ fU = − 1

ρ0

∂P

∂x
+

∂

∂x

[
ν
∂V

∂x
− 〈u′ v′〉

]
+

∂

∂y

[
ν
∂V

∂y
− 〈v′ v′〉

]
+

∂

∂z

[
ν
∂V

∂z
− 〈v′w′〉

]
, (1.10)

and,

dW

dt
− f̃U = − 1

ρ0

∂P

∂x
− ρ′g

ρ0

+
∂

∂x

[
ν
∂W

∂x
− 〈u′w′〉

]
+

∂

∂y

[
ν
∂W

∂y
− 〈v′ v′〉

]
+

∂

∂z

[
ν
∂W

∂z
− 〈w′w′〉

]
. (1.11)

To illustrate how these stresses are calculated we consider an example of horizontally

uniform and steady mean flow, so that equation (1.9) becomes:

fV +
∂

∂z

[
ν
∂U

∂z
− 〈u′w′〉

]
= 0 . (1.12)

We parameterize the Reynolds stresses by adopting the Boussinesq hypothesis,

−ρ〈u′w′〉 = τxz = ρνe
∂U

∂z
, (1.13)

where νe is an eddy viscosity coefficient found from the observations.

Observations from the Eastern Boundary Current (EBC) mooring, which carried out

in the coast of the Northern California at 37.1◦ N during a four months period, showed

that the vertical viscosity has a value of 274×10−4 and 1011×10−4 m2s−1 based on

the decay of the amplitude and rotation rate respectively (Chereskin [1995]). These

values has also been estimated as 60 × 10−4 and 540 × 10−4 m2s−1 from LOTUS3

(the Long Term Upper Ocean Study) measurements which was collected from the

Western Sargasso Sea (34◦ N) for about 160 days. Table (1.1) (from Huang [1979])

gives an idea of the spread of numerical values of the vertical viscosity coefficient

and the thickness of the mixed layer as found in observations by various authors in

different conditions. The coefficient ranges between O(10−4) and O(10−1) m2s−1.
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Table 1.1: Eddy viscosity values (Huang [1979]).

Location Layer depth m νe, 10−4(m2s−1) Source

Danish Waters 0-15 1.9-3.8 All currents
Arctic Ocean 160 Under ice

Danish Waters 250-1500 All currents
Kuroshio 0-200 680-7500 All currents
Japan Sea 0-200 150-1460 All currents

North Siberian Shelf 0-60 0-1000 Tidal currents
North Sea 0-31 75-1720 Strong tidal

currents
Tropical Atlantic 0-50 320 Temperature

Ocean fluctuation
North Siberian Shelf 0-60 10-400 Tidal current

Atlantic Ocean 50◦S − 10◦N 0-200 7-50 Wind currents
Japan Sea 0-10 100 Tidal currents

Arctic Ocean 0-100 23.8 Ice drift
North Atlantic 0-4 146 Temperature

4-8 96 fluctuation
8-12 47

Open Ocean 0-10 150-225 Surface
Lake Huron 30 65-160 Wind current

Tropical Atlantic 0-12 420± 84 Temperature
Ocean fluctuation

Tropical Atlantic Ocean 0-10 62 Temperature
10-20 68 fluctuation
20-30 85

Tropical Atlantic Ocean 0-12 480 Temperature
20-50 265 fluctuation

1.2.3 Inertial Oscillations

The inertial Oscillations are considered to be the simplest type of time-dependent

motion caused only by the Coriolis force (e.g. Stewart [2008]). The inertial Oscilla-

tions and the Ekman currents are closely interlinked. Here we consider the basics of

the mathematical model of these motions. Often the viscous effects can be neglected
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from the momentum equations, which yields:

x−momentum : ρ

(
du

dt
+ f̃w − fv

)
=− ∂p

∂x
, (1.14a)

y −momentum : ρ

(
dv

dt
+ fu

)
=− ∂p

∂y
, (1.14b)

z −momentum : ρ

(
dw

dt
− f̃u

)
=− ∂p

∂z
− ρ g . (1.14c)

We consider the limit where the horizontal pressure gradient can be neglected, i.e.

the limit of infinitely long inertial wave–the inertial oscillations,

∂p

∂x
=
∂p

∂y
= 0 . (1.15)

In this limit the mass of water moves horizontally, hence equations (1.14) become:

∂u

∂t
− f v = 0 , (1.16a)

∂v

∂t
+ f u = 0 . (1.16b)

These equations can be reduced to a single equation.

d2u

dt2
+ f 2 u = 0 , (1.17)

which has the solution:

u =V0 sin(ft) ,

v =V0 cos(ft) ,

V 2
0 =u2 + v2 . (1.18)

Equations (1.18) are the circle equation in a parametric representation with a diam-

eter equal to 2V0/f and period (inertial period) Ti = (2π)/f = Tsd/(2 sinφ), where
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Tsd = 23 hr 56 min 4.1 s is a sidereal day. Inertial oscillations are free motions, while

the Ekman currents are forced motions. However, at certain timescales the Ekman

currents behave as (almost) free motions as inertial oscillations.

1.2.4 The Ekman Layer

The Ekman layer is a horizontal boundary layer which occurs due to a horizontal

frictional shear stress. Its characteristic thickness varies widely, could be a few hun-

dred meters thick. Such layer exists, for example, along the surface and the bottom

of the ocean, and also at the atmosphere layer which in a direct contact with the

ocean surface (the planetary boundary layer). The dynamics in this layer was first

examined by Vagn Walfrid Ekman (Ekman [1905]). Nansen (Nansen [1905]) indi-

cated that the wind stress, frictional force and the Coriolis force are important and

must be balanced when icebergs are drifted by wind on a rotating Earth, in which

the rotational force is perpendicular to the velocity while the drag must be opposite

to the velocity direction (Stewart [2008]).

Here, we describe ocean response to varying wind starting with the Navier-Stokes

equations for stratified viscous and horizontally uniform flow on the non-traditional f -

plane under the Boussinesq approximation (e.g. Phillips [1977]; Cushman-Roisin and

Beckers [2007]). In the Cartesian frame with x directed eastward, y-northward and

z-downward, with the origin at the free surface of the ocean the Reynolds averaged

Navier-Stokes equations for the the eastward and northward velocities u, v caused by

a time-varying horizontally uniform wind stress τxz(0, t) take the form

∂u

∂t
− fv =

1

ρ

∂τxz(z, t)

∂z
, (1.19a)

∂v

∂t
+ fu =

1

ρ

∂τyz(z, t)

∂z
, (1.19b)

The Reynolds stresses terms τxz ≡ −ρ〈u′w′〉, τyz ≡ −ρ〈v′w′〉 describe the downward

transfer of eastward and northward momentum, here u′,v′ and w′ are the turbulent

velocities, 〈 ... 〉 means Reynolds’ averaging over turbulent fluctuations. The explicit
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effect of the horizontal component of the Earth rotation f̃ = 2Ω cosφ and the non-

linear terms vanish identically for horizontally uniform flows we are interested in,

while an implicit dependence on f̃ is retained in the Reynolds stresses terms. Taking

into account f̃ is also essential for studying stability of the solutions of the Ekman

equations (Leibovich and Lele [1985]).

We close the equations for the Reynolds averaged flow by adopting the commonly

used Boussinesq hypothesis, i.e. assume the Reynolds stresses to be proportional to

the mean velocity gradient, ∂uuu/∂z, through a single scalar eddy viscosity coefficient,

νe(z, t):

ρν(z, t)
∂u

∂z
≡ τxz ≡ −ρ〈uw〉 , ρν(z, t)

∂v

∂z
≡ τyz ≡ −ρ〈v w〉 . (1.20)

In our context the use of this closure has been justified in (Zikanov et al. [2003])

through the extensive large-eddy simulations, although only for the steady winds.

We can also expect it to be applicable for the time dependent winds for the time

scales exceeding characteristic scale of the turbulence adjustment.

Upon adopting the Boussinesq closure (1.20) the momentum equations (1.19) can be

written as

∂u

∂t
− fv =

1

ρ

∂

∂z

(
ρνe(z, t)

∂u

∂z

)
, (1.21a)

∂v

∂t
+ fu =

1

ρ

∂

∂z

(
ρνe(z, t)

∂v

∂z

)
. (1.21b)

Strictly speaking the density ρ depends on z and t and its evolution has to be de-

scribed by an extra diffusion equation with appropriate boundary condition at the

surface specifying the buoyancy fluxes through the surface and direct solar heating in

the vicinity of the surface. However, under the Boussinesq approximation we adopt,

we can neglect the density dependence on z and t and assume it to be constant. In

our consideration the presence of density stratification manifests itself only in depth

dependence of the eddy viscosity. We do not assume any particular relation between

the stratification and viscosity. Although it is well known that stratification sup-

presses turbulence, which decreases eddy viscosity, here we do not specify this link.
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We will assume vertical dependence of eddy viscosity to be a given function of depth.

In §2 and §4 we confine our study to density uniform flows, which makes the equa-

tions above independent of density, while the effects of density stratification are the

focus of the analysis in §3, where a two-layer model of stratification is considered.

Following the original work by (Ekman [1905]) we introduce complex horizontal ve-

locity U = u + iv and adopt the the Boussinesq approximation which enables us to

cast the momentum equations into the following single equation on U ,

∂U

∂t
+ ifU =

∂

∂z

(
νe(z, t)

∂U

∂z

)
. (1.22)

The equation represents an exact reduction of the Navier-Stokes equations for the

horizontally uniform viscous flows on the f -plane with time and depth dependent

viscosity. Different profiles were discussed in the literature, none with time dependent

viscosity. Here, the problem is analyzed for cases of eddy viscosity profiles with both

temporal and vertical dependence.

The motion has to satisfy the boundary condition of continuity of the shear stress

at the free surface: a horizontally uniform time dependent wind produces tangential

stress τττ(t) at the ocean surface, so that

[
νe(z, t)

∂U

∂z

]
z=0

=
−τττ(t)

ρ
. (1.23)

The velocity should vanish at the bottom z = D which requires,

U(D) = 0 (1.24)

However, throughout the most of our work we will consider only deep fluid, which

implies,
∂U

∂z
→ 0 as z →∞ . (1.25)

The initial condition at t = 0 is an arbitrary initial distribution U(z, 0).
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1.2.4.1 Steady-state solution with a constant viscosity

A good insight into the nature of the Ekman currents provide steady-state solutions

of the Ekman equations (1.22, 1.23, 1.24, 1.25). In a steady state, the term, U t, on

the left hand side of equation (1.22) vanishes, and assuming that the eddy viscosity

to be constant (Ekman [1905]), the momentum equations and boundary conditions

mentioned above can be rewritten as

νe
d2U

d z2
− i f U = 0 , (1.26)

where a steady wind blows tangentially to the surface of the ocean and directed along

the positive x-axis

dU

d z
=
−τ
ρνe

at z = 0 . (1.27)

The general solution to equation (1.26) is given by

U = c1e
m1z + c2e

−m1z , (1.28)

where

m1,2 = ±
(

1 + i√
2

)√
f

νe
. (1.29)

The constants c1 and c2 are determined by applying the boundary conditions (1.23

and 1.25).

c1 = 0 and c2 =
τ e−iπ/4

ρ
√
f νe

. (1.30)

Thus, the complex velocity takes the form
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U = u+ iv =
τ (1− i)
ρ
√

2 f νe
exp [−(1 + i)z/δe] . (1.31)

It follows that

u = U0 exp

[
z

δe

]
sin

(
π

4
− z

δe

)
, (1.32)

and,

v = U0 exp

[
z

δe

]
cos

(
π

4
− z

δe

)
. (1.33)

Where U0 = τ
ρ
√
f νe

and δe =
√

2 νe
f

are the magnitude of the flow at the surface

and the exponential decay scale respectively. The amplitude of the velocity decays

exponentially with depth (see figure 1.2):

(
u2(z) + v2(z)

)1/2
= U0 exp

[
− z
δe

]
. (1.34)

The wind stress is usually parametrized by the following formula (e.g. Stewart [2008]):

τx = τ = ρair CD U
2
10 , (1.35)

where ρair = 1.25kg/m3 is the air density, CD = 1.4 × 10−3 is the drag coefficient,

and U10 is the speed of the wind, measured 10 m above the unperturbed seawater

level. Also, in terms of wind speed U0 is linked to U10 as follows:

U0 =
0.0127U10√

sin |φ|
; |φ| > 10 . (1.36)

The first depth at which the direction of the current velocity is opposite to the

velocity direction at the surface, was named by Ekman [1905] as the ”the Depth of
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Wind-currents”:

DE =π δe = π

√
2νe
f
, (1.37)

with the use of the equations (1.35 and 1.36) and the parameters which are mentioned

above, equation (1.37) can be rewritten as:

DE =
7.6 U10√

sin |φ|
. (1.38)

The depth of the Ekman layer changes with wind speed and latitude, it ranges be-

tween 40 to 598 m. Table (1.2) gives Ekman layer depths according to typical wind

speeds and at some latitudes.

Table 1.2: Ekman depths

Wind speed: U10 m/s Latitude: 15◦ 45◦ 75◦

5 75 m 45 m 40 m
10 150 m 90 m 77 m
20 300 m 180 m 155 m
40 598 m 362 m 309 m

The dimensionless ratio of viscous force to the Coriolis force in the momentum (1.26)

is called the Ekman number, Ez:

Ez =
viscous term

Coriolis term
=
νe

∂2u
∂z2

f u
≈
νe

U
l2

f U
=

νe

f l2
, (1.39)

where U and l are the typical velocity of the flow and typical length (depth) scale

describing the motion respectively. An equivalent form to the Ekman depth form

(1.37) is derived from equation (1.39):

l =

√
νe
f Ez

, (1.40)

where the depth defined by Ekman is obtained by setting Ez = 1/(2π2) ≈ 0.05 in the

previous equation. For flows with small Ekman numbers the Coriolis is the dominant

force in the momentum equations.
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Figure 1.2: The classical Ekman spiral. The parametrs values are f = 10−4 s−1,
τ = 0.175 N/m2, ρ = 1027kg/m3 and νe = 10−3 m2s−1.

The velocity vector direction turns clockwise in the northern hemisphere, while in

the southern hemisphere it turns counter-clockwise and the magnitude of the surface

velocity decays with depth. The angle between the wind stress and the surface current

is 45 degrees and it grows with depth. An example of the horizontal velocity of the

classical Ekman spiral is shown in figure (1.2).

The depth averaged velocity in the x−direction and the y−direction is:

Sx =

∫ 0

−∞
u dz = 0 , (1.41a)

Sy =

∫ 0

−∞
v dz =

τ

ρ f
. (1.41b)

The solution to equation (1.26) subjected to the no-slip condition at the bottom

(U = 0 at z = D) and to the upper condition which is mentioned before in

equation (1.27), is given by

U = u+ iv =
τ e−iπ/4

ρ
√
f νe

sinh
[
(1 + i) (D − z)

√
f

2νe

]
cosh

[
(1 + i)D

√
f

2νe

] . (1.42)
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The previous equation can be written as follows

u = A sinh(ξ̂/δe) cos(ξ̂/δe) +B cosh(ξ̂/δe) sin(ξ̂/δe) , (1.43a)

v = A cosh(ξ̂/δe) sin(ξ̂/δe)−B sinh(ξ̂/δe) cos(ξ̂/δe) , (1.43b)

where

ξ̂ = D − z, δe =

√
2νe
f
,

A =

√
2 τ

ρ
√
fνe

cosh(D/δe) cos(D/δe)− sinh(D/δe) sin(D/δe)

cosh(2D/δe) + cos(2D/δe)
,

B =

√
2 τ

ρ
√
fνe

cosh(D/δe) cos(D/δe) + sinh(D/δe) sin(D/δe)

cosh(2D/δe) + cos(2D/δe)
.

Equations (1.43a) and (1.43b) describes the steady state flow of finite Ekman layer,

and the resultant Ekman fluxes in the x−direction and the y−direction are:

Sx =

∫ D

0

u dz =
τ D2

E

µπ2

sinh(D/δe) sin(D/δe)

cosh(2D/δe) + cos(2D/δe)
, (1.44a)

Sy =

∫ D

0

v dz =
τ D2

E

2µπ2

2 cosh(D/δe) cos(D/δe)− cosh(2D/δe) − cos(2D/δe)

cosh(2D/δe) + cos(2D/δe)
,

(1.44b)

where DE = πδe. For a finite depth, the deflection angle of the surface current is not

precisely equal to 45 degrees to the right of the wind vector, it depends on the ratio

of the depth D to the Ekman layer depth DE,

tan(Φ) =
(v
u

)
z=0

=
sin(2D/δe)− sinh(2D/δe)

sin(2D/δe) + sinh(2D/δe)
; 2D/δe =

2πD

DE

.

When DE � D, the angle is small, and the flow at the surface is almost in the wind

direction. It alternates between less and larger than 45 degrees with increasing depth.
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1.2.4.2 Stokes-Ekman layer

The nature of the Ekman layer changes due to the presence of surface waves (e.g.

McWilliams et al. [1997], Sullivan and McWilliams [2010]). The horizontal momen-

tum ”Stokes-Ekman” equations, which follow from horizontal averaging of the Craik-

Leibovich equations, for the case of constant viscosity are as follows

∂U

∂t
+ if(U +U s) = νe

∂2U

∂z2
, (1.45)

where U s(z, t) is the Stokes drift velocity. In order to simplify the problem, it is often

assumed (e.g. McWilliams et al. [1997]) that there is a single monochromatic deep

water wave,

ηs(x, y, t) = α cos(k.x− σt) , (1.46)

where ηs is the elevation of the free surface, α is the amplitude, k = (kx, ky) is the

wave-vector and σ =
√
g|k| is the frequency of linear wave with wave-vector k. The

corresponding Stokes drift is then

U s(z, t) = Us eU e
−2|k|z , (1.47)

where Us = σ|k|a2 (Phillips [1977]) and eU is a unit vector aligned with the wind.

The equation (1.45) can be rewritten as

∂U

∂t
+ ifU − νe

∂2U

∂z2
= −i f Use−2|k|z , (1.48)

subjected to the following boundary conditions:

[
νe
∂U

∂z

]
z=0

=
−τττ(t)

ρ
. (1.49)

U → 0 as z →∞ . (1.50)
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For a steady-state case, the governing equation reduces to the diffusion equation:

ifU − νe
d2U

dz2
= −i f Use−2|k|z . (1.51)

Its general solution is:

U(z) = Uh(z) +U p(z) , (1.52)

where U p(z) is a particular solution in the form:

U p(z) = Ae−2|k|z , (1.53)

where

A =
ifUs

4k2νe − if
, (1.54)

so that,

U p(z) =
ifUs

4k2νe − if
e−2|k|z . (1.55)

The other part of the solution (the general solution of the homogeneous equation),

Uh, is:

Uh(z) = c1 exp

[√
if

νe
z

]
+ c2 exp

[
−
√
if

νe
z

]
. (1.56)

The condition Uh → 0 as z →∞ leads to c1 = 0. And by applying the condition

at the surface we obtain c2 =
√

νe
if

(
τ
ρνe
− 2ikfUs

4k2νe−if

)
. so that,

Uh(z) =

√
νe
if

(
τ

ρνe
− 2ikfUs

4k2νe − if

)
exp

[
−
√
if

νe
z

]
. (1.57)
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The steady-state solution is then

U(z) = Uh(z) +U p(z)

=

√
νe
if

(
τ

ρνe
− 2ikfUs

4k2νe − if

)
exp

[
−
√
if

νe
z

]
+

ifUs

4k2νe − if
e−2|k|z

=
1− i√
2fνe

(
τ

ρ
− 2Akνe

)
exp

[
−
√
if

νe
z

]
+ Ae−2|k|z , (1.58)

where A is given by equation (1.54) . Figure (1.3) shows that the current turning

is reduced due to the wave effects. The analysis of Stokes-Ekman equations in the

literature is confined to strongly idealised cases where time dependent spectrum of

surface waves is approximated by monochromatic wave of constant amplitude. Time

dependence of eddy viscosity has been also ignored. In this thesis we aim to address

this limitation by considering a more realistic situation (time and depth dependent

viscosity model with time dependent wind waves).

Figure 1.3: Compersion between the classical Ekman (solid line) and Stoke-
Ekman (dotted-dashed line) models. The parametrs (McWilliams et al. [1997])
values are f = 10−4 s−1, τ = 0.037 N/m2, ρ = 1027kg/m3, νe = 1.16× 10−2 m2s−1,
k = 2π/60m−1 and Us = 0.068m s−1.
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1.2.4.3 Time-dependent Ekman solution with a constant eddy viscosity

Under the assumption of constant eddy viscosity, equations (1.22) in the complex

form are as follows

∂U

∂t
+ i f U = νe

∂2U

∂z2
. (1.59)

Taking the Fourier transform of equation (1.59) with respect to t ( Ũ(z, ω) =∫∞
−∞U(z, t) e−iωt dt ) converts it to an ordinary equation,

νe
d2Ũ

dz2
− i( f + ω )Ũ = 0 , (1.60)

Its general solution is a sum of two exponents:

Ũ(z, ω) = c1 exp

[√
f + ω

2νe
(1 + i)z

]
+ c2 exp

[
−
√
f + ω

2νe
(1 + i)z

]
. (1.61)

Applying the bottom boundary condition, Ũ = 0 as z −→∞, leads to c1 = 0 . The

remaining free constant c2 is determined from the surface condition, ρ νe
∂Ũ
∂z

= −τ (ω)

at z = 0, which yields c2 = τ (ω) e−iπ/4

ρ
√
νe
√
f+ω

. Then, finally,

Ũ (z, ω) =
τ (ω) e−iπ/4

ρ
√
νe
√
f + ω

exp

[
−
√
f + ω

2νe
(1 + i)z

]
. (1.62)

The time-dependent solution when the initial velocity is zero (e.g. Gonella [1971];

Lewis and Belcher [2004]) is given in terms of the convolution:

U(z, t) =
τ (t)

ρ
√
ν
∗(t)

e−ift e−z
2/4νet

√
π
√
t

. (1.63)
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The behaviour of the solution obtained above (1.63) was examined when the wind

blows suddenly and is directed along the x axis, i.e.

τ =

 τx when t ≥ 0

0 when t < 0
(1.64)

Then, the solution (1.63) takes the form.

U(z, t) =
τx

ρ
√
νe π

∫ t

0

e−ifΘ e−z
2/4νeΘ

√
Θ

dΘ . (1.65)

At the surface, z = 0, the velocity is:

U 0(t) =

√
2 τx

ρ
√
fνe

[
C

(√
2

π

√
ft

)
− iS

(√
2

π

√
ft

)]
, (1.66)

where C(x) =
∫ x

0
cos(πx′2/2)dx′ and S(x) =

∫ x
0

sin(πx′2/2)dx′ are the Fresnel’s inte-

grals (e.g. Abramowitz and Stegun [1964]). The deflection angle Φ0 is given by

Φ0(t) = − tan−1

S
(√

2
π

√
ft
)

C
(√

2
π

√
ft
)
 . (1.67)

Figure (1.4) illustrates that there are three stages of the development of the current.

At early times, say at, ft ≈ 0.1, the effect of the Coriolis force is negligible so that

the current has almost the same direction as the wind. For times ft ≈ 1, the current

diverts southward due to the Coriolis acceleration. and lastly, at large times (ft� 1)

it tends to the steady-state current (Lewis and Belcher [2004]). Figure (1.5) shows

the deflection of surface current from wind as a function of time.
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Figure 1.4: The normalised drift-current at the surface caused by the wind stress.
Uc = τx/ρ

√
2fνe is the surface velocity scale and the numbers besides the curve

represent the non-dimensional time t̃ = ft.

Figure 1.5: The deflection angle of surface current to the wind direction.

To find the Ekman transport S, the total fluid flux is integrated over the entire depth,

S =
τ (t)

ρ
√
νe
∗ e−ift
√
π
√
t

∫ ∞
0

e−z
2/4νetdz

=
τx
ρ f

e−iπ/2
(
e−ift − 1

)
. (1.68)

This result implies that the resultant velocity fluctuates around the value τx
ρ f

e−iπ/2

(Gonella [1971]).
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1.2.4.4 Time-dependent solution with linearly eddy viscosity increasing

with depth (νe(z) = az)

Since Ekman [1905] there always been an interest in evolving Ekman currents. Nu-

merous attempts were made to find models with more realistic depth dependence of

eddy viscosity. one of the first such attempts was made by Madsen [1977]. Here, the

vertical eddy viscosity is assumed to be in the form (Madsen [1977]):

νe(z) = a z . (1.69)

Equation (1.22) with this form of νe(z) becomes

∂U

∂t
+ i f U =

∂

∂z

(
a z

∂U

∂z

)
, (1.70)

which is subjected to the boundary conditions (1.23 and 1.25). For simplicity, the

ocean is assumed to be initially at rest, U = 0 when t ≤ 0.

The Laplace transform, defined by

Û(z, s) = L{U(z, t)} =

∫ ∞
0

e−st U(z, t) dt , (1.71)

can be applied to equation (1.70) as it is linear and its coefficients are independent

of time, which

z
∂2Û

∂z2
+
∂Û

∂z
−
(
s+ if

a

)
Û = 0 . (1.72)

Also the Laplace transform is applied to the boundary conditions

L
{
τ (t)

ρ

}
= L

{
τx(t)

ρ
+ i

τy(t)

ρ

}
= −a z ∂Û

∂z
at z = 0 , (1.73)
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and

Û → 0 as z →∞ . (1.74)

The governing equation (1.72) can be then written as follows

ξ
d2Û

dξ2
+
dÛ

dξ
− Û = 0 , (1.75)

where ξ = z(s+if)
a

is the non-dimensional vertical variable. The general solution of

this equation is given in terms of Bessel functions.

Û(z, s) = c1 I0

(
2
√
ξ
)

+ c2K0

(
2
√
ξ
)
, (1.76)

where I0 andK0 are the modified Bessel function of the first and second kind, respec-

tively.

For deep water case according to equation (1.74), the constant c1 must be zero, which

reduces (1.76) to a simple expression

Û(z, s) = c2K0

(
2
√
ξ
)
. (1.77)

To find c2 we applying the surface boundary condition (1.73) in terms of the dimen-

sionless variable ξ,

a
√
ξ c2 K1

(
2
√
ξ
)

= L
{
τ(t)

ρ

}
as ξ → 0 . (1.78)

Since the assumption of the modified Bessel function of the second kind for small

arguments K1 → 1/(2
√
ξ), one obtains

c2 =
2

a
L
{
τ(t)

ρ

}
. (1.79)

Then, the solution in the Laplace space becomes (Madsen [1977]):
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Û(z, s) =
2

a
L
{
τ (t)

ρ

}
K0

(
2
√
ξ
)
. (1.80)

Since

L
{

1

2t
e−ift e−z/at

}
= K0

(
2
√
ξ
)

; ξ =
z(s+ if)

a
. (1.81)

it follows that, the solution for the Ekman current in the convolution form is

U(z, t) =
1

a

∫ t

0

τx(t−Θ) + iτy(t−Θ)

ρ
e−ifΘ 1

Θ
e−z/aΘ dΘ . (1.82)

The behaviour of the solution obtained above (1.82) was examined when the wind

stress is the Heaviside step function.

τ =

 τx ; t < 0

0 ; t ≥ 0
(1.83)

which means that the wind blows suddenly on the ocean surface, and it is directed

along the x axis.

The given solution by equation (1.82) becomes

U(z, t) = u+ iv =
τx
a ρ

∫ t

0

1

Θ
e−ifΘ e−z/κu∗Θ dΘ . (1.84)

Although the classical solution and Madsen’s solution (1.84) are almost identical in

appearance, there is a marked difference in the behaviour of both solutions near the

surface (z → 0). At z = 0, the classical solution is expressed in terms of convergent

Fresnel integrals, while a divergent cosine integral appears in the real part of Madsen’s

solution and this is because of the assumption of the vertical eddy viscosity. Madsen’s
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solution shows that the steady state is reached more rapidly than the classical Ekman

solution (see figure 1.6).

Figure 1.6: The development of surface current caused by a sudden increase of
wind. The classical Ekman model is shown by dashed line, and Madsen’s model
is shown by solid line. parameters values are f = 10−4s−1, ρ = 1027kg m−3,
τx = 0.175N m−2, and νe ≈ 0.02 m2s−1. The numbers besides the curve represent
the non-dimensional time t̃ = ft.

1.2.4.5 Time-dependent solution in the model with eddy viscosity in-

creasing with depth (νe(z) = az + b)

For depth-dependent eddy viscosity profile in the form νe(z) = az+ b = a(z0 + z) (z0

is the roughness length scale which is introduced to avoid the singularity appearing

at the surface in Madsen’s model), the equation of motion takes the form (Elipot and

Gille [2009]):
∂U

∂t
+ i f U =

∂

∂z

(
a(z0 + z)

∂U

∂z

)
. (1.85)

On taking the Fourier transform with respect to t, equation (1.85) transforms to:

a (z0 + z)
∂2Ũ

∂z2
+ a

∂Ũ

∂z
− i(f + ω) Ũ = 0 . (1.86)
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Introducing the nondimensional variable:

ξ̄ = 2

√
i(z0 + z)

n2

; n2 =
a

f + ω
, (1.87)

reduces equation (1.86) to the following form:

d2Ũ

dξ̄2
+

1

ξ̄

dŨ

dξ̄
− Ũ = 0 . (1.88)

The general solution of this equation in terms of Bessel functions is:

Ũ = c1 I0[ξ̄] + c2K0[ξ̄] . (1.89)

where c1 and c2 are arbitrary constants. Elipot and Gille [2009] derived the solution

of this model in Fourier space for three different types of conditions at the bottom

(velocity vanishes at deep ocean, no-slip condition and shear stress vanishes at the

bottom):

Applying the transformed surface condition (−ρ νe(0) Ũ
′

= τ (ω)) and U → 0

(a) (b)

Figure 1.7: Evolution of Ekman current caused by a sharp increase of wind in
Elipot and Gille [2009] models: one-layer of infinite depth is shown by blue dotted
line, one-layer of finite depth is shown by orange dot-dashed line, and one-layer
with shear vanishing at the base is shown by green dashed line. (a) The magnitude
of the surface velocity. (b) The angle between the surface current and the wind.
The parameters are taken from eddy viscosity profile derived by Zikanov et al.
[2003] for wind speed: U10 = 10 m s−1.
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as z →∞ gives a general solution in the form:

Ũ(z, ω) =
τ (ω)K0[ξ̄(z)]

ρ
√
i b (f + ω)K1[ξ̄(0)]

. (1.90)

and by applying the transformed surface condition (−ρ νe(0) Ũ
′
= τ (ω)) and no-slip

conduction (U = 0 at z = D) gives a general solution in the form:

Ũ(z, ω) =
τ (ω)

(
I0[ξ̄(D)]K0[ξ̄(z)]−K0[ξ̄(D)] I0[ξ̄(z)]

)
ρ
√
i b (f + ω)

(
I1[ξ̄(0)]K0[ξ̄(D)] +K1[ξ̄(0)] I0[ξ̄(D)]

) . (1.91)

Also, a general solution in the form:

Ũ(z, ω) =
τ (ω)

(
I0[ξ̄(z)]K1[ξ̄(D)] +K0[ξ̄(z)] I1[ξ̄(D)]

)
ρ
√
i b (f + ω)

(
I1[ξ̄(D)]K1[ξ̄(0)]−K1[ξ̄(D)] I1[ξ̄(0)]

) . (1.92)

is derived by applying the transformed surface condition (−ρ νe(0) Ũ
′

= τ (ω)) and

Ũ
′

= 0 at z = D. For sharp increase of wind, the surface current of these three

models is shown in figure (1.7). Figure (1.8) gives the sketches of depth dependent

eddy viscosity profiles, and solutions in Fourier space for some of these profiles are

provided in table (1.3).

The drawbacks of these models are easy to see:

1. obviously the eddy viscosity can not increase to infinity.

2. The choice of the boundary conditions at the bottom of the mixed layer is not

justified.

3. The eddy viscosity is assumed to be linear in z and constant in time, these

assumptions are very restrictive.
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In the next chapters we will address these shortcomings by studying non-steady

dynamics in Zikanov et al. [2003] model which is justified by LES, we will also model

the stratified flow by considering two-layer model with different constant viscosities,

and time and depth dependent eddy viscosity will also be considered.

(a) (b)

(c) (d)

(e)

Figure 1.8: Sketch of uniform and depth-dependence eddy viscosity profiles con-
sidered in the thesis. (a) Eddy viscosity is constant in both time and depth (Ekman
[1905]). (b) Eddy viscosity is constant in time and linear in depth with zero value
at the surface (Madsen [1977]). (c) Viscosity linearly dependent on depth with a
finite surface value (modification of Madsen’s model) (Elipot and Gille [2009]). (d)
Eddy viscosity predicted by LES and approximated by a piecewise-linear profile
(Zikanov et al. [2003]), this profile is considered in §2. (e) Depth-dependent eddy
viscosity profile in two-layer model considered in §3.
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1.3 Open questions

Despite more than a century of numerous theoretical and observational studies of

Ekman currents, a number of basic questions remain open which we attempt to

address in this thesis.

(i) In his original work Ekman assumed the eddy viscosity to be constant in time

and space. Although a number of models with vertically varying viscosity has

been considered, it is not clear what is the right model and, moreover, whether

such simple parameterisations capture reality well. Zikanov et al. [2003] put

forward a parameterisation of vertical viscosity profile supported by Large Eddy

simulations for steady conditions (and under other additional assumptions).

The degree of applicability of the Zikanov et al. [2003] parametirisation to non-

steady winds is not clear, but this is a reasonable hypothesis we adopt. The

basic question we try to address is whether the use of this more advanced model

supported by LES simulations yields noticeable advantages over more simple

models commonly used in the literature (e.g. Elipot and Gille [2009]; Lewis

and Belcher [2004]).

(ii) The second fundamental question we will attempt to address is how density

stratification (diurnal or seasonal pycnocline) affects the Ekman surface cur-

rents and whether it might be possible to probe remotely the presence and

characteristics of the upper ocean stratification.

(iii) All existing models of the Ekman current response to varying wind employ (at

best) only depth dependent eddy viscosity. This is an obvious oversimplifica-

tion, but its implications are not clear. We will examine the implications of

this assumption within the framework of the Ekman type models.

(iv) It is known that the Stokes drift can strongly affect Ekman currents and this

was considered in the literature. However, this consideration was confined to

the models of constant in time and depth eddy viscosity or only linearly depth

dependent eddy viscosity (constant in time), while the spectrum of surface
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waves was parameterized by a single harmonic not dependent on time. We

will address these major shortcomings of the existing models. We will analyse

the effects of the Stokes drift on the Ekman current dynamics without these

restrictive assumptions by considering time and depth dependent eddy viscosity

profiles with the Stokes drift evolving as an arbitrary function of time.

(v) It is known that the steady Ekman current is unstable and can evolve into rolls. It

is not clear whether the eddy viscosity employed in the Ekman models assumes

spatial averaging over such patterns. It is also not clear how the emergence

of rolls obtained numerically by many authors (e.g. Leibovich and Lele [1985];

Wirth [2010]) can be compatible with the LES simulations by Zikanov et al.

[2003] resulting in steady Ekman currents. We will try to shed new light on

the issue of what spatial and temporal scales are being averaged out in the

commonly adopted picture of Ekman currents.

1.4 Structure of the thesis

The present chapter gives a review of the existing Ekamn models which we consider a

natural starting point to understand an essential aspect of the upper ocean physics.

1. In chapter 2, an explicit analytic solution of Navier-Stokes equations, based

upon Zikanov et al. [2003] parameterisation of eddy viscosity, is derived. This

chapter also provides a comparison between our refined model and the existing

models with a simpler depth dependent eddy viscosity profile.

2. In chapter 3, we extend the classical one-layer model with a constant eddy

viscosity by considering two layers: the top one (turbulent mixed layer) is char-

acterized by a constant eddy viscosity, while the laminar flow below (stratified

layer) has a much smaller constant value of eddy viscosity. This chapter also

includes analyses for both steady and unsteady solutions.

3. In chapter 4, both time and depth dependent of the eddy viscosity is consid-

ered, the exact general solution of Navier-Stokes equations for non-stratified
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deep ocean has been found and analysed for basic situations of varying wind:

periodic wind, increasing wind, and switch off of the wind. Also in this chapter,

the Stokes-Ekman equations with time and depth dependent viscosity, an arbi-

trary time dependent Stokes drift and an arbitrary wave spectrum are analysed.

General solution has been derived for separable time and depth dependent eddy

viscosity. Finally, concluding remarks are presented in chapter 5.



Chapter 2

Ekman currents under variable

wind in non-stratified deep ocean

2.1 Introduction

The upper ocean Ekman Boundary layer has long been the subject of numerous obser-

vational and theoretical studies, a variety of parametrizations and estimated values

of eddy viscosity νe were provided by these studies. Huang [1979] and Santiago-

Mandujano and Firing [1990] present extended reviews of earlier studies. Observa-

tions showed that the structure of the mean current in the upper ocean has a spiral

shape in which the current decreases and turns to the right with depth. These spirals

resemble the theoretical Ekman spirals, the essential difference is that the decay-

ing rate of the current with increasing depth exceeds its rotating rate to the right

which means these spirals are flatter than the classical Ekman spirals (e.g Price et al.

[1987]; Price and Sundermeyer [1999]; Chereskin [1995]). The observed deflection of

the current at the surface ranges between 10− 45◦ (Huang [1979]) while the current

vector below the surface (from about 5 to 20 m depth) is shifted to around 75◦ from

the wind stress (Price and Sundermeyer [1999]). The vertical mixing in the upper

38
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ocean occurs due to turbulence. In the Ekman [1905] theory transfer of momentum

could be modelled as a diffusion of momentum with an effective eddy viscosity, νe,

orders of magnitude larger than the molecular viscosity. This has been justified, at

least for a steady-state case, by Zikanov et al. [2003]. In this chapter we assume

this to be true for unsteady case as well. Additionally, the large eddy simulations

(LES) (Zikanov et al. [2003]) of the ocean mixed layer suggest that the eddy viscosity

profile is more complicated than it is commonly assumed, the computed eddy vis-

cosity varies substantially in the turbulent boundary layer and has a convex shape

(e.g Large et al. [1994]; McWilliams et al. [1997]; Zikanov et al. [2003]) where in the

lower half of the mixed layer it roughly decreases linearly. Zikanov et al. [2003] have

shown that the eddy viscosity profile obtained numerically with Large Eddy Simu-

lations approach can be well approximated by a piecewise-linear profile of viscosity

in the form νe(z) = a z + b. The coefficients of this parametrisation depend on the

surface tangential stress parametrised by u∗ (friction velocity) and on the latitude

through Coriolis parameters. Furthermore, a direct numerical study (DNS) of the

planetary Ekman layer also showed that the flow is affected by latitude and wind

direction (Coleman et al. [1990]). Note that although only the Coriolis parameter

f enters explicitly into the formula, the horizontal component of the Coriolis f̃ af-

fects the turbulence and dependence on it is implicit in this formula. The effects of

the surface waves and the density stratification are not considered in the Zikanov’s

model. An analytical solution of the problem for an infinitely deep ocean with an

eddy viscosity that varies linearly with depth was examined first by Madsen [1977].

Madsen suggested that the viscosity increases linearly from zero at the free surface

and it takes the form νe = κu∗ z where u∗ =
√
τ/ρ is the friction velocity and

κ = 0.4 is the Von Karman’s constant. Madsen [1977] avoided the logarithmic singu-

larity which appears in the solution at z = 0 by introducing a sea surface roughness

length scale z0 and evaluating the surface velocity at this value instead. Although

from the mathematical perspective this leads to an inconsistency between the surface

current and the shear stress boundary conditions at the surface, the physical results

are reasonable (Lewis and Belcher [2004]). The surface current in Madsen’s model

is deflected to the right by approximately 10◦ from the wind direction and this is
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much lower than the (45◦) angle predicted by Ekman [1905]. Furthermore, for dif-

ferent depth-dependent viscosity profiles (constant, linear, exponential, varying as a

power) the problem was also theoretically investigated by Jordan and Baker [1980].

Modification of the eddy viscosity dependence on depth directly by adding the ver-

tical roughness length scale to it (νe(z) = a(z0 + z)) eliminates the singularity (the

velocity at the surface becomes finite quantity) which appeared in Madsen’s model.

Using the correspondingly modified eddy viscosity profile, the problem was examined

for three different conditions at the base of the mixed layer (Elipot and Gille [2009]).

A steady-state solution of the problem for a more complicated depth-dependent eddy

viscosity profile, piecewise-linear, was investigated by Zikanov et al. [2003], it showed

that the angle between the surface current and the wind stress is 28.5◦. Our aim is

to clarify the following open questions:

(i) What are the main features of the Ekman current for the numerically justified

eddy viscosity profile by Zikanov et al. [2003] under time dependent wind (under

the adopted assumptions)?

(ii) What are the differences in behaviour of the solution for different viscosity pro-

files and for what parameters the differences are essential?

(iii) When Zikanov’s parameterisation can be approximated by a one-layer model

with linear viscosity profile?

(iv) Are Ekman currents stable with respect to short scale perturbations?

This chapter is organised as follows: §2.2 presents the problem formulation. §2.3

provides the exact general solution of the model in terms of Green functions. This

section also includes a comparisons between the present solution and other models

with linear viscosity profile. Lastly, the conclusion is provided in §2.4.
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2.2 The mathematical model

We consider a horizontally uniform motions of an incompressible rotating non-stratified

viscous deep fluid of uniform depth h, which describes by equation (1.22) with a

piecewise-linear eddy viscosity profile (see figure 2.1):

νe(z) = ajz + bj = aj(zj + z); j = 1, 2 . (2.1)

where z1 and z2 are the roughness length scales of sea surface, subjected to the

surface boundary condition (1.22). The shear and the velocity are assumed to be

continuous at the maximum of the eddy viscosity (z = d∗). At deep ocean, z � h,

the velocity vanishes. By taking Fourier transform with respect to t, equation (1.22)

transforms into the following ordinary differential equation:

∂

∂z

(
νej(z)

∂Ũ j

∂z

)
− i(f + ω) Ũ j = 0, where Ũ j(z, ω) =

∫ ∞
−∞
U j(z, t)e

−iωt dt .

(2.2)

Subjected to the following boundary conditions:

νe1(z)
∂Ũ 1

∂z

∣∣∣∣
z=0

=
−τ (ω)

ρ
, (2.3a)

Ũ 1|z=d∗ = Ũ 2|z=d∗ , (2.3b)

νe1(z)
∂Ũ 1

∂z

∣∣∣∣
z=d∗

= νe2(z)
∂Ũ 2

∂z

∣∣∣∣
z=d∗

, (2.3c)

Ũ 2|z=h = 0. (2.3d)

Under the Zikanov et al. [2003] parametrisation it reduces to

aj (zj + z)
∂2Ũ j

∂z2
+ aj

∂Ũ j

∂z
− i(f + ω) Ũ j = 0 . (2.4)

In the next sections we derive and analyse solutions of these equations. We show

that these solutions are exact solutions of the Navier-Stokes equations for the chosen

νe.
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Figure 2.1: The Zikanov et al. [2003] viscosity profile for three different wind
speeds: black dashed line: U10 = 5 m s−1, a1 ≈ 7.5×10−4, b1 ≈ 8.41×10−6, a2 ≈
−2.1× 10−4, b2 ≈ 1.4× 10−2 and d∗ ≈ 14.5 m, green dotted line: U10 = 10 m s−1,
a1 ≈ 1.5× 10−3, b1 ≈ 3.4× 10−5, a2 ≈ −4.2× 10−4, b2 ≈ 55.7× 10−3, and d∗ ≈
28.98 m, and blue solid line: U10 = 30 m s−1, a1 ≈ 4.5 × 10−3, b1 ≈ 3.02 × 10−4,
a2 ≈ −1.2× 10−3, b2 ≈ 5.01× 10−1, and d∗ ≈ 86.9 m (Zikanov et al. [2003]).

2.3 General solution

To solve the Ekman equations (2.4) subjected to the boundary conditions (2.3), it is

convenient to introduce the dimensionless vertical variable:

ξ = 2

√
i(zj + z)

αj
; αj =

aj
f + ω

. (2.5)

Then the equation of motion (2.4) takes the form

d2Ũ j

dξ2
+

1

ξ

dŨ j

dξ
− Ũ j = 0 . (2.6)

Its general solution in terms of Bessel functions can be presented as

Ũ = c1 I0[ξ] + c2K0[ξ] , (2.7)

where I0[.] is the zeroth order modified Bessel function of the first kind, K0[.] is the

zeroth order modified Bessel function of the second kind and ξ is given by equation

(2.5).

Here, νe1 = a1(z1 + z) and νe2 = a2(z2 + z) where z1 and z2 are the roughness length

scales for the corresponding layer.
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The general solution of the equation (2.6) subject to the boundary conditions (2.3)

can be written as

Ũ 1 = A1 I0[ξ1] +B1 K0[ξ1]; 0 ≤ z ≤ d∗ , (2.8a)

Ũ 2 = A2 I0[ξ2] +B2 K0[ξ2]; d∗ ≤ z ≤ h , (2.8b)

where

ξ1 = 2

√
i(z1 + z)

α1

; α1 =
a1

f + ω
,

ξ2 = 2

√
i(z2 + z)

α2

; α2 =
a2

f + ω
.

The general solution for z ≤ d∗ satisfying the boundary conditions takes the form:

U 1(z, t) =
1

2π

∫ ∞
−∞
Ũ 1(z, ω) ei ω t dω, (2.9a)

where

Ũ 1(z, ω) =

2 τ (ω)

(
C1 I0[ξ1(z)] + C2K0[ξ1(z)]

)
a1 ρ ξ1(0) (C3 + C4)

, (2.9b)

and

C1 =
a1

2
ξ1(d∗)K1[ξ1(d∗)] (K0[ξ2(d∗)] I0[ξ2(h)]− I0[ξ2(d∗)]K0[ξ2(h)] )

− a2

2
ξ2(d∗)K0[ξ1(d∗)] ( I1[ξ2(d∗)]K0[ξ2(h)] +K1[ξ2(d∗)] I0[ξ2(h)] );

C2 =
a1

2
ξ1(d∗) I1[ξ1(d∗)] (K0[ξ2(d∗)]I0[ξ2(h)]− I0[ξ2(d∗)]K0[ξ2(h))] )+

a2

2
ξ2(d∗) I0[ξ1(d∗)] (I1[ξ2(d∗)]K0[ξ2(h)] +K1[ξ2(d∗)] I0[ξ2(h)] );
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C3 =
a1

2
ξ1(d∗) (K1[ξ1(0)] I1[ξ1(d∗)]− I1[ξ1(0)]K1[ξ1(d∗)] )×

(K0[ξ2(d∗)] I0[ξ2(h)]− I0[ξ2(d∗)]K0[ξ2(h)] );

C4 =
a2

2
ξ2(d∗) (I1[ξ1(0)]K0[ξ1(d∗)] +K1[ξ1(0)] I0[ξ1(d∗)] )×

( I1[ξ2(d∗)]K0[ξ2(h)] +K1[ξ2(d∗)] I0[ξ2(h)] ) .

Similarly, the general solution in the interval d∗ 6 z 6 h reads:

(a) (b)

(c) (d)

Figure 2.2: (a,b) The velocity components in the direction of x and y, respec-
tively. (c,d) The second derivative of x and y velocity components. Parameters
values are τ = 0.175 N m−2, f = 10−4 s−1, ρ = 1027 kg m−3, U10 = 10 m s−1,
a1 ≈ 1.5 × 10−3, b1 ≈ 3.4 × 10−5, a2 ≈ −4.2 × 10−4, b2 ≈ 55.7 × 10−3, and
d∗ ≈ 28.98 m.

U 2(z, t) =
1

2 π

∫ ∞
−∞
Ũ 2(z, ω) ei ω t dω , (2.10a)
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(a) (b)

Figure 2.3: (a,b) The second derivative of x and y velocity components for the
classical Ekman model. Parameters values are τ = 0.175 N m−2, f = 10−4 s−1,
ρ = 1027 kg m−3, U10 = 10 m s−1, νe = b1 ≈ 3.4× 10−5.

where

Ũ 2(z, ω) =

τ (ω)

(
I0 [ξ2(h)] K0[ξ2(z)]−K0 [ξ2(h)) I0 [ξ2(z)]

)
ρ ξ1(0) (C3 + C4)

, (2.10b)

and C3, C4 are constants given above.

Figure (2.2) shows examples of vertical profiles of both horizontal velocity compo-

nents and their second derivative at certain times and under a sharp increase of wind.

The changing sign of the second derivative suggests that the current caused by sharp

increase of wind becomes unstable with respect to inviscid inflectional instabilities.

For a comparison, figure (2.3) presents the second derivative of horizontal velocity

components of the classical Ekman model. This change of curvature is more pro-

nounced in the classical Ekman model, therefore we expect stronger instability in the

classical Ekman model.

2.3.1 The behavior of the transform function

We compare our refined model based upon Zikanov et al. [2003] parameterisation of

eddy viscosity with two models with linearly varying eddy viscosity of Elipot and
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(a) (b)

(c) (d)

Figure 2.4: Dependence of the normalised discrepancy δR = |ŨZ−ŨEG(1)|/|ŨZ |
on frequency at different depths ((a): z = 0, (b): z = 5 m, (c): z = 10 m,
(d): z = d∗ m) for different wind speeds: U10 = 5 m s−1(black dashed line),
U10 = 10 m s−1(green solid line), and U10 = 30 m s−1(blue solid line). d∗ depends
on wind strength: d∗ ≈ 14.5 m for U10 = 5 m s−1, d∗ ≈ 29 m for U10 = 10 m s−1,
and d∗ ≈ 86.9 m for U10 = 30 m s−1. ŨZ and ŨEG(1) refer to the solution in
Fourier space for: a piecewise-linear eddy viscosity model and linear viscosity model
(ν1(z) = a1(z1 + z)) for infinitely deep ocean (Elipot and Gille [2009]) respectively.

Gille [2009] with infinitely deep one layer, ŨEG(1), and shear vanishing at z = d∗,

ŨEG(2). By introducing a quantity δR = |ŨZ − ŨEG|/|ŨZ | (relative discrepancy) we

identify the range of cases where the δR is less than a threshold we choose for certainty

to be 0.1 for most depths (see figure 2.4) and it exceeds 0.1 (see figure 2.5). We have

found that the discrepancy between the refined model and ŨEG(1), ŨEG(2) increases

with depths and decreases with frequency. It is small for all frequencies outside a

vicinity of inertial frequency. It is much smaller for ŨEG(1) where it exceeds the 0.1

threshold only for large depths and small frequencies. At the surface the discrepancy

has been found to be negligible.
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(a) (b)

(c) (d)

Figure 2.5: Dependence of the normalised discrepancy δR = |ŨZ−ŨEG(2)|/|ŨZ |
on frequency at different depths ((a): z = 0, (b): z = 5 m, (c): z = 10 m,
(d): z = d∗ m) and for different wind speeds: U10 = 5 m s−1(black dashed line),
U10 = 10 m s−1(green solid line)and U10 = 30 m s−1(blue solid line). d∗ depends
on wind strength: d∗ ≈ 14.5 m for U10 = 5 m s−1, d∗ ≈ 29 m for U10 = 10 m s−1,
and d∗ ≈ 86.9 m for U10 = 30 m s−1. ŨZ and ŨEG(2) refer to the solution in
Fourier space for: a piecewise-linear eddy viscosity model and linear viscosity model
(ν1(z) = a1(z1 + z)) with shear vanishing at z = d∗ (Elipot and Gille [2009])
respectively.

2.4 Conclusions

In this chapter we examined depth dependent eddy viscosity model with eddy vis-

cosity profile parameterised on the basis of Large Eddy Simulations (LES) of steady

state case (Zikanov et al. [2003]), in which the eddy viscosity changes strongly within

the non-stratified fluid. It increases linearly with depth in the upper part of the layer

reaching a maximum value at a particular depth depending on wind speed, then it

starts to decrease linearly with depth in the lower part.

1. For an arbitrary tangential stress τ (t), we have found a general solution which

describes dynamics of deep non-stratified ocean, this solution is an exact so-

lution to the full Navier-Stokes equations. Since the employed eddy viscosity
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model is more sophisticated than those reported in the literature, it is expected

that the derived solution will describe reality much more faithfully.

2. Comparisons between the present model and other existing models with a sim-

ple form of linearly-depth varying eddy viscosity, show that a reasonable ac-

curacy for a wide range of situations can be obtained from simpler models

(one-layer models with linear viscosity profiles). The discrepancy between pre-

dictions of our refined model and Elipot and Gille [2009] models with linear

eddy viscosity profile is small near the surface, while it proved to be O(1) at

the depth d∗, the depth where eddy viscosity attains its maximal value.

3. We have found that all types of Ekman models develop inflection points, which

suggests strong instabilities. These instabilities for unsteady Ekman currents

have not been reported in the literature. Note that for the examined class

of eddy viscosity profile these inflection of profiles invariably occur near the

surface where the difference between the models is small.

Analysis of these instabilities for time dependent flows requires massive numerical

effort to solve Orr-Sommerfeld equations for wide range of profiles, which goes beyond

the scopes of present work. In section §2.3 the parameters of instabilities will be

quantified and discussed for a few examples.



Chapter 3

Dynamics of the Ekman currents

under varying wind in the

two-layer model of stratified ocean

3.1 Introduction

In the upper ocean, the mixed layer and seasonal pycnocline are its most prominent

features (e.g. Phillips [1977], Soloviev and Lukas [2013]). In the mixed layer between

the ocean free surface and the seasonal pycknocline the temperature and salinity

is nearly uniform, which led to the term “mixed layer”. The mixed layer depth is

influenced by processes that change the stratification: winds, radiative heating and

cooling. The thickness of the mixed layer varies with season. During the spring

and summer (strong stratification), the mixed layer is relatively shallow, while it is

deeper and less prominent in the autumn and much deeper in winter (the seasonal

pycnocline disappears in winter and the mixed layer extends to the main pycnocline).

The typical depth of the the seasonal pycnocline ranges between 20 m and 200 m.

At higher latitudes, the mixed layer depth increases as a result of stronger winds and

cooling poleward. Furthermore, the mixed layer in the Southern Hemisphere is thicker

than in the Northern Hemisphere. The mixed layer is the layer in direct contact with

49
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the atmosphere and most active in the air-sea interaction. There is very significant

momentum and heat exchange with the atmosphere. Its correct modelling is crucial

for weather prediction and climate modelling. There is an extensive literature on

theoretical, numerical and experimental studies on the variety of physical processes

in the mixed layer partly reviewed in the chapter 1, see also (Soloviev and Lukas

[2013]). However, at present a number of fundamental questions remain open.

Here we will attempt to address these questions employing an extension of the Ek-

man model. In the Ekman type models the turbulence is characterized by a single

parameter - turbulent viscosity νe ,which can, in principle, be both depth and time

dependent. It is well known that stratification strongly suppresses turbulence (e.g.

Price et al. [1987]; Price et al. [1986]; Price and Sundermeyer [1999]). Thus the

value of eddy viscosity in the mixed layer is much larger than in the pycknocline

(e.g D’Asaro and Dairiki [1997]; Weller and Price [1988]; McWilliams et al. [1997]).

On this basis one layer models were put forward with a constant eddy viscosity in

the mixed layer and zero viscosity below (e.g. Lewis and Belcher [2004]; Elipot and

Gille [2009]). At the bottom of the mixed layer a variety of boundary conditions

were attempted, a comparison of all the possibilities with observation was carried by

Elipot and Gille [2009]. Surprisingly, the analysis of the available data did not show

a convincing advantage of employing the vanishing shear stress, the most natural

boundary condition at the interface, over two other possibilities: no slip condition or

moving the interface to infinity. There might be multiple reasons behind, which we

will discuss later. Clearly there is an open question on what is the right model for the

Ekman currents in the mixed layer. Here, to capture the effect of the pycnocline on

the momentum transfer as a first step we adopt the simplest two layer model: with

two vastly different values of the eddy viscosity.

The second outstanding problem of major interest is how the vertical structure of

stratification manifests itself in the surface current under variable wind. Under what

conditions can we expect discernible manifestations? Could we employ the surface

manifestations for remote sensing of the depth of the mixed layer? It is known that

during the passage of hurricanes the mixed layer dramatically deepens, could we

explain this phenomenon within the paradigm of the Ekman type-model and link it



Chapter 3. Dynamics of the Ekman currents under varying wind in the two-layer
model of stratified ocean 51

to the dynamics of surface current? We are not aware of any work addressing these

issues. This chapter is aimed to address them within the framework of the Ekman

type model.

The key open questions we aim to clarify are as follows:

(i) Under what conditions and with what accuracy the two-layer Ekman model can

be well approximated by a one layer Ekman model with appropriate bound-

ary conditions at the bottom of the mixed layer? What are the appropriate

boundary conditions?

(ii) What are the specific effects of stratification on the surface Ekman currents

caused by variable wind? What characteristics of the Ekman current in the

near-surface layer depend on the mixed layer thickness? How sensitive is the

near surface Ekman current to the value of viscosity in the stratified layer?

(iii) Under what conditions there are noticeable surface manifestations of the pres-

ence of stratification? How do these manifestations depend on the temporal

scales under consideration?

(iv) Is it possible to find depth of the mixed layer having only observations of the sur-

face currents? Could it be possible to estimate the strength of the stratification

in the pycnocline?

Here, to address the above questions we will model the dynamics of the mixed layer

caused by time dependent atmosphere forcing upon momentum transfer to the upper

ocean within the framework of the Navier-Stokes equations with depth-dependent

eddy viscosity. The model is an extension of the classical one-layer model with a

constant eddy viscosity. Here we consider two layers, the upper one is of depth d

with a constant eddy viscosity νe1 , it is supposed to model the mixed layer; the

second layer is characterised by a different constant eddy viscosity νe2. We assume

the lower layer to be stratified and since stratification suppresses turbulence, the eddy

viscosity there is much smaller than in the upper layer, i.e. νe1 � νe2 . To focus on

the effects due to the presence of stratification, we adopt the simplest model of the
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(a) (b)

Figure 3.1: (a) Stratification profile . (b) Viscosity profile.

mixed layer, assuming the eddy viscosity to be constant both in depth and and time.

This could be justified if we understand νe1 as a bulk viscosity and do not consider

too rapid variations of wind. Since we are primarily interested in the processes in the

mixed layer and the transfer of momentum into the ocean interior is very small, we

assume the second layer to be infinitely deep (See the sketch in figure 3.1). We leave

aside the issue of relationship between the strength of stratification in the second

layer characterised by the Brunt-Väisälä frequency N and eddy viscosity ν2. One

can use any of the widely used empirical relationships, but here we just assume the

value of νe2 to be known and will not consider its relationship with N . According

to observations, the the eddy viscosity in the mixed layer ranges between O(10−4)

and O(10−1) m2s−1 (see table 1.1), while in the pycnocline it is much smaller varying

from O(10−6) to O(10−4) m2s−1.

This chapter is organized as follows: §3.2 gives the formulation of the mathematical

model (a brief description of the equations and boundary conditions governing drift

currents caused by a time-varying wind). §3.3 presents the general solution in terms

of Green function, for an arbitrary wind shear stress. §3.4 provides comparisons with

one-layer solutions derived by Ekman [1905]; Lewis and Belcher [2004]; Elipot and

Gille [2009]. In §3.5 we discuss behaviour of the solution of the system derived in

§3.2 for the case of decreasing wind. Finally, a summary and discussion are provided

in §3.6.
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3.2 The mathematical model

We begin with the Ekman model (1.22). Here, the fluid is assumed to consist of

two layers: the upper layer of thickness d is adjacent to the surface, it is supposed

to model the mixed layer with high eddy viscosity νe1. The second layer with eddy

viscosity νe2 suppressed by stratification is taken to be infinite, since, as it will be

shown below, the horizontal motions caused by varying winds do not penetrate far

into the stratified fluid and, therefore, the thickness of the stratified fluid could be

assumed infinite without much loss of generality. We recall that for horizontally

uniform motions the corresponding exact reduction of the Navier-Stokes equations

reads

∂U 1

∂t
+ i f U 1 =νe1

∂2U 1

∂z2
, 0 ≤ z ≤ d , (3.1a)

∂U 2

∂t
+ i f U 2 =νe2

∂2U 2

∂z2
, d ≤ z <∞ . (3.1b)

where U 1 = u1 + iv1 and U 2 = u2 + iv2 are the horizontal complex velocities for the

surface layer and the lower layer respectively. The motion has to satisfy the surface

boundary condition (1.23), at the interface the current and the stress are continuous

and the lower boundary condition (1.25) closes the system:

νe1
∂U 1(z, t)

∂z
=
−τ (t)

ρ
, at z = 0 , (3.2a)

U 1(z, t) =U 2(z, t) , at z = d , (3.2b)

νe1
∂U 1(z, t)

∂z
=νe2

∂U 2(z, t)

∂z
, at z = d , (3.2c)

U ′2(z, t) =0 , as z →∞ . (3.2d)

We stress that in the adopted model νe1, νe2 are both constants. In the next section

we derive the exact general solution of the system defined above.
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3.3 General solution

The equations of motion (3.1) can be easily solved by applying the Fourier transform

with respect to t,

Ũ j(z, ω) =

∫ ∞
−∞
U j(z, t)e

−iωtdt; j = 1, 2 . (3.3)

which converts the partial differential equations (3.1) into ordinary equations with

respect to z:

i(f + ω)Ũ 1(z, ω)− νe1
d2Ũ 1(z, ω)

dz2
= 0 , (3.4)

i(f + ω)Ũ 2(z, ω)− νe2
d2Ũ 2(z, ω)

dz2
= 0 . (3.5)

By using the Fourier transformed boundary conditions:

νe1
∂Ũ 1(z, ω)

∂z
=
−τ (ω)

ρ
, at z = 0 , (3.6a)

Ũ 1(z, ω) =Ũ 2(z, ω) , at z = d , (3.6b)

νe1
∂Ũ 1(z, ω)

∂z
=νe2

∂Ũ 2(z, ω)

∂z
, at z = d , (3.6c)

Ũ
′
2(z, ω) =0 , as z →∞ , (3.6d)

solutions for Ũ 1(z, ω) and Ũ 2(z, ω) are found in the form:

Ũ 1(z, ω) = τ (ω)K1(z, ω) , (3.7)

Ũ 2(z, ω) = τ (ω)K2(z, ω) . (3.8)
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Then the general solution of equations (3.1) is given by the inverse Fourier transform:

U j(z, t) =
1

2π

∫ ∞
−∞
Ũ j(z, ω)eiωtdω; j = 1, 2. (3.9)

The general solution to the equations of motion (3.4, 3.5) can be written in the form

Ũ 1(z, ω) = A exp [(1 + i) z/δ1(ω)] +B exp [−(1 + i) z/δ1(ω)] , (3.10a)

Ũ 2(z, ω) = c1 exp [(1 + i) z/δ2(ω)] + c2 exp [−(1 + i) z/δ2(ω)] , (3.10b)

where

δ1(ω) =

√
2νe1
f + ω

and δ2(ω) =

√
2νe2
f + ω

.

By applying the transformed boundary conditions at the surface and at infinity, the

general solution can be rewritten as:

Ũ 1 = 2B cosh [(1 + i) z/δ1(ω)] +
τ (ω) e−iπ/4

ρ
√
ν1

√
f + ω

exp [−(1 + i) z/δ1(ω)] , (3.11)

and,

Ũ 2(z, ω) = c2 exp [−(1 + i) z/δ2(ω)] . (3.12)

The unspecified yet arbitrary constants B and c2 are determined from the boundary

conditions at the internal interface:

B =

(√
νe1 +

√
νe2
)
τ (ω) e−iπ/4 exp [(1 + i) d/δ1(ω)]

2 ρ
√
νe1
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) ,
(3.13a)

c2 =
τ (ω) e−iπ/4 exp [(1 + i) d/δ2(ω)]

ρ
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) .
(3.13b)
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Finally, the general solution in the upper and lower layers is as follows:

U 1(z, t) =
1

2π

∫ ∞
−∞
Ũ 1(z, ω) eiωt dω, U 2(z, t) =

1

2π

∫ ∞
−∞
Ũ 2(z, ω) eiωt dω, (3.14a)

where

Ũ1(z, ω) =
e−iπ/4 τ (ω)

(√
νe1 cosh [(1 + i) (d− z)/δ1(ω)] +

√
νe2 sinh [(1 + i) (d− z)/δ1(ω)]

)
ρ
√
νe1
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) ,

(3.14b)

and,

Ũ 2(z, ω) =
e−iπ/4 τ (ω) exp [(1 + i) (d− z)/δ2(ω)]

ρ
√
f + ω

(√
νe2 cosh [(1 + i) d/δ1(ω)] +

√
νe1 sinh [(1 + i) d/δ1(ω)]

) .
(3.15)

The Ekman flux S, i.e. the flux integrated over entire depth, is

S =

∫ ∞
0

Ũ(z, ω)dz (3.16)

=

∫ d

0

Ũ 1(z, ω)dz +

∫ ∞
d

Ũ 2(z, ω) (3.17)

=
iτ (ω)

ρ(f + ω)
. (3.18)

This result serves as a self check aimed to verify that the total flow provided by

integration of the obtained general solution is indeed independent of viscosity distri-

bution, and, therefore, it is identical to that given by the classical Ekman model. A

stronger validation is provided by the observation that the obtained solution in the

limit ν2 → 0, tends to the one-layer solution with the boundary condition U ′ = 0 at

the bottom of the mixed layer derived by (Elipot and Gille [2009]).

In the next sections we will analyse particular cases and implications of the solution

defined above.
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3.3.1 The solution limiting behavior in the frequency domain

So far we have not made any explicit assumptions regarding smallness of ν2 compared

to νe1. Here we consider νe2/νe1 � 1 and, in particular, examine behaviour of the

Ekman response in the limit νe2/νe1 → 0.

General case

The constants B and c2 (equations 3.13) simplify to:

B =
τ (ω) e−iπ/4 exp [(1 + i) d/δ1(ω)]

2 ρ
√
f + ω

√
νe1 sinh [(1 + i) d/δ1(ω)]

, (3.19a)

c2 =
τ (ω) e−iπ/4 exp [(1 + i) d/δ2(ω)]

ρ
√
f + ω

√
νe1 sinh [(1 + i) d/δ1(ω)]

, (3.19b)

so that, the general solution of the upper and lower layer in the Fourier space is as

follows:

Ũ 1(z, ω) =
τ (ω) e−iπ/4 cosh [(1 + i) (d− z)/δ1(ω)]
√
νe1
√
f + ω sinh [(1 + i) d/δ1(ω)]

. (3.20a)

and,

Ũ 2(z, ω) =
τ (ω) e−iπ/4 exp [(1 + i) (d− z)/δ2(ω)]
√
νe1
√
f + ω sinh [(1 + i) d/δ1(ω)]

. (3.20b)

The resulting transfer function in the upper layer is the same as the obtained solution

for the one-layer model with velocity shear vanishing at prescribed depth z = d

(Elipot and Gille [2009]) (see figure 3.17). Also, the solution in the lower layer

reduces to the given form (3.20b). Note that the solution of Elipot and Gille [2009]

model under assumption of the total suppression of turbulence in the stratified layer

was also derived in an explicit form for the case of a sharp increase of wind by Lewis

and Belcher [2004].
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Shallow mixed layer (z, d� δ1(ω))

The solution of the upper layer, Ũ 1, with an arbitrary νe1 and νe2 (no assumptions

have been made on νe1 and νe2 yet) becomes:

Ũ 1(z, ω) =
τ (ω) e−iπ/4

(√
νe1 +

√
νe2(1 + i)(d− z)/δ1

)
ρ
√
νe1
√
f + ω

(√
νe2 +

√
νe1 (1 + i)d/δ1

)

=
τ (ω) e−iπ/4

(√
νe1 +

√
νe2/νe1 e

iπ/4 (d− z)
√
f + ω

)
ρ
√
νe1
√
f + ω

(√
νe2 + eiπ/4 d

√
f + ω

) . (3.21)

For νe1 � νe2, the previous equation can be rewritten as

Ũ 1(z, ω) =
τ (ω) e−iπ/4

ρ
√
f + ω

(√
νe2 + eiπ/4 d

√
f + ω

)

=
τ (ω) e−iπ/2

ρ (f + ω) d

(
1−

e−iπ/4
√
νe2

d
√
f + ω

)
. (3.22)

and, for shallow mixed layer, (d/δ1 → 0) and νe1 � νe2, we recover the classical

Ekman solution:

B =
τ (ω)e−iπ/4

2ρ
√
νe2(f + ω)

. (3.23)

It follows that Ũ2 = 2B. and,

c1 =
τ (ω)e−iπ/4

ρ
√
νe2(f + ω)

= 2B , (3.24)

then,

Ũ 2 =
τ (ω)e−iπ/4

ρ
√
νe2(f + ω)

exp

[
−(1 + i)z

√
f + ω

2νe2

]
, (3.25)
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which coincides with the classical Ekman solution in Fourier space and Ũ2 |z=0= 2B.

For large time scale ω � f the solution can be written as:

Ũ 1 =
τ (ω)e−iπ/4

ρ
√
νe2f

, (3.26)

Ũ 2 =
τ (ω)e−iπ/4

ρ
√
νe2f

exp

[
−(1 + i)z

√
f

2νe2

]
. (3.27)

Deep mixed layer (d� δ1)

The equation (3.13a) specifying constant B reduces to:

B =
τ (ω)e−iπ/4

ρ
√
νe1(f + ω)

, (3.28)

so that the transfer function of the upper layer becomes:

Ũ 1(z, ω) =
τ (ω)e−iπ/4

ρ
√
νe1(f + ω)

exp

[
−(1 + i)z

√
f + ω

2νe1

]
, (3.29)

which coincides with the classical Ekman model. For small time, the frequency, ω, is

large (ω � f) and in this regime the effect of rotation is negligible so that the flow

is unidirectional.

Ũ 2(z, ω) =
τ (ω)e−iπ/4

ρ
√
νe1(f + ω)

exp [(1 + i)(d− z)/δ2(ω)]

exp [(1 + i)d/δ1(ω)]
. (3.30)

3.3.2 Steady-state solution

Under a constant wind (τ = τ 0) , the general solution to the problem (figure 3.2)

simplifies to become
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(a) (b)

Figure 3.2: Dependence of steady Ekman current on mixed layer non-dimensional
depth d/δ1: (a) Surface current speed. (b) Deflection of the direction of current at
the surface with respect to wind. The sample parameters are νe1 = 7×10−3m2s−1

(which corresponds to 10m s−1 wind) , νe2 = 7 × 10−4m2s−1, f = 10−4s−1, ρ =
1027kg m−3 and τ0 = 0.175N m−2.

U 1(z) =
τ 0 e

−iπ/4 (√νe1 cosh [(1 + i) (d− z)/δ1(0)] +
√
νe2 sinh [(1 + i) (d− z)/δ1(0)]

)
ρ
√
νe1f

(√
νe2 cosh [(1 + i) d/δ1(0)] +

√
νe1 sinh [(1 + i) d/δ1(0)]

) ,

(3.31a)

U 2(z) =
τ 0 e

−iπ/4 exp [(1 + i) (d− z)/δ2(0)]

ρ
√
f
(√

νe2 cosh [(1 + i) d/δ1(0)] +
√
νe1 sinh [(1 + i) d/δ1(0)]

) . (3.31b)

When z, d� δ1(0), equation (3.22) becomes:

U 1 =
τ 0 e

−iπ/2

ρ f d

(
1−

e−iπ/4
√
νe2

d
√
f

)
, (3.32)

and,

Φ =tan−1

(
d

√
2f

νe2
− 1

)
. (3.33)

Figure (3.2) shows sensitivity of the Ekman current on the surface to the non-

dimensional depth of the mixed layer d/δ1. Since δ1 scales as u2
∗ or U2

10, the surface

currents starts to feel the stratification under stronger winds. Typical samples of
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velocity components (u, v) and their second derivative are shown in figure (3.3). The

change of sign of the second derivative suggests inflection instabilities and mixing.

(a) (b)

(c) (d)

Figure 3.3: (a,b) The velocity components in the direction of x and y, respec-
tively. (c,d) The second derivative of x and y velocity components. parameters
values are νe1 = 7× 10−3, νe2 = 7× 10−4, d̃ = 1.7, f = 10−4 s−1, ρ = 1027 kg m−3

and τ0 = 0.175 N m−2.
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3.3.3 Comparison between the two-layer model and the other

existing models

In this section we present in figures (3.4, 3.5, 3.6) a comparison between the results

of two-layer model and the other existing models: (a) Elipot and Gille [2009] model

which assumed unfinitely strong stratification (νe2 = 0), (b) the classical Ekman

model where there is no stratification. Note that d is given as a normalized depth

and it is different for different values of νe1.

(a) (b)

(c) (d)

Figure 3.4: Sensitivity of vertical profiles of velocity components u, v to strength
of stratification characterised by νe2. Classical Ekman model (blue dashed line),
Elipot and Gille model (green dot-dashed line). (a,b): νe1 = 5 × 10−3 . (c,d):
νe1 = 7× 10−3. d̃ = 1.7, f = 10−4 s−1, ρ = 1027 kg m−3 and τ0 = 0.175 N m−2.
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(a) (b)

(c) (d)

Figure 3.5: Sensitivity of vertical profiles of velocity components u, v to strength
of stratification characterised by νe2. Classical Ekman model (blue dashed line),
Elipot and Gille model (green dot-dashed line). (a,b): νe1 = 5 × 10−3 . (c,d):
νe1 = 7× 10−3. d̃ = 1, f = 10−4 s−1, ρ = 1027 kg m−3 and τ0 = 0.175 N m−2.

As expected the results of the two-layer model are in between the Elipot and Gille

[2009] model corresponding to infinite stratification in the second layer and Ekman

[1905] model which corresponds to zero stratification, and overall the dependence on

νe2 is not strong (see figures 3.4, 3.5).

Comparison of two-layer model with that of Elipot and Gille’s model

In this part, we find the difference (∆) between the Elipot and Gille solution and

classical Ekman solution at the surface which is normalized by the Ekman solution.
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(a) (b)

Figure 3.6: Sensitivity of surface current dependence on the thickness of the
mixed layer and the stratification. Comparison between the steady-state solutions
for Elipot and Gille’s model (solid line) and two-layer model(dashed and dot-dashed
lines): (a),(b) Dependence of the Ekman current speed and direction at the surface
on nondimensional mixed layer depth for the two-layer model with a sample set of
parameters : f = 10−4 s−1, ρ = 1027 kg m−3 and τ0 = 0.175 N m−2.

First we recall these solutions:

Classical Ekman solution (UCE):

UCE(z) =
τ 0e

−iπ/4

ρ
√
νe1f

exp[−(1 + i)z̃] . (3.34)

Elipot and Gille [2009] solution (UEG):

UEG(z) =
τ 0e

−iπ/4

ρ
√
νe1f

cosh[(1 + i)(d̃− z̃)]

sinh[(1 + i)d̃]
, (3.35)

where

z̃ = z/δ1(0) and d̃ = d/δ1(0) .
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The solution (3.35) at the surface, z = 0:

UEG(0) =
τ 0 e

−iπ/4

ρ
√
fνe1

coth[(1 + i)d̃]

=
τ 0 e

−iπ/4

ρ
√
fνe1

(
i sin(2d̃)− sinh(2d̃)

cos(2d̃)− cosh(2d̃)

)
, (3.36)

where the surface current speed is given by

|UEG(d̃)| = τ 0

ρ
√
fνe1

(
cosh (2d̃) + cos(2d̃)

cosh (2d̃)− cos(2d̃)

)1/2

, (3.37)

and the angle of its deflection from wind direction is

tan
(

ΦEG(d̃)
)

=
sin(2d̃) + sinh(2d̃)

sin(2d̃)− sinh(2d̃)
. (3.38)

The difference between the angle given by equation (3.38) and the angle at the surface

for the classical Ekman is shown in figure (3.8). To compare Elipot and Gille [2009]

model with the classical Ekman model we introduce a relative discrepancy ∆{EG−CE}:

∆{EG−CE} =
|UEG(0)−UCE(0)|

|UCE(0)|
=

∣∣∣∣ 2e−ζ

eζ − e−ζ

∣∣∣∣; ζ = (1 + i)d̃ ,

≈
∣∣2e−2ζ(1 + e−2ζ)

∣∣ = δ{EG−CE} . (3.39)

By taking the leading order term only, one obtains

|e−2ζ | =
δ{EG−CE}

2
=⇒ e−2d̃ =

δ{EG−CE}
2

=⇒ d̃ =
1

2
ln

(
2

δ{EG−CE}

)
. (3.40)

If we choose the threshold value of δ{EG−CE} to be 0.1, the equation (3.40) shows

that the surface current will be sensitive to stratification when d̃ ≈ 1.5, and since d̃

depends on ν1, which scales as u2
∗ or U2

10, the current at the surface feels stratification

at different depths depending on wind strength.



Chapter 3. Dynamics of the Ekman currents under varying wind in the two-layer
model of stratified ocean 66

Table 3.1: Estimated eddy viscosity coefficients and the depth scale of the Ekman
layer where δ1 =

√
2νe1/f , νe1 = cu2

?/f , c = 0.03, u? =
√
τ/ρw, τ = ρa U

2
10CD,

ρa = 1.25 kg m−3, CD = 1.4 × 10−3, ρw = 1027 kg m−3, and f = 10−4 s−1

(Coleman et al. [1990]).

U10 ( m s−1) τ (N m−2) u? (m s−1) νe m2s−1 δ1 (m)
5 0.044 0.007 0.01 16
10 0.175 0.013 0.05 30
30 1.575 0.039 0.5 100
50 4.375 0.065 1.3 160

Figure 3.7: The depth of the mixed layer for a particular values of d̃ = d/δ1(0)
where δ1(0) scales as u2

∗ or U2
10.

Figure 3.8: The predicted difference in angle between the Elipot and Gille solu-
tion and the classical Ekman solution for a steady wind (∆Φ{EG−CE} = ΦEG+π/4).
ΦEG is given by eq.(3.38).

In the previous part we analyzed sensitivity of steady Ekman flows to the presence

of stratification, the strength of stratification in the pycnocline and the depth of

the mixed layer, and for more general case when the wind is varying at different

frequencies the sensitivity is also different i.e. the sensitivity depends on frequency
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so that we analyzed the sensitivity for time-dependent Ekman flows by comparing two

limiting cases: (a) the case of zero stratification in the second layer (Elipot and Gille

[2009]), and (b) the case of no stratification (Ekman [1905]). By choosing different

threshold δ{EG−CE} which characterises the discrepancy between the models, we can

estimate the depth of the mixed layer where it would feel the presence of stratification.

We provide a table (3.2) which illustrates how the depth for various δ{EG−CE} depends

on frequencies.

dδ{EG−CE} ≈
−1√

2

((
f + ω

νe1

)2
)−1/4

ln

(
δ{EG−CE}

2

)

=
−1√

2

(∣∣∣∣f + ω

νe1

∣∣∣∣)−1/2

ln

(
δ{EG−CE}

2

)
. (3.41)

Table 3.2: Depth of the mixed layer for different frequencies.

ω rad s−1 νe m2s−1 d0.1 m d0.2 m d0.3 m d0.5 m

2π/1hr 2.4× 10−3 2.4 1.9 1.5 1.1
5× 10−3 3.5 2.7 2.2 1.6
7× 10−3 4.1 3.2 2.6 1.9

10−2 4.9 3.8 3.1 2.3
10−1 15.6 12 10 7.2

1 49.3 37.9 31.2 22.8

2π/10hr 2.4× 10−3 6.2 4.8 4 3
5× 10−3 9 6.9 5.7 4.2
7× 10−3 10.7 8.2 6.8 4.9

10−2 12.8 9.8 8 5.9
10−1 40.4 31 25.6 18.7

1 127.8 98.3 81 59.2

ω � f 2.4× 10−3 10.4 8 6.6 4.8
5× 10−3 15 11.5 9.5 6.9
7× 10−3 17.7 13.6 11.2 8.2

10−2 21.2 16.3 13.4 9.8
10−1 67 51.5 42.4 31

1 211.8 162.8 134.1 98
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Comparison of the classical Ekman and two-layer solutions

The difference between the classical Ekman and two-layer (UTL) solutions is found

similarly, it reads,

UTL(z̃) =
τe−iπ/4

ρ
√
νe1f

√
νe1 cosh[(1 + i)(d̃− z̃)] +

√
νe2 sinh[(1 + i)(d̃− z̃)]

√
νe2 cosh[(1 + i)d̃] +

√
νe1 sinh[(1 + i)d̃]

=
τ 0e

−iπ/4

ρ
√
νe1f

cosh[(1 + i)(d̃− z̃)] +
√
νe2/νe1 sinh[(1 + i)(d̃− z̃)]

sinh[(1 + i)d̃] +
√
νe2/νe1 cosh[(1 + i)d̃]

=
τ 0e

−iπ/4

ρ
√
νe1f

cosh[(1 + i)(d̃− z̃)]
(

1 +
√
η tanh[(1 + i)(d̃− z̃)]

)
sinh[(1 + i)d̃]

(
1 +
√
η coth[(1 + i)d̃]

)
≈τ 0e

−iπ/4

ρ
√
νe1f

cosh[(1 + i)(d̃− z̃)]

sinh[(1 + i)d̃]

(
1 +
√
η tanh[(1 + i)(d̃− z̃)]

)
×(

1−√η coth[(1 + i)d̃]
)

≈UEG

(
1 +
√
η tanh[(1 + i)(d̃− z̃)]

) (
1−√η coth[(1 + i)d̃]

)
, (3.42)

where η = νe2/νe1.

The angle between the surface current and wind direction is given by:

tan (ΦTL) =
(νe1 − νe2) sin(2d̃) + (νe1 + νe2) sinh(2d̃) + 2

√
νe1 νe2 cosh(2d̃)

(νe1 − νe2) sin(2d̃)− (νe1 + νe2) sinh(2d̃)− 2
√
νe1 νe2 cosh(2d̃)

=
(1− νe2/νe1) sin(2d̃) + (1 + νe2/νe1) sinh(2d̃) + 2

√
νe2/νe1 cosh(2d̃)

(1− νe2/νe1) sin(2d̃)− (1 + νe2/νe1) sinh(2d̃)− 2
√
νe2/νe1 cosh(2d̃)

.

(3.43)
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For νe1 � νe2:

tan (ΦTL) =
sin(2d̃) + sinh(2d̃) + 2

√
νe2/νe1 cosh(2d̃)

sin(2d̃)− sinh(2d̃)− 2
√
νe2/νe1 cosh(2d̃)

=
(sin(2d̃) + sinh(2d̃))/ cosh(2d̃) + 2

√
νe2/νe1

(sin(2d̃)− sinh(2d̃))/ cosh(2d̃)− 2
√
νe2/νe1

=
a(1 + 2

√
η/a)

b(1− 2
√
η/b)

≈a
b

(1 + 2
√
η/a)(1− 2

√
η/b)

≈ tan (ΦEG) (1 + 2
√
η/a)) (1− 2

√
η/b) , (3.44)

where

a = (sin(2d̃) + sinh(2d̃))/ cosh(2d̃) and b = (sin(2d̃)− sinh(2d̃))/ cosh(2d̃) .

Figure (3.9) shows the angle between the surface current of two-layer and classical

Ekman models. The following expression gives the difference between the classical

Ekman and two-layer model steady solutions

∆{TL−CE} = UTL(0)−UCE(0) =c (1− i)
[√

νe1 (eζ + eζ−ζ) +
√
νe2 (eζ − e−ζ)

√
νe2 (eζ + e−ζ) +

√
νe1 (eζ − e−ζ)

− 1

]
;

(3.45)

c =
τ 0

ρ
√

2νe1f
, ζ = (1 + i)d̃,

∆{TL−CE} =c (1− i)
2(
√
νe1 −

√
νe2) e−2ζ

(
√
νe1 +

√
νe2)

[
1 +

√
νe2−

√
νe1√

νe2+
√
νe1
e−2ζ

]

≈2 c1

(
√
νe1 −

√
νe2) e−2ζ

(
√
νe1 +

√
νe2)

(
1 +

√
νe1 −

√
νe2√

νe1 +
√
νe2

e−2ζ

)

≈2 c1

(
1− 2

√
νe2
νe1

)
e−2ζ

(
1 +

(
1− 2

√
νe2
νe1

)
e−2ζ

)
. (3.46)
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Figure 3.9: The predicted difference in angle between the two-layer model and the
classical Ekman model (∆Φ{TL−CE} = ΦTL+45◦) for the steady state solution at
the surface for the following set of parameters: η = 0.01, 0.1, 0.2, 0.3 (η = νe2/νe1).
ΦTL is given by eq.(3.43).

A relative difference (∆1) of two-layer model and the classical model is given by

∆1{TL−CE} =
|∆{TL−CE}|
|UCE(0)|

≈
∣∣∣∣2 (1− 2

√
νe2
νe1

)
e−2ζ

(
1 +

(
1− 2

√
νe2
νe1

)
e−2ζ

) ∣∣∣∣
= δ{TL−CE} . (3.47)

By taking the leading order term only we obtain

|e−2ζ | =
δ{TL−CE}

2c2

=⇒ e−2d̃ =
δ{TL−CE}

2c2

=⇒ d̃ =
1

2
ln

(
2c2

δ{TL−CE}

)
. (3.48)

where c2 = 1− 2
√
νe2/νe1. Thus, for the time-dependent Ekman flows, we derived

an estimate of the mixed layer depth for which the normalised discrepancy between

predictions of the two-layer model and the classical Ekman model exceeds a chosen

threshold value δ{TL−CE} by comparing two limiting cases: (a) the case of stratified

second layer (two-layer model), and (b) the case of no stratification (Ekman [1905]).

d{TL−CE} ≈
−1√

2

((
f + ω

νe1

)2
)−1/4

ln

(
δ{TL−CE}

2 c2

)

=
−1√

2

(∣∣∣∣f + ω

νe1

∣∣∣∣)−1/2

ln

(
δ{TL−CE}

2 c2

)
. (3.49)
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and, the difference in predicted velocity of the surface between two-layer and Elipot

and Gille solutions is as follows

∆{TL−EG} =UTL(0)−UEG(0)

=c (1− i)
[√

νe1 (eζ + e−ζ) +
√
νe2 (eζ − e−ζ)

√
νe2 (eζ + e−ζ) +

√
νe1 (eζ − e−ζ)

− (eζ + e−ζ)

(eζ − e−ζ)

]
=c (1− i)

√
νe2 (tanh ζ − coth ζ)
√
νe2 +

√
νe1 tanh ζ

=c (1− i)
−4
√
νe2

(e2ζ − e−2ζ) (
√
νe2 +

√
νe1 tanh ζ)

, (3.50)

where

c =
τ 0

ρ
√

2νe1f
, ζ = (1 + i)d̃ .

For νe1 � νe2 and e−2ζ � 1:

∆{TL−EG} ≈ −4 c e−iπ/4
√
νe2
νe1

e−2ζ coth(ξ) . (3.51)

The second order approximation:

∆{TL−EG} =c (1− i)
−4
√
νe2

(e2ζ − e−2ζ) (
√
νe2 +

√
νe1 tanh ζ)

≈c (1− i)
−4
√
νe2/νe1

(e2ζ − e−2ζ) tanh ζ

≈c (1− i)
−4
√
νe2/νe1 coth ζ

e2ζ(1− e−4ζ)

≈− 4 c (1− i)
√
νe2/νe1 e

−2ζ (1 + e−4ζ) coth ζ . (3.52)

and, in order to compare the two-layer model and Elipot and Gille [2009], a relative

quantity (∆1{TL−EG}) is introduced:

∆1{TL−EG} =

∣∣∣∣UTL(0)−UEG(0)

UEG(0)

∣∣∣∣ =

∣∣∣∣ −4
√
νe2

(eζ + e−ζ)2 (
√
νe2 +

√
νe1 tanh ζ)

∣∣∣∣ . (3.53)

The magnitude of ∆1{TL−EG} for various parameters are plotted in figure (3.10), also

the difference between the angle of the surface current (∆Φ{TL−EG} = ΦTL−ΦEG) of
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(a) (b)

Figure 3.10: (a) The predicted angle of the surface current of two-layer model
compared with Elipot and Gille model (∆Φ{TL−EG} = ΦTL − ΦEG) for a steady
wind. (b) Dependence of normalised discrepancy (∆1{TL−EG} = |UTL(0) −
UEG(0)|/|UEG(0)|) on the non-dimensional depth d̃ for particular values of param-
eters: η = 0.01, 0.1, 0.2, 0.3 (η = νe2/νe1). ΦTL and ΦEG are given by eqs.(3.43)
and (3.38) respectively.

both models: Two-layer model and Elipot and Gille [2009] is shown in figure (3.10).

3.4 Can stratification profile be probed remotely

by HF radar?

Of great importance would have been a possibility of remote sensing of turbulence

level in the mixed layer, the presence/absence of diurnal stratification, the depth

of the mixed layer and strength of stratification in the pycnocline. In the previous

section we examined how the speed and direction of the surface current depend on

the depth of the mixed layer, eddy viscosity in the mixed layer and below within

the framework of two-layer model. The surface velocity now is measured remotely

from satellites with improving accuracy and resolution, from the shore by various

techniques. High-frequency (HF) radar devices are a widely used tool of monitoring

of the sea-surface. In particular, the sea-echo Doppler spectra of HF radars are used

for probing surface currents (e.g. Broche et al. [1987], Paduan and Graber [1997],

Wyatt [2000]), while the search continues for ways of remote sensing of other aspects

of air-sea interaction (Shrira and Forget [2015]). Here we briefly discuss additional
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possibilities provided by HF radars in view of remote sensing of the characteristics

of the upper ocean listed above. The HF (high frequency) radar measurements are

utilising the fact that in the HF range of frequencies electromagnetic waves are scat-

tered by random wavy water surface in the Bragg regime, where a monochromatic

electromagnetic wave emitted with a wavenumber kE is reflected back primarily by

the resonant Bragg wave number kB = kE/2 of the water surface. By analysing the

Doppler spectra which exhibit easily identifiable Bragg peaks it is straightforward

to find the phase velocity of the wave components associated with the peaks. By

subtracting the phase velocities prescribed by the linear dispersion one gets a correc-

tion due to surface currents. Although the main contribution to the EM scattering

comes from the Bragg resonant wave of length 2π/kB, water waves are nonlinear

and each free Fourier component has also bound waves. The second in importance

contribution is due to bound waves having the same resonant wavenumber kB which

are associated with a free wave of wavelength twice the Bragg one (Shrira et al.

[2001]). The correction due to surface current depends on the wavenumber under

consideration. With a good accuracy it could be approximated by the Stewart-Joy

formula (Stewart and Joy [1974]). Applying the Stewart-Joy formula to the wave

corresponding to the main Bragg peak and to the second contributor to the scatter-

ing - the wave of twice the the Bragg wavelength one gets two integrals of the current,

U (1) = 2|kB|
∫ ∞

0

U(z, t)e−2|kB |zdz, U (2) = |kB|
∫ ∞

0

U(z, t)e−|kB |zdz. (3.54)

where U (z, t) is the velocity profile and |k| = 2π/λ is the Bragg wavenumber. In

our further consideration we have chosen a commonly used radar frequency 12 MHz?

which corresponds to the wavelength λ = 18m. In the previous section we examined

how the properties of the upper ocean manifest themselves in the field of surface

velocity U 0. The surface velocity is often measured by HF radars and U (1) is usually

taken as U 0. Here we will attempt to find out when the difference between the

integrated velocities U (1) and U (2) and the true surface velocity U 0 is noticeable and

to discuss the implications for remote sensing of the upper ocean.
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(a) (b)

(c) (d)

Figure 3.11: The velocity fields U0 (velocity at the surface), U (1) and U (2)

of the steady flow, when the wind speed (U10) is equal to 10 m/s and viscosity
in the lower layer νe2 = 2.4 × 10−4 m2s−1 : (a,b) assume turbulent viscosity
νe1 = 2.4×10−3 m2s−1 in the upper layer, while in (c,d), νe1 taken five times larger.
Other parameters values are f = 10−4s−1, ρ = 1027kg m−3 and τ0 = 0.175N m−2.

The evolution of surface current for a variety of parameters is shown in figures (3.15,

3.16, 3.17, 3.18). For small value of ν2 (O(10−5),O(10−6)), the surface current of

the two-layer model coincide with a total suppression of turbulence (Elipot and Gille

[2009]) model (see figures 3.17, 3.18), while all three models with constant eddy

viscosity (classical Ekman model, Elipot and Gille’s model and two-layer model)

coincide for large depth of the mixed layer (d = 50, d = 100 m).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Differences in surface currents caused by rapid increase of wind from
0 to 10 m s−1 as seen by HF radar for various characteristics of mixed layer and
stratification. U0 (dot-dashed line), U (1) (dashed line), U (2) (solid line). (a,b):
d = 20 m; (c,d): d = 30 m; (e,f): d = 40 m. Other parameters values are
f = 10−4s−1, ρ = 1027kg m−3, τ0 = 0.175N m−2, νe1 = 5 × 10−3 m2s−1 and
νe1 = 5× 10−3 m2s−1, νe2 = 5× 10−5 m2s−1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: The velocity fields U0 (velocity at the surface), U (1) and U (2) of
the unsteady flow caused by a sharp increase of wind (from 0 to 10m s−1). (a,b):
d = 20 m; (c,d): d = 30 m; (e,f): d = 40 m. Other parameters values are
f = 10−4s−1, ρ = 1027kg m−3, τ0 = 0.175N m−2, νe1 = 5 × 10−3 m2s−1 and
νe2 = 5× 10−4 m2s−1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Another example of the differences in surface currents caused by
rapid increase of wind from 0 to 10 m s−1 as seen by HF radar for various charac-
teristics of mixed layer and stratification. U0 (velocity at the surface), U (1) and
U (2). (a,b): d = 20 m; (c,d): d = 30 m; (e,f): d = 40 m. νe1 = 2.4× 10−3 m2s−1,
νe2 = 2.4× 10−4 m2s−1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Differences in the evolution of the surface current for different mod-
els: the classical Ekman model (solid line), one-layer model with vanishing shear
stress at the bottom of the mixed layer (dot-dashed line), and the two-layer model
(dotted line). (a,b): d = 15 m; (c,d): d = 20 m; (e,f): d = 30 m. Other parameters
values are f = 10−4s−1, ρ = 1027kg m−3, τ0 = 0.175N m−2, νe1 = 5× 10−3 m2s−1

and νe2 = 5× 10−4 m2s−1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: The development of the surface current due to a sudden increase of
wind. Current magnitude at the surface and the angle between the surface current
and the wind: the classical Ekman solution is shown by solid line, unsteady Ekman
solution satisfying the boundary condition U ′ = 0 at the bottom of the mixed layer
is shown by dot-dashed line, and the two-layer solution is shown by dotted line.
(a,b): d = 15 m; (c,d): d = 20 m; (e,f): d = 30 m. Other parameters values
are f = 10−4s−1, ρ = 1027kg m−3, τ0 = 0.175N m−2, νe1 = 5 × 10−3 m2s−1 and
νe2 = 5× 10−5 m2s−1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: The development of the surface current due to a sudden increase of
wind. Current magnitude at the surface and the angle between the surface current
and the wind: the classical Ekman solution is shown by solid line, unsteady Ekman
solution satisfying the boundary condition U ′ = 0 at the bottom of the mixed layer
is shown by dot-dashed line, and the two-layer solution is shown by dotted line.
(a,b): d = 15 m; (c,d): d = 20 m; (e,f): d = 30 m. Other parameters values
are f = 10−4s−1, ρ = 1027kg m−3, τ0 = 0.175N m−2, νe1 = 5 × 10−3 m2s−1 and
νe2 = 10−5 m2s−1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: The development of the surface current due to a sudden increase of
wind. Current magnitude at the surface and the angle between the surface current
and the wind: the classical Ekman solution is shown by solid line, unsteady Ekman
solution satisfying the boundary condition U ′ = 0 at the bottom of the mixed layer
is shown by dot-dashed line, and the two-layer solution is shown by dotted line.
(a,b): d = 15 m; (c,d): d = 20 m; (e,f): d = 30 m. Other parameters values
are f = 10−4s−1, ρ = 1027kg m−3, τ0 = 0.175N m−2, νe1 = 10−2/2 m2s−1 and
νe2 = 10−5/2 m2s−1.
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(a) (b)

Figure 3.19: Evolution of the surface current for two-layer model with different
eddy viscosity values (νe1) in the upper layer. (a) The magnitude of the surface
current. (b) The deflection angle of the surface current to the wind direction.
Parameters values: f = 10−1 s−1, ρ = 1027 kg m−3, τ0 = 0.175 N m−2, νe2 =
3× 10−4 m2s−1 and d = 30 m.

(a) (b)

Figure 3.20: Evolution of the surface current for two-layer model with different
eddy viscosity values (νe1) in the upper layer. (a) The magnitude of the surface
current. (b) The deflection angle of the surface current to the wind direction.
Parameters values: f = 10−1 s−1, ρ = 1027 kg m−3, τ0 = 0.175 N m−2, νe2 =
3× 10−4 m2s−1 and d = 100 m.

Figures (3.19) and (3.20) illustrate sensitivity of the Ekman transient current caused

by a sharp increase of wind to the value of eddy viscosity in the mixed layer and its

thickness within the framework of the two-layer model. The main conclusions are

very simple and robust: (i) An order of magnitude increase of eddy viscosity leads

to a more than twofold decrease of the mean Ekman current speed and amplitude

of near-inertial oscillations, independently of the depth of the mixed layer. (ii) The

deflection of the current to the direction of wind is sensitive to viscosity only in
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the case of shallow mixed layer, then, counterintuitively, inertial oscillations of the

direction are most pronounced for the largest viscosity; in the case of a thick mixed

layer neither the mean deflection nor the its inertial oscillations are sensitive to the

viscosity. Our overall conclusion is the Ekman response is sensitive to the value of

viscosity on the mixed layer, we note increase of the timescale of the Ekman layer

development with increase of viscosity. The periods of near-inertial oscillations do

not depend on viscosity.

An overview of the collection of examples presented in this section enables us to

conclude that there are measurable discrepancies between the true surface velocity

U 0 and the surface velocities U (1), U (2) retrieved by HF radars for a very wide range

conditions. The conditions have been outlined within the framework of the two-

layer model. These discrepancies can provide quantitative estimates of the level of

turbulence in the mixed layer and thickness of of the mixed layer. To a lesser extent

these discrepancies can constrain the estimates of the stratification in the pycnocline.

Once applied to real field observations the above results can provide a valuable insight

into an important aspect of air-sea interaction.

3.5 Dynamics in case of wind switch-off

To understand the response of decreasing wind, here we consider a complete switch-off

of the wind assuming the eddy viscosity to remain constant in both layers.

We divide this section into two parts: in the first one we give the mathematical

formulation of the governing equations, while the Laplace inversion scheme and “the

Stehfest inversion algorithm” are explained in the other part.

3.5.0.1 Governing equations and Laplace transform

The governing equations are the same equations (3.1):

∂U 1

∂t
+ ifU 1 = νe1

∂2U 1

∂z2
; 0 ≤ z ≤ d ,

∂U 2

∂t
+ ifU 2 = νe2

∂2U 2

∂z2
; d ≤ z <∞ .
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The initial conditions are provided by the solution for the steady Ekman current:

U 1(z, 0) = V 0 (
√
νe2 sinh [β1(d− z)] +

√
νe1 cosh [β1(d− z)]) , (3.55a)

U 2(z, 0) =
√
νe1 V 0 exp [β2(d− z)] , (3.55b)

where

V 0 =
τ 0 e

−i π/4

ρ
√
fνe1

(√
νe1 sinh(β1d) +

√
νe2 cosh(β1d)

) ,
β1 =(1 + i)

√
f

2νe1
,

β2 =(1 + i)

√
f

2νe2
.

The boundary conditions for t ≥ 0 are:

∂U 1

∂z
= 0 at z = 0, (3.56a)

νe1
∂U 1

∂z
= νe2

∂U 2

∂z
at z = d , (3.56b)

U 1 = U 2 at z = d , (3.56c)

U 2 → 0 as z →∞ . (3.56d)

Applying the Laplace transform with respect to t:

Û(z, s) =

∫ ∞
0

estU(z, t) dt, Re(s) ≥ 0 . (3.57)

leads to ordinary differential equations

νe1
d2Û 1(z, s)

dz2
= (if + s) Û 1(z, s)−U 1(z, 0) , (3.58a)

νe2
d2Û 2(z, s)

dz2
= (if + s) Û 2(z, s)−U 2(z, 0) . (3.58b)

The general solution of the equation (3.58a) is

Û 1(z, s) = Û 1h(z, s) + Û 1p(z, s) , (3.59)
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where Û 1h(z, s) is the general solution of the homogeneous problem.

Û 1h(z, s) = A exp [β3 z] +B exp [−β3 z] , (3.60)

where

β3 =

√
s+ if

νe1
.

The particular solution is

Û 1p(z, s) =
V 0

s
(
√
νe2 sinh [β1(d− z)] +

√
νe1 cosh [β1(d− z)]) , (3.61)

so that, the general solution of the upper layer can be written as:

Û1(z, s) = A exp [β3 z] +B exp [−β3 z] +
V 0

s
(
√
νe2 sinh [β1(d− z)] +

√
νe1 cosh [β1(d− z)]) .

(3.62)

Similarly, the general solution of the equation (3.58b) is

Û 2(z, s) = c1 exp [β4z] + c2 exp [−β4z] +

√
νe1 V 0

s
exp [β2(d− z)] , (3.63)

where

β4 =

√
s+ if

νe2
.

After applying the transformed boundary conditions, the solution of the upper layer

in the Laplace space can be written as

Û1(z, s) = A exp [β3 z] +B exp [−β3 z] +
V 0

s
(
√
νe2 sinh [β1(d− z)] +

√
νe1 cosh [β1(d− z)]) ,

where

A =
(
V 0

(
− β1e

β3d
(
β3νe1 + β4νe2

)(√
νe1 sinh[β1d] +

√
νe2 cosh[β1d]

)
+

β3β1

√
νe2νe1 − β3β2

√
νe1νe2

))
/
(
2β3s

(
β4νe2 cosh[β3d] + β3νe1 sinh[β3d]

))
,
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B =
(
V 0e

−β3d
(
− β1

(
β3νe1 − β4νe2

)(√
νe1 sinh[β1d] +

√
νe2 cosh[β1d]

)
+

β3β1

√
νe2νe1e

β3d − β3β2

√
νe1νe2e

β3d
))
/
(
2β3s

(
β4νe2 cosh[β3d] + β3νe1 sinh[β3d]

))
.

The lower layer solution is

Û 2(z, s) = c2 exp [−β4z] +

√
νe1 V 0

s
exp [β2(d− z)] ,

where

c2 =−
(√

νe1V 0e
β4d
(
β1

√
νe1
√
νe2(cosh[β1d]− cosh[β3d])+

β2νe2 cosh[β3d] + β1νe1 sinh[β1d]
))
/
(
s
(
β4νe2 cosh[β3d] + β3νe1 sinh[β3d]

))
.

The Bromwich integral (the inverse Laplace transform) can not be evaluated easily

analytically because of the complexity of the integration function derived above.

Therefore a numerical inversion method is required. In the following subsection, one

of the most common numerical methods “the Stehfest method” is discussed (e.g.

Stehfest [1970]; Wang and Zhan [2015]).

(a) (b)

Figure 3.21: Evolution of the surface current (the magnitude of the surface
current and the angle between the wind and surface current) after the wind switch
off for characteristic sample values of parameters: d̃ = 1.5. (a): νe2 = 10−5 m2s−1.
(b): νe2 = 10−4 m2s−1
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3.5.0.2 Numerical inverse Laplace transform method

The Stehfest method was developed in the late 1960s, and has been used widely due

to its simplicity and good performance. The approximate formula for the inversion

of Laplace transform we employ is as follows

f(t) =
ln2

t

n∑
j=1

Mj F

(
j
ln2

t

)
, (3.64)

where the coefficient Mj is given by

Mj = (−1)j+n
2

min(j,n
2

)∑
k= j+1

2

k(n/2)(2k)!

(n
2
− k)!k!(k− 1)!(j− k)!(2k− j)!

. (3.65)

in which, the number of terms n must be an even integer. The accuracy of the

method depends on the choice of n. Increasing n leads to an increase in the precision

of results first but then and due to increasing round-off errors, the accuracy declines.

Cheng et al. [1994] pointed out that the ideal choice of n should range from 6 to 20.

Here, to investigate the sensitivity of the Ekman currents to the values of eddy

viscosity we considered a situation of “diurnal pycnocline” as a specific example.

Figure (3.21) shows that the magnitude of surface velocity is decreasing gradually

and it is quite sensitive to the value of νe1, while its deflection angle depends quite

weakly on it.

3.6 Conclusions

In this chapter we examined a novel two-layer model of Ekman boundary layer which

utilises the great disparity in magnitudes of eddy viscosity in the turbulent mixed

layer and in stratified flow below. In the model, the top layer is characterized by a

constant with respect to depth and time value of eddy viscosity, while the bottom

layer has a much smaller viscosity also assumed to be constant. Assuming time

dependence of horizontally uniform wind stress τ (t) on the surface to be given we
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have found the boundary layer response to such varying surface stress τ (t) in a closed

analytical form.

1. For an arbitrary τ (t) we found time-dependent solution which describes dynam-

ics of the Ekman boundary layer in such a model which is an exact solution to

the full Navier-Stokes equations under the rigid lid approximation. We exam-

ined various steady and unsteady regimes within the framework of the adopted

model. It has been shown that in the corresponding limits the solutions tends

to the classical Ekman solution for infinitely deep fluid or to the EG one in the

limit of vanishing eddy viscosity in the stratified layer. The solution enables

one to check a posteriori the validity of the solution and reveals the limita-

tions of the model. Under stronger winds at the bottom of the boundary layer

the solution exhibits strong shear, which can cause instability of the interface,

which might provide the physical mechanism of the mixed layer deepening and

entrainment. To quantify this entrainment mechanism one has to choose one

of the existing parameterisations of the eddy viscosity in the stratified fluid,

which goes beyond the scope of this study. In the regime of deepening of the

mixed layer a more appropriate boundary condition at the bottom of the mixed

layer would be constancy of the Richardson number, Ri = 1/4.

2. For the steady wind we found and examined explicit solution governing the Ek-

man flow. The solution suggests a likely strong instability and, hence, enhanced

mixing and break down of the assumed horizontal uniformity of the flow. This

requires reconsidering the basic assumptions of the Ekman models.

3. In view of advancing remote sensing of the basic characteristics of the mixed

layer (such as its thickness, the characteristic value of eddy viscosity and stratifi-

cation below) we analysed sensitivity of the surface manifestations of the Ekman

currents provided by the time-dependent solution for the surface current U 0(t)

for various regimes. It has been found that for a very wide range of parameters

and regimes of evolution the presence of stratification does manifest in the field

of the surface current U 0(t), which is most sensitive to the nondimensional

depth of the mixed layer d̃ = d/δ1, δ1 =
√

2νe1/f . The manifestations on the
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surface are sizeable for d̃ < 1.5. Under strong winds the surface manifestations

of seasonal stratification are always present. The possibility of getting a new

insight by using HF radars measuring the surface currents by integrating the

boundary layer of two different depth has been also demonstrated.



Chapter 4

Ocean response to varying wind in

models with time and depth

dependent eddy viscosity

4.1 Introduction

The unifying feature of the existing theoretical developments of the Ekman theory is

that they do not take into account time dependence of the eddy viscosity, which is

an obvious oversimplification and a stark neglect of a key feature of reality. Here we

extend the Ekman model by considering time (and depth) dependent eddy viscosity.

The turbulence in the Ekman layer is known to be time dependent (Soloviev and

Lukas [2013]), it is affected by many physical processes, not fully understood yet.

We mention just a few: it depends on wind through the wind induced shear and

waves, primarily through wave breaking, which is sensitive to the instantaneous wind

and wave age (e.g. Komen et al. [1996]; Babanin [2011]); the turbulence is affected

by solar heating and heat exchange, which might create density stratification and

thus suppress the turbulence; it might be also affected by near-inertial waves trapped

90
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near the surface (Shrira and Forget [2015]), and it has its own dynamics. Here we

are not aiming at describing and accounting for specific mechanisms of turbulence

temporal variability, we explore how a presumed wind determined time dependence

of eddy viscosity manifests in the dynamics of the Ekman current. We choose the

(Zikanov et al. [2003]) relation between the eddy viscosity and wind obtained on

the basis of large-eddy-simulations for steady regimes; we hope that for not too fast

changes of wind the adopted relation captures reality. Even if this is not true, it

is important to explore the effects due to time dependent eddy viscosity. We show

that once the eddy viscosity closure and tangential stress parametrization of wind

effect have been adopted, the Navier-Stokes equations with viscosity varying both in

depth and time admit a broad class of novel exact solutions describing dynamics of

the Ekman currents. These solutions demonstrate significance of taking into account

time dependence of eddy viscosity. This enables us to get a new insight into the

vertical and temporal variability of the Ekman currents.

The chapter is organized as follows. First, in §4.2 we formulate the mathematical

model and discuss the underpinning assumptions. In §4.3 we derive a class of exact

Ekman type solutions for the situations with time and depth dependent eddy vis-

cosity. In §4.4 we examine three basic scenarios of varying wind (all others can be

viewed just as combinations of those three): an increase, a decrease, and a periodic

variation. We show emergence of fast instabilities of the evolving Ekman currents

and strong sensitivity of their parameters to the adopted models of eddy viscosity. In

§4.5 we derive general solution for the power law depth dependence of eddy viscosity

and arbitrary time dependence of wind. In §5.6 the analysis of the unsteaday Ekman

current response is extended by taking into account time dependent surface wave

Stokes drift. In the concluding §4.7 we summarise our findings and new questions

they generate.

4.2 The mathematical model

The generalization of the Ekman model (1.22) with the boundary conditions (1.23),

(1.24) and (1.25) provides the basis of the present study focussed upon elucidating
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the effects of time dependent eddy viscosity.

As was discussed in the introduction, the specific time dependence of the eddy vis-

cosity depends on a variety of physical mechanisms, not fully understood yet. Hence,

for most of the study, unless we explicitly state an alternative, we assume that the

eddy viscosity scales as friction velocity squared, u2
∗, where u∗ =

√
|τττ |/ρ is friction

velocity in water. This link between νe and u∗ has been established for steady flows

in (Zikanov et al. [2003]), here, we assume it will hold for sufficiently slowly vary-

ing winds. We adopt the constant of proportionality and its latitude dependence

established by the simulations of (Zikanov et al. [2003]).

4.3 Solvable model

For an arbitrary ve(z, t) the only way to proceed is to simulate numerically the bound-

ary value problem (1.22, 1.23, 1.24, 1.25). Here, to advance analytically we consider

a particular class of eddy viscosity depth and time dependence assuming νe(z, t) to

be in separable form, i.e. νe(z, t) = ν̃e1(t)g(z). Then the substitution

U(z, t) = e−iftW (T, z); T =

∫ t

0

ν̃e1(ξ)dξ , (4.1)

turns the governing equation (1.22) into the diffusion equation with a given vertical

dependence of the diffusion coefficient g(z):

∂W

∂T
=

∂

∂z

(
g(z)

∂W

∂z

)
. (4.2a)

The boundary and initial conditions take the form:

∂W

∂z
=
−eift(T ) τ (t(T ))

ρ νe(z, t(T ))
≡ F (t) at z = 0 , (4.2b)

∂W

∂z
→ 0 as z →∞, (4.2c)

W (z, t)|t=0 = U(z, 0) . (4.2d)
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Under the adopted assumption of the separable form of the eddy viscosity, νe(z, t) =

ν̃e1(t)g(z), its vertical dependence g(z) by definition does not vary with time. A

priori, this might be relevant for capturing the real situations when for the timescales

under consideration g(z) either remains frozen, e.g. for a situation with a strong

pycnocline layer fluid, or g(z) is a linear function, say, g(z) = g0 + g1z. The first

class of situations could be relevant for a finite thickness mixed layer with vertically

uniform or linearly varying with depth time dependent eddy viscosity, such models

(although without time dependence) were employed byElipot and Gille [2009]. In

this work we do not consider the effects due to stratification (at least explicit effects)

and examine a more general class of models with the power law depth dependence of

eddy viscosity. However, in the next section we focus on the simplest model of that

class that with linear g(z).

4.3.1 Eddy viscosity linearly dependent on depth: g(z) =

g0 + g1z

Here, we consider eddy viscosity linearly dependent on depth, a more general power

law depth dependence will be considered in §4.5. On substituting νe = ν̃e1(t)(g0+g1z)

into eq.(4.2a) we obtain:

∂W

∂T
=

∂

∂z

(
(g0 + g1z)

∂W

∂z

)
. (4.3)

Taking the Laplace transform with respect to T (L{W (T )} = Ŵ (s)) yields:

d

dz

(
(g0 + g1z)

dŴ

dz

)
− s Ŵ = −U(z, 0), Ŵ (z, s) =

∫ ∞
0

W (z, T ) e−sT dT.

(4.4)
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Its general solution is expressed in terms of the modified Bessel functions I0[.] and

K0[.] , of the first and second kind, respectively

Ŵ (z, s) =I0

[
2

√
(z0 + z) s

g1

](
A− 2

g1

∫ z

0

K0

[
2

√
(z0 + χ)s

g1

]
U (χ, 0)dχ

)
+

K0

[
2

√
(z0 + z) s

g1

](
B +

2

g1

∫ z

0

I0

[
2

√
(z0 + χ)s

g1

]
U (χ, 0)dχ

)
. (4.5)

where z0 = g0/g1 is the roughness length, A and B are unspecified functions. On

applying the bottom and surface boundary condition the solution in terms of the

Laplace transform of the solution Ŵ (z, s) takes the form

Ŵ (z, s) = K0

[
2

√
(z0 + z) s

g1

]( √
g1z0

√
sK1

[
2
√

sz0
g1

] L

{
eift(T ) τ (t(T ))

ρ νe(0, t(T ))

}
+

2
√
z0U (0, 0)K0

[
2
√

sz0
g1

]
I0

[
2
√

sz0
g1

]
√
g1sK1

[
2
√

sz0
g1

] +
2

g1

∫ z

0

I0

[
2

√
(z0 + χ)s

g1

]
U (χ, 0)dχ

)
.

(4.6)

Then, in the original variables, the solution reads

U(z, t) = e−iftW (z, T ), W (z, T ) =
1

2πi

∫ c+i∞

c−i∞
Ŵ (z, s)esT ds; c ≥ 0. (4.7)

This is the general solution for logarithmic boundary layer corresponding to linearly

varying viscosity, g(z) = g0 +g1z, under arbitrarily varying wind and time dependent

viscosity with any current profile U(z, 0) at the initial moment. The solution can be

simplified for particular cases of interest considered below.

4.3.2 Particular cases

4.3.2.1 Time-dependent viscosity model with g0 = 0 and U(z, 0) = 0

Often, the linear growth of viscosity with depth is so strong that, when our main

interest is in processes in the first meters or tens of meters below the surface, the
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nonzero eddy viscosity value at the surface is so insignificant that it can be neglected.

When g0 = 0 and U(z, 0) = 0, the solution takes the form

U(z, t) = e−iftW (z, T ), W (z, T ) =
1

g1

eift(T ) τ (t(T ))

ρ ν̃e1(t(T ))
∗(T )

1

T
e−z/g1T , (4.8)

where Υ ∗(T ) Ψ is the convolution with respect to T ,

Υ ∗(T ) Ψ =

∫ T

0

Υ(T − ξ)Ψ(ξ)dξ .

If we set ν̃e1 to be a constant the solution (4.8) coincides with that of Madsen [1977].

Often, of special interest is the Ekman transport S – the total fluid flux integrated

over the Ekman layer. To find the Ekman transport we just integrate the current

given by.(4.8) over entire depth,

S(t) = e−ift
∫ T

0

eift(ζ)τ (t(ζ))

ρ ν̃e1(t(ζ))
dζ =

e−ift

ρ

∫ t

0

eifΘτ (Θ)dΘ . (4.9)

Thus, we verified that in accordance with Sverdrup [1947] the Ekman transport does

not depend on the specific viscosity profile and its time dependence.

4.3.2.2 Time-dependent viscosity model with uniform viscosity (g1 = 0)

and U(z, 0) = 0

This is the most direct generalization of the Ekman model with varying in time

depth independent viscosity. It might be appropriate for shallow well mixed layers

for relatively short time scales. In this case it is easier to get solution directly from the

basic equations than from the general solution (4.7). Applying the Laplace transform

with respect to T to the diffusion equation and boundary conditions (eqs.(4.2)) we

find the general solution in the form

U(z, t) = e−iftW (T, z); T =

∫ t

0

νe1(ξ)dξ, (4.10a)
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where

W (z, T ) =
eift(T ) τ (t(T ))

ρ ν̃e1(t(T ))
∗(T )

e−z
2/4T

√
πT

. (4.10b)

The found solution (4.10) describes time dependent current in terms of Green’s func-

tion for an infinite homogeneous ocean when the eddy viscosity varies with time

only. When ν̃e1 is constant, the solution coincides with the Ekman solution. The Ek-

man transport for this case has the same form as in the general case given by eq.(4.9).

In the next section to elucidate the effect of time dependence of eddy viscosity we

examine the basic scenarios of the ocean response to the varying wind within the

framework of model (4.2).

4.4 The basic scenarios of the Ekman current re-

sponse to varying wind

We consider three basic scenarios of varying wind (all others can be viewed just

as combinations of these three): (i) an increase or turn of wind ending up with a

plateau, (ii) a decrease, and, (iii) a periodic wind. In this section we examine the

Ekman current response in each of this scenarios within the framework of the system

(4.2) and compare these predictions with those of the models with constant in time

eddy viscosity.

4.4.1 Periodic wind

First consider ocean response to an idealized common situation of breeze; for sim-

plicity we model it by assuming a strictly sinusoidal unidirectional wind with diurnal

period,

τ(t) =τ0H(t) sin2(Ω∗t) sign(U10), where U10 = |U0
10| sin(Ω∗t), (4.11)
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(a) (b)

Figure 4.1: Evolution of the Ekman current from rest under a suddenly turned on
periodic wind in three different models: time-depth dependent viscosity model (4.7)
is shown by dot-dashed line (brown online), the time-dependent viscosity model
(4.10) is shown by solid line (green online), the classical Ekman solution with
constant eddy viscosity by dashed line (blue online). (a) Current magnitude at the
surface |U(0, t)| . (b) The angle Φ between the wind and the surface current. t̃ = ft.
The parameter values are: f = 10−4s−1, Ω∗ = 0.7f rad s−1, ν0 ≈ 2 × 10−2m2s−1,
ρ = 1027 kg m−3, τ0 = 0.175N m−2, |U10| = 10m s−1.

where τ0 = ρaCD|U0
10|2 , ρa = 1.25 kg m−3 is the air density, CD is the drag co-

efficient taken to be 1.4 × 10−3, H(t) is the Heaviside Function, Ω∗ is the diurnal

frequency, and U10 is the wind velocity measured at 10m above the still water level.

Recall, that in this section νe(z, t) is νe(z, t) = ν̃e1(t)[g0 + g1z] and by virtue of (1.23)

νe(0, t)∂zU |z=0 = −τττ(t)/ρ.

Figure (4.1) shows an example of evolution of a mid-latitude Ekman current under

periodic unidirectional wind (4.11) for two models with time dependent eddy viscosity

(with and without linear depth dependence) and the classical Ekman model with

constant viscosity as a reference. There are noticeable discrepancies between the

predictions of all three models, which shows importance of taking into account of

both the time and depth dependence of the eddy viscosity. The model accounting for

both the time and depth dependence of viscosity predicts the strongest variation of

the surface current magnitude and the sharpest turns of its direction with respect to

wind. Note an important feature of the Ekman response: most of the time the surface

current is directed windward, in contrast to the steady Ekman response characterized

by a significant deflection ( π/4 in the classical Ekman model). Overall, the Ekman

currents generated by periodic wind (in all models) show very little resemblance
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Vertical profiles of the x andy velocity components generated by
a suddenly turned-on periodic wind at three sample moments in three different
models: time-depth dependent viscosity model (4.7) is shown by dot-dashed line
(red online), the time-dependent viscosity model (4.10)) is shown by solid line
(green online), the classical Ekman solution with constant eddy viscosity is plotted
by dashed line (blue online). The parameters and expressions for eddy viscosity
are the same as in figure 4.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: The second derivative of the profiles shown in figure (4.2).
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to the steady solutions, although the diurnal period is not small and, a priori, an

adiabatic quasi-steady evolution of the Ekman layer might have been considered as a

possibility. This suggests that the characteristic timescale of approaching the steady

solution noticeably exceeds the inertial period. With increase/decrease of latitude

the pattern of the Ekman current evolution under the same periodic wind remains

qualitatively similar: the amplitude of the oscillations differs slightly from those in

figure (4.1a), it decreases/increases by about 10% at the latitudes 70 and 20 degrees,

respectively, while the evolution of the deflection angle Φ (the between the surface

velocity and wind direction) proved to be independent of latitude and, hence, exactly

coincides (in units of time scaled with f) with that shown in figure (4.1b).

The discrepancies between the predictions of all three models are not confined to

the ocean surface, the really profound differences occur beneath the surface. To

give an idea on the flow evolution we draw instantaneous profiles of the current

and its second derivatives sampled at three consecutive moments chosen somewhat

arbitrarily (t̃ = 0.25, 0.5, 0.75) in figures (4.2 and 4.3). All three models show gradual

increase of the current and its slow rotation. Figure (4.2) shows that the rates of flow

acceleration, the rotation of the current direction, the thickness of the boundary layer

all differ substantially in the three models. However, the most profound difference

becomes apparent in the profiles of second derivatives shown in figure (4.3).

The evolving current profiles with time invariably exhibit inflection point and, there-

fore, by virtue of the Rayleigh criterion, become linearly unstable. The emergence of

inflection points in the current profiles u(z, t) and v(z, t) in all three models is illus-

trated in figure (4.3). At the sampled moments the profiles predicted by the model

with time dependent eddy viscosity and the classical Ekman model exhibit a change

of curvature sign for all sampled moments, which suggests strong essentially inviscid

instability, while in the model with viscosity varying with time and depth inflection

points develop only at later times not illustrated by the figure. The characteristics

of the instabilities can be obtained only by solving numerically the Orr-Sommerfeld

boundary value problem for each instant of time and for each model, which goes

beyond the scope of this work. Usually, such inviscid instabilities have high growth
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Table 4.1: Parameters of short scale instabilities for a sample transient Ekman
current.

t̃ model of eddy
viscosity

Imω (s−1) k∗ (m−1)

0.25

constant 2.37× 10−5 0.1

time dependent 6.76× 10−4 0.03

0.5

constant 6.5× 10−7 0.03

time dependent 2.58× 10−5 0.1

0.75

constant 1.1× 10−6 0.02

time dependent 3.6× 10−5 0.06

rates and we can expect almost instant (compared to the inertial timescale) develop-

ment of larger vortices in the already turbulent flow. Here, we confine ourselves to

addressing the most basic questions about these instabilities: (i)Are the instabilities

robust or sensitive to the employed viscosity model? (ii) What are the most unstable

the characteristic scales of perturbations and how they evolve? (iii) What are the

most unstable directions and how they evolve? Are the instabilities important for

the evolution of Ekman current? The answers, certainly not comprehensive, could

be deduced from the results of numerical study of the boundary value problem which
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are summarised in table (4.1), where the maximal growth rates Imω and the wave

number k∗ are given.

First, it is easy to see that the instabilities are very sensitive to the eddy viscosity

model: the profiles obtained with the time and depth dependent viscosity proved

to be stable (for the chosen moments), while the growth rates in the models with

constant and time dependent viscosity differ by more than an order of magnitude.

For the examined sample profiles the most unstable perturbations are propagating

perpendicular to the wind and have characteristic wavelengths of the order of a

hundred meters. In the example at hand the model with time dependent viscosity

yields growth timescales which are much faster than the characteristic timescale of

the unperturbed motion, and, therefore, the instability might completely change the

evolution predicted by the exact solutions of the Navier-Stokes equations within the

framework of the Ekman paradigm. In our samples the instabilities in the classical

Ekman model with a constant viscosity proved to be much weaker, which could justify

their neglect when we are interested only in a relatively short timesclaes of the order

of a few hours, but not for timescales exceeding several days. The instabilities are

certainly not confined to the regime of periodic wind. We will return to discussion of

such instabilities in the next section, where we consider situations of gradual increase

of unidirectional wind ending up with a plateau.

4.4.2 An increase of wind ending up with a plateau

Consider an increase of unidirectional wind ending up with a plateau with the surface

shear stress in the form

U10 = U0
10

(
1− e−t/δ

)
, τ(t) = τ0H(t)u2

∗(t). (4.12)

The specific details of the increase are not particularly important and therefore its

specific form was chosen primarily for convenience, but the characteristic time scale

is essential, we specify it by parameter δ. A few examples of the evolution of the

Ekman current in infinitely deep and homogeneous ocean caused by a gradual increase
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of wind are shown in figures (4.4). The evolution of the Ekman current is plotted for

several values of wind increase timescale δ and for the same three models (time-depth

dependent viscosity, viscosity dependent only on time and the classical Ekman model

with constant viscosity). Figure (4.4) illustrates the evolution of the surface current

(the magnitude and its direction with respect to the wind). Although the general

pattern of the evolution is qualitatively similar in all cases: with increase of wind the

magnitude of the surface current also increases with the same time scale, while its

direction is being deflected to the right. The figure demonstrates the sensitivity of

the response both to the timescale of the wind increase and the choice of the model.

Although the magnitude of the surface current weakly depends on the timescale of

the wind increase, its orientation with respect to the wind proved to be sensitive

to this scale, the deflection is the smallest for the fastest growth of wind. The

increase of the surface current is always followed by inertial oscillations which are

most pronounced for the model with eddy viscosity dependent only on time, and the

least pronounced for the model with the time and depth dependent viscosity. As

might have been expected, the amplitude of the oscillations increases with decrease

of the wind timescale δ. An unexpected feature of the surface current dynamics is

significantly smaller deflection predicted by the the model with the time and depth

dependent viscosity.

Note that the latitude dependence in the time-depth dependent model is relatively

weak for such regimes: the rate of growth for the surface current does not depend on

the latitude (when the time units are scaled with f), but the duration of the growth

stage and, correspondingly, the eventual magnitude of the current slightly decrease

with increase of the latitude; for example, if we consider a two hour gradual increase

of wind from zero to 10 m/s then at t̃ = 20 the magnitude of the current at the

surface |U(0)| is 0.28 m/s for twenty degrees, 0.264 m/s for forty five and 0.24 m/s

for seventy degrees.

The most profound implications of the found solutions are concerned with the evolv-

ing current profiles caused by increasing wind: as in the case of periodic wind, the

evolving profiles invariably exhibit inflection point and become linearly unstable.

The emergence of the inflection point in the current profiles u(z, t) and v(z, t) in
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all three models is illustrated in figure (4.5). Here we do not quantify the growth

rates of these instabilities, which goes beyond the scope of this work. Usually, such

instabilities have high growth rates and we can expect almost instant (compared to

the inertial timescale) development of larger vortices in the already turbulent flow.

Certainly, the adopted model where momentum is transferred by diffusion with the

coefficient derived under steady conditions is no longer applicable for such situations.

To our knowledge, none of the existing much more sophisticated models of turbulent

closures employed for modelling the surface boundary layer dynamic can overcome

this difficulty and its very existence has not been realised.

4.4.3 Switch-off of the wind, decaying turbulence

To reveal the main features of a wind decrease scenario, here we consider complete

switch-off of the wind and assume the turbulence in the water to decay as free tur-

bulence. The prevailing view is that free turbulence decays in a power-like manner,

while there is no consensus regarding the exponent. We assume for simplicity the

eddy viscosity νe(t) to be a function of time only,

νe(t) = ν0

(
t

t0

)−n
+ ν;

t

t0
≥ 1, (4.13)

where n is an unspecified yet exponent and ν is molecular viscosity. Counterintu-

itively, taking molecular viscosity into account in this manner proves to be essential.

The momentum equation in this case remains the same Ekman equation,

∂U

∂t
+ ifU = νe(t)

∂2U

∂z2
, (4.14)

where νe(t) is now given by (4.13). The boundary conditions differ from those em-

ployed in the previous cases.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Evolution of the Ekman current under growing wind with different
growth timesscales δ . The magnitude of the current surface velocity and the
angle of its deflection from the wind: (a,b) for the time-dependent viscosity model,
(c,d) for the time-depth dependent viscosity. (e,f) Comparison between the models
with the time-dependent viscosity, time-depth dependent viscosity and the constant
viscosity. The parameters and expressions for eddy viscosity are the same as in
figure 4.1.
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(a) (b)

Figure 4.5: The second derivative of the solution of the classical Ekman model
(thick lines) and time-dependent viscosity model (thin lines) when δ = 3 hrs and at
different times: t̃ = 2 (solid lines), t̃ = 3 (dashed lines) and t̃ = 5 (dotted lines). (a)
The second derivative of x-component. (b) The second derivative of y-component.
f = 10−4s−1, ν0 = 10−4m2s−1.

We assume that just before instantly switching off the wind at t = t0 we had a steady

Ekman current, that is U(z, t0) = U(z),

U(z) =
(1− i) τ0

ρ
√

2fν0

exp

[
−(1 + i)z

√
f

2ν0

]
.

The natural boundary conditions after switch-off of the wind are the conditions of

no stress at the surface and decay at infinity,

∂U

∂z
= 0 at z = 0, U ′ → 0 as z →∞. (4.15)

The general solution of the Ekman equation (4.14) satisfying the boundary and initial

conditions is

U(z, t) =e−iftW (z, T ), (4.16a)
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where,

W (z, T ) =
−τ0 e

ift0

ρ ν0

√
π

(
ei f T/ν0 ∗(T )

e−z
2/4T

√
T

)
+

(1− i) τ0 e
ift0

ρ
√

2fν0

ei f T/ν0 e
−(1+i)z

√
f

2ν0 ,

(4.16b)

and,

T =

∫ t

t0

[
ν0

(
ξ

t0

)−n
+ ν

]
dξ = ν0 t

n
0

[
t−n+1 − t−n+1

0

−n+ 1

]
+ ν(t− t0); n > 1. (4.16c)

Thus we have got a closed expression for evolving Ekman current U(z, t). Without

wind the currents decays and generates decaying near-inertial oscillations. We will

not dwell upon its depth-time evolution, just note a peculiar feature of the solution:

unless ν 6= 0, the downward diffusion of momentum stalls because the eddy viscosity

decreases too fast. Taking into account molecular viscosity, i.e. assuming ν 6= 0,

eliminates this paradox.

Consider the current at the surface. For U(0, t) we get an explicit expression in terms

of error functions

U (0, t) = e−iftW (0, T ), (4.17a)

where

W (0, T ) =
e−iπ/4 τ0 e

if(t0+T/ν0)

ρ
√
fν0

[
1− erf

(√
ifT

ν0

)]
=
e−iπ/4 τ0 e

if(t0+T/ν0)

ρ
√
fν0

erfc

(√
ifT

ν0

)
.

(4.17b)

Here, erfx = (2/
√
π)
∫ x

0
e−x

′2
dx′ and erfcx = 1 − erfx are the Gauss error function

and complementary error function (e.g. Abramowitz and Stegun [1964]) and T (t) is

specified by (4.16c).

For large t ( t� t0), T (t) can be simplified to

T =
ν0t0
n− 1

+ ν t. (4.18)
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Then,

U (0, t) = e−ift

(
e−iπ/4 τ0

ρ
√
fν0

exp

[
if

(
nt0
n− 1

+
νt

ν0

)]
erfc

(√
if

(
t0

n− 1
+
νt

ν0

)))
(4.19)

Since ν0 � ν, we retain the terms with ν0 despite the inequality t� t0.

For arbitrary times the Ekman flux decays as

S =
e−iπ/2τ

ρf
eif(t+t0). (4.20)

When νe is a constant, the Ekman flux is equal to e−iπ/2τ0e
ift/ρf (Gonella [1971]).

4.5 Time-dependent viscosity model with g(z) =

ν0(1 + z/δ̄)µ and finite depth

Although linear dependence of eddy viscosity on depth we adopted in the previous

sections is supported by both naive translation of the wall layer ideology and large

eddy simulations by Zikanov et al. [2003], the observations in the ocean often reveal

a more complicated picture. There is a number of studies which reports observations

of a logarithmic layer near the surface as a universal phenomenon (e.g. Csanady

[2001]), while the other authors report a more complicated picture (e.g. Kudryavtsev

et al. [2008]) and some more complicated empirical parameterisations of νe(z) were

put forward (e.g. Large et al. [1994]). It is not clear whether the aggregated data

were controlled for the absence of solar heating and night convection which violate

our basic assumptions. Anyway, in the oceanographic community there is a need in

nonlinear parameterisations of νe(z), especially for the finite depth situations. Here,

we generalise our previous results by considering a wider class of separable profiles,

νe(z, t) = ν̃e1(t)
[
ν0(1 + z/δ̄)µ

]
, (µ > 0), (4.21)
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where δ̄ is a real constant. For viscosity constant in time the problem was thoroughly

examined by Jordan and Baker [1980]. Here, employing their results we obtain so-

lutions for the time and depth dependent profiles given by (4.21). Since nonlinear

parametrizations of νe(z) are more likely to be encountered in finite depth situations,

here, in contrast to the rest of the paper, we consider fluid of finite depth D.

On using substitution (4.10a) and by taking the Laplace transform with respect to

T (L{W (T )} = Ŵ (s)), the Ekman equation (1.22) becomes:

d

dz

(
g(z)

dŴ

dz

)
− sŴ = 0, Ŵ (z, s) =

∫ ∞
0

W (z, T )e−sTdT, (4.22)

where g(z) = ν0(1 + z/δ̄)µ, ν0 and µ are positive constants and δ̄ is a real constant.

Its general solution is (Jordan and Baker [1980]):

Ŵ (z, s) = S(1/2)[(1−µ)/(1−µ/2)]
(
c1Jσ(iS

√
s) + c2Nσ(iS

√
s)
)

; (4.23)

with

S = ν
−1/2
0

∣∣∣∣ δ̄

1− µ/2

∣∣∣∣ (1 + z/δ̄)1−µ/2 (4.24)

where Jσ̃ and Nσ̃ are the Bessel and Neumann functions of order σ̃ = 1
2

∣∣∣ 1−µ
1−µ/2

∣∣∣.
Using the identities (e.g. Abramowitz and Stegun [1964])

xJ ′σ̃(x)± σ̃Jσ̃(x) = ±xJσ̃∓1(x)

xN ′σ̃(x)± σ̃Nσ̃(x) = ±xNσ̃∓1(x),

the surface boundary condition

g(0) Ŵ
′
(0, s) = F̂ (s), F̂ (s) = L

{
−eift(T )τ (t(T ))/(ρ ν̃e1(t(T )))

}
,
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becomes

±(−s)±σ̃/2ν1∓σ̃
0

(
δ̄

1− µ/2

) ∣∣∣∣ δ̄

1− µ/2

∣∣∣∣−2±2σ̃

ζ(0)1∓σ̃ [c1Jσ̃∓1(ζ(0)) + c2Nσ̃∓1(ζ(0))] = F̂ (s),

(4.25)

where

ζ(z) = i
( s
ν 0

)1/2
∣∣∣∣ δ̄

1− µ/2

∣∣∣∣ (1 + z/δ̄)1−µ/2. (4.26)

The no slip boundary condition at the bottom z = D,
(
Ŵ (D, s) = 0

)
, requires

c1Jσ̃(ζ(D)) + c2Nσ̃(ζ(D)) = 0. (4.27)

The constants c1 and c2 are found by solving equations (4.25) and (4.27), which yields

c1 =
−Nσ̃(ζ(D))

Jσ̃(ζ(D))

[
G

−Nσ̃(ζ(D))Jσ̃∓1(ζ(0))/Jσ̃(ζ(D)) +Nσ̃∓1(ζ(0))

]
(4.28)

c2 =
G

−Nσ̃(ζ(D))Jσ̃∓1(ζ(0))/Jσ̃(ζ(D)) +Nσ̃∓1(ζ(0))
, (4.29)

where

G =
F̂ (s)

±(−s)±σ̃/2 ν1∓σ̃
0

(
δ̄

1−µ/2

) ∣∣∣ δ̄
1−µ/2

∣∣∣−2±2σ̃

ζ(0)1∓σ̃
. (4.30)

In the original variables the general solution of the Ekman equation (1.22) takes the

form,

U(z, t) = e−iftW (z, T ); T =

∫ t

0

ν̃e1(ξ)dξ, W (z, T ) = (1/2πi)

∫ c+i∞

c−i∞
Ŵ (z, s)esTds,

(4.31)

where c ≥ 0.

We cannot claim that the solutions obtained in this section are better in describ-

ing reality than those obtained in the previous sections, since we do not have data
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controlled for the absence of the factors not considered accounted in the model. How-

ever, at the very least these results extend the spectre of possibilities in modelling of

Ekman currents.

4.6 Stokes-Ekman layer in model with time and

depth dependent eddy viscosity

The picture of the ocean Ekman current dynamics outlined above does not take

into account the ubiquitous surface waves, whenever there is wind wind waves are

always present. Their account can essentially modify the Ekman current dynamics

compared to the classical Ekman model, as was first suggested by Huang [1979].

The effect of the wave induced Stokes drift on Ekman currents was examined in a

substantial number of works (see e.g. McWilliams et al. [1997], Lewis and Belcher

[2004], Xu and Bowen [1994], Polton et al. [2005], Ardhuin et al. [2009], Sullivan and

McWilliams [2010]), it has been confirmed that this effect can be indeed essential:

the deflection of the current from the wind direction was found to be strongly affected

(McWilliams et al. [1997], Lewis and Belcher [2004]). However in the literature the

consideration was confined to somewhat oversimplified models. In particular, the

eddy viscosity was assumed to be either constant (both in space and time) and

isotropic, or constant in time and linearly varying with depth (Lewis and Belcher

[2004]), while the wave spectrum was often modelled by a single harmonic, crucially,

the Stokes drift dynamics caused by wave field evolution was ignored. As we discussed

earlier, in reality, it is questionable to assume the eddy viscosity to be constant, it

is even more questionable to consider Ekman currents subjected to variable winds

while assuming the Stokes drift to be constant. In this section we consider how

the account of the time dependent Stokes drift with realistic vertical profile could be

incorporated into the picture of Ekman current dynamics without these too restrictive

assumptions.
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With account of the Stokes drift the horizontal momentum ”Stokes-Ekman” equations

take the form (e.g. Xu and Bowen [1994], Sullivan and McWilliams [2010]),

∂U

∂t
+ if(U +U s) =

∂

∂z

(
νe(z, t)

∂U

∂z

)
. (4.32)

where U s = Us(z, t) eU is the Stokes drift due to surface waves as a function of

time and depth, eU is unit vector in the mean direction of wave propagation (not

necessarily coinciding with the direction of wind), the rest of the notations we retain

from the previous sections: U = U(z, t)+iV (z, t), νe = νe(z, t). To leading order the

Stokes drift is provided by integration in the wavevector space over all wavevectors

of the wave spectrum:

U s(z, t) =
1

(2)

∫ ωc

0

∫ 2π

0

ωk(ω, θ)E(ω, θ, t)e−2|k|zdωdθ, (4.33)

where E(ω, θ, t) is the directional energy spectrum presumed to be given in our

context, ω is frequency of a monochromatic wave component with a wavevector k,

ωc is a cut-off frequency; the specific choice of the cut-off scale is of little significance.

Strictly speaking the z-dependence of each spectral component is not exponential, as

is well known from available solutions of the boundary value problem for waves upon

a sheared current (e.g. Kirby and Chen [1989]). The usually neglected O(kU |(z=0)/ω)

correction depends on the profile and direction of the Ekman current. The neglect

of this dependence of surface mode vertical structure on the boundary layer profile

decouplesU s fromU(z, t) and dramatically simplifies the problem. Although here we

follow the line and neglect the effect of the Ekman current on the mode structure, we

note that in doing so we are neglecting a wave-current interaction mechanism which

might prove important in a different context. In contrast to local ocean response in

the classical Ekman models, the time dependence of the directional wave spectrum

E(ω, θ, t) is determined not by the local wind but by a long history of wind over a

large area. Here, assuming it to be known from a wave model, we just note that the

characteristic timescales of U s could be either comparable to characteristic timescales

of wind variability or exceed them.
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It is convenient to rewrite equation (4.32) as a the standard homogeneous Ekman

equation with a right-hand side due to the Stokes drift,

∂U

∂t
+ ifU − ∂

∂z

(
νe(z, t)

∂U

∂z

)
= −i f U s(z, t) . (4.34)

The term ifUs is often referred to as the ”Coriolis-Stokes forcing”. The motions are

subjected to the same boundary conditions given by (1.23,1.25). Similarly to §3.1,

by assuming separability of the eddy viscosity and using the substitution:

U(z, t) = e−iftW (z, T ) ; (T =

∫ t

0

ν̃e1(ξ)dξ , νe(z, t) = νe1(t) g(z)), (4.35)

we rewrite the Ekman equation (4.34) as an inhomogeneous equation with time and

depth dependent right-hand side which we denote as F 1(z, t),

∂W

∂T
− ∂

∂z

(
g(z)

∂W

∂z

)
=
−if U s(z, t(T ))

ν̃e1(t(T ))
≡ F 1(z, T ) . (4.36)

Taking the Laplace transform with respect to T (L{W (T )} = Ŵ (s)) yields

d

dz

(
g(z)

dŴ

dz

)
− sŴ = −F̂ 1(z, s) . (4.37)

For simplicity only, here, we confine ourselves to linear g(z) : g(z) = g1(z+z0). More

general separable profiles (4.21) could be handled similarly. The general solution is a

sum of the general solution of the homogeneous equation Ŵ h(z, s) derived in §(3.1)

and given by (4.5), and a particular solution Ŵ p(z, s) of equation (4.37), thus,

Ŵ (z, s) = Ŵ h(z, s) + Ŵ p(z, s) . (4.38)

Since the fundamental solutions of the homogeneous equation are known, it is straight-

forward to find a particular solution of the inhomogeneous equation

d2Ŵ

dz2
+

1

z + z0

dŴ

dz
− s

g1(z + z0)
Ŵ =

−F̂ 1(z, s)

g1(z + z0)
, (4.39)
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expressed in terms of modified Bessel functions I0 and K0

Ŵ p =
2

g1

∫ z

0

F̂ 1(χ, s)

(
− I0

[
2

√
(z + z0)s

g1

]
K0

[
2

√
(χ+ z0)s

g1

]
+

K0

[
2

√
(z + z0)s

g1

]
I0

[
2

√
(χ+ z0)s

g1

])
dχ . (4.40)

Then, the general solution satisfying the lower boundary condition (Ŵ → 0 as z →

∞) becomes,

Ŵ (z, s) = K0

[
2

√
(z + z0)s

g1

](
c2 + (2/g1)

∫ z

0

F̂ 1(χ, s) I0

[
2

√
(χ+ z0)s

g1

]
dχ

)
.

(4.41)

The arbitrary constant c2 is specified by the boundary condition at the surface z = 0.

To this end the first derivative of the found general solution

dŴ

dz
=

2

g1

I0

[
2

√
(z + z0)s

g1

]
K0

[
2

√
(z + z0)s

g1

]
F̂ 1(z, s)−

√
s√

g1 (z + z0)
K1

[
2

√
(z + z0)s

g1

](
c2 + (2/g1)

∫ z

0

F̂ 1(χ, s) I0

[
2

√
(χ+ z0)s

g1

]
dχ

)
(4.42)

is substituted into the boundary condition at the surface (Ŵ ′(0, s) = Ĝ1(s)), which

yields a closed expression for c2:

c2 =

√
g1z0

√
sK1

[
2
√

sz0
g1

] ( 2

g1

I0

[
2

√
sz0

g1

]
K0

[
2

√
sz0

g1

]
F̂ 1(0, s)− Ĝ1(s)

)
. (4.43)

Finally, we can now express the solution in terms of the original variables by taking

the inverse Laplace transform as follows:

U(z, t) = e−iftW (z, T ) ; T =

∫ t

0

ν̃e1(ξ)dξ , (4.44)
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where

W (z, T ) =
1

2π i

∫ c+i∞

c−i∞
Ŵ (z, s) esT ds; c ≥ 0; (4.45)

(4.46)

with Ŵ (z, s) and c2: given by (4.42) and (4.43). More general separable profiles

(4.21) could be handled similarly. Note, that for applying the obtained formulae the

time dependence of the Stokes drift has to be prescribed, to this end one needs to

know the history of evolution of wave spectra over a considerable area. For example,

if we are interested in describing Ekman currents dynamics on time scales of, say,

10h and 10 days, we would need to model evolution of wave spectra over fetches of

about 4 · 102 and 104 km and know the wave spectra history over 10h and 10 days

respectively. Since wave modelling on such a scale is rouinely carried out by global

and regional wave models, therefore it is tempting to add an Ekman current block

to wave models. Wave spectra evolution is in its turn affected by Ekman currents, a

better description of these currents would help in improving wave modelling.

4.7 Concluding remarks

Our main conclusions could be briefly summarized as follows. We showed that the

Ekman theory could be easily extended to take into account time and depth depen-

dent eddy viscosity, which is expected to be a better reflection of reality. Under the

assumption of an arbitrary power law depth dependence of eddy viscosity and arbi-

trary time dependence of wind we found exact general solution to the Navier-Stokes

equations with time and depth dependent viscosity which describes dynamics of the

Ekman boundary layer in terms of the Green’s function. This novel class of exact

solutions to the Navier-Stokes equations is of independent interest. An examination

of the basic scenarios demonstrates that taking into account both depth and time

dependence of eddy viscosity leads to substantial changes in the Ekman current re-

sponse. Under the adopted Zikanov et al. [2003] parametrization of eddy viscosity

we found also considerable dependence of the response on latitude.
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The results were further extended for the Ekman currents under variable winds taking

into account the time and depth dependent Stokes drift created by evolving wave

spectra. General solution of the corresponding Stokes-Ekman equations has been

derived to fill the gap in the existing literature. Possibilities of coupling of existing

wave models with the Stokes-Ekman equations and unaccounted yet mechanisms of

coupling were also discussed.

Since in nature the eddy viscosity does depend on time (although the dependence

might be more complicated than the simplest u2
∗ scaling we adopted), there is a

potential for extension of this approach by considering nonlocal relations between

wind and eddy viscosity. We did not attempt a comparison with data. The fact

that our solutions for time dependent linear in depth viscosity predict noticeably

smaller surface current deflection to the wind direction, which better agrees with

the observations, seems encouraging. An unexpected outcome from the analysis of

Ekman currents forced by varying wind is that that the solutions rarely resemble the

steady state solutions, even if the wind is varying slowly.

The characteristic timescales of the transient Ekman currents are of the order of

inertial period for any model of viscosity, which is comparable to the period of the

Earth rotation and is much smaller than spin up timescale. The transient Ekman

timescales increase with increase of viscosity. Under any circumstance the Ekman

response timescales are much larger than the periods of wind gusts. On the other

hand, the time of wind increase in a storm or hurricane could be comparable to the

transient Ekman timescale.

Our most surprising and, we believe, significant finding is that of major limitations

of the applicability of the Ekman type models and all their generalizations used for

modelling of the oceanic surface boundary layer under varying wind conditions. To

our knowledge these limitations have not been discussed in the literature. Subjected

to growing or turning wind the Ekman current response develops profiles unstable

with respect to inviscid inflectional instability. Although a detailed examination

of these instabilities is beyond the scope of the present work, we did consider a

few examples. We found that the instabilities are small scale (with wavelengths
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∼ 102 m) and very sensitive to the adopted model of eddy viscosity. Crucially,

the instabilities could be fast compared to the inertial time scale and comparable

to the characteristic timescales of Ekman current evolution. This raises questions

about the fundamentals of the Ekman type models. When such instabilities occur

we could expect dramatically enhanced “spike” mixing (compared to the models

assuming merely diffusion of momentum) in the corresponding parts of the water

column. Thus, we could expect two-scale mixing characterised by widely separated

temporal scales: “normal” diffusion of momentum and a “spike mixing” caused by the

inflectional instabilities. The fast evolving part of the current profile is expected to

reach stable configuration at the timescale of instability, then only the slow evolution

of the current will continue, until the varying wind creates another instance of strongly

unstable inflectional profile. An immediate implication of this new qualitative picture

is that a gusty wind should produce a broader boundary layer than a smooth wind of

comparable strength. The occurrence of such strong instabilities of transient Ekman

currents undermines the very existence of the Ekman paradigm. In principle, it might

be possible to interpret Ekman models only in a coarse grain sense (averaging over

certain time and spatial scales and using bulk viscosity). For example, the presence of

Langmuir circulations which breaks down the key assumption of horizontal isotropy

of eddy viscosity is dealt with by considering non-diagonal tensor of Reynolds stresses

Wirth [2010]. However, at present it is not clear how to apply such an averaging and

how the scale of averaging is linked to parameters of Langmuir circulations. This

example is aimed to highlight general lack of clarity regarding the scales of spatial

and temporal averaging implicit in the Ekman type models. We conclude that the

established Ekman paradigm needs a radical revision. The present work has just

highlighted the problem, the issue certainly needs a dedicated study and will be

further explored elsewhere.



Chapter 5

Conclusions and Discussion

5.1 Conclusions

1. In the literature the Ekman current response to varying winds was studied under

the Boussinesq hypothesis and assuming constant in time eddy viscosity with

various simple dependencies on depth. Here, explicit exact general solution of

the Navier-Stokes equations in terms of the Green’s function describing response

of infinitely deep non-stratified ocean to an arbitrary time dependent wind has

been derived under the assumption of constant in time eddy viscosity with a

vertical profile obtained by Zikanov et al (2003) by Large Eddy Simulations

(LES) method. A thorough comparison with the available models employing

more simple eddy viscosity profiles lacking the LES validation has been carried

out. The range of situations where much simpler models can be used with

acceptable accuracy has been identified.

2. A fundamental open question on how the vertical profile of stratification affects

the surface current caused by wind varying in time has been examined within

the framework of a two-layer Ekman model with uniform turbulent upper layer

adjacent to the rigid lid surface and an infinitely deep stratified layer with much

118
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smaller eddy viscosity. Within the framework of this idealized model of upper

ocean with pronounced seasonal stratification, it has been found under what

conditions the surface velocity vector is noticeably affected by the presence

of seasonal stratification. The parameter controlling whether the presence of

stratification will manifest itself on the surface is the nondimensional thickness

of the mixed layer d̃ = d/δe1, (δ1 =
√

2νe1/f), where νe1 is the eddy viscosity

in the mixed layer. For the stratification to have visible effects on the ocean

surface nondimensional thickness should not exceed 1.5. Under strong winds

the Ekman currents always feel the seasonal stratification for any depth of the

mixed layer. It has been found that under these conditions the surface velocity

field is quite sensitive to the depth of the mixed layer, but is much less sensitive

to the strength of stratification. Under the hurricane winds the Ekman current

shears at the bottom of the mixed layer become so strong, that the adopted

model becomes inapplicable, the interface becomes unstable, an entrainment

of stratified fluid and widening of the mixed layer occurs. These processes are

not captured by the adopted simplest model, but the results suggest the way of

how to generalise the model to capture them. From the perspective of potential

for remote sensing of the characteristics of stratification it has been found that

the use of HF radars utilizing the main and the second harmonics peaks in the

Doppler spectra of scattered electromagnetic field opens new possibilities.

3. A novel extension of the Ekman model has been proposed and examined. In con-

trast to all other theoretical studies eddy viscosity was considered as function of

both time and depth. Explicit exact general solution of the Navier-Stokes equa-

tions describing response of infinitely deep non-stratified ocean to an arbitrary

time dependent wind has been derived. The basic scenarios (sharp increase

of wind, periodic wind and wind switch-off) have been analysed in detail. It

has been shown that taking into account time dependence of eddy viscosity

significantly affects dynamics of the Ekman currents.

4. It has been found that in all the models the transient Ekman current caused

by an arbitrary time dependent wind evolves in such a way that it becomes

unstable with respect to strong inviscid inflectional instabilities. Thus, the
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exact solutions of the Navier-Stokes equations we found proved to be unstable.

The emergence of instabilities breaks down the key assumption of a smooth

transfer of momentum. Hence the very notion of eddy viscosity in this context

has to be revisited and the spatial and temporal scales over which the averaging

is taking place have to be rethought.

5. The surface wave induced Stokes drift was known to affect the Ekman currents in

the simplest models. Here, the most general formulation of the Stokes-Ekman

equations with an arbitrary time dependent spectrum of surface waves and

time and depth dependent eddy viscosity has been analysed. The exact general

solution of the Stokes-Ekman equations in terms of the Green’s function has

been derived for separable eddy viscosity profiles.

5.2 Discussion

To put our results into context, here we briefly discuss the broader picture and most

promising directions of further research.

First, we very briefly formulate our main conclusions in plain words. We showed

that the Ekman theory could be easily extended to take into account time and depth

dependent eddy viscosity, which is expected to be a better reflection of reality. An ex-

amination of the basic scenarios demonstrated that taking into account both depth

and time dependence of eddy viscosity leads to substantial changes in the Ekman

current response. The Ekman theory was further extended by taking into account

the time and depth dependent Stokes drift created by evolving wave spectra. Gen-

eral solutions of the corresponding Ekman and Stokes-Ekman equations have been

derived. To the best of our knowledge this is also the first work where the effect of

stratification on the Ekman layer dynamics has been examined. Within the frame-

work of a simplified two-layer model the general solution in terms of the Green’s

function describing the Ekman response to time dependent wind has been derived
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and thoroughly examined. Thus, from a narrow mathematical viewpoint the prob-

lem of describing the Ekman response to time dependent wind in both the density

stratified and homogeneous ocean has been solved. However, to what extent these

results can improve description of the Ekman current in the ocean remains to be in-

vestigated. We briefly discuss what lines of the presented research can and should be

continued. There is also a number of open fundamental questions which we highlight.

It is not clear how good is the adopted parametrization of the time dependence of

eddy viscosity. We have assumed it to be local in time and scaled it as u2
∗. It is

certainly better than ignoring the time dependence, which is the common practice,

but obviously this is an oversimplification, eddy viscosity in the whole water column

cannot vary simultaneously. The issue has to be clarified by working with more so-

phisticated closure models and direct numerical simulations. Since in nature the eddy

viscosity does depend on time (although the dependence is certainly more complicated

than the simplest u2
∗ scaling we adopted), there is a potential for further extension of

this approach by considering nonlocal in time relations between the wind and eddy

viscosity. The same uncertainty regarding the true value of eddy viscosity applies to

the Stokes-Ekman model as well. Assuming that our parametrization is valid for a

certain range of timescales, the obtained solutions of the Stokes-Ekman model can

be incorporated as block into one of the global or local wave models, taking into ac-

count the feedback of the resulting Ekman currents on wave evolution. An iterative

procedure will be required. Technically the procedure is straightforward. This might

improve modelling of both wave propagation and the Ekman current response.

The adopted consideration of density stratification where it manifests only through

suppression of turbulence and reduced eddy viscosity is certainly oversimplified. Its

decisive advantage is that it enables us to address the most basic questions on the

range of parameters where the presence of stratification below the mixed layer can

be observed on the ocean surface through its effect on surface current. This line of

research seems to be very promising and can be pursued further by detailing the

link between the stratification and the eddy viscosity in the stratified layer. Even
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in its current simple form the model provides clear predictions which can be tested

against the data. The model reveals what to expect and when, further elaboration

of the model to improve the quantitative predictions is a possible line of research.

The promising line we just outlined but didn’t pursue within the framework of the

same two-layer model is the possibility of intense mixing at the bottom of the mixed

layer and the corresponding entrainment. This is of prime importance for tropical

hurricane modelling, since entrainment of the colder heavier fluid cools the mixed

layer and thus reduces the hurricane intensity.

Our most significant finding is that of major limitations of the applicability of the

Ekman type models. To our knowledge the issue has never been discussed in the lit-

erature, although instabilities of steady Ekman currents were examined. Subjected

to growing or turning wind the Ekman current response develops profiles unstable

with respect to inviscid inflectional instability. Although a detailed examination of

these instabilities is beyond the scope of the present work, we considered a few ex-

amples and found that the instabilities are small scale (with wavelengths ∼ 102 m)

and very sensitive to the adopted model of eddy viscosity. Crucially, the instabil-

ities could be very fast compared to the inertial time scale and the characteristic

timescales of Ekman current evolution, which are of the order of the inertial period.

This raises questions about the fundamentals of the Ekman type models. When such

instabilities occur we could expect dramatically enhanced ”spike” mixing (compared

to the models assuming merely diffusion of momentum) in the corresponding parts of

the water column. Thus, we could expect two-scale mixing characterised by widely

separated temporal scales: “normal” diffusion of momentum and a “spike mixing”

caused by the inflectional instabilities. The fast evolving part of the current profile

is expected to reach stable configuration at the timescale of instability, then only the

slow evolution of the current will continue, until the varying wind creates another

instance of strongly unstable inflectional profile. An immediate implication of this

new qualitative picture is that a gusty wind should produce a broader boundary

layer than a gradually varying wind of comparable strength. The second verifiable

prediction is that in the instant measurements of vertical profiles of turbulence there
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should be spots of much higher intensity. The spikes of turbulence in the subsurface

layer were observed, but a thorough analysis is needed to claim that these spikes are

indeed caused by the inflectional instabilities of transient Ekman currents.

The occurrence of such strong instabilities of transient Ekman currents undermines

the very existence of the Ekman paradigm. It suggests that the Ekman models should

be interpreted only in a coarse grain sense, i.e. as averaged over certain time and

spatial scales. At present it is not clear what scales of averaging are needed. We

conclude that the established Ekman paradigm needs a radical revision and view

the issue of clarifying the scales of averaging as central. The study in this direction

has to be continued. First, a more detailed study of the instabilities will be carried

out, then direct numerical simulation will help in clarifying this fundamental question.

We didn’t attempt a comparison with data. However we mention that our solutions

for time dependent linear in depth viscosity predict noticeably smaller surface current

deflection with respect to the wind direction, compared to models with constant in

time viscosity. This behaviour better agrees with the observations, which seems

encouraging, but might prove to be just a coincidence. A detailed comparison with

observations is needed, which requires a dedicated work.
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