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ABSTRACT 

This thesis is cono'rned \vith colour centres, particularly 

the Fc+-centre, in the alkaline earth oxides. + The FC -centre 

consists of an elt.:ctron trapped at an anion-cation vacancy pair 

+ and is intimately connected with the F -c2ntre, an electron trapped 

at a sin::rle anion vacancy. \,1e emphasise in this thesis the 

+ + 
conm,ction betweE'.,n the F C and F -centres. A theoretical model 

+ + is develoned Hhich represents the FC -centre as an F -centre perturbed 

by the I'>l"esence of a nei~hbourinr: cation vacancy. The calculated 

hindinr; enerry of the Fc+-centre in thE.:! point ion lattice approximation 

is found to be too larf":e compared Hi th experiment. Corrections dUE: 

to lattice distortion and polarisation effects taken to:;ether lOHer 

the bindinp: enerp;y; althouf:h the polarisations of the .:;urroundini3 

ions actually increases the bindincr ener~y the lattice distortion 

decreases the bindinr; ener~y by a sligl1tly lare;er amount. Reasonable 

ap:reement between the experimental and theoretical binding enerp;ies is 

obtained for M~O only after ion size corrections to the point ion model. 

+ The axial sjnTIJl1etry of the F C -centre is best revealed Yy the ratio of the 

isotropic hyperfine constants, AOO_I/AOIO. An attempt has been made 

to calculat\.~ the isotropic hyperfine constant ,dthin this model. The 

results show that uhilst the ratio ap;rees reasonably vJell Hith the 

exper::ment, the absolute value of the ir'.otronic hyperfine constants 



are too larp:e com~ared vrith experil"'!ent. A sli~ht improvement of the 

isotropic hyperfine constants is ottained Hhen the ion size effect 

is taken into account. 

A continuum calculation for the rC+-centr~, in which the 

electron is assumed to be tranped in the field of a finite electric 

dipole immersed in a dielectric medium is also attempted, and the 

+ results compart~ "lith the point ion model for the Fe -centre. 
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CHAPTER I 

1. Introduction 

The alkaline earth oxides are wide band gap insulators 

(E
G 

~ 6 ev) which crystallize into a regular array qf positively 

charged metal ions and negatively charged oxide ions having the 

face-centred cubic (rocksalt) structure. Although they are 

highly ionic materials it is likely that they are not so ionic as the 

monovalent and isostructural alkali halides. A typical alkaline 

earth oxide is characterised by a filled valence band formed from 

p-like states on the anion and an empty conduction band arising 

from s-like states on the cation. The detailed nature of the 

band structure is a topic deserving active research interest, 

however it is largely unknolVD and requires both experimental and 

theoretical study. One of the most appealing features of these 

materials is their wide range of optical transparency, which at 

least for magnesium oxide extends from about 8.0 ev where exciton 

transitions begin (according to work on powders) into the infra-red 

where lattice restrahl absorption occurs. Defects including 

transition ion impurities introduced into the lattice often give 

rise to absorption bands in this region and can be conveniently 

studied without the interference of competing absorption by the host. 
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1.1 Defects in Crystalline Solids 

Intrinsic lattice defects exist in thermodynamic 

equilibrium in crystalline materials since their presence lowers 

the free energy of the crystal mainly consequent upon the increased 

configurational entropy associated with the number of ways of 

selecting which lattice sites are defective. Simple 

thermodynamic arguments(l) show that the defect concentration 

depends exponentially upon temperature according as 

n = A Exp (- E ) (1) 
N kT 

where n is the number of defects in a crystal ",ith N lattice sites, 

E is the energy required to produce one defect, and the constant A 

is related to the changes in vibrational energy of atoms near to 

the defect E, the formation energy determines which defect type, 

Schottky (single vacancy) or Frenkel (interstitial-vacancy pair) 

is present in a particular solid. For example, most metals, the 

alkali halides and alkaline earth oxides experience Schottky 

disorder since ES > E
F
+ whereas the opposite situation obtains 

in the silver halides and some non-stoichiometric oxides. 

+The subscripts Sand F refer to Schottky and Frenkel defects 

respectively. 
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The most obvious manifestation of the presence of defects in solids 

are the easily measurable changes in crystal density and X-ray 

lattice parameter. In fact comparison 'of these changes not only 

indicates the nature of the lattice disorder but also allows an 

. d f . (2) 
est~mate to be made of the e ect format~on energy • 

In pure ionic solids the formation of lattice defects must 

take place such that charge neutrality be maintained over the volume 

of the crystal. Thus in an alkali halide crystal, the formation 

of a Schottky defect must involve a pair of separated vacancies, one 

anion and one cation, being produced simultaneously, and ES then 

represents the energy required to create such a pair. The Frenkel 

defect, however, remains unchanged since the interstitial ion is 

oppositely cha.rged to the vacant site which it formerly occupied. 

There are, of course, both anion and cation Frenkel defects. 

The charge associated with these intrinsic defects has other important 

consequences for the properties of crystals. As a result of the 

strong electrostatic interaction between an anion and a cation 

vacancy, it is energetically favourable for them to aggregate 

together to form a bound pair. Such a pair makes no contribution 

to ionic conductivity, although it may be important to diffusion 

(3) f d f processes • Other types 0 e ect aggregate may also occur. 

For example when CaC12 is added to NaCl and Ca2+ ions substitute 

directly for the unipositive sodium ions, additional cation vacancies 

being incorporated to offset the excess charge on the divalent impurity 

ions. 
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A Ca
2
+ ion may then associate with a cation vacancy to form an 

impurity-vacancy pair: \oJ'hether the vacancy occupies a nearest 

neighbour site along a (110) axis or a next nearest neighbour site 

along a (100) cannot be decided simply by inspection. In potassiuTTl 

chloride the most stable site for the cation vacancy is the next 

nearest neighbour site, whereas in sodium chloride the nearest 

neighbour site is favoured. Trivalent ions in magnesium ox ice 

may have the charge compensating vacancy in either site, the next 

nearest neighbour site being slightly favoured. 

1.2 Colour Centre in Crystalline Solids 

Colour centres in the alkali halides afford a fUrther means 

of charge compensation for intrinsic l.attice defects. The term 

"colour centre" was used originally by Pohl(4) to designate the defects 

responsible for the characteristic colour of alkali halide crystals 

after heating in alkali metal vapour. Many investigations subsequent 

to Pohl's pioneering work have established that the most important 

defect in these additively coloured crystals consisted of an electron 

trapped at a negative ion vacancy, the F-centre. The F-centre is 

analogous to the hydrogen atom, except that the positive charge \<lhich 

traps the electron is distributed over the "cage" of nearest n8ighbour 

cations. Thus we can discuss the eigenstates of the F-centre 

electron in terms of energy levels of the hydrogen atom, and designate 
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them as the lIs>, 12S>, 12p> etc levels obtained by solution of a 

one electron Schrodinger equation. As we shall see later this 

is only an approximate description, which must in general be 

modified to take account of numerous other interactions. However 

these energy levels, which we describe approximately as lIs>, 12s>, 

12p> etc occur within the band gap of alkali halide crystals, 

and electric dipole transitions which occur between them lead to 

the characteristic colour of crystals containing F-centres. 

Vacancy pairs may also act as traps for free electrons, thereby 

reducing the electron mobility. Thus it is interesting to 

investigate the binding energy of an electron trapped at such a 

vacancy pair. In general, however, this situation has not b~en 

observed in the alkali halides, and our present studies have been 

concerned with the alkaline earth oxides in which such F-like 

centres have long been known to exist. 

Colour centres are also produced in alkali halide crystals 

by ionizing radiation. The primary products of such irradiations 

are F-like centres and VK-centres. During irradiation, energy is 

transferred to anions some of which are ejected into interstitial 

sites several lattice spacings removed from the vacancies which they 

had formerly occupied. Free electrons simultaneously produced are 

then trapped at the anion vacancy so creating F-centres. 
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The interstitial halide atom usually bonds covalently , .. ith an anion 

to form an X
2 

molecule ion centred at a single anion site. 

Subsequent irradiation with light in the F-band converts F-centres 

to aggregate centres. There is now considerable evidence that 

these centres, referred to as M-, R- and N- centres, are aggregates 

(5) 
of 2,3 and 4 F-centres • Charged aggregate centres also exist 

which have either trapped an extra electron or lost an electron by 

ionization. Thus the three centres t1 +, M and ~C are structurally 

identical since each involves two vacancies on neighbouring anion 

sites; they differ in that they conta.in respectively one, two, and 

three electrons. 

In the alkaline earth oxides vacant lattice sites bear an 

effective charge twice that of the corresponding vacancy in the 

alkali halides. Thus anion vacancies may trap two electrons to 

form a neutral defect. Such a defect is expected to have bound 

excited states in contradistinction to the analogue defect, the 

F--centre in the alkali halides(6). The additional trapping 

potential of vacancies in the oxides and the different charge state 

of a particular defect relative to the alkali halides, is an apparent 

complication in any system of nomenclature based upon that used by 

research workers in the aLkali halides. For example, an oxygen 

ion vacancy at Hhich a single electl'on is trapped has similar 

optical and magnetic properties to the alkali halide F-centres, 

\. 
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despite being effectively positively charged. This centre might 

be appropriately designated the r+ -centre. Extending such a 

system to all defects in the oxides is quite simp18 using the system 

of letters developed for the alkali halides, with an appropriate 

superscript indicating the charge state of the defect. Thus the 

defects produced by trapping one, two and three electrons in the 

anion vacancy would be referred to as the r+, rand r- centres 

respectively. Aggregate centres similar to the M, Rand N-centres 

are also believed to exist in the oxides; the nomenclature 

developed above is easily adapted to such defects(7). 

Although the above system of nomenclature is both a logical 

and self-consistent extension of that used in the alkali halides, it 

is not so easily applied to centres which have no direct analogue 

in the alkali halides. One such centre is the subject of the 

present investigation. This defect was first reported by Hertz 

and his associates 
(8) 

in neutron irradiated samples subjected to 

o annealing treatments above 570 K. In such samples the amplitude of 

the r+ -centre E.S.R'. spectrU1TI is reduced and a new spectrum shifted 

+ from the r -centre spectrum by ~g = 0.0015 in magnesium oxide is 

observed. Wertz et aI, suggested that this spectrum and its mode 

of formation was consistent with cation vacancies migrating to the 

+ r -centres to form a vacancy aggregate. In addition to being 

observed in the four oxides the defect was also detected in MgS, SrS, 

SrSe and BaSe(8). As we shall see this defect behaves like nn 
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F~-centre, at least in respect of its E.S.R. spectrum and it is 

plausible to refer to this as the F~-centre, the subscript C 

indicating that one of the cation sites n~ighbouring the F~-centre 

is vacant. The centre does have symmetry properties similar 

to the FA-centre (F-centre ~ impurity ion) in the alkali halides 

since the presence of the vacancy lower the symmetry from octahedral 

to tetragonal. The similarity is not further manifest in the 

~ properties of the FA-centre and the FC-centre. 

In this thesis the F~-centre is treated theoretically as 

an F~-centre perturbed by the presence of the nearby cation vacancy, 

using a point-ion polarised lattice model. This is physically 

realistic since the charge cloud is chiefly concentrated in the 

anion vacancy. The earliest theoretical work on this type of 

centre was by Pincherle and specifically concerned the D-Centre 

in silver halides(9). Pincherle treated this defect as an electron 

trapped in the field of a finite dipole contained in a dielectric 

continuum. He proceeded using a simple trial wave function and 

minimized the energy by the variational method. More recent 

Calculations(lO) follow similar lines except that a more exact 

solution to the equations governing the electron and the dipole is 

found. The binding energy of electron to the vacancy pair is then 

interpolated from the free ion eigenvalues bearing in mind that the 

centre is immersed in the solid dielectric. This is taken account 

of in the usual way by scaling all electrostatic forces by the in-

verse of the dielectric constant. 
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CHAPTER II 

THEORETICAL STUDIES OF F-CENTRES 

2.1 Preliminary Comments 

Theoretical calculations of colour centre properties 

are many-body problems invo~ving interactions between the trapped 

electrons and both the ion core electrons and nuclei of all 

lattice ions. This is a formidable task, and the approximations 

used in actual calculations must alvTaYs be the subj ect of close 

scrutiny. There are in general two approach8s, on the one hand 

continuum approximations neglect all local interactions between the 

defect and its environment, while on t)v:! other hand molecular orbital 

treatments neglect long range interactions concentrating on the 

interactions betI'Teen t!1e electron and some of its closest 

neighbours. A common feature of all theoretical models, hovrever, 

is that they attempt to compute one or more of such experimentally 

measurable quantities as the location, shape and temperature dependence 

of the optical band, the lifetime and thermal ionization energy of 

the excited states of the defect, and the magnitude of any hyperfine 

interactions. The many body calculation is intractable even for 

the largest computers and the simplifying assumptions used are usually 

chosen according to which defect properties are to be calculated. 

Because of its apparent simplicity most calculations have been 

concerned with the F-centre and the ensuing brief revie"'l reflects this. 
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The earliest calcualtions of the F-band transition 

energy used the semi-continuum approximation which largely neglects 
v 

the periodic crystal lattice. The vacancy is treated as a 

positively charged cavity embedded in a continuum dielectric 

medium, the cavity radius R being obtained from an explicit calculation 

of the polarisation field(l)~ Electric field intensities are 

calculated using the appropriate dielectric constants. Thus once 

the form of the potential at the vacancy is found for the electron 

in the cavity, the energy eigenstates of the electrons are found by 

solving the appropriate Schredinger equation. Tibbs(2) and later 

Simpson(3) used particularly simple forms of the electrostatic 

potential inside the vacancy and obtained values for the F-centre 

transition energy in NaCl of 1.26 ev and 2.20 ev respectively. 

The experimental value is 2.72 eVe Both calculations assumed that 

the polarization of the lattice dep~nds only upon the time average of 

the electron's distribution. A later calculation(4). which 

assumed that the electrons on the neighbouring ions can follow the 

motion of the trapped electron adiabatically, results in a tighter 

binding of the electron in the vucancy especially in the Ils> ground 

state because the potential arising from the lattice polarization 

is decreased. The improved F-band transition energy in NaCl is 2.62 eVe 
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Temperature d8pendent properties, such as the optical 

band shape, are best analysed using models based on the adiabatic 

B • .. ( 5 ) d •• 11 • h orn Oppenhe.lmer appro:umat.lon use orl.g:ma y l.n t e treatment of 

molecules. The method assumes that the total wave functions of 

the system may be written as the product function, 

'. = ~.(r,Q) ¢ (Q) :lm.l m 
(2.1) 

where i and m represents the electronic and vibrational quantum states 

respectively, rand Q are respectively the electronic and nuclear 

co-ordinates and 1jJ are wave functions of the harmonic oscillators 
m 

assumed to represent the lattice phonons. The classical form of 

the Franck-Condon principle is also assumed to apply, and the 

electronic wave functions </>. (r,Q) are very slmvly varying functions 
.1 

of Q. Consequently an optical transition between ground and excited 

electronic states takes place so quickly that the lattice ions are 

unable to move to the equilibrium position consistent with the excited 

state during the transition. Calculations assuming that the electrons 

are coupled either to a continuum of lattice modes or to a single 

localized mode have been strikingly successful in predicting the 

detailed band shapes, temperature dependence of the optical transitions 

and the energy shifts between absorption and emission bands(6)~ 

A f h 1 . d d .. (7) h d 1 part rom t,e ocall.ze mo ~ approxlmat.lOn t e mo e s noted above 

ignore the detailed interactions of the trapped electron with neighbouring 
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ions, although magnetic resonance results clearly demonstrate the 

importance of such interactions. The remarkable successes of the 

continuum methods are sufficient to convince us of the importance of 

long range interactions also. 

A number of methods have been forthcoming which attempt to 

include explicitly the interactions of the trapped electron and ion 

core electrons. For example a molecular orbital technique allows . 

the trapped electron to spend some fraction of its time overlapping 

onto the neigr~ourine ions, during which time it is assumed to behave 

as a valence electron on the cation. The assumed trial wavefunction 

is a linear combination of the atomic orbital wavefunctions (L.C.AyO.) 

of the six neighbouring cations, the coefficients of this combination 

function being used as adjustable parameters(S). Such detailed 

effects as exchange,polarisation effects and Van der Waals interactions 

• ( 9 ) d A· 1 • (10) <1 may all be ~ncluded • Gourary an ~r~an argue that since 

the F-centre electron spends very little of its time on neighbouring 

cations, the average wave function is insensitive to exchange and 

overlap effects betl'ieen the electron and the ion core electrons. 

Thus they adopted a method, the point ion lattice approximation 

(P.I.L.A.) in which the ions are represented as point charges located 

on the lattice points. The electron trapping potential used in the 

Schrodinger equation is then determined from the spherically symmetric 

contribution of all point charges at the site of the vacancy. 
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They used trial wave functions which were essentially s-like for 

tho ground state and p-like for the excited states, although 

L.e.A.O. shcemes have also been usod within the framework of the 

(14) P.I.L.A. • These last two methvds are useful for calculating 

not only the optical properties of F-centre but also the hyperfine 

interaction constants, at least provided thnt tho wavefunctions of 

the trapped electron are properly ortho~onalized to the wave functions 

of the ion core electrons. 

Despite all the possible assumptions made above, the 

many-body problem is still to be formulated and this is of crucial 

importance in decidinG the form of the trial wavefunctions used. 

The two main assumptions which are of proven value for calculating 

defect properties, and which effectively reduce the many-electron 

problem to a one electron problem are the Quasi-Adiabatic 

Approximation and the Hartree-Fock procedure. In essence these 

assumptions single out the trapped electron for detailed study, 

while the effect of all other ion core electrons, except perhaps the 

ion core electrons on the nearest neighbour ions, are replaced by 

an average effective potential. A particularly clear exposition 

of these approximations is contained in the review article by 

Gourary and Adrian(lO), and here we only summarise their essential 

properties. In the Quasi-adiabatic approximations, the trapped 

electrons are regarded as being much more weakly bound to the 
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vacancy than are ion core electrons to the neighbouring ions. 

It is therefore reasonable to assume that the strongly bound, rapidly 

revolving ion core electrons can follow the detailed motion of the 

weakly bound F-centre electrons. Conversely the F-centre electron 

is unable to folloH the detailed motion of the core electrons, and is 

therefore only effected by the average of their motion. The effect 

of this is that the interaction energy of the trapped electron with 

the "electron component" of the pola:roisation is independent of the 

position of the electron, and therefore may be omitted from the 

Hamiltonian. 

In direct contrast to the Quasi Adiabatic approximation, 

the Hartree-Fock procedure states that except for correlations 

imposed by the exclusion principle, every electron moves in an averaged 

field of all the other electrons. According to the Quasi Adiabatic 

approximation, the core electrons are able to follo>-l' the average 

motion of the trapped electron cnly 'IoThen the correla.tion polarisation 

interaction is small. This latter interaction arises from the 

polarise::tion of the core electrons by the trapped electron at its 

instantaneous position reacting bac~ on the trapped electron. This 

interaction therefore depends on the instantaneous position of the 

trapped electron. If this interaction is small, th"'n wa may assume 

that the core electron also folloHs the average motion of the trapped 

electron, as is the case for F centres. 
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This initial preamble serves Dnly as a guide to so);'}e of 

the techniques used over about 25 years of study. Inevitably 

techniques have become increasingly sophisticated during that time 

and it is not possible h8re to revieH comprehensively all the 

modifications Hhich have occurred. Consequently the more detailed 

treatment Vlhich follows is concerned only Hith the more important 

developments, especially those Hhich have been adapted in their 

of studies of F+ -centres in the Alk=lline Earth Oxides. use 

2.2 F-centres in the Alkali-Halides 

The earliest models applied to the F-centres in the alkali 

halides Here the continuum and semi-e<:mtinuum models. These models 

h . d + '"d d h' ave not been appl1e to F -centres 1n OX1 es an are of lstorical 

interest only. The references at the end of this chapter give 

th(, relevant cl.::tailG. 

2.2.1 Kojima's Calc1l1ntions for Lithium Fluoride 

Inui and Uer.ura(8) first treat~d the F-centre problem from 

an atomistic viewpoint with their I?smal.l" and "large" molecule 

approximation. I,' ., (9) . d t' f ,. _,O]lma n,a e a mOI'8 ex enSlve use 0 t!US technique 

applying it to the F-centre in LiT. The bC'tsis of Kojima's 

calculation Has the quasi adic:tbRtic approximation with the complete 

Hamiltonian divided into polarisation dependent and independent terms. 
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The polarisation dependent effects were treated first by Mott 

, " (1) 
and Littl~ton's zeroth order approximation and later by the 

d d d L o 1 d (1) secon . or er Mott an ~tt eton proce ure • The polarisation 

independent terms in the Hamiltonian included not only the kj~~etic 

energy of the trapped electron but also the electrostatic interaction 

between t~e F-electron and both the atomic nuclei and the ion 

core electrons, allowing for any penetration of the trapped electron 

into the ion cores. In Kojima's notation this part of the 

polarization ind::!pendent ten:l is written as 

2.2 

where l/J(r) and X . are wave functions for the trapped electron and 
V,) 

the undistorted jth shell of the vth ion respectively, and Z is the 

atomic nt~ber of the vth ion. The F-elf.:ctron also interacts vIi th 

the polariSation induced by the charge vacancy. This is difficult 

to compute and is convenier.tly divided in twa parts, one part each 

due to interactians lvith the infrared and optical components of the 

induced polarisation. This latter component is constant in 

the quasi-adiabatic approximation. Since the interaction energy of 

a dipole P with an electric field E is given by, 

-+ -+-+ 
H = - P.E 2.3 
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the total interaction betvleen the trapped electron and the 

polarisation field is then given as 

2 
tjJ (r)dT 

Ir-R I v 

2 

- I 
v 

2.4 

In equation 2.4 the first term represents the electron's interaction 

with the charged vacancy, whilst the second and third terms represent 

th.:: electron's interaction with the polarization field: H 0 and l.1 ··v v 

are respectively the optical and infrared components of the 

polarisability of the vth ion. Kojima also introduced an exchange 

interaction in the form, . 

I
tP(r)x .(r)~(r')x .(r') _____ v~J~ _________ v~J ____ dTdT' 

!r-r' ! 

2.5 

The total energy cf the system is no~V' a simple sum of the energies 

ghren by equation 2.2, 2.'+ and 2.5 plus the internal energy of the 

polarised lattice. 
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A variational calculation was then made using an assumed 

wave function. Kojima first used an L.C.A.O. wave function com-

prising the 12s> and 121'> orbitals centred on the six nearest neigh-

bour Li+ ions surrounding the vacancy. In the octahedral symmetry 

that is the F-centre, Kojima's ground state wave function was simply 

where al' and a2 are the variational parameters. 

state wave function was similarly expressed as, 

4 

The excited 

~ (r) = bl {S(r-RS) - S(r-R6)} + b2 l P (r-R ) 
e k=l Z -K 

2.7 

These wave functions violate Pauli'a exclusion principle since they 

are not orthogonal to the core orbitals. In order to obviate this 

difficulty, Kojima assumed pnint charges to represent the ions to 

whose core orbitals the atomic orbitals comprising the trial wave 

function were not orthogonal. This modification of the potential 

was not particularly satisfactory and it was found necessary to 
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orthogonalise the trial ,,,ave function to the core orbitals to 

obtain better agreemen-t ~.1i th experiment. The calculation gave the 

following results: 

polarisation neglected E = 4.18 ev 

polarisation included E = 3.5 ev 

experimental value E = 4.96 ev 

The agreement between theory and experiment is noticeably 

poor. To improve this situation, Kojima used a second trial wave 

function, 

~(r) = fer) - I.x .Cr) J fer) X .(r) dT, 
\I,J \I,] \I,J 

2.8 

the envelope function f C r) being no'" orthoganalised to the cor'e 

orbitals X\I,j(r), by the Schmidt process(ll) In the ground state 

the envelope function f (r) was, 

fer) = C Sin kr/(kr) r < R 

= C' e-ar r > R 2.9 

where ~ is a variational parameter and c, c' and k are determined 

from the condition that the tHO branches of f (r) should join 

smoothly at r = R and from the normalination of f (r). For the 

first excited state, the envelope function was written as, 

fer) = Ce 

= Ce' 

Sin k r -
C __ ..;;.e_ 

k 2 2 
e r 

Cos k r 
e ) 

k r 
e 

-a r re e Cos 0, 

Cos a, r < R 

r > R 2.10 
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where e is the polar angle referred to the (1, 0, 0) axis. The value 

.. (1) 
of R was fixed at R = 0.9a after Mott and Littleton • Later 

Kojima took the Mott and Littleton procedure to second order, although 

the calculation became rather cumbersome. In essence the second 

order correction to the polarisation energy assumes the dipole 

moments to be unknown. They are then used together with the lattice 

distortion as variational parameters, in minimising the energy of the 

system. The result obtained for the transition energy was 4.96 ev, 

in exact agreement with experiment. The author pointed out that 

this agreement is somewhat fortuitous. Even so it is rather 

remarkable. 

Despite giving good results for F-centres in LiF, Kojima's 

calculation is difficult to extend to other systems and to more 

complex centres, mainly as a result both of the many two centre 

integrals involved and the non-availability for many ions of interest 

of Hartree Fock wave functions in analytic form. The point ion 

model of Gourary and Adrian is therefore of interest because of its 

simplicity and because it is easily extended to other more complex 

systems. 

2.2.2. The Hork of Gourary and Adrian: The Point-lon-Lattice Approximation 

The point-ion-lattice model developed by Gourary and Adrian(lO) 

has nOH Decome one of the most valuable starting points for • 

theoretical study of defects in ionic solids. In this model the 
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complete Hamiltonian is replaced by a simplified Hamiltonian in which 

each finite i~n is replaced at its lattice site by an effective 

point charge of magnitude equal to the valency of the appropriate 

ion. (The finite ion size and polarisation effects are added 

later as corrections to this model). The expectation value of 

the HaMiltonian is then written as, 

<H> = 2.11 

where g is now the valency of the vth ion. 
v It is to be noted that 

equation 2.11 ~esults directly from equation 2.2 under the restriction 

that the F-electron does not penetrate the ion cores. The 

physical basis for this can be seen quite simply as follo,",s: If the 

trapped electron is completely outside the charge distribution of 

the core electrons, then the electrostatic field which it experiences 

is just that due to the nucleus surrounded by the core electrons. 

This potential is equal to that due to a free ion lV'i th a net charge 

equal to its valency. 

Gourary and Adrian used group theoretical methods to show 

(i) that the point ion potential can be expanded in terms of cubic 

harmonics(12) of even order, and (ii) that for the purpose of 

calculating the ground and first excited state energies, only the 

spherically symmetric part of the expansion of the point ion potential 
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is needed. This greatly simplifies the problem. A further 

simplification occurs because exchange interactions with the core 

electrons are neglected, there being no counterpart to exchange 

interactions in classical electrostatics. Thus the trial wave 

functions for the F-electron need no longer be orthogonalised to the 

ion core orbitals. 

Gourary and Adrian(lO) used three different sets of 

envelope functions for the ground and excited states, in order to 

calculate the energy integrals. These integrals were then 

minimized 1-lith respect to the parameters of the envelope function. 

The best wave functions, Hhich are written below, were type III 

wave function f~ the ground state and type II wave functions for 

the first excited state: Type III wave function: 

Hhere n = - ~ Cot 

Aj (~r/a)k (n) 
o 0 

:: Aj (~)k (nr) o 0-
a 

; and k (x) = e-x/x. 
o 

r < a 

r > a 2.12 



Type II wave functions: 

= 

= 
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~Cos e 
41T 

-n' A'j (~'r)e 1 -
a 

'2 -1 
Hhere n' = 3 - S (l-~' Cot ~') • 

r < a 2.13 

r > a 

Here the ~'s are variational parameters, the n's are determined from 

the condition that both the wave function and its radial derivative 

have to be continuous at r = a, A is a normalisation constant and 

(l3) 
j (x) is the spherical Bessel function of order n . n The optical 

transition energy of the F-band \'1as then determined from the 

difference in the energy eigenvalues of the ground and excited states. 

For LiF an F-centre transition energy of 4 ev Has obtained. 

This is comparable with Kojima's value of 4.18 ev in the-absence of 

polarisation. Gourary and Adrian foulid. that when applied to thE: 

point ion model, polarisation and lattice distortion effects made only 

very small changes in the transition energy. In fact the neglect 

of polarisation , .. as found to be negligible for the ground state and 

to alter th,~ first excited state energy by only about 3%. The 

influence of lattice distortion changed the transition energy by about 

79.: o. TIds can be seen to be quite reasonable since in LiF the 
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Havefunctions are consistent Hith about 79% of the electronic 

cha::ge being concentrated inside the vacancy in the ground state 

and about 51% of the electronic charge being concentrated inside 

the vacancy for the first excited state. The charge on the 

vacancy has therefore bE.en eff(;ctively screened by the charge cloud 

associated Hith the trapp~d electron. Thus the polarisation is 

expected to have only a snaIl effect on the transition energy. 

It is generally recognised that even Hhen polarisation effects are 

not negligible, they change the excited and ground state energies 

by roughly the same amOll..l1t and do not alter the transition energy 

significantly, nevertheless they Hill have a very pronounced effect 

on the binding ener~J. 

2.2.3. Ion Size Corrections 

Th8 simplicity of the point ion model arises from the 

neglect of motion of the ion core electrons. In reality the spatial 

extent of the F-centre electron encloses several shells of ions around 

the F-centres(18) and there is considerable cverlap of the appropriate 

Have functions. To include the finite ion size explicitly in 

calculations of F-centre properties, requires a many electron 

calculation in "lhich a determinan-cal \!;we function is set up 

containing the Vlavefunctions of the trapped electron and all the ion 

Core electrons. Fortunately the compact nature of the trapped 

electron l-iClVe function ensures that only ,( few shells of ions around 
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the vacancy need be considered. Kojima's calculations for LiF took 

account of the nearest 
(10) 

Gourary 

and next nearest neighbours. For LiF also 

Adrian and considered only the nearest neighbour Li+ ions. 

They orthogonalised the F-centre envelope function to the Li+ 

orbital using the Schmidt process. Thus their F-centre wave function 

is simply 

2.14 

This wave function 1-1aS used with the lIs> orbitals centred on the 

six nearest Li+ ions in a determinantal Have function. The total 

energy vias then minimised according to the Hartree-Fock scheme using 

the determinantal vlave function. They neglected all many body 

forces, i.e~ terms involving the F electron and the charge cloud of 

two or more lIs> orbitals centred on different Li+ ions. The various 

two centre integrals were evaluated by expanding the F centre wave 

function about the Li+ nucleus taking only the first non-vanishinrr 
':> 

term in the resulting series. They separated the Hamiltonian into 

two parts, one due to the point-ion-lattice and the ·other due to 

exchange and finite ion size effects. The inclusion of exchange and 

finite ion size increased the F electron charge distribution inside 

the vacancy. Although the inclusion of exchange and finite ion 

size effects changed the ground state energy significantly, 
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(-0.206 a.u. as compared with the point ion lattice of -0.297 a.u.). 

G d Ad ' (10) d h h . . oUl:>ary an rl.an suggeste t at t e tranSl.tl.on energy Has not 

similarly affected. The most significant improvement as a result 

of these effects ,'Tas observed in the isotropic hyperfine constant. 

They obtained a value of only 50 MHz for the nearest neighbour Li+ 

ion as compared with 110 MHz determined using the point-ion-lattice 

model. The experimentally determined value was 38.5 MHz(19). 

The point ion lattice approximation is not particularly 

well suited to the calculation of hyperfine interaction parameters. 

This is due to the neglect of an essential ingredient in calculations 

of the hypE:rfine interaction constant~; the motion of the trapped 

electron inside the ion cores. All calculations of the hyperfine 

constants in the point-ion approximation yield values which are 

several tim'es largE:r than those determined experimenta.lly. This 

may be understood qualitatively as follows: Th~ F-electron in a 

point ion model effectively moves in a lattice of bare nuclei, 

almost as though the core electrons did not exist. Thus the 

concentration of the F-centre electr()n charge cloud at the nucleus 

is too large. This is also consistent \'Tith the reduced magnitude 

of the hyperfine interaction ,,,hen exchange and finite ion size 

corrections are added to the point-ion-l~ttice approximation, since 

both interactions effectively repel the F-electron from the neighbouring 

nuclei. 
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The above calculations of the ion size effect take into 

account the detailed motions of the core electrons. For the heavier 

ions the calculations are increasingly difficult because overlap 

between different ion cores may not be neglected. In such 

o (20) c1rcumstances the method by Bartram, Stoneham and Gash may be 

more attractive. In the B.S.G. calculation the ion size and 

exchange effects are contained in two parameters which are calculated 

explicitly. This calculation is in fact a modification of Gourary 

and Adrian's point-ion-lattice approximation based on the 

d Oh 0 1 0 d Kl 0 (21) d (22 ) pseu opotent1al method of P 11 1pS an e1nman an others • 

The pseudo-potential was optimized to give the smoothest possible 

pseudo-l1ave function(23). B.S.G. separate the optimum pseudo-potential 

into the form, 

2.15 

where VpI is the point ion potential, V the true potential, P the 

projection operator and V the averaged pseudo-potential. The last 

two terms in equation (2.15), which represent the difference between 

the optimum ?seudo-potential and the point ion potentials, then 

constitute the ion size correction to the Hamiltonian. In calculating 

the expectation value of this pseudo-potential they assumed a tight 

binding model for the ion core states and neglected the overlaps of 

ion core orbitals centred on different ions. They.approximate further 
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by neglecting the variation of the pseud.o-Have function over each 

ion core in calculating the expectation value of Vp - VpI ' t-lith 

the result that the ion size correction is: 

<~/vpl~> - <~IVPII¢> = 2 c I~(r )/2 
y y y 

where C = A + (V U )B 
Y Y y Y 

A = f(l -P ) (Vy - VpIy ) dT - JPyVPIydT 
Y Y 

B = JPydT Y 

\vhere V is the detailed potential due to the yth ion, U the y y 

2.16 

2.17 

2.18 

spherically symmetric part of the point ion potential at the yth ion; 

the potential due to the yth ion itself is not counttd. The 

coefficients A and B , which are properties of the individual ions, 
y y 

have been computed and tabulated for a large number of ions by D.S.G. 

Since V appears both on the left and right hand side of equation 2.16 

it must'be determined self-consistently for each state. They applied 

the ion size correction not only to the F-band energies in the alkali 

halides but also to the pressure shifts of the F_band(25). The 

agreements between calculated and experimental results vTere rather 

poor, the computed energies bei:::1g too small for compounds with large 

anions and too larGe for compounds with large ~ations. In order to 

i~prove a~reement between theory and experiment it w~s necessary to 

diminish all of the A ts by the Same factor a = 0.53. 
y Hhen this 
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correction to A is introduc,:d tb:~ c::tlculnted valu(;;s c:lr(: in 
y 

bet:ter '3,rrreenr.:nt Hith experiment and i1ith the 

Mollwo-Ivey law(26) than are the point ion calculations of Gourary 

and Adrian. The theory also accounts for the F-band energies 

for a number of salts which depart from the Hollwo-Ivey law. A 

complete comparison between theory and experiment is shown in 

Table '2. 

B. S'. G'. further applied their theory to the F -bands of the 

alkaline earth fluorides CaF2 , ·SrF2 and BaF2 • The method used 

lvas essentially the same as for the alkali halides. Again .. Then the 

values of A for all the ions were reduced by Ct = 0.53. they obtained 
y 

a considerable improvement over the point-ion results. Taken 

together, these tHO sets of results suggest the definition of a set 

of pseudo-potential coefficients in Hhich the reduction of the 

A by the factor of 0.53 is tolerably I-Tell justified. 
y 

2.3. F+-centres in Alkaline Earth Oxides 

The F+-band for the four oxides, MgO, CaO, SrO and BaO 

have been identified experimentally using the techniques of optical 

absorption and paramagnetic Faraday rotation. The peak positions 

for the F+-bands occur at 4.95 ev, 3.7 ev, 3.0 E;V and 2.0 ev in 

the series MgO, CaO, SrO and BaO. Kemp and NeeleY's(14) 

calculations indicate that given suitable wave functions one might 

obtain good agreement with the experimental results using the point-

ion-lattice approximation. These authors neglected ion size effects 
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and It is of importance to determine v-rhether such effects are as 

important to the oxides containing heavy cut ions as they are to 

the alkali halide and alkaline earth fluorides. Furthermore it 

+ appears that the BaO F -band occurs at a much lower photon energy 

than might be expected and one might hope to effect an improvement 

in the theoretical value using similar methods to those uSed by 

Bartram, Stoneham and Gash(20). In this section, ,\.;e review 

first of all Kemp and Neeley's calculations and thus our own 

calculations on the alkaline earth oxides. 

2.3.1. Kemp and Neeley's Calculations on Oxides 

(14) + 
Kemp and Neeley treated the F -centre in magnesium 

oxide using a linear combination of atomic orbital w~ve function with 

a point-ion-lattice Hamiltonian. Their L.C'.A.O. wave functions, 

which were composed of /3s> and /3p> wave functions centred on the 

nearest neighbour cations, ,~ere then expanded about the vacancy centre 

• L" . . (15) us long owdlons Ct-functloon • In the actual calculation the vlave 

functions were approximated by a single spherical harmonic term 

corresponding to the lowest value of 2 appropriate to the function 

expressed in cubic harmonics. The simplified point-ion-lattice 

Hamiltonian which contained only the lOvTest R, terms in the point-ion 

potential then had the form, 

. H - - 1 d 
2r2 dr 

+ + v (V) 
o 2.19 
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The L.C'.A.O'. Have functiun and their expansion now takes the form: 

= d~ lm 

= 

s 

I cI>\l = 
II 

2.20 

vlhere 1/J~ is the roth L.C'.A.O. belonging to the jth r'ow of the ith lm 

irreducible representation r.
p 

of 0, symmetry. 
l n ~~ is the truncated lm 

wave function containing only the lOHest value of 1 in the expansion, 

d1 and C? are normalisation constants, and. l.l runs over the lm lm 

particular set of S single ion functions <p involved in the L.C'.A'.O'. 
l.l 

The relationship betHeen d~ 
lm 

and C~ 
J..m 

~vas determined by adopting 

Lowdins normalisation proc8dure for the a-function and the spherical 

harmonics. Using symmetry arguments they TrTer·] able to determine the 

expansion of the various ground and excited L. C.ll .0'. in terms of the 

a-function. For simplicity LOi-idin' s a-functions were calculated 

using Slater orbitals. 

They solved the sec1.11ar equations using their lowest 1 

wave function expansion for ground and excited states, and obtained 

the res-ults for the en(~rgy eigenvalues shOivn in Table (1). The 

t 
corresponding eigenfunctions for the ground (rl ) and excited (f

4 
) 

states ivere, 

r t 

4 

o -0 -0 
1/100 =0.396 1/101 + .710 ~02 

1/1~0 = -0.355 ~ll - .577 ~i2 + 1.186 ~i3 2.21 
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Th • • ~ e strong p-character in the ground state ~s seen ~n the ~02 term, 

which consist~ of the 3p orbitals of the surrounding 6 Mgl+ ions. 

This compares with Kojima's L.C.A.O. calculation(9) which also 

contained a large contribution of p-wave function in the ground 

state. In the L.C.A.O. scheme p-like character in the ground state 

may be partly explainsd by the electron being regarded as equally 

shared among the six surrounding cations. Consequently the ground 

state is not spherically symmetric, as is usually assumed in point 

ion modal(lO). 

• ~ Ad· (10) K d N 1 (14) rollow~ng Gourary ana r1an ,amp an ee ey 

applied the ion core polarisation and distortion corrections to their 

results. They argued that the polarisation correction to the energy 

due to the ions other than the six nearest neighbour cations and 

twelve nearest neighbour anions were not important because the 

interaction of a charge with a polarisable ion decreases as r-4• 

They treated therefore the polarisation of the six Mg2+ ions and the 

1202- . f h • M 2+ . 1 ~ons and the displacements 0 t e S1X g 10ns on y. The 

results of their calculations are also shown in Table (1). The 

agreement with experiment is quite good. 

Kemp(16) later reported similar theoretical results for 

calcium oxide strontium oxide and barium oxide. The estimated 

positons of the r+-bands, when taken with the value for magnesium 

oxide, must be regarded as in good agreement with experiment except 
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for barium oxide. The poor result for barium oxide is presumably 

due to"errors in the polarisation and distortion corrections and to 

neglect of ion size effects. This latter neglect may be crucial 

since it has been shown to be important in alkali halides containing 

f h 'd· b ' fl 'd (17) o eavy cat~on an ~n ar~um uor~'e • 

Neeley(18) complemented this initial study using a slightly 

different approach in which he assumed the ground and excited state 

wave function to be gaussian functions. The gaussian function was 

chosen because of its simplicity but especially because of its rapid 

convergence in calculating lattice sums.. The results of his 

calculations are also shown in Table 1. 

2.3.2. Extension of the Point Ion Lattice Calculation 

We first calculate the binding and transition energies of 

the r+-centres in these four oxides within the framework of the point-

ion-lattice model using wave functions which are different to those 

used by Kemp and Neeley(14). We later include polarisation and 

lattice distortion effects which are especially important for the 

r+-centres because of their effective positive charge. There is no 

rigorous way of taking the ion core polarisation effects into account 

except by a complete solution of the many electron problem. 

Therefore in including the polarisation and lattice distortion 

corrections to the point-ion-lattice approximations we assume 
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1. that the Rom model of ionic solids applies to the 

alkaline earth oxides, and 

2. that the polarisation of the cations and anions can 

be represented by induced point dipoles. 

Later we also calculate the ion size effects on the transition and 

binding energy of the r+-centre in the four oxides, usin?: the pseudo-

potential Method of Dartram, 
(20) 

Stoneham and Gash • 

In the point-ion-lattice approximation each ion is represented 

by a point charge of magnitude equal to the valency of the ion Irlhich 

it represents. The most important interaction betlveen the trapped 

electron and the ions is the classical Coulomb interaction. In a 

cartesian co-ordinate system the centre of which is at the centre of 

+ the F -centre, the coulomb energy of the defect electron in the field 

of all the ions regarded as point charges is :,;i ven b~, 

VL(r) = gR, L ~ l)x.+y.+z. {(x_x.)2 + 2 (' )2}-* (2.22) - ~ ~ ~ (y-y. ) + z-z. -. 
i ~ ~ ~ 

where (xi ,y. ,z.) are the Cartesian co-ordinates of the .th ion from J. J. J. . 

the centre of the vacancy, and Z is the valency of the ion. In the 

absence of interactions apart from this vre can write the simplified 

point-ion Hamiltonian, 

H = T + VL(r) 2.23 
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For crystals vTith the NaCI structure, Gourary and Adrian expanded the 

potential energy VL(r) in terms of cubic harmonics, 

where the cubic harmonic is defined by, 

+x. 
Q(rl,t'~iIQ,~) = Ic(rl,t'~t,m) Ytm(e,~) , 

m=-t 
2.25 

and rl is the ith irreducible representation of the cubic group 0h' 

~t an index used to differentiate among several Q's of the same i 

belonging to the same r~, and Yn are the usual spherical harmonics. 
l ",m 

The individual Vi' ~t (r)Ts are determined by expanding 

each term in the potential about the centre of the vacancy. 

VL(r) has the symmetry of the full cubic group the solution to our 

equation must also belong to an irreducible representation of the 

cubic group. Thus 

ex:> 

= L L R(rl'~'~tlr) Q(ri,t,~£18,~) 
,9,=0 fli 

2.26 

In general He only keep 'the first term in this expansion, Le. we put 

In our case we consider only the ground and first excited states of 

+ 
the F -centre which we assume to be s-like and p-like respectively. 

The following functions were then chosen as the normalised trial Have 
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functions for the ground and excited states: 

Ground State: 

Q(r~,o,olr) = (41T)-h 

R(r~,o,olr) 14a
3 

(1 + ar) -ar = e 
7 

2.27 

Excited State: 

Q(r~,l,olr) = 13 Cos 8 
41T 

R(r~,l,Olr) 148
5 

I' 
-er = e 

3 
2.28 

a and S are variational parameters. 

Therefore Ne may put 

Ia3 (1 ar) -ar 
t/Js = + e 

7TI 
2.29 

t/Jp If35 -Sr Cos e = I' e 
1T 

2.30 

for our ground and excited state wave functions respectively. Our 

problem is therefore:: the determination of the variational parameters 

a and S such that the energy functionals 

2.31 

are minimised, vlhere n stands for s or p as the caSe may be. Using 

these Navefunctions, the energy functionals (in Rydberg units) are 

found to be, as shONn in the appendix; 



E s 
2 = 3a -

7 

Ni 
40M - l I(-l) Mi 
- 7 -a R. 

~ 

Ep = 13
2 

- 4CtH 
i.1 

I
N. 

- 2 (-I) ~M. 
- 1 
3 -R. 

~ 
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The first terms in Equations 2.32 and 2.33 are the kinetic energy of 

2.32 

2.33 

the electron in the ground state (Bs) and the first excited state (E ) 
p 

and aM =1.74756 is the Maclelungts constant for crystals of the NaCI 

structure. The summations are to be taken over different shells 

centred on the vacancy and M. is the nl@ber of ions in the ith shell 
1 

and N. is odd or even acco:r;ding as the ith shell is occupied by cations 
1 

or anions. These energy functionals are to be minimised with respect 

to a orS. The final results give the transition ener·gy and the 

binding energy of the ground state and the excited state. The 

resulting energies are tabulated together with the experimental results 

in Table 3. 

It is seen that the deviation of the calculated results from 

the experimental results increases along the series from MgO to BaO. 

For MgO which is the least polarisable of the four oxides, the agreement 

bet1veen the calculated and the experimental results is the best. 

For BaO ~7hich has the highest polarisabili ty the agreement is rather 

poor. It is therefore reasonable to suppose that the polarisation 

effect plays a very important role in these oxides, although in the 
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heavier oxides such as BaO the effects of the partial covalent binding 

may be important. 

2.3.3 Polarisation and Lattice Distortion Corrections 

As we mention above the polarisation effects are expected to 

+ have an important bearing on the F -centre transition energies in the 

alkaline earth oxides. The ions centred on the vacancy are not only 

polarised by the net charge of the vacancy but are also displaced to a 

nev! equilibrium position. He noVl calculate the effects Hhich polaris-

ation and distortion have on the transition and binding energies of 

+ the F -centre. 

He assume that the Frank-Condon's principle applies for the 

first transition energy. He assume further that the core electrons 

respond only to the average position of the defect electron, i.e. the 

Hartree-Fock's procedure applies. If 8Wt is the total change of 

energies of the system, then. 

8T1 - l:.l·1 + 8H
L 

+ 8Fi 't - e p 2.34 

+ where bJI is the change of energy of the F -electron due to the lattice 
e 

distortion, 8HL is the change of energies of the lattice due to the 

same distortion and IJVl is the interaction of the lattice distortion 
p 

with the induced polarisation. 

We allow only the nearest neighbour cations to move their 

new equilibrium position (1 + cr)a, here cr is positive when the 



42 

distortion is in a direction away from the centre of the vacancy. 

(14) . 
Following Kemp and Neeley He cons~der the polarisation of the 

nearest cations and the nearest anions only. Our problem is 

therefore to find the new equilibrium position 0 subject to the o 

condition that the total energies of the system, electron plus lattice, . 

is a minimum at this position. + The change of F -electron energy 

may be easily calculated by expanding the part of the electron energy 

due to the six distorted cations. This part of the energy is, 

where X' = 2 
7a 

, 

4 4 3 3 2 2 -2aa {4a a + 16a a + 28a a + 28aa + 14)e 

2.35 

2.36 

" (8 5 5 "4 4 4 40 3 3 6 2 2 28 )e-2aa X = 2 a a +, a a + a a + 5 a a + 56aa + 
7a 

2.37 

and a is the lattice parameter. 

Our calculation of the lattice energy change folloHs closely 

that of Gourary and Adrian. Assuming a repulsive interaction of the 

-A form br the total change of the lattice Emergy is simply 

2 = (8a - 48) a + (4a (A-3) + 104.912) a 
~1 - ~i a -___ a 

a a 

2.38 
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Next He calculate the interaction of the lattice distortion 

with polarisation. This term arises from the fact that a distortion 

of the cation Hill necessarily have to do Hork against the dipole 

fields. Therefore He have to calculate the induced dipoles on 

the six nearest cations and tl'Telve nearest anions. The total field 

acting on a lattice site consists of the folloHing parts: 

1. The field due to the vacancy plus the part of the F+-

electron charge cloud trapped inside the vacancy, 

2. The field due to the displacement of the six cations and 

3. The field due to the other induced dipoles. 

In general the dipolar field has the effect of reducing the total 

field acting on a lattice site. This field is called the depolarising 

field. For a highly symmetrical system the effect of this field 

is to lower the total polarising field by a factor depending only on 

the geometrical arrangement of the dipoles. Therefore this part of 

the field may be taken into account by simply mUltiplying the total 

polarising field by the IIdepolarising factor". For a general 

discussion of calculating the induced dipole moments He refer to 

Chapter 5 Hhere He shall discuss the effect of polarisation on the 

+ FC-centre energies. Here He only quote the result given in Neeley's 

thesis(lS). 

If the induced dipole moment on the nearest neighbour cations 

is p+ pointing in the radial direction, then 

+ ++1: - I 
P = a k I"::q + Fdist • + F(P )dip-di.E.! 2.39 



+ where k is the depolarisation factor for the six nearest neighbour 

cations 

2.40 

a = l/~ + 2.732 a:J 
a 

F is the field at the cation due to the excess charge of the centre 
q 

2.41 

Fdist is the field at a cation due to the other five distorted cations 

and is gi ven by 

Fdist = 12 ~ 4.742 0 + 10.294 02~ 
a 

2.42 

F(P-)d' d' is a dipole field at a cation due to the twelve anion 
~p- ~p 

dipoles. This field consists of a geometrical factor times the dipole 

field of an anion p 

f(o) = 1 (4.573 + 6.9990 - 12.831 0
2) 

2 a 
2.43 

Similarly the induced dipole moment on the nearest neighboUl' anions can 

be expressed as 

2.44 
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The symbol E stands for the field acting on an anion and the various 

terms 'in this equation have the corresponding meaning for those 

d • + appeare l.n p • Hence 

-
k = 1/(1 + 2.707 a3 ) 

a 

- 2 E = e(2-e )/2a q 

1 2 h(a) = :3 (2.286 + 3.50 a - 6.415 a ) 
a 

+ + 
E(p )d' d' = h(a)p l.P- l.p 

2.45 

2.46 

2.47 

2.48 

Therefore by combining the above equations, we have the induced dipole 

moment on an anion 

2.49 

and that on a cation 

2.50 
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We then expand p- and p+ to the second order in cr. The expressions 

are rather tedious to write out; in general it can be shown that, 

p 

+ p 

= 

= 

2.51 

2.52 

The pOlarisation distortion interaction consists of the following two 

parts~ 

1. the work done against the dipole field in moving the 

charge of the six cation a distance cr and 

2. the work done in moving the induced dipole on the six 

cations against all fields through the same distance. 

The field acting on one of the six cations due to the induced dipoles 

on the twelve anions is 

= (X-~-1~.573 Eq + (-20;94_ + 6.999 Eq) j 2.53 

a a 

and the work done is therefore 

lIW(cr)l = 12q a r Fp dcr 

0 

= 24a. -k- t.573 Eq cr + !C-20.94 + 6.999 E ) oJ 2.54 
2 2 q 

a a 

where q is the charge of the cation. 
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Next i.,re calculate the work done against all fields in 

moving the dipole on the six cations a distance o. According to 

elementary electrostatics the force acting on a dipole due to the 

field E is, 

~ ~ ~ ~ ~ 

F = (P.V).E = I (P.V).P 2.55 
+ a 

Since in our case the dipoles are assumed to be pointing radially 

outwards from the vacancy centre, the force is simply, 

~ 

F = I 
+ 2a a 

and the work done, 

MT(O)2 = 12 

2a+ 

a 
ao 

r i (p+2) 
do 

0 

do 

= 6a +k +2 [2B oB '0 + (2BoB" + B;'2) a~ 

The total polarisation distortion interaction is the sum, 

= 

2.56 

2.57 

The total change of energy of the system which, is the sum of ~W , e 

6WL and ~Wp' is then minimised with respect to o. 
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The expectation value of the energy of the electron in 

the field of the point dipoles is 

where 

ar = s 
aR 

++ 
fiE = -2. P.E 

= -24- p-Car) -12 p+(ar ) 
s - s 

aR /2'a oR a 

is the electrostatic field of the defect electron. 

2.59 

2.60 

The subscript 

stands for the lattice site where the electric field is to be evaluated. 

Similarly the correction to the excited state is given by replacing 

ar by s 
aR 

ar = 
--£ 
aR 

ar where 
-'I? 
aR 

2.61 

and p- and p+ are to be replaced by that corresponding to the excited 

state, that is the €+ which appears in F and E is to be replaced by q q 

the €-, where €- is the part of the excited state charge cloud trapped 

inside the vacancy. This is given by 

= 1- (1 + 2SR + 2S2R2 + ~ S3R3 + ~ a4-R4-)e- 2SR 2.62 
3 3 
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The results of the calculation after polarisation and 

distortion correction is also shovTn in Table 3. He see a marked 

improvement of the agreement betHeen the calculated results and the 

experiment. + The general trend of the decrease of the F -hand 

energy from MgO to BaO is clearly seen to be in qualitative agreement 

Hith the experiment. A least square fit of the calculated results 

for the four oxides gives the following Ivey relation, 

~E = 64.957 a-l •888 ev 2.63 

The percentage error is less than 0.1% for the four oxides. A similar 

least square fit for the experimental results gives, 

~E = 429.059 a- 3 •191 ev 2.64 

The percentage error is t-rithin 6% to 8% for the three oxides HgO, CaO 

and SrO Hhile it is 10% for the BaO. If 'He regard the deviation from 

the Ivey's lavr as an indication of the ion size effect, it clearly 

indicates the increasing importance of the ion size effect from MgO 

to BaO. 

2.3.4. Ion Size Correction ~~ ___ !ll~_~l~aline Earth Oxides 

Although polarisation and lattice distortion corrections to 

the point ion lattice model give good results for l1g0 and CaO, they fail 

+ to account for the small F -band energies in SrO and BaO. It is 

certainly arguable Hhether the latter tHO oxides can still be treated 
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as purely ionic selids within Born's model. Hewever one might 

expect that the finite ion size effects wo.uld be able to. explain, at 

least partially, the discrepancy between theory and experiment. In 

the absence of simpler pro.codures fer taking ion size effects into. 

acceunt, we have adopted B.S.G.'s pseudo.po.tential metho.d fer r+-centre 

in the alkaline earth oxides. 

,Acco.rding to. Equ. (2.16), the po.tential energy o.f the trapped 

electro.n in the pseudo.po.tential scheme is 

v = V I + L M{A + (V - U ) B } I~(r )1 2 
.P P y Y P Y Y Y 

2.65 

where $(r ) = ¢ (r ) fer the ground state and $(r ) = ¢ (r ) fer the y s y y p y 

excited state. A and B are the pseudopo.tential coefficients which 
y y 

incorpo.rate the ion size effects. These coefficients have been 

tabulated by B.S.G.fo.rnumero.us ions: o.nly those appropriate to. the 

alkaline earth o.xides are given in Table 4. 

The sphericnlly symmetric part of the potential U is given 
y 

in Rydberg units by, 

U 
Y a 

N 4 
(-1) y -

r 
y 

2.66 

where N is o.dd or even according to whether the yth ion is the metal 
y 

ion o.r the o.xygen io.n. 

is 

(i) in the ground state 

Therefo.re the total energy of the electrons 

H 
S 

E + ~: L M{A + (V - U ) B } (1 + ar )2 e-2ar
y 

S y S Y Y Y 
2.67 
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and (ii) in the excited state, 

5 
= E + L3 L H {A + (V - U )B } r2 e-2sr

y 
p n y y y p y y y 

2.68 

Where E and E are given by Equ. (2.32) and Equ. (2.33) and for H we s p p 

have made use of the easily demonstrable fact that the summation of 
2 

Cos a over each shell is equal to 1/3 times the spherically symmetrical 

part of the summation. Equ. (2.67) and Equ. (2.68) are to be minimised 

with respect to a and a respectively nnd at the same time solved 

self-consistently with respect to the pseudopotential V. 
Our problem is therefore (i) to solve the equations (2.67) and 

(2.68) self-consistently with respect to the pseudopotential V., where i 
l. 

stands for s or p as the case may be, and (ii) to find the variation 

parameter a (a) such that H (H) is minimised. s p 

shall give the detail calculations for Es only. 

Ep proceed along similar lines. 

For simplicity, we 

The calculations for 

We can either (i) with a suitably chosen a, solve Equ. (2.67) 

self-consistently with respect to V and then with the self-consistent 
s 

V s minimise Hs with respect to a or (ii) with every suitably chosen V s 

minimise Hs with respect to a until self-consistency of Vs is obtained. 

We have followed the first procedure in our calculations. . In order to 

start the self-consistent calculation and the minimisation of H using 
s 
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numerical methods, it is essential to start with a suitably chosen 

-value of a and V • 
s 

He have chosen the point ion values of a and V 
s 

for a start. The calculation therefore consists of the following 

three steps: 

(i) From the point ion calculat ion, ~'le set a = a' and V = V (1) s s 

= Es' - 3~'2/7: Vlhere the superscript refers to the values obtained 

-
from a point ion calculation; Vs(l) means the starting value of the 

pseudopotential. 
. (27) 

For the purpose of using the Newton-Raphson 

method to minimise the total energy, it is also necessary to set the 

derivatives of V (1) with respect to a equal to its counterpart in a 
s 

point ion calculation. 

-(ii) H is calculated using Equ. (2.67) with a and V as given in s s 

(i). He assume that the· result of this calculation gives a pseudo-

potential V (2) whith is equal to the total energy minus the kinetic s 

energy. V (2) is then compared with V (1). s s Self-consistency requires 

- -that V (2) = V (1). 
s s 

In actual fact they would never exactly equal and 

so we should have some criteria as to what degree of self-consistency 

Hill satisfy our purpose in hand. If Iv (2) - V (1)1 did not satisfy s s 

our self-consistency requirements then we should go back to the 

beginning of this step and do the calculation again but this time use 

V (2) in place of V (1) as the neH Vs in Equ. (2.67), while a is s s 

unchanged. In general if we set the result of the Nth calculation 
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as V CJ), then our criteria for self-consistency requires that 
s 

Iv (N + 1) - V (N)I<.OOl s s 

A better condition would be 

- -V (N + 1) - V (N) 1,<.001 
s s 

v Or) s 

2.69 

2.70 

but for our purpose Equ. (2.69) is found to be quite satisfactory. 

So if after the Nth repeat of (ii) the self-consistency condition of 

Equ. (2.69) is satisfied, toJe then proceed to step (iii). 

(iii) This step consists essentially of a numerical solution of a non-

linear algebraic equation using the Newton-Raphson method. To 

minimise H t·dth respect to a. is equivalent to finding the roots of its 
s 

first derivative Hith respect to a.. This objective is conveniently 

achieved by using the NeHton-Raphson's numerical method. Here we 

also need a criteria to decide how accurate the a. should be that vTill 

satisfy our purpose. For our case Equ. (2.69) serves also our 

purpose, i.e. we require that the difference between the Mth calculated 

results of the first derivative of Hs \vith respect to a. and the 

(M + l)th calculation should not be more than .001, i.e. 

, 
IE (M + 1) - E '(t1)1 <.001 2.71 s s 

if not, then we have to change the value of a. according to the 
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Newton-Raphsons formula as is given in all standard textbooks of 

calculus. The new value of a is then used in step (i) instead of 

the previous point ion value. Of course the value of V and its s 

derivatives should be changed accordingly, and the whole process 

from step (i) to step (iii) is repeated until condition (2~71) is 

satisfied. 

A similar calculation is done for E • 
P 

The results are 

shown in Table 4. The agreement between the calculated results 

and the experimental results are sean to be very poor. Although we 

have used the diminished coefficient A of B.S.G., the calculated 
y 

results are still too large. While the general trend of the gound 

state energy from MgO to BaO seems quite reasonable, the excited state 

energies remain stationary round 8 ev. 

The effect of polarisation and lattice distortion may be 

calculated in the sarna way as we did in section 2.3.3. The results 

are also shown in Table 4. It is seen that the agreement between the 

calculated results and the experiments is less good than before, it is 

evident that this poor agreement results from a too large correction to 

the excited state. 
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CHAPTER III 

EXPERIMENTAL EVIDENCES FOR THE FC+-CENTRE 

3.1 EeSeR. Studies of Annealed Crystals 

In their pionE~erinr~ studies' of defects in the II-VI 

compounds Hertz and his associates(l) reported ('hanges in the ESR 

spectra consequent upon thermal bleaching subsequent to reactor 

irradiation. Their early studies were carried out ('l-There possible) 

usinlS polycrystalline samples of oxides, sulphides and selenides 

of 11r.r, Ca, Sr and Ba, although for HgO single crystals were also 

used. The changes observed may be summarised as: 

(i) reduced amplitudes in the F+-centre ESR spectra, 

(ii) the ~01~th of a neH line in the ESR spectrum at the expense 

+ of the P -('entre spectrum, 

(iii) the line was aSYmnetric in shape, such that the maximum 

slope occurred on the hip;h field side of the line, 

(iv) the new line Has shifted to higher fields (lower g-value) 

relative to the F+-centre resonance, 

(v) the intensity of the optical band at 4.90 eV decreased in 

parallel with the F+-centre ESR spectrum. This led to 

the first hint at an assi~nent for the P+-band. Further-

more in HgO single crystals the line width t:.H varied with 

orientation such that t:.HIOO/t:.HIlO = !. 

.. 
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Vertz ct aI, proposed thnt these observations WE're 

consistent Hit1, the formation of defects Hhich consisted of single 

1 . . ' . p+ t . e ectrons trapped at catlon-anlon vacancy pa1rs, C -cen res 1n our 

notation. Hertz et al(l) reported the p;-values of the centres 

for the alkaline earth oxides and also r'Ir.;S, SrS, l'1gSe, SrSe and 

RaSe (Table "1.). In CaO and ~;rS pONners the stability of the 

Fe + -centre ,vas far less than that in ~1g0, since heatin~ at 3000 e 

was enoup:h to destroy their centres. They accolmted this due to 

a much reduced bindinz enerfY of the electron in the Pe+-centre in 

CaO and SrS than in ~'Yp;O, rathp.r than a stronge!" tendEmcy fo!" the 

vacancy pai!" to dissociate into single vacancies at this tempe!"atu!"e. 

As mentioned earlie!" bound vacancy-pairs a!"e energet-

ical1y favourable in ionic solids as a result of the strong 

elect!"ostatic attraction between the oppositely charr,ed vacancies. 

At high temperature the vacancies become mohile and there is an 

inc!"eased probability that the oppositely char~ed vacancies will 

conbine to produce a neutral divacancy. The decreased concent-

ration of the F+ -band "'hieh accompanies the increased concentration 

+ of FC-centres is presumably due to the thermally activated 

. • f' . p+ f . F+ rnlp;ratlon 0 catlon vacanCJ.es to -centres so ormlng C -centres. 

Hhen the binding energy of the electron to this vacancy pair is 

small then quite moderate temperatu!"es are capahle of ionising this 

defect, the electron then prefers to reside at deeper 1yin~ traps. 
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In MgO the diffusion of vacancies after neutron irradiation 

proceeds at lOHer temperatures than ~!ertz et al (1.) originally 

suggested; even at 

• (2) 

o + ' 250 C FC -centres are produced in measurable 

concentrat~ons • Above about 6000 C thermal ionization effects 

+ become apparent, althou~h FC -centres May be regenerated by 

X-irradiation. Above 900°C the concentration of Fc+-centres 

which can be rer,enerated rapidly decreases mainly due to the 

divacancy mi~ratin~ to form lar~er aggregates. Detailed studies 

have led Henderson and BOl-len (3) to sug~est that the di vacancy is 

the precursor to the formation of voids w!1ich are present after 

hir,-h temperature heat treatment. Presumably the vacancy pair 

must become mobile at even Imver temperatures in CaO and SrS. 

3.2 The g-shift and hyperfine splittin~ of Fc+-centres 

Hertz et al(l) Here able to give a qualitative inter-

pretation of the g-shifts reported in Table SA and of the 

+ ' 
asymmetry of the F C -line shape based on the theoretical consideration 

of Kahn and Kittel(4) for F-centres in KCL. Kalm and Kittel showed 

that as a result of the unsymMetrical electric field associat~d 

with the vacancy polarizing the K+ ions, the normally pure 14s> 

state of the valence electron on the neighbouring cation is 

admixed with some higher lying 14p> states. A molecular orbital 

wave function constructed out of the valence states of the ,six 
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neighbourinf!, cations will have the form 

• -. _ e:: (~ _ $ -1) 
1 - S r Pp p 

v'2 . 
(3.1) 

~1'here E depends upon the f>nerpy separation hetween the 148> and 14p> 

levels, and the nsso~iatecl electric dipole Moment points imTards to 

the vacancy. Spin orbit interaction of the form A L.S with the 

14p> states then results in a g shift given by 

~~ = - 4 A ( e::
2 

) 
3~ -12 

+e:: 

(3.2) 

The calculated e-shift is for the alK3li halide F-centres too small 

compared vlith experiment but agrees in order of mar,nitude. 

Since the fc+-electron is chiefly concentrated inside the 

ner,ative ion vacancy, its ground state may be regarded as mainly 

s-like and consequently Equation 3.2 should apply. However the 

lOvTer symmetry of the di vacancy relat i ve to the sinr:le vacancy, 

should increase the polarization of the surroundinf': ions and a 

larger admixture of the Ip> states is expected. The presence of 

the positive ion vacancy also displaces the centre of the elE>c;tron 

char~e cloud towards that cation disposed along the tetragonal axis 

of the defects (see Fig. 1). This also increaSes the amount of 

Ip> character in the ground state wavefunction. Therefore we 

lrrould expect E to increase and the p;-value to be lower than that 

of the r+-centre, as has been confirmed by experiment. 
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The asymmetry of the line shape depends upon the magnitude 

of both gIl and ~JL. The difference between glland gjL is quite 

small on account of the small admixture of Ip> character in the ground 

state wavefunction~ For powder samples; all directions of the 

axis of the defect are equally probable. The probability that 

the axis of an Fc+-centre lies along the direction of the magnetic 

field is therefore much less than the probability that the axis is 

perpendicular to the field. If gIl is greater than g .. L' then the. 

high field portion of the derivative curve (the line shape recorded 

in an ESR experiment) will be much larger and narrower than the 

lOw-field portion. According to Wertz et al the appearance of the 

Fc+-line is in agreement with the above assumptions. It is to be 

noted that for MgO the measured g-value at Q band (5) is such tl'at 

This cannot be explained by the above simple picture, and 

the reason for the observation is unknown. 

From the structure of the defect as shown in Fig. 1, the 

presence of the positive ion vacancy will force the electron to move 

more towards the axially disposed cation at (O,O,-a) and therefore 

leave this cation and the other four nearest cations inequivalent, 

i.e. the electron wave function will be more concentrated 

upon the axial cation than the four cations perpendicular to the axis. 

This is confirmed essentially by the recently reported measurement of 

the hyperfine splittings of the Fc+-centre in Mgo(5). These measure­

ments give an isotropic hyperfine constant of 17.5 gauss for the 
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axial 25r-rg2+ ion while that for the other four ions situated in the 

(0,1,0) plane is estimated to be less than 2 gauss". Although this 

is discussed more fully in the next chapter, it is noted that this 

+ behaviour is commensurate with the movement of the Fe -electron 

tm-1ards the axial H?;2+ ion. Hore evidence is provided by the 

intensity of the hyperfine lines(2). The expected contribution of 

hyperfine lines from the single cation is about 10% of the total 

since this is the probability of the Fe+-centrcs having that 

particular site occupied by a 25 MS nucleus, which is the Qnly isotope 

of Hg that has a nuclear spin of 5/2. There should also be a 

contribution amounting to 32% of the total intensity arising from 

those centres in which one or more of the four equivalent cation 

S 't . d b 25'6 1 • ~ es are occup~e y t"ll'; nuc e~. These expectations are 

substantially supported by the experimental results at hoth X ano 

Q bands. Hhen the magnetic field is alon::; a tril!,onal axis of 

the crystal, the hyperfine spectrum as shmm in Fig 1 consists of 

a six-line spectrum centred on the main line. This spectrum is 

some 10-20% of the intensity of the main line. This result cl~arly 

suggests that the interaction is with just one ~!g site neighbouring 

the defect. The hyperfine splitting for the single cation is 

+ almost four times as larp;e as that of the F -centre, ~ .. hich clearly 

+ indicates that the Fe -electron has been drawn closer to the single 
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cation. 

3.3 Optical properties of Fc+-centres 

The optical properties of the Fc+-centre in alkaline 

earth oxides have not been studied extensively by'experiment, 

because of the many other optical bands present in annealed crystals. 

The vmrk of King and Henderson (6) on the bleaching efficiency of 

the centre in HgO indicated a maximum efficiency at about 3.6 eVe 

In their works they estimated the Fc+-centre transition energy by 

measuring the decay of the Fc+-centre as a function of bleaching 

time using monochromatic radiation of wavelengths in the range 

2S00-6S00~. For this purpose the amplitude of the Fc+-centre 

resonance line was measured by comparison Hith that of the ~12+ 
n 

lines, since the latter do not chane;e during the experiments. 

This is to be compared with the calculated results(S) of 2.02 eV 

usinp; a simple continuum model, i.e. an electron trapped by a dipole 

immersed in a solid dielectric. l'le shall discuss this calculation 

in detail in the next chapter. The unpublished results of 

Stoneham indicates that there is no other bound state exist within 

0.01 eV of the bottom of the conduction band. Although these 

calculations are only approximate, they do point to the fact that 

the defects should in all cases be bleachable with photons of 

appropriate energy. The results of Kinr; and Henderson substantially 

support this vie,,,, in ma~nesium oxide. 
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CHAPTER IV 

+ COUTTNUm1 HODEL FOR F C -CENTRE 

4.1 Preliminary Comments 

This chapter first reviews Pincherle's(l) calculations on 

the D-centre and then calrulates the properties of the Fc+-centre in 

alkaline earth oxides. Pincherle's D-centre is equivalent to our 

FC+-centre since both consist of an electron trapped in the electro-

static field of a cation anion vacancy pair. The earliest treatments 

used a continuum model for this r.entre. The detailed atomistic 

environment of the f'!entre is replaC"ed by the average macroscopic 

properties of the solid. In this way the problem is simplified 

considerably. The experimentally measurable macroscopic property of 

the solid reveals itself in the form of the dielectric constant E. 

+ He shall find later that for D-centre or F C -centre, the hi,~h 

frequency di.electric constant Eco is to be used since the low frequency 

or static dielectric constant gives no bound states. Em'lever the 

effective-mass approach should be a ~ood approximation for weakly 

bound states, where the binding energy is appreciably less than the 

band gap. 

Consider an electron moving in the field of a dipole 

immersed in a solid dielectric of dielectric constant E • 

energy of the electron is 

V = g (2 - 2 ) + 2 VL 
Eoo r l r 2 

co 
The potential 
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where Z is the charge of the vacancies forming the dipole, and r l 

and r 2 are the distance of the electron from the positive and. 

~e~at i ve end of the dipole respecti v~,lY, V L is the potential enerGY 

of the electron in the field of the perfect lattiC!e. The 

Schrodinr;er Equation may then be written as 

If we assume that the total "rave funr.tion is 

= 'I' Cd u (r) 
o 

E fer) 
t 

where u (r) is the lmvest state of the conduf'!tion hand 
o 

then 'I'(r) satisfies 

E u (r) 
o 0 

E 'I'(r) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

l'lhere E = Et - Eo is the energy of the Fe + -electron uith respect to the 

bottom of the conduction band E • o In the followinp; vre C'onsider only 

Eq. (4.5) assuming the band structure to be knmm. Because of the 

axial symmetry of the dipolar field, it is most convenient to work in 

elliptical coordinates(2) (prolate spheroids) whence, 

A = (4.6) 
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QI = azimuth about the axis of the fixed ~harp;es, and R, the effective 

separation betIJeen the positive and neeative charges, is given by 

R = ~a 
F.: 

00 

where a is the lattice parameter. 

the form 

, = L(A) M(~) t(.) 

th ( 5) " b (3) en Eq. 4. 2S separa Ie : 

(4.7) 

If we write the wave function in 

(4.8) 

consequently 

(4.9) 

(4.10) 

(4.11) 

where m and A are separation constants and the parameter P is related 

to the electronic ener.~ E by 

The solution of Eq. (ll-.g) is easily found to be, 

_
1 tl."m,f, 

(211') ~ e 'I' , 

. (4.12) 

(4.13) 
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and the solution to Eq. (4.10) is given by Baber and Hasse(4) as 

00 

M(u) = t-PU L ftPt~(U) 
J/,=m 

m Here Pt(jJ) are associated Le~endre polynomials and the fJ1. are 

numerical coefficients satisfying the recurrence relations 

- 2(2t+3)(J/,-m)(PJ/,-R) fJ/,_1 = 0 

In order that the series (4.15) converges over the interval 

-1~ jJ ~ 1, the follovring continued fraction must be satisfied, 

= am+l 
bm+1 + am+2 

bm+2+ 

where 

t = rn+2, •••• 

(4.14) 

. (4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 
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(5) 
The solution to Eq. (4.11) r,ivEm by Hyl1eraas is, 

(x) (4.20) 

where X = 2p(A-l), the Lm (X) are associated Laguerre polynomials(6) m+n 

and e satisfy 
n 

(n+m)n e - [_2n2 + 2n(2p+m+l) - 0 en 
n-1 I~ :J 

+ (n+l) (m+n+l) e = 0 
n+l 

with 

2 Y = A - P - (m+l) (2p+l) 

(4.21) 

(4.22) 

In order that the series (4.21) converges in the interval 0 ~ x < 00, 

the followinr continued fl'a~tion must be satisfied 

(4.23) 

with 

°a = 1 1 (4.24) 

a = (n+m)n , n = 2, 3, n (n+l'1-l )(n-l) 
(4.2S) 

b 2 = 2n +2n(2E+m+l)-Y n = 1, 2, n n{n+m) 
(4.26) 

Eq. (4.l6) and (4.23) then determine the eigenvalue of the problem. 
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4.2 Pincherle's calculations on D-centre 

Since we are interested only in the binding energy of the 

D-centre, we consider only the ground state for whi~h m = O. 

Egs. (4.10) and (4.11) then reduce to 

~u tl-U2) ~ill t EV -r." - j II = 0 (4.27) 

(4.28) 

where l-le have defined a new paraoeter B = 2R. Pincherle (1) shmTed that 

for small values of S, 

(4.29) 

where Fl and F2 are nQ~erical constants determined by Eg. (4.16). 

Instead of solving the Eqs. (4.16) and (4.23) directly, Pin~herle 

proceeded to find the solution to Eq. (4.28) by the variational 

technique. First he transfor~ed Eq. (4.28) to a form suitable for 

the use of variation calculation. He define(l 

(4.30) 

and 

q(x) = - F 1 1 
-x""-( x-+-"2---) 



H(x) 2 = (x+l) - F2 

x(x+2) 

Where x = ~ - 1, and ~ = Ag 
e: 

00 

Eq. (4.28) then becomes 

d21. _ [q(X) + p2 "(x~ 1. = 0 

dx2 

Th~ variational problem is therefore the minimization of 

Q = r [~:J + q(x) ~;J dx 

o 

subject to the condition N = r W(X) 

o 

The eigenvalue p2 playing the role of the Lagrangian multiplier. 

Pincherle used as a trial ~lave fun~tion for the o;round state 

1jJ = t 
-yx c x e 

(4.31) 

(4.32) 

(4.33) 

in Vlhich C is the nOrMalization constant dependent on y, and y is the 

variational parameter. The most interesting result he obtained wan 

that the eigenvalue Nas determined sol€:ly by the parameter F 1 ,.,.hen the 
. 

variational parameter y is small. Hp. found that 

(4.35) 

tVith the result that there ~dll have no bound state for Fl <0.5. 
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Calculations ~Tere carried out for A~Br and PbS only, and 

from the results shown in Table 5, it is seen that the binding energy 

is small for PbS. The bindine energy for a second electron was 

found to be effectively zero. 

4.3.1 Binding energy of Fc+-~entre in alkaline earth oxides 

+ The bindine ener,rJ7 and hyperfine constants for the FC -centre 

in the four alkaline earth oxides have been calculated(7) usinr; an 

effective mass approach based on the calculations of HaUis, Herman 

and ~1ilnes (3) for an electron bound in the field of a finite dipole. 

Hhile the calculations of Fm! is for an eL;ctron bound in the field 

of a free dipole, the Fc+-centre is immersed in a solid dielectric. 

Consequently we need to interpolate WHf.1's calculation for a free 

dipole to the related system in which the dipole is immersed in a 

solid dielectric. 

The Schrodineer Equation now becomes, 

(4.36) 

all ener,!3ies are referred to the bottom of the conduction band and 

the hieh frequency dielectric constant is used. For the four alkaline 

earth oxides Pincherle's calculations gives Fl < 0.5 Hhen the static 

dielectric constants are used in Equation 4.29 and consequently the 

+ FC -centres accordine to Eq. (4.35) will have no bound states. 
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Therefore we use the high frequency diel0ctric constant throur;hout 

this calculation. Accordingly it is easily shown(7) that 

Bindinrr Energy x (length of dipole)2 = constant (4.37) 

at constant dipole moment. The effective dipole leneth is then 

given by 

R = ga 
E 

co 

The interpolation formula is therefore simply 

Binding Energy EB = (Tabulated EB) (R/a)2 

(4.38) 

(4.39) 

In this equation tabulated En refers to the energies of an electron 
\ 

in the field of a dipole of separation R calculated by PHH and 

tabulated in their paper(3~. The results of this calculation are 

shown in Table 6, top;ether wi til the ratio of the binding energy 1:0 the 

band gap. It is seen that this ratio is rather small and this means 

that the effective mass approach should be a good approximation. A 

comparison of the calculated binding enerl?;Y of the Fc+-centre in MgO 

(2.02 ev) with experiment (3.60 ev)(S) shoN's that the calculated 

binding energy is too small. This is perhaps not surprising in viet-l 

of the simplicity of the model. The only excited states lie within 

about 0.01 ev of the conduction band. Optical' absorption should 

occur at enerr,ies hiF,her than this binding energy to states within the 

conduction band. It is clear that, as the lattice parameter 
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increases, the transition energy decreases, as for all other 

colour centres in ionic crystals. 

4.3.2 Hyperfine constants of FC+-centre in alkaline earth oxides 

+ Th~ isotropic hyperfine constant for the Fe -centre in 

HgO has been calculated(7) using (4.14) and (4.'-0) and thf' 

. f . . . (3) 
~n ormat~on g~ven ~n • In this section we shall extend thls 

calculation to CaO, SrO and BaO. As is well knoHn that the 

. . F' t(9) . .. . 1 h ~sotrop~c or erm~ contac ~nteract~on ~s proport~ona to t e 

square of the ~lectronic ""ave function at the nucleus. The 

hyperfine constant is usually measured in ESR experiments as the 

separation bett·reen tl..JO consecutive lines in a hyperfine pattern 

tori th the mar;netic field as the ordinate. Therefore it is 

convenient to express the constant in Gaussian units. 

A (Gauss) s 
11 

= -3 a.u. 

\oThere lln is the magnetic moment of the nucleus, II is the nuclear 

(4.40) 

magneton and I .. is the nuclear spin of the nucleus. 
£~ 

'1'(0) is the 

electron wave function in atomic unit evaluated at the site of the 

nucleus. llN is usually expressed in units of ~ and are 

tabulated together with IN in the book by Ramsey(lO). 

In order to calculate the hyperfine constants A , it is 
s 

therefore necessary to have a detail knowledge of the electronic wave 

function at the site of the nucleus. \·le only need the p;round 
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state wave function (m = 0) and this can be found by using Eqs. (4.14) 

and (4.20) toqether with the recurrence relations Eqs. (4.15) and 

(4.21). The recurrence relations deternine the ratio of the nth 

coefficients to the first coefficient and the first coefficient is then 

found by the normalization conditions. Fe shall outline the general 

procedure for the calculation of the Have function. Eqs. (4.15) 

and (4.21) are the so-called three terms recurrence relations which 

• h . b h' t 1 (6) reqUJ.X'e t.e asymptotl.C e .dVl.OurS a arge n • It is found to be 

Most convenient torearranlY,€ the recurrence relations in the follm'linr:; 

forms: 

f9- = 

f 9--1 

c = n 
C-n-l 

n (pR.-R) (2£.+3) 

(2Q,-1){(2t+3) j}(t+l)+A-p1+2(R.+l) IEU,+l>+iTI fHl } 

f9, 

2n2 + ~n(2p+l) - Y - 2 
(n+l) C 1 n+ 

C 
n 

The asymptotic behaviour is th~n easily found to be 

t » 1 . 

n » 1 

f 
J.. 
f 1 ,t-

1 - 2 ,£ 
In 

(4.41) 

(4.42) 

(4.43) 

(4.44) 
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In order to evaluate the coefficients, Ne need to know p and A 

correspondin~ to a specified R and these can be extrapolated ,from the 

tables given in(3). The calculations are then fairly straightforward. 

It is found that the expansion (1+.14) and (4.20) converp;e rapidly and 

only two or three terms are sufficient to represent the I-Jave function 

accurately. The total Have function is to be normalised over the 

Hhole space and scaled(7) according to 4.3.1. It is found that the 

scalings actually cancelled each other and have no effect on the wave 

function. The normalisation then ~ives the followin~ relation 

between f and C 
o 0 

f C o 0 
= 

H' = 

M" = 

L' = 

L" = 

+1 

J MC")2 d~ 

-1 

+1 

J 
N(1l)2 2 c1]J ~ 

-1 

co 

J 
L2(A) d)" 

0 

00 

J 
L2(A) )..2 dl-

0 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 



and a is the lattice parameter. The integrals (4.46) and (4.47) 

are evaluated by numerical intef,ration. The integrals appearing in 

(4.48) and (4.49) can be easily calculated by the use of a general 

formula of inter,ration of products of Laguerre functions as is given 

in reference(6). For convenience of future references the total 

electronic wave functions of the Fc+-centre in the four alkaline earth 

oxides are listed in the appendix. 

In the effective-mass Model I{I is an envelope function which 

modulated the band functions at the conduction band minimum 

(see Eq. (4.3». There seems to be no calculations of conduction 

band functions for alkaline earth oxides, and consequently we adopt 

another approach \'/hich simply orthor;ona1ises I{I to the cation ion core 

functions. This would be strictly correct only if I{I Here the result 

of a pseudopotential calculation. Orthogonal ising I{I has much the 

saMe effect as using I{I to modulate a band function, and in both cases 

the Main effect is the enhancement of the Have function at the cation 

nuclei. Thus He calculate the hyperfine constants using: 

(4.50) 

We assume that ~ varies SlOH1y over the cation cores, so as to simplify 
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the overlap integrals, 

<il~> = ~ f ~i dT (4.51) 

o 

This should be adequate because o.f the relatively weak binding. 

2+ 2+ The Mg and Ca wave functions used vlere the free ion functions of 

(11) 2+ 2+ Clementi together tvith Slater orbitals while for Sr and }~a 

only the Slater orbitals ~Tere used; overlaps of ions of the host 

lattice ,vi th each other ~'lere ir;nored. The results are q:i ven in 

Table 7 for three distinct sites. If the negative ion vacancy is at 

(0,0,0) and the positive ion vacancy at (0,0, a) then the sites 

considered were those at (a,O,O), (a,a,-a) and (O,O,-a) in Firro. 1. 

The (O,O,-a) site on the axis of the centre has the largest constant. 

It is seen that the use of Slater orbitals has considerably under-

estimated the hyperfine constants. This is understandable because 

of the vanishing of 2s and higher s state slater orbitals at the 

nucleus. The calculation for Hp;O show a very r,-ood agreement with 

25 2+ the experiment for the Hg ion situated along the tetrap;onal axis 

but the agreement is not good for the other sites. It is interesting 

to compare the ratio of the hyperfine constants for the axial Mg2+ at 

(O,o,:--a) l-1ith the Mg2+ situated at (a,O,O) with experiment. 
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Calculation: 

Expt. 
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(O,O,-a) 

18.07 

17.5 

(a,O,O) 

9.108 

-2 

ratio 

-2 

-8.B 

Apparently therefore the continuum model seriously underestimates the 

ratio of the two hyperfine constants. ~Je shall see in the next 

chapter that a calculation taking into account the lattice structU!.'e 

will give a much better result. 
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C~~PTER V 

POINT ION LATTICE CALCULATION ON FC+-CENTRES 

5.1 Point Ion Lattice Model for the Fc+-centre 

As we showed in Chapter 4 continuum model calculations on 

Fc+-centres in the alkaline earth oxides give a reasonable account of 

the experimental data. We shall therefore pursue this model further, 

now taking into account the detail lattice structure using first the 

point ion model of Gourary and AJrian(l) including later the various 

corrections. We consider specifically the corrections due to 

polarisation, lattice distortion and finite ion size. From the model 

of the Fc+-centre in the alkaline earth oxides(2), it is clear that the 

trapped electron charge cloud will be concentrated mainly inside the 

anion vacancy. If in Fig. 2, we replace the ions of valency Z by 

point charges(l), the the electrostatic potential energy of the FC+­

electron is 

with 

g 
V-­a t 

(5.1) 

(5.2) 

where VF is the potential energy of the F+-centre, and V is the potential 

energy due to the cation vacancy. It is convenient to divide the 

total Hamiltonian H of the Fc+-electron into a part Bo which is 
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essentially the r+-centre Hamiltonian and a part due to the cation 

vacancy. Then 

A A 

H = H + 2V. o 

where the r+-centre Hamiltonian is given by 

(5.3 ) 

H = _~2 + 2 I v. (all surrounding + and - ions), (5.4) 
o J. 

in Rydberg's units. We may consider the potential due to the cation 

vacancy as a small perturbation on the r+-centre Hamiltonian H. The 

perturbation term V effectively admixes excited states of the r+-centre 

into the ground state. We consider only the admixture of p-like 

states, all other higher excited states being ignored. The ground 

state therefore takes the form • 

• = cis> + C Ip> 
s P 

(5.5) 

Where C and C are constants to be determined by the perturbation 
s p 

together with the normalization of the total wave function. This 

leads to the secular equation 

<plH + vip> - E 
o 

<slvlp> 

<plvls> 

,.. 
<slH + vis> - E o 

Where we have made use of the fact that 

<pIR Is> = 0 o 

= 0, (5.6) 

(5.7) 
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This fo11oHs from a group theoretical argument according to which 

an integral is non-vanishing only when the direct product of any two 

.c h . d "b . ., h' d(3) O.L t e ~rre uel Ie representat~ons contalns tne t ~r • It is 

easily seen that this is not so for Eq. (5.7), because in a cubic 

group the s - like and p - like orbitals transform respectively as the 

fully symmetrical irreducible representation fl and the irreducible 

representati~n f 4(4), Fhile the Hamiltonian Ho is invariant under the 

full cubic group. The eigenvalue E is found to be 

where 

E = ~ (E + E ) -
po s 

E = <P IIi + vip> 
p 0 

E = <siB + vis> s 0 

11 = E 
P 

E 
s 

b = <slvlp> 

I~t/ + bg 

The coefficients of eRpansion are then given by 

1 ' C = { ~ + ___ =-__ -., }2 
s 2 IT + 4 E.. 2 ]2 

11 

c = { ! 
p 

, 
____ I=_. ,} 2: 

2l}: + 4 E. 2J2 
/::, 

where the ground state wave fun;tion is 

cis> 
S 

C \P> 
p 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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We shall use as trial functions 

Is> = rn:3 -Clr C't3 (1 + exr) e (5.15) 
7 'IT 

,... 
-Sr Ip> = IsS r € Cos e , (5.16) 

'IT 

vrhich were also the trial functions 'fe used for our F+ -centre calculation. 

in Chapter 2. 

Our problem is therefore to minimise Eq. (5.8) with respect to 

the variational parameters ex and B. The relevant energy integrals are 

derived in the Appendix. Pc:: shall adopt Ne\Tton-Raphson' s method to 

minimise the total energy, as for the F+-centre in Chapter 2. The 

process is now complicated by the invol vef'1ent of tl-JO variational 

parameters instead of one. The lor;ical step Hould be to use the 

+ variational parameters ex and B fron the F -centre calculation as a first 

trial paraP1eter for the Newtoh-Raphson's method. But in fact it 

+ became necessary to decrease th',~ F -centre parameters by about ·1 for the 

process to be convergent. The results of the calculations are sl,own 

in Table 8. It is seen that the calculated energies decrease with 

increasing lattice parameter as it should be. Furthermore the 

admixture of p-like function into the p;round state is about 19% for all 

the four alkaline earth oxides, there being a slight increase Hith the 

increase of lattice parameter. As we shall see in the next section, 
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the admixture will be reduced if the centre of the charge cloud is 

allo"led to move tovards the cation dis'Posed along t)-'e tetragonal axis. 

The point ion lattice model clearly over estimates trye binding energ,y, 
c, 

especially for the heavier oxides \'lith their hip:h polaris ability and 

larr:;e ion sizes. 

5.2' Polarisation and Lattice Distortion Corrections 

In a perfect cubic crystal the electrostatic fields at a 

lattice site balance each other and the polarisation effects are 

negligible. The existence of an anion vacan,cy will give rise to an 

effective electrostatic field proportional to the valency of the 

absent anion. This electric field will polariSe the surrounding ions 

and this polariSation then reacts back on the trapped electron (see 

Chapter 2). A cation vacancy will similarly polarise the surrounding 

ions but because of the charge difference of a cation vacancy the 

induced &poles Hill have a different direction from that due to the 

anion vacancy. The combination of an anion-cation vacancy pair will 

therefore have very different polarisation effects from those of the 

sini!.le anion vacancy. First we consider only the polarisations of 

the nearest catio"r..3 and the nearest anions neip;hbour:i.ng the anion 

vacancy and also the nearest anions to the cation vacancy_ The 

relevant ions are shmffi in Fir;. 2. Fe allow only the nearest cations 

and anions to the vacancy pair to move, their netv position beinr: given 
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by (1 + o)a. The anions labeled A a.nd B in Fig. 2 are held stationary 

at their normal sites. Furthermore the centre of the charr;e cloud 

associated t-Tith the trapped electron is allovled to move a distance ya 

tOHards the cation (~isposed at the" tetragonal axis. The sign 

conventions are best illustrated by expressin~ the "distance" of the ith 

site from the centre of the trapped electr'on in the following form: 

(5.17) 

H~"\("re x., v. and z. are the c~rtesian coordinates of the ith site with 
~ ~ ~ ~ 

respect to the centre of the anion vacancy, and O2 is the displacement 

of the ions disposed at positions perpendicular to the axis of the 

vacancy pair, 01 is the displacement of the cation disposed along the 

tetragonal axis of the vacancy pair and 0 4 is the displacement of the 

anion also disposed at the axis of the vacancy pair. In the use of 

Eq. (5.17) He' shall put O2 = 0 4 = 0 if vie are considering oland 

0 1 = 0 4 = 0 if vfe are considering O2 and similarly for 0
4

, 

He further assume that the induced dipole moments can be 

separated into rectangular cOP1ponents (Pix' Piy' Piz )' The followinp; 

is a list of typical dipole moments of the various sites under 

consideration: 
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(O,a,O) sit,~ (0, P2y ' P2z) (S.18) 

(O,O,-a) (0, 0, Plz ) (5.19) 

(O,a,aJ (0, P3y ' P3z) (S.20) 

(0,0,2a) (0, 0, P4Z ) (S.21) 

(O,a,-a) (0, PAy' PAz) (S.22) 

(a,<1,O) (PBy ' PBy ' PBZ) (S.23) 

The other sites not listed can be obtained from Equations 5.18 to S.23: 

e.g. the dipole moment for (-a, 0, 0) is found by rotating Eq. (5.18) 

and is (-P2y ' 0, P2Z)' 

5.2.1. Depolarisation Factors 

+ As for the F -cf:ntre, it is convenient to divide the 

"depolarisation factors" into two groups, one due to ions ,mch as the 

four CO, a, 0) ions disposed around the axis and the other due to the 

interactions among the other highly symmetrical groupings ahove. In 

calculating the depolarisation factors lattice distortions are ignored 

for simplicity. The electrostatic field due to a dipole of moment 

p is 

(S.24) 

Applying Eq. (5.24) to the four (0, a, 0) ions ShOHS that the Y-component 

of the electrostatic field at a particular site due to the other 3 

sites is given by 

= 1 (..J:. + 312 ) 
a3 4 4 

P 
2y (S.25) 
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and that the Z component is given by 

The 

E" .. z 
" = 

induced dipole 

P = a. 2y 

P = a. 
2z 

+ 

+ 

mOMent is given by 

I " (E + E ) 
2y 2y 

, II 

(E? + E2 ) 
.. z _Z 

(5.26) 

(5.27) 

(5.28) 

+ ' , 
~-lhere a is the polaris ability of the cations and E

2y 
and E

2z 
denote 

the electric field at the site other than the field from the other 3 

ions. The combination of "Eqs. (5.25) and (5.27) and Eqs. (5.26), 

(5.28) then r;ives 

P K + , 
= 0- E 2y 2y 2y (5.29) 

P? K? 
+ E' = 0-_z ._2 2z (5.30) 

where 

K? a
3 

I la3 + (1:. + 3128 = + 0-
."y 1- 4 4 

(5.31) 

K a 3 ; [a3 + (1:. + 1:.~ = + 0-2z 
i"2 8 

(5.32) 
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are the depolarisation factors for the four sitE:~s. Similarly the 

depolarisation factors f8r the four (0, a, a) sites are, 

and that for the four (O~ a, -a) sites, 

KA = K3 Y y 

K = K Az ·3z 

and for the four (a, a, 0) sites 

(!. + 1 )] 
4 1612 

(5.33) 

(5.34-) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

The second part of the depolarisation factor consists of interactions 

among the various groupings of ions such as the four (0, a, 0). In 

general the jth component of the induced dipole moment at the ith site 

can be represented as 

2 6 
p~ = L I 

1 q=l k=l 
(5.39) 
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where Ek are the qth conponent of the electrostatic field other than 
q 

the dipolar field at tpe kth site, Le. Ekq consists of the qth 

component such as the Y-component of the electrostatic field due to 

the vacancies, th8 trapped electron and the displacements of the ions 

at the kth site. n1 are the depolarisation factors Hhich depend 
lkq 

on the geometrical arranv,ements of ions and their polaris.abilities. 

The calculation of D
j is rather tedious and only t:1e general ikq 

procedure is outlined. First \-·re notice that the induced 0.inole 

moment is proportional to the total electric field at the site under 

considera.tion (see Eqs. (5.27) and (5.28)). The total electric fi~ld 

is in turn partially due to the induced dipole moments at other sites. 

Therefore we can write do,m the follovling expressions 

-1 i p.; = ex 
~ 

K· ... E •• + I 
~J .1J ±" .' n,q ~,J 

a q,n , (5.40) 

i where ex is the po1arisabili ty of the i th ion and k.. are the first 
~J 

depo1arisation factor given in Eqs. (5.31) to (5.38), a are constants 
qn 

dependent on the geometrical arrangements of the dipoles. 

rearrange Eq. (5.40) in the fol1mdnr; form 

p1 - I 
~ n,q±i,j 

a q,n 
q i 

p = ex K 
n ij 

E •• 
:L] 

He may 

(5.41) 

There are ten equations of the form (5.41), because the electric field 

at the tHO axially disposed ions have Z-components only. Therefore 

to find r1 or n1k \Ie have to solve 10 simultaneous linear equations. 
~ ~ q 
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It is perha]1s siMplest to solve the equations by successive elimination. 

Consider for example the pair of ions (O,a,O) and (a,a~O). :Je shall 

use the subscript 2 to r'-=present the first ion and subscript B to 

represent the second, then 

, 

+ ' = 0.. 1<2 (E ,- 2.465 _y 2y ---
3 a 

PBy = ct 

, 
KB (E'3 y .y 1.233 

3 
a 

PB ) 
Y 

(5.42) 

(5.43) 

l .. here E stands for the total field at (O,a.O) minus the dip __ olar 2y • , 
field due to the ion at (a,a~O), and si~ilarly for EBy • 

to Eqs. (5.42) and (5.!~3) may therefore be written as 

P = F,,? E' - F2B E2B 2y ~.- ?y 

PBy = FB2 E~ + F
BP 

.,.." 

-y '"By 

l .. here 

F22 
+ l( / [1 - 3.2 - + 

KB K
2y / a

6
] = 0. ('t 0. 

2y .y 

The solution 

(S.44) 

(S.4S) 

(S.46) 

F2B (? 4 c 5 - +~ K ) / [ - + 6J (5.47) = -. ,) 0. (Y. lB' "? 1 - 3. 2fJ. 0. KByK2Y/ a y --'I 
3 

a 

F = 1.233 a ~,.r F22 (5.48) B2 , 
3 

a 



= -,1' a r,'P, 
JJy 
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+ 1.233 a 

3 a 

(5.49) 

.' , . to proceed further ,.,e s1'1all sp11 t E2 and En 1nto terms that contain . Y J)Y 

the contribution from another dipole moment 

equati.on representing PA to the same order 
!"ly 

such as PAy and add another 

as P2 and PB • This y y 

process continues till all the dipole moments are expressed in the form 

of Eq. (5.39). Ee shall have in all 10 x 10 = 100 different D11' • 
1r.q 

The final expressions arE:: too long to I>.'rite out in detail, but ,·lith 

the use of modern dir.;ital computers, the depolarisation factors can 

be easily evaluated for each particular case. He shall only ~ive the 

overall depolal"isation factors for HP:O. He define the overall 

d€polarjsation factor as the ratio of the dipole moment when the various 

dipolar interaction are included to the dipolar moment in the absence 

of any dipolar interactions, i.e. 

D1 = 1 i ex E •• 
1J 

~"'e have then for HgO 

ion sites (i) 

(O,a,O) 

(O,O,-a) 

(O,a,a) 

(O,a,-a) 

(a,a,O) 

(0,0,2a) 

D~ 
]. 

?.2 

.76 

.79 

-2.6 

(5.50) 

D~ 
1 

.77 

.1 

.8 

.92 

.91 

.72 



93 

5.2.2. Electrostatic Field and Energy Chan~es of the Electron 

For simplicity \'le shall assume that the electrostatic field 

of the trapped electron at each l.attice site depends on y only while 

the dependence on 0 is .irrnored, because it is expected that y»o. 

Fe also assume throughout these calculations that the variational 

parameters a. and B remain unchanged. This is because the bindinr; 

ener~y is insensitive to sMall chanp;es in a. and B. Thp.refore the jth 

component of the electrostatic field at the ith site due to the trapped 

electron can be expressed as 

Fe (R. y) e 
(R-\,) 

..... e (R. ) ;l. e 
(R. ) 2 

(5.51) ' .. = E •• + L ijl Y + E •• 2 Y 
~J ~, ~Jo .J- ~ ~J ~ 

where Fe (R. ), k = 0, 1, 
'ijk ~ 

2 are to !":le evaluated at each lattice site. 

Thel'efore the total electrostatic field at each lattice site is the sum 

of E:-. (R., y) ~ the field due to the vacancies and the chanr:e of the 
~J ~ 

electrostatic field due to the lattice displacements. The total 

fields are then given by 

r = EV + ~e L 
"kg kq j'k + Ey': q Jl. 

(5.52) 

V L "'There Ekq and Ekq are the qth components of the electrostatic field at 

the kth site due to the vacancy pair and t:1e lattice displacements 

respecti ve1.V. These are evaluated in the appendix. 



Let us nOH calculate the electrostatic field due to the 

trapped electron~ E:: .• . ~] 
FirGt consider the electrostatic potential 

due to the electron '''hich takes the form 
00 

(5.53) 

1~(r) being the electronic wave function given by Eq. (5.5). 

Therefore 

VCR) = q { C2 V (R) + C2 V (R) - ? C C V (R)} s s p p s p sp (5.54) 

where 

00 

V (R) t 2 = '" (r)dT s s 

/r-R/ 

(5.55) 

00 

V (R) I 2 = IV (r)dT 
p .Y. 

o !r-R!. 

(5.56) 

00 

V (R) = f $" ~t sp 
o Ir:RI 

(5.57) 

Therefore e 
j given by E •• , = y, z are 

1.J 

Be - q { C2 'dV C2 'dV 2C C 'dV } ~. = + -.l? y. 
1.y S S P 'dR. sp~ J. 

'dR. ~ 'dR. R. 
1. 1. 1. 

(5.58) 
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E: = -q { C2 av + C2 av - 2C C av } z. + y 
~z ssp ---1!. s P --2£ _1-=:-_ 

-q { 

()R. <lR. dR. R. 
1 1 1 1 

2C C av } 
s p sp 

dZ. 
1. 

8 e Our prohlen is to expand E. and E. to second ord~?r in y at the 
. ly 1.Z 

(5.59) 

centre of th(3 anion vacancy ret:l f:'l11hering that C and C also depend on s p 

y. These 6X)1anS1.ons arc ~iv",n in the appendix. 

The lattic2 distortion correction to the hinding energy may 

be similarly calculated. The binding enerITY is given by Eq. (5.S). 

E = ~ (E + E ) _ /};. /1
2 + b 2 

k P s 4 
(5.8) 

Th8 expan:::ion of r: ,E and h in terns of yare given in the apIxmdix, 
p s 

the expansions in terns of (J May also be similarly found provided that 

care is taken to use the correct sir;n convention of Eq. (5.17). 

He define 

Qo = };. 62 + b
2 

4 

Q
l = .! i\ ~ + 2b ~ 

2 ay ay 

Q2 = l6 1A + 2b~ 2 dO' dO' 
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2 d2b 
Q = 1:. (~ ~ + A ~ ) + 2 (ab 8b b _ 

5 2 ay dO dYdcr dY acr + dyaa 

Then the lattice distortion correction to the ener~y is 

dE ) s -
(ly 

+ { 05 (dEp + aEs ) _ 

aa aa 

+ { 05 (a
2

Ep + a2Es) _ (05 Q
S 

- 025 * 
dYda dyaa 

Q *Q ) / ;q- } ay 
1 2 o· 
Q

o 

(5.60) 
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- 5.2.3. The Lattice Enerdes 

The total change of enf~rgy of the system consists of an 

electronic part Hhich h2.3 been consider'ed, and a part due to the lattic!e. 

The lattice part of the ener~J consists of the polarisation lattice 

interaction and the chan.r.:e of enerrr,y due to the vacancies •. As 1-7e 

have seen in the case of r+-centre that the polarisation lattice 

interaction consists of tHO parts. The one which is due to the work 

done by the ions in the field of the point dipoles is 

= 2a r N.q. Ia~.(a.) • 
• ~ -1. 1. ~ 
~ 

o 

-+ 
dcr. 

1. 
(5.61) 

where E. (a.) is the diPolar field at the ith site, N. is the number of 
l. l.' 1. 

ions occupying sites equivalent to the ith site, and o..i is the charge 

of the ion at the ith site. The other 'iilhlch is the work done by the 

point dipole against all the fields actinr; on the dipole is 

cr 

!:J.>' r N. 1 J f (P~(o.) ) dcr. = "LP 
i l. 0:. cr. l. l. l. 

1- l. 

0 

where P. (cr.) is the dipole moment at the ith site which possess a 
1. l. 

(5.62) 

polaris ability O:i. !:J.llLC and tlHLP are dependent on y throur;h the 

dipole I'loments. The change of the electrostatic energies of the 

lattice r.lay be shown to be 

MJ ee = ~ { - 26·693 cr + 46. 195 cr2 } a (5.63) 
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-A . For the overlap-repulsive term He use br • Then He get 

(5.64) 

The total chan~e of ener,o;ies of the system is then the SUM of (5.60), 

(5.61), (5.62), (5.63) and (5.64). This sum is to be ninimised with 

respect to 0 and y. The equilibriuM values 0
0 

and Yo so oLtained are 

then used to calculate the polarisation and lattice distortion correction 

to the electronic eneI'm. The lattice distortion correction to the 

energy is p;iven by Eq. (5.60). He shall consider the polarisation 

correction to the enerpy. The ;?otential enerrr,y of an electron in 

the field of a dipole is j7iven by 

-+ 
V - - p e 

-+ 
E (5.65) 

vrhere E is given by E']q. (5.58) and (5.59). 

The results of the calculation are shmm in Table 9, while 

the dinole monents and t!le electric field due to the trapped electron 

are shm-m in Table 10. It is interest inn; to see that the polarisation 

of the surroundinp; ions act in such a Hay as to increase the bindinp; 

energy. A reference to Table 10 ShOtTS that this is because of the 

larc;e dipole mOMent induced on the anions at (O,a,a) Hhich are the 

nearest anions to the cation vacancy. A reference to Fig. 2 shm-IS 
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that for these anions the electrostatic field of the cation vacancy 

acts in the same direction as the trapped electron while the total 

electric field at the 4 nearest cations and the 4 nearest anions to 

the anion vacancy nt"C!arly cancel each other. The net effect of this 

is therefore an increase of th(~ bindinr; enerpy due to the polarisation. 

He should also notice the raDid decrease of the polarisation correction 

to the enerzy of the series from l1r;0 to BaO, due to the increase of 

polarisability of the cations along the series. This is clearly 

shown in Table 10. 

This calculation is not complete because (1) "Ie have not 

included the ion size and exchan'~e effects, (2) the assumption of a 

uniform lattice distortion of (J is not justified because the axial ions 

(O,O,-a) and (O,0,2a) mav have a different distortion from the other 

ions even a chan,rr,8 of sip:n cannot he ruled out, (3) the assumption that 

the polaris ability is a scalar that can be taken from the bulk crystals, 

and (4) the nedect of the polaris able ions other than the nearest 

neifThbour ions. The effects from (2) to (4) are expected to be much 

less tban the ion size effects. Therefore He shall consider in the 

next section the ion size corrections to the bindinp; energy. 

5.3 Ion Size Correction 

~1e shall estimate the ion size correccion to the bindinp: 

energy by the method of B ari;: ram , Stoneham and Gash (5) • As \<1e have 

already seen in Chapter 2 in connection with the r+-centre in the 

alkaline earth oxides that this method o;i ves a reasonabh~ account for 
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the binding energy of the F+-centre. We shall apply the same method 

- + to the FC -centre. It is reasonable to suggest that the effect of 

including finite ien sizes is to slightly increase the distortion and 

polarisation, because both ion size and exchange concentrate more of 

the electronic charge inside the vacancies. At the same time an 

increase of distortion and the ion size will force the electron to 

move more towards the axial cation, i.e. to increase y. The net 

effect of all these together may probably be very small. Therefore 

we shall assume that the lattice distortion andpolarisations are 

uneffected by the ion size correction, so far as the binding energy 

is concerned. In the following procedure the ion size correction is 

applied separately to E ,E and b as defined in Eqs. (5.9), (5.10) s p 

and (5.12). The procedures are then similar tv those in Chapter 2, 

except that we have to consider E and E simultaneously and minimise 
s p 

with respect to two variational parameters. The results are shown 

in Table 11. Since there is no theoretical calculation of the 

conduction band minimum for the alkaline earth oxiGes, the value quoted 

for MgO (-l.O ev) is the estimate of Yamashita(6). With this 

estimation for the conduction band minimum, the binding energy of the 

Fc+-electron in MgO is -4 ev which compares favourably with the 

experimental value of -3.6 ev(7). For the alkaline earth oxides 

series from HgO to BaO, the ion size correction accounts for the 

following percentage of the point ion binding energy: 1-1g0 (23.9%), 
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CaO (26.8%), 81'0 (25.3'J-s) and Ba.O (26.8"6). It is seen that the ion 

size effects play a significant role in these oxides. Fe should like 

to point out that the success of the ion size correction to the bindinis 

enerp;y of the Fc+-centre in the alkaline earth oxides is prohably due 

to the sMall admi:r.ture of the excited state Vlhich is less than 10lla 

for the four oxides considered. 

5.4 The Hyperfine Constant~ 

The isotropic hyper fine constant can be calculated 

similar to the method UB,:~d in Chapter 4. According to Equation 4 .I~O 

the hyperf':ne constant is !'elated to the ,.ave function ~(O) evaluated 

at the nucleus concerned by 

A.s (Gauss) = 
h 

284.7 lIN 

IN j.l 

2 

q,(o) -3 
a.u. 

The !,roblem is to calculate a suitable ,·,rave function at the nucleus. 

This is usually done in the point ion model :by the Schmidt process Le., 

• = N [~ - f <0/ i> i] (5.67) 

,,,here N is a norrrJali sat ion constant, I i> are the ion core orbitals. 

For the calculation of isotropic hyperfine constants onl~! the s orbitals 

of the ion core needed to be considered, since all othel;' orbitals vanish 

at the nucleus. In this chapter we have considered three different 
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wave functions 7, i.e. (1) the point ion lattice \ .. ave function, (?) the 

point ion lattice Have function with lattice distortion and polarisation 

correction and finally (3) the Have function (1) , .. ith ion size effects. 

included. Fe have assumed in tlle calculation of lattice distortion 

and polarisation effects that the variational parameters u and B remain 

unchanp;ed. It is arr;ued there that this aSSuliption PlaY have 

little effect on the bindinr:: energy of the electron because of the 

insensitivity of the bindin~ energy due to small chanr.;es in Q. and S. 

This is certainly not quite true for the wave function itself. 

Therefore the calculations from (2) and (3) must he consid~red as only 

qualitatively true under the approximation of the model. The hyper­

fine constants are calculated by substitutinl3 Eq. (5.67) into I:q. (4.40) 

The core orbital;.; used in these calculations are the sane orhitals as 

in C)lapter 4. The results of the calculation are shmm in Tahle 12. 

It is interestinr: to compare for MgO the three cases with that of the 

continuum model of Chapter 4, 

(O,a,O) (O,O,-a) ratio 

Continuum Hodel 9.108 18.07 1.98 

point ion 11.052 42.623 3.86 

+lattice + polaris ation 8.046 54.293 6.76 

+ ion size f).98l 4~.748 6.14 

experimental -2.00 17 .50 ... 8.80 
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The results are interestinp, because they shml the oLv.·~ous improvement 

of the ratio of the hyperfine constants, AOO lAO 0' after the lattice . - -a a 

distortion and polari:;ation correct3.on over the continuum model. This 

calculated ratio will br.:: further improved if lie had allo"VTed the axial 

ion (O,O,-a) to dintort a different amount than the four (O,a,O) ions, 

because it is expected that the former distortion ,-1ill in p,;eneral be 

smaller than the latter di.,~tortion hecause of the attraction of the 

cation vacancy. The iJ":1provement of A after ion size correction is 
s 

also to be not2d. It seeMS plausible from this calculation that a 

more sophi,~ticated treatment of the lattice distortion and polarisation 

plus ion size effects ,dll be able to explain the experimental results 

. at 12ast for Mf?;0. 

5.5 Conclusions 

\':e shall summarise the assumptions we have made in our 

calculations: (1) we have assumed in the calculation of lattice 

distortion that all the movable ions distort the same i'lmount o. First 

consider the (O,O,-J) and (O,a,O) ions. Th,"" cation vacancy at 

(O,O,a) can be SE.'en to have a stronp;er attraction to the former than the 

latter ion, in the direction shown in Fig. 2. The trapped electron 

which is constrained to move :1lonp:: the axi:; of the divacancy in our 

model will also tend to"attract the (O,O,-a) ion more stron~ly than the 

other ions. The cOl"lhined effects of this Hill therefore result in a 
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different distortion at (O,O,-a) from (O,a,O). This will in p,;eneral 

increase the binding ener~. Consider then the ions at (O,a,O) and 

(O,a,a). ~Vithout the trapped electron thes~ tHO ions should have the 

same distortion in the Y direction and even move a little towards each 

other in the Z direction. The trapped electron will pull the cations 

at (O,a,O) tm"lards the centre of the anion vacancy and push the anions 

at (O,a,a) outHards from the cation vacancy. Therefore it is 

expected that the distortion at (O,a,O) Hill be less than that at 

(O,a,a). As we have seen in section 5.3 that the anions at (O,a,a) 

are chiefly responsible for the polarisation correction; an increase of 

diSPrtion at (O,a,a) will therefore reduce the polarisation correction 

-to the energy. He believe that a relaxation of the condition of 

uniform distortion will in ~eneral lead to a lar,o;er distortion and 

therefore increase the lattice distortion correction to the energy. 

A complete study of the lattice distortion including the shift of the 

charge centre of the trapped electron along these lines is hindered by 

the lack of suitahle methods of takin~ the ion size effects into account. 

We believe that the coniliined effects of all these is to reduce the binding 

energy. (2) In our use of the ion size correction of Bartram, 

Stoneham and Gash, He have assumed that the lattice distortion and 

polarization correction to the binding energy is uneffected by the ion 

size correction. (3) Ue have also assumed that the electrostatic 

field at the lattice site8 due to the trapped electron is so smooth 
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that the change dup. to lattice distortion may be neglected, see Eq. (5.51) 

If this variation was taken into accotmt, the polarisation correction 

Nould be reduced and He would expect a decrease of the binding, energy. 

(4) The variation parameters a and B have been treated a3 constants 

for the lattice distortion and polarisation correction. From a 

physical point of viet'1, the parameters are related to the kinetic 

energy of the trapped electron. If the trapped electron has been 

drawn closer to the axial ion at (O,O,-a) t-Te l'lOuld expect an i~crease of 

a and B because DOH the volume of the electron motion is reduced, 

from the uncertainty principle. ~·Je ~1Ould therefore expect a decrease 

of the binding enerm due to the increase of kinetic enerp;y. It is 

assumed throughout our calculation that this change of energy is quite 

negligible as compared with other corrections to the enerB:Y. But we 

are not quite justified in makin~ this assumption in the calculation 

of hyper fine constants. 

Because of the lack of experimental data for the alkaline 

earth oxides, other than HgO we are unable to compare our calculations 

with the experiment. in detail. For HgO where experimental results 

are available, our calculation compares favourably with the experiment. 

For the other oxides we believe that our results represent an upper 

bound for the binding enerr,y. AlthouRh the absolute value of the 

hyperfine constant from this point ion model calculation is too larp.e 

compared with experiment, the improvement of the ratio of the hyperfine 

constant in this model is quite encoura.r;inr.;. The results of our cal-

culation from both the continuum model and the point ion model demonstrate 

+ that the model of the Fe -centre as consisting of an electron trapped in 

an anion-cation vacancy pair is quite realistic and justified. 
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APPENDIX 

(A) Nuclear Attraction InteRrals 

. If we assume that the wave functions have the following form: 

Is> = a(r) (1) 

Ip> = b(r) r CosS (2) 

then the various nuclear attraction inte~rals will be, in units of 

2 ;i;e , 
R 

<sl ge2 Is> = 
1r:R1 

<pi ge2 
Ip> = 

!r-RI 

00 

JR dr a
2
(r) [r R_r2] 

1 + r dr a2(rl 2 r 
0 

fR~dr b2 GaR - r41 
1 + 

[dr r
4 

b
2 

R 00 

R 

2 dr r b 1 dr r6b2 + R3 
+ 2 (3n 3_l) R2 0 

5 2 -"'I~------'----
oodr r4 b2 

o 

(3) 

(4) 



'" 2 
I .. e 

<p 
!r-RI 

Is> = (5) 

where n = Cos.S is th(! cosine of the ar,gle which the .vector 

R foms with the polar axis. 

We shall only consider the derivation of (5), the 

other integral may be similarly derived 

With reference to the above sketch, we h2ve 

r<R, 
... 

1. \" 
I~I=L 

(Cos y) 

t=o 

." " +1 
I 4r. 

r~."'l L (e t4!) Y R,m * (et~) = lli1 
y 

t=o R M:::-Z 
tm 

(6) 

... 1 
* .... LI (e,¢') (e,t) r>R, 1 l 4w Y Y 

1r:R1 
::: 2I+I hI m=-! 

tm ,9,m 

1::0 r 

(7) 



· From the properties of inteqrals of products of spherical Harmonics, 

we see that only! = 1 would contribute to the integral of Eq. (5), so 

r<R 

r>R 

1 
Ir-RI 

1 
Ir-RI 

= 
(8) 

+1 
= ¥ ;- L 

I' m=-l 
(9) 

For an axial symmetry m = 0, and the expansion may be further simplified 

to, 

r<R 1 r cose Cos 0 1r:R1 = ;2 

1 R cose Cos I=) 
!r-R! = -? 

r 
r>R 

Therefore He have 

Z 2 , 4 
I e. ! H 'IT 

<P !r-RI s> =.. 3 

, 

Cos 0 
R 

where N is a normalization factor, 

N' = ~[fOO 2 2 1100 2 4 ] ~ a (r)r-dr b (r)r dr 

o o. 

The combination of Eq. (12) and (13) then gives Eq. (5). 

(10) 

(11) 

(12) 

(13) 



In Chapter 2 and 5 ~ ~ie have assurn.;d that 

a(r) = -CLI" (1 + ar)e 

b{r) -Br = e 

from Eqs. (3), (4) and (5) ,-Ie find 

+ 19 0. R. + 14)e-2
0.
Ri} (14) 

~ 

2 H { 2. .1 
E = ~ + 2 L (-l)··'i 

p R. 3R. 
~ ~ 

+ 98R. + 
J. 

6)e-28Ri + 

8 Cos e 
b = 317 R2 

(2B
3R. 3 + 

~ 
682R.2 

J. 

2 
3Cos (H).-1 

9_(2BSR. 5 + 6B4R~ J. 

3p.2R~ J. ~ 

J. 

+ 1200. 3R
3 

( 0.+ B ) 6 - ( 0.+ (3 ) 2 

4 30.R 
+ ~ (a+~) 

(16) 



We have also 

+ l.T 2 2crH F centre I (_l)hi ..;.. = R. (17) 
~ a 

F + centre I (_l)Ni 3.. 2crH 2 = + -C R. - a 
~ a 

(18 ) 

where aU = 1.74756 is the t!adelinR; constant for the HaCl structure. 

The first term in both Eqs. (14) and (15) is the kinetic energy 

correspondinp: to the tHO wavefunctions. Eq. (16) must be interpreted 

in the folloNin~ ways: + For F -centre, b = 0 Lecause the summation 

over cose, is zero for cubic syrrIrnetry; + for FC -centre, cose = 1 and 

R = a if the centre of the charo;e cloud is assumed to be at the centre 

of the anion vacancy, otherwise a sumMation over each shell centred 

on the anion vacancy is necessary. 

e 
In order to calculate the expansions of E. 

~y 

e 
and E. ,as 

~z 

defined in Chapter 5, to second order in y, w-e need the follow-ing 

derivatives. 

ac 2 
s 

ay 

2 
()y 

FrOM Eqs. (5.13) and (5.14) we find that 

ab 1 b 
ay! - ~2 / { 1 + 4 ~ 

= 

2 3/2 
} (19) 



+ (8b 
3 

+ 16 E-) 
6

3 
6

5 

2 
a6 
3y 

ab 
3y 

} / { 

= -

a6 
ay + 

1 + 4 

ae 2 
s 

ay 

2b2 b
4 

a
2

6 (- + 8-)-
6

3 65 ay2 
+ 

? 
(0 h--

6
4 + 

(h) 
2 r:/2 

} 
6 

where b and A are defined by Eqs. (5.11) and (5.12). Similarly 

ae e 
s r = 
ay 

a
2

e e 
S E 

a/ 

ae 2 
1 s = -- {2 3y 2 

ac c 
+ S E 

ay 

2 

+ 

2 

} 

ae 2 
s 

3y 

(e ? -
s 

/ c c s p 

C 2) 
p 

4 
48 E-) . 6 

6 

(21) 

(22) 

(23) 

(24) 



'dV av 'dV 
After the expansions s -.12. --2E and R. in of yare of 'dR. terms , 'OR. , 

dR. ~ 
1 1 1 

evaluated, i-le can put 

• 
C 2 dV C 2 'OV 

2C C 'OV C CIY + C2 
2 

s + -12. - SD = + Y S P S P ----'- 0 'dR. dR. dR. 
1 

and 

2C C 
S P 

1 

'OV 
~ = 

1 

2 
Y 

then the final results e given by for E .. are 
1J 

E: 
y. 

= ..2:. C 
1yO R. 0 

1 

e y. .z.a 
1 (C

l 
1 ) E, 1 = - R.2 C 

1y R. 0 
1 1 

Zi a 2 3 z.2 1 ) e } 
Ee = Yi {C ~ C a (- ~ - - 2 0 

iy2 -R 2 - R.2 1 + 2 R.4 2R.-
. 1 1 1 
]. 

and 

E~ 
z.e 

1 0 C --- + 1Z0 R. 0 
1 

2 
e ·z. , 

E. 1 = C z. + C a (1 __ 1_) + C1 1Z 1..2:. 0 R. R.2 R. l 
]. 1 

(25 ) 

(28) 

(29) 

(30 ) 



3 2 
2 (l 

z. 3 z. z. z. , e ~ 

R~2) 
~ ~ 

Eiz2 = C a - + C1 ~ 
(1 --) + R. C2 + C2 0- 2 R.4 2 R.2 

R. ~ ~ R. ~ ~ 
~ ~ 

(32 ) 

In o~de~ to calculate the va~ious de~ivatives of C 2 and C 2 it is 
s p 

necessa~y to calculate the expansions of E and E and b in te~ms of 
s p 

y. If we define 

T = o:R, Y = I3R, D = 0:+8 

EP2(B,R) = ~ (8y5 + 8y4 + 16y3 + 24y2 + 24Y + 12)e-2Y 

6R 

rp3(8,R) = ~ (16y6 + 8y5 + 32y4 + 64y3 + 96y2 + 96Y + 48)e-2Y 

6R 



+ 108)e-2Y 

( 24 120a)R 24 + -+-- +- + 
D4 DS DS 

120a } -DR 
-- e 

D6 

60a R3 +-
D3 

2 
+ 60 +. 300a)R + (144 + 720a)R + (288 + 1440a)R 

D2 7 7 D4 D4 D5 



Then the various derivatives can be shown to be given by 

dE s 
dy = 4 

a 

8 

+ 4a ,>C ESl(o:,a) 

2 2 
N 2a z. 

- - 2 L (-I) i { ---,-~­
R.4 
~ 

a 

2 2 
+ 2a zi 

aE 
---E. = 
dy 

R. 
~ 

2 

,': ES2 ( 0:. R. ) } 
~ 

2 

2 z. 
~ 

(-1 +-) 
R.2 
~ 

* ESl(o:,R.) 
~ 

78·75 

13
2 

z. 
~ 

4 

R. 9 
~ 

1 
+­R. 

~ 

2 
(1- z. ,': EPl( S,R. ) _ zi * EP2(S,R.) 1 ( 5 

z. -I-~ + ~ 
~ - 1-

R 2 e2
R. R.2 R. 

~ i ~ ~ 

(33)' 

( 34) 

(35) 

4z. 
4 

) ~ 

R.4 
~ 



2 4 

oJ~ EP4(S,R.) + _1 __ (16 
~ 6(32R. 

Z. 
_1._ -1-
R.2 

z. 
15 __ 1. __ ) * EPS(S,R.) 

R.4 1. 
~ 1. 1. 

4 
1 

z. 
---- (32.-
6S 2R. R.4 

z.2 ~ --1.-
2

) ~', EP6 (8 ,R
i

) } 

db 
dy = 

1. 1. 
R. 

1. 

[

Z. 2 oJ~ ESPl(a,S,R.) - ESP<f!(a,(3,R.)l} 
1 1. 1. 

R. 
1. 

{ 6
2 

5 "(24 + l~~~) + 2a2 
oJ: ESPl(a,(3,a) 

a D 

_ a 4 * ESP2(a,S,a)} 

(36) . 

(37) 

(38 ) 

(1) where use has been made of the lattice summation by Jones a.nd Ingham . • 

The remaining summations converg~ rapidly. 

Reference 

1. ,J .E. Lennard-Jones, and A.E. In,r.;ham, Proc. Roy. Soc. 

107 A~ 636, (19~5). 



(B) Electrostatic Field due to the Electron 

In chapter 5, we saw that the ith component of the total 

electrostatic field at the jth site is 

E = E.: + E.: + E.~ 
1J 1J 1J 

v d where E •. are the electrostatic field due to the vacancies, E .. are 
1J 1J 

the electrostatic field due_to the ionic di~placements and E.: that 
~ 1J 

are due to the electron. Values of this total electrostatic field 

at the lattice sites shown in Fig. 2, are listed below:-

(O,a,O) E2y 
1.293 E e 1 2 = + + - (- 12.726 a + 13.584 0 ) 

2 2y 2 a a 

E2z 
_ .707 e 1 2 
- -2- + E + -2 (-3.927 a + -8.375 a ) 

a 2:;:; a 

(O,O,-a) -1.5 -e 1 2 Elz =-- + Elz + --2-- (15.008 o - 13.065 a ) 2 a a 

(O,a,-a) .53 E e + 1 2 EAy = -- + -2 (-2.534 a - 2.642 a ) 2 Ay a a 

EAz 
_ .352 + E e 1 (2.472 a + 2.464 0

2 ) = + 2 liz" 2 
a a 

(a,a,O) .324 e 1 2 EBy - -2- + EBy + 2' (-1. 732 a - 2.252 a ) 
a a 



E .384 E e + 1- (08 1 2) Bz = ---2- + Bz 2 -~4 cr - 1. 35 cr 
a a 

(O,a,a) E3y 
~1.293 e 1 2 = + E3y + -2- (5.99 cr - 13.272 cr ) 

2 a a 

E3z 
_ .707 e 1 2 - ---r + E3z + --2- (-4.233 cr + 6.851 cr ) 

a a 

(0.0,2a): E4Z 
-1.5 Ee 1 2 = -2-+ 4z + --2-- (7.98 cr - 12.359 cr ) 

(C) 

a .a 

+ Have Function of the FC -electron in the Continuum Model 

If lie define 

4 
e - Pll \' M(~) = ~ L f P (~) 

R.=o JI, ~ 

x 4 
LO.) = e-'2 l 

n=o 

Cn L (X) 
n 

then the total wave function of the ground state is 

where N is a normalisation constant, and the parameters p and A 

are given in Chapter 4. 



The normalization constant" and the coefficients of 

expansion f and C are given in the following table: 
l n 

N 

MgO .121 -1.029 .161 .• 193 .042 .006 .014 

CaO .101 -1.031 .157 .191 .040 -.005 .013 

SrO' .094 -1.033 .148 .186 .036 -.004 .011 

BaO .081 -1.030 .159 .192 .041 -.006 .013 

-.0001 .005 

-.0001 .005 

-.0001 .004 

- .0001 .005 



o 
Figure lA 

~z 
y 

I 
vacancy 

pair 

2-o 

o - 0'- vacancy 

The divacancy nature and the most important 
hyperfine interactions of the FC+ centre are shown 



~7.5g--t 

r center 

Figure lB 

The hyperfine structure in the electron-spin-resonance 
spectrum of the FC+ centre is shown. The measurement. was 
made at 77°K with HeKflll] crystal axis and at a microscope 
frequency of 9.2Gc/sec. 



-I 
III .. 
I 
III ... 
0 - tJ:j 

> -., -- .... 0 + .. Q I (.0) 
III -.. III I .. 
III 0 ....., .. 

III 

'" 

-0 .. .. 0 I -0 .. 0 .. I vacqncy .. 
I -< 0 - III pair .. .... ....., -+ f'-.) 

Q + .... Q ....., .f;" 
III -- III 

2+ 2- ~ 

Mg 0 

0- 2+ Mg vacancy 0- 0"- vacancy 

Figure 2 

Re1evantionkarrangements neighbouring the 
divacancy at (O,O,O) and (O,O,a)&', The ?divacancy axis 
is along the ~axis with the anion vacancy at the origin 
of the coordinate system. In the figure the anions at 
A and B are not allowed to move, while for all other ions 
01 = 02 = 03 = 04 = 0. The trapped electron is assumed 
to be at (O,O,-ya). 



Table lA 

Kemp and :Jeelev's LeAO results on For -centres in MgO 

In the absence of polarization and lattice distortion correction: 

r l ES = - 19-1ev 
.• , .... ,!' . 

tlE = 4·7 ev 

r4 
, 

Lp l4'4ev = -

In the presence of Lattice distortion alone 

a = +0.072 tlH = 4.85ev 
0 S 

tlE = 4.34 ev 

tlP .. p = 4.4CJev 

In the ~resence of Polarization alone 

(J = 0 1"' = - lS.2ev 
0 .us 

tlE = 4.7 ev 

Ep = - 10.5ev 

In the presence of both polarization and lattice distortion 

C1 = +0.05 E(> = - l2.gev 
0 L) 

tlE = 4.7 ev 

Lp = - 8.2ev 

Experimental value AL = 4.95ev 



Table 113 

Heeley's results on the F+-centre in the Alkaline Earth 

Oxides (obtained using C::aussian '-lave functions). 

Mr;O 

CaO 

SrQ 

BaO 

+ 

(J 
o 

.04 

.02 

.01 

-.01 

6.39 -12.64 

h.42 -10.63 

.6.47 -9.66 

6.52 - -8.65 

l\E 

-8.11 4.53 

-7.08 3.55 

-6.49 3.17 

-5.84 2.81 

+ r:xpt 

4.95 

3.7 

3.0 

2.0 

l\ES is the polarisation and latt::'ce distortion correction to the 

~round state ener~y Ec. 
" 

(J is the lattice distortion. 
o 

Experimental values are taken from :n. Henderson and .1. E. Hertz, 

l\dvances in Physics, 17, No. 70, 749, (1968). 



'fABLE 2 

C0111par'ison of calculated F-band enerp,ies (Ry) in 

lk Ii')., . ~ . + 1] "' ,- d 7'7oK a,b a.<1 •• 31H1e5 with experlmen"a va .uea mea::;,;l ... re at • 

Thi" c()mpotlnns are listt~d in ascending order of the ratio of 

ionic radii, R(=r II" ). 
- + 

Compound l:.E 
UH'ory 

ld::(a) 
('xp 

AE(b) 
exp 

-- ----_ ........... . ...... -
CsF 0.135 O. J39 0.139 

RbF 0.169 0.178 0.17!l 

KF Oo::t) 2 0.210 0.21.16 

RbCl 0.110 0.150 O. 149 

RhBr O~ 128 o. 1.'56 0.13<) 

NaF 0.278 0.276 0.274 

KCl O. iH! o. t(l U 0 .. 172 

Iffir 0.11-6 0.1.54 0.153 

RbI 0.121 0.125 0.126 

KI 0.13:; O. 1 Sf, . 0.138 

NaG O.20l 0.2.')2 0.204 

LiF 0 0 38(; OG377 0.:)78 

NaBr O. 11{~ 0.t74- 0 0 173 

:~aI O.lfoO 0.153 ".~ 

LiCl O • .aJ2 Oa2"ll O.2·M 

UBI' 
c 

0.208 0.199 ... 
Li! O.'IM ... 0.240 

a. C.S. Buchenauer and D.B. Fi.tchen 

b. A.E. Hur.;hes, D. Pooley, H.V. Rahman and W.A. Runciman 



Table 3 

+ F -centre ener~ies after polar~,ation and lattice distortion 

correction for the alkaline earth oxides (usinr.: ,-rave functions given 

in §2). 

HgO 

CaO 

SrO 

a 
o 

.048 

.059 

.064 

BaO .068 

E 
S 

-18.207 

-16.371 

-15.487 

-14.601 

El"(o ) 
., 0 

-13.185 -12.56 

-10.77 -11.765 

-9.76 -11. 343 

-8.654 -10.896 

6E 6E(0 ) 
o 

Expt 

-8.389 5.647 4.796 4.95 

-6.038 4.600 3.731 3.7 

-6.473 4.144 3.287 3.0 

-5.789 3.705 2.865 2.0 

~':. 

, i 
I 

I 

Notation: E~(a), Ep(a ) and 6E(a ) are the bindin~, excited state and 
i:) 0 0 0 ' , 

transition ener,~y (in ev) respectively in the presence of polarisation 

and lattice distortion correction. 

, , 
, I 

, I 



'Table 4A 

Variational and lattice parameters of the Alkaline Earth Oxides 

IT.""~ , 
I . 
I Var~ational , 

Parameters 

-... --·------·-~T 
\ Variational i 
I par.a.rnet. er I 

after 
I • • 
I ~on S.1ze 'I I correction 

6 I a B I Ct 

t 

.Bl1 .705 

CaO .825 .761 

Polaris­
abilities 

11+ co .. 

3.229 15.955 

fon s he para­
meters 

A 
Y 

37.66 

75.57 

B 
Y 

12.64 

I 
43.43 1 

I .. . ~. . --t· r. ~ ~ .. 1 "! . - ~ ~ .. ! 
srO I .692 I .613 \ .784 .727 5. 809 1 17 .347 96.18 

. I I 

~54 It . 582 1 .755 l-.7oal-l~.-::1 
: I I I . I 

20.603 137.12 

Note: All par&'lll!t.er<s are in Rydbergs atomic units. 

Lattice 
parameter 

a 

" 

3.975 

4.54 



I, 

Table 4B 

F+-centres energies after ion size corrections for the Alkaline Earth Oxides 

I 
i 

0- E E (0 ) E E (0 ) t~E 6E(0 ) I E&pt. I 0 I s S 0 P P 0 
o I t-E 

\ 
I 

\ 

f I 

MgO .049 -16.957 -11.133 -9.784 -4.25 I 1.173 6.983 I 4.95 
I 
I 

1 
I I I 

I I I 
3.1 CaO .059 -15.087 -9.127 -8.886 -.429 6.201 I 7.698 

I I 
I I 

I 
I 

7.948 \ srO .064 -14.340 -8.179 -8.729 -.231 5.611 I 3.0 

I I 
, l 

I 
I 

2.0 
, 

BaO .068 -13.461 -9.289 -8.221 -1.147 5.24 8.142 

I ------ --- - -- "-- -- ~----.-- I ---- -

Note all enerp,ies in ev. 



AgBr 

PbS 

Table 5 

Pincher1e's results on D-centre 

a(A.U.) g 

5.44 1 

5.64 2 

K v 

4.62 

6 

2.35 0.73+0.43;>.2 

3.75 

Table SA 

E(ev) 

.051 -.005 

.40 -.27 

,.vertz's experimental results of p; values for F-centres and 

F2-centres in powders. 

Powder p;(F-centre) g(F2-centre) 

HgO 2.0023 2.0008 

CaO 2.0001 1.9995 

S1'O 1.9846 1.9816 

BaO 1.936* 

* Values taken from Carson et ale 



Table 6 

+ EnerRies of the FC -centres in the Alkaline Earth Oxides 

in the continuum model. 

€ co 

E· 
b 

Expt. Eb . 

BgO 

2.95 

2.02 

.232 

3.60 

CaO frO 

3.23 3.31 

1. 72 1. 70 

.224 .254 

BaO 

3.83 

1.24 

.248 



Table 7 

Hyperffne constants of the r c + -centre in the cr.mtinuUTi1 model. 

, 
\ 

_. 

I I (0,0,-1) (0,1,0) (l,l,-l) 

I 
S.O' •. I H.F. S.O. Expt H.f •. Expt li.r. 5.0'. ' Expt 

17.5 I ! ' 

2.79 \ .2·1 .798 I 1 I MgO 18.07 5.54 9.110 \ .245 <1. 

I 
I "-22 \ I I 

CaO 40.24 20.34 2.13 1.58 .165 

t I I 
I 

srO 1.99 1.01 

\ 
I .06 \ • \ \ i 

:ao-l- mr 5.4: In I 2.73 I \ I .23 I I 
1 I I. _ o. 

H.r = Hartree rock wave functions, S.O = Slater Orbitals. All results are in 

tl.'1its of Gauss 



Tahle B 

+ Bindin~ Ener~ies of the FC -centre in the Alkaline Earth 

Oxides before polarisation, distortion and ion size corrections. 

* 

Variational Parameters 

eVe 

.723 .695 -7.286 

CaO .651 .631 -6.799 

8rO .616 .600 -6.542 

BaO .582 .568 -6.271 

The Eb as dven are referred to the vacuUM level. 

. Expt. Eb 

ev 

-3.6 

In order to 

compc3re Hith the experimental result, a knowlec1r.;e of the energy of 

the bottom of the conrluction band is needed. For IIgO the bottom 

of the conduction band is about - -1 eVe 



Table '9 

The b.indinp, ener~ies of tb~ F f" + -centl"'e~dth polarisation and lattlc.e distortion 

MgO 

CaD 

I , 

CO!Tection. 

(J 
() 

.028 

.027 

.... 

y E 
0 

ev 

.110 -7.285 

.124- -6.799 

!,at'ticce 
distortion Polarisation ~., 

"r b~' ~ ,h,r,. L ..... 1:> P 
ev ev ev 

1~n13 -O.6'il .. 5.893 

.832 -0.398 -6.365 

I sm .026 .131 -6.542 .731 -0.245 -S~056 
I 

\ I BaO .024 .1t~O -6.271 .632 -0.10'1 -5.71.1.1 

\ 

it See footnote of Table 8 

Expt 
, 

ev 

-3.5 

1 



--

E21 

H"O -.043 

Cao -.033 

srO -.029 

BaO -.025 

I HgO 

CaO 

srO 

Baa 

Table 10 

Dipole moments and Electrostatic fields due to the Fc+-e1ectron 

P2y E2z P2z Elz Plz 
E4z P4z E

By PBy EBz PBz E
Ay 

I 

.022 -.02 .009 .073 -0.0 -0.01 -0.728 -0.019 .029 -.009 •142 1 -.035 

I I 
I " I 

0.083 -.016 .036 .06 0.01 -.008 -.813 -.015 •023 1 -.007 .147 , -.028 

( 
; 

.129 -.014 .059 .053 .026 -.007 -.801 -.013 .013 -.006 .134 -.025 

.203 -.012 .094 0.048 .058 -.006 -.837 -.011 .005 -0.005 .129 -.022 

PA- E .p E P E p 
-- .. - .. - - -J -- --

-.053 .022 0.041 -.011 -0.694 -0.017 0.187 

-.078 .017 .053 -.008 -.782 -.013 .218 

-.087 0.015 .055 -.007 -.771 -.011 .219 
, 

:".106 0.013 .062 -.006 -.813 -.01 .236 

----

Notations: For the electrostatic field E .. , i stands for the lattice site and j the cartesian 
~] 

component as indicated e.g. y or z. Similarly for the dipole moments. 

See Figures in Chapter 5 for the lattice sites concerned. 

,/ 

I 

-



Table 11 

Binding Energies of the Fc+-centres after ion size 

corrections. 

Conduction 

E AE E 
band 

b b f minima E Expt. E 
ev ev ev ev ev ev 

H~O -6.893 1. 741 -5.153 .. -1. --4.1 -3.6 

CaO -6.365 1.822 -4.543 

SrO -6.056 1.654 -4.402 

BaO -5.741 1.677 _ -4.064 

Note: Eb are the energies after polarisation and lattice distortion 

correction are included as shmm in Table 9. l\E]:. are the ion 

size corrections Hhile L
f 

are the binding energies referred to 

the vacuum and E the bindin[~ ener8ip.s referred to the bottom 

of the conduction band. 



P .1. 

H.F. 42.67. 
HgO 

S .O. 13.00 

H.-F'. 103.45 
CaO 

S.O . 10.99 

H.F. 
SrO 

S.O. 6.33 

H.F. 
RaO 

S.O. 15.63 

Table 12 

+ 
Hyperfine constants of the FC -centre in the Alkaline Earth Oxides 

, 

(0,0, -1) (0,1,0) O,l,-1} ratio A OO-l/AOIO 

L+P 
0 

54 .29 

If> .57 

143.37 

15 . 25 

9.34 

26 .12 

L+P +1 Expt . P. I. L+P L+P +1 Expt . P.I. L+P L+P +1 Bmt P .1. 
0 0 0 00 ' 

42.75 11.05 8.05 6.98 1.10 1.28 .60 3.86 
17.5 ~2.0 <1. 

13.08 3.37 2.45 2.14 .34 .39 .18 3.86 

101.84 25.69 1B.18 13.64 2.34 2.84 1.00 4.03 

10.73 2.76 1.93 1.44 .25 .30 .11 4.03 

6.29 1.56 1.09 .76 .13 .17 .05 4.06 

13.99 3.79 2.75 1.48 .31 !43 .09 4.13 

P.I. represent the results from a point ion calculation; 
L+P = P.I. with lattice distortion and polarisation correction; 
L+po+I = L+P with ion size correction a~ explained in the text 
H.F~ and S.O? have the same meaning as in Table 7. 

L+P L+P +1 Exot 
0 0 

6.75 6.14 
~ 8 . 

6.75 6.14 

7.9 7.46 I 
7.9 7.46 

8.56 8.28 

9.5 9.46 

'\ 

I 

\ 

I 

I 
I 
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