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ABSTRACT

This thesis is mainly concerned with linear topological spaces
in which local convexity is not assumed. In particular it contains a
study of the closed graph and open mapping theorems in this context,
together with results analogous to the Banach-Steinhaus theorem.

Many of the techniques and notions used to study these important
theorems in locally convex spaces are no longer effective for general
linear topological spaces and much of this thesis is taken up with the
development of alternative methods and definitions.

The first of these is the notion of a *-inductive limit of
linear topological spaces. This plays much the same part in the theory
of general linear topological spaces as an inductive limit does for
locally convex spaces, and natural analogues are proved for most of the
known results on inductive limits. After this has been introduced, it
is shown that the *®-inductive limit topology of a sequence of locally
convex spaces is locally convex.

Then a study is made of ultrabarrelled spaces, which replace
barrelled spaces in certain theorems when local convexity is not
assumed. Also ultrabornological and quasi-ultrabarrelled spaces are
defined and studied. Any *-inductive limit of members of one of these
classes has the same property. In particular, any #-inductive limit of
complete metric linear spaces has the three properties. However, an
uncountable direct sum of Banach spaces has none of these properties
and none of these properties passes on to closed linear subspaces.

Ultrabarrelled spaces are characterised in terms of closed linear maps



into complete metric linear spaces and similar characterisations
are given for ultrabornological and quasi-ultrabarrelled spaces in
terms of bounded and closed bounded linear maps, respectively.
These notions find application in the study of two-norm spaces.
The next section of the tﬁesis looks at semiconvex spaces,
spaces in which there is a neighbourhood base of the origin consisting
of semiconvex sets. For these, there can be defined a type of inductive
limit topology which is in some respects intermediate between that of theb
ordinary inductive limit of locally convex spaces and *-inductive limit
of general linear topological spaces. Such is called a **-inductive
limit topology. Similarly there are spaces (called hyperbarrelled spaces)
fitting naturally between barrelled spaces and ultrabarrelled spaces,
with analogues for bornological and quasi-barrelled spaces. A thorough
study is made of these, in which results rather similar to those
already found for ultrabarrelled spaces are obtained. For example,
hyperbarrelled spaces are characterised in terms of closed linear maps
into complete separated locally bounded spaces. It is also shown that
any product of separated hyperbarrelled spaces is hyperbarrelled.
Finally, the problem of characterising the sorts of spaces that
can be range spaces in various forms of the closed graph theorenm is
considered. Various general classes DP(/41;/Q, T) and D(/?i;}q, T)
of linear topological spaces are defined, generalising in a natural way
the Br-complete and B-complete spaces. These are used to find extensions
of the known closed graph and open mapping theorems. The notions are
also meaningful for commutative topological groups and, for these,

analogues of the known theorems are proved.
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CHAPTER I

INTRODUCTION

Let T be a set of linear maps from a locally convex linear
topological space E to another. If E is barrelled then,T is equi-
continuous if it is pointwise bounded and each of its members is
continuous. This result is often referred to as the Banach-Steinhaus
theorem. There are other well known conditions which ensure that T
is equicontinuous. One of these requires that E be bornological and
T uniformly bounded on bounded sets. Another requires that E be
quasi-barrelled and T be a set of continuous linear maps which is
uniformly bounded on bounded sets. These results contribute immensely
to the importance of barrelled, bornological and quasi-barrelled spaces.
One of our main objectives in this thesis is to study classes of linear
topological spaces which can be used to replace these in situations where
local convexity is not assumed. We also wish to generalise the notions
of B-completeness and Br-completeness, with a view to extending known
closed graph and open mapping theorems.

The idea of a *-inductive limit of linear topological spaces is
presented in Chapter 3. This plays much the same part in the theory
of general linear topological spaces as inductive limit does for locally
convex linear topological spaces, and natural analogues are proved for'

most of the known results on inductive limits. 1In addition the useful



result is established that the #-inductive limit topology of a
sequence of locally convex linear topological spaces is locally convex.,
W. Robertson, in (37) introduced the notion of an ultrabarrelled
space  Such spaces effectively replace barrelled spaces in certain
important results when local convexity is not assumed. One example
of such a phenomenon is in the Banach-Steinhaus theorem ((37),Theorem 5),
Another is in the closed graph and open mapping theorems ((37),
Proposition 15). In Chapter H,Iultrabarrelled spaces are further
studied, and ultrabornological and quasi-ultrabarrelled spaces are
defined and studied. These respectively bear the same relationship to
bornological and quasi-barrelled spaces as ultrabarrelled spaces do to
barrelled ones. It is proved that a *-inductive limit of members of one
of the three classes has the same property. In particular, every
%“-inductive limit of complete metric linear spaces has all three
properties. But an uncountable direct sum of Banach spaces has none
of these properties and none of these properties passes on to closed
linear subspaces. It is shown that a linear topological space E is
ultrabarrelled if and only if every closed linear map from E into any
complete metric linear space is continuous. Similar characterisations
are given for ultrabornological and quasi-ultrabarrelled spaces in terms
of bounded and closed bounded linear maps respectively. The last
section of this chapter deals with two-norm spaces, where these notions

find applications.



Husain, in (1%) introduced the classes of countably barrelled
and countably quasi-barrelled spaces, classes which respectively include
barrelled and quasi-barrelled spaces and for which analogues of the
Banach-Steinhaus theorem hold for sequences of mappings into locally
convex spaces. In Chapter 5, there is a short section containing
counter examples on countably barrelled and countably quasi-barrelled
spaces. Also, {-ultrabarrelled and ¥’ -quasi-ultrabarrelled spaces
are defined and some results which hold for them are indicated.

These spaces are slight generalisations of those which respectively
replace countably barrelled and countably quasi-barrelled spaces when
considering general linear topologicai spaces. In the rest of the
chapter, a study is made of hyperbarrelled, hyperbornological, quasi-
hyperbarrelled, b{uhyperbarrelled and ¥ -quasi-hyperbarrelled spaces.
The first three are the spaces which respectively replace barrelled,
bornological and quasi-barrelled spaces in the theory of semiconvex
spaces. The last two are generalisations of what replace countably
barrelled and countably quasi-barrelled spaces in a similar situation.
A useful tool in this study is the notion of a #%-inductive limit of
‘semiconvex spaces, a concept which is in many ways intermediate between
that of an inductive limit of locally convex linear topological spaces
and a *-inductive 1limit of linear topological spaces. Most of the
results obtained are similar to those already proved for ultrabarrelled
ultrabornological and quasi-ultrabarrelled spaces., One example is that

a **-inductive limit of members of one of these classes has the same



property. Another is that a semiconvex space E is hyperbarrelled

if and only if every closed linear map from E into any complete
separated locally bounded space is continuous; with similar
characterisations for hyperbornological and quasi-hyperbarrelled

spaces in terms of bounded and closed bounded linear maps respectively.
It is shown that every countable product of separated hyperbornological
spaces is of the same sort, and that any separated product of members
of one of the other classes beiongs to the class.

Chapter 6 is concerned with the problem of characterising
the sorts of spaces that can be range spaces in various forms of the
closed graph theorem. Various general classes DrQl?l;,‘7, T)
and Dcf?l;/Q s, T) of linear topological spaces are defined,
generalising in a natural way the Br-complete and B-complete spaces.
These are used to describe extensions of the known closed graph and
open mapping theorems. The notions of nr(/éﬁ;/‘7, T)-spaces and
Dc%zl;/‘z » T)-spaces are mganingful for commutative topological groups,
and for these, analogues of the known theorems are proved.

Some of the basic information needed and notation used in the
rest of the thesis are in Chapter 2. Apart from the material in
sections 2.4 and 2.6, most of what is in this chapter can be found
in the current literature on linear topological spaces and topological

groups.,



CHAPTER 2

GENERAL THEORY

2.1 Linear topological spaces

Our linear spaces shall be over the field K of real or complex
numbers and it shall be assumed that K has its usual topology.
Any topology on a linear space such that addition and scalar
multiplication are each continuous simultaneously in both variables,
is called linear. A linear space E (over K) on which is defined a
linear topology u is called a linear topological space (over K)
and denoted by (E,u). Linear topological spaces over the reals were
first studied by Von Neumann (28) and Kolmgoreff (21). The definition
given here is equivalent to theirs. Ve shall denote a linear topological
space (over K) by 1l.t.s.

Let E be an l.t.s. If\l is a base of neighbourhoods at zero
(the origin) in E then, for any x in E, the family of sets (x + U), as
U runs throughl) is a base of neighbourhoods at x. Thus a linear
topology is completely determined by a base of neighbourhoods of the
origin. As a result of this, a linear map from an l.t.s. E into an
l.t.s. is continuous (open) at some point of E if and only if it has
the property at the origin. Let f be a map of a topological space G
into another H. The map f is said to be nearly open if for every
neighbourhood U of any point x in G, the closure of f(U) in H is a

neighbourhood of f(x) in H. And f is said to be nearly continuous if



for any x in G and every neighbourhood V of f(x) in H, the closure
of £71(V) in G is a neighbourhood of x in G. If G, H are linear
topological spaces and f a linear map, f is nearly open if and only
if for every neighbourhood U of the origin in G, the closure of
f(U) in H is a neighbourhood of the origin in H. And f is nearly
continuous if and only if for every neighbourhood V of the origin in
H, the closure of £~1(V) in G is a neighbourhood of the origin in G.
Vie shall henceforth use the terms'nheighbourhoodg" and "base of
neighbourhoods" in an l.t.s. to respectively denote '"neighbourhood of
the origin" and "base of neighbourhoods of the origin". And in
considering the notions of continuity, openness, near continuity and
near openness of a linear map from an l.t.s. to another, we shall
limit our consideration to behaviour at the origin. There is clearly
no loss of generality in doing so.

A subset B of a linear space is called balanced if for every
x in B, Ax is in B for all X in K with IAI £ 1. And B is said to be
absorbent if for any x in E, there exists a positive number a such that
% is in AB for all A in K with |A| 2 a. In an l.t.s., there is a base
of neighbourhoods |y say, made up of balanced absorbent sets U such
that Uy + Uy & U for some Uy in\l . Conversely, if E is a linear space
then a filter basel] of balanced absorbent subsets is a base of
neighbourhoods for a linear topology on I if for every U in"\} , there
is a Uy in\} with Up + U1 U In particular since an l.t.s. is

regular, any l.t.s. has a base T} of closed balanced absorbent



neighbourhoods such that for ary U in"\d , there is Uy in UJ with
U+t U

A subset A of a linear space is said to absorb a subset B,

if for some positive number a, B < AA for all A in K with |A[3 «

A subset of an l.t.s. which is absorbed by every neighbourhood is

said to be bounded. A subset of an l.t.s. which absorbs bounded

sets is called bornivorous. A subset B of an l.t.s. E is bounded if
and only if for any sequence (xﬁ) of points of B and any sequence (An)
of positive real numbers converging to zero, the sequence (Anxn)
converges to the origin in E. A linear map from one l.t.s. to another
is called bounded if it maps bounded sets to bounded sets. A linear
map f from an l.t.s. E to another l.t.s. I is said to be sequentially
continuous if for every sequence (xn) converging to some x in E,
(f(xn)) converges to f(x) in F. Thus a sequentially continuous linear
map from an l.t.s. to another is bounded. In particular a continuous
linear map from an l.t.s. to another is bounded.

We say that a topological space is separated if it satisfies
Hausdorff's separation axiom. An l.t.s. is separated if and only if
the intersection of members of a base of neighbourhoods is the origin.
An l.t.s. E need not be complete, but can be embedded uniquely as a
dense subspace of a complete l.t.s. E® ((18), Chapter 2, 7.10), called
the completion of E. If7} is a base of neighbourhoods for the topology
of E then, the closures in E” of members of\| is a base of neighbour-

hoods for the topology of E”. An l.t.s. E is said to be sequentially



complete if every Cauchy sequence in I converges. The space E is said
to be quasi-corplete if every closed bounded subset of E is complete.
Since each Cauchy sequence in an l.t.s. is bounded, any quasi-complete
l.t.s. is sequentially complete.

A subset B of a linear space is called convex if for any
peints x,y in B, Ax + (1 - A)y is in B for all real A between zero
and one. A balanced convex set in a linear space is said to be
absolutely convex. An l.t.s. ié called a locally convex l.t.s. if it
has a base of convex neighbourhoods. We shall henceforth refer to a
locally convex l.t.s. as a locally convex space and call its topology
a locally convex topology or more shortly a convex topology. A closed
absolutely convex absorbent subset of an l.t.s. is called a barrel,
A locally convex space has a base of neighbourhoods consisting of
barrels. The difference between a locally convex space and a non-
locally convex l.t.s. is of basic importance in the study of these spaces.
If E is a linear space, any linear map from E to K is called a linear
functional on E, and the linear space of all linear functionals on E
is called the algebraic dual of E and denoted by E*, For an l.t.s. E,
the linear subspace of E¥* consisting of continuous linear functionals on
E is called the dual of E and denoted by E”. A linear subspace F
of E* such that for each non-zero X/ in E, there is f in F for which
f(xo) # 0 is said to separate the points of E. By the Hahn-Banach
extension theorem (see (36), Chapter 2, Theorem 3, Corollary), if E

is a separated locally convex space then, E” separates the points of E.



If a separated l.t.s. E is not locally convex, E“ may or may not
separate the points of E, for example, see Day (6), Walters (40).

Let (E,u) be an l.t.s. with dual E°. The absolute convex
u-neighbourhoods form a base of neighbourhoods for the finest convex
topology on E coarser than u. This topology is called the convex
topology derived from u and denoted by u®®. The dual of (E,uoo) is
E* and (£,u’°) is separated if and only if E” separates the points of
E. If E is an infinite dimensibnal linear space and F a linear subspace
of E* which separates the points of E, various separated linear
topologies can be defined on E with F (= E”) as dual. As shown by
Mackey (25), there is a finest as well as coarsest convex topology on
E with E” as dual. The coarsest one is called the weak topology on E
with £* as dual, and denoted by o(E,E”) while the finest is called
the Mackey topology with E” as dual, ard denoted by t(E,E°). Since
for any linear topology u on E, (E,u)’ = (E,u®%)", o(E,E") is the
coarsest linear topology on E for which every x* in E® is continuous.
The space E may be identified with a linear subspace of E“* such that
with this identification, E separates the points of E“. Thus we have
the topologies o(E”,C) and t(E”,E) on E”.

Let E be a separated l.t.s. with dual E” separating the points
of E. If A is a subset of E, the subset of E” consisting of continuous
linear functionals on E not exceeding unity in absolute value on A is
called the polar of A (in E”) and denoted by A°. The set A° is

absolutely convex. Furthermore, it is absorbent if A is o(E,E”)-bounded.



Thus ifJL) is a set of o(E,E”)-bounded subsets of E, there is a
coarsest convex topology VQ}? ) say, on E” for which the polars of all
members of A are neighbourhoods. A base of neighbourhocods for this
topology is the scalar multiples of finite intersections of polars of
members of A4 . The topology o(E”,E) is v(/q_), when,/z is the set of
all finite subsets of E, while the topology 1(E*,E) is v(/q ) when,‘l is
the set of all absolutely convex o(E,E”)-compact subsets of E. If,‘z is
the set of all o(E,E”)-bounded éubsets of E, then v(zlz) is finer than
T(C“,E). It is then called the strong topology on E” and denoted by
B(E”,E). The topologies o(E,E”), t(E,E”) and B(E,E”) are similarly
described in terms of polars of sets of o(E’,E)-bounded subsets of E*
Clearly, a weak topology is independent of any topology on the dual
space.

If E is a separated locally convex space, it often happens that
a problem in E has an equivalent formulation in E’ (under some suitable
topology) which may be more easily tackled. Since for a separated non-
locally convex space E, E“ may consist of only the zero functicnal,
this duality theory is not available for non-locally convex spaces.
This partially accounts for the fact that comparatively little is
known about linear topological spaces which we do not assume locally
convex.

Throughout this thesis, the Hebrew alphabet N shall denote

an arbitrary cardinal number and N, shall denote the cardinal number

of a countable set.



2.2 Upper bound and lower bound topologies for linear spaces

Let E be a linear space and suppose that for each a in an index
set T, xais a linear topology on E with ~\}a as a base of neighbour-
hoods. Denote by | the family of sets

(v =N\ Uyt U,eVi)

oed a

as ¢ varies over all finite subsets of T. Then ™4 is a base of
neighbourhoods for a linear topology X say, on E which is the coarsest
linear topology on E finer thaﬂ Aa for all o in I'. The topology A is
called the upper bound of the set (Aa). It is easy to see that X is
convex if eachx}!is. Also, a linear map from an l.t.s. [ into (E,X)
is continuous if and only if it is continuous from F into (E,Xa ) for
each o in I'. The finest linear topology on a linear space E is the
upper bound of all linear topologies on E. We shall denote this
topology by s. The finest convex topology (T(E,E*)) on E is the upper
bound of all convex topologies on E. The topologies s and t(E,E*)
coincide if E is at most countably dimensional ((19), Theorem 3.1).

Suppose that F is a linear space and that for each a in an
index set T, t  is a linear map of F into an l.t.s. (Ea,xa). IfWLja:
is a base of neighbourhoods for la then the inverse images by t, of
members of'\ja form a base of neighbourhoods for a linear topology on
F, denoted by t;l(xa). The upper bound v o the set (ta'l(ka) : aeT) is
the coarsest linear topology on F for which each tq is continuous.,
Ifr\aerta“l(O) is the origin in F then, (F,v) is called the projective

limit of ((Ea;xu) : 0el') by (ta : aeT). In this case, (F,v) is locally



convex (separated) if each (Ea,ka) is. Also a linear map g from an
l.t.s. G into (F,v) is continuous if and only if tuog is continuous
for each o in T.

The upper bound of a set of linear topologies is an example
of projective limit topologies. Other examples are the induced topology
on a linear subspace of an l.t.s., and the product topology for linear
topological spaces. Any topological product contains topological
copies of its factors which are closed in the product space if each of
its factors is separated; (this follows easily from (18), Chapter 2, 5.9).
A product of complete (sequentially complete, quasi-complete) linear
topological spaces is of the same sort. By Theorem 1 of (20), any
separated l.t.s. is a subspace of a product of metric linear spaces.
As an easy consequence of this, any complete separated l.t.s. is a closed
subspace of a product of complete metric linear spaces which, by (4),
Page 4, Exc. 7, is of the second category (in itself).

Let (na : ae¥) be a set of linear topologies on a linear space
E. The set ¢ of all linear topologies on E whic@ are each coarser than Ny
for all o in ¥ is not empty, since it contains the trivial topology.
The upper bound v say, of ¢ is in ¢. It is the finest linear topology
on E coarser than each Ny The topology v is called the lower bound
of (na : ac¥). If each Ny is a convex topology then the upper bound u
say, of all convex topologies on E which are each coarser than every
Ny is the finest convex topology on E coarser than Ny for arbitrary a.
The topology u is an example of what is called an inductive limit

topology for locally convex spaces.



For each y in an index set ¢ , let EY be a locally convex
space and uY a linear map of EY into a linear space E spanned by
&JyeQ uy(EY). The finest convex topology w say, on E for which each
uy is continuous is known as the inductive limit topology on E of
(EY : yed) by (uY : yed). We also say that (E,w) is the inductive
limit of (Ey; uY : ye®). A linear map t from (E,w) into a locally
convex spaCe is continuous if and only if each tou_ is continuous.,

A set T of linear maps from (E,w) into a locally convex space is equi-
continuous if and only if each set TouY is equicontinuous,

Quotient and direct sum topologies for locally convex spaces
are inductive limit topologies.

If (E,w) is the inductive limit of (EY; u, yed) such that
E is the union of the subspaces uY(Ey), then (E,w) is called the
generalized strict inductive limit of (EY; u ve?). In particular,
if ¢ is countable (say ¢ is the set of positive integers), (Ei) a
sequence of strictly increasing linear subspaces of E and the topology
of Ei coincides with that induced by Ei+l’ (E,w) is called the strict
inductive limit of (Ei)' In this case, if each E is a Frechet space
then, (E,w) is called an L.F, space, (see (7)). (For a discussion of
projective and inductive limits of locally convex spaces see, for example,

(36), Chapters 5 and 7).

2.3 Barrelled, bornological and quasi-barrelled spaces

A set T of linear maps from an l.t.s. E to another F is said to

be pointwise bounded if T(x) is bounded in F for each x in E; T is said



to be uniformly bounded on bounded sets if T(B) is bounded in F for
every bounded subset B of E, and T is called equicontinuous if for every
neighbourhood V in F, there exists a neighbourhood U in E such that
T(U)g V.

A locally convex space is called barrelled if every barrel is
a neighbourhocd.

A sgparated locally convex space E is barrelled if and only
if every pointwise bounded set of continuous linear maps from E into
any locally convex space is equicontinuous. By a result in (26), this
is equivalent to the condition that every closed linear map from E
into any Banach space be continuous.

The class of barrelled spaces is quite extensive. Every locally
convex space of the second category is barrelled. Inductive limits,
separated products as well as completions, of barrelled spaces are
barrelled. A hyperplane in a barrelled space is barrelled, though a
closed linear subspace of a barrelled space need not be barrelled,

In fact, by Theorem 1.1 of (22), any separated locally convex space is
a closed linear subspace of some barrelled space. If there is a
continuous nearly open linear map from a barrelled space into a locally
convex space F, then F is barrelled.

In the study of the closed graph and open mapping theorems, it
proves useful that any linear map from a barrelled space into a locally
convex space is nearly continucus and that a linear map from a locally

convex space onto a barrelled space is nearly open (see (33), 4.8).



A locally convex space E is called bornological if every bounded
linear map from E into any locally convex space is continuous.

A locally convex space is bornological if and only if every
absolutely convex bornivorous subset is a neighbourhood. A separated
locally convex space Eis bornological if and only if a set of linear
maps from E into any locally convex space is equicontinuous if it is
uniformly bounded on bounded sets. By a result in (26), this is
equivalent to the condition that every bounded linear map from E into
any Banach space is continuous.

Any metrizable locally convex space is bornological.

If for some index set &, K? is bornological, so is a product

XY€¢ EY of separated bornological spaces ((4), Page 15, Exc. 18(b)).
Whether or not an arbitrary product of separated bornological spaces
is bornological depends on the existence of an Ulam measure (see (18),
Chapter 5, 19.9) . The property of being bornological is inherited
by hyperplanes but not by arbitrary closed linear subspaces. Any
inductive limit of bornological spaces is of the same sort.
In particular, any inductive limit of normed linear spaces is
bornological. Conversely, any separated bornological space E is an
inductive limit of some normed linear spaces. If E is also sequentially
complete, then it is an inductive limit of Banach spaces. By using an
example in Page 155 of (22) we see that a barrelled space need not be
bornological. Also a bornological space need not be barrelled, since
a countably dimensional normed linear space is not barrelled. However,

the completion of a bornological space is barrelled.



A locally convex space is called quasi-barrelled if every
bornivorous barrel is a neighbourhood.

A separated locally convex space E is quasi-barrelled if and
only if every set of continuous linear maps from E into any locally
convex space, which is uniformly bounded on bounded sets, is equi-
continuous. By a result in (26), a separated locally convex space E
is quasi-barrelled if and only if every closed bounded linear map from
E into any Banach space is continuous.

A bornological or barrelled space is quasi-barrelled, but a
quasi-barrelled space need neither be barrelled nor bornological
((27), Page 816). Inductive limits and separated products of quasi-
barrelled spaces are quasi-barrelled. As in the case of barrelled and
bornological spaces, a closed linear subspace of a quasi-barrelled
space need not be of the same sort. If there is a continuous nearly
open linear map from a quasi-barrelled space info a locally convex
space I, then F is quasi-barrelled. Any sequentially complete quasi-

barrelled space is barrelled.

2.4 Suprabarrels and ultrabarrels

Let B be a balanced subset of an l.t.s. E. If there exists
a sequence (B,) of balanced absorbent (bornivorous) subsets of E
such that By + By < B and B ., ¢ Bn+l<;;.Bn for all positive

integers n, we say that B is a suprabarrel (bornivorous suprabarrel)

in E. If in addition B is closed, we call it an ultrabarrel (a

bornivorous ultrabarrel) in E.




In either of the cases considered above, we say that (Bn)

is a defining sequence for B,

Clearly if B is an absolutely convex absorbent (bornivorous)
subset of an l.t.s. then it is a suprabarrel (bornivorous suprabarrel)
with (/29B) as a defining sequence. However, a suprabarrel (bornivorous
suprabarrel) need not be convex and need not have a defining sequence
of convex sets. For, if E is a complete non-locally convex locallj
bounded 1l.t.s., then its closed unit ballXis a bopnivorous suprabarrel B /{
with (knB) as a defining sequence for some sequence (An) of positive
real numbers. But B is not convex and no member of a defining sequence
for B can be convex. Similarly, every barrel (bornivorous barrel) in
an l.t.s. is an ultrabarrel (a bornivorous ultrabarrel); but an
ultrabarrel (a bornivorous ultrabarrel) need not be convex and need
not have a defining sequence of convex sets.,

In the situation of an 1l.t.s. where local convexity is not
assumed, suprabarrels play parts often associated with absolutely
convex absorbent sets in locally convex spaces, We give two instances:
(1) If B is a suprabarrel in a linear space E with (Bn) as a defining
sequence, then the family of sets (B,) is a base of neighbourhoods for
a linear topology on L.

(2) Every balanced neighbourhood in an l.t.s. is a (bornivorous) supra-
barrel and a base of neighbourhoods for the finest linear topology s

on a linear space E is the family of all suprabarrels in E.



The following are easily verified. The closure of a supra-
barrel (bornivorous suprabarrel) in an l.t.s. is an ultrabarrel
(a bornivorous ultrabarrel); and an ultrabarrel (a bornivorous
ultrabarrel) has a defining sequence of closed sets. Thus in referring
to a defining sequence (Bn) for an ultrabarrel, it shall always be
assumed that each Bn is closed. Let t be a linear map from an l.t.s.
E into another, F. Then t~1(B) is a suprabarrel (bornivorous supra-
barrel) in E if B is a suprabarrel in F (B is a bornivorous suprabarrel
in F and t is bounded). In particular if t is continuous, t1(B) is
an ultrabarrel (bornivorous ultrabarrel) in E if B is an ultrabarrel
(a bornivorous ultrabarrel) in F. If t maps E onto F then, for any
- suprabarrel C in E, t(C) is a suprabarrel in F.

The notion of a suprabarrel makes sense in any linear space
(it does not depend on any topology on the space). As such, we may

refer to suprabarrels in a linear space.

2.5 Topological groups

Let u be a topolbgy on a group E for which the group operation
(generally denoted by product) is continuous simultaneously in both
variables. If group inversion is also continuous, then u is called
a group topology on E. A group E on which is defined a group
topology u is called a topological group and denoted by (E,u).

Let E be a topological group. If 7y is a base of neighbourhoods
of the identity then, the family of sets (xU : Ue} ) (equivalently

(Ux : ueY)) is a base of neighbourhoods at x for every x in E.



Thus a group homomorphism from a topological group to another is
continuous (open) if and only if it is continuous (open) at the
identity. Also, a group homomorphism £ from a topological group E
to a topological group F is nearly open if and only if for every
neighbourhood U of the identity in E, the closure of f(U) in F is a
neighbourhood of the identity in F. And f is nearly continuous if and
only if the closure of V) inE s a neighbourhood of the identity
in E for every neighbourhood V of the identity in F., We shall
henceforth use the terms 'neighbourhood$" and "base of neighbourhoods"
in a topological group to respectively denote '"neighbourhood of the
identity" and "base of neighbourhoods of the identity". In considering
" the notions of continuity, openness, near continuity and near openness,
we shall limit our consideration to behaviour at the identity, as there
is no loss of generality in doing so.

A subset B of a group is called symmetric if x-l is in B for
every point x in B. In a topological group E there exists a base U
of symmetric neighbourhoods such that (i) for every U in7y , there is
Ul in\) with UlUlEE U, (ii) if Ue\l and xeU, then there is Ul iny
such that xUlq; U, and (iii) for every U iﬁ\) and point x in E, there
is Ul in\} such that xle‘lg; U. Conversely, if E is a group and 4
is a filter hase of symmetric subsets of E satisfying conditions (i),
(ii) and (iii), tﬁen there is a group topology on E with\J as a base
of neighbourhoods. Since a topological group is regular, any topological
group has a base of closed symmetric neighbourhoods satisfying conditions

(1), (ii) and (iii). A topological group is separated if and only if
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the members of a base of neighbourhoods intersect at the identity.

A topological space is said to be Lindelof if every open cover
has a countable subcover. Let E be a topological group which is of the
second category in itself and, F a Lindeldf topological group. Then,
by ((16), page 213), any group homomorphism from E into F is nearly
continuous and, any group homomorphism from F onto E is nearly open.

A subset A of a topological space E is said to satisfy the
condition of Baire if there is an open set U such that the complement
of A with respect to U and the complement of U with respect to A are
each of the first category in E. Since each closed set is the union
of its interior and boundary it follows that every closed subset of a
-topological space satisfies the condition of Baire. Let t be a group
homomorphism from a topological group E to another. If G is a subgroup
of the second category in E, and G satisfies the condition of Baire,
then, by Theorem 2 of (31), t is continuous on E if it is continuous
on G.

The definition of inductive limits of topological groups used
in this thesis, is due to Varopoulos (39). Let F be a group. For each
¢ in an index set ¢, let tu be a group homomorphism from a topological
group Ea into F. If u is the finest group topology on F for which each
t, is continuous then (F,u) is called the inductive limit of (Ea : aed)
by (t, : ace). The space (F,u) will also be called the inductive limit
of (Ea; ta t ae$). A group homomorphism t from (F,u) into a topological
group is continuous if and only if each tota is continuous. If (F,u)

is the inductive limit of (Ea; ta : ac®) such that F is the union of



(ta(Ea) : aed), we shall call (F,u) the generalized strict inductive
limit of (E ; t : aed).
o a

Throughout our groups shall be assumed commutative.

2.6 The graph of a map

The graph G of a map t from a set L into a set F is the
subset of E XFconsisting of all points ((x,t(x)):xeE). If E and F
are topological spaces, t is said to be closed if G is closed in E x F
under its product topology. The map t is closed if and only if for
every net (Xa : ocY) converging to some X, in E such that
(t(xa) : ac¥) converges to y_in F, y = t(xo).

Let t be a continuous map from a topological space E into
another, F. If F is separated then t is closed. For, if (x,y) in
ExFis not in the graph G of t then there exist disjoint neighbourhoods
U of f(x) and V of y. The set (t‘l(U), V) is a neighbourhood of (x,y)
not meeting G. For a group homomorphism f from a topological group El

into a topological group F, to be closed, it is necessary that Pl be

separated. For, suppose that Fl is not separated, that e,e, are the

1
identities of By Fy respectively and that y is in the closure of ey
in F, but y # e, Then (e,y) is not in the graph of f, but it is in
its closure in E, x Fye Thus f is not closed.

The following two lemmas are easily proved.

Lemma 2.6.1.

Let t be a map from a set E into a set F and u a map of a set
H into E. Then the graph of the map tou from H into F is the inverse

image of the graph of t by the map (x,y)*—(u(x),y) of H x F into E x F.



Corollary. Let E, I, H be topological spaces. If t is a closed
map from E into F and u a continuous map from H into E. Then the
map tou of H into F is closed.
Lemma 2.6.2.

Let t, f be group homomorphisms from a topological group E
into another, F. If t is continuous and f is closed, then the
group homomorphisms hand g from E into F are closed, whare

h(x) = t(x)f(x) and g(x) = t(x)f(x~1) for all x in E.

Let E, F be topological groups and s a group homomorphism
of F into E. The filter condition is said to hold if whenever ¢ is a
Cauchy filter base in F such that s(?) is convergent to a point of
>s(F), ¢ is necessarily convergent to a point of F. The inverse filter
condition is said to hold if whenever ¢ is a convergent filter base
in F and s(¢) is Cauchy, s(¢) is necessarily convergent to a point
of s(F). (See (37), Pages 243 and 253).

Lemma 2.6.3.(a).

Let F be a topological group and El a subgroup of a separated
topological group E. Let t be a group homomorphism from El onto F
with graph G. If the filter condition holds then, the closure of G
in E X F is contained in L, xF. In particular, G is closed in
Ex P if it is glosed in El x T, provided that the filter condition
holds.

Lemma 2.6.3.(b).

Let T be a topological group and El a subgroup of a separated

topological groupl. Let s be a group homomorphism of F into El with EK



graph G. If the inverse filter condition holds then the closure of G
in F x E is contained in F x Ej. In particular, G is closed in

Fx E if it is closed in F x El, provided that the inverse filter
condition holds.

(a) Let (x,y) be in the closure of G in E x F. Let \J be a base

of neighbourhoods at x for the topology of E and'\) a base of neigh-
bourhoods at y for the topology of F. Then (U,V)f\ G # ¢ for each Ue\J
and veY . . uN t71(v) # ¢ for all Ue\} and V in)) . We note that
uin +=1(v)) C.E,. Let & be the filter base generated by (UM £7L(v))
as U, V run through™} ,)) respectively. Then clearly ¢ converges to
x in E and (%) converges to y in F = t(El). Since ¢ converges in L,

$ is Cauchy in El. Now since the filter condition holds, we see that

x is in El.

(b) Let (x,y) be in the closure of G in F x E. Let ™ be a base of
neighbourhoods at x for the topology of F and)) a base of neighbourhoods
at y for the topology of E. Then (U,V)MN G # ¢ for each Ue} and

ve)) . Therefore UN s™1(V) # ¢ for each Ue\} and Ve)) . Let ¢ be the
filter base generated by UM s-l(V) as U, V run through} , Y
respectively. Then ¢ converges to x and the filter on E generated by
s(®) converges to y. Therefore s(¢) is Cauchy in E, and by the

inverse filter condition, y is in s(F).

Let Eo’ F be topological groups. Then, any group homomorphism

t of E into F can be represented in the form t = foko’ where ko is the

canonical map of E_ onto Eo/t'l(ge (e)is the identity of F), and f is



a group isomorphism of Eo/t-l&a) into F. We refer to f as the induced
map of t. The induced map f is continuous, open, nearly continuous,
nearly open if and only if t has the same property. Suppose that E,

is a subgroup of a topological group E and that the topology of Bo
coincides with that induced by E. Since t-l(el) q;_Eo’ the topology

of Bo/t—l(ef is that induced by E/t-l(el), and k  is the restriction

to E_ of the canonical map of E onto E/t-lﬁa).

X

Lemma 2.6.4.

Let Eo be a subgroup of a separated topological group E and
suppose that for some topological group F (with identityel), t is a
group homomorphism of Eo into F, with induced map f. If the graph of
t is closed in E x F, then B/t_l(gp is separated. The graph of t
is closed in E x F if and only if the graph of f is closed in
B/t x F,
Proof: To show that E/t'l@ﬁ? is separated, we prove that t-l@i) is
closed in E. Let x be in the clcsure of t-lkﬁ? in E. For every
neighbourhood U in E and V in F, there exists x, in t—lGﬁ) such that
x is in x,U and t(xl) (= el) is in V. Therefore, (Xfﬁ? is in
(xlU, t(xl)V) for every neighbourhood U in E and V in G. Since the
graph of t is closed in E x F, it follows that (x , el) is in the graph
of t and thus x is in t-l(el). Therefore, t-l(el) is closed in E.

We observe that the graph G of t is the inverse image of the
graph G, of f by the continuous map (%,y) * (k(x),y) of E x F into
E/t'l(el) x E (k is the canonical map of E onto E/t-l(el». Therefors,

G is closed if Gl is.



Now suppose that G is closed. We show that Gj must also

be closed. Let (y,z) be in E/t'l(el) x F but not in G Clearly

1
if xEk-l(y), (x,2) ¢ G. Since G is closed in E x F, for some
neighbourhoods U in E and V in F, (xU, zV)M\ G = 4, and this implies
that (yk(U), zV)1 G, = é. This gives the result.

Lemma 2.6.5.

Let (E,u), (F,v) be topological groups and t a group homomorphism
of (E,u) into (F,v). Denote by} ,)) , bases of symmetric neighbour-
hoods for the topologies u, Vv respectively. Let w be the group topology
on F with the family of sets (t(U)V : Ue\l, Vel) ) as a base of
neighbourhoods., Then,

(a) the map t is closed if and only if w is separated.

(b) the map t is nearly continuous if and only if the identity
map from (F,v) onto (F,w) is nearly open.
(a) Ve note that v is finer than w and that t is a continuous map from
(E,u) into (F,w).

If (F,w) is separated then, the graph of t is closed in
(E,u) x (F,w). The graph of t must then be closed in (E,u) x (F,v),
since v is finer than w. ‘

Supposé that the graph G of t is closed in (E,u) x (F,v).

Let z be a point of F different from the identity. If e is the identity
‘in E then (e,z) is not in G. Since G is closed in (E,u) x (F,v), there

exists U in" and V in Y such that WUzV) N\ G =¢g. Thus z is not in

t(u)v? = t(U)V, and w is separated.



(b) The u-closure of any set B in E shall be denoted by cl(B).
Suppose that t is nearly continuous frem (E,u) into (F,v).

Let V be inV and let V, be in YV such that V1V1‘E£ V. Then for

any V_ in)) and U inY,

Vvat(UB) ‘.‘2 (vlt(us))vlvOl

c\ -l
= t(t (vl)UB)vlva

, -1
2 tlel(tT VNV,

-1
2 t(el(t (v )V,

w— .

This is true for all Vu in})) and UB inlJ) . Therefore the w-closure
of V contains t(cl(t_l(vl)))vl, and since t is nearly continuous, it
follows that the identity map from (F,v) onto (F,w) is nearly open.

Now suppose that the identity map i say, from (F,v) onto (F,w)
is nearly open. Let V be in)) . We show that c1(t™HV)) is a u-
neighbourhood.

Let Ylbe a member of 7)) such that VlVlVlc:. V. As i is nearly

open, there exist V2 in) and U in\J such that

{Vzt(U)qg; Vlt(Ua)VB, for all Uaeﬁj, VBE]) } . (*)
We note that we can choose V2 such that V2 (E;_ Vl, and we do so.
From (%),
t(W) vlvz'lvat(ua) for all U, in\J and V, in)) .
Thus t(U) C Vt(U ) for all U in"Uj.
i.e. U t-l(Vt(Ua)) (s t’l(v)Ua for all U inl .
Hence v C cl(t-l(V)) and t is nearly continuous.

w——



We observe that in the above lemma, if (E,u), (F,v) are
linear topological spaces and t a linear map, then (F,w) is an l.t.s.
In this case (a) coincides with Lemma 3 of (17). We also note that
if in addition u,v are convex topologies, so is w.

Let E,F be linear spaces and G a linear subspace of E x F.
Then, G is the graph of a linear map from a subspace of E into F if
and only if y = o whenever (o,y) €G.

Let E be a normed linear space which is not barrelled.

By applying a result of Mahowald (26), we see that there exists a
closed linear map, t say, from E into some Banach space F such

that t is not continuous. By using the same result again, we deduce
that the graph of any linear extension of t to E* cannot be closed in
E* x F. Thus, a closed linear map from a dense subspace of an l.t.s,
into a complete l.t.s. may not have a closed linear extension to the
whole space. However, we have the following result.

Lemma 2.6.6.

Let Eo be a linear subspace of an l.t.s. £ of finite co-
dimension. Then, any closed linear map from EO into an l.t.s. F has a
closed linear extension from all of E into F.

Proof: Let t be a linear map from E_ into F with graph G closed in
Eo x F. Let Gl denote the closure of G in E x F., If (o,y)E€ Gl’
then (o,y) eGlr\ (Eo X F) = G, since G is closed in Eo x F. Therefore,

y = o. Thus Gl is the graph of a linear extension t, say, of t.



There exists some linear extension t, of ty mapping E into F,
For, let E, be the domain of t, and suppose that El is of co-dimension

N with respect to E. Let (xn : 1 ¢n ¢ N) be points of E not in Eis

such that X, is not in the linear subspace of E spanned by El and
(xi :1<ign-1) fornwith?2 < n ¢ N. Any x in E may be represented

in the form xo+ Zl <n <N Anxn for some xo in El and scalars

(An :1<n g N), The map f from E into F defined as follows is a

linear extension of tl : f(x) = f(xo + Zl <neN Anxn) = tl(xo).

The result now follows from the observation that the graph 62 of any

linear extension of t; can be represented in the form G2 = Gl + F,

where F 1s a finite dimensional linear subspace of E x F.



CHAPTER 3

*-INDUCTIVE LIMITS OF LINEAR TOPOLOGICAL SPACES

3.1 Definition and general properties

Let E be a linear space, and suppose that, for each y in an
index set T, EY is an l.t.s. and uY is a linear map of BY into E.
The set ¢ of all linear topologies on E for which each uY is continuous,
is not empty, since it contains the trivial topology. The upper bound ¢
say of the members of ¢ is in ¢; it is the finest linear topology on
E for which all the uY are continuous.

Definition 3.1.1

Suppose that E, EY and uY are as above and that in addition

the union of uY (EY) spans E. Then the topology ¢ on E defined above

is called the *-inductive limit topology on E induced by (Byg uyz vel),

We shall say that (E,r) is the *-inductive limit of the spaces (Ey) by

the mappings u , or more shortly that (E,z) is the #-inductive limit

of (EY; u yel),

With the notation above, the following are easily verified.
(a) A base of neighbourhoods for the topology ¢ is the family of all
suprabarrels U in E such that for each U, in a defining sequence for U,

uy’l(Un) is a neighbourhood in E, for each y in T,

(b) 1If each E_ is the *-inductive limit of (E. ; u : ac¥), then
Y YO Y,0

? ]

(E,z) is the *-inductive limit of (Ey,a; uou yel,ae¥).

(c) A linear map t of (E,z) into an l.t.s. F is continuous if and only

if touY is a continuous map of EY into F for each y in T.



((a), (b) and (c) are still true even if, in Definition 3.1.1., the
union of uy(Ey) does not span E).

(d) A set T of linear maps of (E, ¢) into an l.t.s. F, is equi-
continuous if and only if Tou_Y is an equicontinuous set of linear maps
of Eyinto F for each v in T.

Examples of x-inductive limits of linear topological spaces

(1) Let E be an l.t.s., Ej a linear subspace of E and k; the canonical
map of E onto E/E,. Then E/E_ under its quotient topology is the
x-inductive limit of (E;kg).

(2) Let E be a linear space and {)\,,ae$} a set of linear topologies

on E. Suppose that, for each a in ¢, i, is the identity map of (E,},)
into E. If A is the lower bound of the i,, then (E,A) is the *-inductive
limit of [(E,0g); ig: aedl} o

(3) Let E be a linear space over the complex field. Then E is linearly
isomorphic to I, ,Cy for some index set ¢ (Cy(=K) is a copy of the
complex field for each a in ¢). Under its finest linear topology, s, E
is the #-inductive limit of (Cy) by the injection maps. Since (E,s)

is not necessarily locally convex ((19), Theorem 3.1) it follows that

a %-inductive limit of locally convex spaces need not be locally convex.

Proposition 3.1.1.

Let (F, 1) be the #-inductive limit of [(EY,rY);uY: ved].
Then (F, t°°) is the inductive limit of E?Y31Y00)3 uY:yeéj :
Proof: Since 1°°is coarser than T, Uy is a continuous linear map of

(BY’TY) into (F,Too) for each y in ¢. Therefore each Uy is a continuous



linear map of (Ey,7°°) into (F,1°°). Hence 1°° is coarser than the
inductive limit topology A on F induced by EEEY’TYOO); uy: Ye%j .
Since XA is necessarily locally convex and coarser than 1, it must be
identical with 1°°.

Proposition 3.1.2.

Let (E,g? be the *-inductive limit of (Ey; uy: yeT). For each '8 A
Yy in T, let VY be a balanced neighbourhood of the origin in EY and let
U =W, 2Y€¢ uy(Vyds cvevnnnl X
the union being taken over all finite subsets ¢ of T. Then U is a
neighbourhood of the origin.in (E,z).
If T is countable, then as Vy runs through a base of balanced

neighbourhoods of the origin in E

y » the above sets form a base of

neighbourhoods of the origin for (E,g).

Proof: To prove that U is a g-neighbourhood, it is sufficient to

construct a defining sequence (Un) say, for U such that for each n, -
uy‘l(Un) is a neighbourhood in EY_for each vy in I'. Let \){be a base of
balanced neighbourhoods in BY' Then there is a sequence (Vyn) of neighbour-

. . +1
hoods from Yy, with Vy! + vyl (= Vv, and v," e VYn+%::_VYn for all

——

n %1. Let

U= Wy Tyeo By (VYD)
the union being over all finite subsets ¢ of I'. Then clearly
G+, U, U +U & U forallnz ] and each u  is balanced.
Also each uy(VYn) is absorbent in u,(Ey) and the union of the latter sets
spans E; hence, Un is absorbent. Thus U is a suprabarrel in E with (Un)
as a defining sequence. Clearly, for each‘n, uY-l(Un) is a neighbourhood

in EY for each v in TI.



To prove the remaining part, we notice that, as Vy runs through
\)Y’ the sets (*) satisfy the condition to form a base of neighbourhoods
for a linear topology n say on E which is clearly coarser than Z.
But if w0 is a rz-neighbourhood, there are fL-neighbourhoods Wn with
wn+1 + wn+1(;; wn for n' 3 0. If {y(n)} is an enumeration of I', there
are balanced neighbourhoods vY(n) in\L%(n) with uY(n)(VY(n)) g;;wn
and then

u = Un >,i Iysren M(p) (VY(r))

is an n-neighbourhood contained in W

From the proposition above it follows that the *-inductive limit
topology of a sequence of locally convex spacés is convex and therefore
coincides with the inductive limit topology of the spaces, by Proposition
3.1.1. Also if (E,z) is the *-inductive limit of a sequence (Ej) of
linear topological spaces by linear maps (uj), it follows from
Proposition 3.1.2. and Proposition 2(a) of section 2 of (39) that g is
the finest group topology on E for which each uj is continuous. However,

L 1is not necessarily the finest topology on E for which each uj is

continuous, even if each Ej is a Banach space (see (8) pages 98-99).

3.2 *%-direct sums

If for each y in an index set T, E, is an 1.t.s., we shall call
the linear space Zyer Ey under the *-inductive limit topology of (EY)

by the injection maps, the *-direct sum of (EY) .

The proofs of Propositions 3.2.1, 3.2.2 and 3.2.3. are easy

and will be omitted.



Proposition 3.2.1.

If E is the *-inductive limit of (EY: vel') then E is
topologically isomorphic to a quotient of the *-direct sum of (Ey: vyer).

Proposition 3.2.2.

Let (Ey: vel) be a family of linear topological spaces. The
dual of the *-direct sum of (Ey: yel') is the product F = X\E,".
If BY‘ separates the points of Ey, then F separates the points of the
direct sum of (Ey : yel). The dual of the product space X, E, is the
direct sum G = ZYEY' . 1f E|” separates the points of Ey, then G
separates the points of the product space X, Ey.

Proposition 3.2.3.

Let (E,z) be the *~direct sum of a family (EY: Yel) of linear
topological spaces. Then ¢ is finsr than the product topology n, say,
on E. If ¢ is a finite subset of ', theng and n coincide on ILyggEy.
The topology ¢ induces the original one on each E,.

Corollary 1- The *-direct sum topology on a finite direct sum is
identical with the product topology.

Corollary 2- The *-direct sum of a family (EY: vel') of linear topol-
ogical spaces is separated if and only if each BY is separated.'

Remarks

(1) Suppose that the index set T' be represented as the disjoint union
of two subsets ¢ and Y. If E, F, G are the %-direct sums of linear
topological spaces (EY: yel'), (EY: ved), (EY: veY) respectively, then E,
being the *-direct sum of F and G is in fact F x G, by Corollary 1 of

Proposition 3.2.23. Thus for any subset ¢ of an index set ', the



*;direct sum of (EY: ve®) is a quotient of the #*-direct sum of

(Ey: yel). If Ey is separated for each y in T, it then follows by
Corollary 2 of Proposition 3.2.3. that Iy.¢ EY is closed in the *-direct
sum of (Ey: vel). By a similar argument, one can show that if

(Ey: yeT) is a family of locally convex spaces, then for any ¢ & T, the
direct sum of (E,: ye®) is a quotient of the direct sum of (Ey: vel).
(2) Suppose that, for each y in an index set I', the l.t.s. Fy is fhe
%-direct sum of Gy and H,. If E, F, G are the *-direct sums of

(FY: veT), (GY: yel'), (HY: yel) respectively, then E, being the

%*-direct sum of F and G is in fact F x G by Corollary 1 of Proposition
3.2.3. Thus F (and G) is a quotient of E. By a similar argument one
can show that, if (FY: yel) is a family of locally convex spaces and,
for each y in I', F, is the topological direct sum of Gy and Hy, then

the direct sums I,.p GY and Iyer Hy are quotients of the direct sum

Zyer Fye

Let B be a subset of a linear space and X ;Y 0 a real number.
In (29), B is said to be A-convex if A(B + B) ¢ B, and B is said to
be semiconvex if it is B-convex for some real number B8 ?P 0. However,
for n 2 0 we shall say that B is n-convex if B + B ¢ nB, and call a
subset C of a linear space a semiconvex set if it is g-convex (in this
sense) for some £ 2 0.

Definition 3.2.1

We say that an l.t.s. is almost convex if it contains a

fundamental system of bounded sets which are closed, balanced and semi-

convex.



Clearly every locally convex space is almost convex and so is
any locally bounded l.t.s. If E is a locally bounded l.t.s., any
product of copies of E is almost convex.

Proposition 3.2.4.

. sypnreled

Let KBy’EY) : ysf] be a family of/{linear topological spaces. ;k
Then a subset A of the *-direct sum of ‘ZBy’gY) : YEE] is bounded
(precompact) if and only if it is contained in a finite sum of subsets
of the E, which are EY—bounded.(precompact).

Proof: If A is contained in a finite sum of subsets of the EY which are
gy~bounded (precompact) then clearly A is bounded (precompact).

Now suppose that A is bounded (precompact). Let py be the
projection from the #-direct sum onto (Ey ’EY)' Each py(A) is bounded
(precompact). Ve show that py(A) = {0} except for finitely many vy,
and this will give the result since A ¢ Zyer py(4).

Suppose not. Then there exists a sequence (y(n)) from I and a
sequence of points x, such that xp # 0 and x, is in Py(n)(A)' Since each
EY is separated, there exists for each n a balanced gY(n)-neighbourhood
Uy(n) of the origin such that x, is not in n Uy(n).

Let U =\J;:l Zgzl UY(n)' Then by Proposition 3.1.2, U is a
neighbourhood of the origin in the *-direct sum topology of (EY(n)).
Clearly A C;;nU for any n and, since the *-direct sum of (EY: yel')
induces the *-diréct sum topology on Z:=l Ey(n) (see Remark 1 after
Proposition 3.2.3), A cannot be bounded under the *-direct sum topology

of (EY: vyel') ( and thus cannot be precompact under the same topology).
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Corcllary 1 The *-direct sum of infinitely many separated linear
topological spaces is never metrizable.

Proof: By Remark 1 after Proposition 3.2.3, it is sufficient to prove
the assertion when the index set is countable. So, let E be the #-
direct sum of a sequence (Ej) of separated linear topological spaces.,
Suppose that E is metrizable and let (U,) be a decreasing sequence 6f

sets forming a local base. Since Fp = I E. 1is a proper

lgign 71

subspace of E, there exists a sequence (x,) of points such thatxp is

in Uy but x, is not in Fy. By the proposition, (xy) is not bounded but
since %, is in Uy and (Uy) is decreasing, (x,) must be bounded.

This contradiction gives the result.

Corollary 2 A *-direct sum of separated almost convex linear topolo-

gical spaces is almost convex.

Proof: This follows immediately from the proposition.

Corollary 3 A ®-direct sum of separated sequentially (quasi-) complete

linear topological spaces is sequentially (quasi-) complete.

3.3 Strict ®-inductive limits

If E is the *-inductive limit of (Ey; uy: ve®), such that E
is the union of the subspaces uy(Ey), then we say that E is the

generalized strict ®-inductive limit of (Ey; Uyt ved). In particular

if ¢ is countable (say ¢ is the set of positive integérs),(Ei) is a
sequence of strictly increasing linear subspaces of E, and the topology
of Ei coincides with that induced by Ei+l? we say that E is the

strict #-inductive limit of (Ei)'




Remarks

(1) If E is the strict *-inductive limit of (E;), then by using an
inductive argument we see that the topology of Ej coincides with that
induced by Ei+n for any positive integer, n.

(2) Also it is not difficult to show that if E is the strict *-inductive
limit of (E;), then for any sub-sequence (i(r)) of the positive integers, -
E is the strict *-inductive limit of (Ei(r))'

ofe

Examples of strict *-inductive limits

(1) Any strict inductive limit of a sequence of locally convex spaces.
(2) If E is the #*-direct sum of a sequence (E;j) of linear topological

+ is the

spaces, then E is the strict *-inductive limit of (Fj) where Fy

%-direct sum of (Ej)

1l <icgi

Proposition 3.3.1

Let (E,t) be the strict ®-inductive limit of (En,gn).
Then £ coincides with En on En.
Proof: It is sufficient to show that £ induces on E, a topology finer
than En. Let Wn be a gn;neighbourhood of the origin and suppose that

U is a En-neighbourhood of the origin such that

U+ U + oo t Un (n + 1 terms) cv, . (1)
There exists a balanced £n+l-ne1ghbourhood Un+l such that
(Un+l * Un+l);1 En ‘;; Un ' (2)

Similarly there exists a balanced §n+2—neighbourhood Un+2 such that

(Upyo ¥ Unp) NELL & U1 .



From this and (2) it follows that

(Un+2 + Un+2 + Un-l-l)n Eng Un *

For if z is in (U ., + U . + Un+l)n E, then z is in E and z = z; + 2z

where z, is in U and z, is in U
1 n+ n+

1 2

.t Un+2 « Since En?;;En-flc E

= n+2?
z, must be in Bn+l and therefore

(Un+2 * Un+2 ¥ ‘Urr!-l)rl En C.-:-—‘

((Un+2 * Un-rz)n En~rl + Un+l).ﬂ En C:_-: Un '

Similarly we can find balanced £n+j—-neighbourhoods Un;j such that for

any positive integer r,

(Un+l * Un+2 el t Un+r * Un+r)nEnc; Un ’
Therefore | /( by (1)
(Ur 51 U + U0 + oot Un(n terms) + Zl <jsr Un+j N En(_‘; wn

Thus, by Proposition 3.1.2, £ coincides with En on En’ since Unﬂ Ei is
a balanced Ei~neighbourho'od for 1 £ 1 gn.

Corollary 1- Let (E,£) be the strict *-inductive limit of a sequence
((En,gn)) of separated linear topological spaces. Then (E,£) is separated.
Proof: Let x # O be in E. For some n, X is in E, and, since (En, £)
is separated, there exists a En—neighbourhood Un of the origin not
containing x. By the proposition, there is a g-neighbourhood U of the
origin such that uM E, < Un' Clearly x is not in U and therefore

(E,&) is separated.

2,

/



Corollary 2: If (E,£) is the strict *-inductive limit of a sequence
((Bn,gn)) of linear topological spaces such that, for each n, En is

closed in (E l)’ then En is closed in (E,&).

n+l? gn+

Proof: Let x be in E and suppose that x is not in EN for some positive

integer N. Clearly x is in some E Since Ey is closed in E

N+m*® N+m?

1 - i 1 - .
there exists a gﬂﬂ]nelghbourhood JN+m such that (x + U )r\ E
By the proposition, there exists a £-neighbourhood U such that
UM By, < Ug.. Then (x + WM E, = ¢,from which the result follows.
Proposition 3.3.2

Let (E,£) be the strict *-inductive limit of a sequence (E )
of linear topological spaces. Suppose that (E,£) is a topological
subspace of an l.t.s. F and that, for each n, En is closed in T,
then E is closed in F.

Proof: For any subset A of F, cl(A) shall denote the closure of A
in F. Lef %X be in cl(E) and suppose that x is not in E, for any n.
Then for each n, fhere exists a balanced &-neighbourhood of the origin

W such that (x + cl(wn))(W En = ¢ and (Wn) may be so chosen that

wn+l ¥ wn+l * wn+lq; ‘%1 . (1)
Let U_ =W (‘ E and U \J11 3 l l i<n Ui)' Then U is a § -neighbour-

hood by Proposition 3.1.2 and thus x + cl(U) meets EN for some positive

integer N. WNow, if z, is in U, then z; is in Zl cick Ui for some

positive integer k (which we may choose greater than N). Therefore z,

is in Zl <igN Ui + ZN+1 <isgk Ui aud this is contained in

E_+ % . W.. Thus z, is in EN + ¥
i

N AN+l i sk 1 W

N+l + "]N+2 + see + "qk-l k-—l’



and using (1) successively we see that z; is in E + wN+l LR

henr T
Therefore U EEHN + WN+l + WN+1 and thus

cl(U)  Ey + W Wypq + ey )

N+l T "Nel 1

since x + cl(U) meets EN’ so does x + cl(WN).
This is impossible. Thus cl(E) = E.
Corollary: Any strict *-inductive limit of a sequence of complete
separated linear topological spaces is complete.
Proof: This follows from the proposition on choosing F to be the

completion of (L,E).

We note in passing that the methods of proofs of Propositions
3.3.1 and 3.3.2 can be used to get similar results for commutative
topological groups (not necessarily locally compact); cf. (39),
Section 3,Propositions£$ and 5.

Proposition 3.3.3

If E is the strict ®*-inductive limit of a sequence (En) of

separated linesr topological spaces such that, for each n, En is closed

wf

in E then E is contained as a dense topological subspace of the strict

n+l’

*-inductive limit of a sequence of complete separated linear topological

spaces.

Proof: If L is not complete, let E” be its completion. For any subset

A of E*, let el(A) denote the closure of .A in E*, Let F be the linear

sPaCéLJru;1CJ(En)' The space F is dense in E* since F contains E.



Also cl(En) is a proper subspace of cl(En+ , since each En is a closed

l)
proper subspace of En+1' If n is the strict *®-inductive limit topology

on F of (cl(En)), then (F,n) is complete, by the corollary of

Proposition 3.3.2. Since the identity map from En into (F,n) is

continuous for each n, n induces on E a topology coarser than its

original topology, £, say. Also, since the identity map from cl(En) into
E* 1is continuous for each n, n must be finer than the topology induced

on F by E* , and this implies that n induces a topology on E finer than §.
Thus E is a topological subspace of (F,n). The space (F, n) is complete
and therefore the closure of E in (F,n) coincides with E*.

Hence E* = (F,n), since LG FC.-E*. This completes the proof. "

Corollary- If E is the strict *-inductive limit of a sequence (En) of
separated linear topological spaces such that, for each n, En is closed

in En+l’ then E is not metrizable,

Proof: By Corollary 2 of Proposition 3.3.1, each E is closed in E.

If E is complete and metrizable, then E is of the second category and

£ =) Dyl E . This is impossible. If E is not complete, but
metrizable, E* is a complete metyizable l.t.s. which is the strict

*-inductive limit of complete separated linear topological spaces,

by the proposition. This is not possible as shown above.



CHAPTER 4

ULTRABARRELLED, ULTRABORNOLOGICAL AND

QUASI-ULTRABARRELLED SPACES

4,1 Ultrabarrclled spaces

W. Robertson, in Theorem 4 of (37), proved that a locally
convex space (F,n) is barrelled if and only if any convex topology on
F with a base of n-closed neighbourhoods is necessarily éqarser than n.
She then proceded to call an l.t.s. (E,t) ultrabarelled if any linear
topology on E with a base of t-closed neighbourhoods is necessarily
coarser than 1. Thus any locally convex ultrabarrelled space is
barrelled. In (37), the following results are also proved. Every 1l.t.s.
of the second category is ultrabarrelled, but an ultrabarrelled space
need not be of the second category. Let E be an ultrabarrelled space.
Then any quotient of E by a linear subspace is ultrabarrelled and
if F is a separated l.t.s.'such that E€ F € E%, then F is ultrabarrelled.
Furthermdrié any closed linear map from E into a complete metric linea;hggiéﬁ/(
space F is continuous and any continuous linear map from F onto E is
open. And for E, an analogue of the Banach-Steinhaus theorem holds
in the following form: Every pointwise bounded set of continuous linear
maps from E into any l.t.s. is equicontinuous. It is also shown in
(37) that if (E,u) is any ultrabarrelled space, then (E,uoo) is

barrelled, though it may not be ultrabarrelled.



Theorem 4.1.1,

An 1,t.s. is ultrabarrelled if and only if every ultrabarrel
is a neighbourhood of the origin.
Proof: Suppose that (E,n) is ultrabarrelled. Let B be an ultrabarrel
in (E,n) with a defining sequence (Bn) of n-closed sets. Then the
family of n-closed sets (Bn) is a base of neighbourhoods for a linear
topology on E, which must be coarser than n since (E,n) is ultrabarrelled.
Therefore B is an n-neighbourhood. Suppose that every ultrabarrel in
an l.t.s. (E,n) is a neighbourhood. Let £ be a linear topology on E
with a base™U of neighbourhoods consisting of balanced n-closed
sets. Every U in7y , being then an ultrabarrel in (E,n) is an
n-neighbourhood. This implies that & is coarser than n and thus (E,n)
is ultrabarrelled.
Corollary 1. Every linear map of an l.t.s. onto an ultrabarrelled
space is nearly open, and every linear map of an ultrabarrelled space
into an l.t.s. is nearly continuous.
Proof: Let t be a linear map of an 1.t.s. (E,u) onto an ultrabarrelled
space (F,v). If U is a balanced u-neighbourhood, then U is a supra-
barrel in (E,u) and thus t(U) is a suprabarrel in (F,v). Therefore
the v-closure of t(U) is an ultrabarrel in (F,v) and, by the theoren,
this set is a v-neighbourhood. Thus t is nearly open. By a similar
argument, one can prove that a linear map of an ultrabarrelled space into

an l.t.s. is nearly continuous.



Let (E,u) be a locally convex space. If there exists a
continuous linear nearly open map of (E,u) onto an 1l.t.s. F say,
then F is locally convex., It therefore follows from Corollary 1 that
a non-locally convex ultrabarrelled topology on E can not be coarser
than u. Since the finest linear topology on a countably dimensional
linear space is locally convex, any ultrabarrelled topology on a
countably dimensional linear space is necessarily locally convex.
Corollary 2. Let (E,u) be an ultrabarrelled space and (F,v) an l.t.s,
If £ is a continuous linear nearly open map of (E,u) into (F,v), then
(F,v) is ultrabarrelled.
Proof: If B is a v-ultrabarrel, then £ 1(B) is a u-ultrabarrel, since
f is continuoué. By the theorem, £ 1(B) is a u-neighbourhood of the
origin, and since f is nearly open, the v-closure of f£(f }(B)) is a
v-neighbourhood. And since the v-closure of £(f 1(B)) is contained
in B, B must be a v-neighbourhood, and, by the theorem (F,v) is ultra-

barrelled.

An immediate consequence of the above is that a quotient by
a linear subspace of an ultrabarrelled space is ultrabarrelled - a
result due to W. Robertson ((37), Proposition 13). Also, since any
linear space E under its finest linear topology s is clearly ultra-
barrelled, by combihing Corollaries 1 and 2, we get the following result.

Corollary 3 An l.t.s., (E,u) is ultrabarrelled if and only if the

identity map from (E,s) onto (E,u) is nearly open.
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Let (E,u)be the sequence space 1. As shown in page 256
of (37), (B,uoo) is a barrelled normed space which is not ultra-
barrelled. Therefore, by Corollary 3, the identity map from (E,s)
onto (E,u’°) is not nearly open and thus the identity map from (E,u°°)
onto (E,s) is not nearly continuous. Since the identity map from
(E, 1(E,E*)) onto (E,uoo) is continuous and nearly open, it follows
by Corollary 2 that (E,t(E,E%)) is not ultrabarrelled.

Suppose that, for each y in an uncountable index set ¢, EY is
a (non-trivial) separated locally convex space. Each EY can be
expressed as the direct sum of a closed hyperplane and a copy KY(=K)
of the scalar field; then by Remark 2 after Proposition 3.2.3,
ZY€¢ KY is a quotient of Eys@ EY. Now ¢ is uncountable and therefore,
for some subset Y of ¢, the space E = l% considered above, with its
finest locally convex topology T(E,E*), can be expressed as a direct

sum ZY 5, of copies of the scalar field. Thus (E, t(E,E*)) is a non-

3 4

ultrabarrelled quotient of I BY and so the latter space can not be

ved
ultrabarrelled by Proposition 13 of (37). We note this for further
reference.
Corollary 4+ An uncountable direct sum of (non trivial) separated
locally convex spaces cannot be ultrabarrelled.

If T is a pointwise bounded set of linear maps from an l.t.s.
E into an l.t.s. F, then for any bornivorous suprabarrel B in F,
§) T t"1(B) is a suprabarrel in E. In particular if B is a bornivorous

ultrabarrel and each t in T is continuous, then f\te t"1(B) is an ultra-

T
barrel in E. In this case, it follows from Theorem 4.l1.1. that if E



is ultrabarrelled, then T is equicontinuous. This is W. Robertson's
analogue of the Banach-Steinhaus theorem ((37), Theorem 5).
Let (E,v) be an l.t.s. If B is a suprabarrel in E with (Bn)

as a defining sequence, then B together with (Bn) is a base of
neighbourhoods for a linear topology on E. If N is the linear subspace
f\ nyl Bn of E, and kl the canonical map of E onto E/N, it is not
difficult to show that the linear topology w say, on E/N with base
(kl (Bn)) is metrizable. Let (E/N,w)” denote the completion of (E/N,w) .
Lemma 4,1.1. With the notation introduced above,

(a) if B is an ultrabarrel, then the map kl of (E,v) into (E/N,w)*
is closed.

(b) if B is a bornivorous ultrabarrel, then the map kl of (E,v) into
(E/N,w)" is closed and bounded.
(a) Since B is an ultrabarrel, we may assume by a remark in
Section 2.4 that each Bn is v-closed. Let G denote the graph of kl
and Gl its closure in (E,v) x (E/N,w)" . If A is contained in (E/N,w)" ,
we denote the closure of A in (E/N,w)” by cl(A). Ve show that if (x,y)
is in G, then y - k;(x) is in cl(k (B )) for arbitrary n, and this
will prove (a). Suppose that (x,y) is in Gl' Since E/N is dense in

(E/N,w)", then, for each n, there exists some z in E such that:

ky(z) ey - k(x) + el (B ), (*)

Since (x%,y) is in G., then, for each v-neighbourhood V,

l’

(x+V, y+ellg @, IONMN o x4 .
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Therefore y - kl(x) is in k (V) + Cl(kl(Bn+u))’ and using this in (%)
we find that

kl(z) € kl(V) + Cl(kl(Bn+3)) ¢

Thus, kl(z) is in kl(V) + kl(Bn+3) + kl(Bn+3)’ which is contained in

kl(V) + kl(Bn+ ). This implies that zeV + B 4, + N and thus

2 2

zeV+ Bn+ As this is true for all v-neighbourhoods V and Bn+

ll

is v-closed, it follows that z € Bn+

1

Now, using this in (%), we

l'
find that
y =k (x) € cl(ky(B))
(b) That kl is closed follows from (a). Let u be the linear

topology on E with base (Bn)' Since each B is v-bornivorous, the
identity map from (E,v) onto (E,u) is bounded, Also, the map kl from
(E,u) into (E/N,w)" is bounded, being continuous. Therefore k, is a
bounded linear map from (E,v) into (E/N,w)”.

Let E be an l.t.s. and N the intersection of the neighbourhoods
of the origin in E. If t is a closed linear map from E into an 1l.t.s.
F, then t(N) is the origin in F, and so t can be expressed in the
form t = tlokl where k, is the canonical map of E onto E/N and t, maps
E/N into F. It is then easy to see that ty is also closed. If in
addition t is bounded, so is tys also t is continuous if and only if

tl is continuous.

Theorem 4.1.2.

An 1l.t.s. (E,v) is ultrabarrelled if and only if every closed

linear map from (E,v) into any complete metric linear space is continuous,



Proof: If (E,v) is ultrabarrelled, then by the remark just above and
Propositions 13 and 15(ii) of (37), every closed linear map from (E,v)
into any complete metric linear space is continuous. Now suppose that
every closed linear map from (E,v) into any complete metric linear space
is continuous. Let B be a v-ultrabarrel with a defining sequence (Bn)

of v-closed sets. Let N be the linear subspace N Bn of E and

131
denote by w the metrizable linear topology on E/N with a neighbourhood
base (kl(Bn)), where k, is the canonical map of E into E/N. If

(E/N,w)" denotes the completion of (E/N,w) then, by Lemma 4.1.1.,

the graph of the map k; is closed in (E,v) x (E/N,w)" . By the hypothesis
therefore, k, is a continuous map from (E,v) into (E/N,w)". Thus,
kl-l(kl(Bl)) - B, + N is a v-neighbourhood, and since B, + N is contained
in B, B must be a v-neighbourhood. Thus by Theorem 4.1.1, (E,v) is
ultrabarrelled.

Corollary 1. Any *-inductive limit of ultrabarrelled spaces is
ultrabarrelled.

Proof: Let E be the #.inductive limit of ultrabarrelled spaces

(EY)Y€¢ by linear maps (uY)YE(I> , and t a closed linear map from E into

a complete metric linear space F. Since each u is continuous, touY is

a closed linear map from EY into F for each vy in ¢, By the theorem,

touY is contingous. As this is true for all y in ¢, t must be continuous
and again, by the theorem, E is ultrabarrelled.

Corollary 2. Any countable inductive limit of locally convex ultra-

barrelled spaces is ultrabarrelled. In particular any countable

{ .
inductive limit of Frechet spaces is ultrabarrelled.
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Proof: That any countable inductive limit of locally convex ultra-
barrelled spaces is ultrabarrelled follows from Corollary 1 and the
remark after Proposition 3.1.2. The last part follows from this
since, by the corollary of Proposition 12 of (37), any rréchet space is
ultrabarrelled.

Corollary 3. Let (BY:Yﬁ@ﬁﬂ a family of separated locally convex ultra-
barrelled spaces. Then E = zys@ EY is ultrabarrelled if and only if ¢
is countable, |

Proof: 1If ¢ is countable, then by Corollary 2, E is ultrabarrelled,

If ¢ is uncountable, then by Corollary 4 of Theorem 4.1.1., E is not
ultrabarrelled.

We note that, in Corollary 3, we cannot replace "direct sum'" by
"inductive limit". For if G is the direct sum of countably many copies
of the scalar field and ¢ is uncountable, then G, being a quotient of
E, is an inductive limit of (EY: Yed). .

Since every complete separated l.t.s. is a closed subspace of
an 1l.t.s. of the second category - a product of complete metric linear
spaces, it follows that a closed linear subspace of an ultrabarrelled
space need not be ultrabarrelled, for an uncountably dimensional linear
space under its finest locally convex topology is not ultrabarrelled,
but is complete and separated. However, we have the following result,
Corollary 4. Any sﬁbspace of finite co-dimension in an ultrabarrelled

space 1s ultrabarrelled.

Proof: Let E be an ultrabarrelled space, Eb a subspace of E of finite

metric Unear
Space

co-dimension and suppose that t is a closed linear map of E into[? & emplrte



By Lemma 2.6.6, there exists a closed linear extension from E into F
which by the theorem must be continuous. Therefore t is continuous
and again by the theorem, Eo is ultrabarrelled.

Finally we observe that by the method of proof of Proposition 14
of (37) one can show that if Eo’ El’ E are linear spaces, v a linear

topology on E such that E C E. € E and E, is v-dense, then E

1

under the v-induced topology is ultrabarrelled if EO, under the

l,

v-induced topology is ultrabarrelled.

4.2 Ultrabornological spaces

Vie call an l.t.s. E ultrabornological if every bounded linear

map from E into any l.t.s. is continuous.

Clearly every metrizable l.t.s. is ultrabornological. Since a
countably dimensional metrizable non-locally convex space is not ultra-
barrelled (by the remark after Corollary 1 of Theorem 4.,1.1), it follows
that an ultrabornological space need not be ultrabarrelled.

If (E,u) is ultrabornological, then (E,uoo) is bornological.
For, let t be a bounded linear map of (E,uoo).into a locally convex
space I'. Then t, being a bounded linear map from (E,u) into F, is
continuous, and since I is locally convex it follows that t is continuous
from (B,uoo) into F. Thus (B,uoo) is bornological. In particular,

a locally convex ultrabornological space is bernological. However, a
bornological space need not be ultrabornological, For, let E be a
linear space of uncountable dimension. Then by Theorem 3.1 of (19), its

finest linear topology s is strictly finer than t1(E,E*), so that the



identity map of (E, 1(E,E*)) into (E,s) is not continuous. But it is
bounded, since every 1(E,E*) - bounded subset is contained in a finite
dimensional subspace of E. The l.t.s. (E,T(E,E*)) is therefore not
ultrabornological, though it is bornological.

Let E be an incomplete separated inductive limit of a sequence
of Banach spaces (for an example of such a space, see (2%@, pages 3 X
437 and 438), and suppose that x is a point of E (the completion of E)
not in E. By a result of Komura ((22), page 155), the linear subspace
El of E* spanned by E and x is not bornological. Clearly Ey is not
ultrabornological. But, by Corollary 2 of Theorem 4.1.2 and Proposition
4 of (37), El is ultrabarrelled. Thus an ultrabarfélled space need
not be ultrabornological.

It is also a direct consequence of the definition that, if E
is any ultrabornological space, then a linear map from E into an l.t.s,
is continuous if and only if_it is sequentially continuous.

Theorem 4.2.1.

Any *-inductive limit of ultrabornological spaces is ultra-
bornological.
Proof: Let E be the *-inductive limit of (EY; uY: ve?) where each EY
is ultrabornological and let t be a bounded linear map from E into
an l.t.s. F. Since uY is bounded, being continuous, it follows that
touY is a bounded linear map from EY into F. Since EY is ultra-
bornological, touY is continuous. As this is true for all y in ¢,

it follows that t is continuous and therefore E {s ultrabornological.
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Coréllagz. Any countable inductive limit of locally convex ultra-
bornological spaces is ultrabornological.

It follows from the above corollary and Komura's example of a
non-bornological barrelled space in ((22), page 155) that a non-ultra-
bornological space may contain a dense ultrabornological space.

Suppose that, for each y in an uncountable index set ¢, BY i;

a (non-trivial) separated locally‘convex space and KY is a copy of the
scalar field. As pointed out after the definition of an ultrabornological

space above, G = EYEQ KY is not ultrabornological. Since G is a

quotient of EY€¢

EY’ it follows by Theorem 4.2.1 that an uncountable
direct sum of separated (non-trivial) locally convex spaces cannot be
ultrabornological.

Lemma 4.2.1. Let (E,v) be an 1l.t.s. Then there exists a finest linear
topology u say, on E with the same bounded sets. The space (E,v)

is ultrabornological if and only if v = u, and this is so if and only
if every bornivorous suprabarrel in (E,v) is a v-neighbourhood.

Proof: If V is any bornivorous suprabarrel in (E,v), then v,

together with a defining sequence forms a base of neighbourhoods for a
linear topology v, say on E. Let u be the upper bound of (Va) as V_
runs through all the bornivorous suprabarrels in (E,v). Clearly u is
finer than v and u,v have the same bounded sets. The linear topology u
is the finest one having the same bounded sets as v, TFor, suppose that
¥ is.a balanced neighbourhood of the origin in a linear topology u, on
E having the same bounded sets as v, then W is a v-bornivorous supra-

barrel and therefore v, is coarser than u. Next, (E,u) is



ultrabornological; for if t is a bounded linear map from (E,u) into
an 1.t.s. F, then t 1(V) is a u-bornivorous suprabarrel for any
balanced neighbourhood V in F. Since u and v have the same bounded sets,
t 1(V) is a v-bornivorous suprabarrel and therefore t }(V) is a u-
neighbourhood and t is a continuous map from (E,u) into F. Thus (E,u)
is ultrabornological. That u = v if and only if (E,v) is ultra-
bornological follows easily from_here. The remaining part follows
from the above construction of u.

With the notation used in the above lemma, we call u the

ultrabornological topology associated with v.

Let T be a set of linear maps from an l.t.s. E into an l.t,s.
F such that T is uniformly bounded on bounded sets. Also, let V be a
balanced neighbourhood in F. Then V is a bornivorous suprabarrel in F,
so that (\teT t~ (V) is a bornivorous suprabarrel in E. If E is
ultrabornological, it fallows from Lemma 4.2.1. that T is equicontinuous.
We have thus proved the following result.

Proposition 4,2,1,

A set of linear maps from an ultrabornological space into an
l.t.s. is equicontinuous provided that it is uniformly bounded on
bounded sets.

Theorem 4.2.2,

An 1l.t.s. (E,v) is ultrabornological if and only if every

bounded linear map from (E,v) into any complete metric linear space is

continuous.



Proof: Suppose that every bounded linear map from (E,v) into any
complete metric linear space is continuous. Let u be the ultra-
bornological topology associated with v. We show that u is coarser

than v and it will follow by Lemma 4.2.1 that (E,v) is ultrabornological.
Let Uo be a balanced u-neighbourhood in E and let (Un) be a sequence of

balanced u-neighbourhoods such that Un+

L

1t Un+1<;; U, for all-n z 0.
Then u, is a (bornivorous) suprabarrel in (E,v) with (Un) as a defining
sequence. Let N be the linear spéce N n3l U, and let w denote the
metrizable linear topology on E/N with a local base (kl(Un)), where k,
is the canonical map of E onto E/N, Let (E/N,w)” be the completion of
(E/N,w), Clearly the map kl is continuous from (E,u) ipto (E/N,w)* , and
therefore it is bounded from (E,v) into (E/N,w)". By the hypothesis
therefore, k, is a continuous map from (E,v) into (E/N,w)*. Hence
kl-l(Kl(Ul))= U; + N is a v-neighbourhood of the origin and, since

Ul + N € U, U must be a v-neighbourhood. Thus u is coarser than v.

Theorem 4,2.3.

Let (E,u) be a separated almost convex ultrabornological space.
Then (L,u) is a *-inductive limit of separated locally bounded spaces.
If (E,u) is sequentially complete then, it is a *®-inductive limit of
complete separated locally bounded spaces and is therefore ultrabarrelled.
Proof: Let A be a balanced (closed) semiconvex bounded subset of (E,u),
and let BA be the linear subspace spanned by A. Then it is easy to see
that E, can be given a locally bounded metrizable topology va (with local
base the sets -% A forn =1, 2,...) and that vy is finer than the

topology induced on BA by u. As A runs through the balanced semiconvex



(u-closed) u-bounded subsets of E, \J EA spans E; let v be the
%-inductive limit topology on E defined by the EA and the injection
maps into E. Then v is finer than u and, by Theorem 4,2.1, (E,v) is
ultrabornological. Any u-bounded set A” in E is also v-bounded.
For, since (E,u) is almost convex, there is a (u-closed) balanced
u-bounded semiconvex set A containing A“. Then A” is vA-bounded and
so v-bounded. Thus the identity map of (E,u) into (E,v) is bounded
and, since (E,u) is ultrabornological it is continuous., Hence v is
identical with u.

If (E,u) is sequentially complete, each (EA,VA) is complete.
For, any vA-Cauchy sequence (xn) is also u-Cauchy; it therefore
converges in (E,u) to a say. Now for each I > 0,231%52) such that
x - ¥€ILAforallm n23 no(z) and so, on letting n-w, x -—aelh
for m > no(E) (since we took the sets A u-closed), Thus a ¢ EA and
x, > a in (EA,VA) Hence, the metrizable space (EA,VA) is'complete, and

so (E,u) is a *-inductive limit of complete separated 1ocaily bounded

spaces. By Corollary 1 of Theorem 4,1.2 it is therefore ultrabarrelled.

4,3 Quasi-ultrabarrelled spaces

We say that an l.t.s. E is quasi-ultrabarrelled if every

bornivorous ultrabarrel in E is a neighbourhood of the origin.
From Theorem 4.1.1., we deduce that every ultrabarrelled space is quasi-
ultrabarrelled, and from Lemma 4.2.1, we deduce that every ultra-

bornological space is quasi-ultrabarrelled.



If (E,u) is quasi-ultrabarrelled, then (E,uoo) is quasi-
barrelled. For, if B is a u®?-bornivorous barrel in E, B is a u-~
bornivorous ultrabarrel and is therefore a u-neighbourhood of the
origin. The set B must then be a uoo-neighbourhood and thus (E,u°°)
is quasi-barrelled. In particular any locally convex quasi-ultra-
barrelled space is quasi-barrelled.

If (E,v) is a quasi-ultrabarrelled space and u is the ultra-
bornological topology associated Qith v, then it is easy to see that
the identity map from (E,u) onto (E,v) is nearly open. By an application
of Lemma 4.2.1, one can show that if (E,v) is an l.t.s. such that the
identity map from (E,u) (u is the ultrabornological topology associated
with v) onto (E,v) is nearly open, then (E,v) is quasi-ultraparrelled.
Since for any linear space E, the finest linear topology s on E is
the ultrabornological topology associated with t(E,E*), it follows from
Corollaries 2 and 4 of Theorem 4.1.1 that if E has uncountable
dimension then (E, 1(E,E*))is not quasi-ultrabarrelled,

If in the argument preceding Proposition 4.2.1, each t in T is
continuous and V is closed, we see that a set of continuous linear
maps from a quasi-ultrabarrelled space into an l.t.s. is equicontinuous
provided that it is uniformly bounded on bounded sets.

Theorem 4.3.1.

An 1.t.s. (E,v) is quasi-ultrabarrelled if and only if every
closed bounded linear map from (E,v) into any complete metric linear

space is continuocus.



Proof: Let (E,v) be quasi-ultrabarrelled and suppose that t is a
closed bounded linear map from (E,v) into a complete metric linear space
F. Since each quotient of (E,v) by a linear subspace is also quasi-
ultrabarrelled, to prove that t is continuous, we may assume by the
argument preceding Theorem 4.1.2, that (E,v) is separated. Since t
is bounded, the v-closure of t'l(U) is a bornivorous ultrabarrel in
(E,v) for every balanced neighbourhood U in F. And since (E,v) is
quasi-ultrabarrelled, it follows.that t is nearly continuous.
Therefore, t is continuous, by ((16), Page 213).

The proof of the other part is as in Theorem 4.1.2, with the
difference that we take B to be a bornivorous ultrabarrel, and this

ensures that the map kl of (E,v) into (E/N,w)* is bounded.

Corollaries 1 - 3 of Theorem 4.1.2 are true with '“quasi-ultra-
barrelled" replacing "ultrabarrelled", Only easy modifications of the
methods of proof are needed in this case. In particular, if El’ E2
are quasi-ultrabarrelled s0 is their *-direct sum. If we now take El
to be an ultrabarrelled space which is not ultrabornological and E2 as
an ultrabornological space which is not ultrabarrelled, then the
%~-direct sum of El and E2 is quasi-ultrabarrelled, but is neither
ultrabarrelled nor ultrabornological. Also, a closed linear subspace
of an ultrabarrelled ultrabornological space need not be quasi-ultra-
barrelled. For, in Problem D(b), Page 195 of (18), G* is a countable

direct sum of Frechet spaces with a closed linear subspace H® which is

not quasi-ultrabarrelled since it is not quasi-barrelled.



Lemma 4.3.1. In a separated l.t.s., an ultrabarrel absorbs every
balanced sequentially complete semiconvex bounded set.

Proof: Let (E,u) be a separated l.t.s., B an ultrabarrel in (E,h) and
M a balanced sequentially complete semiconvex bounded subset of (E,u).
We may without loss of generality assume that M spans E (for otherwise
we may consider the subspace El of E spanned by M and the ultrabarrel
BN El in El under the u-induced topology). The locally bounded
topology v say, on E with 1 as uﬁit ball is finer than u; and using
the fact that M is sequentially complete, one can show that (E,v) is
complete, Therefore (E,v) is ultrabarrelled. Since B is a u-ultra-
barrel and v is finer than u, B is a v-neighbourhoocd, being a v-ultra-
barrel. As ¥ is v-bounded, B absorbs M.

Theorem 4.3.2.

Se¢narate
AKsequentially complete almost convex quasi-ultrabarrelled

space is ultrabarrelled.

Proof: Let (E,u) be such a space. Let B be an ultrabarrel in (E,u).
Every bounded set in (E,u) is contained in a balanced closed semiconvex
bounded set A and A is sequentially complete since E is. Hence by
Lemma 4.3.1, B absorbs A and it follows easily from here that every
ultrabarrel in (E,u) is a bornivorous ultrabarrel. Therefore (E,u)

is ultrabarrelled by Theorem 4.1l.1l.

4.4, A generalization of two norm spaces

The two-norm spaces introduced by Alexiewicz in (1), (2) have
been extensively studied by several authors, for example Wiweger (u2)

and Persson (30).



The idea of two-norm convergence (sometimes referred to as
y-convergence) is as follows. Let E be a linear space on which are
defined two invariant metrics dl(',-), d2(',‘) compatible with the
linear space structure of E. A sequence (xn) in E is said to be
convergent to x in E in the two-norm sense if the supremum of dl(o,xn)
is finite and d2(xo,xn) tends to zero as n tends to infinity. A linear
map £ of E into an l.t.s. F is said to be continuous in the two-
norm sense if whenever a sequence>(xn) converges to X in E in the two-~
norm sense, f(xn) converges to f(xo) in F. A two-norm space is a

linear space provided with two metrics of the form of dl(','), d2(',~)
above.

Wiweger, in (42), constructed a topology which generates two-
norm convergence. Persson, in (30), extended the theory of two-norm
spaces to the situation of a linear space E provided with two convex
topologies u,v such that every v-hounded set is u-bounded, and .
constructed a topology which generates the two-norm convergence.
Wiweger's topology in (42) is also well defined in this case.

In this section, we point out how some of Persson's results in
(30) carry over to certain classes of not necessarily locally convex
linear topological spaces.

Let (Ma : aed) be a family of subsets of an l.t.s. (E,v) and
let (Ma,v) denote M under the v-induced topology. The upper bound
u say, of all linear topologies on E for which each identity map iOL

from (Ma’V) into E is continuous is the finest linear topology on E

such that each ia is continuous. The topology u is finer than v,



u coincides with v on each Ma and u is the finest linear topology on
E which coincides with v on each Ma'

Let E be a linear space and u,v linear topologies on E, If
every v-bounded subset of E is u-bounded, we call (E;u,v) a bitopolo-
gical space. We denote by u(v), the finest linear topology on E
coinciding with u on v-bounded sets, and say that u(v) is the mixed
topology on E defined by u and v.

Clearly u is coarser thanAu(v) and if w is the ultrabornological
topology associated with v, then u(v) = u(w). Also, since (E,w) is
ultrabornological, u is coarser than w.

The proofs of Proposition 4.4.1, its corollary and Proposition
4.4.2 below are similar to those of Proposition 1.1, Corollary 1.l
and Proposition 1.2 of (30).

Proposition 4.4.1.

If (E;u,v) is a bitopological space, then every v-bounded set
is u(v)-bounded.
Corollary. If (E;u,v) is a bitopological space and w is the ultra-
bornological topology associated with v, then u is coarser than u(v)
and u(v) is coarser than w.

Proposition 4.4.2,

Let (Ej;u,v) be a bitopological space. Then, a linear map
from (E,u(v)) into an l.t.s. is continuous if and only if its restriction
to every v-bounded subset of E is continuous. UMoreover, among the
linear topologies on E which are identical with u on v-bounded sets,

u(v) is the only one with this property.



We say that a bitopological space (Eju,v) is normal if (E,v)
is almost convex and has a base of balanced u-closed neighbourhoods.

Clearly if (E;u,v) is a bitopological space, the topology u(v)
is determined by a fundamental system of v-bounded sets. Therefore,
if (Eju,v) is in particular normal we can limit our consideration to
a fundamental system of balanced semiconvex v-bounded sets. 1In this
case, the following lemma is useful.
Lemma 4.4.1. Let t be a linear map from an l.t.s. E into an 1l.t.s. F.
If M is a balanced semiconvex subset of E, then t is uniformly continuous
on M if and only if it is continuous on M at the origin,
Proof: Suppose that t is continuous on M at the origin. Let V be a
neighbourhood of the origin in F. For some positive integer n,
M-+B1§EDM. Let Vn be a balanced neighbourhood of the origin in F
such that

VotV etV (n terms) c V.

Since t is continuous on M at the origin, there exists a balanced
neighbourhood U of the origin in E such that t(UM\ M) is contained in
V- lLeta be any point of M. If xe{(a + UY{\ M, then x - a is in
UM (M - M) and this is contained in n(UMY M). Therefore t(x) is in
t(a) + nt(UM M) and this is contained in t(a) + V. Therefore t is
uniformly continuous on M.

From the above lemma and Proposition 4.4,1, we deduce that if
(Eju,v) is a normal bitopological space, then a base of neighbourhoods

for the mixed topology u(v) is the family 4 of all v-bornivorous



suprabarrels in E such that for any balanced semiconvex v-bounded set

im B and any U in"\J, U\ B is a neighbourhood of the origin in (B,u)

for each Un in a defining sequence for U. Using this, we now show

that every sequence (x ) converging to zero in (E,u(v)) is v-bounded.

If (xn) is a sequence on E which is not v-bounded, then there

exists a balanced u-closed neighbourhood v° in (E,v) and a subsequence
.yt . o

(xk(n)) of (x,) such that for all positive integers n, X1 (n) ¢ nv.

Since nV® is u-closed for each n, there exists a sequence (Un(o)) of

balanced u-neighbourhoods such that x is not in (nv°® + U ) for
k(n) n(o)

any n. Let (V';m = 1,2...) be a sequence of u-closed balanced v-neigh-

Ly

bourhoods such that V' Vm+l§5i V" for all m 3 0, and for each n,

let (Un(m):m = 1,2..) be a sequence of balanced u-neighbourhoods such
that Un(m+l) + Un(m+l)§ Un(m) for all m 2 O.

Let

m o _ m
W= ) ny1 VAU )

4

It is not difficult to show that W° is a v-bornivorous supra-
barrel in E with (") as a defining sequence. Since B is v-bounded,
for any m,l3§§nvm for some n. Using this, one shows that for any m,
W' B is a neighbourhood of the origin in (B,u), and thus W is a
u(v)-neighbourhood in E. And since W° does not contain X (n) for all
positive integers n, (x ) is not convergdlt to zero in (E,u(v)).

Let (E;u,v)‘be a normal bitopological space, If B is any
u(v)-bounded subset of E, let (x ) be any sequence of points of B and

(An) any sequence of positive scalars converging to zero. Since B is
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1

u(v)-bounded, (A % x_) converges to zero in (E,u(v)) and by the

n *n
argument above, (An% xn) is v-bounded. Thus (Anxn) converges to
zero in (E,v) and B is v-bounded. From this and Proposition 4.4.1,
we deduce the following analogue of Theorem 1.1 of (30).

Theorem 4 ,4.1.

If (Eju,v) is a normal bitological space then a subset of E
is v-bounded if and only if it is u(v)-bounded.

Corollary. Let (Eju,v) be a normal bitopological space. Then, a
sequence in E is u(v)-convergent to x if and only if it is v-bounded and
u-convergent to x.

As in Corollary 1.3 of (30), the above corollary shows the
connection between the mixed topology and the notion of y-convergence
introduced by Alexiewicz in (2).

Let (Eju,v) be a normal bitopological space such that (E,v) is
ultrabornological. If u = v, we deduce immediately from the corollary
of Proposition 4.4.1 that v is the finest linear topology on E inducing
the same topology on the bounded subsets of (E,v). In particular if (E,v)
is locally bounded, v is the finest linear topology on E inducing the
same topology on the unit ball of (E,v). If u # v, then clearly (E,u) is
not ultrabarrelled. If u and v are not identical on v-bounded sets, we
have the following analogue of Proposition 1.3 of (30).

Proposition 4.4.3,

Let (E;u,v) be a normal bitopological space such that (E,v) is
ultrabornological and v is not identical with u on v-bounded sets.

Then (E,u(v)) is not quasi-ultrabarrelled.



Ve now give some examples of normal bitopological spaces.
1., Let E be a linear space. Let u be the topology o(E,E*) (1(E,E*))
and v the topology tT(E,E*) (o(E,E%)). In either case, (Eju,v) is a
normal bitopological space and the finest linear topology s on E is the
mixed topology determined by u and v. Since s is not necessarily
locally convex, we see that the mixed topology determined by two locally
convex topologies need not be locally convex.
2. Let E be the direct sum of a.family of locally convex spaces.
If v, u are respectively the direct sum and product topologies on E,
then (Eju,v) is a normal bitopological space.
3. Let F be a separated locally bounded space and suppose that E is
the algebraic direct sum of countably many copies of F. If v,u are
respectively the #-direct sum and product topologies on E, then (Eju,v)
is a normal bitopalogical space. For, since v is finer than u, every v-
bounded set is u-bounded. Also, by Corollary 2 of Propoisition 3.2.4,
(E,v) is almost convex. We now show that the topology v has a base of
balanced u-closed neighbourhoods of the origin. Let B be the unit ball
in F. Then B + B GE.B B for some B > 0. Take one such 8. A typical v-

neighbourhood is of the form

Us Uy 1 cngnfy (0B
where (ai) is a sequence of positive real numbers and ji is the injection
map of F, (=F) into E for each i. If x is in the u-closure of U, then

for some positive integer n, pi(x) = 0 for all integers i greater than n,

where p, is the projection of E onto F, (=F) for each i. Let W be
i proj i



-l . . . [ .
M l<iscnPi (uiB). Then W is a u-neighbourhood of the origin in
E and since x is in the u-closure of U, there exists y in U such that

x-y is in W, Since y € U,

y e zl $1igm ji (aiB) for some integer m « (%)

Since x-y ¢ W ,

z <n (aiB) . ('.'::‘:)

<

1signPi®xy)el; o4

Now, Z; o ppqPi(x¥) = =y (4P () dsdn 2 o5 o p (4B

<

3 g .‘: 2 -_ 3 '] .
and using (#*), it follows that x-y is in I; <igmii (aiB). Therefore

by (%), x is in B(zl c<isemii (aiB)), and thus x ¢ BU and

v has a base of u-closed neighbourhoods.



CHAPTER 5

SEMICONVEX SPACES

5.1 Semiconvex spaces: general

Let E be a linear space. As defined in section 3.2, if A is
a non-negative real number, a subset A of E is called A-convex if
A+ A C M. A subset B of E is called a semiconvex subset if it is

u -convex for some y 2 O.

A linear topology u on a linear space E with a base of
balanced semiconvex neighbourhoods of the origin is called a semiconvex
topology and (ﬁ,u) is known as a semiconvex space,

Any locally convex or locally bounded space is a semiconvex
space and so is any product of semiconvex spaces. It is easy to see
from the proof of Theorem 1 of (20) that any separated semiconvex space
is topologically isomorphic to a subspace of a product of separated
locally bounded spaces. Thus a separated l.t.s. is a semiconvex space
if and only if it is a subspace of a product of separated locally bounded
spaces.

Since the upper bound of any set of semiconvex topologies on
a linear space is semiconvex, there exists a finest semiconvex topology
on any linear space E. This shall be denoted by sc. A base of
neighbourhoods for sc is the family of all balanced semiconvex absorbent
subsets of E. Clearly t(E,E%) is coarser than sc and sc is coarser than
the finest linear topology s on E; the three topologies coincide when

the dimension of T is countable. When the dimension of E is uncountable
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T(E,E*),lSC and s are distinct. TFor, let G be the sequence space 1%
and H the space of all measurable functions on the closed interval (0,1)
with the metrizable topology corresponding to convergence in measure.
Since G and H have the same dimension (2 O), they are algebraically
isomorphic and we may identify them. That t1(G,G*) is strictly coarser
than sc follows from the fact that the topology of l% cannot be coarser
than t(G,G*). Also, as H is not a semiconvex space ((43), Page 239),
and any continuous nearly open linear image of a semiconvex space is
obviously a semiconvex space, we deduce that the topology of H cannot
be coarser than sc and thus sc is strictly coarser than s. If E is any
uncountably dimensional linear space, G may be identified with a
linear subspace of E, and from this, the assertion follows.

According to Simons ((44), Page 170), a function f on a linear
space E into the non-negative reals is called an r-pseudometric
(o <r g1) if (i) there exists x in E such that f(x) # 0,

(ii) f(xty) g £f(x) + £(y) for all x,y in E

and (iii) f£QOx) = Iklrf(x) for each x in E and A in the séalar
field. The function f is said to give the topology u to E if the sets
(f-l(o,l/n) :n=1,2,...) form a base of u-neighbourhoods of the origin.
From Theorem 1 of (44), we see that for every balanced semiconvex
absorbent proper subset B of E there exists an r-pseudometric which gives
the locally bounded topology on E with (l/n B:n=12, ...) as a base
of neighbourhoods of the origin. And furthermore, if for each r in
o<rcgl, (fa : ua¢r) is the set of all r-pseudometrics on a linear

space E and (fa : aed) is the union over r of (fa . qegp) then, a base



of neighbourhoods for sc is the family of sets {fa_l(o,l/n) tno=1,2,..,,
aed}. Now, using (fa : ac®) instead of invariant pseudometrics "q" in
Problem E, Page 124 of (18), one can easily show that for any linear
space E, (E,sc) is complete.

Simons's notion of an upper bound space in (44) clearly
coincides with that of a semiconvex space. In Theorem 6 of (ku), it
is proved that if (E,u) is an upper bound space and B is a subset of
E such that f(B) is bounded for each u-continuous invariant pseudo-
metric f on E, then B is u-bounded. Simons asked whether this property
characterises upper bound spaces. This is not so. For, if E is an
uncountably dimensional linearspace, (E,s) is not an upper bound
space since s.is strictly finer than sc. Let B be a subset of E such
that for each s-continuous pseudometric £ on E, f(B) is bounded.
Clearly, for each sc-continuous pseudometric f on E f(B) is bounded gnd
thus B is sc-bounded by Theorem 6 of (44). Since s and sc have the
same bounded sets, B is s-bounded.

Let E be a linear space, and suppose that, for each y in an
index set T, EY is a semiconvex space and uY is a linear map of EY
into E such that the union of the subspaces uy(Ey) spans E. The
upper bound g say, of all semiconvex topologies on E for which each

uY is continuous, is the finest semiconvex topology on E for which each

u is continuous. We shall call ¢ the ##*-inductive limit topology on

E induced by (Ey; uY : yel') and say that (E,g) is the *#*-inductive limit

£(E )by (u) or of (E 3 u _: vyel).
O(vi O(Y’Y(



With the notation above, a base of neighbourhoods for the
topology ¢ is the family \Jof all balanced semiconvex subsets of
E such that for every U in 7, uY-l(U) is a neighbourhood in EY for
each vy in I', Also a linear map t from (E,z) into a semiconvex space
is continuous if and only if touY is continuous for each y in T.

If T is countable and for a fixed A > O each EY has a base of balanced
A-convex neighbourtbods of the origin, then by Proposition 3.1.2, (E,t)
is the *-inductive limit of (Ey; ﬁY : yel'),

However, since for an uncountably dimensional linear space E,
the topologies 1(E,E*), sc and s are distinct and (E,t(E,E*)), (E,sc),
(E,s) are respectively the inductive limit, #**-inductive limit and *-
inductive limit of some (KY; uY : veT') (each KY is a copy of the scalar
field K), we see that a **-inductive limit of locally convex spaces need
not be locally convex and that a ®-inductive limit of locally convex
spaces need not be a semiconvex space,

As in Chapter 3, one can define the notions of #%-direct sum,
generalized strict #%-inductive limits and strict *%*-inductive limits
of semiconvex spaces. It follows from Proposition 3.1.2 that a #-
inductive limit of finitely many semiconvex spaces is semiconvex.

In particular, the #*%-direct sum topology on a finite direct sum of

semiconvex spaces is identical with the product topology.



5.2 Hyperbarrelled, hyperbornological and quasi-hyperbarrelled spaces

We call a semiconvex space hyperbarrelled (quasi-hyperbarrelled)

if every closed balanced semiconvex absorbent (bornivorous) subset is

a neighbourhood of the origin.

We say that a semiconvex space E is hyperbornological if

every bounded linear map from E into any semiconvex space is continuous.

Clearly, if (E,u) is ultrabarrelled (ultrabornological,
quasi-ultrabarrelled) and u® is the finest semiconvex topology on E
coarser than u, then (E,uo) is hyperbarrelled (hyperbornological,
quasi-hyperbarrelled), and if (F,v) is hyperbarrelled (hyperbornological,
quasi-hyperbarrelled) then (F,v°°) is barrelled (bornological, quasi-
barrelled). In particular, every semiconvex ultrabarrelled (ultra-
bornological, quasi-ultrabarrelled) space is hyperbarrelled (hyperborno-
logical, quasi-hyperbarrelled) and every locally convex hyperbarrelled
(hyperbornological, quasi-hyperbarrelled) space is barrelled (bornological
quasi-barrelled).

It is not difficult to show that a semiconvex space is hyper-
bornological if and only if every balanced semiconvex bornivorous subset
is a neighbourhood of the origin (in fact, the method used in Lemma 4.2.1
can easily be adapted). Let T be a set of linear maps from an 1l.t.s.

E into an l.t.s. F. If B is a balanced semiconvex bornivorous subset of
F and T is pointwise bounded (uniformly bounded on bounded sets), then

N ier +"3(B) is a balanced semiconvex absorbent (bornivorous) subset



of E. If B is closed and each t in T is continuous, then
r\teT t'l(B) is closed. The following result can be easily deduced
from these observations.

Theorem 5,2.1.

Let T be a set of linear maps from a semiconvex space E into
a semiconvex space F.
(a) If E is hyperbarrelled and T is pointwise bounded with each t iﬁ
T continuous, then T is equicontinuous.
(b) If E is hyperbornological and T is uniformly bounded on bounded
sets, then T is equicontinuous.
(¢c) If E is quasi-hyperbarrelled and T is uniformly bounded on bounded
sets with each t in T continuous, then T is equicontinuous.

Theorem 5.2.2.

Any *%-inductive limit of hyperbarrelled (hyperbornolgoical,
quasi-hyperbarrelled) spaces is of the same sort.
Proof: Let (E,v) be the **-inductive limit of (Ey; u vyed), where
each EY is hyperbarrelled. Let B be a v-closed balanced semiconvex
absorbent subset of E. For each vy in ¢, uY-l(B) is a closed balanced
semiconvex absorbent subset of EY; and is thus a neighbourhood, since
EY is hyperbarrelled. As this is true for all vy in ¢, B must be a v-
neighbourhood in E and thus (E,v) is hyperbarrelled,

If (E,v) is the *%-inductive limit of (EY; u ved), where
each EY is hyperbornological (quasi-hyperbarrelled), then by using a

similar argument to the one above and choosing B to be a balanced semi-



convex bornivorous (closed balanced semiconvex bornivorous) subset of
(E,v), we see that (E,v) must be hyperbornological (quasi-hyperbarrelled).
Corollary 1. Every quotient by a linear subspace of a hyperbarrelled
(hyperbornological, quasi~hyperbarrelled) space is of the same sort.
Corollary 2. Every product of finitely many hyperbarrelled (hyper-
bornological, quasi-hyperbarrelled) spaces is of the same sort.

Corollary 3. Every countable inductive limit of locally convex hyper-
barrelled (hyperbornological, quasi-hyperbarrelled) spaces is of the

same sort. In particular, every countable inductive limit of

Frechet spaces has all three properties.

From Corollary 3 above and Problem D(b), Page 195 of (18), we
see that a closed linear subspace of a hyperbarrelled hyperbornological
space need not be quasi-hyperbarrelled.

Corollary 4. Every #*-inductive limit of complete separated locally
bounded spaces is hyperbarrelled, hyperbornological and quasi-hyper-
barrelled.

Since a countably dimensional normed linear space is not
barrelled, it follows that a hyperbornological space need not be
hyperbarrelled. Let E be an incomplete separated inductive limit of
a sequence of Banach spaces and let x be a point of the completion E®
of E, which is not in E. As pointed out in Section 4.2, the linear sub-
space El of E- spanhed by E and x is ultrabarrelled, and thus El is
hyperbarrelled. But it is not hyperbornological, since it is not

bornological ((22), Page 155).



It is easy to see that every hyperbarrelled or hyperbornological
space is quasihyperbarrelled. If F is a hyperbarrelled space which is
not hyperbornological and G is a hyperbornological space which is not
hyperbarrelled, then by Corollary 2 of Theorem 5.2.2, F x G is a quasi-
hyperbarrelled space, which in view of Corollary 1 of Theorem 5.2.2
is neither hyperbarrelled nor hyperbornological.

A linear (bounded linear) map from a hyperbarrelled (quasi-
hyperbarrelled) space into a semiconvex space is nearly continuous.
Since by Corollary 1 of Theorem 5.2.2, every quotient of a hyper-
barrelled (quasi-hyperbarrelled) space is of the same sort, we deduce
from Page 213 of (16) and the argument preceding Theorem 4.1.2 that
every closed (closed bounded) linear map from a hyperbarrelled (quasi-
hyperbarrelled) space into a complete metrizable semiconvex space is
continuous. In particular, every closed (closed bounded) linear map
from a hyperbarrelled (quasi-hyperbarrelled) space into a complete
separated locally bounded space is continuous. If B is a closed balanced
semiconvex absorbent subset of a semiconvex space (E,v) (say B is A-
convex, A > 0), and N is the intersection of (%h B: n =1,2,...) the
locally bounded topology w on the quotient space E/N with a base
(%n kl(B): n=1,2,..,) is separated (kl is the quotient map of L
onto E/N), and by Lemma 4.1l.1, the graph of kl is closed in
(E,v) x (E/MN, w)* , kl being also bounded if B is bornivorous. Therefore,
if every closed (closed bounded) linear map from (E,v) into any complete
separated locally bounded space is continuous, B must be a v-neighbour-

hood, thus implying that (E,v) is hyperbarrelled (quasi-hyperbarrelled).
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One can also show by modifying the proof of Theorem 4.2.2 that if every
bounded linear map from a semiconvex space E into any complete separated
locally bounded space is continuous, then E is hyperbornological.

We note these for further reference.

'Theor'em 5.2.3.

A semiconvex space E is hyperbarrelled (hyperbornological, quasi-
hyperbarrelled) if and only if every closed (bounded, closed bounded)
linear map from E into any compléte separated locally bounded space
is continuous.

Lemma 5.2.1. If f is a closed linear map from a product XyeQ EY
of separated linear topological spaces into a complete separated

locally bounded space F, then there is a finite subset ¢o of ¢ such

that the restriction of £ to XY€¢/ E_ is the zero map.
®

0
Proof: It is sufficient to prove that for some finitesubset 9, of ¢,
if yed, = ¢/¢,, then the restriction of f to EY is zero. For, if this is

so, then ZY EYCZZ fl_l(O), where fl is the prestriction of f to

e@l
E . Since I E is dense in X E and f _l(O) is closed
ye@l Y Ye¢1 Y ye¢1 ¥ 1
in XY€d>1 EY (because the graph of flls closed in Xy€® BY x F),

..l 1
fl (0) = XY€¢1 Ey.

Let q be an r-pseudometric (o < r s 1) which gives the topology
of F. If there is no finite subset ¢ of % such that for every y in

¢/¢,, £ is the zero map on EY , then, for some sequence (yi t1i=1,2,...)

i i
E  and q(f(x ))= i. Clearly (f(x_ )) is not bounded in F.
Yi Y3 i

of distinct members of ¢, there exist points x such that xY is in



Now, XY€¢ EY induces the product topology on the linear sub-

space G = X (K ) (K. is a copy of the scalar field for each

X
Yi Yi Yi
i). The restriction of f to the Frechet space G has a graph closed in

izl

G x T and is therefore continuous by Banach's closed graph theorem.

This then implies that (f(xY )) is bounded in F. From this contradiction
i
the result follows.

Since by Corollary 2 of Theorem 5.2.2, any finite product of
hyperbarrelled (quasi—hyperbarrelied) spaces is of the same sort, the

following result is immediate on using Lemma 5.2.1 and Theorem 5.2.3.

Theorem 5.2.4,

Any separated product of hyperbarrelled (quasi-hyperbarrelled)
spaces is hyperbarrelled (quasi-hyperbarrelled).

By similarly using Lemma 5.2.1 and Mahowald's results in (26),
one gets an alternative proof to the well known result that a separated
product of barrelled (quasi-barrelled) spaces is of the same sort.

As any separated semiconvex space is a subspace of a product
of separated locally bounded spaces which can be assumed complete, it
follows that every separated semiconvex space is a subspace of some
separated hyperbarrelled space. A hyperplane in a hyperbarrelled space
is hyperbarrelled (this can be proved in a fashion similar to Corollary U4
of Theorem 4.1.2). The proof of the following result uses these
observations and a method due to Komura ((22), Theorem 1.1).

Theorem 5.2.5.

Any separated semiconvex space is a closed subspace of some

separated hyperbarrelled space.



Proof: Let E be a separated semiconvex space. If F is a separated
hyperbarrelled space containing L, let (ea : 0e®) be a Hamel basis for
an algebraic supplement of E in F. For each o in ¢, let Fa be the linear

subspace of I spanned by E and (ek : Aed, A # a). Clearly E =N wed Fod

and since each Fa is a hyperplane in F, each ﬂlis hyperbarrelled.

It is easy to see that with the embedding map f of E into Xae@ Fa

specified by f(x) = (xa), where X, =X for all a in ¢, E becomes a

linear topological subspace of Xae¢ Fa' Since by Theorem 5.2.4., xae@ Fa

is hyperbarrelled, all that remains is to prove that f(E) is closed in

F. If ((x: aed) : ye¥) is a net in f(E) which converges to
acd o o1 Y

(ya : acd) in xa Fa then, for any o (say a,), the net (Xa v yey)

ed o
converges to yao. As X,z xao for all ae@,ya = y“o for all acd.
Thus y&o e N e d Fa = E, and (ya) ¢ f(E). Therefore f(E) is closed
in Xa€¢ Fa'

Let (EY : ye®) be a family of separated bornological spaces.
1f k® is bornological so is XY€¢ Ey. Bourbaki ((Z4),Page 15,
exercise 18b) has a proof which uses the result that a separated locally
convex space E is bornological if every bounded linear map of E into
any Banach space is continuous. By using Theorem 5.2.3 in place of this,
we see that the above stated result (on products of bornological spaces)
holds with '"bornological replaced by "hyperbornological". In particular,
a countable product of%hyperbornological spaces is hyperbornological. Scparctyy
Since an uncountably dimensiocnal linear space under its finest |

linear topology is not a semiconvex space, we see that an almost convex

space need not be a semiconvex space. Theorems 5,2,6 and 5.2.7 below



are results on almost convex semiconvex spaces which are analogues of
Theorems 4.2.3 and 4.3.2. The proofs are omitted, being respectively
similar to those of Theorems 4.,2.3. and 4.3.2.

Theorem 5.2.6.

Let E be a separated almost convex hyperbornological space.
Then [ is a #**-inductive limit of separated locally bounded spaces,
If E is sequentially complete, then it is a **-inductive limit of
complete separated locally bounded spaces and is therefore hyper-
barrelled.
Theorem 5.2,7.

h23 rdtc‘}
Alséquentially complete almost convex quasi-hyperbarrelled

space is hyperbarrelled.

5.3 Countably barrelled and countably quasi-barrelled spaces

Husain, in (14) called a separated locally convex space E
with dual E“countably barrelled (countably quasi-barrelled) if every
o(E “,E)-bounded (&(E ",E)-bounded) subset of E“ which is the countable
union of equicontinuous sets is itself equicontinuous. He proved in
Theorem 1 (Theorem 2) of (14) that a separated locally convex space E
is countably barrelled (countably quasi-barrelled) if and only if every
barrel (bornivorous barrel) which is the countable intersection of
closed absolutely convex neighbourhoods in E is itself a neighbourhood.
He also showed (Corollary 6) that a sequence of continuous linear maps

from a countably barrelled (countably quasi-barrelled) space into a



locally convex space is equicontinuous provided that it is point-
wise bounded (uniformly bounded on bounded sets).

It is trivially true that every barrelled (quasi-barrelled)
space is countably barrelled (countably quasi-barrelled) and a
countably barrelled space is countably quasi-barrelled. In this section
we give examples to show that (i) a countably barrelled space need not
be barrelled (or even quasi-barrelled) and (ii) a countably quasi-
barrelled space need not be countably barrelled. A third example
shows that the property of being countably barrelled (countably quasi-
barrelled) does not pass to closed linear subspaces,

(i) Let E be the strong dual of a metrizable locally convex space.
Then, by ((8), Pages 71 and 88), E need not be quasi-barrelled. But E
is countably barrelled, being countably gquasi-barrelled and complete
((14), Propositions 1 and 4).

(ii) Denote by c the Banach space of all convergent sequences
X = (xl, X, +eo) with the supremum norm, by cy the closed linear
subspace of c consisting of sequences converging to zero and by ¢ the
linear subspace consisting of all sequences containing only a finite
number of non-zero entries. For each n, let fn be the linear
functional on ¢ defined by the equation fn(x) *nx. As pointed out
by Weston ((u41), Page 1), (fn) is a pointwise bounded sequence of
continuous linear functionals on ¢ (under the norm topology induced
from c¢) which is not equicontinuous. Thus by Corollary 6 of (14),¢ is
not countably barrelled, though it is countably quasi-barrelled, being

bornological.
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(iii) Since any separated locally convex space is a closed linear
subspace of some barrelled space, to show that a closed linear subspace
of a countably barrelled (countably quasi-barrelled) space need not be
of the same sort, it is sufficient to give an example of a separated
locally convex space which is not countably quasi-barrelled. Let (E,u)
be c, with the supremum norm topology u and v be the associated weak
topology on ¢ . For each n, let g be the linear map from (E,v) into

(E,u) defined as follows: gn(x)‘= (xl, Xps e Xps Oy O, R

n
Then (gn) is a sequence of continuous linear maps from (E,v) into
(E,u) such that for each x in E, gn(x) converges to x in (E,u).
Moreover, (én) is uniformly bounded on bounded sets, for if B is the
unit ball in (E,u), the union over n of gn(B) is contained in B.

But (gn) is not equicontinuous since v is strictly coarser than u,

Therefore by Corollary 6 of (14), (L,v) is not countably quasi-barrelled.

5.4 XM -hyperbarrelled and ¢ -quasi-hyperbarrelled spaces

We say that a semiconvex space is &f-hyperbarrelled ( M-quasi-

hyperbarrelled) if every closed balanced semiconvex absorbent

(bornivorous) subset of the form
(f) yed UY : for some A > 0, each UY is a closed balanced A-convex
neighbourhood and the cardinality of ¢ is N)
is a neighbourhood of the origin.
Clearly every hyperbarrelled (quasi-hyperbarrelled, {¥* -hyper-
barrelled) space is \-hyperbarrelled (N -quasi-hyperbarrelled,6\‘ -

quasi-hyperbarrelled) for any & and if b(i is a cardinal number less



than 2&“2, then every b¢=2-hyperbarrelled (& 2—quasi—hyperbarrelled)
space iz & 1 ~hyperbarrelled (N l—quasi-hyperbarrelled). By using
Theorem 1 (Theorem 2) of (14) we see that every locally convex CY“O-
hyperbarrelled ( {\ O-quasi—hyperbarrelled) space is countably barrelled
(countably quasi-barrelled). It therefore follows by Example (ii)
of section 5.3 that for each N 3 Zxﬁo, an (\M-quasi-hyperbarrelled
space need not be ew*-hyperbarrelled. Also, by using Example (iii)
of 39ction 5.3 and Theorem 5.2.5, we see that a closed linear subspace
of an (\* -hyperbarrelled (¥ -quasi-hyperbarrelled) space need not be
of the same sort,

If (fY : yed) is a set of continuous linear maps from an 1l.t.s,.
(E,u) into an l.t.s. F, then for every closed balanced semiconvex
neighbourhood V (say V is A-convex, A > 0) in F each fY—l(V) is a
closed balanced A-convex neighbourhood. If (fY : ye®) is pointwise
bounded (uniformly bounded on bounded sets), then N yeo fY-I(V) is
absorbent (bornivorous). Using these, one can prove the following
result.

Theorem 5.4.1.

Let ¢ be a set of cardinality\?* and let (fY : yed) be a set
of continuous linear maps from a semicén?ex space E into a semiconvex
space. If E is (" -hyperbarrelled ( {¢' -quasi-hyperbarrelled) then
(fY : yed) is equicontinuous, provided that it is pointwise bounded
(uniformly bounded on bounded sets).

The following Corollary follows from the above theorem and

Weston's main result in (41).



Corollary. Let (fn) be a pointwise convergent sequence of continuous
linear maps from an (\{‘ O-hyperbarrelled space E into a separated semiconvex

space F, and let f be the limit mapping i.e. f(x) = lim

. °°fn(x) for

all x in E, Then f is continuous. If F is sequentially complete, then

(fn(x)) is necessarily convergent everywhere if it is bounded for each

x in E and convergent through-ght a set which iseverywhere dense in E,
Let (E,u) be the sequence space l%. For each x = (xl, Xy o)

in E, let tn(x) be(xl, Rys e xﬁ, 0, O, ++.). Then, as pointed out

in Page 256 of (37) (tn) is a sequence of continuous linear maps from

(E,u®9) into (E,u) such that for each x in E, tn(x) converges to x in

(E,u). As the identity map from (E,u®®) into (E,u) is not continuous,

it follows from the corollary above that (E,u®®) is not b?o-hyper-

barrelled, though it is countably barrelled, being barrelled. Also each

t is continuous from (E, T(E,E*)) into (E,u) and tn(x) converges to

x in (E,u) for each x in E. Moreover, (tn) is uniformly bounded on

the (E,E*)-bounded subsets of E. For, any 1(E,E*)-bounded subset B of

E is cond;nued in some finite dimensional subspace Eo say, of E. The

restrictions of (fn) to E° must be equicontinuous and thus

Un 1 tn(B) is u-bounded. As the identity map from (E,T(E,E%*)) onto

(E,u) is not continuous, it follows from Theorem S5.4.1 that (E, t(E,E*))

is not ¢V‘O-quasi-hyperbarrelled. This implies that an uncountable

direct sum of Banach spaces is not b&o—quaSifhyperbaprelled and thus an

inductive limit of Banach spaces need not be b( O—quasi-hyperbarrelled.

However, we have the following result.



Theorem 5.4.2.

Any **-inductive limit of N -hyperbarrelled ({\ -quasi-
hyperbarrelled) spaces is of the same sort.
Proof: Let (F,v) be the ®%-inductive limit of (Bu; u, ae¥), where

each E  is QN ~hyperbarrelled. If

v = () V_ : for some X\ > 0, each V is a closed
YE® 'y Y
balanced A-convex v-neighbourhood and the cardinality of
¢ is V)
is absorbent, then for each a in ¥,
ey =Y i)
v yed o Y

is absorbent and for each y in ¢, each ua-l(VY) is a closed balanced
A -convex neighbourhood in E . Since Ea is tU‘—hyperbarrelled,
ua_l(V) is a neighbourhood in E . As this is true for all a in ¥, V is
a v-neighbourhood and (F,v) is {\-hyperbarrelled,
Similarly, any **-inductive limit of {M-quasi-hyperbarrelled

spaces is N -quasi-hyperbarrelled. |
Corollary 1. Any countable inductive limit of locally convex

b@-hyperbarrelled ( b@ -quasi-hyperbarrelled) spaces is of the same
sort.
Corollary 2. Any product of finitely many ?\N-hyperbarrelled
( ™ -quasi-hyperbarrelled) spaces is of the same sort.
Lemma 5.4.1. If B is a closed balanced semiconvex absorbent subset of

a product E = X EY of semiconvex spaces, then there exists a finite

yed

e .
subset ¢0 of ¢ such that XYEWq> Yq; B
o



Proof: Let FY denote EY under its finest semiconvex topology.
By Theorem 5.2.4, the space (F,v) = Xye@ PY is hyperbarrelled.
Since v is finer than the topology of E, B is v-closed and must

therefore be a v-neighbourhood of the origin. From this, the result

follows.
In the above Lemma, E is the ##-direct sum of XY ® E and
o Y
XYE¢/ EY’ and therefore B is a neighbourhood of the origin in E if
L3 |
and only if B M XY€¢ EY is a neighbourhood of the origin in
o
XY€¢O Ey. If each EY is b( ~hyperbarrelled, so is XY€¢O EY by

Corollary 2 of Theorem 5.4.2, In this case, if B is of the form
( (\ eV Ua : for some A > 0, each Ua is a closed
balanced A-convex neighbourhood and the cardinality of
v is V),

EY is a neighbourhood of the origin in XYe E_and B is

o} QO

thus a neighbourhood of the origin in E. Similarly if each EY is

31 Xy£¢

W ~quasi-hyperbarrelled and B is a bornivorous subset of E of the

form

N wey Uy @ for some A > 0, each U, is a closed balanced
A-convex neighbourhood and the cardinality of ¥ iszV‘),
thken it is a neighbourhood in E. We have thus proved the following

result.

Theorem 5.4.3.

Any product of wa-hyperbarrelled (z\é -quasi-hyperbarrelled)

spaces is of the same sort.



By an argument similar to the one above, one can prove that
a product of countably barrelled (countably quasi-barrelled) spaces
is countably barrelled (countably quasi-barrelled).

The following is a generalization of 22.9 of (18). The
argument used here is a slight modification of that in (18).
Lemma 5.4.2, If ) is a strictly positive real number then, in the
strong dual of any metrizable locally convex space, every bornivorous
set which is the intersection of a sequence of balanced A-convex
neighbourhoo&s is itself a neighbourhood.
Proof: Let E be a metrizable locally convex space with dual E-.
We shall suppose that E” has its strong topology B(E“,E).
Let

v = (N n s 1%,¢ each Uy is a balanced A-convex
neighbourhood in E*)

be a bornivorous set in E“. To prove that U is neighbourhood in E“,
it is sufficient to show that there exists a subset of U which is
o(C”,E)-closed, absolutely convex and absorbent, since such a set is
a neighbourhood in E“, being the peclar in EZ of a o(E,E”)-bounded
subset of E.

By 22.3 of (18), there exists in E® a fundamental sequence (Bn)

of bounded sets such that each B, is absolutely convex and o(E“,E)-compact

Now U is a A-convex bornivorous suprabarrel in E“ with (l/xn v)
as a defining sequence. For each n, there are:

(1) a positive number t such that t B q; l/)\n+l U, and



(ii) a o(E”,E)-closed absolutely convex neighbourhood W in E” such
that wnC_': ) u_.
The convex envelope Gn of U lgign tiBi is a o(E”,E)-
compact absolutely convex subset of l/A u. If Vrl = Gn + wn, then
Vn is a o(E~”,E)-closed absolutely convex neighbourhood in E“ and
Vrl c;: Un’ Let
vV = ﬂ(Vn:n=1,2, eed) :
Then V is a o(E“,E)-closed absolufely convex subset of U which is
absorbent in E“ since it absorbs each B
By an application of Lemma 4.3.1, one can easily show that any
-/.gf,mmp\ sequentially complete almost convex (\/\ -quasi-hyperbarrelled space is
(\\—hyperbarrelled. It therefore follows from Lemma 5.4.2 that the
strong dual of any metrizable locally convex space is?&* o—hyperbarrelled.
And since by ((8), Pages 71 and 88) the strong dual of a metrizable
locally convex space need not be quasi-barrelled, we conclude that
an N o-hyperbarrelled space need not be quasi-hyperbarrelled.
Let E be an l.t.s., and let
u = () yed UY : each UY is a closed balanced
neighbourhood and the cardinality of ¢ is{N),

be an ultrabarrel (a bornivorous ultrabarrel) in E with a defining

sequence (U") such that each U is of the same form as U. If every such

Uis a neighbourhood, we say that E is t{‘ -ultrabarrelled (N -quasi-

ultrabarrelled).

It is easy to see that theN -ultrabarrelled ( {¢' -quasi-

ultrabarrelled) spaces bear a relationship to the ultrabarrelled
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(quasi-ultrabarrelled) spaces similar to that between Eﬁf—hyperbarrelled
(N -quasi-hyperbarrelled) spaces and hyperbarrelled (quasi-hyper-
barrelled) spaces. It is not difficult to show that Theorem 5.4.1

and its corollary are true with '"semiconvex space",'"hyperbarrelled”
respectively replaced by "l.t.s." and "ultrabarrelled". Also, Theorem
5.4.2 and its corollaries are true with "**-inductive limit" and
"hyperbarrelled" respectively replaced by "#*-inductive limit" and

"ultrabarrelled®.



CHAPTER 6 _

D(ﬂl;/) , T) - SPACES

6.1 Completeness and the closed graph theorem

Let E,F be complete metric linear spaces. Banach, in (3)
proved that any closed linear map of E into F is continuous and that
any continuous linear map of E onto I is open. The first assertion
is the classical closed graph theorem and the second, the open
mapping theorem. These two results do not hold for arbitrary complete
separated linear topological spaces, as the following example shows.
Let (E,u) be an infinite dimensional complete metric linear space,
Then, since the finest linear topology s on E is strictly finer than
u, the identity map of (E,s) onto (E,u) is continuous but not open and
this implies that its inverse is closed but not continuous. Yet (E,s),
(E,u) are complete separated ultrabarrelled ultrabornological spaces,
Thus the validity of the two theorems requires some unusually strong
hypotheses. Various mathematicians, including Ptak (32), (33),

A.P. Robertson and W. Robertson (35), Kelley (17), Raikov (34) and
Husain (9), (10), (11), (12) have studied the closed graph and open
mapping theorems, especially for locally convex spaces.

Pték, in (32), (33) introduced the notions of B-completeness
and Br—completeness in locally convex spaces. Precisely, a separated
locally convex space E is said to be a B-complete (Br-complete) locally

convex space if every continuous (continuous (1 - 1)) linear nearly open



map of E onto any separated locally convex space is open. As shown
by Kelley ((17), Theorem 2), for a separated locally convex space E
the following are equivalent:

(1) The space E is a B-complete locally convex space.

(2) Every closed linear nearly open map of E onto any separated
locally convex space is open.

(3) Every closed linear nearly continuous map from any separated
locally convex space into any quotient of E by aclosed linear sub-
space is continuous.

Also, for a separated locally convex space E, it follows easily
from ((33), 3.6 and 3.8) that the following are equivalent:

(1) The space E is a Br—complete locally convex space.

(2) Every closed linear (1 - 1) nearly open map of E onto any
separated locally convex space is open.

(3) Every closed linear nearly continuous map from any separated
locally convex space into [ is continuous.

These two sets of results show the very close link between the closed
graph theorem, the open mapping theorem, B-complete and Br—complete
locally convex spaces.

Ptdk in ((33), 5.6, 3.3, 4.1) showed that if E is a separated
locally convex space with dual E®, then E is complete (Br-complete,
B-complete) if and énly if every hyperplane in E“(every ¢(E“,E)-dense
linear subspace of E”, every linear subspace of E*) having a o(E”,E)-
closed intersection with the polar of each neighbourhood in E is

o(E“,E)-closed. Separated locally convex spaces E with the property
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that every linear subspace of E” having a o(E“,E)-closed intersection
with the polar of each neighbourhood in E is o(E“,E)-closed, were
studied by Collins (5), who called them fully complete spaces.
Hypercomplete spaces (of Kelley (17)) are the separated locally convex
spaces having this property, with "linear subspaces of duals" replaced
by "absolutely convex subsets of duals". Singer, in (38) called a
separated locally convex space E strictly hypercomplete if every convex
subset of E” having a o(E‘,E)-cloéed intersection with the polar of
each neighbourhood in E is o(E”,E)~closed. Thus every strictly hyper-
complete space is hypercomplete, every hypercomplete space is a B-
complete locally convex space, every B-complete locally convex space
is a Br-complete locally convex space and every Br—complete locally
convex space is complete.

Strictly hypercomplete spaces are those separated locally convex
spaces for which the Krein-Smullian theorem (see (24)) holds. Every
Frechet space is strictly hypercomplete (7). It is not difficult to
show that the dual of a Frechet space is strictly hypercomplete for
all convex topologies between the topology of compact convergence and
the Mackey topology (in fact, the proof of a similar result for B-
complete locally convex spaces, given in page 123 of (36) carries over
easily). Thus a countable direct sum of reflexive Banach spaces is
strictly hypercomplefe. However, a hypercomplete space need not be
strictly hypercomplete. For by((18), Page 178, example H) a product

of reals need not be strictly hypercomplete, but is hypercomplete.



Since a complete S-space is strictly hypercomplete (for the definition
of an S-space, see (13)) by Theorem 3 of (13), this example also
proves false a conjecture of Husain's in page 258 of (13) that complete
S-spaces and hypercomplete spaces are the same thing. By an easy
modification of a method due to Collins ((15), Theorem 15) (Pték((33),
4.4)), one can prove that closed linear subspaces (quotients by

closed linear subspaces) of strictly hypercomplete spaces are

strictly hypercomplete.

Raikov, in (3%) called an l.t.s. E a B-complete 1.t.s. if
every continuous linear nearly open map t of E onto any separated
l.t.s. is open. He observed that for a locally convex space E,
this definition is equivalent to that of Ptak in (32), but that
in addition every complete metric linear space is a B-complete
l.t.s.- He also pointed out that every closed linear nearly continuous
map from any separated l.t.s. into a B-complete l.t.s. is continuous,

If in Raikov's definition above, we restrict "t" to be a

(1 - 1) map we say that E is a Br-complete l.t.s.  Just as in the case

of a B-complete l.t.s., a separated locally convex space is a Br'
complete l.t.s. if and only if it is a Br—complete locally convex space.

Analogously, one may define B-complete and Br—complete semiconvex

e —————

spaces as well as B-complete and Br-complete topological groups.

A separated semiconvex space is a B-complete (Br-complete) semiconvex
space if and only if it is a B-complete (Br-complete)
l.t.s.+ Examples of B-complete topological groups are complete

metrizable or locally compact groups ((16), Page 213).



We now describe briefly an attempt to generalise the notions
of B-completeness and Br—completeness in locally convex spaces.
Let gy denote the class of all separated locally convex spaces with
the property that every continuous linear (nearly open) map from any
member °f£%r onto any separated barrelled space is open. By Theorem
3(i) of (35), ¢4 includes all B-complete locally convex spaces.
Husain and Mahowald, in (15) observed that a member of & need not be
complete and hence need not be a B-complete locally convex space.
This led llusain to study what he called B(o)- and Br(o)-spaces in a
number of papers including (9), (10), (11), (12). While B-complete
and Br—complete locally convex spaces derive a considerable part of
their importance from their usefulness in proving closed graph and open
mapping theorems, B(og)- and Br(o)—sﬁaces have not so“far met with
any appreciable success in this direction.

In this chapter we consider problems of the following type.
If,/q 1 is a class of separated linear topological spaces, find a
necessary and sufficient condition for an l.t.s. F to have the property
that every closed linear nearly continuous map from any member of,/q 1
into F (any quotient of F by a closed linear subspace) is continuous.

We give answers for some important classes /Ll and use them to

1

describe extensions to well known closed graph and open mapping theorems.
As some of our methods work for topological groups, our subject is
treated in this context in Sections 6.2 and 6.3, while in Sections 6.4,
6.5 and 6.6, we restrict our consideration to linear topological spaces.

Throughout, all our topological spaces shall be assumed separated.
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6.2 The case when H 1 is nearly full inA

Le‘c,q be a class of topological groups. For every E, F in A,
let T(E,F) denote a given set of group homomorphisms from E into F, and

take T to be the union of T(E,F) as E, F vary overﬁ. We say that (R ,T)

is admissible if the fcllowing conditions are satisfied.

(1) For any E inH » if E_ in/Q is a closed subgroup of E, then E/}EIo
is in/‘? and the quotient map of E onto E/Eo is in T(E,E/Eo).

(2) FYor E, F, F inA such that _Fo is a subgroup of F, if t is in T(E,F)
then, under their induced topologies the subgroups t-l(el), t-l(f’o) of E
are inA.(el is the identity of F), the induced map of t is in T(E/t-l(el),f‘)
(if t-l(el) is clesed in E), and the restriction of t to t-l(FO) is in both
T(t’l(ro),Fo) and T(t—l(FOLF).

(3) ForE, F, G in)q s if t, is in T(E,F) and t, is in T(F,G) then,
the map t,ot, is in T(E,G), the subgroup t,(E) of F is in/Qand t, is
in T(E,t ((E)).

(4) For E s E, F in A such that E, is a subgroup of E, if t in
T(EO,P) is a (1 - 1) onto map then, t-l is in T(F,E).

(5) If (E,u), (F,v) are-in,)q. and t is in T((E,u),(F,v)) then, the
space (F,w) (if separated) is inR » where the topology w has a base of
neighbourhoods consisting of sets (t(U)V : Uexd ,Vel) ) N ) are
respectively bases of symmetric neighbourhoods for the topologies u,v)
and the identity map is in T((F,v),(F,w)).

If (ﬁ ,T) is admissible and E is in)q, in referring to a
subspace E_ of E, it shall be assumed that E_ is inﬂ .
Let (/Q ,T) be admissible and suppose thatﬂl,/QQ are

subclasses ofﬂ . Ve say thatAl is nearly full in,q with respect
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to T and /L12 if, with the notation of (5) above, (E,u)e,/? 1°
(F,v)eﬂ 9 => (F,w) e/q 1 whenever w is a separated topology.

Let A be the class of all topological groups (linear
topological spaces, semiconvex spaces, locally convex spaces). For any
E, F inﬂ » let T(E,F) be the set of all group homomorphisms (linear
maps, linear maps, linear maps) from L into F. Clearly (ﬂ ,T) is
admissible, andﬁ is nearly full inﬂ with respect to T and /q2,
for any subclass /q 5 Of /q If A 3 is the class of all second
category topological groups (ultrabarrelled spaces, hyperbarrelled
spaces, barrelled spaces) and H y the class of all Lindeldf topological
groups which are either locally compact or complete metrizable
(complete metric linear spaces, semiconvex complete metric linear spaces,
Frechet spaces) then, /Q 3 is nearly full in/q with respect to T and
ﬂu. To prove this, one uses Lemma 2.6.5 and the fact that in any
of the cases considered, every t in T(L,F) is nearly continuous if

EsAsandFE/qu.

Let (/Q ,T) be admissible and let ﬂl be a subclass of A .

We say that E inA is a D( /‘Q )3 A ,T)-space 1if for every E; in
ﬂl’ any onto map t in T(E,El) is open provided that it is nearly open
and its graph is closed in E x ;. The class of all I( /q 1 ﬂ ,T)-
spaces shall be denoted by D( /Q 13 /Z sT). If in the definition of

a D( ﬂ l;/Q. »T)-space the condition is only assumed satisfied by

(1 -1) maps nt::’ then we call E a DP(/q l.‘,ﬂ ,T)-space, and

—— ot =+ — v oo
——

correspondingly we have the class Dr( ﬂ 1 A' ,T).
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Clearly if (/q ,T) is admissible then D(/q l;A ) &
Dr(_/q l;/Q ,T) for every subclass H N of ﬂ . If /Q 2,/q 5 are
subclasses of/q such that ﬂ 2:}_ /q3, it is easy to see that
b AuA et ApA maa Ay Am o AAMD.
Also, if E is a D( /Q 13 /Q ,T)-space then, for any closed subspace
E, of E, E/EO is a (A l;A ,T)-space. For, let F be in A 1 and
t in T(E/EO,F) be a closed nearly open onto map. If kl is the
quotient map of E onto E/Eo, then t‘he map tok, € T(E,I') since (A »T)
is admissible, and is closed and nearly open. Therefore 1:okl is open
and this implies that t is open. Thus E/Bo is a D( jq l;ﬁ ,T)- space.
It is also not difficult to show that if E is a Dr( A 1) /Q— »T)-space
then it is a D( fz l.;/q ,T)-space if and only if E/Ej 1s a Dr( A 13 Jq ,T)=
space for every closed subspace Eo of E.

Theorem 6.2.1.

Let ( /q.,T) be admissible and suppose thatz‘llj /Lzz are

subclasses of A such that /q 1 is nearly full in)q with respect to
T and H 9 Then, for a space E in /Q 9 the following are equivalent:

(1) For every F in A’l’ any continuous (1 - 1) nearly open onto map
in T(E,F) is open.

(2) TFor every F in /Ql, any closed nearly continuous map in T(F,E)
is continuous.

(3) The space E is a Dr(/q l;/q ,T)-space,

(1) => (2): Let F be in Al and let t in T(F,E) be a closed nearly

continuous map. Denote by U, V bases of symmetric neighbourhoods for



the topologies of I, E respectively, and let w be the topology on E
with a neighbourhood base (t(U)V : Uel,Ve))). Since t is closed
and nearly continuous, it follows by Lemma 2.6.5 that (E,w) is
separated and that the (continuous) identity map i say, from E onto
(E,w) is nearly open. As /z%il is nearly full in /£2 with respect to
T and /Q 9 (E,w) eHl; and because (A ,T) is admissible,
i eT(E,(E,w)). Therefore by (1), w ccoincides with the original
topology of E. And since t is céntinuous from F into (E,w), (2)
follows.

(2) => (3) Let F be infql_and suppose that f in T(E,F) is a
closed nearly open (1 - 1) onto map. Then f—l e T(F,E) because
(/q ,T) is admissible, and f-l is closed and nearly continuous,
By (2) £ 1 is continuous and thus f is open. This proves (3).

(3) => (1) obvious.

By using Theorem 6.2.1 and the fact that a quotient by a

closed subspace of a D(/Ql;ﬁ,T)-space is also a D(ﬂl;A,T)-
space, one can prove the following result.

Theorem 6.2.2.

Let ()CL,T) be admissible. Suppose that /q;l,,/? , are sub-

classes of,/Q,such that each quotient by a closed subspace of every

member of)é?Q is also in /£22 and that /£2l is nearly full in‘/Q with

respect to T and Hz. Then, for a space E in H the following are

2
equivalent:

(1) TFor every F in j?l’ any continuous nearly open onto map in

T(E,F) is open.



(2) 1f E is a quotient of E by a closed subspace and F is in
A/? then, any closed nearly continuous map in T(F, E ) is continuous.
(3) The space E is a D(A /q ,T)-space.
Letjiz be the class of all topological groups (linear
topological spaces, semiconvex spaces, locally convex spaces).
If E,F ;/Q, let T(E,F) be the set of all group homomorphisms(linear
maps, linear maps, linear maps) from E into F. It follows from
Theorem 6.2.1 that the Q&/Q ;/q ,T)-Spaces are the Br—complete
fopological groups (linear topological spaces, semiconvex spaces,
locally convex spaces). It similarly follows from Theorem 6.2.2 that
the D(/q L/?,T)-spaces are the B-complete topological groups (linear
topological spaces, semiconvex spaces, locally convex spaces).
With /Q, ,T,ﬂl,H:Z,E as in Theorem 6.2.2 (Theorem 6.2.1)
let E be a subspace of E and suppose that the space F is in;tll.
It follows by an application of Lemma 2.6.3.(a) that a closed nearly
open (closed nearly open (1 - 1)) onto map in T(Eo,?) is open
provided that the filter condition holds. In either of :the two cases,
it also follows by an application of Lemma 2,6.3.(b) that a closed
nearly continuous map t in T(F,EO) is continuous provided that the

inverse filter condition holds and t ¢ T(F,E).

6.3 Inductive classes

Let (JAQ,T) be admissible. Let F be in:zq and suppose that
for each y in an index set Y, Ey_E/q, uYeT(EY’F) and each uY is

continuous. We say that (,/?,T) is an inductive class if for each




choice of F, V¥, Ey, uY as above, there is a topology w on F
simultaneously satisfying the following conditions:

(1) (r,w) E/LJ and each u e T(EY,(F,w)).

(2) The topology w is the finest one on F satisfying (1) for which
each u, is continuous.

(3) If G 61/1 then, any f in T((F,w), G) is continuous if and only
if each fouY is continuous.

(4) If F_ is a closed subspace of (r,w) and ky is the canonical map
of F onto P/Fo then, the quotient topology of (F,w)/Fo is the finest
topology on F/F_ for which (F,w)/Fo is in_/Q,and such that (a) each
klouY is continuous and (b) for any H in,/l , any f in T((F,w)/Fo, H)

is continuous if and only if each fok ouY is continuous.

1

If conditions (1) + (4) are satisfied, we call (F,w) the

(,;Q,T)-inductive limit of (EY; uY : ye¥). If in particular F is the

union over y of uy(EY), we say that (F,w) is the generalized strict

(}ﬁle)—inductive limit of (E ; u : ye¥),
! ¥

If E is the (}1,,T)-inductive limit of (EY; uY: ve¥) then, by
condition (4) above, any quotient of E by a closed subspace is the ()Q_,T)-
inductive limit of (EY; klouy : vye¥), where kl is the canonical map
of E onto the quotient space.

Let (/q,,T)vbe admissible. We call a complete topoclogical space

E in/q extracomplete if every quotient by a closed subspace of E is

complete. Clearly any quotient by a closed subspace of an extracomplete

space is extracomplete,
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Let (/ﬁl,T) be admissible. Let}q l.be the class of all
members of,/q each of which is of the second category in itself, and

}Q 5 @ subclass of Dr(/i ;f%,T)(D(/l ;/?,T)) consisting of spaces

and whicl, indude,
s Pretuets of
1 2 in memlaeyg

/22 any t in T(Bl,E2) is nearly continuous, we call the ordered pair

which are complete (extracomplet%é. If for every E in;‘ll and E

(/Q l,/QZ) a uu(ﬂ ,T)-pair (xm(ﬂ ,T)-pair). We shall generally

shorten ul2(/2 ,T)pair(AlQ(/Q ,T)pair) to u12pair (Al2pair).
Clearly every Al? pair is also aiul2 pair.

Let,ﬁl be the class of all topological groups (linear topological
spaces, semiconvex spaces, locally convex spaces). If E,Fs,/z, let
T(E,F) be the set of all group homomorphisms (linear maps, linear maps,
linear maps) from E into F. By using the notion of inductive limits
of topological groups defined in (39) (*-inductive limits of linear
topological spaces, **-inductive limits of semiconvex spaces,
inductive limits of locally convex spaces) we see that (/LZ,T) is an
inductive class. Let /Lll_be the class of all members ofﬂfz each of
which is of the second category in itself. If,/q2 is the class of all
Lindelof topological groups which are either complete metrizable or
locally compact (the class of all B-complete linear topological spaces,
the class of all B-complete semiconvex spaces, the class of all B-

complete locally convex spaces), then (}911,1212) is a x12 pair,

Theorem 6.3.1.

Let (/Q ,T) be an inductive class and (AI’A’Q) a x12 pair.
If E is the (/q,,T)-inductive limit of (EY ; uY : ye®) and F the genera-

lized strict (fq-,T)-inductive limit of (Fn; v, otns= 1,2...), where each
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EY Eﬂl angl each Fn e/QQ then,

(a) any closed map t in T(E,F) is continuous, and

(b) any closed onto map g in T(F,E) is open.

(a) For each y in ¢, touY £ T(Ey,F) and is closed. Moreover, t is
continuous if and only if each touY is continuous. It is therefore
'sufficient to prove (a) assuming that E e/ﬁll i.e. that E is of the
second category in itself. Ve noQ make this assumption. By a similar
argument, one can show that it is sufficient to consider v, asa
(1 - 1) map., We may then identify P with the subspace vn(Fn) of T
and thus consider F as the generalized strict (/l ,T)-inductive limit
of (Fn; in :n=1,2, «..), where in is the identity map of F, into F.
With this identification, it is clear that for each n the topology of
F is finer than that induced by F.

Nowr,
E =t HU (£ =\ £ )
nzl""n n 21 n
Since E is of the second cétegory in itself, there exists some positive
integer N such that H = t-l(FN) is of the second category in E.
As (,/?,T) is admissible, H is in,/zl and the restriction to of t to
H is in T(H,PN). Moreover, the graph of ty is closed in H x FN,
and since (/2 1»‘2 2) is a Ay, pair t, is nearly continuous. Therefore,
by Theorem 6.2.2, t, is a continuous map from H into F,. If t

N 1
continuous group homomorphism from the closure Hi of Hin E into Fy

is a

extending T, t

1 is also continuous from H'into F. By Lemma 2.6.2,
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the group homomorphism f from Hl into F defined as follows, is closed -

20 = ot (x) (G = 60 e,

Therefore, by Lemma 2.6.4, f—l(el) is closed in Hl (el is the
identity of I') and since f'l(el) 2 H, it follows that f-l(el) = Hl

and that t, t, coincide on H,. Thus t is a continuous map from H

1 1 1

into .

Clearly Hy is of the second category in L, and being closed it
satisfies the condition of Baire. Therefore by a remark in section 2.5
t is a continuous map from E into F.

(b) If h is the induced map of g then, the graph of h™ is closed in
Ex F/g—l(e), (e is the identity of E). Also h-l € T(E,F/g-l(e))
since (/Q,,T) is admissible; and F/g'l(e) is the generalized strict

(A ,T)-inductive limit of (Fn; k.o v, in= 1,2 ...) (kl is the

1l
canonizal map of F onto F/g-l(e)) since (,‘%,T) is an inductive class.
Therefore, by (a) h™! is continuous and thus g is open.

By a method similar to that used above, but this time applying
Theorem 6.2.1 instead of Theorem 6.2.2, one can prove the following

result.

Theorem 6.3.2.

Let (A ,T) be an inductive class and (JQ,I,/? o) @ up, pair.
. sereelied
If E is the (A ,T)-inductive limit of (E,s u: yed) and F ‘Che,[(A’T)‘ “

inductive limit of (Fn; v, ins= 1,2, ...), where each Eye,/zl, each
ﬂje}q 5 and v is a (1 - 1) map then,

(a) any closed map in T(E,F) is continuous, and

(b) any closed (1 - 1) onto map in T(F,E) is open.
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Letjil be the class of all locally convex spaces and./ql the
class of all locally convex spaces of the second category. TFor E, F
in)ﬁl, let T(E,F) be the set of all linear maps from E into F.

If/z2 is the class of all B-complete locally convex spaces then,
Theorem 6.3.1 provides slightly strengthened forms of Theorems 2 and
3(ii) of (35). As is well knewn, this result implies that every closed
linear map from a sequentially complete bornological space into an

L.F. space is continuous.

Now consider the case when,ﬁl is the class of all semiconvex
spaces and/?l the class of all semiconvex spaces of the second category.
For E, F in)Q., let T(E,F) be the set of all linear maps from E into F.
If/ézz is the class of all B-complete semiconvex spaces then, Theorem
6.3.1 shows that every closed linear map from any #*-inductive limit
G of semiconvex spaces of the second category into a generalized strict
“*-inductive limit H of a sequence of B-complete semiconvex spaces is
continuous and that every closed linear map of H onto G is open.

By Theorem 5.2.6, it follows that every closed linear map from a
sequentially complete separated almost convex hyperbornological space

G into a generalized strict *¥*-inductive limit H of a sequence of
complete metrizable semiconvex spaces is continuous and that every closed
linear map of H onto G is open. These remarks also hold on respectively
replacing "semiconvex space'", "hyperbornological and "‘%*-inductive limit"

by "1.t.s.", "ultrabornological'and "*-inductive limit ".
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We note however that a closed linear map from a separated
inductive limit of Banach spaces into a B-complete semiconvex space
3
need not be continuous. For, if (E,u) is the sequence space 1%,

the identity map i from (E,u®®) to (E,u) is closed and thus the graph

of i is closed in (E,T(E,E*))x (E,u). But t(E,E*) is not finer than u.

6.4 General properties

As from now, we shall only be interested in three situations
where (A »T) is admissible. These shall be referred to as the

admissible case (1), admissible case (2) and admissible case (3).

For the admissible case (1) A is the class of all linear

topological spaces and for every E,F in/q , T(E,F) is the set of all
linear maps from E into F. If we need to be specific (A,T),
D(HI;R,T) and Dr(ﬂl;ﬂ »T) shall in this case be respectively
denoted by (ﬂ ’T)l’ D(/Q 15(A ,T)l) and Dr()q,l;(ﬂ ,T)l).

The definitions of admissible case (2) and admissible case (3) are

similar, only that we replace "linear topological spaces" by
"'semiconvex spaces" and "locally convex spaces' respectively.
The notations are also similar, only that we replace the suffix "1"
by "2" and "3" respectively.

In any of these situations, (A_ »T) is an inductive class.
When we say that F is the (A, ,T)-inductive limit of (EY 3 uY : ye¥),
it shall be assumed that the union of (uY(EY)) spans F. If (A ,T) is
admiss ible, and Hl is a subclass of)q , Hl* shall denote the class of
all spaces each of which is the (H »T)-inductive limit of some

(EY; u ved), where each EY € /Zl'
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In considering D(A l;(}q ,T)l) and Dr( Al;(ﬂ ,T)l)’
/Ql shall be a class of ultrabarrelled spaces. In the other two
situations, /?l shall respectively be a class of hyperbarrelled and
barrelled spaces. With such a choice, if E eﬁ and F ¢ H , then,
any onto map in T(E,F) is nearly open. As a result of this our
definitions of D(Al; /q ,T)- and Dr(ﬂ‘l; R ,T)~spaces now take the
following form.

Let (A,T) be admissible and suppose that ﬁl is a subclass of

)q (chosen as stated above). A space E in,q, is a D()Q 13 ﬂ-,T)—

(Dr(ﬂl',/z ,T)-)space if for each El inAl, every closed linear

(closed linear (1 - 1)) map of L onto L, is open.

1l
If /ql is a class of locally convex spaces then, according to

Husain (9),a locally convex space E is a B( Al)—(Br( Al)-)space

if for each F in [{/l, every continuous (continuous (1~ 1))linear nearly

open map of E onto T is open. Ifﬁl is a class of barrelled spaces

then, every D(ﬂ 1} (A ,T)a)—(DP(Al;( A,T)a)-)Space is clearly

a B( /Ql)—(BP( )ql)—)space. However, in this case I do not know of

any B( Al)-(Br( Al)—)sxpace which is not a D( Al;()q—,’l‘)s)—

(p( Iql;(g ,T)s)-) space.

For the remaining part of this chapter, the letters C s Cu’

Ch’ 'BD’B 9 Bla 8115 ?s Jl’ ?llaL,«A/, Nl’ Nll’
3 5 shall respectively stand for the classes of all barrelled, ultra-
barrelled, hyperbarrelled, Banach, second category locally convex,

second category linear topological, second category semiconvex, Frechet,
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complete metric linear, semiconvex complete metric linear, complete
separated locally bounded, sequentially complete bornological,
sequentially complete almost convex ultrabornological, sequentially
complete almost convex hyperbornological and finitedimensional lineac
topological spaces.

Proposition 6.4.1.

(a) Let (/? ,T) be admissible and let /?l be a subclass of,/?.
Suppose that E, E, are in /?. If therc is a continuous (continuous
(1 - 1)) linear map of E onto E, then, E; is a D(/q.l;/Q,T)-
(Dr(/qu;./?,T)-) space if E is.

(b) Letf? 1 be a class of barrelled spaces. If u, v are convex
topologies on a linear space E yielding the same dual then, (E,u) is
a D(/z.l; (/Q ’T)S)_(Dr(‘f?l; (./?,T)s)-) space if and only if (E,v)
is.

(a) Suppose that L is a D(_/qlﬁ,;z,T)-space and that h is a
continuous linear map of E onto El. If f is a closed linear map of
E, onto some H in/ql'then, the map foh of E onto H is closed and
therefore open. Since for any subset Q of El’ £(Q) = foh(k_l(Q)), we
have that f is open and thus E; is a D(‘/%lﬁ f% ,T)-space. Similarly
Ey is a Dr(/q l;/% ,T)-space if E is, provided that there is a
continuous (1 - 1) linear map of E onto L.

(b) Let (E,u)” = (E,v)” =E’. By (a) it is sufficient to prove
that (E,t(E,L”)) is a D(/ql;(/q ,T)3)~(Dr(/? l;(ﬁ ,T)4)-) space
if (E, o(E,E”) is.
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Suppose thet (E,0(E,E”)) is a D(/% l;(/Q.,T)S)-space, and let
h be a closed linear map from (E,t(E,E”)) onto some H in /?l'

Thz graph of h is also closed in (E,o(E,E”)) x II, since the graph is a
linear subspace of E x H and the locally convex spaces (E,c(E,E°)) x H
and (E,7(E,E®)) x H have the same dual. Therefore h is an open map of
(E,0(E,E*)) onto H. Now, (E,0(E,E*))/h™ (o), (E,t(E,E“))/h"1(c) have
the weak and Mackey topologies respectively with the same dual.

If £ is the induced map of h then, since f—l is a continuous linear map
of H into (E,G(E,E‘))/h_l(o) and H has a Mackey topology, f~l is a
continuous map from H into (E,T(E,E‘i)/h-l(o). Therefore h is an open
map of (E,T(E,E”)) onto H and thus (E,t(E,E”)) is a D(/q]§(</l,T)3)-
space. Similarly (E,u) is a Dr(fq:L;L/q’Tﬁ3)-space if and only if
(E,v) is.

Let (E,u) be a metrizable l.t.s. with dual E” separating the
points of E. By an application of ((35), page 9), we see that the space
(E°,t{E*,(E,u®°)"}) is a B-complete locally convex space. Sincet(E“,E)
is coarser than T{E;(E,UO?)‘} , it follows from Proposition 6.4.1 that
for every convex (semiconvex, linear) topology w on E“ which is coarser
than ©(E%,E), (L) 1s an(CsC A, -0( L (A 1) )-

D(cal 5 (}Q ,T)l)—) space.

Proposition 6.4,2,

Let (}Q ,T) be admissible. If /ql is a subclass of /? such

that every quotient by a closed subspace of each member of/q 1 is also

in/ql then, D(H l;/q ,T) = D( ﬁl-fc;ﬂ sT).
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Proof: It is sufficient to prove that D(ﬂl;ﬁ,T)g__ D( /yl»':;/ﬁ) >T)e
Let f be a closed linear map from a D(/?l;/q ,T)-space E onto some
Bl in /?l*. There is no loss of generality in assuming that f is

(1 - 1) since every quotient of E by a closed linear subspace is

also a D(/?_l;/Q ,T)-space. We therefore make this assumption.

Since by the hypothesis every quotient by a closed linear subspace of
a member of /g is also in /ql, we may assume that El is the

(/?.,T)-inductive limit of some (Fyg iY : YeT'), where each Fye,/zl

l.
The graph of the linear map iY_lof of E onto F, is closed

and each iY is a (1 - 1) linear map of FY into E

for each y in T', since it is the inverse image of the graph of f by
the continuous map (x,y) = (x,iY(y)) of E x PY into E x El.
Therefore iY-lof is open and thus for every neighbourhood V in E,
iY-lof(V) (=(f—loiY)_l(V)) is a neighbourhood in Fy' This implies

that f-loiY is a continuous map of FY into E for each vy in T,

Therefore f—l is continuous and thus f is open and [ is a D(’/?l*;‘/z’T)'

space.

Corollarz:
(a) (8 l;(ﬁ’ 1))

) p(F 3(A .1
(&) (B3A.mY
@ o B (A,

DIy ,% (AR,1))
p( F %5 (AT
p( 8% (A .1y
p(3:(A,m,)

p(N A oy

D(B 5 (ALT),) .
DN DY) = o LA .

(e) DCL (A M)
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The proof of the following result is easy and is therefore omitted.

Proposition 6.4.3.

Let (/q ,T) be admissible and let/‘?l be a subclass of/l?.

If every separated continuous (continuous (1 - 1)) linear nearly open
image of each member OfJL?l is also in f?l then, every D(/q l;;%Q,T)-
(Dr(/q l;/q,T)-) space which is.hx/ql_is B-complete (Br-complete).

In ((18), page 195, problem D(a)), G = E, x E,, where E, is’a
B-complete barrelled space, being a countable direct sum of reflexive
Banach spaces and E2 is a Frechet space. Since G is barrelled (hyper-
barrelled, ultrabarrelled) but not B-complete, it fdlows by Proposition
6.4.3 that a product of two D( C (A4 ,T)3) -(p( C}) (A 2 T)5)-,
rxczl;(/? ,T)l)-) spaces does not necessarily belong to the class.

We observe that in the example referred to in the last para-
graph, El, E2 are strictly hypercomplete. Thus a product of two
hypercomplete spaces need not be hypercomplete. This answers
(negatively) a question of Kelley's in ((17), page 236).

By Proposition 6.4.3, an incomplete quotient of an L.,F. space
is not in D ( (3 ;A,1),), orD(C (A ,1);). But by Theorem 6.3.1,
such a space is necessarily in D(JB ; (/? ,T) ), and D( f?l,(,‘? T) ).

It is easy to see that every locally convex space is in D(‘?}G;( /{,T) )
and D3 6;(,‘1,T)3). But an infinite dimensional Banach space under
its finest convex topology is not in Dr(”:}l;(/q,T)l) or

DPQEL;(/Q ;T)s). In Proposition 6.4.4, (i), (ii), (v) and (vi) follow
from these observations and the corollary of Proposiiton 6.4.2. Parts

(iii) and (iv) of the same result are easily established.
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4

Proposition 6.4.4.

(1) D ( Cu;(ﬁ 7)) C;::Dr( 5 ;(/? »T),) c D ( :’rl;(A ,T);) é

D_(“F (AL,
@ o€ s(Amp g B = o BEA ) ¢
23 s(Am) = }l*;(/Q,T)l)% o F (A, D).

(1i1) (B3R .1 g (B 3(A D).
(iv) o B34 .mpc B iA n).
@ D (CHA DS 0, BHADIE D g3 mp <
NUA DN 2 (FAADYS B A Dy
S 0,0 FsADy. |
i) (€A Mg p prcAmy = nBAny <
D B #5(A T = D En;(/q,r)s) = D(,V-,(Q,T)a)

- (FiALDy S o F: Ay,

6.5 The case when A is an w cum inductive class

1:
If (/Q,T) is admissible then, on any linear space L there is

a finest topology for which the space is inH. This topology shall
be denoted by w. The topologywis s, sc or T(E,E*) respectively according
aswe are consdering the admissible case (1), (2) or (3).

Let (A,T) be admissible. We call a subclass ﬁl ofﬂgn__g

cum_inductive class in lq if (E,w) e}}l for every linear space E and

for every (En : n=1,2, ...N) in/ql, any (/q ,T)-inductive limit of

(En : n=1,2, ...H) is in ﬁl'
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For the admissible case (l),c.u, gn*, }l'«'»‘, 3,*, Ls’: B*’
ZSH% are weum inductive classes. For the admissible case (2), similar
examples are C R 3}‘-", }ll*’ }"’, L% 8*, Ell* and for case (3),
. Bn*’B*’ I

Now, any inductive limit of a sequence of Banach spaces is a
quotient of their direct sum. Since an inductive limit of a sequence
of Banach spaces need not be. sequentlally complete ((23), page 437), we
see that /¢/ /\/ /L, are not ycum inductive classes for the
admissable cases (3), (1) and (2) respectively.

Theorem G6.5.1.

Let (/q ,T) be admissible and let,/? be an wcum inductive class
1n/? Then, (E, r):uu/?ls a D ( /91,/? T)-space if and only if every
closed linear map from any F in,/?l into (L, 1 ) is continuous.

Proof: Suppose that (E,1) is a DP(,/213JAZ,T)-space. Let f be a closed
linear map from some F in;é?l into (E,7). Since F/f_l(O) is also in
/l?l’ we may also suppose that f is a (1 - 1) map. As f is closed and
linear, it follows by Lemma 2.6.5 that f is continuous from F into
(E,Vl) where v, is coarser than t and (E,vl) is in,/?. Since f is

1

(1L - 1), we may identify F with the linear subspace E. = f(F) of E.

1
Let (El,p) be this space with the topology of F. The space (Bl,p) is in

/?l and p is clearly finer than the.vl-induced topology on El-

Let E2 be an algebraic supplement of.E1 in L. As E is algebraically
isomorphic to E, x E,, we may identify E, xE
identification, let (E,q) be the (/Cl,T)—direct sum of (El,p) and (E2,w).

5 with E, With this
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Clearly q is finer than v,, (E,q) is in,/?l and f is continuous from F
into(E,q). Now the identity map i say, from (E,1) onto (E,vl) is
closed, being continuous and thereforethe graph of i is closed in
(E,1) % (Eyq). Since (E,t) is a Dr(}q l;/q ,T)-space and (E,q) ¢ /Q 1
it follows that t is coarser than q. Therefore f is continuous from
F into (E,t).

The converse is easy.

Cf. (33), Theorem 4.9,

By using Theorem 6.5.1, one can prove the following result.

Theorem 6.5.2.

Let (/Q ,T) be admissible and let,/ll be an w cum inductive
class in_/l. Then, E in,LZis a D(,/%l;)Q ,T)-space if and only if every
closed linear map from any F in,/ll into each quotient of E by a closed
linear subspace is continucus.

It is not difficult to deduce from Theorem 6.5.1 that every
closed linear subspace of a Dr(}q,l;/zz,T)-space is also a Dr(/ﬂll;/zz,T)-
space whenever}?l is an w. cum inductivg class in‘/2. By using Theorem
6.5.2 and Lemma 2.6.4 one can show that in a similar situation, every
closed linear subspace of a D(/CL]},/z,T)-Space is also a D(}i 1;/q-,T)—
space. From Theorem 6.5.2 and Proposition 6.4.2, the following is

immediate.

Corollary. Let (/Q ,T) be admissible and let,‘?l be an w cum inductive
class in/q. Suppose that /92 is a subclass of /}1 such that every
quotient by a closed linear subspace of each member of./22 is also in /QQ.
If every member Of‘}?l is the (/Q »T)-inductive 1imit of some (EY; uY 1yed)
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where each EY 592 then, E in/qis a D(/QQ.;/Q,T)-space if and only
if every closed linear map from any member of HZ into each quotient
of E by a closed linear subspace is continuous.

For the admissible case (1), the hypothesis of the above
Corollary is satisfied ifﬂl is En*’ 3*, }l*, }ll*’ B*s 5’1"‘,
Bll* or [ *, and HQ is respectively chosen to be Bn’ =+ 31,? 11°

B, Bl’ Bll or L .

Similarly for the admissible case (2) when Hl is Bn*,} *,
Fu®s B Byt or LFs and /92 is bi’ F, F B 311 or L,

And for the admissible case (3) when Hl is Bn*, }7'=, or
B* and/Q2 is Bn, F, v 5.

In the next two theorems we shall take/V‘ to be N s /Vll orN
according as we are considering the admissible case (1), (2) or (3).
For case (1), every member of Nl is the (H ,T)-inductive limit of some
(EY; u Y: ved), where each EY E£ . It is then easy to see that for F
in /q , every closed linear map from each member of Nl into F is
continuous if and only if every closed linear map from each member off.
into F is continuous. There is a similar remark for case (2), when" Nl"
is replaced by " A/ll" and for case (3), when " Nl” and "f " are
respectively replaced by "N" and " n”' With these observations, one
can prove the following result by a method similar to that used

in Theorem 6.5.1,
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Theorem 6.5.3.

Let (/,T) be admissible. Then, E in/A is a Dr(/v‘;ﬂ ,T)-
space if and only if every closed linear map from any member of /N° into
E is continuous.

Corollary 1.(1)1foQ ,T) is admissible then,

DA "3 A W) = D C Nt AT
1) 0 NsCA M =0 LA D) = p CAE (AD)
(55) D (A, = o LA M) = 0 (A )
v 0 (Y 5(A 1 =0 2E(A T, = D A/='=.-,(/2,T)3)

(see Proposition 6.4.4),

Corollary 2.
(a) Dr(ﬁ sCH »T);) = D ( ﬁ*;(ﬂ ,T);) = D ( A ;(/?_ ,T),) if and
only if for each Dr(j: ;(/Q ,T)f-'space F, every closed linear map
from any E in Iiinto F is continuous.
0 (L 3] .m) =0 rx(A ,m) = (N (] D) if ana
only if for each DP(,[_;( /? ,T)2)—8pace F, every closed linear map from
any E in‘f.into F is continuous.
@ (R xCAmY =0 (N:iA . mp =1 (F:it A=
b (B ;(A,1).) if and only if for each b_(B (A ,1),)-space F,
r n 3 r n 3
every closed linear map from any E in\z;n into F is continuous.

Using Theorem 6.5.3, one can prove the following result.
Theorem 6.5.4.

Let (,/Q,T) be admissible. Then E in/q,is a D([/’;/Q ,T)-

space if and only if every closed linear map from any member of A"into

each quotient of E by a closed linear subspace is continuous.
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6.6 The case when /?

1. is a second catesory class

If ()p{,T) is admissible, we shall throughout this section
assume that‘f{l is the class of all second category linear topological
spaces in /-1 We say that E in/q is a Dl(ﬁ l;ﬁ, sT)-space if there
exists a continuous linear map from some F onto E, where F is either an
extracomplete D(/q,l;( /Q,T)l)-SPace or is the generalized strict
%-inductive limit of a sequence of extracomplete D(/2 l;(/z,T)l)-
spaces.

If (E,u) is a B-complete l.t.s. or an L.F. space then, for any
linear (semiconvex, convex) topology v on E coarser than u, (E,v) is a
b (A sCAD)D- O A CA D -, ABCAD - ) space.
Also, if (E,u) is the #-direct sum of a sequence (Ei) of linear
topological spaces, where for each i, Ei = 1P or HP for some p in the
open interval (0, 1) then, for any linear (semiconvex, convex)
topology v on E coarser than u®°, (E,v) is a Dl(-/ql;( /Q,T)l)-

0, (A A, DH-, 0 A LA - ) space.

There may not exist a continuous linear map from a B-complete
locally convex space onto a Dl( }ql;(h/Q,T)3)—space. For, let (E,u)
be the sequence space l%. Then, the incomplete barrelled normed linear
space (E,u%9) is a Dl(/z?l;( /Q ,T)3)—8pace. If there were to exist a
continuous linear map f say, from a B-complete locally convex space
onto (E,u®®), then f would be open and this would imply that (E,u®®) is
complete.

From the corollary of Theorem 6.5.2, we derive the following

result (which we denote by (R)).
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(R): Let (/Q,T) be admissible. Then, E in/Q is a D(ﬁl;g ,T)-space
if and only if every closed linear map from any F in/zl into each
quotient of E by a closed linear subspace is continuous,

Let F be an l.t.s. and (Fn) a sequence of Dl(/z l;/q ,T)-spaces.
Suppose that for each n, u is a continuous linear map from Fn into
I and that F is the union of (un(Fn)). For each n, there exists a
continuous linear map g,5ay, from some Gn onto Fn, where either
(a) Gn is an extracomplete D(A']_;(R ,T)l)-space or (b) Gn is the

generalized strict ®-inductive limit of some (G_ ; w_ : i = 1,2,...),
iPy
where each G is an extracomplete D(ﬂ l;(;%,T)]_)—Space.
i
For each n where G isan extracomplete D( /ql;( H,T)l)—space,

the induced map v, of the continuous linear map L, = unognfrom G,
into F is continuous, and Gn/gn-l(o) is an extracomplete
, | . -1
D(/q l’( /q,lT)l)-space. Let J, be the union over n of vn(Gn/Cn (0)).
For each n where G is the generalized strict %~inductive limit

of some (G ; w :1=1,2, ...) (each G_ is an extracomplete
ni ni ni

D(Al;(ﬁ ,T)l)-space), ‘the induced map vr‘li of the map

= u ognow of n into Fis continuous. Also, G, /C (o)

S
is an extracomplete D(ﬂ l’(ﬂ T), )-space. Let J, be the union over

-

2
n and i of v’ (Gn /cn_ (o).

i i
Clearly JV J2 = F. We may thus suppose that each u is a
continuous linear (1 - 1) map and that each F| is an extracomplete
D(/Q l;( /Q,T)l)—space. With this observation, on using the method of
proof of Theorem 6.3.1, but this time applying (R) instead of Theorem

6.2.2, one can prove the following result,
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Theorem 5.6,1.

Let (,CZ ,T) be admissible and let E be the (/Q,T)—inductive
limit of some (Ey; uY : yed), where each BY is in,éi. Suppose that
F e;ﬁy and that for each positive integer n, u, is a continuous linear
map from a Dl()q l;/? »T)-space Fn into F. If F is the union of
(un(Fn)), then any closed linear map from E into F is continuous and
any closed linear map of T onto E is open.
Corollary. Let (A ,T) be admissible. IfE is the A ,T)-inductive 1limit
of (EY; uY : ye®) and T, the generalized strict (}q ,T)-inductive
limit of (Fn; vy iD= l, 2, ...), where each EY e/q 1 and each Fn is
a Dl(}q l;,‘l,T)-space then, any closed linear map from E into F is
continuous and any closed linear map from F onto E is open.

Cf. Theorems 2 and 3(ii) of (35).

Theorem 6.6.2.

Let (/Q ,T) be admissible and suppose that E, F e./Q. For each

l;A »T)-

space E_ into E, and suppose that E is the union of (u (E )). If t is

positive integer n, let u, be a continuous linear map from a Dl(/?

a closed linear map from E into F such that t(E) is inﬂ then t(E)

1°
is closed in F.
Proof: By an argument similar to that preceding Theorem 6.6.1, one
can show that we may assume that each En is an extracomplete
D(/q l;(_/?,T)l)-space and that E is the union of subspaces (En) such
that the topology of E is finer than that induced from E.

Since t(L) =Un N lt(En) 1s of the second category in itself,

.

there exists a positive integer N such that t(EN) is of the second
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category in t(E) and t(EN) is dense in t(E). (t(E), t(EN) are assumed
to have the topologies induced from F). The space t(EN) is clearly in
Jl?l and the graph of the map t of Ey onto t(EN) is closed in

Ey X t(EN).

As EN is a D()ql;(H,T)l)-space and t(EN) is in Hl’ t is
an open map from Ey onto t(EN).

Since EN/t‘l(o) is an extracomplete D(l/?l;()q ,T)l)-space, we
may assume that t is (1 - 1) and thus consider EN as the same space t(EN)
under a coarser topology V. Moreover,(t(BN),v) is complete and the
identity map i say, from (t(EN),v) into F is closed.

Let (ya : ae¥) be a net in t(BN) converging to Yo in F.

Because i is an open map from (t(EN),v) onto t(EN), (ya : ae¥) is
v-Cauchy and must therefore converge to some point yo’ in (t(EN),v),
since this space is complete. As the graph of i is closed in

(t(Eg),v) x F, Y,* y,” and thus t(E) is closed in F. The result

now follows from this, since t(EN) is dense in t(E). |

Corollary. Let (A ,T) be admissible and suppose that F is inﬁ .

Let E be generalized strict (/? ,T)-inductive limit of (En; u s
n=1x}, 2, ...), where each E is a Dl(,}ll;,/Q,T)-space. If t is a
closed linear map of E into F then, either t(E) is of first category in
F or t(E) = F,

Proof: If t(E) is of the second category in F then, t(L) e/ql_
and t(E) is dense in F. By the theorem, t(E) is closed in F and this

gives the result.

Cf. (35), Theorem 3, Corollary.
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