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ABSTRACT

This thesis is concerned with colour centres, particularly
. . . +
the FC+-centre, in the alkaline earth oxides. The FC ~-centre
consists of an electron trappcd at an anion-cation vacancy pair

. +
and is intimately connected with the P -centre, an electron trapped

at a sinrle anion vacancy. We emphasise in this thesis the
connection between the FC+ and F'-centres, A theoretical model

is developed which represents the PC+-centre as an F'-centre perturbed
by the presence of a neighbouring cation vacancy. The calculated
binding eneray of the FC+-centre in the point ion lattice approximation
is found to be too larse compared with experiment. Corrections due
to lattice distortion and polarisation effects taken tocgether lower

the binding energy; although the pblarisations of the surrounding

ions actuélly increases the binding enersy the lattice distortion
decreases the binding enersy by a slightlyvlarger amount. Reasonable
agreement between the experimental and theoretical binding energies is
obtained for ﬁgo only after ion size corrections to the point ion model,
The axial symmetry of the FC+-centre is best revealed 'y the ratio of the
isotropic hyperfine constants, AOO-l/AOlO' An attempt has been made
to calculate the isotropic hyperfine constant within this model. The

results show that vhilst the ratio agrees feasonably well with the

experiment, the absolute value of the isotronic hyperfine constants



are too larse comnared with experiment. A slight improvement of the

isotropic hyperfine constants is obtained vhen the ion size effect

is taken into account.

. . + .
A continuum calculation for the FC -centre, in which the

electron is assumed to be trapped in the field of a finite electric

dipole immersed in a dielectric medium is also attempted, and the

results compare with the point ion model for the FC+-centre.



CHAPTER 1

1. Introduction

The alkaline earth oxides are wide band gap insulators
(EG > 6 ev) which crystallize into a regular array qf positively
charged metal ions and negatively charged oxide ions having the
face-centred cubic (rocksalt) structure. Although they are
highly ionic materials it is likely that they are not so ionic as the
monovalent and isostructural alkali halides. A typical alkaline
earth oxide is characterised by a filled valence band formed from
p-like states on the anion and an empty conduction band arising
from s-like states on the cation. The detailed nature of the
band structure is a topic deserving active research interest,
however it is largely unknown and requires both experimental and
theoretical study. One of the most appealing features of these
materials is their wide range of optical transparency, which at
least for magnesium oxide extends from about 8.0 ev where exciton
transitions begin (according to work on powders) into the infra-red
where lattice restrahl absorption occurs. Defects including
transition ion impurities introduced into the lattice often give
rise to absorption bands in this region and can be conveniently

studied without the interference of competing absorption by the host.



1.1 Defects in Crystalline Solids

t

Intrinsic lattice defects exist in thermodynamic
.equilibrium in crystalline materials since their presence lowers
the free energy of the crystal mainly consequent upon the increased
configurational entropy associated with the number of ways of
selecting which lattice sites are defective. Simple
thermodynamic arguments(l) show that the defect concentration
depends exponentially upon temperature according as

= A Exp (- E) (1)
kT

n

N
where n is the number of defects in a crystal with N lattice sites,.
E is the energy required to produce one defect, and the constant A
is related to the changes in vibrational energy of atoms near to
the defect E, the formation energy determines which defect type,
Schottky (single vacancy) or Frenkel (interstitial-vacancy pair)
is present in a particular solid. for example, most metals, the
alkali halides and alkaline earth oxides experience Schottky
disorder since E_ > E ¥ Wwhereas the opposite situation obtains

S F

in the silver halides and some non-stoichiometric oxides.

*The subscripts S and F refer to Schottky and Frenkel defects

respectively.



The most obvious manifestation of the presence of defects in solids
are the easily measurable changes in crystal density and X-ray
lattice parameter. In fact comparison of these changes not only
indicates the nature of the lattice disorder but also allows an

(2)

estimate to be made of the defect formation energy .

In pure ionic solids the.formation of lattice defects must
take place such that charge neutrality be maintained over the volume
of the crystal. Thus in an alkali halide crystal, the formation
of a Schottky defect must involve a pair of separated vacancies, one
anion and one cation, being produced simultaneously, and ES then
represents the energy required to create such a pair. The Frenkel
defect, however, remains unchanged since the interstitial ion is
oppositely charged to the vacant site which it formerly occupied.
There are, of course, both anion and cation Frenkel defects.

The charge associated with these intrinsic defects has other important
consequences for the properties of crystals. As a result of the
strong electrostatic interaction between an anion and a cation
vacancy, it is energetically favourable for them to aggregate
together to form a bound pair. Such a pair makes no contribution
to ionic conductivity, although it may be important to diffusion
processes(s). Other types of defect aggregate may also occur.

For example when CaCl2 is added to NaCl and Ca2+ ions substitute
directly for the unipositive sodium ions, additional cation vacancies

being incorporated to offset the excess charge on the divalent impurity

ions.



A ca®t ion may then associate with a cation vacancy to form an
impurity-vacancy pair: whether the vacancy occupies a nearest
neighbour site along a (110) axis or a next nearest neighbour site
along a (100) cannot be decided simply by inspecticn. In potassium
chloride the most stable site for the cation vacancy is the next
nearest neighbour site, whereas in sodium chloride the nearest
neighbéur site is favoured. Trivalent ions in magnesium oxice

may have the charge compensating vacancy in either site, the next
Nearest neighbour site being slightly favoured.

1.2 Colour Centre in Crystalline Solids

Colour centres in the alkali halides afford a further means
of chérge compensation for intrinsic lattice defects. The term
"colour centre" was used originally by Pohl(u) to designate the defects
responsible for the characteristic colour of alkali halide crystals
after heating in alkali metal vapour. Many investigations subsequent
to Pohl's pioneering work have established that the most important
defect in these additively coloured crystals consisted of an electron
trapped at a negative ion vacancy, the F-centre. The F-centre is
analogous to the hydrogen atom, except that the positive charge which
traps the electron is distributed over the "cage" of nearest neighbour

cations, Thus we can discuss the eigenstates of the F-centre

electron in terms of energy levels of the hydrogen atom, and designate



them as the |[1s>, |2s>, |2p> etc levels obtained by solution of'a
one electron Schrodinger equation., As we shall see later this

is only an approximate description, whicﬂ must in general be
modified to take account of numerous other interactions. However
these energy levels, which we describe approximately as |1s>, |2$>,
|2p> ete occur within the band gap of alkali halide crystals,

and electric dipole transitions which occur between them lead to
the characteristic colour of crystals containing F-centres.
Vacancy pairs may also act as traps for free electrons, thereby
reducing the electron mobility. Thus it is interesting to
investigate the binding energy of an electron trapped at such a
vacancy pair. In general, however, this situation has not béen
observed in the alkali halides, and our present studies have been
concerned with the alkaline earth oxides in which such F-like
centres have long been known to exist.

Colour centres are also produced in alkali halide crystals
by ionizing radiation., The primary products of such irradiations
are F-like centfes and Vk—centres. During irradiation, energy is
transferred to anions some of which are ejected into interstitial
sites several lattice spacings removed from the vacancies which they
had formerly occupied. Free electrons simultaneously produced are

then trapped at the anion vacancy so creating F-centres.



The interstitial halide atom usuaily bonds covalently with an anion
to form an X2_ molecule ion centred at a single anion site.
Subsequent irradiation with light in the F-band converts F-centres
to aggregate centres. There is now considerable evidence that
these centres, referred to as M-, R- and N- centres, are aggregates
of 2,3 and 4 F-centres(S). Charged aggregate centres also exist
which have either-trapped an extra electron or lost an electron by
ionization. Thus the three centres M+, M and M are structurally
identical since each involves two vacancies on neighbouring anion
sites; they differ in that they contain respectively one, two, and
three electrons.

In the alkaline earth oxides vacant lattice sites bear an
effective charge twice that of the corresponding vacancy in the
alkali halides. Thus anicn vacancies may trap two electrons to
form a neutral defect. Such a defect is expected to havé bound
excited states in contradistinction to the analogue defect, the
F -centre in the alkali halides(G). The additional trapping
potential of vacancies in the oxides and the different charge state
of a particular defect pelative to the alkali halides, is an apparent
complication in any system of nomenclature based upon that used by
research workers in the aikali halides. For example, an oxygen

ion vacancy at which a single electron is trapped has similar

optical and magnetic properties to the alkali halide F-centres,



despite being effectively positively charged. This centre might
be appropriately designated the F' -centre. Extending such a |
sysfem to all defects in the oxides is Qﬁite simple using the system
of letters developed for the alkali halides, with an appropriate
superscript indicating the charge state of the defect. Thus the
defects produced by trapping one, two and three electrons in the
anion vacancy would be referred to as the F+, F and F centres
respectively. Aggregate centres similar to the M, R and N-centres
are also believed to exist in the oxides; the nomenclature
developed above is easily adapted to such defects(7).

Although the above system of nomenclature is both a logical
and self-consistent extension of that used in the alkali halides, it
is not so easily applied to centres which have no direct analogue
in the alkali halides. One such centre is the subject of the
present investigation. This defect was first reported by Wertz
and his associates(B) in neutron irradiated samples subjected to
annealing treatments above 570°K. ~In such samples the amplitude of
the F'-centre E.S.R. spectrum is reduced and a new spectrum shifted
from the P+-centfe spectrum by Ag = 0.0015 in magnesium oxide is
observed. Wertz et al, suggested that this spectrum and its mode
of formation was consistent with cation vacancies migrating to the
rt_centres to form a vacancy aggregate. In addition to being
observed in the four oxides the defect was also detected in MgS, SrS,

(8)

SrSe and BaSe . As we shall see this defect behaves like an



F+—centre, at least in respect of its E.S.R. spectrum and it is

. . + .
Plausible to refer to this as the Fb-centre, the subscript C

‘ . . " . +
indicating that one of the cation sites neighbouring the F -centre
is vacant. The centre does have symmetry properties similar
to the FA-centre (F-centre + impurity ion) in the alkali halides
since the presence of the vacancy lower the symmetry from octahedral
to tetragonal. The similarity is not further manifest in the

properties of the FA-centre and the Fg-centre.

In this thesis the Fg-centre is treated theoretically as
an F'-centre perturbed by the presence of thg nearby cation vacancy,
using a point-ion polarised lattice model. This is physically
realistic since the charge cloud is chiefly concentrated in the
anion vacancy. The earliest theoretical work on this type of
centre was by Pincherle and specifically concerned the D-Centre
in silver halides(g). Pincherle treated this defect as an electron
trapped in the field of a finite dipole contained in a dielectric
continuum, He proceeded using a simple trial wave function and
minimized the energy by the variational method, More recent

(10) follow similar lines except that a more exact

calculations
solution to the equations governing the electron and the dipole is

found. The binding energy of electron to the vacancy pair is then
interpolated from the free ion elgenvalues bearing in mind that the
centre is immersed in the solid dielectric. This is taken account

of in the usual way by scaling all electrostatic forces by the in=-

verse of the dielectric constant.
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CHAPTER 1II

THEORETICAL STUDIES OF F-CENTRES

“

2.1 Preliminary Comments °

Theoretical calculations of colour centre properties
are many-body problems involving interactions between the trapped
electrons and both the ion core electrons and nuclei of all
lattice ions. This is a formidable task, and the approximations
used in actual calculations must always be the subject of close
scrutiny., There are in general two approaches, on the one hand
continuum approximations neglect all local interactions between the
defect and its environment, while on the other hand molecular orbital
treatments neglect long range interactions concentrating on the
interactions between the electron and some of its closest
neighbours. ‘ A common feature of all theoretical models, hoviever,
is that they attempt to compute ome or more of such experimentally
measurable quantities as the location, shape and temperature dependence
of the optical band, the lifetime and thermal ionization energy of
the excited states of the defect, and the magnitude of any hyperfine
interactions. The many body calculation 1is intractable even for
the largest computers and the simplifying assumptions used are usually
chosen according to whigh defect propertics are to be calculated.
Because of its apparent simplicity most calculations have been

concerned with the F-centre and the ensuing brief review reflects this,



The earliest calcualtions of the F-band transition
energy used the semi-continuum approximation which largely neglects
the periodic crystal lattice. The vacanéy is treated as a
positively charged cavity embedded in a continuum dielectric
medium, the cavity radius R being obfained from an explicit calculation
of the polarisation field(l); Electric field intensities are
calculated using the appropriate dielectric constants. Thus once
the form of the potential at the vacancy is found for the electrdn
in the cavity, the energy eigenstates of the electrons are found by
solving the appropriate Schrodinger equation. Tibbs(z) and later
Simpson(s) used particulerly simple forms of the electrostatic
potential inside the vacancy and obtained values for the F-centre
transition energy in NaCl of 1.26 ev and 2.20 ev respectively,
The experimental value is 2.72 ev. Both calculations assumed that
the polarizatioh of the latticevdepends only upon the time average of

(4)

the electron's distribution., A later calculation''’, which

assumed that the electrons on the neighbouring ions can follow the
motion of the trapped electron adiabatically, results in a tighter
binding of the electron in the vacancy especially in the |1s> ground

State because the potential arising from the lattice polarization

is decreased. The improved F-band transition energy in NaCl is 2.62 ev.



Temperature dependent properties, such as the optical
band shape, are best analysed using models based on the adiabatic
Born Oppenheimer approximation(s) used originally in the treatment of

molecules, The method assumes that the total wave functions of

the system may be written as the product function,

wim = ¢i(r,Q) wm(Q) (2.1)

where i and m represents the electronic and vibrational quantum states
respectively, r and Q are respectively the electronic and nuclear
co-ordinates and wm are wave functions of the harmonic oscillators
assumed to represent the lattice phonons. The classical form of
the.Franck—Condon principle is also assumed to apply, and the
electronic wave functions ¢i(r,Q) are very slowly varying functions

of Q. Consequently an optical transition between ground and excited
electronic states takes place so quickly that the lattice ions are
unable to move to the equilibrium position consistent with the excited
state during the‘transition. Caléulations assuming that the electrons
are coupled either to a continuum of lattice modes or to a single
localized mode have been strikingly successful in predicting the
detailed band shapes, tempcrature dependence of the optical transitions
and the energy shifts between absorption agd emission bands(a);

Apart from the localized mode appfoximation(7) the models noted above

ignore the detailed interactions of the trapped electron with neighbouring



ions, although magnetic resonance results clearly demonstrate the

importance of such interactions. The remarkable successes of the

contiﬂuum methods are sufficient to convince us of the importance of
long range interactions also.

A number of methods have been forthcoming which attempt to
inelude explicitly the interactions of the trapped electron and ion
core electrons, For example a molecular orbital technique allows
the trapped electron to spend some fraction of its time overlapping
onto the neighbouring ions, during which time it is assumed to behave
as a valence electron on the cation. The assumed trial wavefunction
is a linear combination of the atomic orbital wavefunctions (L.C.A,o.)
of the six neighbouring cations, the coefficients of this combination
function being used as adjustable parameters(s). Such detailed
effecté as exchange,polarisation effects and Van der Waals interactions
(10)

may all be included(g). Gourary and Adrian argued that since

the F-centre electron spends very little of its time cn neighbouring
cations, the average wave function is insensitive to exchange‘and
overlap effects between the electron and the ion core electrons.

Thus they adopted a mefhod, the point ion lattice approximation
(P,I.L.A.) in which the ions are represented as point charges located
on the lattice points., The electron trapping potential used in the
Schrodinger equation is then determined from the spherically symmetric

contribution of all point charges at the site of the vacancy.



They used trial wave functions which were essentially s-like for
the ground state and p-like for the excited states, although
L.C.A,0. shcemes have also been used withih the framework of the
P.I.L.A.(lu). These last two methods are useful for calculating
not only the optical properties cf F;centre but also the hyperfine
interaction constants, at least provided that the wavefunctions of
the trapped electron are properly orthogonalized to the wave functions
of the ion core electrons.

Despite all the possible assumptions made above, the
many-body problem is still to be formulated and this is of crucial
importance in deciding the form of the trial wavefunctions used,
The two main aséumptions which are of proven value for calculating
defect properties, and which effeétively reduce the many-electrcn
problem to a one electron problem are the Quasi-Adiabatic
Approximation and the Hartree=-Fock procedure. In essence these
assumptions single out the trapped electron for detailed study,
while the effect of all other ion core electrons, except perhaps the
ion core electrons on the nearest neighbour ions, are replaced by
an average effective potential. A particularly clear exposition
of these approximaticns is contained in the review article by
Gourary and Adrian(lo), and here we only summarise their essential
properties, In the Quasifadiabatic approximations, thé trapped

electrons are regarded as being much more weakly bound to the



vacancy than are ion core electrons to the neighbouring ions.

It is therefore reasonable to assume that the strongly bound, rapidly
revolving ion core electrons can follow the detailed motion of the
weakly bound F-centre electrons. Conversely the F-centrs electron
is unable to follow the detailed motion of the core electrons, and is
therefore only effected by the average of their motion. The effect
of this is that the interaction energy of the trapped electron with
the "electron component" of the polarisation is independent of the
position of the electron, and therefore may be omitted from the
Hamiltonian.

In direct contrast to the Quasi Adiabatic approximation,
the Hartree-Fock procedure states that except for correlations
imposed by the exclusion principle, every electron moves in an averaged
field of all the other electrons. According to the Quasi Adiabatic
approximation, the core electrons are able to follow the average
motion of the trapped electroa cnly when the correlation polarisation
interaction is small. This lattervinteraction arises from the
polarisation of the core electrons by the trapped electron at its
instantaneous position reacting back on the trapped electron. This
interaction therefore depends on the instantaneous position of the
trapped electron. - If this interaction is small, then we may assume
that the core electron also follows the average motioﬁ of the trapped

electron, as is the case for F centres,



This initial éreamble serves only as a guide to some of
the techniques used over abcut 25 years of study. Inevitably
techniques have become increasingly sophisticated during that time
and it is not possible here to review comprehensively all the
modifications which have occurred. Consequently fhe more detailed
treatment which follows is concerned conly with the more important
developments, especially those which have been adapted in their
use of studies of F'-centres in the Alkaline Earth Oxides.

2.2 F-centres in the Alkali-Halides

The earliest models applied to the F-centres in the alkali
halides were the continuum and semi-continuum models. These models
have not been applied to F+—centres in oxides and are of historical
interest only. The references at the end of this chapter give
tha relevant details.

2.2.1 Kojima's Calculations for Lithium Fluoride

(8)

Inui and Uenmura first trecated the F-centre problem from

an atcmistic viewpoint with their "small' and "large' molecule

. . es (9) . ..
approximation. ¥ojima made a mere extensive use of this technique
applying it to the F-centre in LiF. The basis of Kojima's

calculation was the quasi adiabatic approximation with the complete

Hamiltenian divided into pblarisation dependent and independent terms.



The polarisation dependent effects were treated first by Mott

(1)

and Littleton's zeroth order approximatién and later by the

second order Mott and Littleton procedure(l). The polarisation
independent terms in the Hamiltonian included not only the kinetic
energy of the trapped electron but also the electrostatic interaction
between the F-electron and both the atomic puclei and the ion

core electrons, allowing for any penetration of the trapped electron

into the ion cores. In Kojima's notation this part of the

polarization indspendent term is written as

<Hl> = - 32 wv2¢dr-e222v 4)2(1‘-) dt + 2{:22 1!12(11))(

2m v r-R
v

where ¥(r) and Xy, are wave functions for the trapped electron and
the undistorted jth shell of the vth ion respectively, and Z is the
atomic number of the vth ion. The I-electron also interacts with
the polarisation induced by the charge vacancy. This is difficult
to compute and is conveniently divide& in two parts, one part each
due to interactions with the infrared and optical components of the
induced polarisation, This latter component is constant in

the quasi-adiabatic approximation. Since the interaction energy of

a dipele P with an electric field E is given by,

N
.
w

> > >
H= - P.E



the total interaction between the trapped electron and the

polarisation field is then given as

<H2> = - Z M e2a3 3 wQ(r)dT
v — 3R r-R_]
R 2 Vv v

v

- T 223y 1P (r) ar
\Y v v

Ir—R I
v
£ 2
- Z M —Mo)eQa3 v ¢2(r) dar 2.4
g VoV v _

TR,

In equation 2.4 the first term represents the electron's interaction
with the charged vacancy, whilst the second and third terms represent
the electron's interaction with the polarization field: Mvo and Mv
are respectively the optical and infrared components of the
polarisability of the vth ion. Kojima also introduced an exchange

interaction in the form, '

2
<H.> = - ¢ ; [¢(r)x LAe)e(e' )y () 2.5
3 v ,j J \)J \)j deT 1]

|r-r!]

The total energy cf the system is now a simple sum of the energies
given by equation 2.2, 2.4 and 2.5 plus the internal energy of the

polarised lattice.



A variational calculation was then made using an assumed
wave function, Kojima first used an L.C.A.0, wave function com-
prising the |2s> and |2p> orbitals centred on the six nearest neigh-
bour Li% ions surrounding the vacancy. In the octahedral symmetry

that is the F-centre, Kojima's ground state wave function was simply
6
¥(r) = a; kgl S(r-R ) + a,{P (r-R;) = P_(r-R,)

+ Py(r-Ra) - Py(r—Ru) + Pz(r-Rs) - Pz(r'Re)} 2.6

where as and a, are the variational parameters, The excited

state wave function was similarly expressed as,
' mn
y (r) = b, {S(r-R.) - S(r-R.)} +b, ]} P _(r-R )
e 1 5 5 2 L T2 TR

+ by f P,(r-R ) 2.7
5

 These wave functions violate Pauli's exclusion principle since they

are nct orthogonal to the core orbitals. In order to obviate this

difficulty, Kojima assumed point charges to represent the ions to

whose core orbitals the atomic orbitals comprising the trial wave

function were not orthogonal., This modification of the potential

was not particularly satisfactory and it was found necessary to
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orthogonalise the trial wave function to the core orbitals to

obtain better agreement with experiment. The calculation gave the

following results:

polarisation neglected @ E=14,18 ev
polarisation included : E=3.5 ev
experimental value : E=154,96 ev

The agreement between theory and experiment is noticeably

poor. To improve this situation, Kojima used a second trial wave

function,

Plr) = £(r) =) x (v) | £(r) x (r) dr, 2.8
Vs V,] Vs

the envelope function £ (r) being now orthoganalised to the core

orbitals Xy j(r), by the Schmidt process(ll) In the ground state
3
the envelope function f (r) was,
f(r) = ¢ Sin kr/(kr) r <R
= ¢t e % v >R 2.9

where g is a variational parameter and c, c¢' and k are determined
from the condition that the two branches of f (r) should join
smoothly at r = R and from the normalisation of f (r). For the

first excited state, the envelope function was written as,

f(r) = Ce Sin kér - Cos kr Cos 9, ©r <R

)

2 2 ker
ke v

Ce' re %Y Cos g, r >R 2.10



where 6 is the polar angle referred to the (1, 0, 0) axis, The.value
of R was fixed at R = 0.9a after Mott and Littleton(l). Later
Kojima took the Mott and Littleton procedure to second order, although
the calculation became rather cumbersome. In essence the second
order correction to the polarisation energy assumes the dipole

moments to be unknown. They are then used together with the lattice
distortion as variational parameters, in minimising the energy of the
system. The result obtained for the transition energy was 4.96 ev,
in exact agreement with experiment. The author pbinted out that
this agreement is somewhat fortuitous. Even so it is rather
remarkable.

Despite giving good results for F-centres in LiF, Kojima's
éalculation is difficult to extend to other systems and to more
complex centres, mainly as a result both of the many two centre
integrals involved and the non-availability for many ions of interest
of Hartree Fock wave functions in analytic form. The point ion
model of Gourary and Adrian is therefore of interest because of its
simplicity and because it is easily extended to other more complex
systens,

2.2.2. The VWork of Gourary and Adrian: The Point-Ion-Lattice Approximation

The point-ion-lattice model developed by Gourary and Adpian(10)
has now pecome one of the most valuable starting points for .

theoretical study of defects in ionic solids. In this model the



complete Hamiltonian is replaced by a simplified Hamiltonian in which
each finite ion is replaced at its lattice site by an effective

point charge of magnitude equal to the valency of the appropriate
ion. (The finite ion size and polarisation effects are added
later as corrections to this model). The expectation value of

the Hamiltonian is then written as,

2
<H> = - K vawdr + &2 ) 20 (r) 2.11

2m A _rrTR\)T dr

where Zv is now the valency of the vth ion. It is to be noted that
equation 2.11 results directly from equation 2.2 under the restriction
that -the F-electron does not penetrate the ion cores. The
physical basis for this can be seen quite simply as follows: If the
trapped electron is completely outside the charge distribution of
the core electrons, then the electrostatic field which it experiences
is just that due to the nucleus surrounded by the core electrons.
This potential is equal to that due to a free ion with a net charge
equal to its valeﬂcy.

Gourary and Adrian used group theoretical methods to show
(1) that the point ion potential can be expanded in terms of cubic
harmonics(l2) of even order, and (ii) that for the purpose of
calculating the ground and first excited state energies, only the

spherically symmetric part of the expansion of the point ion potential



is needed. This greatly simplifies the problem. A further
simplification occurs because exchange interactions with the core
electrons are neglected, there being no counterpart to exchange
interactions in classical electrostatics. Thus the trial wave

functions for the F-electron need no longer be orthogonalised to the

ion core orbitals.

Gourary and Adrian(lo) used three different sets of
envelope functions for the ground and excited states, in order to
calculate the energy integrals. These integrals were then
minimized with respect to the parameters of the envelope function.
The Best wave functions, which are written below, were type III
wave functicn foy the ground state and type II wave functions for

the first excited state: Type III wave function:

o(r,%,0,0[0,6) = VI

L
R(r,%,0,0[r) = Aj (£r/a)k (n) r<a
= A (£)k_(nr) r>a 2,12
a

where n = - § Cot £ and ko(x) = e~ X/x.



Type II wave functions:

Qr, °,1,0l6,0) = /3 Cos 6

T =

L

[} - 1. t -n' )

R(T, ,1,0]p) = A i (E'rde r<a 2.13
a
= A'j, (EMp e A r>a
a

vhere n' = 3 - 5'2(1—5' Cét E')_Jl

Here the £'s are variational parameters, the n's are determined from

the condition that both the wave functicn and its radial derivative

have to be continuous at r = a, A 1s a normalisation constant and

. . . : (13) .

jn(X) is the spherical Bessel function of order n . The optical

transition energy of the F-band was then determined from the

difference in the energy eigenvalues of the ground and excited states.
For LiF an F-centre transition energy of 4 ev was obtained.

This is'comparable with Kojima's value of 4.18 ev in the -absence of

polarisation. Gourary and Adrian fournd that when applied to the

point ion model, polarisation and lattice distortion effects made only

very small changes in the transition energy. In fact the neglect

of polarisation was found to be negligible for the ground state and

to alter ths first excited state energy by only about 3%. The

influence of lattice distortion changed the transition energy by about

7%. This can be seen to be quite reasonable since in LiF the



wavefunctions are consistent with about 79% of the electronic
charge being concentrated inside the vacancy in the ground state
and about 51% of the electronic charge being concentrated inside
the vacancy for the first excited state. The charge on the
vacancy has therefore been effectively screened by the charge cloud
associated with the trapped electron. Thus the polarisationris
expected to have only a snall effect on the transition energy.

It is generally recognised that even when polarisation effects are
rot negligible, they change the excited and ground state energies
by roughly the same amount and do not alter the transition energy
significantly, nevertheless they will have a very pronounced effect
on the binding energy. |

2.2.3. Ion Size Corrections

The simplicity of the point ion model arises from the
neglect of motion of the ion core electrons. In reality the spatial
extent of the F-centre electron encloses several shells of ions around
the F-centres(ls) and there is considerable coverlap of the appropriate
wave functions; To include the finite ion size explicitly in
calculations of F-centre properties, requires a many electron
calculation in which a determinantal wave function is set up
containing the wavefunctions of the trapped electron and all the ion
core electrons. Fortunately the compact nature of the trapped

electron wave function ensures that only & few shells of ions arcund



the vacancy need be considered. Kojima's calculations for LiF took
account of the nearest and next nearest neighbours. For LiF also

» (10) ) . o,
Adrian and Gourary considered only the nearest neighbour Li  ions.
They orthogonalised the F-centre envelope function to the Lit

orbital using the Schmidt process. Thus their F-centre wave function

is simply
¢F = N [‘bF - g <wF,¢a,Li+1s> w(lLi-'.l;-} 2.14

This wave function was used with the lls> orbitals centred on the

six nearest Li’ ions in a determinantal wave function. The total
energy vas then minimised according to the Hartree-Fock scheme using
the determinantal wave function. They neglected all many body
forces, i.e, terms involving the F electron and the charge cloud of
two or more [ls> orbitals centred on different Li¥ ioﬁs. The various
two centre integrals were evaluated by expanding the F centre wave
function about the Li' nucleus taking only the first non-vanishing
term in the reéulting series. They separated the Hamiltonian into
two parts, one due to the point-ion-lattice and the other due to
exchange and finite ion size effects. The inclusion of exchange and
finite ion size increased the F electron charge distribution inside
the vacancy. Although the inclusion of exchange and‘finite ion

size effects changed the ground state energy significantly,
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(-0.206 a.u. as compared with the point ion lattice of -0.297 a.u.).
Gourary and Adrian(lo) suggested that the transition energy was not
similarly affected. The most significant improvement as a result
of these effects was observed in the isotropic hyperfine constant.
They obtained a value of only 50 MHz for the nearest neighbour Lit
ion as compared with 110 MHz determined using the point-ion-lattice
model. The experimentally determined value was 38,5 MHz(lg).

The point ion lattice approximation is not particularly
well suited to the calculation of hyperfine interaction parameters.
This is due to the neglect of an essential ingredient in calculations
of the hyperfine interaction constants; the motion of the trapped
electron inside the ion cores. All calculations of the hyperfine
constants in the point-ion approximation yield values which are
several times larger than those determined experimentally. This
may be understcod qualitatively as follows:  The F-electron in a
point ion model effectively moves in a lattice of bare nuclei,
almost as though the core electroné did not exist. Thus the
concentration of the F-centre electron charge cloud at the nucleus
is too large. This is also consistent with the reduced magnitude
of the hyperfine interaction when exchange and finite ion size

corrections are added to the point-ion-lattice approximation, since

both interactions effectively repel the F-electron from the neighbeuring

nuclei,



The above calculations of the ion size effect take into
account the detailed motions of the core electrons. For the heavier
ions the calculations are increasingly difficult because overlap

between different ion cores may not be neglected. In such

(20)

circumstances the method by Bartram, Stoneham and Gash may be

more attractive. In the B.S.G. calculation the ion size and
exchange effects are contained in two parameters which are calculated

explicitly. This calculation is in fact a modification of Gourary

and Adrian's point-ion-lattice approximation based on the

(21) (22)

pseudopotential method of Phillips and Kleinman and others

The pseudo-potential was optimized to give the smoothest possible

( o .
pseudo-vave function‘za). B.S5.G. separate the optimum pseudo-potential

into the form,

V. = vP + (V ~ VPI)+ P(V - V) 2.15

P I

where VP is the point ion potential, V the true potential, P the

I
projection operator and 5 the averaged pseudo-potential. The last

two terms in eduation (2.15), which represent the difference between
the optimum pseudo-potential and the point ion potentials, then
constitute the ion size correction to the Hamiltonian. In calculating
the expectation value of this pseudo-potential they assumed a tight
binding model for the ion core states and neglected the overlaps of

ion core orbitals centred on different ions. They.approximate furthep
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by neglecting the variation of the pseudo-wave function over each
ion core in calculating the expectation value of Vp - VPI’ with

the result that the ion size correction is:

2
<¢,VPI¢> = <¢|VPI,¢> = .% CYH’(PY)I 2.16
where C = A + (§ - U DB 2.17
Y Y Yy '
A = - P V =V._)dtr - |PV__dr
Y j(l Y) ¢ Y pry’ ' !Y PIy
B = |p dr , 2.18
Y Y

where VY is the detailed potential due to the yth ion, UY the
spherically symmetric part of the point ion potential at the yth ion;
the potential due to the vth ion itself is not counted. The
coéfficients A and B_, which are prcperties of the individual ioms,
have been computed and tabulated for a large number of ions by B.S.G.
Since V appears both on the left and right hand side of equation 2.16
it must be determined self-consistently for each state. They applied
the icn size cérréction not only to the F-band energies in the alkali
(25)

halides but also to the pressure shifts of the F-band The

agreementé between calculated and experimental results were rather
poor, the computed energies being too small for compounds with large
anions and too large for compounds with large cations. In order to
improve avreement between theory and experiment it was necessary to

diminish all of the AY's by the same factor ao = 0.53. Vhen this



correction to AY is introduccd the ealculated valusze are in

better arreement with experiment and with the

L3

Mollwo-Ivey law(26) than are the point ion calculations of Gourary
and Adrian. The theofy also accounts for the F-band energies
for a number of salts which deparf from the Mollwo-Ivey law. A
complete comparison between theory and experiment is shown in

Table 2.

B.S.G. further applied their theory tc the F-bands of the
alkaline earth Ffluorides CaFQ,'SrF2 and BaF2. The method used
was essentially the same as for the alkali halides. Again vhen the
values of AY for all the ions were reduced by a = 0.53. they obtained
a considerable improvement over the point-ion results. Taken
together, these two sets of results suggest the definition of a set
of pseudo-potential coefficients in which the reduction of the

AY by the factor of 0.53 is tolerably well justified.

2.3. F+—centres in Alkaline Earth Oxides

The F'-band for the four oxides, MgO, Ca0, SrO and BaO
have been ideﬁtified experimentally using the techniques of optical
absorption and paramagnetic Faraday rotation. The peak positions
for the F+-bands occur at 4.95 ev, 3.7 ev, 3.0 ev and 2.0 ev in

the series MgO, Ca0, SrO and Ba0. Kemp and Neeley's(lu)

-calculations indicate that given suitable wave functions one might
obtain good agreement with the experimental results using the point-

ion-lattice approximation. These authors neglected ion size effects



and it is of importance to determine whether such effects are as
important to the oxides containing heavy cations as they are to
the alkali halide and alkaline earth fluorides. Furthermore it
appears that the Bal F'-band occurs at a much lower photon energy
than might be expected and one might hcpe to effect an improvement
in the theoretical value using similar methods to those used by
(20)

Bartram, Stoneham and Gash In this section, we review

first of all Kemp and Neeley's calculations and thus our own
calculations on the alkaline earth oxides.

2.3.1. Kemp and Neeley's Calculations on Oxides

Kemp anvaeeley(lu) treated the F'-centre in magnesium
oxide using a linear combination of atomic orbital wave function with
a point-ion-lattice Hamiltonian. Their L.C.A.O. wave functions,
which were composed of |3s> and |3p> wave functions centred on the

nearest heighbour cations, were then expanded about the vacancy centre

using Lowdins a—function(ls). In the actual calculation the wave

functions were. approximated by a single spheriéal harmonic term
corresponding to the lowest value of % appropriate to the function
expressed in cubic harmonics. The simplified point-ion-lattice
Hamiltonian which contained only the lowest £ terms in the point-ion

potential then had the form,

1 4 (Pd) + 2e+D) o+ V) 2,10
21\2 dr dr 2r2

.H = -



The L.C.A.0, wave function and their expansion now takes the form:

. s ‘ .
ioo o4 - o3 ;
Vi = & Lo, =Gl ey (Mlar) Y (6,4) 2.20
= 7]
- wim

Where wgm ig the mth L.C.A.0. belonging to the jth row of the ith
irreducible representation FiP of Oh symmetry. ng is the truncéted
wave functicn containing only the lowest value of 1 in the expansion,
dgm and Cgm are normalisation constants, and u runs over the
particular set of S single ion functions ¢ invoclved in the L.C,A.O.

=

The relationship between dgm and Cgm was determined by adopting

Lowdins normalisation procedure for the o-function and the spherical
harmonics. Using symmetry arguments they were able to determine the
expansion of the various ground and excited L.C.A,0., in terms of the
For simplicity Lowdin's a~functions were calculated

a~-function,

using Slater orbitals.

They solved the secular equations using their lowest 1
wave functicn expansion for ground and excited states; and obtained
the results for the energy eigenvalues shown in Table (1). The
corresponding eigenfunétions for the ground (Pl) and excited (Fu')

states were,

O _ A agr 30 ~0
Tl l[)oo = 0.395 l])Ol + .710 \[102
! o = - o - . u! ! ’
I‘l+ \plo 0.355 "}ll 577 lIJ12 + 1.188 11)13 2.21



The strong p-character in the ground state is seen in the $82 term,
which consists of the 3p orbitals of the surrounding 6 Mg * ions.
(9)

This compares with Kojima's L.C.A,0. calculation which also

contained a large contribution of p-wave function in the gﬁound
state, In the L.C.A.0. scheme p-like character in the ground state
may be partly explained by the electron being regarded as equally
shared among the six surrounding cations., Consequently the ground
state is not spherically symmetric, as is usually assumed in point

ion model(lo).

(10) (14)

Following Gourary and Adrian s Kemp and Neeley
applied the ion core polarisation and distortion corregtions tc their
results. They argued that the polarisation correction to the energy
due to the ions other than the six nearest neighbour cations and
twelve nearest neighbour anions were not important because the
interaction of a charge with a polarisable ion decreases as r .

- They treated therefore the polarisation of the six Mg2+ ioné and the
1202- ions and the displacements of the six Mg2+ ions only., The

results of their calculations are also shown in Table (1). The

agreement with experiment is quite good.

Kemp(ls) later reported similar theoretical results for
calcium oxide strontium oxide and barium oxide. The estimated
positons of the F+-bands, when taken with the value for magnesium

oxide, must be regarded as in good agreement with experiment except



for barium oxide. The poor result for barium oxide is presumably
due to errors in the polarisation and distortion corrections and to
neglect of ion size effects. This latter neglect may be crucial

since it has been shown to be important in alkali halides containing

of heavy cation and in barium fluoride(l7).

(18) complemented this initial study using a slightly

Neeley
different approach in which he assumed the ground and excited state
wave function to be gaussian functions. The gaussian function was
chosen because of its simplicity but especially because of its rapid

convergence in calculating lattice sums. . The results of his

calculations are also shown in Table 1.

2.3.2. Extension of the Point Ion Lattice Calculation

We first calculate the binding and transition energies of
the F'-centres in these four oxides within the framework of the point-
ion-lattice medel using wave functions which are different to those

(14). We later include polarisation and

~used by Kemp and Neeley
lattice distortion effects which are especially important for the
F'-centres because of their effective positive charge. There is no
rigorous way of taking the ion core polarisation effects into account
except by a complete solution of the many electron problem.

Therefore in including the polarisation and lattice distortion

corrections to the point-ion~-lattice approximations we assume



1., that the Rorn model of ionic solids applies to thé
alkaline earth oxides, and
2. that the polarisation of the cations and anions can
be represented by induced point dipoles.
Later we also calculate the ion size effects on the transition and
binding energy of the F'-centre in the four oxides, using the pseudo-
potential method of Dartram, Stoneham and Gash(ZO).
In the point-ion-lattice approximation each ion.is represented
by a point charge of magnitude equal to the valency of the ion which
it represents. The most important interaction between the trapped
electron and the ions is the classical Coulomb interaction. In a
carfesian co-ordinate system the centre of which is at the centre of

the F+-centre, the coulomb energy of the defect electron in the field

of all the ions regarded as point charges is given by

1
v (r) = 8, g DI {xex)” + (y-y;)° + (z-2,)°177 (2.22)

where (xi,yi,zi)‘are the Cartesian co-ordinates of the il ion from

the centre of the vacancy, and Z is the valency of the ion. In the
absence of interactions apart from this we can write the simplified

point-ion Hamiltonian,

H=T + VL(r) : 2.23



For crystals with the NaCl structure, Gourary and Adrian expandéd the

potential energy VL(r) in terms of cubic harmonics,
V(p) = V_(r)(rr,0 0l6,0) + v, (r)o(rt,uy 0l6,4) 2.24
L 00 17 ? 40 1’ ¢ *

where the cubic harmonic is defined by,

Py

+X .
Qrs,2,u,Q,6) ;_Zi(rﬁ,z,ug,m) Y, (8,6) , 2.25

and PE is the ith irreducible representation of the cubiec group Oh’
W, an index used to differentiate among several Q's of the same 2
belonging to the same Fg, and Y2m are the usual spherical harmonics.
The individual V., u, (r)'s are determined by expanding
each term in fhe potential about the centre of the vacancy. Since
VL(r) has the symmetry of the full cubic group the solution to our

equation must also belong to an irreducible representation of the

cubic group. Thus

¢(P§|r)

o r~18

g R(TE, 2,0 |r) Q(FE,Q,u2|8,¢) 2.26
8

In general we only keep the first term in this expansion, i.e. we put

=

Wl ey = RO, 85m, [0) QTR 2,0, ]6,0)

In our case we consider only the ground and first excited states of
+ . s
the F -centre which we assume to be s-like and p-like respectively.

The following functions were then chosen as the normalised trial wave



functions for the ground and excited states:

Ground State:

g ¥
Q(rl,o,o!r) = (ur)
R(rf,o,olr) = Me® (1 + ap) 2,27
7
Excited State:
Q(TS,l,O|r) = /3 Cos 0
L
R(T},1,0[r) = Vug® v 7T | | 2,28
3
a¢ and B are variational parameters. -
Therefore we may put
Y = Va3 (1 + or) e 2.29
s 7
¢y = VB5 » e-BP Cos 6 2,30
p 3 .
for our ground and excited state wave functions respectively. Our

problem is therefore the determination of the variational parameters

o and B such that the energy functionals

E.o= b () [- v+ 2v (r}] ¥ (r) dr 2.31

are minimised, where n stands for s or p as the case may be. Using
these wavefunctions, the energy functionals (in Rydberg units) are

found to be, as shown in the appendix;



E = 3a2 - Yo, - 2 Z(-l)NlM (2a3R.3 + lOaQR.2 + 1%aR, + 14)e°2aRi 2.32
S -—,?-- M 77- 1 1 1 .

a

=1
[T T

3 2

-26R,
1

N. 3 2
E = 8% - say - 2 J(-DMu,  (28°R.7 + 687R,% + 96R, + 6)e 2.33
————— 3 a——
a Ri

The first terms in Equations 2.32 and 2.33 are the kinetic energy of
the electron ip the ground state (ES) and the first excited state (EP)V
and O = 1.74756 is the Madelung'slconstant for crystals of the NaCl
structure. The summations are to be taken over different shells

centred on the vacancy and M. is the number of ions in the ith shell

and Ni is odd or even according as the ith shell is occupied by cations

or anions., These energy functionals are to be minimised with respect
to o or B. The final results give the transition energy and the
binding energy of the ground state and the excited state. The

resulting energies are tabulated together with the experimental results
in Table 3.

It is seen that the deviation of the calculated results Ffrom
the experimental results increases along the series from Mg0 to BaO.
For MgO which is the least polarisable of the four oxides, the agreement
between the calculated and fhe experiﬁental resulté is the best,
For BaO whicﬁ has the highest polarisability the agreement is rather
peor. It is therefore reasonable to suppose that the polarisation

effect plays a very important role in these oxides, although in the



“heavier oxides such as Ba0 the effects of the partial covalent binding

may be important.

T

2.3.3 Polarisation and Lattice Distortion Corrections

As we hention above the polarisation effects are expected to
have an important bearing on the F'-centre transition energies in the
alkaline earth oxides. The ions centred on the vacancy are not only
polarised by the net charge of the vacancy but are also displaced to a
new equilibrium position. e now calculate the effects which polaris-
ation and distortion have on the transition and binding energies of
the F+—centre. |

We assume that the Frank-Condon's principle applies for the
first transition energy. We assume further that the core electrons
respond only to the average position of the defect electron, i.e. the
Hartree-Fock's procedure applies. If AWt is the total change of

energies of the system, then

W= AW W
MU= M+ AW

+ AW 2.34

P .
where Awe is fhe change of energy of the F+-electron due to the lattice
distortion, AWL is the change of energies of the lattire due to the
same distortion and AWP is the interaction of the latticé distortion
with the induced polarisation.

We allow only the nearest neighbour cations to move their

new equilibrium position (1 + o)a, here o is positive when the



distortion is in a direction away from the centre of the vacancy.
Following Kemp and Neeley(lq) we consider the polarisation of the
nearest cations and the nearest anions only. Cur problem is

therefore to find the new equilibrium position o, subject to the
condition that the total energies of the system, electron plus lattice, .

is a minimum at this position. The change of F -electron energy

may be easily calculated by expanding the part of the electron energy

due to the six distorted cations. This part of the energy is,
AW = 124 - 6 X'lo + - 24 + 3 X" 02 R 2.35
e = 3
where Xt =2 (uaual+ + 16a3a3 + 28a2a2 + 28ca + llt)e-zma 2.36
7a
X" = 2 (80°a% + 2ua'a’ + 400°a + 56a%a’ + 56aa + 28)e” 203

7a
2.37

and a is the lattice parameter.
~ Our calculation of the lattice energy change follows closely
that of Gourary and Adrian. Assuming a repulsive interaction of the

form br-A the total change of the lattice energy is simply

dwy = (gaM - 48) o + (MaM(A-3) + 104.912) o2 2.38
—_ a a

a 54
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Next we calculate the interaction of the lattice distortion
with polarisation. This term arises from the fact that a distortion
of the cation will necessarily have to do work against the dipole
fields. Therefore we have to calculate the induced dipoles on
the six neavrest cations and twelve nearest anions. The total field
acting on a lattice site consists of the fcllowing parts:

1. The field due to the vacancy plus the part of the Fr-

electron charge cloud trapped inside the vacancy,

2. The field due to the displacement of the six cations and

3. The field due to the other induced dipoles.

In general the dipolar field has the effect of reducing the total

field acting on a lattice site. This field is called the depolarising
field. For a highly symmetrical system the effect of this field

is to lower the total polarising field by a factor depending only on

the géometrical arrangement of the dipoles, Therefore this part of
the field may be taken into account by simply multiplying the total
polarising field by the "depolariéing factor". For é general
discussion of calculating the induced dipole moments we refer to

Chapter 5 where we shall discuss the effect of polarisation on the
F'-centre energies, Here we only quote the result given in lNeeley's

C
thesis(ls).

If the irduced dipole moment on the nearest neighbour cations

. + . . . . .
is p pointing in the radial direction, then

+ _ 4+ - ,



where k' is the depolarisation factor for the six nearest neighbour

cations

—

+ _ _ 2 2
k' = 8|1 + (1-8) 30 + (1-uB + 38%) Sai] .40

2
F =e (2~-¢)/ | all+ 0}] 2.41

Fdist is the field at a cation due to the other five distorted cations

and is given by

F,. =1 [Z 4,742 o + 10.284 o%:] 2.42
dist —5
a
F(p )dip~dip is a dipole field at a cation due to the twelve anion
dipoles. This field consists of a geometrical factor times the dipole

field of an anion p

£(o) =1 (4.573 + 6.9990 - 12.831 02)

a2
: 2.43

P(p-)dip_dip f(o)p‘

Similarly the induced dipole moment on the nearest neighbour anions can

be expressed as

- +
p =ak [%q +Eger ¥ E(p )dip~di;t] 2.4k



The symbol E stands for the field acting on an anion and the various
terms in this equation have the correspending meaning for those

appeared in p+. Hence

kK = 1/(1 + 2,707 3‘3) ' 2,45
a
- - 2 "
Eq = e(2-¢ )/2a 2.46
E =L (-4.58 ¢ - 3.51 02) 2,47
dist a2 * .
1 2
h(a) = =% (2,286 + 3,50 0 = 6.415 o) 2.48
a
+ - +

Therefore by combining the above equations, we have the induced dipole

moment on an anion
- _ == + + =t
P =ak [L:q+Edist+akh(o) (Fq+Fdist)]/ ELaa k k h(o) f(c)]
2.48

-

and that on a cation

pt = a+k+l:Fq +Fyp o+ a-k-h(c)(Eq + Edist)] / E-a'a*k'k*h(c) f(o)]

2.50



We then expand p and p+ to the second order in o. The expressions

are rather tedious to write out; in general it can be shown that,
p = ok (A, +A'0 + A"o?) , 2.51

o*k* (B, + B'0 + B'°) 2.52

g
"

The polarisation distortion interaction consists of the following two

parts:

1. the work done against the dipole field in moving the
charge of the six cation a distance ¢ and
2. the work done in moving the inducedudipole on the six
cations against all fields through the same distance.
The field acting on one of the six cations due to the induced dipoles

on the twelve anions is

Pp = a k (Eq + Edist) (o)
= ok lu.573 E + (-20.94 + 6.999 E ) E] 2.53
= a T2 q
a ’ a

and the work done is therefore

[
l2an F do
p

o]

Aw(o)l

240"k |4.573 E o + %(-20.94 + 6.999 E ) 02 2.54

2 Q 2 q
a . = a~. —

where q is the charge of the cation.



Next we calculate the work done against all fields in
moving the dipole‘on the six cations a distance o. According to
elementary electrostatics the force acting on a dipole due to the
field E is,

-> > - - - )
F=(P.V).E = 1 (P.V).P 2.55

+
o

Since in our case the dipoles are assumed to be pointing radially

outwards from the vacancy centre, the force is simply,

-
F o= 1 3 Y, 2.56°
2a+a 3o
and the work doﬁe,
ag
M(o), = 12 | 4 ) do
+ do
20
o]
+, +2 ' ’ st a2 2
= 6a k QBOB o+ (QBOB + B*2) ¢ 2.57

The total polarisation distortion interaction is the sum,
AW = AW AW
W, A (c)l + (c)2

The total change of energy of the system which, is the sum of Awe,

AWL and AWP, is then minimised with respect to a.



The expectation value of the energy of the electron in

the field of the point dipoles is

> > ‘
AE = -2.,P.E v
= -2 p (3I_ )  -12 pf(a1) - 2.59
BR V2a R a
where
I, = 1 -1 ('R’ + 16a°R% + 280%R% + 28aR + 1)e™* 2,60
3R R®  14R?
is the electrostatic field of the defect electron. The subscript

stands for the lattice site where the electric field is to be evaluated.
Similarly the correction to the excited state is given by replacing

BIS by aIp where

oR 3R
3T = -1 +1 (ua"R + 86°R3 + 128%R% + 128r + 5)e PR 2.a1
”5132 2 2

R 6R

and p and p+ are to be replaced by that corresponding to the excited
state, that is the e’ which appears in Fq and Eq is to be replaced by
the ¢ , where € is the part of the excited state charge cloud trapped

inside the vacancy. This is given by

-2BR

e = 1- (1 + 28R + 28%R% + 4 %% + 2 g"RY)e
| 33

2.62



The results of the calculation after polafisation and
distortion correction is also shown in Table 3, Ve see a marked
improvement of the agreement between the calculated results aﬁd the
experiment. The general trend of the decrease of the F'-band
energy from MgO to BaO is clearly seen to be in qualitative agreement
with the experiment. A least square fit of the calculated results

for the four oxides gives the following Ivey relation,

-1.888
ev

AE = 64.957 a 2,63

The percentage error is less than 0.1% for the four oxides., A similar

least square fit for the experimental results gives,

~-3.191
ev

AE = L429.059 a 2.64

The percentage error is within 6% to 8% for the\thrée oxides Mg0O, Ca0
and Sr0 while it is 10% for the BaO. If we regar& the deviation from
the Ivey's law és an indication of the ion size efféct, it clearly
indicates the increasing importance of the ion size effect from MgO

to BaO.

©2.3.4, Ion Size Correction for the Alkaline Earth Oxides

Although polarisation and lattice distortion corrections to
the point ion lattice model give good results for MgO and Ca0, they fail
to account for the small F+-band energies in Sr0 and BaO. It is

certainly arguable whether the latter two oxides can still be treated



as purely ionic solids within Born's model. However one might
€xpect that the finite ion size effects would be able to expiain,\at
leust partially, the discrepancy between theory and experiment., In
the absenc; of simpler procedures for taklng ion size effects into
account, we have adopted B.S.G.'s pseudopotential method for F'-centre
in the alkaline earth oxides.

“According to Equ, (2.16), fhe potential energy of the trapped
electron in the pseudopotential scheme is

v
2

- 2 :
Vot \Z{ Ma + (7 u,) BY} "“”Y)I 2.65

where ¢(ry) L (r ) for the ground state and ¢(r ) = ¢ (r ) for the
excited state.  AY and BY are the pseudopotential coefficients which
incorporate the ion size effects. These coefficients have been
tabulated by B,S.G.for numerous ions: only those appropriate to the
alkaline earth oxides are given in Table 4.

» ~ The spherically symmetric part of the potential UY is given
in Rydberg units by,

U =-’—-—M--(1) 2.66

Y . Y

where NY is odd or even according to whether the yth ion is the metal
ion or the oxygen ion. Therefore the total energy of the electrons

is

(1) in the ground state
, .

’ - ‘ o - : 2 =2or
H = ES + 7;-% M{a + (VS Uy) BY} 1+ arY) e Y

s
2,67



and (ii) in the excited state,

2

2Br
Cos™ 6
¥ Y

5
H =E +2-7 {a + (T -udB} e
P p v Y P Y Y v

2,68

5

E, + %g M {a + (V’P -8} ri e 2br,
where E, and Ep are given by Equ. (2.32) and Equ. (2,33) and for HP we
have made use of the eaéily demonstrable fact that the summation of
00826 over each shell is equal to 1/3 times tﬁe sphericaily symmetéical
bart of the summation. Equ. (2.67) and Equ. (2,68) are to be minimised
with respect to a and B respectively and at the same time solved
Self-consistently'with respect to the pseudopoténtial v, |

Our problem is therefore (i) to solve the equations (2.67) and
(2.88) self-consistently with respect to the pseudopotential Gi’ where 1
Stands for s or p as the case may be, and (ii) to find the variation
Parameter o (B) such that Hs (Hp) is minimised. For simplicity, we
Shall give the detail calculations for ES only. The calculations for
Ep proceed along similar lines,

We can either (1) with a suitably chosen a, sclve Equ. (2.67)
Self-consistently'ﬁith respect tc Vs and then with the self-consistent
VS minimise H with respectAto a or (ii) with every suitably chosen Vs
minimise H; witﬁ respect to o until self-consistency of VS is obtained,
We have followed the first procedure in our calculations.  In ordervto

Start the self=-consistent calculation and the minimisation of Hs using



numerical methods, it is essential to start with a suitably chosen
value of a and VS. e have chosen the point ion values of o and Gs
for a start. Thé calculation therefbre consists of the following
ihree steps: |

(i) From the point ion calculation, we set a = o' and ﬁs = Vs(l)
=_Es' - 30'2/7. vhere the superscript refers to the values obtained
from a point ion calculation; Qs(l) means the starting value of the
pseudopotential. For the purpose of using the Newton—Raphsdh(27)
method to minimise the totél‘energy, it is also necessary to set the
derivatives of Gs(l) with respect to o equal to its counterpart in a
point ion calculation.

(ii) H is calculated using Equ. (2.67) with o and Gs as given in

(1). We assume that the result of this calculation givés a pseudo-
potential §8(2) which is equal to the total energy minus the kinetic
energy;ﬁs(Q) is then compared with Qs(l). Self-consistency requires
that 68(2) = Vs(l). In actgalvfact they would never exactly equal and
so we should have some criteria as to what degree of self-consistency
will satisfy our purpose in hand. If [5 (2) -V (l)| did not satisfy
our self~con31stency requirements then we should go back to the
beginning of this step and do the calculation again but this time use
VS(Z) in piace of Vs(l) as the new VS in Equ. (2.67), while o is

unchanged. In general if we set the result of the Nth calculation
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as ‘78(3‘1)5 then our criteria for self-consistency requires that
[V (0 + 1) - V_(n)|<.001 - 2.89
A better condition would be

| v.(n+ 1) - V) | <.001 2.70
. |
VS )

but for our purpose Equ. (2.69) is found to be quite satisfactory.

So if after the Nth repeat of (ii) the self-consistency condition of
Equ. (2.69) is satisfied, we then proceed to étep (iii).

(iii) This step consists essentially of a numerical solution of a non-
linear algebraic equation using the Newton-Raphson method. To

minimise HS with respect to o is equivalent to finding the roots of its
first derivative with respect to o. This objective is conveniently
achieved by using the Newton-Raphson's numerical method. Here we

- also need a criteria to decide how accurate the a should be that will
satisfy our purpose. For our case Equ. (2.69) serves also our
purpose, i.e. we require that the difference between the Mth calculated

>results of the first derivative of Hg with respect to o and the

(M + 1)th calculation should not be more than .001, i.e.

]
B, (@ + 1) - E"(0)]| <.001 2.

if not, then we have to change the value of a according to the



Newtén-Raphsons formula as is given in all standard textbooks of
calculus. The new value of a is then used in step (i) instead‘of
the previous point ion value. Of course the value of VS and its
defivatives should be changed accordinéiy, and the whole process
from step (i) to step (iii) is repeated until condition (2,71) is
satisfied, M |

A similar calculation is done for Ep. The results are
shown in Table 4, The agreement between the calculated results
and the experimental results are seen to be very poory  Although we
have used the diminished coefficient AY of B.S.G.,Vthe calculated
results are still too large. While the general trend of the gound
State energy from MgO to BaO seems quite reasonable, the excited state
energies remain stationary round 8 ev,

The efféct of polarisation and lattice distortion may be
calculated in the same wéy as we did in section 2.3.3. The results
are also shown in Table 4, It is seen that the agreement between the
calculafed results and the experiments is less good than befere, it is
evident that this poor agreement results from a too large correction to

the excited state.
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CHAPTER I1II

EXPERIMENTAL EVIDENCES FOR THE FC+-CENTRE

3.1 E.S.R. Studies of Annealed Crystals

compounds Wertz and his associates

In their pioneering studies of defects in the II-VI

(1)

reported changes in the ESR

spectra consequent upon thermal bleaching subsequent to reactor

irradiation. Their early studies were carried out (where possible)

using polyerystalline samples of oxides, sulphides and selenides

of Mg,

used,
(i)

(ii)

(v)

Ca, Sr and Ba, although for Mg0 single‘crystals were also
The changes observed may be summarised as:

reduced amplitudes in the F'-centre ESR spectra,

the growth of a new line in the ESR spectrum at the expense

of the F+-centre spectrun,

the line was asymmetric in shape, such that the maximum

slope occurred on the hizh field side of the line,

‘the new line was shifted to higher fields (Llower g-value)

relative to the F'-centre resonance,

the intensity of the optical band at 4.90 eV decreased in
parallei with the F'-centre ESR spectrum. This led to
the fifst hint at an assignment for the F+-band. Further-

more in MgO single crystals the line width AH varied with

i1l

orientation such that AH /A0H =

110

100



Vertz et al, proposed that these observations were
consistent with the formation of defects which ronsisted of single
electrons trapped at cation-anion vaecancy pairs, FC ~centres in our

(1)

notation. Hertz et al reported the p-values of the centres
for the alkaline earth oxides and also MgS, SrS, MgSe, SrSe and
BaSe (Table "4). In CaQ and SrS powders the stability of the
FC+—centre was far less than that in MgO, since heating at 300°¢C
was enough to destroy their centres. They accounted this due to
a much reduced binding energy of the electron in the FC+-centre in
Ca0 and SrS than in MgO, rather than a stronger tendency for the
vacancy pair to‘dissociate into single vacancies at this temperature.
As mentioned earlier bound vacancy-pairs are energet-
ieally favourable in ionic solids as a result of the strong
electrostatic attractién between the oppositely charged vacancies.
At high temperature the vacancies become mobile and there is an
increased probability that thé oppositely charged vacancies will
combine to produre a neutral divacancy. The decreased concent-
ration of the F+-band which accompanies the increased concentration
of Fg-centres is presumably due to the thermally activated
mipration of cation vacancies to F+-centres so forming FC+-centres.
When the binding energy of the electron to this vacaney pair is

small then quite moderate temperatures are capable of ionising this

defect, the electron then prefers to reside at deeper lying traps.
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In MgO the diffusion of vacancies after neutron irradiation
broceeds at lower temperatures than ‘lertz et al(¥) originally
éuggested; even at 250°C PC+-centre§'are produced in measurable
concentrations(z). Above about 600°C thermal ionization effects
become apparent, although FC+-céntres may be regenerated by .
X-irradiation. Above 900°C the concentration of FC+-centres
which can be regenerated rapidly decreases mainly due to the
divacancy migrating to form larger aggregates. Detailed studies

(3)

have led Henderson and Bowen to suggest that the divacancy is
the precursor to the formation of voids which are present after
high temperature heat treatment. Presumably the varcancy pair

must become mchile at even lower temperatures in Ca0 and SrS.

3.2 The p-shift and hyperfine splitting of Fc+~centres

(1)

‘Wertz et al were able to give a qualitative inter-
pretation of the gAShifts reported in Table 5A and of the
asymmetry of the FC+~liné shape based on the theoretical consideration

(%) for F=-centres in KCL, Kahn and Kittel showed

" of Xahn and Kittel
that as a result of the unsvmmetrical electric field assoriated
with the vacancy polarizing the K* ions, the normally pure |4s>
state of the valence electron on the neighhouring cation is

admixed with some higher lying |4p> states. A molecular orbital

wave function éonstructed out of the valence states of the six



neighbouriny cations will have the form

LN PR (p_ - v ) (3.1)

where & depends upon the enersy separation between the [us> and |4p>
levels, and the associated electrie dipole moment points inwards to
the vacancy. Spin orbit interaction of the form A L.S with the

|4p> states then results in a g shift given by

€ ) - (3.2)

l+e2

Am = « 4
3

>

The caleculated p-shift is for the alkali halide F-centres too small
compared with experiment but agrees in order of magnitude.

Since the F, ~electron is chiefly concentrated inside the

¥
C
nepative ion vacancy, its ground state may be regarded as mainly
s-like and consequentlyvﬁquation 3.2 should apply. However the
lower symmetry of the divacancy relative to the single vacancy,
should increase the polarization of the surrounding ions and a
larger admixture of the |p> states is expected. The presence of
the positive ion vacancy also displaces the centre of the electron
charge cloud towards that cation disposed along the tetragonal axis
of the defects (see Fig. 1). This also inereases the amount of
|p> character in the ground state wavefunction. Therefore we

would expect € to increase and the g-value to be lower than that

of the P+-centre, as has been confirmed by experiment.



The asymmetry of the line shape depends upoﬁ the magnitude
of both g4 and %L' The difference betweean glland %L.is quite
Small on account of the small admixture of |p> character in the éround
State wavefunction, For powder samples, all directions of the
axis of the defeét’are equally probable, The probability that
. the axis of an Fc+-centre lies along the direction of the magnetic
field is therefore much less than the probability that the axis is
Perpendicular to the field. If gy, is greater thah gL, then the .
high field portion of the derivative curve (the line shape recorded
in an ESR experiment) will be much larger and narrower than the
low-field portion., According to Wertz et al the appearance of the
FC+~line is in agreement with the above assumptions. It is to be

(5)

noted that for Mg0 the measured g-value at Q band is such that

%L > 81y° This cannot be explained by the above simple picture, and
the reason for the observation is unknown,

From the structure of the dafect as shown in Fig. 1, the
Presence of the positive ion vacancy will force the electron to move
more towards the axially disposed cation at (0,0,-a) and therefore
leave this cationvand the other four nearest cations inequivalent,
i.e. the electron wave fﬁnction will be more concentrated
upon the axial cation than the four cations perpendicular to the axis.
This is confirmed essentially by the recently reported measurement of

(5)

the hyperfine splittings of the FC+-centre in Mg0'"’, These measure-

Ments give an isotropic hyperfine constant of 17.5 gauss for the



axial QSMg2+ ion while that for the other four ions situated in the

(0,1,0) plane is estimated to be less than 2 gauss. Although this
is discussed more fully in the next chapter, it is noted that this

. +_1.
behaviour is commensurate with the movement of the F, -electron

towards the axial Mg2+ ion., More evidence is provided by the

(2)

intensity of the hyperfine lines The expected contribution of
hyperfine lines from the single cation is about 10% of the total
since this is the probability of the FC ~centres having that

particular site occupied by a 25

Mg nucleus, which is the enly isotope
of Mg that has a nuclear épin of 5/2. There should also be a |
contribution amounting to 32% of the total intensity arising'from
those centres in which one or more of the four equivalent cation
Sites are occupied by QSMg nuclei. These expectations are
substantially supported by the experimental results at hoth X and

Q bands. When the magnefic field is along a trigonal axis of

the erystal, the hyperfine’spectrum as shown in Fig 1 consists of

a six-line spectrum cen£red on the main line, This spectrum is
some 10-20% of the intensity of the main line. This result clearly
‘suggests that'fhe interaction is with just one Mg site neighbouring
the defect, The hyperfiné splitting for the single cation is

almost four times as large as that of the F+-centre, which clearly

+

c -electron has been drawn closer to the single

indicates'that the F



cation,

3.3 Optical propertiecs of Fc+-centres

The optical properties of the FC+—centre in alkaline
éarth oxides have nof been studied egfensively by experiment,
because of the many other optical bands present in annealed crystals.
The work of King and Henderson(s) on the bleaching efficienecy of
the centre in MgO indicated a maximum efficiency at about 3.6 eV.
In their works they estimated the FC+-centre transition energy by
measuring the decay of the FC+-centre as a function of bleaching
time usinglmononhromatic radiation of wavelengths in the range
2500-65008%. For this purpose the amplitude of the FC+-centre
resonance line was measured by comparison with that of the M§+

lines, since the latter do not change during the experiments.

(5) of 2.02 eV

This is to be compared with the ralculated results
using a simple continuum.model, i.e. an electron trapped by a dipole
immersed in a solid dielectric, We shall discuss this calculation
in detéil in the next chapter. The unpublished results of
Stoneham indicates that there is no other bound state exist within
0.01 eV of the bottom of the conduction band. Although these
calculations are only approximate, they do point to the fact that
the defects should in all cases be bleachable with photons of

appropriate energy. The results of King and Henderson substantially

support this view in magnesium oxide.
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CHAPTER IV

CONTTNUUM MODEL FOR FC+-CENTRE

4.1 Preliminary Comments

(1)

This chapter first reviews Pincherle's calculations on
the D-centre and then caleculates the properties of the FC+;centre in
alkaline earth oxides. Pincherle's D-centre is equivalent to our
FC*—centre since both consist of an electron trapped in the electro-
static field of a cétion anion vacancy pair. The earliest treatments
used a continuum model for this centre. The detailed atomiétic
environment of the rentre is replaced by the average macroscopic
properties of fhe’solid.* In this way the problem is simplified
considerably, The experimentally measurable macroscopic property of
the solid reveals itself in the form of the dielectrie constant e,
We shall find later that for D-centre or FC+-centre, the hish
frequenry dielectric constant € is to be used since the low frequency
or statie dielectric constant gives no bound states. Fowever the
effective-mass approach should be a good approximation for weakly
bound states, where the binding energy is appreciably less than the
band gap.

‘ Consider an electron moving in the field of a dipole

immersed in a solid dielectric of dielectric ronstant €,» The potential

energy of the electron is

-2)+2v (4.1)

V=3 L
€ I’2

2
a1



where Z is the charge of the vacancies forming the dipole, and ry

and r, are the distance of the electron from the positive ang,
negative end of the dipole respectively, v, is the potential enersy
of the electron in the field of the perfect lattice. The

Sehrodinger Equation may then be written as

EVQ'+§ (2 -2)+2V
B

r

:] £(r) = T £(z) (4.2)
w T3 T ’

If we assume that the total wave function is
f{r) = ¥ (r) uo(r) ©(4.3)

where uo(r) is the lowest state of the conduction band

2 _
F Ve o+ 2 VL] uo(r) = E uo(r) (4.4)
then ¥Y(r) satisfies

E 72 4+ 2 (2 -2 )—‘ ¥(r) = E ¥(r) (4.5)
€ rl I‘2 -

where E = Et - EO is the energy of the FC+-electron with respecf té the
bottom of the conduction band E e In the following we consider only
Eq. (4,5) assuming the band structure to be known. Because of the
axial symmetry of the dipolar field, it is most convenient to work in

elliptical coordinates(2) (prolate spheroids) whence,

A=r, +r,, W o=7ry - rz/, (4.6)

R



# = azimuth about the axis of the fixed charges, and R, the effective

separation between the positive and negative charges, is given by

R = Za (4.7)
Eoo
where a is the latticeparameter. If we write the wave function in
the form
¥ = LX) uy) ¢(¢) \ - (4.8)
then Eq. (4,5) is separable(a): consequently
¢ + mo =0 (4.9)
a?
ca_ [=u?) an| + [PA-2Ru-aen® | M= o0 (4.10)
du B du l—ug_
=0 (4.11)

dAa da 2

alozyan| + [-PA%+a-n* | L=
A°-1

where m and A are separation constants and the parameter P is related

- to the electronie energy E by

P2 = - g2

I

L ~ (4.12)
The solution of Eq. (%.9) is easily found to be,

1 . '
8(¢) = (2m)"% MO (4.13)



(4

~and the solution to Eq. (4.10) is given by Baber and Hasse as

-P co m
MG = 270 ] P " (w) | CRTY
f=m

Here P?(u) are assoclated Lesendre polynomials and the fﬁ are

numerical coefficients satisfying the recurrence relations

+ (22+43)(22-1)|2(2+1) + A—P?]fz

2(2%-1)(2+m+l)[§(2+1) + ﬁ_f2+l'

= 2(2243)(2-m)(Pe-R) £, , =0 (4,15)

In order that the series (4,15) converges over the interval

-1< ¢ < 1, the following continued fraction must be satisfied,

-im(m+l) + A - P%], = Sm+1 (4.16)
bm+1 )
bm+2+
where
- 2 2 2
a . =4 |P (m+1)° - R{:] (4.17)
a, = H (22-n%) [%222 - Ri:], L= mt2,,.... (4.18)
bz = (2%+1) [%(£+1) + A - P » L= mtl,.... (4,19)



The solution to Eq. (4.11) given by Hylleraascs) is,

m X
L) = A%-1) 22T en ) ) (4.20)
n=o (mtn)) o0

~1 8

(6)

where X = 2p(A-1), the L:+n (X) are associated Laguerre polynomials

and Cn satisfy

(n+m)n Cn-l - [;nQ + 2n(2p4m+l) - Y| Cn (4.21)
+ (n+1) (min+l) ¢n+l =0
with
Y = A - PQ - (m+tl) (2p+l1) (4.22)

In order that the series (4.21) converges in the interval 0 < x < =,

the following continued fraction must be satisfied

- Y = ay - (4.23)

m+l bl - iz

b2 -
with

a = (n+m)n s, n=2,3, (4,25)

(n+tn-1)(n-1)
b = an?+2n(2ptntl)-Y , n = 1, 2, (4.26)

n(ntm)

Eq. (%#.16) and (4.23) then determine the eigenvalue of the problem.



4,2 Pincherle's calculations on D-centre

Since we are interested only in the binding energy of the
D~centre, we consider only the ground state for which m = O,

Eqs. (4.10) and (4.11) then reduce to

d_ (1-u2) ar o+ P2u2 - fu - Al M=0 (4.27) .
du | dy |

da_ (A2-l) dL| + -P2X2 + Al L=0 T (4.28)
a a

where we have defined a new parémeter B = 2R, Pincherle(l) showed that

for small values of B8,

A=zF, +F P (4.29)
=it H | y

where F. and F, are numerical constants determined by Eq. (4.186).

1l 2
Instead of solving the Eqs. (4.16) and (4.23) directly, Pincherle

proceeded to find the solution to Eq. (4.28) by the variational

technique. First he transformed Eq. (4.28) to a form suitable for
the use of variation caleculation. He defined

~ 2 . \-%

L=("-1) " Yo (4.30)
and

q(x) = - Fl - 1

x(x+2) x2(x+2)2



W(x) = (x#1)° = F

x(x+2)

2

where x = £ « 1, and £ = A2 -

eOO
Eq. (4.28) then becomes
2 2 ... -
a‘y, - a(x) + P W(x)| ¥ =0 (4.31)
dx2

The variational problem is therefore the minimization of

]
-2
Q = J. @wt) + q(x) wi:] dx (4.32)
dx '
subject to the condition N = W(x) Wi dx = 1 (4.33)
! ,

The eigenvalue p2 playing the role of the Lagrangian multiplier.

Pincherle used as a trial wave function for the ground state
\pt = cXe ' (""-34)

in whiech C is the normalization constant dependent on y, and y is the
variational parameter. The most interesting result he obtained was
that the eigenvalue was determined solely by the parameter Fl when the

variational parameter y is small. He found that

Y » 314 T, - +179 ‘ (4.35)

With the result that there will have no bound state for Fl <0.5,



Calculations were carried out for Ae¢Br and PbS only, and
from the results shown in Table 5, it is seen that the binding enersy
is small for PbS. The binding energy for a second elzctron was

found to be effectively zero.

4,3.1 Binding energy of FC+-centre in alkaline earth oxides

The binding enérgy and hyperfine constants for the FC+-centre
in the four alkaline earth oxides have been calculated(7) using an
effactive mass approach based on the calculations of Vallis, ﬁerman
and Milnes(3> for an electron bound in the field of a finite dipole,
While the caleulations of WHM is for an electron bound in the field
of a free dipole, the FC+-centre is immersed in a solid>dielectric.
Consequently we need to interpolate WHM's calculation for a free
dipole to the related systen in which the dipole is iﬁmersed in a

solid dielectric.

The Schrodinger Fquation now becomes,

-v2+§(2 -
€
[+

] ' I 2 T) ¥ = EY - (4.36)
r-R r~R
-+ - -

all energies are referred to the bottom of the conduction band and
the high frequency dielectric constant is used. For the four alkaline
earth oxides Pincherle's calculations gives Fl < 0.5 when the static

“dielectric constants are used in Equation 4.29 and consequently the

FC+-centrés according to Eq. (4.35) will have no bound states.



Therefore we use the high frequency dieleectric constant throughout

this calculation. Accordingly it is easily shown(7) that

Binding Energy x (length of dipole)2 = constant (4.37)
at constant dipole moment. The effective dipole length is then
given by

R = Ba (4.38)

€, '

The interpolation formula is therefore simply

Binding Bﬁergy Ep = (Tabulated EB) (R/a)2 s (4.39)

In this equation tabl.'xlated‘EB refers to the energies of an electron

in the field of a‘dipole of separation R calculated by WHM and
tabulated in their papar(s). The results of this calculation are
shown in Tabie 6, together with the ratio of the binding energy o the
band gap. It is seen that this ratio is rather small and this means
that the effective mass approach should be a good approximation. A
compérison of the calculated binding energy of the FC+-centre in Mg0

) shows that the calculated

(2.02 ev) with experiment (3.60 ev)(8
binding energy is too small. This is perhaps not surprising in view
of the simplicity of the model. The only excited states lie within
about 0.01 ev of the conduction band. Optical absorption should

ocecur at energies higher than this binding energy to states within the

conduction band, It is clear that, as the lattice parameter



inecreases, the transition energy decreases, as for all other

colour centres in ionic erystals.

-

4.3.2 Hyperfine constants of FC+—centre in alkaline earth oxides

The isotropic hyperfine constant for the FC+-centre in

MgO has been calculated’”
(3)

using (4.14) and (4.20) and the )
information given in In this section we shall extend this
calculation to Ca0, Sr0 and Bal. As is well known that the

(9) ‘ )

isotropic or Fermi contact interaction is proportional to the
square of the electronic wave funetion at the nucleus. The
hyperfine constant is usually measured in ESR experiments as the‘
separation between two consecutive lines in a hyperfine pattern

with the magnetic field as the ordinate. Therefore it is

convenient to express the constant in Gaussian units.

-3

2
A (Gauss) = 284.7 e IW(O)I a.u. (4.40)

INn

where My is the magnetic moment of the nucleus, p is the nuclear
magneton and IN is the nuclear spin of the nucleus. ¥(0) is the
electron wave function in atomic unit evaluated at the site of the

nucleus. is usually expressed in units of p and are

(10)

o}
tabulated together with IN in the book by Ramsey

In order to calculate the hyperfine constants As, it is
therefore necessary to have a detail knowledge of the electronic wave

function at the site of the nucleus. Ve only need the ground



state wavé function (m = 0) and this can be found by using Fqs. (4.14)
‘and (4,20) together with the recurrence relations Eqs. (4.15) and
(4,21), The recurrence relations determine the ratio of the nth
—coefficients to the first coefficieﬁf and the first coefficient is then
found by fhe normalization conditions. e shall outline the general
procedure for the calculation 6f the wave function. Egs. (4,15)

and (4.21) are the so—éalled three terms recurrence relations which

(6)

require the asymptotic behaviours at large n 7, It is found to be

most convenient to rearrange the recurrence relations in the following

forms:
fﬂ, = 22 (pf-R) (28+3)
—— ?.,, "
£,1 (22-1){(22+3) [RO2+1)+A-p” [+2(2+1) [p(2+1)+R] £ b (1)
fP,
c, = n? (4.u2)
- 2 2
n( -Y -
,Cn-l 2n” + 2n{2p+l) - Y - (n+1) Cn+l
' C
n
The asymptotic behaviour is then easily found to be
8 >> 1. f = ‘ (4.,43)
: "3
f
g1
n>> 1 Ch = 1-24 . (4.u8)
‘ C /11



In order to evaluate the coefficients, we need to know p and A
corresponding to a specified R and these can be extrapolated from the
tables given in(S). The calculations are then fairly straightforward.
Tt is foundithat the expansion (4.1%3 and (4.20) converge rapidly and
only two or three terms are sufficient to represent the wave function
accurately. The total wave function is to be normalised over the

(7 according to 4.3.1. It is found that the

whole space and scaled
scalings actually cancelled each other and have no effect on the wave
function. The normalisation then gives the following relation

between £ and C  :
: o fo}

£¢ = - 8 | (4.45)
Y a (MTL-M"LY)

where

+1

Mt = M(u)2 dy (4.46)
-1
+1 |

W= |ouu)? w2 au | (4.47)
-1

Lt = J 12(x) ax |  (4.48)
(o}

L = ] 120 22 ax (4.49)



and a is the lattice parameter. The integrals (4.46) and (4,47)
are evaluated by numerical integration. The integrals appearing in
(4.,48) and (4.49) can be easily calculated by the use of a general
formula of integration of products of Laguerre functions as is given

(6)

in reference For convenience of future references the total
electronic wave functions of the FC+-centre in the four alkaline earth
oxides are listed in the appendix.

In the effective-mass model ¥ is an envelope function which
modulated the band functions at the con&uction band minimum
(see Eq. (4.3)). There geems to be no calcuiations of conduction
band functions for alkaline earth oxides, and consequently we adopt
another approach which simply orthopgonalises ¥ to the cation ion core
functions, This would be strictly correct only if ? were the result
of a pseudopotential calculation. Orthogonalising ¥ has much the

same effect as using ¥ to modulate a band function, and in both cases

the main effect 1s the enhancement of the wave function at the cation

nuclei. Thus we calculate the hyperfine constants using:
e> = N {1y>- ] <i|w>]i> (4.50)
i

We assume that ¥ varies slowly over the cation cores; so as to simplify



the overlap integrals,

<ily> = v | ¢, dr | (4.51)
0

This should be adequate because of the relatively weak binding,

The Mg2+ and Ca2+ wave functions used were the free ion functions of

(11) 24

Clementi together with Slater orbitals while fof Sr2+ and Ra”
only the Slater orbitals were used; overlaps of ioné of the ﬁost
lattice with each other were icnored. The results are given in

~ Table 7 for three distinct sites. If the negative ion vacancy is‘at
(0,0,0) and the positive ion vacancy at (0,0, a) then the sites
considered were those at (a,0,0), (a,a,-a) and (0,0,~a) in Fip. 1.

The (0,0,-a) site on the axis of the centre has the largest constant.
It is seen that the use of Slater orbitals has considerably under-
estimated the hyperfine constants. This is understandable because

of the vanishing of 2s and higher s state slater orbitals at the
nucleus. The calculation for MgO show a very good agreement with
the experiment for the QSMg2+ ion situated along the tetraponal axis
but the agréeﬁent is not good for the other sites. It is intefesting

to compare the ratio of the hyperfine constants for the axialyMg2+ at

(0,0;%ﬂ with the Mg2+ situated at (a,0,0) with experiment.



We have
(0,0,-a) (2,0,0) " ratio
Calculation: 18,07 | 9.108 - ~2
Expt. 17.5 ~2 ~8.8

Apparently therefore the continuum model seriously underestimates the
ratio of the two hyperfine constants. We shall see in the next
chapter that a calculation taking into account the lattice structure

will give a much better result.
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CHAPTER V

POINT ION LATTICE CALCULATION ON FC+-CENTRES

5.1 Point Ion lLattice Model for the FC+-Centre

As we showed in Chapter 4% continuum model calculations on
FC+-centres in the alkaline earth oxides give a reasonable account of
the experimental data. We shall therefore pursue this medel further,

now taking into account the detail lattice structure using first the

(1)

Point ion model of Gourary and Adrian including later the various

corrections. We consider specifically the corrections due to

polarisation, lattice distortion and finite icn size. From the model

(2)

of the F, '-centre in the alkaline earth oxides » it is clear that the

c
trapped electron charge cloud will be concentrated mainly inside the

anion vacancy. If in Fig. 2, we replace the ions of valency Z by

point charges(l), the the electrostatic potential energy of the Fc+-
electron is
Ve VetV o, (5.1)
with
3
V==, | (5.2)

where VF is the potential energy of the F+-centre, and V is the potential
energy due to the cation vacancy. It is convenient to divide the

total Hamiltonian H of the FC+-electron into a part HO which is



essentially the F' -centre Hamiltonian and a part due to the cation
vacancy. Then

~

H = HO + 2V, (5.3)

where the F+-centre Hamiltonian is given by

ﬁo = -y2 + 2 z Vi (ail surrounding + and - ions), (5.4)
in Rydberg's units., We may consider the potential due to the cation
vacancy as a small perturbation on the F'-centre Hamiltonian ﬁ, The
perturbation term V effectively admixes excited states of the Fr-centre
into the ground state. We consider only the admixture of p-like
States, all other higher excited states being ignored. The ground

state therefore takes the form
v=c s>+ c, |p> (5.5)

where Cs and CP are constants to be determined by the perturbation
together with the normalization of the total wave function. This

leads to the secular equation

4 \

<Piﬁo +V |p> - E <p|v]s>

0, (5.6)

<slvip> <s|ﬁo + V|s> - B

“

where we have made use of the fact that

<P|§OIS> =0 (5.7)
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This follows from a group theoretical argument according to which

an integral is non-vanishing only when the direct product of any two

(3) e

of the irreducible representations contains the third "7, It is

easily seen that this is not so for Eq. (5.7), because in a cubic

group the s - like and p - like orbitals transform respectively as the

fully symmetrical irreducible representation T

representatibn I‘q

full cubic group.

(4)

1

and the irreducible

The eigenvalue E is found to be

E= 3% (Ep + Es) - VZAZ + b2

where E =
F =
s

A =E

b

b = <§

The coefficients

- &
s

|V[P>

<S|H_ + v]s>
e}

<P|d_+ V|P>
o]

of expansion are then given by

1

+

i

2 +ub?]
A

fs

state wave funztion is

1

N}

-
2[1 + 4 b 27%
A

Aoyt
[

1

}§

A
, vhile the Hamiltonian HO is invariant under the

(5.8)

(5.9)
(5.10)
(5.11)

(5.12)

(5.13)

(5.14)



We shall use as trial functions

|s> = /a3 (1 + ar) e™F | (5.15)
7n
~

P> = /85 re™eose , ’ (5.16)

3

vhich were also the trial functions we used for our F'-centre calculation.
in Chapter 2.

Our problem is therefore tc minimise Eq. (5.8) with respect to
the variational parameters a and B. The relevant energy integrals are
derived in the Appendix, We shall adopt Newton-Raphson's method to
minimise the total energy, as for the Ft-centre in Chapter 2.  The
process is now complicated by the involvement of two variational

- paraneters instead of one, The logical step would be to use the
variational parameters o and 8 from the F'-centre calculation as a firsf
trial parameter for the Newton-Raphson's method. Put in fact it
became neacessary to decrease the F'-centre parameters by about +«1 for the
process to be convergent. The results of the calculations are shiown
in Table 8. It is seen that the calculated energies decrease with
increasiné lattice parameter as it should be. Furthermore the
admixture of p-like function into the ground state is about 19% for all

the four alkaline earth oxides, there being a slight increase with the

increase of lattice parameter. As we shall see in the next section,



the admixture will be reduced if the centre of the charge cloud is
allowed to move towards the cation disposed along the tetragonal axis.
The point ion lattice model clearly over estimates the binding energy,
especially for the heavier oxides with their highvpolarisability and
large jon sizes.

5,2 Polarisation and Lattice Distortion Corrections .

In a perfect cubic crystal the electrostatic fields at a
lattice site balance each other and the polarisation effects are
negligible. The existence of an anion vacancy will give rise to an
effective electrostatic field proportional to the valency of the
ebsent anion. This,elecfric field will polariSe the surrounding ions
and this polarisation then reacts back on the trapped electron (see
Chapter 2). A cation vacancy will similarly polarise the surrounding
ions but because of the charge difference of a cation vacancy the
induced dipoles will have a different direction from that due to the
anion vacancy. The combination of an anion-cation vacancy pair will
therefore have very differént polarisation effects from those of the
single anion vacancy. First we consider only the polarisations of
the nearest catiors and tﬁe nearest anions neighbouring the anion
vacancy and also the nearest anions to the cation vacancy. The
relevant ions are shown in Fig, 2, ¥e allow only the nearest cations

and anions to the vacancy pair to move, their new position being given



by (1 + o)a. The anions labeled A and B in Fig; 2 are held stationavry
at their normal sites, Furthermore the centre of the charse cloud
associated with the trapped electron is allowed to move a distance ya
towards the cation disposed at theatetragonél axié. The sign
conventions are best illustrated by expressing the "distance" of the ith

site from the centre of the trapped electron in the following form: *

1 L 1

g 2 2 2,3
R, = {x,° + (y; + 0,2)" + (z, + 0.a - 0,a + ya)’} (5.17)

jogl = lo,l = lo] = lsl

wheye Xes Vs and z, are the cartesian coordinates of the ith site with

respect to the centre of the anion vacancy, and o, is the displacement

2

of the ions disposed at positions perpendicular to the axis of the

vacancy pair, o, is the displacement of the cation disposed along the

1

tetragonal axis of the vacancy pair and o, is the displacement of the

i
anion also disposed at the axis of the vacancy pair. In the use of
Eq. (5.17) we shall put 0, = 0y = 0 if we are considering 9 and

g, =0, = 0 if we are considering o, and similarly for o

1 y 2 T

We further assume that the induced dipole moments can be
separated into rectangular components (pix’ Piy’ piz)‘ The following
is a list of typical dipole moments of the various sites under

consideration:



(0,a,0) sits (o, P2y’ pQZ) (5.18)
(0,0,-a) : (0, 0, Py, ' | (5.19)
(0,a,a) : (?, Pay? sz) (5.20)
(0,0,2a) : (0, 0O, puz) ' : (5.21)
(0,a,-a) : ) (o, pAy’ pAz) , (5.22)
(a,a,0) : (Ppy» Ppys> Ppy) (5.23)

The other sites not listed can be obtained from Equations 5.18 to 5.23:
e.g. the dipole moment for (-a, 0, 0) is found by rotating Eq. (5.18)
and is (-p2y, 0, pzz).

5.2.1. Depolarisation Factors

As for the F+—centre, it is coﬁvénient to divide the
"depolarisation factors' into two groups, one due to ions such as the
four (0, a, 0) ions disposed around the axis and the other due to the
interactions among the other highly symmetrical groupings above. In
calculating the depolafisatidn factors lattice distortions are ignored
for simplicity. The electrostatic field due to a dipole of moment

p is

R _
R (5.24)

Applying Eq. (5.24) to the four (0, a, 0) ions shows that the Y-component
of the electrostatic field at a particular site due to the other 3

sites is given by

P ‘ (5.25)



and that the Z component is given by

R S S (5.26)
Bra =3 (g 2) Py
a 2
The induced dipole moment is given by
’ + ( t E ") '
+ 1 P 1"
P2Z = 0o (E?Z + ‘22 ) (5.28)

t t
where o' is the polarisability of the cations and E?y and Ezz denote
the electric field at the site other than the field from the other 3
ions. The combination of Eqs. (5.25) and (5.27) and Eqs. (5.26),

(5.28) then pives

p?y = KQy 01/ Eoy (5.29)

P, = K, of E', - ~ » (5.30)
whefe

Koy = a/ F_aa + o (1 + i‘@_—ﬂ (5.31)

— n 4

K, = %13/

'2Z a® + ot 1+ _1_1' (5.32)
- a8



are the depolarisation factors for the four sites. Similarly the

depolarisation factors for the four (0, a, a) sites arve,

K, =a°/ [a3+a— 1+ 3/??)] .

Sy . T T4
3,78, -

Ky, =2/ La + o (_é‘ +J}é___£l

and that for the four (0, a, -a) sites,

Koy = Koy

hAz N I<3z

and for the four (a, a, 0) sites

K. =ad/ | a®+ (3+ 1) o
By - T B/z

KBz

1}
o
~

r-. -
S, a8+ o (e 1 ):l
- 1675

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

The second part of the depolarisation factor consists of interactions

among the various groupings of ions such as the four (0, a, 0).

In

general the jth component of the induced dinole moment at the ith site

can be represented as

: E
g=l k=1 ikq kg

(5.39)



where qu are the gth component of the electrostatic field other than
the dipolar field at the kth site, i.e. Ekq consists of the gqth
component such as the Y-component of the electrostatic field due to
the vacancies, the trapped electron and the displacements of the ions
at the kth site. ngq are the depolarisation factors which depend
on the geomotrical arrengements of ions and their polarisabilities, .
The calculation of ngq is rather tedious and only the general
procedure is outlined. First we notice that the induced dipole
moment is proportional to the total electric field at the site under
consideration (see Egs. (5.27) and (5.28)). The total electric fie=ld
is in turn partially due to the induced dipole moments at other sites.
Therefore we can write doun the following expressions

3 i

Pi = q Kij Eij +

3

qQ
I 3,0 0 o (5.40)
n,qi,

tda

e

where o~ is the polarisability of the ith ion and kij are the first
depolarisation factor given in Egs. (5.31) to (5.38), aqn are constants
dependent on the geometricél arvangements of the dipoles. Ve may
rearrange Eqg. (5.40) in the following form

) a, Pl=o"x & - (5.41)
n,q*i,] > *

Lde
e
Lde

There are ten equations of the form (5.41), because the electric field
at the two axially disposed ions have Z-components only., Therefore

to find ?g or ngq ve have to solve 10 simultaneous linear equations.



It is perhans simplest to solve the equations by successive elimination.

Consider for example the pair of ions (0,a,0) and (a,a,0).

use the subscript 2 to represent the first ion and subscripf B to

represent the second, then

f (&

sz o <2y oy
. - - ’
PBy = q By (L1

1
where E
2y

field due to the ion at (a,a,0), and similarly for BBy .

a
- 1,233 P
1 23 2y)
a

stands for the total field at (0,a,0) minus the dipolar

t

to Eqs. (5.42) and (5.43) may therefore be written as

2y

"By

where

+ ) -+ ; 6
o KQY / [—l 3.2 a4« KBy h2y / a :]

) / [:1 - 3,20 a Y K /a :]

Fao = |
FZB = (20”‘05& o 1(
3
a
= 2 Tk
Fpp = 1233 0" Iy, Fo

3
a

Ye shall

(5.42)

(5.43) -

The solution

(s.uu),

{(5,45)

(5.46)

(5.47)

.(5.48)



F..=a ¥, +1.233a¢ K v Fon ' (5.49)

. ' L s
to proceed further we shall split E and EHV into terms that contain

2y
the contribution from another dipolé moment such as PAy and add another
equation representing PAy to the same order as{P2y and PBy. This
process continues till all the dipole moments are expressed in the form
of Eq. (5.39). Ve shall have in all 10 x 10 = 100 different D}kq'
The final expressions are too long to write out in detail, bqt with

the use of modern digital computers, the depoclarisation factors can

be easily evaluated for each particular case. We shall only give the
overall depolarisation factofs for MgO. We define the overall
depolarisation factor as the ratio of the dipole moment when the various

dipolar interaction are included to the dipolar moment in the absence

of any dipolar interactions, i.e.

. pi ' o (5.50)
pl = —
+ alE. .

i3

we have then for Mg0

ion sites (i) , Y D’
; i i
(0,a,0) ‘ 2.2 o 77
(O,O"a) .l
(0,a,a) .76 .8
(0,a,-a) ‘ .79 , .92
(a,a,0) ‘ -2.6 CLa

(0,0,23.) ) B .72 .



5.2.2. FElectrostatic I'ield and Lnergy Changes of the Electron

For simplicity we shall assume that the electrostagic field
of the trapped electron at each la?tice site depends on y only while
the dependence on ¢ is ignored, because it 1s expected that y>>o.

Ve also assume throughout thgse caleulations that the variational
parameters o and B remain unchanged. This is because the binding
energy is insensitive to small changes in o and B.  Therefore the jth
component of the electrostatic field at the ith site due to the trapped

electron can be expressed as

e . _ e ) 1 pe 2

}‘ij (RigY) = Fiio (R,) + Ei51 (R v + 7 E:.Lj2 (R,) v* (5.51)
where R?jk (Ri), k=0, 1, 2 are to be evaluated at each lattice site.
Therefore the total electrostatic field at each lattice site is the sum
of E?j (Ri,y), the field due to the vacancies and the change of the

electrostatic field due to the lattice displacements., The total

fields are then given by
+ L (5.52)

vwhere EXq and Eiq are the qth components of the electrostatic field at

the kth site due to the vacancy pair and the lattice displacements

respectively, These are evaluated in the appendix.
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trapped electron, E

due to the electron which takes the form

V(R) =y ’
(o]

Ir-RI

wg(r)dr

Therefore

P(r) being the electronic wave function given by Eq. (5.5).

Lat us now calculate tlie electrostatic field due to the

First consider the electrostatic potential
2]

(5.53)
) 2 ’
V(R) = g { €. V_(R) + ¢o V(R - 2 eV (R) ) (5.54)
where
V.(R) = | vl (5.55)
° |r-R|
VP(R) = [ wz(r)dT (5.56)
e} [r—RI .
Vsp(R) = wsw ar
[o]

r-R

Therefore Eij’ j =y, z are given by

(5.57)

(5.58)



e _ 2 2 . :
E{, = -9 { . EXE + Cp BJD 2CSCp BVSP } Z; + Y

3R, aR, aR, R,

1 1 1 1
q{ciaw_ - 2cc av_} (5.59)
: P D s p __Sp *

83, 3z,

i i

e

Our problem is to expand Eiy and Ei to second order in vy at the

z
centre of the anion vacancy remembering that CS and Cn also depend on
4
Yo These expansions are siven in the appendix,
The lattice distortion correction to the binding energy may

be similarly calculated. . The binding energy is given by Eq. (5.8).

1 1.2 2
P =2 (T ? - o—
E 5 (“p + Es) m A" + b (5.8)

The expanzion of ED, Eg and b in terms of y are given in the appendix,
the expansions in terms of o may also be similarly found provided that
care is taken to use the correct sign convention of Eq. (5.17).

Wé define

1.2 2

Qo == A" +D
1, 3 b
Ql =3 A 3y + 2b 3y
Sl b
Q=783 + b33



2
1, 9A.2 324 a2 5%
Q= { GG +a—7}1+{ ()" +b—=1}
3 & 3y 3y 3y 3y
1, 34,2 324 3b,2 3%b
Q=g G +a5 )+ {GE +bim )
o =L@ 3, 2% . o 9%
5 2 "3y 3¢ 3y3do 3y 90 9yda )

Then the lattice distortion correction to the enerpgy is

hnl
AL, = { 5 (BED + B“S) = 5 }y
Yy Ay F
A Q
+ { »5 (aEp + aEs) - 5 Q? }o
20 o] =
#S:
2 2.,
#05 C5 + PEy (s Qg - +125 * %2 ARG
3Y2 8y2 Qo
Xao 2%p . Q.2 2
+ {25 (" + 5) - (+5Q, - *125 % 2°) / /Q_} o
) 3 Q °©
30 30 o
2 2 .
3 3°E , .
#1005 C 5+ 2%) - (505- .25 % Q%) /YT Yoy
3ydo © 3yao : ) o

O

(5.60)



5.2.3. The Lattice Enerries 5

The total change of energy of the system consists of an
electronic part which hzas been considered, and a part due to the lattice,
The lattice part of the energy consists of the polarisation lattice
interaction and the change of enerqy due to the vacancies.  As we
have seen in the case of‘F+—céntre that the polarisation lattice
interaction consists of two parts. The one which is due to the work
done by the ions in the field of the point dipoles is

. .
-> -
ML, = 2a§Niqi E,(0,) + do, , (5.61)
C
where Ei(ci) is the dipolar field at the ith sité, Ni is the number of
ions occupying sites equivaleﬁt to the ith site, and a is the charge

of the ion at the ith site. The other which is the work done by the

point dipole against all the fields acting on the dipole is

g

2 lep ), (5.62)

pr o= Jw E
, 1 O, g,
1 1

LP ;
i
0

" where Pi(ci) is the dipole moment at the ith site which possess a
polarisability o AU and AW, are dependent on y through the
dipole moments. The change of the electrostatic energies of the

lattice may be shown to be

{ - 26+693 ¢ + 46, 195 02 } (5.63)

4
1
® I8



For the overlap-repulsive term we use br-x. Then we get
AL — A
w2 2100 1104 977 Py ok | a1 4 52+ (L3A-2)2 é:] % )

»

(5.64)

The total chanme of energies of the system is then the sum of (5.60),
(5.61), (5.62), (5.63) and (5.64). This sum is to be minimised with
respect to ¢ and v. The equilibrium values 9 and Y, 8 obtained are

then used to calculate the polarisation and lattice distortion correction

to the electronic energy. The lattice distortion correction to the
~energy 1s given Ly Eq. (5.60). Ve shall consider the'polarisation
correction to the enersgy. The notential enersy of an electron in

the field of a dipole is given by

Ed >
V = -P . F (5.65)

where F is given by Esq. (5.58) and (5.59).

| The results of the calculation are shown in Table 9, while
the dipole moments and the‘eléctric field due to the trapped electron
are shown in Table 10. It is interesting to see that the polarisation
of the sufrounding ions act in such a way as to increase the binding
energy. A reference to Table 10 shows that this is because of the
large dipole moment induced on the anions at (0,a,a) which are the

nearast anions to the cation vacancy. A reference to Fig. 2 shous



that for these agions the electrostatic field of the cation vacancy
acts in the same direction as the trapped electron while the total
electric field at the 4 nearest cations and the 4 nearest‘anions to .
the anion vacancy nearly cancel each other, The net effect of this
is therefore an increass of the binding energy due to the polarisation.
We should also notice the rapid decrease of the polarisatipn cqrrection
to the enerzy of the series from g0 to Bal, due to the increase of
polarisability of the cations along the serlies. This is clearly
shown in Table 10.

This calculation is not complete because (1) we have not
included the ion size and exchanre effects, (2) the assumption of a
uniform lattice distortion of ¢ is not justifiedlbecause the axial ions
(0,0,-a) and (0,0,2a) mav havé a different distortion from the other
ions even a change of sign cannot be ruled out, (3) the assumption that
the polarisability is a scalar that can be taken from the bulk crystals,
and (4) the nerlect of the polarisable ions other than the nearest
neighbour ions. . The effects from (2) to (4) are expected to be much
’ less than the ion size effects. Therefore we shall consider in the

_next section the ion size corrections to the hinding enersy.

5.3 Ion Size Correction

Ve shall estimate the ion size correccion to the binding
energy by the method of Bartram, Stoneham and Gash(s). As we have
. . . s + .
already seen in Chapter 2 in connection with the F -centre in the

alkaline earth oxides that this method gives a reasonable account for
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the binding energy of the F'-centre. We shall apply the same method
to the FC+-centre. It is reasonable to suggest that the effecf 6f
including finite ion sizes is to slightly increase the distortion and
polarisation, because both ion size and exchange concentratevmore of
the electronic charge inside the vacancies., At the same time an
increase of distortion and the ion size will force the electron to
move more towards the axial cation, i.e. to increase y. The net
effect of all these together may probably be very small. Therefore
we shall assume that the lattice distortion and polarisations are
uneffected by the ion size correction, so far as the binding energy
is concerned, In the following procedure the ion size correction is
épplied separately to E_, Bp and b as defined in Eqs. (5.9), (5.10)
and (5.12). The procedures are then similar tc tﬁose in Chapter 2,
except that we have to consider ES and Ep simultanecusly and minimise
with fespect to two variational parameters. The results are shown
in Table 11, Siﬁce there is no thecretical calculation of the
conduction band minimum for the alkaline earth oxides, the value quoted
for MgO (~1,0 ev) is the estimate of Yamashita(s). With this
estimation for the conduction band minimum, the binding energy of the
FC+-electron in Mg0 is -4 ev which compares favourably with the
experimehtal value of -3.6 ev(7). For'the alkaline earth oxides

series from MgQ to BaO, the ion size correction accounts for the

following percentage of the point icn binding energy: Mg0 (23,9%),



- 101 -

Ca0 (26.8%), Sr0 (25.3%) and Ba0 (26.8%). It is seen that-tﬁe ion
size effects piay a significant role in these oxides. Ve should like
to point out that the success of the ion size correction to the binding
energy of the FC+—centre in the alkaline earth oxides is probably due
to the small admixture of the excited state which is less than 10%

for the four oxides considered.

5.4 The Hyperfine Constants

The isotropic hyperfine constant can be calculated
similar to the method used in Chapter 4, According to Equation 4.40
the hyperfins constant is velated to the wave function 9(0) evaluated

at the nucleus concerned by

, 2
As (Gauss) = 284.7 u. (0) a3 (4.40)
h ———
I, w

The problem is to calculate a suitable wave function at the nucleus,

This is usually done in the point ion model by the Schmidt process i.e.,

=N | ¥ -] <¥|li>|i> (5.67)
i
where ¥ is a normalisation constant, |i> are the ion core orbitals.
For the calculation of isotropic hvperfine constants only the s orbitals
of the ion core needed to be considered, since all other orbitals vanish

at the nucleus. In this chapter we have considered three different
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wave functions ¥, i.e. (1) the point ion lattice wave functién; (2} the
point ion lattice wave function with lattice distortion and peolarisation
correction and finally (3) the wave function (1) with ion size effeétsb
included. Ve have assumed in the calculation of lattice distortion
and polarisation effects that the variational parameters a‘gnd 8 remain
unchanged., It is argued there that this assumption may have

little effect on the binding energy of the electron because of the
insensitivity of the binding energy due to small changes in a and B8,
This is certainiy not guite true for the wave function itself.

Therefore the calculations from (2) and (3) must be considsred as only
qualitatively true under the approximation of the model.  The hyper-.
fine constants are calculated by substituting Eq; (5.67) into Lg. (4.40)
The core orbitals used in these calculations are the same orbitals és

in Chapter 4. The results of the calculation are shown in Table 12,

It is interestinc to compare for MgO the three cases with that of the

continuun model of Chapter 4,

(0,2,0) (0,0,-a) ratio
Continuum Model 9.108 18.07 | 1.98
point ion 11.052 42,623 3.86
+lattice + polarisation 8,046 54.293 | 6.76
+ ion size £.981 42,748 6.14

experimental ~2.00 17.50 ~8.80
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The results are int;resting because they show the obvious imﬁrovement
of the ratio’of the hyperfine constants, AOO—a/AOaO’,after the lattice
distortion and polariﬁaﬁion correction over the continuumvmodel. This
calcﬁlated ratio will be further improved if we had allowed the axial
ion (0,0,-a) to distort a different amount than the four (0,a,0) ions,
because it is‘expected that the former distortion will in general e
smallér than the latter distortiqn because of the attraction of the
cation vacancy. The improvement of A, after ion size correction is.
also to be noted. It seems plausible from this calculation that a
more sophisticated treatment of the lattice distortion and polarisation

plus ion size effects will be able to explain the experimental results:

. at least for MzO.

5.5 Conclusions

Ve shall summarise the assumptions we have made in our
calculations: (1) we have assumed in the calculation of lattice
distortion that all the movable ions distort the same amount g. First
considen the’(0,0,-a) and (0,a,0) ions. Thea cation vacancy at
(0,0,3) can be seen to have a stronger attraction to the former than the
latter ion, in the direction shown in Fig. 2. The trapped electron
which is constrained to move along the axis of the divacancy in our
model will also tend to attract the (0,0,-a) ion more strongly than the

other ions. The combined effects of this will therefore result in a
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¥

different distortion at (0,0,-a) £rom (0,a,0). This will in general
increase the binding energy. Consider then the ions at (0,a,0) and
(0,a,a). Without the trapped electron these two ions should have the

same distortion in the Y direction and even move a little towards each
other in the Z direction. The trapped electron will pull the cations
at (0,a,0) towards the centre of the anion vacancy and push the apions

at (0,a,a) outwards from the cation vacancy. Therefore it is

expected that the distortioﬁ at (0,a,0) will ﬁe less than that at
(0,a,a). As we have seen in section 5.3 that the anions at (O,a,é)

are chiefly responsible for the polarisation correction; an increase of
digprtion at (0,a,a) will therefore reduce the polarisatién correction
‘to the energy. Ye believe that a relaxation of the condition of
uniform distortion will in general lead to a larser distortion and
thefefore increase the lattice distortion correction to the energy.

A complete study of the lattice distortion including fhe shift of the
charge centre of the trapped electron along these lines is hindered by
the lack of suitable methods of taking the ion size effects into account.
We believe that the combined effects of all these is tc reduce the binding
energy.‘ (2) In our use of the ion size correction of Bartram,
Stoneham and Gash, we have assumed that the lattice distortion and
polarization correction to the binding energy is uneffected by the ion
size correction. (3) Ve have also assumed that the electrostatic

field at the lattice sites due to the trapped electron is so smooth
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that the change due to lattice distortion may be neglected, see Eq. (5.51)
If this variation was taken into account, thé polarisation'corpection
would be reduced and we would expect a decrease of the binding energy.
(4) The variation parameters o and B have been treated as constants
for the lattice distortion and polarisation correction. From a .
physical point of view, the parameters are rglated to the kinetic
energy of the trapped electron. If the trapped electron has been
drawn closer to the axial ion at (0,0,-a) we would expect an increase of
a and B because now the volume of the electron motion is reduced,
from the uncertainty principle. We would therefore expect a decrease
of the binding energy due to the increase of kinetic energy. It is
assumed throughout our calculation that this change of energy is quite
negligible as compared with other corrections to’the energy. But we
are not quite justified in making this assumption in the calculation
of hyperfine constants.

| Because of the lack of experimental data for the alkaline
earth oxides, other than Mg0O we are unable to compare our calculatiéns
with the experiment, in detail. For MgO where experimental results
are available, our calculation compares favourably with the experiment.
For the other oxides we believe that our results represent an upper
bound for the binding energy. Although the absolute value of the
hyperfine constant from this point ion model calculation is too large
compared with experiment, the improvement of the ratio of the hyperfine
constant in this model is quite encouraging. The results of our cal-
culation from both the continuum model and the point ion model demonstrate
that the model of the F.'-centre as consisting of an electron trapped in

C

an anion-cation vacancy pair is quite realistic and justified.
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APPENDIX

(A) Nuclear Attraction Integrals

"If we assume that the wave functions have the following form:

a(r) | (1)

s>

1]

|p> b(r) r Cosb | : (2)

then the various nuclear attraction intecrals will be, in units of

Ze2 . - - ‘
R
9 ’ Ldr az(r) [r R—r2]
<s| Ze® s> = 1+ 4= (3)
[r=R| J dr a2(r) 2
o]
r '
) L dr b2 ’;3}1 - r:[
<p| Bel fp> = 1+ .
|p-R| ap o b2
Jo
R -
s S| are®® e8| ar v P
+ 2 (3n"=1) R” Jo R (4)
5 2 , [0
dr ru b2




332 _mn Jm dr o ab + R R de v ab
(p' e %s} = e
Pl =
|»-R] /3R // ar v a dm r“bQ
0 o

vhere n = Cos .8 is the cosine of the angle which the vector

R forms with the polar axis.

We shall only consider the derivation of (5), the

other integral may be similarly derived
_ s

A <

r-R

2™
2

¥ith reference to the above sketch, we have

1 % ok
<R, =%} ® ) ;?%1 P, (Cos v)
fzey
o 4 +]
- 4n » T *
- Z T+l i+l Z Yim (2,4) Yzm (8,¢)
L=0 R MZed
+2
= 1 &
1 Y R7 Y (6,) Y
>R, ,'r I ! 5IFT TAL me-g 4 m

(6,%)

(s)

(6)

(7



.From the properties of integrals of products of spherical Harmonics,

we see that only £ = 1 would contribute to the integral of Eq. (5), so

1l % .
R L, = HTor T Y (0,0 v, - (0,0) (8)
|v-R} 5 @m0 T
+1
1 _ bx » %
r>R !—r-Rl = 5 5 Z Y,m(e’w Ylm ’(Q,cp) (9)

r m=-1 -

For an axial symmetry m = Oi, and the expansion may be further simplified

to,
1 . p ‘ ‘
<R ';ﬁ’ = R2 Cos8 Cos 0 ) (10)
R L = B coso cos o (11)
|r~R| 2
Therefore we have - R 0
9 ,
Ze” | - ' U4m Cos O y 3 :
<p||r“Rl s> = u 3 R abrdr+Rjlabradr (12)
' o] R

' ,
where N is a normalization factor,

A 1 (13)

| 2w

RIS o S SR SIS LA SR TS
‘ [J a’(r)rfdr| b (r)r dr:l
o ” .

e]

The combination of Eq. (12) and (13) then gives Eq. (5).



In Chapter 2 and 5, we have assumed that

(1 + or)e™®F

a(r)

e—Br

b(r)

from Eqs. (3), (4) and (5) we find
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_ a2 M. o2 _ 1 3, 3 2, 2
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2.3
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We have also

7 ¢ . .
F'centre : J (-1)'12 = - 2 (17)
i a
+ N. 2 20, 2
F. centre : (-1)i= = = Moy = ) (18)
C Z ' Ri | = a ,

where &y = 1.74756 is the Madeling constant for the‘NaCl struéture.
The first term in both Egs. (ly) and (15) is the kinetic energy
corresponding to the two wavefunctions. Eq. (16) must be interpreted
in the following ways: For F+—centre, b = 0 Lecause the sﬁmmatioﬁ
over Cos8, is zero’for cubic symmetry; for FC+-centre, Cos® = 1 and
R=alif fhe centre of the charge cloud is assumed to be at the centre
of the anion vacancy,’ofherwise a summation over each shell centred
on the anion vacancy is necessary.

In order to calculate the expansions of Bi; and Eiz , as

defined in Chapter 5, to second order in y, we need the following

derivatives. From Eqs. (5.13) and (5.14) we find that

3/2

2 b 381 b 2A b 2
acs =-2= M-Z\—-A2 3y /{1+4A } (19)
3y .

: 2 3 2
) 2 ) b + 8h°, 3°b
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-where b and A are defined by Eqs. (5.11) and (5.12).
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Similarly
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After the expansions of BRi N aRi N aRi and Ri in terms of Y“are

" evaluated, we can put
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then the final results for Eij are given by
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In order to calculate the various derivatives of Cs2 and Cp2 it is
necessary to calculate the expansions of ES and Ep and b in terms of

Ye If we défine

T = oR, Y = gR, D = B
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.Then the various derivatives can be shown to be given by

3E y ,
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where use has been made of the lattice summation by Jones and Ingham 7,

The remaining summations converge rapidly.

Reference

- 1. J.E. Lennard-Jones, and A,E. Ingham, Proc. Roy. Scc.

107 A, 636, (1925),



(B) Electrostatic Field due to the Electron

In chapter 5, we saw that the ith component of the total

electrostatic field at the jth site is

. . . d
where Ei; are the electrostatic field due to the vacancies, Eij are
. pe o e e e e
the electrostatic field due to the ionic displacements and Eij that
are due to the electron. Values of this total electrostatic field

at the lattice sites shown in Fig. 2, are listed below:-

(0,a,0) : E, =229 . pe Ll (19,726 ¢ + 13.584 ¢°)
2y 3 2w ¥ 2
a a
g, =297 4 pe s L (23,927 ¢ + 8.375 0°)
2z 3.2 22 a2

. _ =1.5 e 1 ’ 2
(0,0,-a) : B, =5 *+E,+5 (15.008 ¢ - 13.065 ¢“)
a a :
_ 53 e 1 ’ 2
(0,a,-a) : EAy =t EAy + =) (-2.534 ¢ - 2,642 ¢”)
a a
B, = --224+E°%+ L (2472 0 + 2.u64 o)

Az a2 . Az a

_ .324 e 1 . 2
(a,a,0) : EBy = —;5— + BBy + 2 (-1.732 0 - 2.252 ¢°)



_.384 e 1 . 2
Ep, = ~ + Byt = (-:408 o - 1,136 ¢°)
a a
(0,a,a) : E, = 2238 ,pe,. L (5,006~ 13.272 ¢°)
3y 2 3y 2
a a ’
_ 707 e 1 2
BBZ =t Esz t - (-4.233 ¢ + 6.851 ¢°)
a a
_ =1.5 e 1 2
(0,0,2a): E,, = > +tE,, + ;5— (7.98 ¢ - 12,353 ¢“)

(C) Wave Function of the FC+—electron in the Continuum Model

If we define

-P ¥
M = e £ P (W

2=0 ~
x 4
Ly = e"2 § & L (X
n!
n=o

then the total wave function of the ground state is

¢ = N M(p) L(X)

where N is a normalisation constant, and the parameters p and A

are given in Chapter 4.



The normalization constant”and the coefficients of’

expansion f_ and Cn are given in the following table:

N h 48 B % L % o Y

f C T C £ C f C

o] O Q o] o] [ O (o]

MgO 121 -1.029 .11 ,193  ,0u2 006 .0l -.0001 .005
Ca0O .101 -1.031 .1i57 ,191 .040 =-,005 ,013 -,0001  .005
Sr0° ,094 -1.,033 .148 .18 .036 -.004 .Oll -.0001  .00u4

BaO .08l -1.030 .159 .182 041 -.0086 .013 -.0001 .005
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Figure 1A

The diVaéancy nature and the most important
hyperfine interactions of the Fc+ centre are shown
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Figure 1B

The hyperfine structure in the electrdn-spin-resonance :
spectrum og the Fc+ centre is shown., The measurement, was
made at 77 K with H ”[11%] crystal axis and at a microscope -

frequency of 9.2Gc/sec,
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Relevant ionic arrangements neighbouring the
divacancy at (0,0,0) and (0,0,a). The ‘divacancy axis
is along the % axis with the anion vacancy at the origin
of the coordinate system. In the figure the anions at
A and B are not allowed to move, while for all other ions
0y =0, = 03 =0, =0, The trapped electron is assumed
to be at (0,0,-va).



Table 1A

Kemp and Neelev's LCAO results on F' -centres in Mg0

In the absence of polarization and lattice distortion correction:

Fl : ES = = 19rlev o
AE = L4+7 ev
' . ’ —-— .
I‘4 : EP = b l4ev
In the presence of Lattice distortion alone
= 2 ] o= o
o, +0.072 AUS 4,85ev
AE = 4,34 ev
17 =
AHP 4,4%ev
In the presence of Polarization alone
= r 2 - 3
I 0] Lo 15.2¢v
AE = 4.7 ev
EP = -~ 10.5ev

In the presence of both polarization and lattice distortion

o, = +0.05 E. = =- 12.%v
2
AE = 4,7 ev
RP = - 8.?3\?

Experimental value AL = 4,95ev



Table 1B

(3

MNeeley's results on the F'-centre in the Alkaline Earth

Oxides (obtained using Gaussian wave functions).

v 3 +
o, AE, L Lo AE Fxpt

M0 Mol 6.39 ~12,.64 -8.11 4,53 4.95
Ca0 .02 6.42 ~10.63 -7.08 3.55 3.7
Sr0 .01 6.u7 -9.66 -6.49 3.17 3.0
BaO -.01 6.52 “-R,65 -5.84 2,81 2.0
='¢ 3 » »

ABS is the polarisation and lattice distortion correction to the

ground state energy E_. o is the lattice distortion.
+

Experimental values are

Advances in Physics, 17
X s L/

taken from R. Henderson and J.E. Yertz,

No. 70, 749, (1968).



alkali halides with experimental values measured at 77°K.

TABLE

2

" Comparison of calculated F-band energies (Ry) in

a,b

The compounds are listed in ascending order of the ratio of
lonic radii, R(=r_fr ).
Compound R eory zr(f:; A‘Eg;
CsF 0,135 0,139 0. 139
RLF 0. 168 0,178 0.179
KE 0,202 1.210 0.206
RuCi 0,110 (. 150 0. 149
RhBr 0,128 ¢.136 0,135
Na¥F G.278 0,276 0.274
KC1 0.1 0.169 0,172
Kb G, 146 0,154 0,153
RbI 0,121 0,125 0,126
KI 0.133 C.136 . 0,138
NaCi 0.201 0.202 0.204
LiF 0,386 0,377 0.378
NaBr G176 0.174 0,173
Nal 0,160 0. 153 vos
LiCY 0.242 0,211 0.243
LigrS 0,208 e 0.159
LiX 0. 184 0,240

- 98

b.

C.J. Buchenauer

and D.B., Fitchen

A.E, Hughes, D. Pooley, H.V, Rahman and W,A. Runciman



correction for the alkaline earth oxides (using wave functions given

in §2)t

MgO

Ca0

Sr0

Ba0

Notation: Eq(oo)’ EP(GO) and AE(GO) are the binding, excited state and
transition enersy (in ev) respectively in the presence of polarisation

and lattice distortion correction.

+ . . \ . . .
F -centre energies after polarisation and lattice distortion

048

.059

064

.063

-18.207

-16.371

-15.427

-14,801

Table 3

Es(oo)
~-13.185
-10.77

-9.76

-8.654

-12.56

-11.765

-11.343

EP(GO)

-8.389

-6.,038

"5.789

AE

5.647

L ,606

Y, 144

3.705

AE(GO)

4,796

3.731

2.865

Expth:

h,95

3.7

3.0

2.0



Table UA

Variational and lattice parameters of the Alkaline Earth Oxides

in Rydbergs atomic units.

Yariational
parameter
Variational after .
Paranaters ion size Polarig- ion size para- Lattice
correction abllities meters paraneter
o 8 a B a+ G A B a
Y Y .
Me0 81 . T05 L8R8 814 +B48 1l.128 37.68 12.64 3.875
Ca0 730 .B43 825 J761 3.229 | 15,956 76,57 83,43 4,54
Sr0 622 .613 784 727 %.809 17,347 95,18 685.39 &,88
Ba0 554 .582 «755 . 708 10.47 20,603 137.12 11G.34 §,22
i
Note: All paramstars are




Ftecentres energies

after ion size corrections

Table uB

for the Alkaline Earth Oxides

o, Eg E () \zp By (o,) AE AE(oé) Ezit.
Mg0 .09 ~16,957 -11.133 9,784 4,25 7.173 | 6.883 4,85
Ca0 .059 _v15;087 -8,127 -8,886 - 429 6.201 7.698 3.7
Sro 064 ~14,340 -8.179 -8.729 -.231 5.611 7.958 3.0
Ba0 068 -13.461 -9,289 -8.221 ~1.147 5,24 8.142 2.0

Note all enerpgles in ev,




Table 5

Pincherle's results on D-centre

a(A.U,) 2 . Kv R u
ApBr 5.4 1 4.62 2.35  0.73+0.43)°
PbS 5.64 2 6 3.75  1.5440.50A°
Table 5A

A E(ev)
051 -,005
<40 -.27

Wertz's experimental results of g values for F-centres and

F,-centres in powders.

Powder g(F-centre) g(F2-centre)
g0 ' 2.0023 ‘ 2.0008
Ca0 2,0001 1.9995
Syr0 1.98u46 1.981

Ba0 . 1,936%

* Values taken from Carson et al.



Table 6

Energies of the F ¥ _centres in the Alkaline Earth Oxides

C

in the continuum model.

Mg0 Cal Sr0 Ba0
€, 2.95 3.28 3,31 3.83
Eb' 2,02 1.72 1.70 1.24

: ) 254 248
Ey /g .232 .22 25
zap

Expt. E, 3.60



Hyperfine constants cf

Table 7

+

tha Fc ~centre in the continuum model.

(0,0,-1) (0,1,0) (1,1,-1)
H.F, S.0. Expt H.F. S0, Expt HoTW 5.0,  Expt
Mg0 | 18,07 | 5.5% | 17.5 9.1106 | 2.79 “2,1  .798 245 | <l
cad | sG.o% | u.22 20,34 2.13 1.58 .166
Sr0 1.99 ‘ 1.01 .05
) 5.41 2.73 .23
HE =

Hartrea Fock wave functions,

units of Gauss

8.0

Slater Orbitals. Al

results are in




Tahle 8

Pinding Energies of the FC+-centre in the Alkaline Earth

Oxides before polarisation, distortion and ion size corrections.

Variational Paraneters

()
e

a B Eb - Expt. Eb
eV. ev
M0 723 ~ .695 -7.286 -3.6
Ca0 651 .631 -6.799
Sr0 .616 .600 -6.542
Ba0 .582 568 -6.271

* The Bb_as miven are referred to the vacuun level. In order to
compare with the experimental result, a knowledse of the energy of
the bottom of the conduction band is needed. For HeO the bottom

of the conduction band is about ~ =1 ev.



Table 9

. . + " . : . ‘
The binding energies of the F_. -centre with polarisation and lattice distortion
S

correction.

Lattice ' z

distortion  Polarisatioen " :

AL B £ E ;

L Y Eo AR &L? b xnt 5

ev ev ev ev ev’ |

Me0 »028 «310 -7.286 1,013 =0.521 . -3 ,533 =3.8
Cal .L27 $ 174 -5,789 #8232 -0,328 -8 365
Sro 028 .13 =6,3542 2731 ~0.2u5 ~8.056
Bal 024 » 100 ~B,271 632 ~0.102 =5.Tul
%

See footnote of Table 8



Dipole moments and Electrostatic fields due to

Table 10

the PC’-electmn

E?y p2y E?z P2z Elz Plz Euz Puz By PBy EBz sz EAy
MgO| -.043 | ,022} -.02 | .009 .073 | -0.0 -0,01 | -0.728{ =-0,019| .029| -.009 F.luz -.035
‘ } !
Ca0| ~,033 | 0,083 -.016 | ,036 .06 0.01 -,008 -.813 -.015 | .023; -.,007 | .l47, -,028
SrO0| -.029 «129 -.014 059 .053 «026 -.007 -.801 -.013 .013 -.006 1341 -,025
Ba0,; -,025 203 ~.012 094 | O.0u8 .058 -.006 -.837 -.011 .005| -0,005 .1?9 -.022
PAy, EAz pAz 5327 Pay Eaz PSz
Mg0 | -.053 .022 | 0.081| =.011 | -0.69u ~-0.017 | 0,187
Cal -,078 .017 .053 -.008 -.782 -.013 .218
Sr0 -.087 0,015 055 ~.007 ~.771 -,011 «219
BaO -.106 0.013 +062 -.006 -.813 ~.01 »236
Notations: For the electrostatic field Ei—j’ i stands for the lattice site and § the cartesian

component as indicated e.g. y or z.

Similarly for the dipole moments,
See Figures in Chapter 5 for the lattice sites concerned.

~



Table 11

. . . + . .
Binding Energies of the Fc -centres after lon size

corrections.

Conduction

: ! - band

£y AEy B minima E  Expt. E

ev ev ev ev ev ev
M0 -6.893 - 1.741 -5.153 ~-1. —l.1 -3.6
Ca0 -6.365 1.822 -l ,543

" 8r0 -6,056 1.654 <4402

Ba0 -5.741 1.677 -4, 084

Note: E_ are the energies after polarisation and lattice distortion

correction are included as shown in Table 9. AE, are the ion

. . : " £
size corrections while Ef are the binding energies referred to

the vacuum and E the binding energies referred to the bottom

of the conduction band.



Hyperfine constants of

Table

12

the FC+-centre in the Alkaline Earth Oxides

(0,0,

-1) (0,1,0) (1,1,-1) ratio A
OO--l/AOlo
PoIS L+P L+P +I Expt. P.I. L#P L+P +I8 Expti|fPoIis " I4AP R I+P 41 Bt PT. L+P 4P +I Exrot
o) < 0 o) o o) : o o)
He B 42,62 54,29 42,75 11.05| 8.05| 6.98 1.10| 1.28 .60 3.86‘ 6.75 6.14
Mg O 17.5 ~2.0 <] % -8,
SRO% 13.00 WSS/ 13.08 Sheshidl 2L 2 .34 .39 .18 3.86| 6.75 6.14
1
H.F, | 103,45 | 143,37 | 101.84% 25.69(18.18(13.64 2.34 | 2,84 | 1,00 4,03| 7.9 7.46 ‘
Ca0 : ' !
)
S 10.99 WS 5788 10.73 2,76 1.93| 1l.u44 2D .30 ~ L e 03 18739 7.46 |
S Eye I
Sr0
S0 be:33 9.34 6,29 155611509 S 1.0 o3 .17 .05 4,06| 8.56 8.28 l
o |
Ba0O
S0% 15.63 26.12 1l (2ke) 3379 |W2S7S IS 18 .31 .43 .09 4,13| 9.5 9,46
| o

P.I. represent the results from a point ion calculation;
= P,I. with lattice distortion and polarisation correction;

& L+Po with ion size correction as explained in the text
H.F. and S.0. have the same meaning as in Table 7.

L+P

L+PO+1
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