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ABSTRACT 

This thesis is mainly concerned with linear topoJogical spaces 

in which local convexity is not assumed. In particular it contains a 

study of the closed graph and open mapping theorems in this context, 

together with results analogous to the Banach-Steinhaus theorem. 

Many of the techniques and notions used to study these important 

theorems in locally convex spaces are no longer effective for general 

linear topological spaces and much of this thesis is taken up with the 

development of alternative methods and definitions. 

The first of these is the notion of a 1:-inductive limit of 

linear topological spaces. This plays much the same part in the theory 

of general linear topological spaces as an inductive limit does for 

locally convex spaces, and natural analogues are proved for most of the 

known results on inductive limits. After this has been introduced, it 

is shm-Tn that the ~':-inducti ve Hmi t topology of a sequence of locally 

convex spaces is locally convex. 

Then a study is made of ultrabarrelled spaces, which replace 

barrelled spaces in certain theorems when local convexity is not 

assumed. Also ultrabornological and quasi-ultrabarrelled spaces are 

defined and studied. Any *-inductive limit of members of one of these 

classes has the same property. In particular, any *-inductive limit of 

complete metric linear spaces has the three properties. However, an 

uncountable direct sum of Banach spaces has none of these properties 

and none of these properties passes on to closed linear subspaces. 

Ultrabarrelled spaces are characterised in terms of closed linear maps 



into complete metric linear spaces and similar characterisations 

are given for ultrabornological and quasi-ultrabarrelled spaces in 

terms of bounded and closed bounded linear maps, respectively. 

These notions find application in the study of two-norm spaces. 

The next section of the thesis looks at semiconvex spaces, 

spaces in which there is a neighbourhood base of the origin consisting 

of semiconvex sets. For these, there can be defined a type of inductive 

limit topology which is in some respects intermediate between that of the 

ordinary inductive limit of locally convex spaces and *-inductive limit 

of general linear topological spaces. Such is called a **-inductive 

limit topology. Similarly there are spaces (called hyperbarrelled spaces) 

fitting naturally between barrelled spaces and ultrabarrelled spaces, 

with analogues for bornological and quasi-barrelled spaces. A thorough 

study is made of these, in which results rather similar to those 

already found for ultrabarrelled spaces are obtained. For example, 

hyperbarrelled spaces are characterised in terms of closed linear maps 

into complete separated locally bounded spaces. It is also shown that 

any product of separated hyperbarrelled spaces is hyperbarrelled. 

Finally, the problem of characterising the sorts of spaces that 

can be range spaces in various forms of the closed graph theorem is 

considered. Various general classes Dr(~l;)(' T) and DC)1l;jQ, T) 

of linear topological spaces are defined, generalising in a natural way 

the B -complete and B-complete spaces. These are used to find extensions 
r 

of the known closed graph and open mapping theorems. The notions are 

also meaningful for commutative topological groups and, for these, 

analogues of the known theorems are proved. 
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CHAPTER I 

INTRODUCTION 

Let T be a set of linear maps fl"'orn a locally convex linear 

topological space E to another. If E is barrelled then,T is equi-

continuous if it is pointwise bounded and each of its members is 

continuous. This result is often referred to as the Banach-Steinhaus 

theorem. There are other well known conditions which enSUI'e that T 

is equicontinuous. One of these requires that E be bornological and 

T uniformly bounded on bounded sets. Another requires that E be 

quasi-barrelled and T be a set of continuous linear maps which is 

uniformly bounded on bounded sets. These results contribute immensely 

to the importance of barrelled, bornological and quasi-barrelled spaces. 

One of our main objectives in this thesis is to study classes of linear 

topological spaces which can be used to replace these in situations where 

local convexity is not assumed. He also wish to generalise the notions 

of B-completeness and B -completeness, with a view to extending known 
r 

closed graph and open mapping theorems. 

The idea of a ~':-inductive limit ef linear topological spaces is 

presented in Chapter 3. This plays much the same part in the theory 

of general linear topological spaces as inductive limit does for locally 

convex linear topological spaces, and natural analogues are proved for' 

most of the known results on inductive limits. In addition the useful 



2 

result is established that the a-inductive limit topology of a 

sequence of locally convex linear topological spaces is locally convex. 

w. Robertson, in (37) introduced the notion of an ultrabarrelled 

space Such spaces effectively replace barrelled spaces in certain 

important results when local co~vexity is not assumed. One example 

of such a phenomenon is in the Banach-Steinhaus theorem «37),Theorem 5). 

Another is in the closed graph and open mapping theorems «37), 

Proposition 15). In Chapter 4, ultrabarrelled spaces are further 

studied, and ultrabomological and quasi-ultrabarrelled spaces are 

defined and studied. These respectively bear the same relationship to 

bomological and quasi-barrelled spaces as ultrabarrelled spaces do to 

barrelled ones. It is proved that a *-inductive limit of members of one 

of the three classes has the same property. In particular, every 

*-inductive limit of complete metric linear spaces has all three 

properties. But an uncountable direct sum. of Banach spaces has none 

of these properties and none of these properties passes on to closed 

linear subspaces. It is shown that a linear topological space E is 

ultrabarrelled if and only if every closed linear map from E into any 

complete metric linear space is continuous. Similar characterisations 

are given for ultrabornological and quasi-ultrabarrelled spaces in terms 

of bounded and closed bounded linear maps respectively. The last 

section of this chapter deals with two-norm spaces, where these notions 

find applications. 
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Husain, in (14) introduced the classes of countably barrelled 

and countably quasi-barrelled spaces, classes which respectively include 

barrelled and quasi-barrelled spaces and for which analogues of the 

Banach-Steinhaus theorem hold for sequences of mappings into locally 

convex spaces. In Chapter 5, there is a short section containing 

counter examples on countably barrelled and count ably quasi-barrelled 

spaces. Also, ~-ultrabarrelled and ~J-quasi-ultrabarrelled spaces 

are defined and some results which hold for them are indicated. 

These spaces are slight generalisations of those which respectively 

replace countably barrelled and countably quasi-barrelled spaces when 

considering general linear topological spaces. In the rest of the 

chapter, a study is made of hyperbarrelled, hyperbornological, quasi­

hyperbarrelled, (\(-hyperbarrelled and ~ -quasi-hyperbarrelled spaces. 

The first three are the spaces which respectively replace barrelled, 

bornological and quasi-barrelled spaces in the theory of semiconvex 

spaces. The last two are generalisations of what replace countably 

barrelled and countably quasi-barrelled spaces in a similar situation. 

A useful tool in this study is the notion of a **-inductive limit of 

semiconvex spaces, a concept which is in many ways intermediate between 

that of an inductive limit of locally convex linear topological spaces 

and a *-inductive limit of linear topological spaces. Most of the 

results obtained are similar to those already proved for ultrabarrelled 

ultrabornological and quasi-ultrabarrelled spaces. One example is that 

a **-inductive limit of members of one of these classes has the same' 
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property. Another is that a semiconvex space E is hyperbarrelled 

if and only if every closed linear map from E into any complete 

separated locally bounded space is continuous; with similar 

characterisations for hy?erbornological and quasi-hyperbarrelled 

spaces in terms of bounded and closed bounded linear maps respectively. 

It is shown that every countable product of separated hyperbornological 

spaces is of the same sort, and that any separated product of members 

of one of the other classes belongs to the class. 

Chapter 6 is concerned with the problem of characterising 

the sorts of spaces that can be range spaces in various forms of the 

closed graph theorem. Various general classes Dr()il;~' T) 

and D\)Ql;)1 , T) of linear topological spaces are defined, 

generalising in a natural way the Br-complete and B-complete spaces. 

These are used to describe extensions of the known closed graph and 

open mapping theorems. The notions of D (~l~' T)-spaces and r 

DGf2l;~ , T)-spaces are meaningful for commutative topological groups, 

and for these, analoeues of the known theorems are proved. 

Some of the basic information needed and notation used in the 

rest of the thesis are in Chapter 2. Apart from the material in 

sections 2.4 and 2.6, most of what is in this chapter can be found 

in the current literature on linear topological spaces and topological 

groups. 



CHAPTER 2 

GENERAL THEORY 

2.1 Linear topo~ogical spaces 

Our linear spaces shall be over the field K of real or complex 

numbers and it shall be assumed that K has its usual topology. 

Any topology on a linear space such that addition and scalar 

mUltiplication are each continuous simultaneously in both variables, 

is called linear. A linear space E (over K) on which is defined a 

linear topology u is called a linear topological space (over K) 

and denoted by (E,u). Linear topological spaces over the reals were 

first studied by Von Neumann (28) and Kolmgoreff (21). The definition 

given here is equivalent to theirs. He shall denote a linear topological 

space (over K) by l.t.s. 

Let E be an Lt. s. If \.1 is a base of neighbourhoods at zero 

(the origin) in E then. for any x in E, the family of sets (x + U), as 

U runs through \J is a base of neighbourhoods at x. Thus a linear 

topology is completely determined by a base of neighbourhoods of the 

origin. As a result of this, a linear map from an l.t.s. E into an 

l.t.s. is continuous (open) at some point of E if and only if it has 

the property at the origin. Let f be a map of a topological space G 

into another H. The map f is said to be nearly open if for every 

neighbourhood U of any point x in G, the closure of feU) in H is a 

neighbourhood of f(x) in H. And f is said to be nearly continuous if 
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for any x in G and every neighbourhood V of f(x) in H, the closure 

of f-l(V) in G is a neighbourhood of x in G. If G~ H are linear 

topological spaces and f a linear map, f is nearly open if and only 

if for every neighbourhood U of the origin in G, the closure of 

feU) in H is a neighbourhood of the origin in H. And f is nearly 

continuous if and only if for every neighbourhood V of the origin in 

H, the closure of f-l(V) in G is a neighbourhood of the origin in G. 

He shall henceforth use the terms "neighbourhood$" and "base of 

neighbourhoods" in an Lt.s. to respectively denote "neighbourhood of 

the origin" and "base of neighbourhoods of the origin". And in 

considering the notions of continuity, openness, near continuity and 

near openness of a linear map from an l.t.s. to another, we shall 

limit our consideration to behaviour at the origin. There is clearly 

no loss of generality in doing so. 

A subset B of a linear space is called balanced if for every 

x in B, AX is in B for all A in K with IAI ~ 1. And B is said to be 

absorbent if for any x in E, there exists a positive number a such that 

x is in AB for all A in K with IAI ~ o. In an l.t.s., there is a base 

of neighbourhoods 1J say, made up of balanced absorbent sets U such 

that Ul + Ul S U for some Ul in U . Conversely, if E is a linear space 

then a filter base1J of balanced absorbent subsets is a base of 

neighbourhoods for a linear topology on E if for every U in II , there 

is a Ul intJ Hith Ul + UI ~ U. In particular since an Lt.s. is 

regular, any l.t.s. has a base 1...' of closed balanced absorbent 
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neighbourhoods such that for any U in\..l , there is Ul in l.I with 

A subset A of a linear space is said to absorb a subset B, 

if for some positive number ~, B c: AA for all A in K with IAI~ ~ 

A subset of an l.t.s. which is absorbed by every neighbourhood is 

said to be bounded. A subset of an l.t.s. which absorbs bounded 

sets is called bornivorous. A subset B of an l.t.s. E is bounded if 

and only if for any sequence (x) of points of B and any sequence (A ) 
n n 

of positive real numbers converging to zero, the sequence (A x ) 
n n 

converges to the origin in E. A linear map from one l.t.s. to another 

is called botmded if it maps bounded sets to bounded sets. A linear 

map f from an l.t.s. E to another l.t.s. F is said to be sequentially 

continuous if for every sequence (x ) converging to some x in E, 
n 

(f(x » converges to f(x) in F. Thus a sequentially continuous linear 
n 

map from an l.t.s. to another' is bounded. In particular a continuous 

linear map from an l.t.s. to another is bounded. 

We say that a topological space is separated if it satisfies 

Hausdorff's separation axiom. An l.t.s. is separated if and only if 

the intersection of members of a base of neighbourhoods is the origin. 

An l.t.s. E need not be complete, but can be embedded uniquely as a 

dense subspace of a complete l.t.s. E~ «18), Chapter 2, 7.10), called 

the completion of E. If 1.! is a base of neighbourhoods for the topology 

of E then, the closures in EA of members of~j is a base of neighbour-

hoods for the topology of EA. An l.t.s. E is said to be sequentially 
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complete if every Cauchy sequence in E converges. The space E is said 

to be quasi-corplete if every closed bounded subset of E is complete. 

Since each Cauchy sequence in an l.t.s. is bounded, any quasi-complete 

l.t.s. is sequentially complete. 

A subset B of a linear space is called convex if for any 

points x,y in B, AX + (1 - A)y is in B for all real A between zero 

and one. A balanced convex set in a linear space is said to be 

absolutely convex. An l.t.s. is called a locally convex l.t.s. if it 

has a base of convex neighbourhoods. We shall henceforth refer to a 

locally convex l.t.s. as a locally convex space and call its topology 

a locally convex topology or more shortly a convex topology. A closed 

absolutely convex absorbent subset of an l.t.s. is called a barrel. 

A locally convex space has a base of neighbourhoods consisting of 

barrels. The difference between a locally convex space and a non-

locally convex l.t.s. is of basic importance in the study of these spaces. 

If E is a linear space, any linear map from E to K is called a linear 

functional on E, and the linear space of all linear functionals on E 

is called the algebraic dual of E and denoted by E*. For an l.t.s. E, 

the linear subspace of E* consisting of continuous linear functionals on 

E is called the dual of E and denoted by E~. A linear subspaee F 

of E* such that for each non-zero xo in E, there is f in F for which 

f(x ) # 0 is said to separate the points of E. By the Hahn-Banach 
o 

extension theorem (see (36), Chapter 2, Theorem 3, Corollary), if E 

is a separated locally convex space then, E~ separates the points of E. 
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If a separated l.t.s. E is not locally convex, E~ mayor may not 

separate the points of E, for example, see Day (6), Halters (40). 

Let (E,u) be an l.t.s. with dual E~. The absolute convex 

u-neighbourhoods form a base of neighbourhoods for the finest convex 

topology on E coarser than u. This topology is called the convex 

topology derived from u and denoted by uoo. The dual of (E,uoo) is 

E~ and (E,uoo) is separated if and only if E~ separates the points of 

E. If E is an infinite dimensional linear space and F a linear subspace 

of E~'~ which separates the points of E, various separated linear 

topologies can be defined on E with F (= E~) as dual. As shown by 

Mackey (25), there is a finest as well as coarsest convex topology on 

E with E' as dual. The coarsest one is called the weak topology on E 

with E~ as dual, and denoted by a(E,E~) while the finest is called 

the Hackey topology with E' as dual, an} denoted by T (E ,E~ ) • Since 

for any linear topology u on E, (E,u)' = (E,uoo)" a(E,E~) is the 

coarsest linear topology on E for which every x' in E' is continuous. 

The space E may be identified with a linear subspace of E'* such that 

vIi th this identification, E separates the points of r.'. Thus we have 

the topologies aCE' ,E) and TeE' ,E) on E~ • 

Let E be a separated l.t.s. with dual E~ separating the points 

of E. If A is a subset of E, the subset of E~ consisting of continuous 

linear functionals on E not exceeding unity in absolute value on A is 

called the polar of A (in E') and denoted by AO
• The set AO is 

absolutely convex. Furthermore, it is absorbent if A is o(E,E')-bounded. 
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Thus if~ is a set of o(E,E~)-bounded subsets of E, there is a 

coarsest convex topology v()t ) say, on E' for which the polars of all 

members of~ are neighbourhoods. A base of neighbourhoods for this 

topology is the scalar mUltiples of finite intersections of polars of 

members of A. The topology (j(E" ,E) is vCJl.. ), when!i is the set of 

all finite subsets of E, while the topology T(E' ,E) is v(A ) whenA is 

all absolutely convex o(E,E')-compact subsets of E. If~ is 

all (j(E,E')-bounded subsets of E, then v(){ ) is finer than 

the set of 

the set of 

t(E",E). It is then called the strong topology on E' and denoted by 

S(E' ,E). 

described in terms of polars of sets of a(E' ,E)-bounded subsets of E" 

Clearly, a weak topology is independent of any topology on the dual 

space. 

If E is a separated locally convex space, it often happens that 

a problem in E has an equivalent formulation in E' (under some suitable 

topology) which may be more easily tackled. Since for a separated non-

locally convex space E, E' may consist of only the zero functional, 

this duality theory is not available for non-locally convex spaces. 

This partially accounts for the fact that comparatively little is 

known about linear topological spaces which we do not assume locally 

convex. 

Throughout this thesis, the Hebrew alphabet N' shall denote 

an arbitrary cardinal number and ~o shall denote the cardinal number 

of a countable set. 
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2.2 Upper bound and lower bound topologies for linear spaces 

Let E be a linear space and suppose that for each a in an index 

set r, \1 is a linear topology on E with '\ja as a base of neighbour­

hoods. Denote by U the family of sets 

u e:lj' ) 
a 'CL 

as 4> varies over all finite subsets of r. Then Ll is a base of 

neighbourhoods for a linear topology A say, on E which is the coarsest 

linear topology on E finer than A for all a in r. The topology A is a 

called the upper bound of the set (A). It is easy to see that ~ is a 

convex if each A is. Also, a linear map from an l.t.s. F into (E,X) 
a 

is continuous if and only if it is continuous from F into (E,>. ) for a 

each a in r. The finest linear topology on a linear space E is the 

upper bound of all linear topologies on E. He shall denote this 

topology by s. The finest convex topology ( T ( E , E": » on E is the upper 

bound of all convex topologies on E. The topologies sand T(E,E*) 

coincide if E is at most countably dimensional «19), Theorem 3.1). 

Suppose that F is a linear space and that for each a in an 

index set r, ta is a linear map of F into an l.t.s. (Ea'~a)' If\Ja: 

is a base of neighbourhoods for Aa then the inverse images by ta of 

members of U form a base of neighbourhoods for a 
a line3r topology on 

F, denoted by t-l(X ). 
a a 

The upperboundvcfthe set (t -l().): ad) is 
a a 

the coarsest linear topology on F for which each t is continuous. 
a 

If n rt -1(0) is the origin in F then, (F ,v) is called the projective ae: a 

limit of «E ;A ) : aEr) by (t : CLEr). In this case, (F,v) is locally a a CL 
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convex (separated) if each (E ,A ) is. Also a linear map g from an 
et et 

l.t.s. G into CF,v) is continuous if and only if 

for ea.ch et in r. 

t 0 g is continuous 
et 

The upper bound of a set of line~r topologies is an example 

of projective limit topologies. Other examples are the induced topology 

on a linear subspace of an l.t.s., and the product topology for linear 

topological spaces. Any topological product contains topological 

copies of its factors which are closed in the product space if each of 

its factors is separated; (this follows easily from (18), Chapter 2, 5.9). 

A product of complete (sequentially complete, quasi-complete) linear 

topological spaces is of the same sort. By Theorem 1 of (20), any 

separated l.t.s. is a subspace of a product of metric linear spaces. 

As an easy consequence of this, any complete separated l.t.s. is a closed 

subspace of a product of complete metric linear spaces which, by (4), 

Page 4, Exc. 7, is of the second category (in itself). 

et£~) be a set of linear topologies on a linear space 

E. The set ~ of all linear topologies on E whiap are each coarser than na 

for all a in ~ is not empty, since it contains the. trivial topology. 

The upper bound v say, of ~ is in~. It is the finest linear topology 

on E coarser than each n. The topology v is called the lower bound 
a 

of (n : a£~). If each n is a convex topology then the upper bound u 
et a 

say, of all convex topologies on E \o[hich are each coarser than every 

net' is the finest convex topology on E coarser than net for arbitrary a. 

The topology u is an example of what is called an inductive limit 

topology for locally convex spaces. 
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For each y in an index set ~ , let E be a locally convex -y 

space and u a linear map of E into a linear space E spanned by y y 

U ~ u (E). The finest convex topology w say, on E for which each 
y€'!' y Y 

uy is continuous is known as the inductive limit topology on E of 

(E YE~) by (u : y€~). We also say that (E,w) is the inductive 
y y 

limit of (E ; u : y€~). A linear map t from (E,w) into a locally 
y -y 

convex space is continuous if and only if each tou is continuous. 
y 

A set T of linear maps from (E,w) into a locally convex space is equi-

continuous if and only if each set Tou is equicontinuous. 
y 

Quotient and direct sum topologies for locally convex spaces 

are inductive limit topologies. 

If (E,w) is the inductive limit of (E ; u : yt~) such that y y 

E is the union of the sUbspaces u (E ), then (E,w) is called the y y 

generalized strict inductive limit of (Ey ; uy : YE~). In particular, 

if ~ is countable (say ~ is the set of positive integers), (E.) a 
~ 

sequence of strictly increasing linear subspaces of E and the topology 

of El coincides with that induced by E1+l , (E,w) is called the strict 

inductive limit of (E.). 
~ 

I 
In this case, if each E. is a Frechet space 

~ 

then, (E,w) is called an L.F. space, (see (7». (For a discussion of 

projective and inductive limits of locally convex spaces se~ for example, 

(36), Chapters 5 and 7). 

2.3 Barrelled, bornological and quasi-barrelled spaces 

A set T of linear maps from an l.t.s. E to another F is said to 

be pointwise bounded if T(x) is bounded in F for each x in E; T is said 
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to be uniformly bounded on bounded sets if T(B) is bounded in F for 

every bounded subset B of E, and T is called equicontinuous if for every 

neighbourhood V in F, there exists a neighbourhood U in E such that 

1(U) C. V. 

A locally convex space is called barrelled if every barrel is 

a neighbourhood. 

A separated locally convex space E is barrelled if and only 

if every pointwise bounded set of continuous linear maps from E into 

any locally convex space is equicontinuous. By a result in (26), this 

is equivalent to the condition that every closed linear map from E 

into any Banach space be continuous. 

The class of barrelled spaces is quite extensive. Every locally 

convex spac-e of the second category is barrelled. Inductive limits, 

separated products as well as completions, of barrelled spaces are 

barrelled. A hyperplane in a barrelled space is barrelled, though a 

closed linear subspace of a barrelled space need not be barrelled. 

In fact, by Theorem 1.1 of (22), any separated locally convex space is 

a closed linear subspace of some barrelled space. If there is a 

continuous nearly open linear map from a barrelled space into a locally 

convex space F, then F is barrelled. 

In the study of the closed graph and open mapping theorans, it 

proves useful that any linear map from a barrelled space into a locally 

convex space is nearly continuous and that a linear map from a locally 

convex space onto a barrelled space is nearly open (see (33), 4.8). 
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A locally convex space E is called bornological if every bounded 

linear map from E into any locally convex space is continuous. 

A locally convex space is bornological if and only if every 

absolutely convex bornivorous subset is a neighbourhood. A separated 

locally convex space Eis bomological if and only if a set of linear 

maps from E into any locally convex space is equicontinuous if it is 

uniformly bounded on bounded sets. By a result in (26), this is 

equivalent to the condition that every bounded linear map from E into 

any Banach space is continuous. 

Any metrizable locally convex space is bornological. 

If for some index set ~,K~ is bornological, so is a product 

X E of separated borno1ogical spaces «4), Page 15, Exc. 18(b». ye;4> y 

Whether or not an arbitrary product of separated borno1ogica1 spaces 

is bornological depends on the existence of an Ulam measure (see (18), 

Chapter 5, 19.9). The property of being bornological is inherited 

by hyperplanes but not by arbitrary closed linear subspaces. Any 

inductive limit of bornologica1 spaces is of the same sort. 

In particular, any inductive limit of normed linear spaces is 

bornological. Conversely, any separated bornological space E is an 

inductive limit of some normed linear spaces. If E is also sequentially 

complete, then it is an inductive limit of Banach spaces. By using an 

example in Page 155 of (22) we see that a barrelled space need not be 

bornological. Also a borno1ogical space need not be barrelled, since 

a countably dimensional normed linear space is not barrelled. However, 

the completion of a bornological space is barrelled. 
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A locally convex space is called quasi-barrelled if every 

bornivorous barrel is a neighbourhood. 

A separated locally convex space E is quasi-barrelled if and 

only if every set of continuous linear maps from E into any locally 

convex space, which is uniformly bounded on bounded sets, is equi­

continuous. By a result in (26), a separated locally convex space E 

is quasi-barrelled if and only if every closed bounded linear map from 

E into any Banach space is continuous. 

A bornological or barrelled space is quasi-barrelled, but a 

quasi-barrelled space need neither be barrelled nor bornological 

«27), Page 816). Inductive limits and separated products of quasi­

barrelled spaces are quasi-barrelled. As in the case of barrelled and 

bornological spaces, a closed linear subs pace of a quasi-barrelled 

space need not be of the same sort. If there is a continuous nearly 

open linear map from a quasi-barrelled space into a locally convex 

space F, then F is quasi-barrelled. Any sequentially complete quasi­

barrelled space is barrelled. 

2.4 Suprabarrels and ultrabarrels 

Let B be a balanced subset of an l.t.s. E. If there exists 

a sequence (Bn) of balanced absorbent (bornivorous) subsets of E 

such that Bl + Bl S Band Bn+l + Bn+l <;. Bn for all positive 

integers n, we say that B is a suprabarrel (bornivorous suprabarrel) 

in E. If in addition B is closed, we call it an ultrabarrel (a 

bornivorous ultrabarrel) in E. 



17 

In either of the cases considered above, we say that (B ) 
n 

is a defining sequence for B. 

Clearly if B is an absolutely convex absorbent (bornivorous) 

subset of an l.t.s. then it is a suprabarrel (bornivorous suprabarrel) 

with (1/2nB) as a defining sequence. However, a suprabarrel (bornivorous 

suprabarrel) need not be convex and need not have a defining sequence 

of convex sets. For, if E is a complete non-locally convex locally 

bounded l.t.s., then its closed unit ball)is a bornivorous suprabarrel B / 

with (AnB) as a defining sequence for some sequence (An) of positive 

real numbers. But B is not convex and no member of a defining sequence 

for B can be convex. Similarly, every barrel (bornivorous barrel) in 

an l.t.s. is an ultrabarrel (a bornivorous ultrabarrel); but an 

ultrabarrel (a bornivorous ultrabarrel) need not be convex and need 

not have a defining sequence of convex sets. 

In the situation of an l.t.s. where local convexity is not 

assu~ed, suprabarrels play parts often associated with absolutely 

convex absorbent sets in locally convex spaces, He give two instances: 

If B is a suprabarrel in a linear space E with (B ) as a defining 
n 

sequence, then the family of sets (En) is a base of neighbourhoods for 

a linear topology on L. 

(2) Every balanced neighbourhood in an l.t.s. is a (bornivorous) supra-

barrel and a base of neighbourhoods for the finest linear topology s 

on a linear space E is the family of all suprabarrels in E. 
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The following are easily verified. The closure of a supra-

barrel (bornivorous suprabarrel) in an l.t.s. is an ultrabarrel 

(a bornivorous ultrabarrel); and an ultrabarrel (a bornivorous 

ultrabarrel) has a defining sequence of closed sets. Thus in referring 

to a defining sequence (D ) for an ultrabarrel, it shall always be 
n 

assumed that each B is closed. 
n 

Let t be a linear map from an l.t.s. 

E into another, f. Then t-1(B) is a suprabarrel (bornivorous supra-

barrel) in E if B is a suprabarrel in F (B is a bornivorous suprabarrel 

in F and t is bounded). In particular if t is continuous, t-1(B) is 

an ultrabarrel (bornivorous ultrabarrel) in E if B is an ultrabarrel 

(a bornivorous ultrabarrel) in F. If t maps E onto F then,for any 

suprabarrel C in E, tee) is a suprabarr·el in F. 

The notion of a suprabarrel makes sense in any linear space 

(it does not depend on any topology on the space). As such, we may 

refer to suprabarrels in a linear space. 

2.5 Topological groups 

Let u be a topology on a group E for which the group operation 

(generally denoted by product) is continuous simultaneously in both 

variables. If group inversion is also continuous,then u is called 

a group topology on E. A group E on which is defined a group 

topology u is cGlled a topolo3ical group and denoted by (E,u). 

Let E be a topological group. If \J is a base of neighbourhoods 

of the identity then, the family of sets (xU U~1U) (equivalently 

(Ux : u~ll» is a base of neighbourhoods at x for every x in E. 
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Thus a group homomorphism from a topological group to another is 

continuous (open) if and only if it is continuous (open) at the 

identity. Also, a group homomorphism f from a topological group E 

to a topological group F is nearly open if and only if for every 

neighbourhood U of the identity in E, the closure of feU) in F is a 

neighbourhood of the identity in F. And f is nearly continuous if and 

only if the closure of f-l(V) in E is a neighbourhood of the identity 

in E for every neighbourhood V of the identity in F. We shall 

henceforth use the terms "neighbourhood:t" and "base of neighbourhoods" 

in a topological group to respectively denote "nei~hbourhood of the 

identity" and "base of neighbourhoods of the identity". In considering 

the notions of continuity, openness, near continuity and near openness, 

we shall limit our consideration to behaviour at the identity, as there 

is no loss of generality in doing so. 

A subset B of a group is called symmetric if x-I i~ in B for 

every point x in B. In a topological group E there exists a base\j 

of symmetric neighbourhoods such that (i) for every U in"U , there is 

Ul in'J with UIUl~ U, (ii) if U£~ and x£U, then there is Ul in1J 

such that xUl~ U, and (iii) for every U in1J ~nd point x in E, there 

is Ul in\j such that xulx-1S; U. Conversely, if E is a group and lJ 

is a filter base of symmetric subsets of E satisfying conditions (i), 

(ii) and (iii), then there is a group topology on E with~ as a base 

of neighbourhoods. Since a topological group is regular, any topological 

group has a base of closed symmetric neighbourhoods satisfying conditions 

(i), (ii) and (iii). A topological group is separated if and only if 
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the members of a base of neighbourhoods intersect at the identity. 

A topological space is said to be Lindelof if every open cover 

has a countable subcover. Let E be a topological group which is of the 

second category in itself and, F a Lindelof topological group. Then, 

by «16), page 213), any group homomorphism from E into F is nearly 

continuous and, any group homomorphism from F onto E is nearly open. 

A subset A of a topological space E is said to satisfy the 

condition of Baire if there is an open set U such that the complement 

of A with respect to U and the complement of U with respect to A are 

each of the first category in E. Since each closed set is the union 

of its interior and boundary it follows that every closed subset of a 

topological space satisfies the condition of Daire. Let t be a group 

homomorphism from a topological group E to another. If G is a subgroup 

of the second category in E, and G satisfies the condition of Baire, 

then, by Theorem 2 of (31), t is continuous on E if it is continuous 

on G. 

The definition of inductive limits of topological groups used 

in this thesis, is due to Varopoulos (39). Let F be a group. For each 

a in an index set ~, let t be a group homomorphism from a topological a 

group E into F. If u is the finest group topology on F for which each a 

t is continuous then (F,u) is called the inductive limit of (E ae:~) 
a a 

by (t : ae:~). The space (F,u) will also be called the inductive limit Cl. 

of (E ; t : Cl.e:~). A group homomorphism t from (F,u) into a topological a (l 

group is continuous if and only if each tot is continuous. If (F,u) a 

is the inductive limit of (E ; t : Cl.e:~) such that r is the union of a a 
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(t (E ) : aE~), we shall call (F,u) the generalized strict inductive a a 

limit of (E ; t : aE~). 
a a 

Throughout our groups shall be assumed commutative. 

2.6 The graph of a map 

The graph G of a map t from a set L into a set F is the 

subset of E x Fconsisting of all points «x, t(x» :x e E). If E and F 

are topological spaces, t is said to be closed if G is closed in E x F 

under its product topology. The map t is closed if and only if for 

every net (x : ac~) converging to some x in E such that 
a 0 

(t(x ) : ac~) converges to y in F, y = t(x ). 
cr 000 

Let t be a continuous map from a topological space E into 

another, F. If F is separated then t is closed. For, if (x,y) in 

LxFis not in the graph G of t then there exist disjoint neighbourhoods 

U of f(x) and V of y. The set (t-l(U), V) is a neighbourhood of (x,y) 

not meeting G. For a group homomorphism f from a topological group El 

into a topological group FI to be closed, it is necessary that Fl be 

separated. For, suppose that FI is not separated, that e,e l are the 

identities of El' FI respectively and that y is in the closure of el 

in F, but y 1 el • Then (e,y) is not in the graph of f, but it is in 

its closure in El x Fl • Thus f is not closed. 

The following two lemmas are easily proved. 

Lemma 2. 6 • 1. 

Let t be a map from a set E into a set F and u a map of a set 

H into E. Then the graph of the map tou from H into F is the inverse 

image of the graph of t by the map (x,y)....- (u(x),y) of H x F into E x F. 
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Corollary. Let E, F, H be topological spaces. If t is a closed 

map from E into F and u a continuous map from H into E. Then the 

map tou of H into F is closed. 

Lemma 2.6.2. 

Let t, f be group homomorphisms from a topological group E 

into another, F. If t is continuous and f is closed, then the 

group homomorphisms hand g from E into F are closed, where 

hex) = t(x)f(x) and g(x) = t(x)f(x- l ) for all x in E. 

Let E, F be topological groups and s a group homomorphism 

of F into E. The filter condition is said to hold if whenever ~ is a 

Cauchy filter base in F such that s(ctJ) is convergent to a point of 

s(F), ~ is necessarily convergent to a point of F. The inverse filter 

condition is said to hold if whenever ~ is a convergent filter base 

in F and s(~) is Cauchy, s(~) is necessarily convergent to a point 

of s(F). (See (37), Pages 243 and 253). 

Lemma 2. 6 • 3 • (a ) • 

Let F be a topological group and El a subgroup of a separated 

topological group E. Let t be a group homomorphism from El onto F 

with graph G. If the filter condition holds then, the closure of G 

in E x F is contained in El x F. In particular, G is closed in 

E x F if it is closed in El x F, provided that the filter condition 

holds. 

Lemma 2. 6 • 3 • (b ) • 

Let F be a topological group and El a subgroup of a separated 

topological groupf Let s be a group homomorphism of F into El with ~/ 
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graph G. If the inverse filter condition holds then the closure of G 

in F x E is contained in F x El' In particular, G is closed in 

F x E if it is closed in F x El' provided that the inverse filter 

condition holds. 

Proof: 

(a) Let (x,y) be in the closure of G in E x F. Let~ be a base 

of neighbourhoods at x for the topology of E and)) a base of neigh­

bourhoods at y for the topology of F. Then (U,V)(\ G 1 ~ for each UElU 

and VEl.} • :. Un t -l(v) 1 t/J for all Ue\j and V in V. He note that 

Un t-l(v» C- El' Let ~ be the filter base generated by (Un t-l(v» 

as U, V run throughlL! ,)) respectively. Then clearly ~ converges to 

x in E andt<~) converges to y in F = t(El ). Since ~ converges in E, 

~ is Cauchy in El' Now since the filter condition holds, we see that 

x is in El' 

(b) Let (x,y) be in the closure of G in F x E. LetLJ be a base of 

neighbourhoods at x for the topology of F and1J a base of neighbourhoods 

at y for the topOlogy of E. Then (U,V)(\ G 1 t/J for each UE"\j and 

VE V. Therefore Un s -l(v) 1 t/J for each UE\J and Vf.,». Let ~ be the 

'" -1 filter base generated by U I 'S (V) as U, V run through -U ' )) 
respectively. Then ~ converges to x and the filter on E generated by 

s(~) converges to y. Therefore s(~) is Cauchy in El and by the 

inverse filter condition, y is in s(F). 

Let Eo' F be topological groups. Then, any group homomorphism 

t of E into F can be represented in the form t = fok , where k is the 
000 

canonical map of Eo onto Eo/t-l(~ (elis the identity of F), and f is 
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a group isomorphism of E/t -l(ei into F. We refer to f as the induced 

map of t. The induced map f is continuous, open, nearly continuous, 

nearly open if and only if t has the same property. Suppose that E 
o 

is a subgroup of a topological group E and that the topology of Eo 

-1 coincides with that induced by E. Since t (e l ) c: E , the topology _ 0 

-1 -1 ) of Eolt ~t is that induced by Elt (el' and ko is the restriction 

to Eo of the canonical map of E onto Elt -l(ei. 

Lemma 2.6.4. 

Let E be a subgroup of a separated topological group E and o 

suppose that for some topological group F (with identityel ), t is a 

group homomorphism of E into F, with induced map f. If the graph of o 

t is closed in E x F, -1 then Elt (~) is separated. The graph of t 

is closed in E x F if and only if the graph of f is closed in 

Proof: To show that E/t-l(ei is -1 separated, we prove that t eel) is 

in E. Let x be in the -1 closed clcsure of t (e
l
) in r.. For every 

neighbourhood U in E and V in F, there • -le eXlsts Xl in t ei such that 

x is in xlU and t(xl ) (= el ) is in V. Therefore, (x#l) is in 

(xlU, t(x1)V) for every neighbourhood U in E and V in G. Since the 

graph of t is closed in E x F, it follows that (x , el ) is in the graph 

-1 1 of t and thus x is in t (el ). Therefore, t- (e
l

) is closed in E. 

We observe that the graph G of t is the inverse image of the 

graph Gl of f by the continuous map (x,y) ~ (k(x),y) of E x F into 

E/t-l(el ) x F (k is the canonical map of E onto E/t-l(e
l

». Therefora, 

G is closed if Gl is. 
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Now suppose that G is closed. '-le show that Gl must also 

be closed. Let (y,z) be in E/t-l(e l ) x F but not in Gl • Clearly 

if xEk-l(y), (x,z) ~ G. Since G is closed in E x F, for some 

neighbourhoods U in E and V in Ft (xU, zV)f\ G = 0, and this implies 

that (yk(U), zV)n Gl =~. This gives the result. 

Lemma 2.6.5. 

Let (E,u), (F,v) be topological groups and t a group homomorphism 

of (E. u) in to (F, v ) • Denote by \J ,'V , bas es of symmetric ne ighbour­

hoods for the topologies u, v respectively. Let w be the group topology 

on F Hith the family of sets (t(U)V : Ue:U, Ve:)) ) as a base of 

neighbourhoods. Then, 

(a) the map t is closed if and only if w is separated. 

(b) the map t is nearly continuous if and only if the identity 

map from (F,v) onto (F,w) is nearly open. 

Proof: 

(a) He note that v is finer than wand that t is a continuous map from 

(E,u) into (F,w). 

If (F,w) is separated then,the graph of t is closed in 

(E,u) x (F,w). The graph of t must then be closed in (E,u) x (F,v), 

since v is finer than w. 

Suppose that the graph G of t is closed in (E,u) x (F,v). 

Let z be a point of F different from the identity. If e is the identity 

in E then (e,z) is not in G. Since G is closed in (E,u) x (F,v), there 

exists U in Ll and V in» such that (U,zV) n G = ~. Thus z is not in 

t(U)V-1 = t(U)V, and w is separated. 
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(b) The u-closure of any set B in E shall be denoted by cl(B). 

Suppose that t is nearly continuous from (E,u) into (F,v). 

Let V be in "V and let V 1 be in » such that V 1 V 1 S V. Then for 

any V (l in V and Us in 1...\ ' 

VV(lt(U~) ~ (Vlt(US»VlV(l 

~ -1 
-' t(t (Vl)US)VlV(l 

:J t(Cl(t-l(Vl»)VlV(l -
:? -1 t(cl(t (Vl»)Vl 

This is true for all V (l in "V and UB in U Therefore the w-closure 

of V -1 
contains t(cl(t (VI»)Vl , and since t is nearly continuous, it 

follows that the identity map from (F,v) onto (F,w) is nearly open. 

Now suppose that the identity map i say, from (F,v) onto (F,w) 

is nearly open. Let V be in)). v1e show that cl(t-1(V» is a u-

neighbourhood. 

Let VI be a member of)) such that V IV 1 V 1 C. V. As i is nearly 

open, there exist V
2 

in)) and U inlj such that 

We note that we can choose V 2 such that V 2 S VI' and we do so. 

From (;':) , 
-1 ,~ 

t (U) S V I V 2 V (3 t (U (l) for all U (l in \J and VB in V • 

Thus t(U) C Vt(U ) for all U in -U . _. (l (l 

i.e. U C t -l(Vt(U » c. t-lCV)U for all U inl..1 
(l - (l (l 

Hence U <:: cl(t-l(V» and t is nearly continuous. -
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He observe that in the above lemma, if (E,u), (F,v) are 

linear topological spaces and t a linear map, then (F,w) is an l.t.s. 

In this case (a) coincides with Lemma 3 of (17). We also note that 

if in addition U,v are convex topologies, so is w. 

Let E, F be linear spaces ano. G a linear subs pace of E x F. 

Then, G is the graph of a linear map from a subspace of E into F if 

and only if y = 0 whenever (o,y) (G. 

Let E be a normed linear space which is not barrelled. 

By applying a result of Mahowald (26), we see that there exists a 

closed linear map, t say, from E into some Banach space F such 

that t is not continuous. By using the same result again, we deduce 

that the graph of any linear extension of t to EA cannot be closed in 

EA X F. Thus, a closed linear map from a dense subspace of an l.t.s. 

into a complete l.t.s. may not have a closed linear extension to the 

whole space. However, we have the following result. 

Lemma 2.6.6. 

Let E be a linear subspace of an l.t.s. E of finite co­
o 

dimension. Then, any closed linear map from E into an l.t.s. F has a o 

closed linear extension from all of E into F. 

Proof: Let t be a linear map from E into F with graph G closed in o 

Eo x F. Let Gl denote the closure of G in E x F. If (o,y)t G
I

, 

then (o,y) (GIn (Eo x F) = G, since G is closed in Eo x F. Therefore, 

y = o. Thus Gl is the graph of a linear extension tl say, of t. 
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There exists some linear extension t2 of tl mapping E into F. 

For, let El be the domain of tl and suppose that El is of co-dimension 

N with respect to E. Let ex 
n 1 ~ n ~ N) be points of E not in El' 

such that x is not in the linear n subspace of E spanned by El and 

ex. 
l. 

: 1 ~ i ~ n - 1) for n with 2 ~ n ~ N. Any x in E may be represented 

in the form x 0+ El n ~ N A x for some x in El and scalars 
~ n n 0 

CA : l~n~N). n The map f from E into F defined as follows is a 

linear extension of tl : f(x) = f(x + El ~ N A x ) = tl(x ). o .. n~ nn 0 

The result now follows from the observation that the graph G
2 

of any 

linear extension of tl can be represented in the form G
2 

= G
l 

+ F, 

where F is a finite dimensional linear subspace of E x F. 



CHAPTER 3 

*-INDUCTIVE LIMITS OF LINEAR TOPOLOGICAL SPACES 

3.1 Definition and general properties 

Let E be a linear space, and suppose that, for each y in an 

index set r, E is an l.t.s. and u is a linear map of E into E. y y y 

The set ~ of all linear topologies on E for which each u is continuous, y 

is not empty, since it contains the trivial topology. The upper bound ~ 

say of the members of ~ is in ~. , it is the finest linear topology on 

E for which all the u are continuous. y 

Definition 3.1.1 

Suppose that E, E and u are as above and that in addition 
y y 

the union of u CE) spans E. Then the topology ~ on E defined above y y 

is called the *-inductive limit topology on E induced by (E ; u : y£r). 
. y y 

We shall say that (E,~) is the *-inductive limit of the spaces (E ) by 
Y 

the mappings u , or more shortly that (Et~) is the *-inductive limit 
y 

of (E ; u : y£r). y y 

With the notation above, the following are easily verified. 

(a) A base of neighbourhoods for the topology , is the family of all 

suprabarrels U in E such that for each Un in a defining sequence for U, 

u -l(U ) is a neighbourhood in E for each y in r. 
y n y 

(b) If each E is the *-inductive limit of (E ; u : a£~), then 
y y,a Y,a 

(E,~) is the *-inductive limit of (Ey,a; U ou : y£r,a£~). Y y,a 

(c) A linear map t of (E,t) into an l.t.s. F is continuous if and only 

if tou is a continuous map of E into F for each y in r. 
Y y 
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«a), (b) and (c) are still true even if, in Definition 3.1.1., the 

union of uy{Ey) does not span E). 

(d) A set T of linear maps of (E, ~) into an l.t.s. F, is equi-

continuous if and only if Tou is an equicontinuous set of linear maps 
y 

of Eyinto F for each y in r. 

Examples of *-inductive limits of linear topological spaces 

(1) Let E be an l.t.s., Eo a linear subspace of E and kl the canonical 

map of E onto E/Eo' Then E/Eo under its quotient topology is the 

*-inductive limit of (E;kl ). 

(2) Let E be a linear space and {Aa,aE~} a set of linear topologies 

on E. Suppose that, for each a in ~, ia is the identity map of (E.Aa ) 

into E. If A is the lower bound of the Aa' then (E,A) is the *-inductive 

limit of UE,Aa); ia: a€:~J 

(3) Let E be a linear space over the complex field. Then E is linearly 

isomorphic to raE~Ca for some index set ~(Ca{=K) is a copy of the 

complex field for each a in ~). Under its finest linear topology, s, E 

is the *-inductive limit"of (Ca) by the injection maps. Since (E,s) 

is not necessarily locally convex «19), Theorem 3.1) it follows that 

a *-inductive limit of locally convex spaces need not be locally convex. 

Proposition 3.1.1. 

Let (F, t) be the ~'t-inductive limit of nEy,ty);uy: YE~]. 

Then (F, tOo) is the inductive limit of [Ey,TyOO); Uy:y€:~J . 

• 00. h • • • f Proof: Slnce T 1S coarser t an T, uy 1S a cont1nuous Ilnear map 0 

(Ey,ty) into (F,Too) for each y in~. Therefore each uy is a continuous 
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linear map of (Ey,TyOO) into (F,TOO). Hence TOO is coarser than the 

inductive limit topology A on F induced by liEy,TyOO ); uy: y£~ • 

Since A is necessarily locally convex and coarser than T, it must be 

identical with TOo. 

Proposition 3.1.2. 

Let {E,P be the :':-inductive limit of (Ey ; uy : yET). For each I; A 
y in r, let Vy be a balanced neighbourhood of the origin in Ey and let 

U = tJ~ EYE~ uy(Vy ), •••••••• * 
the union being taken over all finite subsets ~ of r. Then U is a 

neighbourhood of the origin .in (E,~). 

If r is countable, then as Vy runs through a base of balanced 

neighbourhoods of the origin in Ey , the above sets form a base of 

neighbourhoods of the origin for (E,~). 

Proof: To prove that U is a ~-neighbourhood, it is sufficient to 

construct a defining sequence (U ) say, for U such that for each n, 
n 

u -1 (U ) is a ne ighbourhood in E for each y in r. Let ,\) be a base of y n y ~ 

balanced neighbourhoods in Ey • Then there is a 

. nt I 
hoods from ).\, with Vy1 ... V/ c Vy and Vy 

n ::;'1. Let 

U n 

sequence (Vyn) of neighbour­

... V n+lc.. V n for all 
y - y 

the union being over all finite subsets $ of r. Then clearly 

U1 ... U <;;. U, Ut U C U for all n ~ 1 and each U is balanced. 1 . n+I ntl - n n 

Also each uy(Vyn) is absorbent in uy(Ey) and the union of the latter sets 

spans E; hence, U is absorbent. n Thus U is a suprabarrel in E with (Un) 

as a defining sequence. Clearly, for each n, uy-1{U
n

> is a neighbourhood 

in Ey for each y in r. 
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To prove the remaining part, we notice that, as Vy runs through 

~y, the sets (*) satisfy the condition to form a base of neighbourhoods 

for a linear topology n say on E which is clearly coarser than ~. 

But if Wo is a ~-neighbourhood, there are ~-neighbourhoods Wn with 

H 1 + hi 1 C W for n' ) O. If h(n)} is an enumeration of r, there 
n+ n+ - n 

are balanced neighbourhoods VY(n) in;VY(n) with UY(n)(Vy(n» ~Wn 

and then 

u = U I: uy ( .... ) (Vy ( .... » n~l l~r~n... ... 

is an n-neighbourhood contained in H • o 

From the proposition above it follows that the *-inductive limit 

topology of a sequence of locally convex spaces is convex and therefore 

coincides with the inductive limit topology of the spaces, by Proposition 

3.1.1. Also if (E,~) is the *-inductive limit of a sequence (Ei) of 

linear topological spaces by linear maps (ui), it follows from 

Proposition 3.1.2. and Proposition 2(a) of section 2 of (39) that ~ is 

the finest group topology on E for which each ui is continuous. However, 

C is not necessarily the finest topology on E for which each ui is 

continuous, even if each Ei is a Banach space (see (8) pages 98-99). 

3.2 *-direct sums 

If for each y in an index set r, Ey is an l.t.s., we shall call 

the linear space tYEf Ey under the *-inductive limit topology of (Ey) 

by the injection maps, the *-direct sum of (Ey) • 

The proofs of Propositions 3.2.1, 3.2.2 and 3.2.3. are easy 

and will be omitted. 
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Proposition 3.2.1. 

If E is the *-inductive limit of {Ey : YEr} then E is 

topologically isomorphic to a quotient of the *-direct sum of (Ey ! YEr). 

Proposition 3.2.2. 

Let (Ey: YEr) be a family of linear topological spaces. The 

dual of the *-direct sum of (Ey: YEr) is the product F = XyEy~. 

If Ey ' separates the points of Ey , then F separates the points of the 

direct sum of (Ey : YEr). The dual of the product space XyEy is the 

direct sum G = LyEy'. If Ey' separates the points of Ey, then G 

separates the points of the product space XyEy • 

Proposition 3.2.3. 

Let (E,~) be the *-direct sum of a family (Ey: YEr) of linear 

topological spaces. Then ~ is finer than the product topology n, say, 

on E. If ~ is a finite subset of r, then ~ and n coincide on Ey£~Ey. 

The topology C induces the original one on each Ey • 

Corollary 1" The *-direct sum topology on a finite direct sum is 

identical with the product topology. 

Corollary 2" The *-direct sum of a family (Ey: YEr) of linear topol­

ogical spaces is separated if and only if each Ey is separated. 

Remarks 

(1) Suppose that the index set r be represented as the disjoint union 

of two subsets ~ and f. If E, F, G are the *-direct sums of linear 

topological spaces (Ey: YEr), (Ey : YE~), (Ey : YEf) respectively, then E, 

being the *-direct sum of F and G is in fact F x G, by Corollary 1 of 

Proposition 3.2.3. Thus for any subset ~ of an index set r, the 
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*-direct sum of (Ey: ye~) is a quotient of the *-direct sum of 

(Ey: y£r). If Ey is separated for each y in r, it then follows by 

Corollary 2 of Proposition 3.2.3. that ~ye~ Ey is closed in the *-direct 

sum of (Ey: yer). By a similar argument. one can show that if 

(Ey: ye:r) is a family of locally convex spaces, then for any ~ c; r, the 

direct sum of (Ey : ye~) is a quotient of the direct sum of (Ey: yef). 

(2) Suppose that, for each y in an index set r, the l.t.s. Fy is the 

*-direct sum of Gy and Hy • If E, F, G are the *-direct sums of 

(Fy: y£r), (Gy : yef), (Hy : ye:r) respectively, then E, being the 

*-direct sum of F and G is in fact F x G by Corollary 1 of Proposition 

3.2.3. Thus F (and G) is a quotient of E. By a similar argument one 

can show that, if (Fy: yer) is a family of locally convex spaces and, 

for each y in r, Fy is the topological direct sum of Gy and Hy , then 

the direct sums Lyer Gy and Lye:r Hy are quotients of the direct sum 

Lyd F y' 

Let B be a subset of a linear space and A ~ 0 a real number. 

In (29), B is said to be).-convex if A(E + B) ~ B, and B is said to 

be semiconvex if it is 8-convex for some real number B ~ O. However, 

for n ~ 0 we shall say that B is ~~ if E + B ~ nB, and call a 

subset C of a linear space a semiconvex set if it is ~-convex (in this 

sense) for some ~ ~ O. 

Definition 3.2.1 

We say that an l.t.s. is almost convex if it contains a 

fundamental system of bounded sets which are closed, balanced and semi-

convex. 
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Clearly every locally convex space is almost convex and so is 

any locally bounded l.t.s. If E is a locally bounded l.t.s., any 

product of copies of E is almost convex. 

Proposition 3.2.4. 

rr ~~( 
Let ~Ey' f;y) : YEr) be a family of ilinear topological spaces. i\ ,\ 

Then a subset A of the 1=-direct sum of \[Ey, f;y) : ye:EJ is bounded 

(precompact) if and only if it is contained in a finite sum of subsets 

of the Ey which are f;y-bounded (precompact). 

Proof: If A is contained in a finite sum of subsets of the Ey which are 

f;y-bounded (precompact) then clearly A is bounded (precompact). 

Now suppose that A is bounded (precompact). Let Py be the 

projection from the *-direct sum onto (Ey ,f;,{). Each py(A) is bounded 

(precompact). yle show that py(A) = {O} except for finitely many y, 

and this will give the result since A ~ Eye:r py(A). 

Suppose not. Then there exists a sequence (y(n» from r and a 

sequence of points xn such that xn # 0 and xn is in Py(n){A). Since each 

Ey is separated, there exists for each n a balanced ~y(n)-neighbourhood 

Uy(n) of the origin such that xn is not in n Uy(n). 

co j 
Let U =\Jj=l En=l Uy(n)' Then by Proposition 3.1.2, U is a 

neighbourhood of the origin in the *-direct sum topology of (Ey(n». 

Clearly A ?nU for any n and, since the )':-direct sum of (Ey : yEr) 

co 

induces the *-direct sum topology on En=l Ey(n) (see Remark I after 

Proposition 3.2.3), A cannot be bounded under the *-direct sum topology 

of (Ey: 'fEr) ( and thus cannot be precompact under the same topology). 
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Corollary 1 The *-direct sum of infinitely many separated linear 

topological spaces is never metrizable. 

Proof: By Remark 1 after Proposition 3.2.3, it is sufficient to prove 

the assertion when the index set is countable. So, let E be the *-

direct sum of a sequence (Ei) of separated linear topological spaces. 

Suppose that E is metrizable and let (Un) be a decreasing sequence of 

sets forming a local base. Since Fn = r . n E. is a proper 
1 ~ 1 ~ 1 

subs pace of E, there exists a sequence (xn ) of points such that xn is 

in Un but ~ is not in Fn. By the proposition, (xn ) is not bounded but 

since xn is in Un and (Un) is decreasing, (xn) must be bounded. 

This contradiction gives the result. 

CorOllary 2 A *-direct sum of separated almost convex linear topolo-

gical spaces is almost convex. 

Proof: This follows immediately from the proposition. 

Corollary 3 A *-direct sum of separated sequentially (quasi-) complete 

linear topological spaces is sequentially (quasi-) complete. 

3.3 Strict *-inductive limits 

If E is the *-inductive limit of (Ey ; uy : yt~), such that E 

is the union of the subspaces uy(Ey), then we say that E is the 

generalized strict *-inductive limit of (Ey; uy : YE~). In particular 

if ~ is countable (say ~ is the set of positive intege'rs), (Ei ) is a 

sequence of strictly increasing linear subspaces of E, and the topology 

of E i coincides with that induced by Ei + 1.' we say that E is the 

strict *-inductive limit of (E i ). 
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Remarks 

(1) If E is the strict *-inductive limit of (Ei ), then by using an 

inductive argument we see that the topology of Ei coincides with that 

induced by Eo+ for any positive integer, n. 
~ n 

(2) Also it is not difficult to show that if E is the strict *-inductive 

limit of (Ei), then for any sub-sequence (i(r» of the positive integers~ 

E is the strict *-inductive limit of (Ei(r». 

Examples of strict *-inductive limits 

(1) Any strict inductive limit of a sequence of locally convex spaces. 

(2) If E is the ,':-direct sum of a sequence (Ei) of linear topological 

spaces, then E is the strict *-inductive limit of (Fj) where Fj is the 

*-direct sum of (Ei)l ~ i ~ j. 

Proposition 3.3.1 

Let (E,O be the strict ~':-inductive limit of (E ,~ ). n n 

Then ~ coincides with ~n on En· 

Proof: 

than ~n. 

It is sufficient to show that ~ induces on E a topology finer n 

Let W be a ~ ~neighbourhood of the origin and suppose that n n 

Un is a ~n-neighbourhood of the origin such that 

U + U + ••• + U (n + 1 terms) C. H 
n n n - n 

There exists a balanced ~n+l-neighbourhood Un+l such that 

Similarly there exists a balanced ~n+2-neighbourhood U
n

+
2 

such that 

(U + U ) . fiE C U 
n+2 n+2 n+l -- n+l 
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From this and (2) it follows that 

For if z is in (Un+2 t Un+2 t Un+l)(l En' then z is in En and z = zl + z2' 

where zl is in Un+1 and z2 is in Un+2 + Un+2 • Since En '$ Entl '$ En+2 , 

z2 must be in En+l and therefore 

«u 2 + u 2)n E 1 + U +l)n E C U n+ nt nt n . n - n 

Similarly we can find balanced ~ .-neighbourhoods U .• such that for n+) n+) 

any positive integer r, 

(Un+l + Un+2 + ••• + u + U ),r"lE C. u 
n+r n+r f. ' n - n 

Therefore / 
) " 't>:J (I) I 

/\ 
U +' )(1 E c· w • r nJ n ...... n 

Thus, by Proposition 3.1.2, ~ coincides with ~n on En' since Un() Ei is 

a balanced ~.-neighbourhood fQr 1 ~ i ~ n. 
~ 

Corollary l' Let (E,~) be the strict *-inductive limit of a sequence 

( E ,~ ~of separated linear topological spaces. Then (E,~) is separated. 
n n 

Proof: Let x 1 0 be in E. For some n, x is in En and, since (En' ~n) 

is separated, there exists a ~n-neighbourhood Un of the origin not 

containing x. By the proposition, there is a ~-neighbour·hood U of the 

origin such that un E C u . 
n - n 

Clearly x is not in U and therefore 

(E,~) is separated. 
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Corollary 2: If (E,~) is the strict *-inductive limit of a sequence 

«En';n» of linear topological spaces such that, for each n, En is 

closed in (En+p F,;n+l)' then En is closed in (E,O. 

Proof: Let x be in E and suppose that x is not in EN for some positive 

integer N. Clearly x is in some EN • +m Since EN is closed in E N+m' 

there exists a ~+m-neighbourhood lJN+m such that (x + UN+m)("\ EN = t/> • 

By the proposition, there exists a ~-neighbourhood U such that 

U(\ EN+m<:' UNtm • Then (x + U)n EN = ~,from which the result follows. 

Proposition 3.3.2 

Let (E,~) be the strict *-inductive limit of a sequence (E ) 
n 

of linear topological spaces. Suppose that (E,~) is a topological 

subspace of an l.t.s., F 

then E is closed in F. 

and that, for each n, E is closed in F, 
n 

Proof: For any subset A of F, cl(A) shall denote the closure of A 

in F. Let x be in cl(E) and suppose that x is not in E for any n. 
n 

Then for each n, there exists a balanced E;-neighbourhood of the origin 

W such that (x + cl(vl » n E = f/J and (H ) may be so chosen that n n n n 

H 1 + VI 1 + W le: H n+ n+ n+ - n 

Let U = VI () E and U =U >. 10:1 ' . -< U.). Then U is a t-neighbour-n n n n ~ ~ 1 ,n 1 

hood by Proposition 3.1.2 and thus x + cl(U) meets EN for some positive 

integer N. Now, if zl is in U, then zl is in El ~ i ~ k Ui for some 

positive integer k (which we may choose greater than N). Therefore zl 

is in El ~ i ~ N Ui + ENtl ~ i ~ k U i arld this is contained in 

EN + rN+l ~ i ~ k Hi' Thus zl is in EN t HNtl + HNt2 + ••• + 1~k_l + Wk_l , 
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and using (1) successively we see that zl is in EN + WN+l + HN+l • 

Thel'"'efore U <;. EN + WN+l + ~lN+l and thus 

since x + cl(U} meets EN' so does X + cl(WN>. 

This is impossible. Thus cl(E) = E. 

Corollary~ Any strict *-inductive limit of a sequence of complete 

separated linear topological spaces is complete. 

Proof: This follows from the proposition on choosing F to be the 

completion of (L,~). 

We note in passing that the methods of proofs of Propositions 

3.3.1 and 3.3.2 can be used to get similar results for commutative 

topological groups (not necessarily locally compact); cf. (39), 

Section 3, Propositions lJ and 5. ltl 
Proposition 3.3.3 

If E is the strict *-inductive limit of a sequence (En> of 

separated linecr topological spaces such that, for each n, E is closed n 

in E l' then E is contained as a dense topological subspace of the strict n+ 

*-inductive limit of a sequence of complete separated linear topological 

spaces. 

Proof: If E is not complete, let EA be its completion. For any subset 

A of EA, let cl(A) denote the closure of·A in EA. Let F be the linear 

space U n ~ 1 cl(En ). The space F is dense in E" since F contains E. 
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Also cl(E ) is a proper subspace of cl(E 1)' since each E is a closed n n+ n 

proper subspace of E l' If n is the strict *-inductive limit topology n+ 

on F of (cl(E », then (F,n) is complete, by the corollary of 
n 

Proposition 3.3.2. Since the identity map from E into (F,n) is 
n 

continuous for each n, n induces on E a topology coarser than its 

original topology, ~, say. Also, since the identity map from cl(E ) into 
n 

EA is continuous for each n, n must be finer than the topology induced 

on r by EA , and this implies that n induces a topology on E finer than ~. 

Thus E is a topological subspace of (F,n). The space (F, n) is complete 

and therefore the closure of E in (F,n) coincides with EA. 

Hence EA = (r, n), since E c::; F c;: EA • This completes the proof. '. 

Corollary' If E is the strict *-inductive limit of a sequence (En) of 

separated linear topological spaces such that, for each n, E is closed 
n 

in E l' then E is not metrizable. n+ 

Froof: By Corollary 2 of Proposition 3.3.1, each E is closed in E. 
n 

If E is complete and metrizable, then E is of the second category and 

E =U E. This is impossible. If E is not complete, but 
n >, 1 n 

metrizable, EA is a complete metrizable l.t.s. which is the strict 

"'-inducti ve limit of complete separated linear topological spaces, 

by the proposition. This is not possible as shown above. 



CHAPTER 4 

ULTRABARRELLED, ULTRABORNOLOGICAL AND 

QUASI-ULTRABARRELLED SPACES 

4.1 U1trabarrclled spaces 

H. Robertson, in Theorem 4 of (37), proved that a locally 

convex space (F,n) is b~lled if and only if any convex topology on 

F with a base of n-closed neighbourhoods is necessarily coarser than n. 

She then proceded to call an l.t.s. (E,1) ultra~lled if any linear 

topology on E with a base of t-closed neighbourhoods is necessarily 

coarser than t. Thus any locally convex ultrabarrelled space is 

barrelled. In (37), the following results are also proved. Every l.t.s. 

of the second category is ultrabarrelled, but an ultrabarrelled space 

need not be of the second category. Let E be an ultrabarrelled space. 

Then any quotient of E by a linear subspace is ultrabarrelled and 

if F is a separated l.t.s. such that E<;. F c:.E"', then F is ultrabarrelled. 
. ~£. 

Furthermor,:, any closed linear map from E into a complete metric linear~~J( 

space F is continuous and any continuous linear map from F onto E is 

open. And for E~ an analogue of the Banach-Steinhaus theorem holds 

in the following form: Every pointwise bounded set of continuous linear 

maps from E into any l.t.s. is equicontinuous. It is also shown in 

(37) that if (E,u) is any ultrabarrelled space, then (E,uoo ) is 

barrelled, though it may not be ultrabarrelled. 
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Theorem 4.1.1. 

An l.t.s. is ultrabarrelled if and only if every ultrabarrel 

is a neighbourhood of the origin. 

Proof: Suppose that (E,n) is ultrabarrelled. Let B be an ultrabarrel 

in (E,n) with a defining sequence (B ) of n-closed sets. Then the 
n 

family of n-closed sets (B ) is a base of neighbourhoods for a linear 
n 

topology on E, which must be coarser than n since (E,n) is ultrabarrelled. 

Therefore B is an n-neighbourhood. Suppose that every ultrabarrel in 

an l.t.s. (E,n) is a neighbourhood. Let ~ be a linear topology on E 

with a base1U of neighbourhoods consisting of balanced n-closed 

sets. Every U in1J , being then an ultrabarrel in (E,n) is an 

n-neighbourhood. This implies that ~ is coarser than n and thus (E,n) 

is ultrabarrelled. 

Corollary 1. Every linear map of an l.t.s. onto an ultrabarrelled 

space is nearly open, and every linear map of an ultrabarrelled space 

into an l.t.s. is nearly continuous. 

Proof: Let t be a linear map of an l.t.s. (E,u) onto an ultrabarrelled 

space (F,v). If U is a balanced u-neighbourhood, then U is a supra-

barrel in (E,u) and thus t(U) is a suprabarrel in (F,v). Therefore 

the v-closure of t(U) is an ultrabarrel in (F,v) and, by the theorem, 

this set is a v-neighbourhood. Thus t is nearly open. By a similar 

argument, one can prove that a line~r map of an ultrabarrelled space into 

an l.t.s. is nearly continuous. 
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Let (E,u) be a locally convex space. If there exists a 

continuous linear nearly open map of (E,u) onto an l.t.s. F say, 

then F is locally convex. It therefore follows from Corollary 1 that 

a non-locally convex ultrabarrelled topology on E can not be coarser 

than u. Since the finest linear topology on a countably dimensional 

linear space is locally convex, any ultrabarrelled topology on a 

countably dimensional linear space is necessarily locally convex. 

Corollary 2. Let (E,u) be an ultrabarrelled space and (F,v) an l.t.s. 

If f is a continuous linear nearly open map of (E,u) into (F,v), then 

(F,v) is ultrabarrelled. 

Proof: If B is a v-ultrabarrel, then f-l(B) is a u-ultrabarrel, since 

f is continuous. By the theorem, f-l(B) is a u-neighbourhood of the 

origin, and since f is nearly open, the v-closure of f(f-l(B» is a 

v-neighbourhood. And since the v-closure of f(f-1(B» is contained 

in B, B must be a v-neighbourhood, and, by the theorem (F,v) is ultra­

barrelled. 

An immediate consequence of the above is that a quotient by 

a linear subspace of an ultrabarrelled space is ultrabarrelled - a 

result due to W. Robertson «37), Proposition 13). Also, since any 

linear space E under its finest linear topology s is clearly ultra­

barrelled, by combining Corollaries 1 and 2, we get the following result. 

Corollary 3 An l.t.s. (E,u) is ultraharrelled if and only if the 

identity map from (E,s) onto (E,u) is nearly open. 
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Let (E,u)be the sequence space l~. As shown in page 256 

of (37), (E,uoo) is a barrelled normed space which is not ultra-

barrelled. Therefore~ by Corollary 3, the identity map from (E,s) 

onto (E,uoo) is not nearly open and thus the identity map from (E,uoo) 

onto (E,s) is not nearly continuous. Since the identity map from 

(E, t(E,E*» onto (E,uoo) is continuous and nearly open, it follows 

by Corollary 2 that (E,t(E~E*» is not ultrabarrelled. 

Suppose that, for each y in an uncountable index set ~, E is 
y 

a (non-trivial) separated locally convex space. Each E can be 
y 

expressed as the direct sum of a closed hyperplane and a copy K (=K) 
y 

of the scalar field; then by Remark 2 after Proposition 3.2.3, 

r K is a quotient of r ~ E. Now ~ is uncountable and therefore, 
y£~ y y£~ Y 

1 
for some subset ~ of ~, the space E = 12 considered above, with its 

finest locally convex topology t(E,E*), can be expressed as a direct 

sum r ill Ky of copies of the scalar field. Thus (E, t(E~E*» is a non­yET , 

ultrabarrelled quotient of r ~ E and so the latter space can not be 
yE~ y 

ultrabarrelled by Proposition 13 of (37). We note this for further 

reference. 

Corollary 4· An uncountable direct sum of (non trivial) separated 

locally convex spaces cannot be ultrabarrelled. 

If T is a pointwise bounded set of linear maps from an l.t.s. 

E into an l.t.s. F, then for any bornivorous suprabarrel B in Ft 

rt t£T t-1(B) is a suprabarrel in E. In particular if B is a bornivorous 

ultrabarrel and each t in T is continuous, then i\ t-1(B) is an ultra­
tET 

barrel in E. In this case, it follows from Theorem 4.1.1. that if E 
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is ultrabarrelled, then T is equicontinuous. This is W. Robertson's 

analogue of the Banach-Steinhaus theorem «37), Theorem 5). 

Let (E,v) be an l.t.s. If B is a suprabarrel in E with (B ) 
n 

as a defining sequence, then B together with (Bn) is a base of 

neighbourhoods for a linear topology on E. If N is the linear subspace 

f1 1 B of E, and kl the canonical map of E onto E/N, it is not n ~ n 

difficult to show that the linear topology w say, on E/N with base 

(kl (Bn» is metrizable. Let (E/N,w)~ denote the completion of (E/N,w) 

Lemma 4- .1.1. ~Ji th the notation introduced above, 

Ca) if B is an ultrabarrel, then the map kl of (E,v) into (E/N,w)A 

is closed. 

(b) if B is a bornivorous ultrabarrel, then the map kl of (E,v) into 

(E/N,w)~ is closed and bounded. 

Proof: 

(a) Since B is an ultrabarrel, we may assume by a remark in 

Section 2.4- that each Bn is v-closed. Let G denote the graph of kl 

and Gl its closure in (E,v) x (E/N,w)A. If A is contained in (E/N,w)" , 

we denote the closure of A in (E/N ,w)" by cl(A). He show that if (x,y) 

is in G1 , then y - kl(x) is in cl(kl(Bn » for arbitrary n, and this 

will prove (a). Suppose that (x,y) is in G1 • Since E/N is dense in 

(E/N,w)", then, for each n, there exists some z in E such that: 

(*) 

Since (x,y) is in Gl , then, for each v-neighbourhood V, 
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Therefore y - kl(x) is in kl(V) + cl(kl (Bn+4», and using this in (*) 

we find that 

Thus, kl(Z) is in kl(V) + kl (Bn+3 ) + kl (Bn+3), which is,contained in 

kl(V) + k l (Bn+2 ). This implies that z £V + Bn+2 + N and thus 

As this is true for all v-neighbourhoods V and B 1 n+ 

is v-closed, it follows that z £ B l' Now, using this in (*), we . n+ 

find that 

(b) That kl is closed follows from (a). Let u be the linear 

topology on E with base (Bn ). Since each Bn is v-bornivorous, the 

identity map from (E,v) onto (E,u) is bounded. Also, the map kl from 

(E,u) into (E/N,w)~ is bounded, being continuous. Therefore kl is a 

bounded linear map from (E,v) into (E/N,w)A. 

Let E be an l.t.s. and N the intersection of the neighbourhoods 

of the origin in E. If t is a closed linear map from E into an l.t.s. 

F, then teN) is the origin in F, and so t can be expressed in the 

form t = tlokl where kl is the canonical map of E onto E/N and tl maps 

E/N into F. It is then easy to see that tl is also closed. If in 

addition t is bounded, so is t l ; also t is continuous if and only if 

tl is continuous. 

Theorem 4.1.2. 

An l.t.s. (E,v) is ultrabarre1led if and only if every closed 

linear map from (E,v) into any complete metric linear space is continuous. 
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Proof: If (E,v) is ultrabarrelled, then by the remark just above and 

Propositions 13 and 15(ii) of (37), every closed linear map from (E,v) 

into any complete metric linear space is continuous. Now suppose that 

every closed linear map from (E,v) into any complete metric linear space 

is continuous. Let B be 

of v-closed sets. Let N 

a v-ultrabarrel with a defining sequence (B ) 
n 

be the linear subspace n "1 B of E and 
!1 J' n 

denote by w the metrizable linear topology on EIN with a neighbourhood 

base (kl(Bn», where kl is the canonical map of E into E/N. If 

(E/N,w)A denotes the co~pletion of (E/N,w) then, by Lemma 4.1.1., 

the graph of the map kl is closed in (E,v) x (E/N,w)A • By the hypothesis 

therefore, kl is a continuous map from (E,v) into (E/N,w)A. 

kl-1(kl(Bl » -- Bl + N is a v-neighbourhood, and since El + N is contained 

in B, B must be a v-neighbourhood. Thus by Theorem 4.1.1, (E,v) is 

ultrabarrelled. 

~orollary 1. Any *-inductive limit of ultrabarrelled spaces is 

ultrabarrelled. 

Proof: Let E be the ~':-inductive limit of ultrabarrelled spaces 

(Ey)y£~ by linear maps (Uy)y£~ , and t a closed linear map from E into 

a complete metric linear space F. Since each u is continuous, tou is y y 

a closed linear map from E into F for each y in~. By the theorem, y 

tou is continuous. As this is true for all y in ~, t must be continuous y 

and again, by the theorem, E is ultrabarrelled. 

Corollary 2. Any countable inductive limit of locally convex ultra-

barrelled spaces is ultrabarrelled. In particular any countable 
I 

inductive limit of Frechet spaces is ultrabarrelled. 



49 

Proof: That any countable inductive limit of locally convex ultra-

barrelled spaces is ultrabarrelled follows from Corollary 1 and the 

remark after Proposition 3.1.2. The last part follows from this 

since, by the corollary of Proposition 12 of (37), any rr~chet space is 

ultrabarrelled. 

Corollary 3. Let (Ey:y£~~e a family of separated locally convex ultra-

barrelled spaces. Then E = L ~ E is ultrabarrelled if and only if ~ 
)'E'&' )' 

is countable. 

Proof: If ~ is countable, then by Corollary 2, E is ultrabarrelled. 

If ~ is uncountable, then by Corollary 4 of Theorem 4.1.1., E is not 

ultrabarrelled. 

We note that, in Corollary 3, we cannot replace lIdirect sum" by 

"inductive limit". For if G is the direct sum of countably many copies 

of the scalar field and ~ is uncountable, then G, being a quotient of 

E, is an inductive limit of (Ey: y£~). 

Since every complete separated l.t.s. is a closed subspace of 

an l.t.s. of the s~cond category - a product of complete metric linear 

spaces, it follows that a closed linear subspace of an ultrabarrelled 

space need not be ultrabarrelled, for an uncountably dimensional linear 

space under its finest locally convex topology is not ultrabarrelled, 

but is complete and separated. However, we have the following result. 

Corollary 4. Any subspace of finite co-dimension in an ultrabarrelled 

space is ultrabarrelled. 

Proof: Let E be an ultrabarrelled space, ~o a subspace of E of finite 

co-dimension and suppose that t is a closed linear map of E into 'F .a.."'Wlr~ ) 
o f\. M.d;.nc. "~f" " 

s~to... 
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By Lemma 2.6.6, there exists a closed linear extension from E into F 

Which by the theorem must be continuous. Therefore t is continuous 

and again by the theorem, E is ultrabarrelled. o 

Finally we observe that by the method of proof of Proposition 14 

of (37) one can show that if Eo' El' E are linear spaces, v a linear 

topology on E such that Eo c; El S. E and Eo is v-dense, then El' 

under the v-induced topology is ultrabarrelled if E , under the o 

v-induced topology is ultrabarrelled. 

4.2 Ultrabornological spaces 

~le call an 1. t • s. E ul trabornoloeical if every bounded linear 

map from E into any l.t.s. is continuous. 

Clearly every metrizable l.t.s. is ultrabornological. Since a 

countably dimensional metrizable non-locally convex space is not ultra-

barrelled (by the remark after Corollary 1 of Theorem 4.1.1), it follows 

that an ultrabornological space need not be ultrabarrelled. 

If (E,u) is ultrabornological, then (E,uoo) is bornological. 

For, let t be a bounded linear map of (E,uoo) into a locally convex 

space F. Then t, being a bounded linear map from (E,u) into F, is 

continuous, and since F is locally convex it follows that t is continuous 

f (E 00 ) • Th (E ,uo 0). b l' rom ,u ~nto F. us ~s orno og~cal. In particular, 

a locally convex ultrahornological space is bomological. However, a 

bornological space need not be ultrabornological. For, let E be a 

linear space of uncountable dimension. Then by Theorem 3.1 of (19), its 

finest linear topology s is strictly finer than t(E,E*), so that the 



51 

identity map of (E, l(E,E*» into (E,s) is not continuous. But it is 

bounded, since every t(E,E*) - bounded subset is contained in a finite 

dimensional subspace of E. The l.t.s. (E,1(E,E*» is therefore not 

ultrabornological, though it is bornological. 

Let E be an incomplete separated inductive limit of a sequence 

of Banach spaces (for an example of such a space, see (21P' pages 3 J 
437 and 438), and suppose that x is a point of E~ (the completion of E) 

not in E. By a result of Komura «22), page 155), the linear subspace 

El of EA spanned by E and x is not bomological. Clearly El is not 

ultrabornological. But, by Corollary 2 of Theorem 4.1.2 and Proposition 

14 of (37), El is ultrabarrelled. Thus an ultrabarrelled space need 

not be ultrabomological. 

It is also a direct consequence of the definition that, if E 

is any ultrabornological space, then a linear map from E into an l.t.s. 

is continuous if and only if it is sequentially continuous. 

Theorem 4.2.1. 

Any *-inductive limit of ultrabomological spaces is ultra-

bornological. 

Proof: Let E be the *-inductive limit of (E ; u : YEt) where each E 
y Y Y 

is ultrabornological and let t be a bounded linear map from E into 

an l.t.s. F. Since u is bounded, being continuous, it follows that 
y 

tou
y 

is a bounded linear map from Ey into F. Since Ey is ultra-

bornological, tou is continuous. As this is true for all y in ~, 
y 

it follows that t is continuous and therefore E is ultrabornological. 
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Corolla£X. Any countable inductive limit of locally convex ultra-

bornological spaces is ultrabornological. 

It follows from the above corollary and Komura's example of a 

non-bornological barrelled space in «22), page 155) that a non-ultra-

bomological space may contain a dense ultrabornological space. 

Suppose that, for each y in an uncountable index set ~,E is 
y 

a (non-trivial) separated locally convex space and K is a copy of the 
y 

scalar field. As pointed out after the definition of an ultrabornological 

space above, G = L K is not ultrabornological. 
yE~ y 

Since G is a 

quotient of E ~ E , it follows by Theorem 4.2.1 that an uncountable ye:.., y 

direct sum of separated (non-trivial) locally convex spaces cannot be 

ultrabornological. 

Lemma 4.2.l. Let (E,v) be an l.t.s. Then there exists a finest linear 

topology u say, on E with the same bounded sets. The space (E,v) 

is ultrabornological if and only if v = u, and this is so if and only 

if every bornivorous suprabarrel in (E,v) is a v-neighbourhood. 

Proof: If V is any bornivorous suprabarrel in (E,v), then V 
Cl. CL 

together with a defining sequence forms a base of neighbourhoods for a 

linear topology v say on E. Let u be the upper bound of (v ) as V 
a CL CL 

runs through all the bornivorous suprabarrels in (E,v). Clearly u is 

finer than v and u,v have the same bounded sets. The linear topology u 

is the finest one having the same bounded sets as v. For, suppose that 

H is.a balanced neighbourhood of the origin in a linear topol:>gy ul on 

E having the same bounded sets as v, then W is a v-bornivorous supra-

barrel and therefore u
l 

is coarser than u. Next, (E,u) is 
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ultrabornological; for if t is a bounded linear map from (E,u) into 

-1 an l.t.s. F, then t (V) is a u-bornivorous suprabarrel for any 

balanced neighbourhood V in F. Since u and v have the same bounded sets, 

t-1(V) is a v-bornivorous suprabarrel and therefore t-1CV) is a u-

neighbourhood and t is a continuous map from (E,u) into F. Thus (E,u) 

is ultrabornological. That u = v if and only if (E,v) is ultra-

bornological follows easily from here. The remaining part follows 

from the above construction of u. 

Hith the notation used in the above lemma, we call u the 

ultrabo~nological topology associ~ted with ~ 

Let T be a set of linear maps from an l.t.s. E into an l.t.s. 

F such that T is uniformly bounded on bounded sets. Al8o, let V be a 

balanced neighbourhood in F. Then V is a bornivorous suprabarrel in F, 

so that n te:T t-1(V) is a bornivorous suprabarrel in E. If E is 

ultrabornological, it fODbws from Lemma 4.2.1. that T is equicontinuous. 

We have thus proved the following result. 

Proposition 4.2.1. 

A set of linear maps from an ultrabornological space into an 

l.t.s. is equicontinuous provided that it is uniformly bounded on 

bounded sets. 

Theorem 4.2.2. 

An l.t.s. (E,v) is ultrabornological if and only if every 

bounded linear map from (E,v) into any complete metric linear space is 

continuous. 
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Proof: Suppose that every bounded linear map from (E,v) into any 

complete metric linear space is continuous. Let u be the ultra-

bomological topology associated with v. He show that u is coarser 

than v and it will follow by Lemma 4.2.1 that (E,v) is ultrabornological. 

Let V be a balanced u-neighbourhood in E and let (V ) be a sequence of o n 

balanced u-neighbourhoods such that U 1 + V l~ V for all n ~ O. 
nt n+ - n 

Then U is a (bornivorous) suprabarrel in (E,v) with (U ) as a defining o n 

sequence. Let N be the linear space (l I V and let w denote the 
n ~ n 

metrizable linear topology on EIN with a local base (K1(Un », where KI 

is the canonical map of E onto E/N. Let (E/N,w)" be the completion of 

(E/N,w). Clearly the map KI is continuous from (E,u) into (E/N,w)A , and 

therefore it is bounded from (E,v) into (E/N,w)A. By the hypothesis 

therefore, kl is a continuous map from (E,v) into (E/N,w)A. Hence 

-1 kl (KI(Vl »: VI + N is a v-neighbourhood of the origin and, since 

Ul + N ~ U, U must be a v-neighbourhood. Thus u is coarser than v. 

Theorem 4.2.3. 

Let (E,u) be a separated almost convex ultrabornological space. 

Then U:, u) is a 1:-inducti ve limit of separated locally bounded spaces. 

If (E,u) is sequentially complete then, it is a *-inductive limit of 

complete separated locally bounded spaces and is therefore ultrabarrelled. 

Proof: Let A be a balanced (closed) semiconvex bounded subset of (E,u), 

and let EA be the linear subspace spanned by A. Then it is easy to see 

that EA can be given a locally bounded metrizable topology v
A 

(with local 

1 
base the sets n A for n : 1,2, ... ) and that vA is finer than the 

topology induced on EA by u. As A runs through the balanced semiconvex 
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(u-closed) u-bounded subsets of E, lJ EA spans E; let v be the 

*-inductive limit topology on E defined by the EA and the injection 

maps into E. Then v is finer than u and, by Theorem 4.2.1, (E,v) is 

ultrabornological. Any u-bounded set A~ in E is also v-bounded. 

For, since (E,u) is almost convex, there is a (u-closed) balanced 

u-bounded semiconvex set A containing A~. Then A~ is vA-bounded and 

so v-bounded. Thus the identity map of (E,u) into (E,v) is bounded 

and, since (E,u) is ultrabornological it is continuous. Hence v is 

identical with u. 

If (E,u) is sequentially complete, each (EA,vA) is complete. 

For, any vA-Cauchy sequence (xn ) is also u-Cauchy; it therefore 

converges in (E,u) to a say. Now for each E > 0,3 no(E) such that 

x - x E E A for all m, n ~ n (1:) and so, on letting n -+-QC>, X - a E E A m n 0 m 

for m ~ n (E) 
0 

(since we took the sets A u-closed). Thus a E EA and 

Xn -+- a in (EA,vA) Hence, the metrizable space (EA,vA) is complete, and 

so (E,u) is a *-inductive limit of complete separated locally bounded 

spaces. By Corollary 1 of Theorem 4.1.2 it is therefore ultrabarrelled. 

4.3 Quasi-ultrabarrelled spaces 

We say that an l.t.s. E is quasi-ultrabarrelled if every 

bornivorous ultrabarrel in E is a neighbourhood of the origin. 

From Theorem 4.1.1., we deduce that every ultrabarrelled space is quasi-

ultrabarrelled, and from Lemma 4.2.1, we deduce that every ultra-

bornological space is quasi-ultrabarrelled. 
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If (E,u) is quasi-ultrabarrelled, then (E,uoo) is quasi-

d • f B • 00 b' b l' E • barrelle. For, 1 1S a u - orn1vorous arre 1n , B 1S a u-

bornivorous ultrabarrel and is therefore a u-neighbourhood of the 

origin. The set B must then be a uOO-neighbourhood and thus (E,uoo) 

is quasi-barrelled. In particular any locally convex quasi-ultra-

barrelled space is quasi-barrelled. 

If (E,v) is a quasi-ultrabarrelled space and u is the ultra-

bornological topology associated with v, then it is easy to see that 

the identity map from (E,u) onto (E,v) is nearly open. By an application 

of Lemma 4.2.1, one can show that if (E,v) is an l.t.s. such tbat the 

identity map from (E,u) (u is the ultrabornological topology associated 

with v) onto (E,v) is nearly open, then (E,v) is quas;-ultrabarrelled. 

Since for any linear space E, the finest linear topology s on E is 

the ultrabornological topology associated with T(E,E*), it follows from 

Corollaries 2 and 4 of Theorem 4.1.1 that if E has uncountable 

dimension then (E, T(E,E*»is not quasi-ultrabarrelled. 

If in the argument preceding Proposition 4.2.1, each t in T is 

continuous and V is closed, we see that a set of continuous linear 

maps from a quasi-ultrabarrelled space into an l.t.s. is equicontinuous 

provided that it is uniformly bounded on bounded sets. 

Theorem 4.3.l. 

An l.t.s. (E,v) is quasi-ultrabarrelled if and only if every 

closed bounded linear map from (E,v) into any complete metric linear 

space is continuous. 
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Proof: Let (E,v) be quasi-ultrabarrelled and suppose that t is a 

closed bounded linear map from (E,v) into a complete metric linear space 

F. Since each quotient of (E,v) by a linear subspace is also quasi­

ultrabarrelled, to prove that t is continuous, we may assume by the 

argument preceding Theorem 4.1.2, that (E,v) is separated. Since t 

is bounded, the v-closure of t-l(U) is a bornivorous ultrabarrel in 

(E,v) for every balanced neighbourhood U in F. And since (E,v) is 

quasi-ultrabarrelled, it follows that t is nearly continuous. 

Therefore, t is continuous, by «16), Page 213). 

The proof of the other part is as in Theorem 4.1.2, with the 

difference that we take B to be a bornivorous ultrabarrel, and this 

ensures that the map kl of (E,v) into (E/N,w)A is bounded. 

Corollaries 1 - 3 of Theorem 4.1.2 are true with "quasi-ultra­

barrelled" replacing "ultrabarrelled". Only easy modifications of the 

methods of proof are needed in this case. In particular, if El' E2 

are quasi-ultrabarrelled so is their *-direct sum. If we now take El 

to be an ultrabarrelled space which is not ultrabornological and E2 as 

an ultrabornological space which is not ultrabarrelleJ, then the 

*-direct sum of El and E2 is quasi-ultrabarrelled, but is ne~er 

ultrabarrelled nor ultrabornological. Also, a closed linear subspace 

of an ultrabarrelled ultrabornological space need not be quasi-ultra­

barrelled. For, in Problem D(b), Page 195 of (18), G* is a countable 

direct sum of Frechet spaces with a closed linear subspace HO which is 

not quasi-ultrabarrelled since it is not quasi-barrelled. 



58 

Lemma 4.3.1. In a separated l.t.s., an ultrabarrel absorbs every 

balanced sequentially complete semiconvex bounded set. 

• 
Proof: Let (E,u) be a separated l.t.s., B an ultrabarrel in (E,u) and 

11 a balanced sequentially complete semiconvex bounded subset of (E,u). 

He may \d thout loss of generality assume that H spans E (for otherwise 

we may consider the subspace El of E spanned by l1 and the ultrabarrel 

Bn El in El under the u-induced topology). The locally bounded 

topology v say, on E with 11 as unit ball is finer than u; and using 

the fact that M is sequentially complete, one can show that (E,v) is 

complete. Therefore (E,v) is ultrabarrelled. Since B is a u-ultra-

barrel and v is finer than u, B is a v-neighbourhood, being a v-ultra-

barrel. As 11 is v-bounded, B absorbs M. 

Theorem 4.3.2. 
,,>tpayc\.twl 

Alsequentially complete almost convex quasi-ultrabarrelled 

space is ultrabarrelled. 

Proof: Let (E,u) be such a space. Let B be an ultrabarrel in (E,u). 

Every bounded set in (E,u) 13 contained in a balanced closed semiconvex 

bounded set A and A is sequentially complete since E is. Hence by 

Lemma 4.3.1, B absorbs A and it follows easily from here that every 

ultrabarrel in (E,u) is a bornivorous ultrabarrel. Therefore (E,u) 

is u1trabarre11ed by Theorem 4.1.1. 

4.4. A generalization of two nOrm spaces 

The two-norm spaces introduced by Alexiewicz in (1), (2) have 

been extensively studied by several authors, for example Wiweger (42) 

and Persson (30). 
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The idea of two-norm convergence (sometimes referred to as 

y-convergence) is as follows. Let E be a linear space on which are 

defined two invariant metrics dl (-,·), d2(·,·) compatible with the 

linear space structure of E. A sequence (x ) in E is said to be n 

convergent to Xo in E in the two-norm sense if the supremum of dl(o,xn ) 

is finite and d2(x ,x ) tends to zero as n tends to infinity. A linear 
o n 

map f of E into an l.t.s. F is said to be continuous in the two-

norm sense if whenever a sequence (x ) converges to x in E in the two-n 0 

norm sense, f(x ) converges to f(x ) in F. A two-norm space is a 
n 0 

linear space provided with two metrics of the form of dl (·,·), d2(·,·) 

above. 

Wiweger,in (42), constructed a topology which generates two-

norm convergence. Persson, in (30), extended the theory of two-norm 

spaces to the situation of a linear space E provided with two convex 

topologies u,v such that every v-bounded set is u-bounded, and. 

constructed a topology which generates the two-norm convergence. 

Wiweger's topology in (42) is also well defined in this case. 

In this section, we point out how some of Persson's results in 

(30) carry over to certain classes of not necessarily locally convex 

linear topological spaces. 

Let (M : aE~) be a family of subsets of an l.t.s. (E,v) and 
a 

let (M ,v) denote M under the v-induced topology. The upper bound 
a a 

u say, of all linear topologies on E for which each identity map i 
a 

from (M ,v) into E is continuous is the finest linear topology on E 
a 

such that each i is continuous. The topology u is finer than v, 
a 
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u coincides with v on each M and u is the finest linear topology on 
(1 

E which coincides with v on each I1 • 
(1 

Let E be a linear space and u,v linear topologies on E. If 

every v-bounded subset of E is u-bounded, we call (E;u,v) a bitopolo-

gical space. ~'Je denote by u( v), the finest linear topology on E 

coinciding with u on v-bounded sets, and say that u(v) is the mixed 

topology on E defined by u and v. 

Clearly u is coarser than u(v) and if w is the ultrabornological 

topology associated with v, then u(v) = u(w). Also, since (E,w) is 

ultrabornological, u is coarser than w. 

The proofs of Proposition 4.4.1, its corollary and Proposition 

4.4.2 below are similar to those of Proposition 1.1, Corollary 1.1 

and Proposition 1.2 of (30). 

Proposition 4.4.1. 

If (E;u,v) is a bitopological space, then every v-bounded set 

is u(v)-bounded. 

Corollary. If (E;u,v) is a bitopological space and w is the ultra-

bornological topology associated with v, then u is coarser than u(v) 

and u(v) is coarser than w. 

Proposition 4.4.2. 

Let (E;u,v) be a bitopological space. Then, a linear map 

fromm,u(v» into an l.t.s. is continuous if and only if its restriction 

to every v-bounded subset of E is continuous. l1oreover, among the 

linear topologies on E which are identical with u on v-bounded sets, 

u(v) is the only one with this property. 
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He say that a bitopological space (E;u,v) is normal if (E,v) 

is almost convex and has a base of balanced u-closed neiehbourhoods. 

Clearly if (E;u,v) is a bitopological space, the topoloey u(v) 

is determined by a fundamental system of v-bounded sets. Therefore, 

if (E;u,v) is in particular normal we can limit our consideration to 

a fundamental system of balanced semiconvex v-bounded sets. In this 

case, the following lemma is useful. 

Lemma 4.4.1. Let t be a linear map from an l.t.s. E into an l.t.s. F. 

If M is a balanced semiconvex subset of E, then t is uniformly continuous 

on M .if and only if it is continuous on M at the origin. 

Proof: Suppose that t is continuous on 11 at the origin. Let V be a 

neighbourhood of the origin in F. For some positive integer n, 

M + 1,1 c::. nM • 

such that 

Let V be a balanced neighbourhood of the origin in F 
n 

V + V + .... + V (n terms) C. V. n n n 

Since t is continuous on M at the origin, there exists a balanced 

neighbourhood U of the origin in E such that t(Ur\ M) is contained in 

V. Let a be any point of H. If XE (a + U)r\ M, then x - a is in n 

un (H M) and this is contained in n(Uf) M). Therefore t(x) is in 

tea) + nt(U(") H) and this is contained in tea) + V. Therefore t is 

uniformly continuous on M. 

From the above lemma and Proposition 4.4.1, we deduce that if 

(E;u,v) is a normal bitopological space, then a base of neighbourhoods 

for the mixed topology u( v) is the family \..J of all v-borni vorous 
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suprabarrels in E such that for any balanced semiconvex v-bounded set 

.i,l! B and any U in U, U n B is a neighbourhood of the origin in (B,u) 
n 

for each U in a defining sequence for U. Using this, we now show 
n 

that every sequence (x ) converging to zero in (E,u(v» is v-bounded. 
n 

If (x ) is a sequence on E which is not v-bounded, then there 
n 

exists a balanced u-closed neighbourhood VO in (E,v) and a subsequence 

(xk(n» of (Xn) such that for all positive integers n, xk(n) 4 nVo. 

Since nVo is u-closed for each n, there exists a sequence (Un(o» of 

balanced u-neighbourhoods such that xk(n) is not in (nV
o 

+ Un(o» for 

any n. Let (Vm.m = 1,2 ••• ) be a sequence of u-closed balanced v-neigh-

mtl m+l m b OUI' hcxrls such that V + V C. V for all m ~ 0, and for each n, -
let (Un(m):m = 1,2 •. ) be a sequence of balanced u-neighbourhoods such 

that Un(m+l) + Un(m+l)~ Un(m) for all m ~ o. 

Let 

= n n 1 
(nVm + U ) 

~ n(m) 

It is not difficult to show that WO is a v-bornivorous supra­

m barrel in E with (\~ ) as a defining sequence. Since B is v-bounded, 

m for any m, B S nV for some n. Using this, one shows that for any m, 

W
m('\ B is a neighbourhood of the origin in (B, u), and thus WO is a 

u(v)-neighbourhood in E. And since HO does not contain xk(n) for all 

positive integers n, (x ) is not converg~to zero in (E,u(v». 
n 

Let (E;u,v) be a normal bitopological space. If B is any 

u(v)-bounded subset of E, let (xn ) be any sequence of points of Band 

(A ) any sequence of positive scalars convereing to zero. Since B is n 
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, 
u(v)-bounded, (A 2 x ) converges to zero in (E,u(v» and by the 

n n , 
argument above, (A 2 x ) is v-bounded. Thus (A x ) converges to 

n n n n 

zero in (E,v) and B is v-bounded. From this and Proposition 4.4.1, 

we deduce the followinE analogue of Theorem 1.1 of (30). 

Theorem 4-.4.1. 

If (E;u,v) is a normal bitological space then a subset of E 

is v-bounded if and only if it is u{v)-bounded. 

Corollary. Let (E;u,v) be a normal bitopological space. Then, a 

sequence in E is u(v)-convergent to x if and only if it is v-bounded and 

u-convergent to x. 

As in Corollary 1.3 of (30), the above corollary shows the 

connection between the mixed topology and the notion ofy-convergence 

introduced by Alexiewicz in (2). 

Let (E;u,v) be a normal bitopological space such that (E,v) is 

ultrabornological. If u = v, we deduce immediately from the corollary 

of Proposition 4.4.1 that v is the finest linear topology on E inducing 

the same topology on the bounded subsets of (E,v). In particular if (E,v) 

is locally bounded, v is the finest linear topology on E inducing the 

same topology on the unit ball of (E,v). If u ¥ v, then clearly (E,u) is 

not ultrabarrelled. If u and v are not identical on v-bounded sets, we 

have the following analogue of Proposition 1.3 of (30). 

Proposition 4.4.1. 

Let (E;u,v) be a normal bitopological space such that (E,v) is 

ultrabornological and v is not identical with u on v-bounded sets. 

Then (E,u(v» is not quasi-ultrabarrelled. 
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He now give some examples of normal bitopological spaces. 

1. Let E be a linear space. Let u be the topology o(E,E*) (,(E,E*» 

and v the topology ,(E,E'':) (o(E,E":». In either case, (E;u,v) is a 

normal bitopological space and the finest linear topology s on E is the 

mixed topology determined by u and v. Since s is not necessarily 

locally convex, wc see that the mixed topology determined by two locally 

convex topologies need not be locally convex. 

2. Let E be the direct sum of a family of locally convex spaces. 

If v, u are respectively the direct sum and product topologies on E, 

then (E;u,v) is a normal bitopological space. 

3. Let F be a separated locally bounded space and suppose that E is 

the algebraic direct sum of countably many copies of F. If v,u are 

respectively the *-direct sum and product topologies on E, then (E;u,v) 

is a normal bitopQLoglcal space. For, since v is finer than u, every v-

bounded set is u-bounded. Also, by Corollary 2 of Propoisition 3.2.4, 

(E,v) is almost convex. He now show that the topology v has a base of 

balanced u-closed neighbourhoods of the origin. Let B be the unit ball 

in F. Then B + B c: e B for some e ~ O. Take one such B. A typical v-

neighbourhood is of the form 

u = U (L ;. (a.B» 
n ~ 1 I ~ i ~ n~l l 

where (a.) is a sequence of positive real numbers and j. is the injection 
l l 

map of r. (=F) into E for each i. If x is in the u-closure of U, then 
l 

for some positive integer n, p.(x) = 0 for all integers i greater than n, 
l 

where Pi is the projection of E onto F i (=F) for each i. Let W be 
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n . p.-l(o..B). Then VI is a u-neighbourhood of the origin in 
1 ~ ~ ~ n ~ ~ 

E and since x is in the u-closure of U, there exists y in U such that 

x-y is in W. Since y E U, 

y e El'; J' (o..B) for some integer m • (''') 
~ ... ~ m i ~ 

Since x-y E W } 

El '; p.(x-y) 
~ ~ 0:- n l. 

Now, E. +lP' (x-y) = -L > +lP' 1. ~ n l. 1. ~ n ~ 
(y) 

and using (~~~4~ ) , it follows that x-y is in 

by U:), x is in S(E1 ~ i ~ m ji (ex.B», 
1. 

v has a base of u-c1osed neighbourhoods. 

~ (ex.B) 
~ ... ~ n 1. 

• (;'n" ) 

is in E (ex.B) 
n+1 ~ i ~ m l. 

El ~ i ~ mji (ex.B). 
1. 

Therefore 

and thus x (: B U and 



CHAPTER 5 

snrrCONVEX SPACES 

5.1 Semiconvex spaces: general 

Let E be a linear space. As defined in section 3.2, if A is 

a non-negative real number, a subset A of E is called A-convex if 

A + A c: AA. A subset B of E is called a semiconvex subset if it is -
~ -convex for some ~ ~ O. 

A linear topology u on a linear space E with a base of 

balanced semi convex neighbourhoods of the origin is called a semiconvex 

topology and <i,u) is known as a semiconvex space. 

Any locally convex or locally bounded space is a semiconvex 

space and so is any product of semiconvex spaces. It is easy to see 

from the proof of Theorem I of (20) that any separated semiconvex space 

is topologically isomorphic to a subspace of a product of separated 

locally bounded spaces. Thus a separated l.t.s. is a semiconvex space 

if and only if it is a subspace of a product of separated locally bounded 

spaces. 

Since the upper bound of any set of semieonvex topologies on 

a linear space is semiconvex, there exists a finest semiconvex topology 

on any linear space E. This shall be denoted by se. A base of 

neighbourhoods for sc is the family of all balanced semiconvex absorbent 

subsets of E. Clearly t(E,E*) is coarser than sc and se is coarser than 

the finest linear topology s on E; the three topologies coincide when 

the dimension of E is countable. When the dimension of E is uncountable 
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, 
.(E,E*), se and s are distinct. For, let G be the sequence space 12 

and H the space of all measurable functions on the closed interval (O,l) 

with the metrizable topology corresponding to convergence in measure. 

Since G and H have the same dimension (2 ~o), they are algebraically 

isomorphic and we may identify them. That T(G,G*) is strictly coarser , 
than sc follows from the fact that the topology of 12 cannot be coarser 

than .(G,G~~). Also, as H is not a semiconvex space «43), Page 239}, 

and any continuous nearly open linear image of a semiconvex space is 

obviously a semiconvex space, we deduce that the topology of H cannot 

be coarser than sc and thus sc is strictly coarser than s. If E is any 

uncountably dimensional linear space, G may be identified with a 

linear subspace of E, and from this, the assertion follows. 

According to Simons «44), Page 170), a function f on a linear 

space E into the non-negative reals is called an r-pseudometric 

(0 < r ~ 1) if (1) there exists x in E such that f(x) 1 0, 

(ii) f(x+y) ~ f(x) + fey) for all x,y in E 

and (ill) f(Ax) = IAlrf(x) for each x in E and A in the scalar 

field. The function f is said to give the topology u to E if the sets 

-1 1/ (f (0, n) : n = 1,2, ••. ) form a base of u-neighbourhoods of the origin. 

From Theorem 1 of (44), we see that for every balanced semiconvex 

absorbent proper subset B of E there exists an r-pseudometric which gives 

the locally bounded topology on E with (l/n B : n = 1,2, ••• ) as a base 

of neighbourhoods of the origin. And furthermore, if for. each r in 

o < r 

space 

~ 1, (f : etE~ ) 
et r 

E and (f : ete:<t») 
a 

is the set of all r-pseudometrics on a linear 

is the union over r of (fa : ae:~) then, a base 



68 

. . { -le 1 ) of neighbourhoods for sc 1S the famlly of sets fa 0, In : n = lt2, ••• ~ 

CtE~}. Now, using (f : ae:<P) instead of invariant pseudometrics !Iq" in 
a 

Problem Et Page 12~ of (18), one can easily show that for any linear 

space E, (E,sc) is complete. 

Simons's notion of an upper bound space in (44) clearly 

coincides with that of a semiconvex space. In Theorem 6 of (44), it 

is proved that if (E,u) is an upper bound space and B is a subset of 

E such that f(B) is bounded for each u-continuous invariant pseudo-

metric f on E, then B is u-bounded. Simons asked whether this property 

characterises upper bound spaces. This is not so. For, if E is an 

uncountably dimensional linear space, (E,s) is not an upper bound 

space since s is strictly finer thun sc. Let B be a subset of E such 

that for each s-continuous pseudometric f on E, f(B) is bounded. 

Clearly, for each se-continuous pseudometric f on E f(B) is bounded and 

thus B is se-bounded by Theorem 6 of (44). Since 5 and se have the 

same bounded sets, B is s-bounded. 

Let E be a linear space, and suppose that, for each y in an 

index set r, E is a semiconvex space and u is a linear map of E 
y y y 

into E such that the union of the subspaces u (E ) spans E. The y y 

upper bound I; say, of all semiconvex topologies on E for which each 

u is continuous, is the finest semiconvex topology on E for which each 
y 

u is continuous. He shall call r; the ~':*- inducti ve limit topology on 
y 

E induced by (E ; u : ye:r) and say that (E,r;) is the ~':*-inductive limit 
y y 

of (E ) by (u ) or of (E . u : ye:r). 
y y y' y 
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With the notation above, a base of neighbourhoods for the 

topology I',; is the family "'\A of all balanced semiconvex subsets of 

E such that for every U in \..t , u -l(U) is a neighbourhood in E for 
y y 

each y in r. Also a linear map t from (E,I',;) into a semiconvex space 

is continuous if and only if tou is continuous for each y in r. 
y 

If r is cOW1table and for a fixed ""A > 0 each £ has a base of balanced 
y 

A-convex neighbourroods of the origin, then by Proposition 3.l.2~ (£,1',;) 

is the *-inductive limit of (E . u : yer). 
y' y 

However, since for an W1countably dimensional linear space E, 

the topologies T(E,E*), sc and s are distinct and (E,T(E,E*», (E,sc), 

(E,s) are respectively the inductive limit, **-inductive limit and *-

inductive limit of some (K ; u : yer) (each K is a copy of the scalar 
y y y 

field K), we see that a **-inductive limit of locally convex spaces need 

not be locally convex and that a *-inductive limit of locally convex 

spaces need not be a semiconvex space. 

As in Chapter 3, one can define the notions of **-direct sum, 

generalized strict ~'::"-inducti ve Hmi ts and strict ~c:': -inducti ve Hmi ts 

of semiconvex spaces. It follows from Proposition 3.1.2 that a *-

inductive limit of finitely many semiconvex spaces is semiconvex. 

In particular, the :'::':-direct sum topology on a finite direct sum of 

semiconvex spaces is identical with the product topology. 
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5.2 Hyperbarrelled, hyperbornological and quasi-hyperbarrelled spaces 

VIe call a semiconvex space hyperbarrelled (quasi-hyperbarrelled) 

if every closed balanced semiconvex absorbent (bomivorous) subset is 

a neighbourhood of the origin. 

We say that a semiconvex space E is hyperbornological if 
• 

every bounded linear map from E into any semiconvex space is continuous. 

Clearly, if (E,u) is ultrabarrelled (ultrabornological, 

quasi-ultrabarrelled) and Uo is the finest semiconvex topology on E 

coarser than u, then (E,uo) is hyperbarrelled (hyperbornological, 

quasi-hyperbarrelled), and if (F,v) is hyperbarrelled (hyperbornological, 

quasi-hyperbarrelled) then (F,vOO ) is barrelled (bornological, quasi-

barrelled). In particular, evel'y semiconvex ultrabarrelled (ultra-

bornological, quasi-ultrabarrelled) space is hyperbarrelled (hyperborno-

logical, quasi-hyperbarrelled) and every locally convex hyperbarrelled 

(hyperbornological, quasi-hyperbarrelled) space is barrelled (bornologica~ 

quasi-barrelled). 

It is not difficult to show that a semiconvex space is hyper-

bomological if and only if every balanced semiconvex bornivorous subset 

is a neighbourhood of the origin (in fact, the method used in Lemma 4.2.1 

can easily be adapted). Let T be a set of linear maps from an l.t.s. 

E into an l.t.s. F. If B is a balanced semiconvex bornivorous subset of 

F and T is pointwise bounded (uniformly bow1ded on bounded sets), then 

f1 T t-l(B) is a balanced semiconvex absorbent (bornivorous) subset 
te: 
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of E. If B is closed and each t in T is continuous, then 

n -1 
t£T t (B) is closed. The following result can be easily deduced 

from these observations. 

Theorem 5.2.1. 

Let T be a set of linear maps from a semiconvex space E into 

a semiconvex space F. 

(a) If E is hyperbarrelled and T is pointwise bounded with each t in 

T continuous, then T is equicontinuous. 

(b) If E is hyperbornological and T is uniformly bounded on bounded 

sets, then T is equicontinuous. 

(c) If E is quasi-hyperbarrelled and T is uniformly bounded on bounded 

sets with each t in T continuous, then T is equicontinuous. 

Theorem 5.2.2. 

Any 1::':-inductive limit of hyperbarrelled (hyperbornolgoical, 

quasi-hyperbarrelled) spaces is of the same sort. 

Proof: Let (E,v) be the :'::':,..inductive limit of (E ; u 
y y y£4», where 

each E is hyperbarrelled. Let B be a v-closed balanced semiconvex 
y 

absorbent subset of E. For each y in ~, u -l(B) is a closed balanced 
y 

semiconvex absorbent subset of Ey; and is thus a neighbourhood, since 

E is hyperbarrelled. As this is true for all y in 4>, B must be a v­
y 

neighbourhood in E and thus (E,v) is hyperbarrelled. 

If (E,v) is the **-inductive limit of (E ; u : y£$), where 
y y 

each E is hyperbornological (quasi-hyperbarrelled), then by using a 
y 

similar argument to the one above and choOSing B to be a balanced semi-
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convex bornivorous (closed balanced semiconvex bomivorous) subset of 

(E,v), we see that (E,v) must be hyperbornological (quasi-hyperbarrelled). 

Corollary~. Every quotient by a linear subspace of a hyperbarrelled 

(hyperbornological, quasi-hyperbarrelled) space is of the same sort. 

Corollary 2. Every product of finitely many hyperbarrelled (hyper-

bornological, quasi-hyperbarrelled) spaces is of the same sort. 

Corollary 3. Every countable inductive limit of locally convex hyper­

barrelled (hyperbomological, quasi-hyperbarrelled) spaces is of the 

same sort. In particular, every countable inductive limit of 
, 

Frechet spaces has all three properties. 

From Corollary 3 above and Problem D(b), Page 195 of (18), we 

see that a closed linear subspace of a hyperbarrelled hyperbornological 

space need not be quasi-hyperbarrelled. 

Corollary~. Every **-inductive limit of complete separated locally 

bounded spaces is hyperbQrrelled, hyperbornological and quasi-hyper-

barrelled. 

Since a countably dimensional norned linear space is not 

barrelled, it follows that a hyperbornological space need not be 

hyperbarrelled. Let E be an incomplete separated inductive limit of 

a sequence of Banach spaces and let x be a point of the completion EA 

of E, which is not in E. As pointed out in Section 4.2, the linear sub-

space El of EA spanned by E and x is ultrabarrelled, and thus El is 

hyperbarrelled. But it is not hyperbornological, since it is not 

bomological «22), Page 155). 
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It is easy to see that every hyperbarrelled or hyperbornological 

space is quas:i..hyperbarrelled. If F is a hypert,arrelled space ;'lhich is 

not hyperbornological and G is a hyperbornological space which is not 

hyperbarrelled, then by Corollary 2 of Theorem 5.2.2, F x G is a quasi-

hyperbarrelled space, which in view of Corollary 1 of Theorem 5.2.2 

is neither hyperbarrelled nor hyperbornological. 

A linear (bounded linear) map from a hyperbarrelled (quasi-

hyperbarrelled) space into a semiconvex space is nearly continuous. 

Since by Corollary 1 of Theor~m 5.2.2, every quotient of a hyper-

barrelled (quasi-hyperbarrelled) space is of the same sort, we deduce 

from Page 213 of (16) and the argument preceding Theorem 4.1.2 that 

every closed (closed bounded) linear map from a hyperbarrelled (quasi-

hyperbarrelled) space into a complete metrizable semiconvex space is 

continuous. In particular, every closed (closed bounded) linear map 

from a hyperbarrelled (quasi-hyperbarrelled) space into a complete 

separated locally bounded space is continuous. If B is a closed balanced 

semiconvex absorbent subset of a semiconvex space (E,v) (say B is A­

convex, A > 0), and N is the intersection of (In B: n = 1,2, ••• ) the 
A 

locally bounded topology w on the quotient space E/N with a base 

1 (xn kl{B): n = 1,2, ••• ) is separated (kl is the quotient map of E 

onto E/N), and by Lemma 4.1.1, the graph of kl is closed in 

(E,v) x (E/N, w)" , kl being also bounded if 13 is bornivorous. Therefore, 

if every closed (closed bounded) linear map from (E,v) into any complete 

separated locally bounded space is continuous, B must be a v-neighbour-

hood, thus implying that (E,v) is hyperbarrelled (quasi-hyperbarrelled). 
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One can also show by modifying the proof of Theorem 4.2.2 that if every 

bounded linear map from a semiconvex space E into any complete separated 

locally bounded space is continuous, then E is hyperbornological. 

We note these for further reference. 

Theorem 5.2.3. 

A semiconvex space E is hyperbarrelled (hyperbornological, quasi-

hyperbarrelled) if and only if every closed (bounded, closed bounded) 

linear map from E into any complete separated locally bounded space 

is continuous. 

Lemma 5. 2 • 1. If f is a closed linear map from a product X ... E -ye:..- l' 

of separated linear topological spaces into a complete separated 

locally bounded space F, then there is a fini~subset ~o of ~ such 

that the restriction of f to X E is the zero map. 
yctp/ip y 

o 

Proof: It is sufficient to prove that for some finite subset ~o of cfl, 

if 1'd 1 = <p/tpo' then the restriction of f to E is zero. For, if this is 
l' 

so, then E 
1'el%>l 

-1 ) Ey c:::: fl (0, where fl is the restriction of f to 

-1 X E. Since E E is dense in X E1' and fl (0) is closed 
1'el%>1 y ytl%>1 y yetpl 

in X ... E (because the graph of f1 is closed in X ... E x F), 
1'e:'i'1 y ye..- 1 l' 

-1 
fl (0) = X tp 

ye 1 
E • 

l' 

Let q be an r-pseudometric (0 < r ~ 1) which gives the topology 

of F. If there is no finite subset ~o of 4 such that for every y in 

~/ct>O' f is the zero map on E then, for some sequence (1" . i = 1,2, •.. ) . 
l' ~ 

of distinct members of tp, there exist points x such that x is in 
1'i y. 

E and q(f(x })= i. 
J. 

Clearly ( f(x » is not bounded in F. 
1'i 1'i Yi 
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Now, XYE~ Ey induces the product topology on the linear sub-

space G = X. (K x ) (K is a copy of the scalar field for each 
~ ~ 1 Yi Yi Yi 

i). The restriction of f to the Frechet space G has a graph closed in 

G x F and is therefore continuous by Banach's closed graph theorem. 

This then implies that (f(x » is bounded in F. From this contradiction y. 
~ 

the result follows. 

since by Corollary 2 of Theorem 5.2.2, any finite product of 

hyperbarrelled (quasi-hyperbarrelled) spaces is of the same sort, the 

following result is immediate on using Lemma 5.2.1 and Theorem 5.2.3. 

Theorem 5.2.4. 

Any separated product of hyperbarrelled (quasi-hyperbarrelled) 

spaces is hyperbarrelled (quasi-hyperbarrelled). 

By similarly using Lemma 5.2.1 and Mahowald's results in (26), 

one gets an alternative proof to the well known result that a separated 

product of barrelled (quasi-barrelled) spaces is of the same sort. 

As any separated semiconvex space is a subs pace of a product 

of separated locally bounded spaces which can be assumed complete, it 

follows that every separated semiconvex space is a subs pace of some 

separated hyperbarrelled space. A hyperplane in a hyperbarrelled space 

is hyperbarrelled (this can be proved in a fashion similar to Corollary 4 

of Theorem 4.1.2). The proof of the following result uses these 

observations and a method due to Komura «22), Theorem 1.1). 

Theorem 5.2.5. 

Any separated semiconvex space is a closed subspace of some 

separated hyperbarrelled space. 
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Proof: Let E be a separated semiconvex space. If F is a separated 

hyperbarrelled space containing L, let (e (l aE~) be a Hamel basis for 

an algebraic supplement of E in F. For each a in ~, let F be the linear (l 

subspace of F spanned by E and (eA ).E~,A 1- a). Clearly E =(\ If. F • aE", a' 

and since each F is a hyperplane in F, each F is hyperbarrelled. 
a a 

It is easy to see that with the embedding map f of E into X If. F 
aE", a 

specified by f(x) = (x ), where x = x for all a in ~, E becomes a 
a a 

linear topOlogical subspace of X ... F. Since by Theorem 5.2.4., X If. F 
aE", a aE", a 

is hyperbarrelled, all that remains is to prove that f(E) is closed in 

X F. If «x: 
aE~ a a 

(y : (lE~) in X If. a (lE", 

converges to y • 
(lo 

Thus YEn If. F 
ao aE~ a 

in X If. F • (lE", a 

is a net in feE) which converges to 

then, for any a (say ao )' the net (x : ye:~) 
aoy 

As x (l = x for all (lE~,y = Y for all (lE~. 
(lo a ao 

= E, and (y ) E feE). Therefore feE) 
a 

is closed 

Let (E : ye:4» be a family of separated bornological spaces. 
y 

If K4> is bornological so is X E. Bourbaki (Ct4»)Page 15, 
ye:~ y 

exercise 18b) has a proof which uses the result that a separated locally 

convex space E is bornological if every bounded linear map of E into 

any Banach space is continuous. By using Theorem 5.2.3 in place of this, 

we see that the above stated result (on products of bomological spaces) 

holds with "bomological!! replaced by "hyperbornological". In particular, 

a countable product offhyperbornOlOgical spaces is hyperbornological. ~~~~ 

Since an uncountably dimensional linear space under its finest 

linear topology is not a semiconvex space, we see that an almost convex 

space need not be a semiconvex space. Theorems 5.2.6 and 5.2.7 below 
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are results on almost convex semiconvex spaces which are analogues of 

Theorems 4.2.3 and 4.3.2. The proofs are omitted, being respectively 

similar to those of Theorems 4.2.3. and 4.3.2. 

Theorem 5.2.6. 

Let E be a separated almost convex hyperbornological space. 

Then E is a **-inductive limit of separated locally bounded spaces. 

If E is sequentially complete, then it is a **-inductive limit of 

complete separated locally bounded spaces and is therefore hyper-

barrelled. 

Theorem 5.2.7. 
~f>O-Y-ci1tJ 

A~equentiallY complete almost convex quasi-hyperbarrelled 

space is hyperbarrelled. 

5.3 Countably barrelled and countably guasi-barrelled spaces 

Husain, in (14) called a separated locally convex space E 

with dual E~countably barrelled (countably quasi-barrelled) if every 

o(E ",E)-bounded (B(E ',E)-bounded) subset of E ~ which is the countable 

union of equicontinuous sets is itself equicontinuous. He proved in 

Theorem 1 (Theorem 2) of (14) that a separated locally convex space E 

is countably barrelled (countably quasi-barrelled) if and only if every 

barrel (bornivorous barrel) which is the countable intersection of 

closed absolutely convex neighbourhoods in E is itself a neighbourhood. 

He also showed (Corollary 6) that a sequence of continuous linear maps 

from a countably barrelled (countably quasi-barrelled) space into a 
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locally convex space is equicontinuous provided that it is point-

,.,rise bounded (uniformly bounded on bounded sets). 

It is trivially true that every barrelled (quasi-barrelled) 

space is countably barrelled (countably quasi-barrelled) and a 

countably barrelled space is countably quasi-barrelled. In this section 

we give examples to show that (i) a countably barrelled space need not 

be barrelled (or even quasi-barrelled) and (ii) a countably quasi-

barrelled space need not be countably barrelled. A third example 

shows that the property of being countably barrelled (countably quasi-

barrelled) does not pass to closed linear subspaces. 

(i) Let E be the strong dual of a metrizable locally convex space. 

Then, by «8), Pages 71 and 88), E need not be quasi-barrelled. But E 

is countably barrelled, being countably quasi-barrelled and complete 

«14), Propositions 1 and 4). 

(ii) Denote by c the Banach space of all convergent sequences 

x = (Xl' x2, ••• ) with the supremum norm, by Co the closed linear 

subspace of c consisting of sequences converging to zero and by ~ the 

linear subspace consisting of all sequences containing only a finite 

number of non-zero entries. For each n, Jet f be the linear 
n 

functional on ~ defined by the equation f (x) = n x. As pointed out n n 

by Weston «41), Page 1), (fn) is a pointwise bounded sequence of 

continuous linear functionals on ~ (under the norm topology induced 

from c) which is not equicontinuous. Thus by Corollary 6 of (14),4> is 

not countably barrelled, though it is countably quasi-barrelled, being 

bomological. 
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(iil) Since any separated locally convex space is a closed linear 

subspace of some barrelled space, to show that a closed linear subspace 

of a countably barrelled (countably quasi-barrelled) space need not be 

of the same sort, it is sufficient to give an example of a separated 

locally convex space which is not countably quasi-barrelled. Let (Etu) 

be c with the suprernum norm topology u and v be the associated weak 
o 

topology on c. For each n, let g be the linear map from (E,v) into o n 

(E,u) defined as follows: ~(x) = (Xl' x2, ••• , xn ' 0, 0, ••• ). 

Then (en) is a sequence of continuous linear maps from (E,v) into 

(E,u) such that for each x in E, ~(x) converges to x in (E,u). 

110reover, (g ) is uniformly bounded on bounded sets, for if B is the 
n 

unit ball in (E,u), the union over n of ~(B) is contained in B. 

But (g ) is not equicontinuous since v is strictly coarser than u. 
n 

Therefore by Corollary 6 of (l4), (t,v) is not countably quasi-barrelled. 

5.4 ~ -hyperbarrelled and ~ -quasi-hyperbarrelled spaces 

He say that a semiconvex space is ~-hype_rbarrelled ( h:'-quasi­

~barrelled) if every closed balanced scmiconvex absorbent 

(bornivorous) subset of the form 

(n U: for some A > 0, each U is a closed balanced A-convex 
y£~ y Y 

neighbourhood and the cardinality of ~ is ~ ) 

is a neighbourhood of the origin. 

Clearly every hyperbarrelled (quasi-hyperbarrelled, ~-hyper­

barrelled) space is N'-hyperbarrelled ( ff -quasi-hyperbarrelled, (y. -

quasi-hyperbarrelled) for any ~ and if ~l is a cardinal number less 
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than ~ 2 s then every f:..t 2-hyperbarrelled ( N 2-quasi-hyperbarrelled) 

space is ~ I-hyperbarrelled ( ~ l-quasi-hyperbarrelled). By using 

Theorem 1 (Theorem 2) of (14) we see that every locally convex N'-o 
hyperbarrelled (~ o-quasi-hyperbarrelled) space is countably barrelled 

(countably quasi-barrelled). It therefore follows by Example (ii) 

of section 5.3 that for each '?v- '1 ~ 0' an t-t' -quasi-hyperbarrelled 

space need not be ~-hyperbarrelled. Alsos by using Example (iii) 

of section 5.3 and Theorem 5.2.5, we see that a closed linear subspace 
to 

of an N- -hyperbarrelled (N -quasi-hyperbarrelled) space need not be 

of the same sort. 

If (f : y£~) is a set of continuous linear maps from an l.t.s. 
y 

(E,u) into an l.t.s. Fs then for every closed balanced semiconvex 

neighbourhood V (say V is ~-convex, A > 0) in F each f -l(V) is a 
y 

closed balanced ~-convex neighbourhood. If (f 
y YE~) is pointwise 

bounded (uniformly bounded on bounded sets), then t"\ -1 
t I '" f (V) is yE,*, y 

absorbent (bornivorous). Using these, one can prove the following 

result. 

Theorem 5.4.1. 

Let cz, be a set of cardinality N and let (f : ye;~) be a set 
y 

of continuous linear maps from a semiconvex space E into a semi convex 

space. If E is N' -hyperbarrelled ( N' -quasi-hyperbarrelled) then 

(f : ye;~) is equicontinuous, provided that it is pointwise bounded 
'( 

(uniformly bounded on bounded sets). 

The following Corollary follows from the above theorem and 

Heston's main result in (41). 
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Corollary. Let (f ) be a pointwise convergent sequence of continuous 
n 

linear maps from an tV' o-hyperbarrelled space E into a separated semiconvex 

space F, and let f be the limit mapping i.e. f(x) = lim f (x) for n-+-con 

all x in E. Then f is continuous. If F is sequentially complete, then 

(f (x» is necessarily convergent everywhere if it is bounded for each n 

x in E and convergent through-out a set which iseverywhere dense in E. , 
Let (E,u) be the sequence space l~. For each x = (xl' x

2
, •.. ) 

in E, let tn(x) be(xl , x2 , ••• , xn ' 0,0, ••• ). Then, as pointed out 

in Page 256 of (37) (t ) is a sequence of continuous linear maps from n 

(E,uOO ) into (E,u) such that for each x in E, t (x) converges to x in 
n 

(E,u). As the identity map from (E,uOO ) into (E,u) is not continuous, 

it follows from the corollary above that (E,uOO ) is not rt o-hyper­

barrelled, though it is countubly barrelled, being barrelled. Also each 

t is continuous from (E, 1(E,E*» into (E,u) and t (x) converges to 
n n 

x in (E,u) for each x in E. Moreover, (t ) is uniformly bounded on 
n 

the T(E,E*}-bounded subsets of E. For, any 1(E,E*)-bounded subset B of .. 
E is con~in~ed in some finite dimensional subspace Eo say, of E. The 

restrictions of (f ) to E must be equicontinuous and thus 
n 0 

U t (B) is u-bounded. As the identity map from (E,t(E,E*» onto 
n ~ 1 n 

(E,u) is not continuous, it follows from Theorem 5.4.1 that (E, T(E,E*» 

is not ~\o-quasi-hyperbarrelled. This implies that an uncountable 

direct sum of Banach spaces is not ~ o-quasi-hyperbarrelled and thus an 

inductive limit of Danach spaces need not be ~ o-quasi-hyperbarrelled. 

However, we have the following result. 
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Theorem 5.4.2. 

Any ~h':-inductive limit of ~ -hyperbarrelled ('tv- -quasi-

hyperbarrelled) spaces is of the same sort. 

Proof: Let (F,v) be the **-inductive limit of (E ; u 
a a 

each E is ~ -hyperbarrelled. If a 

ete:'i'), where 

v = (f\ ~ V : for some A > 0, each V is a closed 
YE... y Y 

balanced X-convex v-neighbourhood and the cardinality of 

4> is N') 

is absorbent, then for each et in 'i', 

~ u -lev ) 
YE'" et Y 
. -l( ). is absorbent and for each y 1n 4>, each u V 1S a closed balanced 

a Y 

X -convex neighbourhood in Ea" Since E is tJ' -hyperbarrelled, 
a 

u -l(V) is a neighbourhood in Ea" As this is true for all et in 'i', V is 
a 

a v-neighbourhood and (F,v) is ~-hyperbarrelled. 

Similarly, any ~':~':-inductive limit of (V'-quasi-hyperbarrelled 

spa~es is ~ -quasi-hyperbarrelled. 

Corollary 1. Any countable inductive limit of locally convex 

~-hyperbarrelled ( ~ -quasi-hyperbarrelled) spaces is of the same 

sort. 

Corollary 2. Any product of finitely many ~-hyperbarrelled 

( ~ -quasi-hyperbarrelled) spaces is of the same sort. 

Lemma 5.4.1. If B is a closed balanced semiconvex absorbent subset of 

a product E = X
y

e:4> Ey of semiconvex spaces, then there exists a finite 

subset ~ of 4> such that X / E CB. 
o yd 4> y-

o 
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Proof: Let F denote E under its finest semiconvex topology. 
y y 

By Theorem 5.2.4, the space (F,v) = X ~ F is hyperbarrelled. 
yE-v y 

Since v is finer than the topology of E, B is v-closed and must 

therefore be a v-neighbourhood of the origin. from this, the result 

follows. 

In the above Lemma, E is the 1'o';-direct sum of X E and 
YE~o Y 

X ~I E, and therefore B is a neighbourhood of the origin in E if 
ye: ~ y 

o 
and only if B n X ~ E is a neighbourhood of the origin in 

yE",o Y 

X ~ E. If each E is ~ -hyperbarrelled, so is X ~ E by 
YE'l'O Y Y Y£"'o y 

Corollary 2 of Theorem 5.4.2. In this case, if B is of the form 

( nU: for some A > 0, each U is a closed 
aE~ a a 

balanced A-convex neighbourhood and the cardinality of 

\{J is ~" ), 

B f) X E is a neighbourhood of the origin in 
YE~O y 

X E and B is 
YE4>O Y 

thus a neighbourhood of the origin in E. Similarly if each E 
y 

is 

~ -quasi-hyperbarrelled and B is a bornivorous subset of E of the 

form 

(f\ UI U : for some A > 0, each U is a closed balanced 
at: T a et 

A-convex neighbourhood and the cardinality of \{J is~ ), 

tr~en it is a neighbourhood in E. We have thus proved the following 

result. 

Theorem 5.4.3. 

Any product of ~ -hyperbarrelled (N -quasi-hyperbarrelled) 

spaces is of the same sort. 
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By an argument similar to the one above, one can prove that 

a product of countably barrelled (countably quasi-barrelled) spaces 

is countably barrelled (countably quasi-barrelled). 

The following is a generalization of 22.9 of (18). The 

argument used here is a slight modification of that in (19). 

Lemma 5.4.2. If A is a strictly positive real number then, in the 

strong dual of any metrizable locally convex space, every bornivorous 

set which is the intersection of a sequence of balanced A-convex 

neighbourhoods is itself a neighbourhood. 

Proof: Let E be a mctrizable locally convex space with dual E~. 

Vie shall suppose that E'" has its strong topology B(E~,E). 

Let 

U = (f\ n ~ 1 Un: each U n is a balanced A-convex 

neiehbourhood in E') 

be a bornivorous set in E". To prove that U is .neighbourhood in E' , 

it is sufficient to show that there exists a subset of U which is 

o(E',E)-closed, absolutely convex and absorbent, since such a set is 

a neighbourhood in E~, being the polar in E' of a o(E,E")-bounded 

subset of E. 

By 22.3 of (18), there exists in E~ a fundamental sequence (B ) 
n 

of bounded sets such that each Bn is absolutely convex and o(E",E)-compact 

Now U is a A-convex bornivorous suprabarrel in E' with (l/xn U) 

as a defining sequence. For each n, there are: 

(i) a positive number tn such that tn Dn S; l/An+l U, and 
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(H) a o(E~ ,E)-closed absolutely convex neighbourhood l-ln in E' such 

that H c:. 11').. U • 
n- n 

The convex envelope G of U 1. t.B. is a o(E' ,E)-
n ~ ~ ~ n ~ ~ 

compact absolutely convex subset of 1/').. U. If Vn = Gn + Wn , then 

V is a o(E~,E)-closed absolutely convex neighbourhood in E' and 
n 

V c:.. U. Let n _ n 

V = n (V : n = 1, 2, ••• ) 
n 

Then V is a o(E",E)-closed absolutely convex subset of U which is 

absorbent in E~ since it absorbs each B • 
n 

By an application of Lemma 4.3.1, one can easily show that any 

~/lni.i.cJ sequentially complete almost convex"" -quasi-hyperbarrelled space is 

<~ -hyperbarrelled. It therefore follows from Lemma 5.4.2 that the 

strong dual of any metrizable locally convex space is~ -hyperbarrelled. o 

And since by «B), Pages 71 and 88) the strong dual of a metrizable 

locally convex space need not be quasi-barrelled, we conclude that 

an 0t o-hyperbarrelled space need not be quasi-hyperbarrelled. 

Let E be an l.t.s., and let 

U = (n '" U : each U is a closed balanced 
y€~ y Y 

neighbourhood and the cardinality of ~ is ~ ), 

be an ultrabarrel (a bornivorous ultrabarrel) in E with a defining 

sequence (uP) such that each Un is of the same form as U. If every such 

U is a neighbourhood, wc say that E is ~ -ultrabarrelled (N -quasi­

ultrabarrelled). 

It is easy to see that the N -ultrabarrelled ( ~ -quasi­

ultrabarrelled) spaces bear a relationship to the ultrabarrelled 
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(quasi-ultrabarrelled) spaces similar to that between ~-hyperbarrel1ed 

( ~ -quasi-hyperbarrelled) spaces and hyperbarrelled (quasi-hyper­

barrelled) spaces. It is not difficult to show that Theorem 5.4.1 

and its corollary are true with "semiconvex space","hyperbarrelled" 

respectively replaced by lIl.t.S." and ·'ultrabarre1led". Also, 1'heorem 

5.4.2 and its corollaries are true with lI::'*-indu~tive limit;' and . 

"hyperbarrelled" respectively replaced by "*-inductive limit" and 

lIultrabarrelled". 



CHAPTER 6 

6.1 Completeness and the closed graph theorem 

Let E,F be complete metric linear spaces. Banach, in (3) 

proved that any closed linear map of E into F is continuous and that 

any continuous linear map of E onto F is open. The first assertion 

is the classical closed graph theorem and the second, the open 

mapping theorem. These two results do not hold for arbitrary complete 

separated linear topological spaces, as the following example shows. 

Let (E,u) be an infinite dimensional complete metric linear space. 

Then, since the finest linear topology s on E is strictly finer than 

u, the identity map of (E,s) onto (E,u) is continuous but not open and 

this implies that its inverse is closed but not continuous. Yet (E,s), 

(E,u) are complete separated ultrabarrelled ultrabornological spaces. 

Thus the validity of the two theorems requires some unusually strong 

hypotheses. 
I 

Various mathematicians, including Ptak (32), (33), 

A.P. Robertson and H. Robertson (35), Kelley (17), Raikov (34) and 

Husain (9), (10), (11), (12) have studied the closed graph and open 

mapping theorems, especially for locally convex spaces. 

Pt~k, in (32), (33) introduced the notions of B-completeness 

and B -completeness in locally convex spaces. Precisely, a separated 
r 

locally convex space E is said to be aB-complete (B -complete) locally 
r 

convex space if every continuous (continuous (1 - 1» linear nearly open 
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map of E onto any separated locally convex space is open. As shown 

by Kelley «17), Theorem 2), for a separated locally convex space E 

the following are equivalent: 

(1) The space E is a B-complete locally convex space. 

(2) Every closed linear nearly open map of E onto any separated 

locally convex space is open. 

(3) Every closed linear nearly continuous map from any separated 

locally convex space into any quotient of E by a closed linear sub-

space is continuous. 

Also, for a separated locally convex space E, it follows easily 

from «33), 3.6 and 3.8) that the following are equivalent: 

(1) The space E is a Br-complete locally convex space. 

(2) Every closed linear (1 - 1) nearly open map of E onto any 

separated locally convex space is open. 

(3) Every closed linear nearly continuous map from any separated 

locally convex space into E is continuous. 

These two sets of results show the very close link between the closed 

graph theorem, the open mapping theorem, B-complete and B -complete 
r 

locally convex spaces. 

Pt!k in «33), 5.6, 3.3, 4.1) showed that if E is a separated 

locally convex space with dual E~, then E is complete (B -complete, 
r 

B-complete) if and only if every hyperplane in E~(every a(E~,E)-dense 

linear subspace of E~, every linear subspace of E~) having a o(E~,E)-

closed intersection with the polar of each neighbourhood in E is 

a(E~,E)-closed. Separated locally convex spaces E with the property 



89 

that every linear subspace of E~ having a o(E~,E)-closed intersection 

with the polar of each neighbourhood in E is o(E~,E)-closed, were 

studied by Collins (5), who called them fully complete spaces. 

Hypercomplete spaces (of Kelley (17» are the separated locally convex 

spaces having this ~erty, vlith "linear subspaces of duals" replaced 

by "absolutely convex subsets of duals". Singer, in (38) called a 

separated locally convex space E strictly hypercomplete if every convex 

subset of E~ having a a(E~,E)-closed intersection with the polar of 

each neighbourhood in E is a(E~,E)-closed. Thus every strictly hyper-

complete space is hypercomplete, every hypercomplete space is a B-

complete locally convex space, every B-complete locally convex space 

is a D -complete locally convex space and every B -complete locally 
r r 

convex space is complete. 

Strictly hypercomplete spaces are those separated locally convex 

spaces for which the Krein-Smullian theorem (see(24» holds. Every 

Frechet space is strictly hypercomplete (7). It is not difficult to 

show that the dual of a Frechet space is strictly hypercomplete for 

all convex topologies between the topology of compact convergence and 

the Hackey topology (in fact, the proof of a similar result for B-

complete locally convex spaces, given in page 123 of (36) carries over 

easily). Thus a countable direct sum of reflexive Banach spaces is 

strictly hypercomplete. However, a hypercomplete space need not be 

strictly hypercomplete. For by«18), Page 178, example H) a product 

of reals need not be strictly hypercomplete, but is hypercomplete. 
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Since a complete S-space is strictly hypercomplete (for the definition 

of an S-space, see (13» by Theorem 3 of (13), this example also 

proves false a conjecture of Husain's in page 258 of (13) that complete 

S-spaces and hypercomplete spaces are the same thing. By an easy 

modification of a method due to Collins «15), Theorem 15) (Pt~k«33), 

4-.4-», one can prove that closed linear subspaces (quotients by 

closed linear subspaces) of strictly hypercomplete spaces are 

strictly hypercomplete. 

Raikov, in (34) called an l.t.s. E aB-complete l.t.s. if 

every continuous linear nearly open map t of E onto any separated 

l.t.s. is open. He observed that for a locally convex space E, 
I 

this definition is equivalent to that of Ptak in (32), but that 

in addition every complete metric linear space is aB-complete 

l.t.s.· He also pointed out that every closed linear nearly continuous 

map from any separated l.t.s. into aB-complete l.t.s. is continuous. 

If in Raikov's definition above, we restrict "t" to be a 

(1 - 1) map we say that E is a B -complete l.t.s •. Just as in the case 
r 

of aB-complete l.t.s., a separated locally convex space is a B -
r 

complete l.t.s. if and only if it is a B -complete locally convex space. r 

Analogously, one may define B-complete and B -complete semi convex r .. 

spaces as well as B-complete and Br-complete topological groups. 

A separated semiconvex space is a B-complete (Br-complete) semiconvex 

space if and only if it is aB-complete (B -complete) 
r 

l.t.s.' Examples of B-complete topological groups are complete 

metrizable or locally compact groups «16), Pa~e 213). 
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We now describe briefly an attempt to generalise the notions 

of B-completeness and B -completeness in locally convex spaces. 
r 

Let£! denote the class of all separated locally convex spaces with 

the property that every continuous linear (nearly open) map from any 

member off!:r onto any separated barrelled space is open. By Theorem 

3(i) of (35),.~ includes all B-complete locally convex spaces. 

Husain and f1ahowald, in (15) observed that a member of..g. need not be 

complete and hence need not be a B-complete locally convex space. 

This led lIusain to study what he called B(a)- and B (a)-spaces in a 
r 

number of papers including (9), (10), (11), (12). Hhile B-complete 

and B -complete locally convex spaces derive a considerable part of 
r 

their importance from their usefulness in proving closed graph and open 

mapping theorems, B(a)- and B (a)-spaces have not so far met with 
r 

any appreciable success in this direction. 

In this chapter we consider problems of the following type. 

If~ 1 is a class of separated linear topological spaces, find a 

necessary and sufficient condition for an l.t.s. F to have the property 

that every closed linear nearly continuous map from any member of,)? 1 

into F (any quotient of F by a closed linear subspace) is continuous. 

He give answers for some important classes A 1 and use them to 

describe extensions to well known closed graph and open mapping theorems. 

As some of our methods work for topological groups, our subject is 

treated in this context in Sections 6.2 and 6.3, while in Sections 6.4, 

6.5 and 6.6, we restrict our consideration to linear topological spaces. 

Throughout, all our topological spaces shall be assumed separated. 
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6.2 The case when 8
1 

is nearly full in A 
Let)1 be a class of topological groups. For every E, F in fi, 

let T(E,r) denote a given set of group homomorphisms from E into F, and 

take T to be the union of T(E,F) as E, F vary over R. He say that eR. ,T) 

is admissible if the following conditions are satisfied. 

(1) For any E in R. , if E in!J is a closed subgroup of E, then E/E 
o 0 

is inll and the quotient map of E onto EIE is in T(E,E/E ). 
o 0 

(2) For E, F, r in A. such that F is a subgroup of F, if t is in T(E,F) o 0 

-1 1 then, under their induced topologies the subgroups t (e
l
), t- (Fo) of E 

are in A (e l is the identity of F), the induced map of t is in T(E/t-l(el),F) 

(if t-1(e
l

) is clcsed in E), and the restriction of t to t-l(F
o

) is in both 

T(t-l(F ),F ) and T(t-1(F )1). 
00. 0 

(3) For E, F, G in.A, if tl is in T(E,F) and t2 is in T(F ,G) then, 

the map t
2
0t l is in T(E,G), the subgroup tl (E) of F is in./} and tl is 

in T(E,t l(E». 

(4) For E , E, F in J1 such that E is a subgroup of E, if t in o 0 

T(E ,F) is a (1 
o 

(5) If (E,u), 

-1 
1) onto map then, t is in T(F,E). 

(F,v) are in A.. and t is in T«E,u),(F,v» then, the 

space (r ,w) (if separated) is in A , \-Ihere the topology w has a base of 

neighbourhoods consisting of sets (t(U)V : U £'-1 ,V £)) ) N ,)) are 

respectively bases of symmetric neighbourhoods for the topologies u,v) 

and the identity map is in T«F,v),(F,w». 

If cA , T) is admissible and E is in A, in referring to a 

subspace Eo of E, it shall be assumed that Eo is in A . 
Let (A ,T) be admissible and SUppose that.R l' A 2 are 

subclasses of A . He say that A 1 is nearly full in A with respect 
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to T and A2 if, with the notation of (5) above, (E,uh:fl
l

, 

(r,vh:A 2 :> (F,w) Efl I whenever w is a separated topology. 

Let)Q be the class of all topological groups (linear 

topological spaces, semiconvex spaces, locally convex spaces). For any 

E, F in~ , let T(E,F) be the set of all group homomorphisms (linear 

maps, linear maps, linear maps) from E into F. Clearly cA ,T) is 

admiss ible, and It is 

for any subclass Ji ,2 

nearly full in A with respect to 

of 11. 
T and .A 2' 

If ~ 3 is the class of all second 

category topological groups (ultrabarrelled spaces, hyperbarrelled 

spaces, barrelled spaces) and It. 4 the class of all Lindelof topological 

groups which are either locally compact or complete metrizable 

(complete metric linear spaces, semiconvex complete metric linear spaces, 

Frechet spaces) then, A 3 is nearly full in A with respect to T and 

~4. To prove this, one uses Lemma 2.6.5 and the fact that in any 

of the cases considered, every t in T(L,F) is nearly continuous if 

E e: A 3 and F E 114 . 
Let (A ,T) be admissible and let A 1 be a subclass of A . 

He say that E in A is a DC .Ill; Il ,T )-space if for every El in 

~l' any onto map t in T(E,El ) is open provided that it is nearly open 

and its graph is closed in E x B1 • The class of all D( A l; A. ,T)­

spaces shall be denoted by D( A I; R ,T). If in the definition of 

a D(.fJ. l; A ,T )-space the condition is only assumed satisfied by 

(1 - 1) maps "t l
:, then we call E a DrcA l~A ,T)-space, and 

correspondingly we have the class Dr ( A--~~)t-~~-)-: 
--"- .-. -- .~----.-
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Clearly if (A ,T) is admissible then D(1I
1

; A ,T) '== 
D/·1l 1 ;A ,T) for every subclass .A 1 of A. If A 2'~ 3 are 

subclasses of fI such that It 2 S A 3' it is easy to see that 

D/A 3;)f ,T) ~ °/11 2; fi ,T) and D( fl3; A ,T) SD( 1l 2;/t,T)' 

Also, if E is a D( A 1; A. ,T )-space then, for any 

E of E, E/E is a D(A 1; A. ,T)-space. For, let o 0 

closed subspace 

F be in A.. 1 and 

t in T(E/Eo,F) be a closed nearly open onto map. If kl is the 

quotient map of E onto E/Eo ' then the map tokl E T(E,F) since ()ll ,T) 

is admissible, and is closed and nearly open. Therefore tok
l 

is open 

and this implies that t is open. Thus E/Eo is a D( Al;R ,T)- space. 

It is also not difficult to show that if E is a D/ . .f/ 1; A ,T)-space 

then it is a O( Ill; Jt ,T)-space if and only if E/Eo is a 0r(·1t 1; .It ,T)­

space for every closed subspace E of E. o 

Theorem 6.2.1-

Let ( A ,T) be admissible and suppose that A l' A.. 2 are 

subclasses of A such that A 1 is nearly full in R with respect to 

T and ~ 2. Then, for a space E in ~ 2' the following are equivalent: 

(1) For every F in ~l' any continuous (1 - 1) nearly open onto map 

in T(E,F) is open. 

(2) For every F in ~ l' any closed nearly continuous map in T(F,E) 

is continuous. 

(3) The space E is a D/ A l;A ,T)-space. 

Proof: 

(1) => (2): Let F be in ~l and let t in T(F,E) be a closed nearly 

continuous map. Denote by lJ , V bases of symmetric neighbourhoods for 
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the topologies of F, E respectively, and let w be the topology on E 

with a neighbourhood base (t(U)V : u£Il,V£l). Since t is closed 

and nea.rly continuous, it follows by Lemma 2.6.5 that (E,w) is 

separated and that the (continuous) identity map i say, from E onto 

(E, w) is nearly open. As It 1 is nearly full in A. ,·d th respect to 

T and R 2' (E,w) ER 1; and because (A ,T) is admissible, 

i ET(E,(E,w». Therefore by (1), w coincides with the original 

topology of E. And since t is continuous from F into (E,w), (2) 

follows. 

(2) => (3) Let F be in A 1 and suppose that f in T(E,F) is a 

closed nearly open (1 - 1) onto map. Then f- l E T(F,E) because 

(~ ,T) is admissible, and f- l is closed and nearly continuous. 

By (2) f- l is continuous and thus f is open. This proves (3). 

(3) => (1) obvious. 

By using Theorem 6.2.1 and the fact that a quotient by a 

closed subspace of a DC R l;j{ ,T)-space is also a D( fl.l;A, T)­

space, one can prove the following result. 

Theorem 6.2.2. 

Let (A, T) be admissible. Suppose that .A.. l' A 2 are sub­

classes of A such that each quotient by a closed subspace of every 

member ofR 2 is also in A2 and that A 1 is nearly full in fl.. with 

respect to T and fl
2

• Then, for' a space E in .It 2 the following are 

equivalent: 

(1) For every F in )11' any continuous nearly open onto map in 

T(E,F) is open. 
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(2) If El is a quotient of E by a closed subspace and F is in 

}1l then, any closed nearly continuous map in T(F,El ) is continuous. 

(3) The space E is a D(A l;A ,T)-space. 

Let~ be the class of all topological groups (linear 

topological spaces, serniconvex spaces, locally convex spaces). 

If E,F (;i, let T(E,F) be the set of all group homomorphisms(linear 

maps, linear maps, linear maps) from E into F. It follows from 

Theorem 6.2.1 that the D.,.cA ; Il ,T }-spaces are the Br -complete 

topological groups (linear topological spaces, semiconvex spaces, 

locally convex spaces). It similarly follows from Theorem 6.2.2 that 

the DCA. ; A ,T)-spaces are the B-complete topolo8ica1 groups (linear 

topological spaces, semiconvex spaces, locally convex spaces). 

Hith A ,T,A l ,A 2,E as in Theorem 6.2.2 (Theorem 6.2.1) 

let Eo be a subspace of E and suppose that the space F is in~l. 
It follows by an application of Lemma 2.6.3.(a) that a closed nearly 

open (closed nearly open (1 - 1» onto map in T(E ,;) is open o 

provided that the filter condition holds. In either of ~the two cases, 

it also follows by an application of Lemma 2.G.3.(b) that a closed 

nearly continuous map t in T(F,E ) is continuous provided that the o 

inverse filter condition holds and t ( T( F ,E) • 

6.3 Inductive classes 

Let cA ,T) be admissible. Let F be in A and suppose that 

for each y. in an index set 'i', E EA, U ET(E ,F) and each u is y y y y 

continuous. We say that (11 ,T) is an induct~~class if for each 
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choice of F, ~, E ,u as above, there is a topology w on F 
y Y 

simultaneously satisfying the following conditions: 

(F,w) EA and each u E T(E ,(F,w». y y 

(2) The topology w is the finest one on F satisfying (1) for which 

each uy is continuous. 

(3) If G E A then, any f in T«F ,w), G) is continuous if and only 

if each fou is continuous. 
y 

(4) If Fo is a closed subspace of (F,w) and kl is the canonical map 

of F onto F/F then, the quotient topology of (F,w)/F is the finest o 0 

topology on F/F for which (F,w)/F o 0 

klou
y 

is continuous and (b) for any 

is in A and such that (a) each 

H inA, any f in T«F,w)/F ,H) o 

is continuous if and only if each foklou
y 

is continuous. 

If conditions (1) ~ (4) are satisfied, we call (F,w) the 

(A. ,T)-i_x:..ductive lil!lit of (E ; u : YEIjI). If in particular F is the y y 

union over Y of u (E ), we say that (F,w) is the generalized strict y y 

cA. ,T)-inductive limit of (Ey~ : YEIjI). 

If E is the (Il ,T)-inductive limit of (E ; u : YEIjI) then, by 
y Y 

condition (4) above, any quotient of E by a closed subspace is the (Jt ,T)-

inductive limit of (Ey; klouy : YEIjI), Hhere kl is the canonical map 

of E onto the quotient space. 

Let (A ,T) be admissible. He call a complete topological space 

E inJl extracomp~ if every quotient by a closed subspace of E is 

complete. Clearly any quotient by a closed subspace of an extracomplete 

space is extracomplete. 
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Let (~,T) be admissible. Let~ 1 be the class of all 

members ofJi each of which is of the second category in itself, and 

A 2 a subclass of D (A.. ; .R ,T) (D(IL ; A ,T» consisting of spaces 
r f1 cu.cI ..,1.,<.1, "'J..~. 

which are complete (extracompletiR. If for every El inrL I and E2 in~~~l 
){2 any t in T(El ,E2) is nearly continuous, we call the ordered pair 

(R 1,R 2) a ~12(A. ,T)-pair (A12(A ;n-pair). He shall generally 
----------

shorten ~12()i ,T)pair(AI2 ()? ,T)pair) to ~12pair (AI2pair). 

Clearly every A12 pair is also a ~12 pair. 

Letft be the class of all topological groups (linear topOlogical 

spaces, semiconvex spaces, locally convex spaces). If E,F~Jt , let 

T(E,F) be the set of all group homomorphisms (linear maps, linear maps, 

linear maps) from E into F. By using the notion of inductive limits 

of topological groups defined in (39) (*-inductive limits of linear 

topological spaces, **-inductive limits of semiconvex spaces, 

inductive limits of locally convex spaces) we see that (A,T) is an 

inductive class. Let.A 1 be the class of all members of fi- each of 

which is of the second category in itself. If .A 2 is the class of all 

Lindelof topological groups which are either complete metrizable or 

locally compact (the class of all B-complete linear topological spaces, 

the class of all B-complete semiconvex spaces, the class of all B­

complete locally convex spaces), then (A 1 ,.It 2) is a A12 pair. 

Theorem 6. 3.l. 

Let cA, ,T) be an inductive class and cA. I' .A..
2

) a A12 pair. 

If E is the (Jt ,T)-inductive limit of (Ey u
y 

YE~) and F the genera­

lized strict (ft ,T)-inductive limit of (Fn; vn n = 1,2 ••• ), where each 
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Ey ERl and each F n £ f{ 2 then, 

(a) any closed map t in T(E,F) is continuous, and 

(b) any closed onto map g in T(f,E) is open. 

Proof: 

(a) For each y in ~,tou £ T(E ,F) and is closed. 
y y 

Moreover, t is 

continuous if and only if each tou is continuous. It is therefore 
y 

sufficient to prove (a) assuming that E £~l i.e. that E is of the 

second category in itself. VIe nOH' make this assumption. By a similar 

argument, one can show that it is sufficient to consider v as a 
n 

(1 - 1) map. \'le may then identify F with the subspace v (F ) of r n n n 

and thus consider F as the generalized strict (J{ ,T)-inductive limit 

of (F ; i : n = 1,2, ... ), where i is the identity map of F into F. 
n n n n 

Hith this identification, it is clear that for each n the topology of 

Fn is finer than that induced by F. 

NOH, 

S:i.nce E is of the second category in itself, there exists some positive 

integer N such that H = t-l(F N) is of thE; second category in E. 

As (A ,T) is admissible, H is inAI and the restriction t of 
0 

t to 

H is in T(H,FN). Moreover, the graph of to is closed in H x fN' 

and since (Jt l,Ji 2) is a Al2 pair to is nearly continuous. Therefore, 

by Theorem 6.2.2, to is a continuous ma? from H into F
N

• If tl is a 

continuous group homomorphism from the closure HI of H in E into FN 

extending to' tl is also continuous from 1\ into F. By Lemma 2.6.2, 
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the group homomorphism f from Hl into F defined as follows, is closed • 

( -1 -1 f(x) = tl x) (t(x» = tl (x) t(x ). 

Therefore, by -1 Lemma 2.6.4, f (el ) is closed in Hl (el is the 

identity of F) 
-1 ~ -1 and since f (el ) -;:;1. H, it folloHs that f (el ) = 

and that t, tl coincide on Hl • Thus t is a continuous map from Hl 

into F. 

Clearly Hl is of the second category in E, and being closed it 

satisfies the condition of Baire. Therefore by a remark in section 2.5 

t is a continuous map fr·')m E into F. 

(b) If h is the induced map of g then, the 

E x F/g-l(e), (e is the identity of E). Also 

-1 . eraph of h ~s closed in 

h- l 
€ T(E,F/g-lCe» 

since (f1L,T) is admissible; and F/g-l(e) is the generalized strict 

()1 ,T)-inductive limit of (Fn; klo vn : n = 1,2 ••• ) (k l is the 

canoni~al map of F onto F/g-l(e» since (~,T) is an inductive class. 

Therefore, by (a) h- l is continuous and thus g is open. 

By a method similar to that used above, but this time applying 

Theorem 6.2.1 instead of Theorem 6.2.2, one can prove the following 

result. 

Theorem 6.3.2. 

Let (A, T) be an inductive class and (A l' fl 2) a lJ12 pair. . 
/ ~,\€.""I.~ 

If E is the (A,T)-inductive limit of (E
y

; u
y

: YE~) and F theA</t,T)-S+Vl.c;t.) 

inductive limit of (Fn; vn n = 1,2, ••• ), where each EY€~l' each 

1) map then, 

(a) any closed map in T(E,F) is continuous, and 

(b) any closed (1 - 1) onto map in T(F,E) is open. 
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Let A be the class of all locally convex spaces and A 1 the 

class of all locally convex spaces of the second category. For E, F 

in~, let T(E,F) be the set of all linear maps from E into F. 

IfJt 2 is the class of all B-complete locally convex spaces then, 

Theorem 6.3.1 provides slightly strengthened forms of Theorems 2 and 

3(ii) of (35). As is Hell kncwn, this result implies that every closed 

linear map from a sequentially complete bornological space into an 

L.F. space is continuous. 

Now consider the case whenA. is the class of all semiconvex 

spaces and III the class of all semiconvex spaces of the second category. 

For E, F inA, let T(E,r) be the set of all linear maps from E into F. 

IfJt 2 is the class of all B-complete semiconvex spaces then, Theorem 

6.3.1 shows that every closed linear map from any ;':;"-inJ.ucti ve limit 

G of semiconvex spaces of the second category into a generalized strict 

**-inductive limit H of a sequence of B-complete semiconvex spaces is 

continuous and that every closed linear map of H onto G is open. 

By Theorem 5.2.6, it folloVTs that every closed linear map from a 

sequentially complete separated almost convex hyperbornological space 

G into a generalized strict ~d~-inductive limit H of a sequence of 

complete metrizable semiconvex spaces is continuous and that every closed 

linear map of H onto G is open. These remarks also hold on respectively 

replacing ''semiconvex space", "hyperbornological" and ""'*-inducti ve Hmi tIt 

by "l.t.s.", "ultrabornolo~ical!'and II;'f-inductive limit" 
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We note however that a closed linear map from a separated 

inductive limit of Banach spaces into aB-complete semiconvex space 
, 

need not be continuous. For, if (E,u) is the sequence space 1 2 , 

the identity map i from (E,uOO ) to (E,u) is closed and thus the graph 

of i is closed in (E,1(E,E*»x (E,u). But 1(E,E*) is not finer than u. 

6.4 General properties 

As from now, we shall only be interested in three situations 

where (A, T) is admissible. These shall be referred to as the 

admissible case (1), admissible case (2) and admissible case (3). 

For the admissible case Cl) ;Cl is the class of all linear 

topological spaces and for every E.F in}i. T(E,F) is the set of all 

linear maps from E into F. If we need to be specific (~,T), 
DCt1.

1
; A,T) and D

r
{ fL l;/i ,T) shall in this case be respectively 

denoted by (Il ,T\, D(/ll;(A. ,T\) and Dr(fL 1;( fl ,T)l)' 

The definitions of admissible case (2) and admissible case (3) are 

similar, only that we replace "linear topological spaces" by 

"semiconvex spaces" and "locally convex spaces" respectively. 

The notations are also similar, only that we replace the suffix "I" 

by "2" and "3" respectively. 

In any of these situations, (A., T) is an inductive class. 

Vlhen we say that F is the (A,T)-inductive limit of (E ; u : YE'lI), 
y Y 

it shall be assumed that the union of (u (E » spans 
Y Y F. If (A. ,T) is 

admiss ible, and A.l is a subclass of A . Rli( shall denote the class of 

all spaces each of which is the (Ji ,T)-inductive limit of some 

(Ey; uy : YE~), where each Ey E Al' 
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In considering D( A 1;(A. ,T)l) and Dr( Al)(A ,T)l)' 

~l shall be a class of ultrabarrelled spaces. In the other two 

situations, ~l shall respectively be a class of hyperbarrelled and 

barrelled spaces. Hi th such a choice, if E e: A and F e: R l' then, 

any onto map in T(E,F) is nearly open. As a result of this our 

definitions of D(R l ; A ,T)- and Dr(IL
l

; fL ,T)-spaces now take the 

following form. 

Let (.A, T) be admissible and 

)i (chosen as stated above). A space 

suppose that }il is a subclass of 

E in A, is a DCn
l

; A.. ,T)-

{Dr (A 1" fl , T)- )space if for each El in A l' every closed linear 

{closed linear (1 - 1» map of E onto E is open. 
1 

1'1 
If /1

1 
is a class of locally convex spaces then, accordin~ to 

Husain (9),a locally convex space E is a D{ AI)-<Br < Al>-)space 

if for each F in /Ll' every continuous (continuous (1- 1» linear· nearly 

open map of E onto F is open. If A 1 is a class of barrelled spaces 

then, every Dcll 1; (A ,T)3 )-(D
r 
{A l; ( A) T)3)- )space is clearly 

a B<RI>-(Br ( fll)-)space. However, in this case I do not know of 

any B{ Al)-(B/ AI)-)space which is not a D( Al~(A..,T)3)-
(Dr ( Itl)C!/. ,T)3)-) space. 

for the remaining part of this 

Ch,8n,B, Bp Bll , '"1, '31 ' 

chapter, the letters C, C , 
u 

.., 11' L ,. AI, N 1 ' NIl' 

;j 0 shall respectively stand for the classes of all barrelled, ultra­

barrelled, hyperbarrelled, Banach, second category locally convex, 

second category linear topological, second category semiconvex, Frechet, 
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complete metric linear, semiconvex complete metric linear, complete 

separated locally bounded, sequentially complete bornological, 

sequentially complete almost convex ultrabornological, sequentially 

complete almost convex hyperbornological and finitedLmensional linea~ 

topological spaces. 

Proposition 6.4.1. 

(a) Let (f1 ,T) be admissible and let III be a subclass of fl . 
Suppose that E, El are in )i. If there is a continuous (continuous 

(1 - 1» linear map of E onto El then, El is a D(/lllJ/,T)­

(D/fll;/t ,T)-) space if Eis. 

(b) Let)1 1 be a class of barrelled spaces. If u, v are convex 

topolop,ies on a linear space E yielding the same dual then, (E,u) is 

a D(A. 1; (Il ,T)3)-(D/ It 1; (fl ,T)3)-) space if and only if (E,v) 

is. 

Proof: 

(a) Suppose that E is a D( AI; A ,T )-space and that h is a 

continuous linear map of E onto El' If f is a closed linear map of 

El onto some H in A 1 then, the map foh of E onto H is closed and 

therefore open. Since for any subset Q of El' f(Q) = foh(1\-l{Q», we 

have that f is open and thus El is a DC AI; A. , T )-space. Similarly 

El is a Dr(Ji 1;)1 ,T)-space if E is, provided that there is a 

continuous (1 - 1) linear map of E onto El' 

(b) Let (E,u)' = (E,v)' = E'. By (a) it is sufficient to prove 

that (E,T(E,E'» is a D(!i.l;(A,T)3)-{ Dr CR.
1

;{!l ,T)3)-) space 

if (E, o(E,E') is. 
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Suppose thet (E,o(E,E"'» is a D(A 1;( A. ,T)3)-space, and let 

h be a closed linear map from (E,T(E,E"'» onto some H in J11 • 

Th3 graph of h is also closed in (£,o(E,£"'» x II, since the graph is a 

linear subspace of E x H and the locally convex spaces (E,o(E,E"'» x H 

and (E,T(E,E"'» x 11 have the same dual. Therefore h is an open map of 

(E,o(E,E"')} onto H. NOH, (E,O(E,E"'»/h-l(o), (E,r<E,E'»/h-l(o) have 

the weak and Mackey topologies respectively with the same dual. 

If f is the induced map of h then, since f- l is a continuous linear map 

-1 -1 of H into (E,o(E,E'»/h (0) and H has a Mackey topology, f is a 

continuous map from H into O:,T(E,E,)')/h-1
(0). Therefore h is an open 

map of (E,TCE,E"'» onto H and thus (E,r(E,E"'» is a DcA li(A ,T)3)­

space. Similarly (E,u) is a Dr(A l;(A ,T)3)-space if and only if 

(E,v) is. 

Let (E,u) be a metrizable l.t.s. with dual E'" separating the 

points of E. By an application of «35), page 9), we see that the space 

(E"',T{E',(E,uOO)A}) is a B-complete locally convex space. SinoeT(E',E) 

is coarser than T{E~(E,uOO)A} , it follows from Proposition 6.4.1 that 

for every convex (semiconvex, linear) topology w on E' which is coarser 

than T(E',E), (J::"',w) is aD(C.;( P ,T)3)-(D( [h 

n(e ~ (A ,T) )-) space. 
u 1 

Proposition 6.4.2. 

; ( li ,T) )­
? 

Let (A ,T) be admissible. If f} 1 is a subclass of fI such 

that every quotient by a closed subspace of each member Ofji 1 is also 
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Proof: It is sufficient to prove that DeJi l;/? ,T)S; D( 1l1":;.A ,T). 

Let f be a closed linear map from a D( Ill; J? ,T )-space E onto some 

El in ;91*. There is no loss of generality in assuming that f is 

(1 - 1) since every quotient of E by a closed linear subspace is 

also a D(;t l;~ ,T)-space. We therefore make this assumption. 

Since by the hypothesis every quotient by a closed linear subs pace of 

a member of )91 is also in )91' we may assume that El is the 

(A ,T)-inductive limit of some (Fy; iy : YEr), l-lhere each Flfi.l 

and each i is a (1 - 1) 
y 

The graph of the 

linear map of Fy into El' 

linear map i -lof of E onto F 
y y 

is closed 

for each y in r, since it is the inverse image of the graph of f by 

the continuous map (x,y) ~ (x,i (y» of E x F into E x El" 
y Y 

Therefore i -lof is open and thus for every neighbourhood V in E, 
y 

i -lof(V) (=(f-loi )-leV» is a neighbourhood in F. This implies 
y y y 

that f-loi is a continuous map of F into E for each y in r. y y 

Therefore f- l is continuous and thus f is open and r; is a D( A 10/:; A, T)-

space. 

Corollary: 

(a) D( B l;(/l ,T)l) 

(b) D(Jl;(,q ,T)l) 

(c) D( '8;(.A ,T)3) 

(d) D( Bn(f/. ,T)3) 

(e) D( L ;(A ,T)l) 

= 

= 
= 

= 

= 

Deg /; (/l ,T\) 

D( :1 l~':; (A ,T)l) 

DC B *; (fl ,T) 3) . 

D(~;(A,T)3) = 

= 
DeN l;(;t,T)l) = 

D(N ;(A ,T)3) 

DcfJn'~; (A. ,T)3) 

D( .J: "t: (fl ,T \) 
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The proof of the follovring result is easy and is therefore omitted. 

Proposition 6.4.3. 

Let (A , T) be admissible and let'//l be a subclass of fl . 
If every separated continuous (continuous (1 - 1» linear nearly open 

image of each member of A 1 is also in RI then, every D(/1 1; A , T)­

(D/fl l ; fI ,T)-) space which is in A 1 is B-complete (Br-complete). 

In «18), page 195, problem DCa», G = El x E2 , where El is a 

B-complete barrelled space, being a countable direct sum of reflexive 
, 

Banach spaces and E2 is a Frechet space. Since G is barrelled (hyper. 

barrelled, ultrabarrelled) but not B-complete, it fdlows by Proposition 

6.4.3 that a product of two D( C ;L4 ,T)3) -(D( Ch ;(fl ,T)2)-' 

D(Cu; (fl , T \)-) spaces does not necessarily belong to the class. 

He observe that in the example referred to in the last para-

graph, El' E2 are strictly hypercomplete. Thus a product of two 

hypercomplete spaces need not be hypercomplete. This answers 

(negatively) a question of Kelley's in «17), page 236). 

By Proposition 6.4.3, an incomplete quotient of an L.F. space 

is not in D ( C ;~,T)3)' or D ( C ;(/l ,T)l)' But by Theorem 6.3.1~ r r u 

such a space is necessarily in D(B ;(/1. ,T)3)' and D( Bl~(/l ,T)l). 

It is easy to see that every locally convex space is in D( j- cS; ( It, T) 1) 

and D( '3-. 6; ( A, T) 3) • But an infinite dimensional Banach space under 

its finest convex topology is not in Dr ( "'J 1; ( A ,T) 1) or 

D rid ;(/l ,T)3)' In Proposition 6.4.4, (i), (ii)~ (v) and (vi) follow r n 

from these observations and the corollary of Proposiiton 6.4.2. Parts 

(Hi) and (i v) of the same result are easily established. 



- 108 -

Proposition 6.4.4. 

(i) D ( C ;(.I1,T)l) C D ( Bl;(/t ,T)l) C D ( :tl;(A ,T)l) C 
I' U +=r _I' :;:: 

Dr (')-6 ; (A. ,T)l). 

(ii) D(e u;(A ,T)l) ~ D( 8 1 ;c/l ,T)l) = D( lil;':;(/i ,T\) <;; 

D{3 ;(A ,T)l) = D(! J/;(/l ,T)l)C. D( '3-
6 

;(,,£l ,T)l)' 
1 +-

(Hi) 

(iv) 

D( B ;(Il ,T)3) C D( 13 ;(/l ,T)l). 
~ 

D( Bl~<.1l ,T\) c DC/3 ;(11 ,T)l)' 

(v) Dr { C.,{/l ,T)3)~ Dr { B:··;{/I ,T)3)S Dr { An;':;{/{ ,T)3) £ 

Dr( N;(/l ,T)3)£ Dr( J- ,(Il ,T)3) s;: D/ 8 n ;( fl ,T)3) 
, 

~. D / '36 ; (A ,T) 3) • 

(vi) D( C ;(11. ,T)3) C. D( ,B1:;{/1 ,T)3) = D(B;( fi ,T)3) C 
:::r -

D( Bn;··;(/1 ,T)3) = D( Bn;{/I ,T)3) = D(N ;{/} ,T)3) 

= D( :J-;(/l ,T)3) ~ D( Yc,.(/i,T)3)· 

6.5 The case when;Lil is an w cum inductive class 

If (~,T) is admissible then, on any linear space L there is 

a finest topology for which the space is in A. This topology shall 

be denoted by w. The topology w is s, se or T(E,El':) respectively according 

as we are COnSilEr'IDg the admiss ible case (1), (2) or (3). 

Let (A ,T) be admissible. He call a subclass Al of/f ~ 
cum inductive class in A if (E,w) EAl for every linear space E and 

for every (En: n=1,2, ••• N) inAl' any (./1 ,T)-inductive limit of 

(En: n=1,2, ••• H) is infll. 
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For the admissible case (l),C·u ' Bn~':, 3f':, J-i':, L~t: B~':, 

B ·t. #> 

1 
are wcum inductive classes. For the admissible case (2), similar 

examples are Ch' Bn 'f:, fll 'f:, ;r~':, !.. '1:, 8 ~':, Bll ~': and for case (3), 

C 13, .o. B .t. )-.t. ,~ , ~ , .. 
, )I , • 

n . 

Now, any inductive limit of a sequence of Banach spaces is a 

quotient of their direct sum. Since an :inductive limit of a sequence 

of Danach spaces need not be sequentially complete «23), page 437), we 

see that ~ ~, ;till are not wcum inductive classes for the 

admissable cases (3), (1) and (2) respectively. 

Theorem 6.5.1. 

Let ell ~ T) be admissible and let.lt 1 be an w cum inductive class 

inl/. Then, CE,T).inll is a Dr( ;:{l;!I,T)-space if and only if every 

closed linear map from any F in A 1 into (E, T ) is continuous. 

Proof: Suppose that CE,.) is a Dr(~l)~ ,T)-space. Let f be a closed 

linear map from some F in,/ll into (E,T). Since F/f-1CO) is also in 

~l' we may also suppose that f is a (1 - 1) map. As f is closed and 

linear. it follows by Lemma 2.6.5 that f is continuous from F into 

(E,v
l

) where v
l 

is coarser than T and CE,vl ) is in A. Since f is 

(1 - 1) J He may identify F ,-lith the linear subspace El = f(r) of E. 

Let (El,p) be this space with the topology of F. The space (El,p) is in 

Rl and p is clearly finer than the v1-induced topology on El. 

Let E2 be an algebraic supplement of.E l in E. As E is algebraically 

isomorphic to El x E2, we may identify El x E2 with E. Uith this 

identification, let (E,q) be the (A.,T)-direct sum of CEl,p) and (E
2

,w). 
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Clearly q is finer than vI' (E,q) is in)11 and f is continuous from F 

into(E,q). Now the identity map i say, from (E,t) onto (E,vl ) is 

closed, being continuous and thcrefonethe graph of i is closed in 

(E,t) x (E,q). Since (E,.) is a Dr(~ l;)t ,T)-space and (E,q) e ~ 1 

it follows that • is coarser than q. Therefore f is continuous from 

F into (E, t) • 

The converse is easy. 

Cf. (33), Theorem 4.9. 

By using Theorem 6.5.1, one can pr-ove the following result. 

Theorem 6.5.2. 

Let (A. ,T) be admissible and letA
l 

be an w cum inductive 

class inA. Then, E inRis a D(AI;./l .T)-space if and only if every 

closed linear map from any F in~l into each quotient of E by a closed 

linear subspace is continuous. 

It is not difficult to deduce from Theorem 6.5.1 that every 

closed linear subspace of a D/A l ; A,T)-space is also a Dr(Al;A ,T)­

space wheneverfll is an IJl cum inductive class in A. By using Theorem 

6.5.2 and Lemma 2.6.4 one can show that in a similar situation, every 

clos~d linear subspace of a D(A l~ J{ ,T)-space is also a D(A l;A. ,T)­

space~ From Theorem 6.5.2 and Proposition 6.4.2, the following is 

immediate. 

Corolla~ Let <ft ,T) be admissible and let~l be an w cum 

class in /I. Suppose that fl. 2 is a subclass of fll such that 

quotient by a closed linear subspace of each member of 112 is 

If every member of f) 1 is the (A ,T )-inducti ve limit of some 

inductive 

every 

also in fl
2

• 

(E • u ;ye<I» 
y' y 
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where each EyE R 2 then, E in /1 is a DC R 2; A , T )-space if and only 

if every closed linear map from any member Of)92 into each quotient 

of E by a closed linear subspace is continuous. 

For the admissible case (1), the hypothesis of the above 

Corollary is satisfied if Al is Bn~':, J-~", Jl~'" :fll~", B*, Bl "', 

811
1' or J:. "', and R2 is respectively chosen to be Bn , :J; 31,:r 11' 

B, B l' B 11 or f. . 
Similarly for the admissible case (2) when)91 is l1n*,:t *, 

'Zf ll~':' IJ", .81/ or .t. ~':, and 112 is ~, :f, 'Jil' B, 811 or L. 
And for the admissible case (3) when 111 is .Bn *, J ~':, or 

B'l:, andll2 is Bn' "",!, orB. 

In the next two theorems we shall take NI to be NI' Nll or N 
according as we are considering the admissible case (1), (2) or (3). 

For case (1), every member of NI is the (!i ,T) -inducti ve Hmi t of some 

(E ; u : YE~), where each E El:. It is then easy to see that for F y y y 

in Ji , every closed linear map from each member of /VI into F is 

continuous if and only if every closed linear map from each member ofl: 

into F is continuous. There is a similar remark for case (2), when" NI" 
is replaced by " Nll!l and for case (3), t-lhen " N I" and "£.. 11 are 

respecti~~ly replaced by "N" and "Bn'" Hith these observations, one 

can prove the following result by a method similar to that used 

in Theorem 6.5.1. 
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Theorem 6.5.3. 

Let (A ,T) be admissible. Then, E inR is a Dr(N~; /1 ,T)-

space if and only if every closed linear map from any member of N~ into 

E is continuous. 

Corollary 1. (i) If It ,T) is admissible then, 

D
r

{ N";fI. ,T) = Dr { N~l':; 11 ,T) 

(ii) Dr { N1 ;(!l )T)l) = Dr( !.,*~A ,T)l) = Dr( NIl}, 0,T)I) 

(Hi) Dr( Nll;(fL ,T)2) = Dr(!.~·~;<fl ,T)2) = D/ IVlll':;{/{ ,T)2) 

(iv) D/N ;(/t ,T)3) = Dr( 9 n
l';;(fJ ,T)3) = D/ Nl':;{ fl ,T)3) 

(see Proposition 6.4.4). 

Corollary 2. 

(a) Dr(t;( FI. ,T)l) = Dr< !.~;;(A. ,T\) = Dr< N1 ;(/l ,T)I) if and 

only if for each Dr (L ; ( fI. ,1)2- space F, every closed linear map 

from any E in L into F is continuous. 

(b) Dr(L ;(A ,T)2) = Dr( £..0:;;(11 ,T)2) = Dr( Nll;(A ,T)2) if and 

only if for each Dr( L ;( P. ,T)2)-space F, every closed linear map from 

any E in L into F is continuous. 

(c) Dr { Snl';;( Pt. ,T)3) = Dr( N ;(A ,T)3) = D/ J;( It ,T)3) = 

D (8 ;(A,T)3) if and only if for each D <8 ;(fl,T)3)-space F, r n r n 

every closed linear map from any E inl1n into F is continuous. 

Using Theorem 6.5.3, one can prove the following result. 

Theorem 6.5.4. 

Let (A ,T) be admissible. Then E inJl is a D(N~;A ,T)­

space if and only if every closed linear map from any member of ~ .. into 

each quotient of E by a closed linear subspace is continuous. 
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6.6 The case when tfl is a second cate30ry class 

If (~,T) is admissible, we shall throughout this section 

assume that A 1 is the class of all second category linear topological 

spaces in /..{. We say that E in A is a Dl (fl 1; fI. ,T )-space if there 

exists a continuous linear map from some F onto E, where F is either an 

extracomplete D(A 1; ( A ,T \ )-space or is the generalized strict 

*-inductive limit of a sequence of extracomplete D(ft l;()l ,T)l)-

spaces. 

If (E,u) is aB-complete l.t.s. or an L.F. space then, for any 

linear (semiconvex, convex) topology v on E coarser than u, (E,v) is a 

Dl(!L 1;( fi ,T\)- (Dl(A-l~( A,T)2)- , Dl ( fl l ;(!l,T)3)- ) space. 

Also, if (E,u) is the *-direct sum of a sequence (E.) of linear 
~ 

topological spaces, where for each i, E. = IP or HP for some p in the 
~ 

open interval (0, 1) then, for any linear (semiconvex, convex) 

topology v on E coarser than uOo , (E,v) is a Dl ( A
l

;( It ,T\)­

(Dl(A 1;( R ,T)2)- , DI ( A l'~ A,T)3)- ) space. 

There may not exist a continuous linear map from aB-complete 

locally convex space onto a Dl ( Al ;(.J{,T)3)-space. For, let (E,u) , 
2 • be the sequence space 1. Then, the mcomplete barrelled normed linear 

space (E,uOO ) is a Dl(;'-Il;( ~ ,T)3)-space. If there were to exist a 

continuous linear map f say, from a B-complete locally convex space 

onto (E,uOO ), then f would be open and this would imply that (E,uOO ) is 

complete. 

From the corollary of Theorem 6.5.2, we derive the following 

result (which VIe denote by (~». 
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(R): Let (R,T) be admissible. Then, E infl is a D(A
l

;!/.. ,T)-space 

if and only if every closed linear map from any F in !I. 1 into each 

quotient of E by a closed linear subspace is continuous. 

Let F be an 1.t.s. and (Fn) a sequence of Dl (Ill;.f/ ,T}-spaces. 

Suppose that for each n, u is a continuous linear map from F into 
n n 

F and that F is the union of (u (F ». For each n, there exists a 
n n 

continuous linear map ~say, from some G onto F , where 
·u n n either 

(a) Gn is an extracomplete D(~l;(fi ,T)l)-space or (b) Gn is the 

generalized strict *-inductive limit of some (G ; w : i = 1,2, ••• ), n. n. 

where each Gn . is an extracomplete DcA 1; ( A ,r; 1 )-s~ace • 
1. 

For each n where % is an extracomplete D( Ill; ( fl., T) 1 )-space, 

the induced map v of the continuous linear map r,; = u og from Gn n - n n n 

into F is continuous; and Gnlt;n -1(0) is an extracomplete 

-le Let J l be the union over n of v (G /r; 0». n n n 

For each n where G is the generalized strict *-inductive limit 
n 

i = 1, 2, •.• ) (each G is an extracomplete 
ni 

induced map v~ of the map n. 
1. 

C; ~ = U Of! 0 w of G into F is cont inuous. Also, n. n ~'I1 n. n. 
G Ir,;",-l(o) 

n. n. 
1. 1. 1. l. l. It 

is an extracomplete D(JQ 1;( ,T)l)-space. Let J 2 be the union over 

nand i of v~ (G Ir,;' -1(0). 
n1.' n. n. 

1. 1 

Clearly Jl~ J 2 = F. We may thus suppose that each un is a 

continuous linear (1 - 1) map and that each Fn is an extracomplete 

D(R 1;( R,T\)-space. Hith this observation, on using the method of 

proof of Theorem 6.3.1, but this time applying (R) instead of Theorem 

6.2.2, one can prove the following result. 
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Theorem 6.6.1. 

Let <A ,T) be admissible and let E be the (A,T)-inductive 

limit of some (E ; u : YE~), where each E is in)?,l' Suppose that 
Y Y Y 

F e)Q and that for each positive integer n, un is a continuous linear 

map from a Dl(~ l;jf ,T)-space Fn into F. If r is the union of 

(u (F », then any closed linear map from E into F is continuous and n n 

any closed linear map of r onto E is open. 

Corollary. Let ("Cl ,T) be admissible. If E is the cA. ,T)-inductive limit 

of (E ; u : YE~) and F, the generalized 
y y 

limit of (r ; v : n = n n 
1, 2, ••• ), where 

strict (ji ,T)-inductive 

each E e fI. 1 and each F is 
y n 

a Dl(,Fi. l;A,T)-space then, any closed linear map from E into F is 

continuous and any closed linear map from F onto E is open. 

Cf. Theorems 2 and 3(ii) of (35). 

Theorem 6.6.2. 

Let (ji ,T) be admissible and suppose that E, F E)t. For each 

positive integer n, let un be a continuous linear map from a Dl (}? 1;)1 ,T)­

space En into E, and suppose that E is the union of (un (En»' If t is 

a closed linear mOip from E into F such that teE) is inAl' then teE) 

is closed in F. 

Proof: By an argument similar to that preceding Theorem 6.6.1, one 

can show that we may assume that each E n 

D(ll
l
;( A ,T)l)-space and that E is the 

is an extracomplete 

union of subspaces (E ) such 
n 

that the topOlogy of E is finer than that induced from E. 
n 

Since teE) =lJ It(En ) is of the second category in itself, 
n ~ 

there exists a positive integer N such that t(~) is of the second 
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category in teE) and t(EN) is dense in teE). (t(E), t(EN) are assumed 

to have the topologies induced from F). The space t(EN) is clearly in 

~l and the eraph of the map t of EN onto t(EN) is closed in 

EN x t(EN). 

As EN is a D( Il l ;( Il ,T)l)-space and t(EN) is in Ill' t is 

an open map from EN onto t(EN). 

Since EN/t-l(o) is an extracomplete D( fll;(A ,T)l)-space, we 

may assume that t is (1 - 1) and thus consider EN as the same space t(E
N

) 

under a coarser topology v. Moreover,(t(EN),v) is complete and the 

identity map i say, from (t(EN),v) into F is closed. 

Let (Ya : a£~) be a net in t(EN) converging to Yo in F. 

Because i is an open map from (t(EN),v) onto t(E
N
), (Ya : ad) is 

v-Cauchy and must therefore converge to some point Yo' in (t(EN),v), 

since this space is complete. As the graph of i is closed in 

(t(EN),v) x F, Yo= Yo' and thus t(EN) is closed in F. The result 

now follows from t;)is, since t(EN) is dense in teE). 

Corollary. Let (Pt, T) be admissible and suppose that F is in A . 
Let E be generalized strict cA ,T)-inductive limit of (En; un 

n = l, 2, •.. ), where each En is a Dl ( A 1 ; .A ,T )-space. If t is a 

closed linear map of E into F then, either teE) is of first category in 

F or teE) = F. 

Proof: If teE) is of the second category in F then, teE) e: A 1 

and teE) is dense in f. By the theorem, teE) is closed in F and this 

gives the result. 

Cf. (35), Theorem 3, Corollary. 
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