Keele

UNIVERSITY

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational
purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to
guote extensively from the work, permission must be obtained from the
copyright holder/s.



HYPERSPACES OF UNIFORM SPACES

Thesis submitted for the Degree of Doctor of Philosophy

at the University of Keele

by

ANTHONY GAVIN HITCHCOCK, BA(Oxon).

Department of Mathematics,
University of Keele.
October, 1971.



DECLARATION

The work reported in this thesis is claimed
as original except where explicitly stated otherwise. The
thesis has not been submitted previously for a Higher

Degree of this or any other University.

ACKNOWLEDGEMENTS

I wish to express my gratitude to the following:

Professor A. P. Robertson, my supervisor, for
his inspiration and encouragement;

Dr. Wendy Robertson for some useful ideas;

Mrs. Sheila Pye and Miss Glenys Howell for the
excellent typing of this thesis;

The University of Keele, and the Charelick

Saloman Trust for financial assistance.



ABSTRACT -

This thesis is concerned with the properties and uses of
the so-called Hausdorff uniform structure on the set of subsets
of a uniform space. Sometimes the results are for more specialised
spaces - metric spaces, normed spaces or topological vector
spaces, or for the more general proximity spaces. Historically
the hyperspace has probably derived its importance mainly from
the concept of hypercompleteness. Here a study is made of
hyperspaces of Hausdorff completions and Hausdorff completions
of hyperspaces, and, in particular, of a case where these spaces
derive from two related uniform structures on a set. Certain
Hausdorff completions are shown to be uniformly embedded in the
‘hyperhyperspace', and some generalisations are proved of
results of the Robertsons on sets of compact subsets. Making
a completely different approach, J. L. Kelley's notion of a
fundamental family of subsets is applied to uniform spaces and
the Hausdorff completion of the hyperspace is constructed by
means of fundamental families. A study is made of two conditions
on a mapping between uniform spaces, the filter condition,
introduced by Dr. Wendy Robertson, and the analogous fundamental
family condition, which bears a relationship to hypercompleteness
gimilar to that of the filter condition to completeness.

Another subject which has attracted some interest recently is

the comparability of the topologies induced on the set of subsets
by various uniform structures on the original set. A survey

of known results is given and the relationships between them are
discussed. The question of when two uniform structures induce

the same topology on sets of subsets of particular kinds is
investigated, and finally a new condition is provided for a uniform

structure to be unique in the sense that nc other uniform structure
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on the given set can induce the same topology on the set of
subsets. The last two chapters deal with properties of mappings
and sets of mappings, introducing two new concepts - the
hypergraph of a mapping and a hypercompact set of mappings.

The properties of the hypergraph are related to continuity

and uniform continuity, giving rise to theorems similar to
closed graph theorems. Hypercompactness is studied in

relation to compactness and collective compactness of sets

of mappings.
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CHAPTER I

INTRODUCTION

1.1 Prologue. To appreciate the set of subsets of any
mathematical space as a space in its own right involves more than a
step-up of cardinality - it requires a conceptual leap which lends to
a study of these 'hyperspaces' a character all its own. Apart from
the intrinsic interest, such a study can bring fresh insight into
familiar ideas and can sometimes draw out the common essence in seemingly
diverse situations. It is hoped that this will emerge during the
course of the present thesis, in which the set of subsets of a
uniform space, endowed with a derived uniform structure, is investigated
in relation to a number of different mathematical situations. The
investigation sets out in a spirit which owes much to Ernest Michael,
vwho really began it all, and J. L. Kelley, who observed the relevance
of the hyperspace notion to the closed graph theorems of functional
analysis.

In this first chapter the mathematical structures which underlie
the work to follow are described. Since uniform apaces do not appear
to have yet claimed their rightful place amongst the toys in the
mathematician's nursery their description is given in some detail. A
survey of fundamental results in the general theory of hyperspaces is
included, both to place the ensuing work in its wider context and
to allow greater freedom of movement in the future. Many of these

results will be recalled frequently.

1.2 Set-theoretical notions. These are used naively. The

terms set, collection, family and clags will not be used in logically
distinctive ways but simply to serve clarity. The set of non-empty
subsets of a set X will be denoted by CS(X), and in general capitel

letters, e.g. A, will be reserved for subsets of X and curly letters,
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e.gué}y for subsets of O(X). The set S (X) may also be regarded as
the set of functions from X into the two-point set {0, 1}, sometimes
written 2 ,Ifahen the set X is endowed with a mathematical structure and
the set S (X) has a derived structure, it is called the hyperspace of
the space X. The term hyperspace may also be used when speaking about
subspaces of S(X).

Let U and V be relations on the set X - that is, subsets of the
product X x X. Then U o V (or just UV) will denote the set
{(x, y) : (x, 2) e U, (2, y) € V, some 2z € X}. Also, 6 =UoU,
a =JoUoU, etc., and 61 = {(x, y) : (y, x) € U}, The relation U is
called symmetric if U = 61. For a relation U and a point x in X we
write U(x) = {y € X : (x, y) € U}; for a subset A of X we write
U(a) = {y e X : (a, y) ¢ U for some a € A}. The set {(x, x) : x € X} is

called the diagonal and denoted by A.

1.3 Uniform spaces. A uniform structure is the natural general-

ization of a metric structure, and is a special kind of topological
structure in which the neighbourhoods of different points are comparable.
The theory acquired its present form essentially at the hands of Weil in
1937. A Uniform structure, or wuniformity, on a set X is a collection §
of subsets of X x X, each containing the diagonal 4 and together forming
a filter, with the additional properties that, for each member U of §,
the inverse alis also a member, and there is some member U' whose square
6' is contained in U. The members of § are called the entourages of the
uniformity, following Bourbaki (u4).

A base U for the uniformity £ is a collection of entourages such
that a subset of X x X belongs to £ if and only if it contains a member
of the base. Conversely, a given collection of subsets of X x X will be

a base for some uniformity on X if (1) each member contains the diagonal 4,

(2) the intersection of any two members contains a third, (3) each member
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contains the inverse of some member, and (4) each member contains the
square of some member. The entourages of the generated uniformity will
then be just those subsets of X x X which contain a member of the base.
An important fact is that every uniformity has a base consisting of
symmetric entourages, closed with respect to the product topology
(see below).

The set X, together with the uniformity £ will be referred to as
the uniform space (X, £), or just the uniform space X, where there is
no possibility of confusion with another uniformity. Sometimes, when
the uniformity is specified by a base U we will refer to the uniform
space (X, T). The unique topology on X for which the neighbourhood
filter of each point x is the collection B (x) = {U(x) : U € £} is
called the wniform topology and denoted t(£). We may then refer to
the topological space (X, T(£)). If this topology satisfied Hausdorffs'
separation axiom we call the uniformity separated or Hausdorff. This is
the case if and only if the intersection of the entourages is the
. diagonal. The distinction between separated and non-separated

uniformities will be important in this thesis.

l.4 Fundamental theory of uniform spaces. If A is a subset of

the uniform space (X, ¢) then the relative wniformity on A is that whose
entourages are the intersections of A x A with the entourages of ¢.
The set A then Lecomes a uniform space itself.
Taking closures with respect to the uniform topology on X and the
product topology on X x X we have the following useful identies:
X = (\{U(A) :Ue €} A any subset of X,
T = r\{U oS50U:Ug¢g¢} , S any subset of X x X,
A mapping f from a uniform space (X, £) into a uniform space (Y, n)
is called uniformly continuous if for each V in n there is some U in £

such that (f x £f)(U) is contained in V. It is then certainly continuous



-4 -

with respect to the uniform topologies. A bijective bi-uniformly

continuous mapping is called a uniform igomorphism and the two spaces are
then called uniformly isomorphiec. Since there will seldom be any possibility
of confusion with other kinds of structural isomorphism we will usually
abbr:viate these to isomorphiem and isomorphic. A uniform isomorphism

is certainly a homeomorphism of the uniform topologies and so every
topological invariant is also a uniform invariant.

There are certain concepts whose definition makes real use of the
uniform structure, and which are thus uniform invariants but not topo-
logical invariants. Of particular importance are the concepts of
precompactnese and completeness. The uniform space (X, §) is called pre-
compact if, for each U in §, there exists a finite subset F of X such
that X = U(F), or equivalently, if there exists a finite covering of X
by U-small sets (a subset A is U-small if A x Ac U). This is the natural
generalization of the concept of total boundedness in metric spaces.
Completeness in uniform spaces may be formulated in terms of either filters
or nets. Both formulations will be used freely. A filter is called a
Cauchy filter if for each entourage U it contains a U-small set. The space
is called complete if every Cauchy filter converges. A net (or directed
set) {xi : 1 € I} in X is called a Cauchy net if, for each entourage U
there is io in I such that (xi, xj) belongs to U whenever i, i 3 io.

The space is complete if and only if every Cauchy net converges to some

point of X.

1.5 Metrics, pseudometrics, uniformities, proximities and topologies.

If (X, p) is a metric (or pseudometric) space then the collection of
gubsets of X x X of the form U(p, €) = {(x, y) : p(x, y) < €} forms a
base for a uniformity on X, cclled the metric (or pseudometric) wniformity.
A uniform space is called metrizable (pseudometrizable) if a metric

(pseudometric) P can be defined on it so that the sets U(P, €) form a
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base for the uniformity. The space is pseudometrizable if and only if
it has a countable base, and is metrizable if and only if it is separated
as well. A topological space is called uniformizable if there exists a
uniformity on it such that the uniform topology coincides with the
given topology; this is the case if and only if the space is completely
regular. On & compact separated topological space thure is precisely one
uniformity compatible with the topology. In this thesis we shall always
use the term compact to mean what is sometimes called bicompact, or by
Bourbaki, quasi-compact - that is, every open covering of the space has
a finite subcovering. Note that although the closure of a compact sub-
space of an arbitrary topological space need not be compact, this is true
in uniform spaces. Furthermore the closure of a relatively compact sub-
space is compact, even for non-separated spaces, and the closure of a
precompact subspace is precompact. An important fact is that a uniform
space is compact if and only if it is both precompact and complete.

There is a structural layer lying in between the topological and
the uniform - that possessed by a proximity space (X, §), in which there
is a relation § in ES(x) specifying which pairs of subsets of X are
in proximity (A8 B), and which are remote (A § B). The notion of proximity
will occur in Chapters 3 and 4 but a detailed theory will not be required
(see e.g. Thron (31)). Every uniform space (X, £) becomes a proximity
space by putting A § B whenever there exists U in £ such that A and U(B)
do not meet, in which case A and B are called ¢-remote. If n is another
uniformity on X we say that § is proximity-finer than n if every pair of
n-remote subsets is also f-remote. The class of uniformities on X
inducing the same proximity § is denoted by w(6§) and has a unique coersest
member under which X is a precompact uniform space. Every proximity space
(X, 6) becomes a topological space by taking, as proximal neighbourhoods

of a point x, the subsets A for which (X - A)#{x}.
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1.6 Hyperspaces. As with so many things, the study of

hyperspaces had its genesis in the mind of Hausdorff, who defined
a metric on the set of closed, nonempty subsets of a bounded metric
space. When X is any topological space, we shall denote the set
of closed nonempty subsets of X by €(X). When (X, p) is a

pseudometrizable space we can follow Hausdorff and define the

sup p(a, B),
agA

This may take infinite values if the subsets are allowed

distance d(A, B) between two subsets to be max {

sup p(b, A)}
bEB )

to be unbounded, but then min{d, 1} defines a pseudometric on S
ard a metric on €(X). We will refer to this metric as the
Hausdorff metrie.

Starting with a uniform space (X, £), it is possible to define
a number of structures for the set S(X), most of them derived from
the topological structure on X. First of all, S(X) can be partially
ordered by inclusion and the right and left order-topologies thereby
defined. Ernest Michael, following Vietoris (33), studied the
finite (or Vietoris) topology in (20); this topology is the supremum
of two others, known as the upper-semi-finite and lower-semi-finite
topologies, in the lattice of all topologies on ~(X), and has been
the one to attract most interest. Other interesting and useful
topologies have been defined by Mrowka (21) and Fell (7).

It is natural to wonder what relationship any topological structure
on S(X) has to the fairly well known notion of topolgical convergence
of subsets (see Mrowka (21)). If {Ei} is a net of subsets in a
topological space X, let limsup Ei be the set of points of X for which
]-:i frequently intersects each neighbourhood, and liminf Ei be the set
of points for which E i eventually intersects each neighbourhood. Then,
if limsup E, = liminf E; = E, the net {Ei} is said to be topologically
convergent to E. When X is a compact metric space, convergence in the

Hausdorff metric on &(X) coincides with topological convergence of sets, |
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and when X is any separated compact space the finite topology on
@(X) induces topological convergence of sets. However these results
fail for locally compact spaces; when X is a separable, locally compact
metric space Watson (37) defined a new metric on & (X) which induces
topological convergence of sets, and when X is any locally compact
space Mrowka defined what he called the lbc-topology on € (X) having
the same property, and coinciding with the finite topology if X is
compact. Effros (6) showed that for a separable complete metric
space X the Borelian structure generated on e(x) by the topological
convergence of sets is standard, and, if the space is locally compact,
it is actually a topology, which turns out to be the same as that
defined and studied by Fell (7 ), and only slightly different in
construction from the finite topology.

When X is a regular space (and in particular when X is a
uniform space) which is not locally compact then (21) there is no
topology on €(X) which induces the topological convergence of sets.

The structure on $(X) with which this thesis is concerned is the
natural generalization of the Hausdorff metric and wes introduced by
Bourbaki and further studied by M:chael (20), It derives essentially
from the uniform structure on X. Let U be a base for the uniformity.
For each U in U let U be the collection of pairs (A, B) of subsets
of X such that both A CU(B) and B = U(A). The sets U form a base for
a uniformityz:(. on S(X), called the Hausdorff uniformity, because it
coincides for a metric space with the uniformity of the Hausdorff
metric on &(X), and with the uniformity of the pseudometric on S(X).
It is clearly independent of the choice of base for the uniformity
on X, and may be denoted by E.

For an arbitrary uniform space (X, £) it is true that convergence
of gets with respect to the uniformity E implies topological convergence,

but in general the uniform topology T(§) does not induce topological
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convergence of sets, as indicated by the remarks earlier. It is known
(see Michael (20)) to coincide with the finite topology on the set

of compact subsets, and so when X is a compact separated space these
two topologies, Mrowka's lbc-topology, and Fell's topology, all coin-
cide on £.(X) and induce the topological convergence of sets.
Interestingly, the topology r(E) does not characterize the wniformity
§ from which it is derived. This, and related topics, will be con-

sidered in Chapter u,

1.7 Fundamental properties of the Hausdorff uniformity. The

uniformity g'is not separated on S(X) but is easily seen to be separated
when restricted to €(X). For the pair (A, B) of subsets belongs to
the intersection of the entourages U if and only if A < U(B) and

and B —U(A) for each U, and since the intersection of the uniform
neighbourhoods U(B) of a subset B is just its closure, this will be
true if and only if A and B have the same closure. For this reason
most results concerning hyperspaces are formulated in €(X). For
simplicity we shall also use the notation E, 7L, when talking about

the Hausdorff uniformity restricted to £.(X) or any other subspace of
5(X), so long as there is no possibility of confusion. Most of the
time from now on it will be understood that all hyperspaces are endowed
with the Hausdorff uniformity.

The mapping x + {x} is a uniform isomorphism of X onto a sub-
space of S(x), and if X is separated, onto a closed subspace of €.(X).
When the Hausdorff metric is applicable it is actually an isometry.
Thus X inherits many properties possessed by E(X); in particular X
is metrizable, precompact or compact if and only if €.(x) has each
respective property (see Michael (20)). If &€(X) is complete so is
X. If X is a complete metrizable space then éi(x) is complete,

but this result is not true for arbitrary complete uniform spaces, a



-39 .

fact which has interesting repercussions. The relation of the notion

of completeness to hyperspaces will be the central theme in Chapters

2 and 3.

1.8 Subspaces of the hyperspace. When A is any subspace of X,

the Hausdorff uniformity on ¢3(A) derived from the relative uniformity
on A is the same as that induced on S(A) as a subspace of Sx). 1f
A is dense in X then S(A) is dense in S(X), and if A is closed in X
then éa(A) is closed in éﬁ(x). If A is compact and closed then the
collection of sets of E.(X) which intersect A is closed in éf(x).

The union of a collection of closed subsets of X which forms a
compact subset of f3(x) is closed in X; the union of a compact collection
of compact subsets is compact. These facts were proved by Michael (20),
and will be used frequently. They allow some interesting, simple
proofs of results in many different contexts. For example, when A
is a compact subset of a uniform space and U is a closed entourage
then U(A) is closed; the sum of a compact subset and a closed (resp.
compact) subset of a topological vector space is closed (resp. compact);
if G/H is the quotient of a topological group by a compact subset
then the inverse image of any compact subspace of G/H under the
canonical mapping G + G/H is compact. A number of Arzeld-Ascoli-type
theorems can also be proved in this way (see Chapter 6).

The space é’,‘(x) is always dense in S(x). The set F(X) of mn-em[bg
finite subsets of X is dense in 3(X) if and only if X is precompact;
in fact the closure of %F?X) in S(X) is just the set of all pre-
compact subsets of X. It is interesting to contrast the situation
when S(X) is regarded as a product 2x of copies of the discrete
space {0, 1}, with the product topology;;?In this case J(X) is
always compact, and 3¥ix) is always a dense, precompact subspace.

With the finite topology, too, %F?X) is dense in JS(X).
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In this thesis we shall be particularly concerned with the
subsets of € (X) consisting of the precompact sets and the compact
sets, denoted respectively by P(X) and C(X); also with the set
§I(X) of relatively compact sets. The set P(X) is closed in
EX). IfX is complete the set C(X) is closed in €. Any
decreasing net of sets in (C(X) which is Cauchy must converge to
the intersection. Any decreasing net in 6§IX) which converges
must converge to the intersection, and any increasing net whose
union is precompact must converge to its closure. Note that if

A; converges to A in S(x) then it converges also to &, and Ki

converges to A in &(X).

1.9 Induced mappings, and spaces of mappings. Every mapping

t from a uniform space X into a uniform space Y induces a mapping
t° of S(X) into B(Y) and a mapping t' of S(X) into @(Y),
defined by t°(A) = t(A) and t'(A) = t(A), for each subset A. This
notation will be standard throughout the thesis, and the induced
mappings t° and t' will be basic tools in the development. They
will be involved particularly in Chapter 3, and the graph of t!
(introduced as the hypergraph of t) will be the guest artist in
Chapter 5.

Each of t° and t' is uniformly continuous if and only if t is
uniformly continuous. Let T be a set of uniformly equicontinuous
mappings (that is, for each entourage V of Y there is an entourage
U of X such that t2(U) < V for each t in T); then the sets
™ = {(t° : teTHand T' = {t' : t ¢ T} are uniformly equicontinuous
as well, and the mappings A + T(A) and A + T(A) are both
uniformly continuous on J(X), where T(A) = Utea) : te 1.

When X is any set and Y is a uniform space, let F(X, Y) denote

the set of all mappings from X into Y. For any collection ¥ of
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subsets of X, a uniformity can be defined on this set, called the
wuniformity of uniform convergence on the gets qf;ﬁ%, and denoted
by 5(32). It has base consisting of all finite intersections of
sets of the form

WA, V) = {(f, g) : (f(a), g(a)) € V for all a e A},
where V is any entourage of Y and A any member of<§k. When
cﬁk: {{x} : x € B}, B some subset of X, then the uniformity £(f})

is called the uniformity of pointwise comvergence on B. 1f

B = X it is known simply as the uniformity of pointwise convergence,
and coincides with the product uniformity on F(X, Y) as the

product Yx.

If t, + t in F(X, Y) with respect to the uniformity Ecﬁk)

i
) o . . .
then t >t in F(Qg(x), S(Y)) with respect to the uniformity of

pointwise convergence on&%; The converse is not true. We can,
however define a new uniformity on F(X, Y) so as to have the two
kinds of convergence equivalent. Because of the way each mapping
in F(X, Y) induces, in a one-to-one manner, a mapping in

F( 3(x), S(y)), the former set may be regarded as a subset of

the latter. Then ifgf%'is any subset of S(x), the uniformity on
F(EB(X), G(Y)) of pointwise convergence oncf}'induces a uniformity
on F(X, Y) for which f, converges to f if and only if fi(A)

i
converges to £(A) in 3(Y) for each A in St. other uniformities may

be defined on F(X, Y) in a similar manner.

Spaces of mappings and uniformly equicontinuous sets of

mappings will come under consideration in Chapter 6.

1.10 Topological vector spaces; normed spaces. Some of

the most interesting and useful uniform spaces are those which have
topological and linear structures, compatible with each other in

the sense that the vector addition and scalar multiplication
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operators (x, y) + x + y, (x, 1) + Ax are continuous, Such a space
¥ is called a topological vector space. We will always assume the
scalar field to be either real or complex. The topology on X is
characterized by a base Y for the neighbourhoods of the origin 0,
for if x is any point in X the sets x + V, V in‘yf, form a base
for the neighbourhoods of x. Consequently, any mapping of X into
a uniform space is continuous if and only if it is continuous at O,
and then it is actually uniformly continuous with respect to the
natural uniform structure on X which has base consisting of the sets
of the form U(V) = {(x, y) ry-xc¢ v}, for V in’Y’. The Hausdorff
uniformity on 3(X) is derived from this uniformity and then has
base consisting of the sets.

UV) = {(A, B) : ACB +Vand B&A + V},
for V inY". For simplicity we shall denote this by V.

A subset A of X is called conmvex if pa + Ab belongs to A
whenever a, b belong to A, and u,A are non-pegative real numbers
summing to one. A subset A is called balanced if Aa belongs to A
whenever a belongs to A and A has absolute value at most one; if
A is both balanced and convex it is called absolutely convex. The
balanced (convex) (absolutely convex) hull of A is the smallest set
with each respective property containing A. The closure of any
balanced (convex) (absolutely convex) subset has the same property.
The space X is called locally comvex if it has a base consisting of
convex neighbourhoods of the origin. A subset A is said to
absorb a subset B if there is some A > O such that B .~ uA for all
v with |u] 3 A . A set which absorbs points is called absorbent.
Each O-neighbourhood is absorbent. A set which is absorted by each
O-neighbourhood is called bounded; the set A is bounded if and only
if for each O-neighbourhood V there exists A > O such that A & 0.

The set of nonempty, bounded subsets of X, and the set of
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nonempty, balanced subsets of X are each closed in ES(X). If X is
lccally convex the set of nonempty, convex closed subsets is closed
in éi(x), and hence the set of nonempty, absolutely convex, closed
subsets is closed in &(X).

An absorbent, absolutely convex, closed set is called a barrel.
Every locally convex space has a base consisting of barrels; a
space is called barrelled if every barrel is a O-neighbourhood.

A pseudonorm on a vector space X, is a real-valued function
x + ||x|| on X such that ||x|| 3 0, ||ax|] =]r] l|x]|, and
Ik + yll ¢ llx!] +llyll. 1£|ix]l = 0 impiies x = 0, the function is
called a nmorm. A pseudonormed space is a topological vector
space under the topology defined by the metric distancellx - y|L
A topological vector space is pseudonormable if and only if it
has a bounded, convex neighbourhood of the origin, and is normable

if and only if it is separated in addition.

1.11 Quotient spaces. Since these can be regarded as subspaces

of S(X) under certain circumstances, they provide a fruitful
field for applications of the theory of hyperspaces. We shall
investigate, particularly quotient spaces of topological vector spaces.
For an equivalence relation R on an arbitrary uniform space
X, the quotient topology on X/R may differ from the topology inducad
by the Hausdorff uniformity, and from that induced by the finite
topology on 3(X) (see Bourbaki (4), Chapter 2, exercise 1.5).
Applying a result of Michael ((20), Prop 5-11), we can deduce that
for a compact., separated space X and a Hausdorff equivalence
relation R, the quotient topology and Hausdorff uniform topology
coincide on X/R, and the quotient space is a closed subspace of
éi(X). If X is a topological vector space and M a vector sub-

space, then the natural uniformity on the quotient space X/M
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generated by the sets of the form {(a + M, b + M) : b - a + M e QV)},
where Q is the quotient map X + X/M and V is any O-neighbourhood,

is the same as that induced by the Hausdorff uniformity on

S(x), and the quotient topology is the uniform topology.

If M is a closed vector subspace then the quotient space is a closed

subspace of E.(X).



CHAPTER 2

HYPERSPACES AND HAUSDORFF COMPLETIONS

2.1 Introduction. When X is a complete metric space the

set E(X) of non-empty closed subsets of X with the Hausdorff metric
is a complete space also (see e.g. Kuratowski (19), Price (25),
Bourbaki (4)). However when X is any complete uniform space the
set &(X) with the Hausdorff uniformity need not be complete.
We shall call X hypercomplete if &(X) is complete. The term
was introduced by J. L. Kelley to describe topological vector
spaces X for which the collection of absolutely convex sets in
&(X) is complete - we have widened the definition to make it
applicable to uniform spaces. Each compact space is hypercomplete
(see Bourbaki (4), Chapter 2, ex. 4.6), and each hypercomplete
space is complete. For topological vector spaces hypercompleteness
(even in Kelley's sense) implies full completeness (->r
B-completeness in the sense of Ptdk).

If a uniform space X is not complete then, in a sense, it
has 'insufficient' points, and if it is not hypercomplete the
collection of subsets is similarly deficient. This unsatisfactory
state of affairs can be remedied in a manner typical of many
others in mathematics, by first replacing X, if it is not already
separated, by a separated uniform space X' closely associated
with it, and then enlarging X' slightly to a complete separated
space X. This more pleasing space is called the Hausdorff
completion of X. The hyperspaces 3(X) and Ex) may be dealt
with similarly, and the question arises at once what the
relationship is between such spaces as &(x) and E(X). This
chapter deals with questions like this, involving hyperspaces

and the concept of Hausdorff completion.
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The 'hyperhyperspace! $( 3(X)) is neither separated nor
complete in general, but it contains, uniformly embedded in
it, a number of significant spaces including the Hausdorff
completions % and &(X). More will be said about this in
Chapter 3. It is shown in 2.3 that X can be embedded in two
ways in S(8(X). Next, in 2.4, the relationships between the
hyperspaces of X, X' and R are investigated together with their
Hausdorff completions, and this leads to a consideration of
the problem of which spaces are such that the Hausdorff
completion of the hyperspace can be realized as a hyperspace
itself, and the related problem of which spaces have hyper-
completions. In section 2.5 a study is made of various
hyperspaces consisting of compact, precompact, relatively
compact and finite sets, permitting some slight generalizations
of Theorem 1 in the Robertsons’ paper (28). It is shown that
separatedness is unnecessary, and that for an arbitrary
uniform space X the Hausdorff completion of the set of compact,
closed subsetS is isomorphic to the set of compact subsets
of the Hausdorff completion of X. The results of 2.4 are
applied in 2.6 to linear spaces, and in particular to the
completions of quotient spaces. Finally in 2.7 an investigation
is made of hyperspaces arising from two uniformities for a
set X, the one associated in a certain way with the other, and
as a consequence separatedness is removed from the hypotheses

for Thecrems 2 and 3 of (28).

2.2 Preliminaries - extension of mappings. In this section

we state two well-known Theorems concerning the extension of
mappings which will be useful throughout the Chapter, and

incidentally probe a little deeper into the question of when
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the extended mapping is injective. This question will arise
again in the next Chapter. First the well-known results

(see, for example Bourbaki (4), Chapter 2.):

THEOREM 2.2.1. Let A be a subspace of a uniform space X and

let f be a uniformly continuous mapping from A into a complete
Hausdorff uniform space Y. Then f can be extended by continuity
to the closure of A in X, and the extended function f* is
uniformly continuous. The graph of f* is the closure in X x Y

of the graph of f.

THEOREM 2.2.2., Let A,, A, be dense subsets of the complete

1’ 72
Hausdorff uniform spaces Xl, X

2 respectively. Then every

isomorphism f of Al onto A2 extends by continuity to an

isomorphism f* of Xl onto X2.

If, in this last result, f is given to be only a bijective
uniformly continuous mapping then f* is uniformly continuous
but need be neither injective nor surjective. For (Bourbaki (4)
Chapter 2, section 3, ex. 3) if R denotes the real line with
additive uniformity, IR the extended real line, and R its
one-point compactification, and § is the uniformity induced
on R by the uniformity of IR, then the identity mapping of
IR is uniformly continuous in each of the cases R+ R and
(R, g) + IR, and extendsby continuity in the first case to
an injective but not surjective mapping R + IR, and in the
second case to a surjective but not injective mapping R + R
1f, rather, we allow X, in THEOREM 2.2.1, to be an arbitrary
uniform space, and £ is an isomorphism, then f* still need not
be injective or surjective, let alone an isomorphism. There will

be an example of this in 2.4. However, we can clear up the
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situation a little using the next Theorem, which is preceded
by a Lemma isolating the main argument from any completeness

condition.

LEMMA 2.2.3., Let X and Y be uniform spaces and let A be a
dense subspace of X. If f is a uniformly continuous mapping
of X into Y which induces an isomorphism between A and some
subspace B of Y, then for x,, X, in X, f(x,) = £(x,) implies
(xl, x2)£, (){U U} where 2 is a base for the uniformity

on X.

Proof. Let X, X,

U& U. Let Y be a base for the uniformity on Y. Choose a

be points of X with f(xl) = f(x2), and let

-1 1
symmetric V in Y such that (f(bl), f(b2)) is in U whenever

2
bl and b2 are points of B with (bl, b2) in V. Then choose Ul

in U such that (£(p), £(q)) is in V whenever p and q are

points of X with (p, q) in u; .
Now let U2 be a symmetric member of U with 02<=t1(}ul.

There exist points a;, a in A such that a, is in U2(xl) and

2 1l
a, is in Uz(xz), since A is dense in X. Then (al, xl) and
(a2, x2) are each in 02 and so (f(al), f(xl;) and (f(a2), f(x2))
are each in V. Hence (f(al), f(az)) is in V since f(xl) = f(x2),
and therefore (al, a2) is in U. Therefore (xl, x2) is in

3
U, Uo U, U, and the result follows.

2 2

THEOREM 2.2.4, Let A be a dense subspace of a uniform space X

and let A be isomorphic to a subspace B of a complete Hausdorff
uniform space Y. Then the isomorphism extends to a uniformly
continuous mapping of X into Y which is injective on every

Hausdorff subspace of X.
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Proof. Let U be a base for the uniformity on X. The isomorphism
of A onto B can be extended to a uniformly continuous mapping

f : X+ Y by THEOREM 2.2.1. If X5 %, are points of X with

2
f(xl) = f(x2), then by LEMMA 2.2.3 (xl, x2) is in n{U : UEWYUL.

The result follows immediately.

2.3 The construction of § and its embeddings in 3 (S(x)).

Let X be a uniform space and let U be a base for the uniformity
on X. Let X denote the set of minimal Cauchy filters on X,

with the uniformity, generated by the sets 0, where U is the
collection of pairs (Sfl, %2) of minimal Cauchy filters such
that %-’l and °f2 have a U-small set in common, and U runs through
the symmetric entourages in U. Let i: X+ X be the mapping
which takes each x in X onto its nieghbourhood filter. Then

X is a complete Hausdorff space, i is uniformly continuous,

and i(X) is dense in X. X is called the Hausdorff completion of
X and the subspace i(X) is called the Hausdorff space associated
with X and denoted X'.

We note the following facts about these structures (see
e.g. Bourbaki (4)).

(i) Given any informly continuous mapping £ of X into a
complete Hausdorff uniform space Y, there is a unique uniformly
continuous mapping g : X + Y such that £ : goi.

(2) If i 1is a uniformly continuous mapping of X into a
complete Hausdorff uniform space X, and the pair (il, Xl) has
the property expressed for (i, X) in ( 1), then there is a
unique isomorphism ¢ : X + xl such that il= $ o i.

(3) The graph of the equivalence relation R : i(x) = i(x')

is {U: U eWU} and X' and X/R are homeomorphic as topological
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spaces. If X is a Hausdorff space then X is isomorphic to
X', and if X is a dense subspace of any complete Hausdorff
space Y then the canonical injection X + Y extends to an
isomorphism of X onto Y.

(4) The uniform structure of X is the inverse image
under i of that of X (or X'). The entourages of X' are the
images under i x i of the entourages of X, and the closures
in X x X of the entourages of X' form a base of entourages

for X.

From (3) it is clear that if X is dense in a Hausdorff
space Y then X and Y are the same (up to isomorphism). When
Y is not Hausdorff we use (2). Let 11 : X+ Y be the composition
of the two canonical mappings k : X+ Y, j = Y » Y. Then the
pair (il, ?) has the property expressed in (1) for (i, X),
because if f is any uniformly continuous mapping of X into a
complete Hausdorff uniform space Z, we can extend f by continuity
to a uniformly continuous mapping f' = Y + 2, and then by
(1) there is a unique uniformly continuous mapping g : Y+2z
such that £' = g o j, and also f = g ¢ 1. Thus by (2) there
is a unique isomorphism ¢ : X + ¥ such that il = ¢ o i, We can
now state:

(5) If X is dense in the uniform space Y then X and Y
have the same Hausdorff completion (up to isomorphism).

Note that X and Y may have different associated Hausdorff
spaces. For if X is a non-complete metric space and Y is the
completion X of X, then €(X) is not complete and éi(i) is
complete; but S(X) is dense in S (X) and €(X) and &(X)
are their respective associated Hausdorff spaces, as will be

shown in the next section.
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We turn now to studying the relation between these ideas and

the hyperspaces of the uniform space X. To begin with, there

are two natural ways of emLedding the Hausdorff completion X

in the space S(8(X)). The first is given as an exercise in
Bourbaki (4), Chapter 2, section 3, ex. 7, and proceeds by
extending the canonical mapping x + {{x}} of X into &(E(X))

(we assume X to be Hausdorff for the moment) to an isomorphism
of X onto a closed uniform subspace of £( £(X)). As will be
shown in the next section, for an arbitrary uniform space X,
&€(X) and €(X') are isomorphic, and this makes the embedding

possible for any uniform space.

PROPOSITION 2.3.1. For any uniform space X there is an

isomorphism of X onto a closed uniform subspace of &.(&.(X))
which is an extension of the mapping i(x) + {{x}} of X' into
E(Ex).

The second embedding method proceeds directly from the

definition given above of the Hausdorff completion.

PROPOSITION 2.3.2., For any uniform space X, the Hausdorff

completion f(, considered as the set of minimal Cauchy filters

on X, is a uniform subspace of S(S(X)).

Proof. Let Ul be a base, consisting of symmetric entourages,
for the uniformity on X. The uniformity on X has a base ﬂ_
consisting of the sets U of all pairs of minimal Cauchy filters
which have a U-small set in common, as U runs through UL As

a subset of 3( 3(X)), X can also be given the uniformity
induced by the Hausdorff uniformity on 3¢ 3(x)), with base ?1

We will show that these two uniformities on X coincide.



Let (Q{l, %fz) belong to 0. Then let A be a U-smaii sec
in each of Q.Fl and ?2, ax_ud choose F in Qfl We have
FU A€ ?2, and FU A CU(F), since A is U-small and Anf‘ 8.
Cleariy F < U(FUA), so that (F, FUA) is in U, similarly
for each F' in %7, F'UJA is in C;F, and (F', F-'UA) is in U.
Therefore (%E, C'3—’,‘(_,) is in fl, and we have shown that 0 = 6,

~ ~
so that 9L is finer than U.

Now let U.be any member of ?:L, and choose Ul in WU with
Glc: U. Let (%, °{2) belong to Ul, and let Fl be a Ul-small

F = U(R)
set of ?.'L' Then there exists an F2 in %g such that{f‘,'lc. Ui(Pi).

Thus Ul(Pl) belongs to both Qfl and Qa/z, and is a U-small set,
so that (c},’ 3—’2) belongs to U. This proves that U is
finer than’&. , and so, finally,'?jL and ?:(,deter-mine the same

uniformity on X.

2.4 The Hausdorff completions of S(X) and @(}(). The

main aim in this section is to show that for an arbitrary
uniform space X, the hyperspaces E(X) and E(f() have the same
Hausdorff completion, and this is achieved by first proving

two Propositions to the effect that S(X) and E(X) have the same
Hausdorff completion and that the hyperspaces E(x) and &(x")

are isomorphic.

PROPOSITION 2.4.1. For any uniform space X, &(X) is isomorphic

to the Hausdorff space .$'(X) associated with Bx).

Proof. Let CLbe a base for the uniformity on X. Let

j: 8x) + &'(X) be the canonical mapping, and define a
mapping ¢ : €(X) + B'(X) by ¢(M) = j(M) for each ¥ in € (x),

If M, P are in €(X) then ¢(M) = ¢(N) if and only if j(u) = j(y),
if and only if (M, N)& ﬂ{ﬁ : y edd), if and only if

M U(N) and NEUM) for each U in O, 1f and opyy je y =
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For each R in S(X), (R, ) is in each U, so that
$(R) = j(R). Thus ¢ is a bijective mapping.

Since the uniformity on S(X) is the inverse image
under j of that on B'(X), ¢-l is uniformly continuous, and
since the entourages of '(X) are the images under j x j

of those of 5(X) and hence of those of &(X), ¢ is

uniformly continuous. Therefore ¢ is an isomorphism of 8()()

onto S'(X).

COROLLARY 2.4.2. €.(X) is isomorphic to &(X).

This Corollary also follows directly from fact (5) in

2.3, because € (X) is dense in S(X).

PROPOSITION 2.4.3. For any uniform space X, @(X) is isomorphic

to &(x*).

Proof. Define a mapping a : Ex) » £x") by a(M) = i(M)
for each M in &(X), where i is the canonical mapping of X
onto X'. Again, let ‘U be a base for the uniformity on X.
Since the entourages of X' are the images under 5.2 of those of
X and since iz(U)(:’L(x))C 1(6(X)) for each x in X and each

U in WU, i must be an open mapping.

Given M in &(X) and a point x in X - M, there is a U
in ?f such that i(x) does not belong to i(M), and hence
i(M)ﬂi(X - M) = @. Thus i-l(i(M)) = M, and i, being open,
must also be a closed mapping; & therefore maps @(X) onto
Euxn).

I£ M, N are in €(x) and a(M) = a(N), then i 1(i(M)) = 171¢iqN)),
so that M = N, If R is in £.(X') then i(i-l(R)) s a(i’l(R)),
and i-l(R) belongs to € (x) since i is uniformly continuous.
Thus o is bijective.

Since i is uniformly continuous, so is its induced

mapping from 5()() to 3(x'), which coincides with a on e()().
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Now the sets (i x i)U form a base of entourages for X', so
the sets V(U) = {(P, Q) : P& i2(U)(Q) and Q =12y (e)
form a base for the uniformity on €(X'). Let P, Q belong
to €(x') with (P, Q) in V(U). Then (1 3(p), i™}(Q)) is

in ﬁ, and therefore a.'l is a uniformly continuous mapping.

We have now proved that & is an isomorphism of €(x) onto E(x').

THEOREM 2.4.4. For any uniform space X, the Hausdorff

completion €(X) of the hyperspace of non-empty closed
subsets of X is isomorphic to the Hausdorff completion

é(i) of the hyperspace of non-empty closed subsets of the
Hausdorff completion X of X.

Proof. We have that X', the Hausdorff space associated with
X, is dense in )?, and so S(x') is dense in S(i). Using
fact (5) of 2.3, é(x') and é(i) are isomorphic. But then,
by COROLLARY 2.4.2., Ex') and /%) must be isomorphic.
Finally, since £.(X) and €(x') are isomorphic by

PROPOSITION 2.4.3., the result follows.

In order to actually exhibit the isomorphism between
é(x) and é()?) and be able to use it in future, we resort
to the rather terrifying diagram below, which attempts to
demonstrate how the initial isomorphism between E.(x') and
S(X), resulting from PROPOSITIONS 2.4.1. and 2.4.3., is

successively extended or restricted in each direction.
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We have here an example of the fact mentioned in 2.2, that
an isomorphism between dense subspaces of two uniform spaces,
one of which is a Hausdorff complete space, need not extend
to an injective or a surjective mapping. For in the diagram

BDEM) T = B(X)
the isomorphism certainly extends to the uniform continuous
mapping o* of 8(X) into 3(x), but this mapping does not
distinguish between a subset of £ and its closure in X,
and does not map S(X) onto $(X) unless S(X) is complete.
THEOREM 2.2.4%., however, insists that o® be injective on the
separated subspace é’,(f(), and in fact we know that &(X) is

actually isomorphic to a subspace of 8(x).

If X is a metric space its Hausdorff completion X is
also a metric space, and E’,(X) is a complete metric space.
Therefore, by THEOREM 2.4.4., é,(x) is isomorphic to E(ﬁ)
so that the completion of the hyperspace is again a hyperspace.
(It is easy to see that the isomorphism is actually an isometry.)
The question arises - which spaces have this property?
Equivalently, which spaces have the property that the Hausdorff
completion of the hyperspace is the hyperspace of its

Hausdorff completion? Clearly, by THEOREM 2.4.4., this class



of spaces is precisely the class for which the Hausdorff
completion is hypercomplete.

There is another characterization of this class. We
say that a uniform space X has a hypercompletion if X can be
embedded in a hypercomplete space. It is well-known that
there exist complete spaces which are not hypercomplete.
That not every space has a hypercompletion then follows from
the fact that a complete subspace of a hypercomplete space
must be hypercomplete. This is not quite obvious and so we
shall establish it precisely. If X is a complete uniform
subspace of a hypercomplete uniform space Y then X' is
complete and is a closed subspace of Y'. Therefore E(x')
is a closed subspace of €(Y'). Now B(Y) is complete,
and so also, by PROPOSITION 2.4.3., is €(Y'). Thus £.(X')
must be complete, and.again by PROPOSITION 2.4.3, this

implies that X is hypercomplete.

Which spaces, then, have a hypercompletion? Suppose
that the uniform space X is embedded in a hypercowplete
uniform space Y. Then X is a closed subspace of Q, which
is hypercomplete, and so €(X) is a closed subspace of the
complete space €(§), and therefore is complete itself.
Conversely, if Eﬁ(*) is given to be complete and we let
X denote the (non-Hausdorff) completion of X, so that X
is the Hausdorff space associated with X, then by
PROPOSITION 2.4.3. £(X) is complete, and X is a hypercomple-
tion of X. We collect all these facts together in the

following result.



THEOREM 2.4.5. The class of uniform spaces X which have a

hypercompletion is precisely the class for which the Hausdorff
completion of the hyperspace £(X) is the hyperspace EZ(Q) of the
Hausdorff completion, which is precisely the class for which

the Hausdorff completion is hypercomplete.

It is easily seen that this class includes all metric
spaces, and also all hypercomplete spaces, but it is very
restricted nonetheless. If we narrow our demands to the
ccmpact, . closed subsets in place of the closed subsets we
might expect the corresponding class of spaces to expand
enormously. Thus it turns out that for an arbitrary uniform
space X, the Hausdorff completion of the space (C(X) of
compact, closed subsets of X is the same thing as the
space (3(*) of compact subsets of X. This will appear in

the next section.

2.5. The Hausdorff completions of C(X), P(X) and R(X).

It has been shown that for any uniform space X, the space of
closed subsets of X is isomorphic to the space of closed
subsets of the Hausdorff space X' associated with X. This
isomorphism also takes those sets in &€(X) which are compact

onto those in &(X') which are compact.

PROPOSITION 2.5.1. For any uniform space X, the space C(X)

of compact, closed subsets of X is isomorphic to the space
C(X') of compact subsets of X', the Hausdorff space associated
with X.

Proof. The isomorphism o : & (x) + £(x') is defined by

a(¥) = i(M) for each M belonging to £(X), where i : X + X'

is the canonical mapping. If C is a compact set in £(X),

then a(C) = i(C) is compact, since i is uniformly continuous.
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Now let D be a compact subset of X', and let E-= a 1(D)..
Then i(E) = D. Let J%’be an open covering of E. Let 53 be
an open covering of E such that for each B in B there is a
set A in /7 with ECA. This is possible by the regularity
of X. Since i is an open mapping the collection {i(B) : BeR)
is an open covering of the subset D of X', and since D is
compact there is a finite subcovering {i(Bl), i(Bz). cees i(Bn)}.
Let A, be such that'ﬁiCZ'Ai, for i=1, ..., n. If eisa
point of E, then i(e) is a point of i(Bk), for some

1 ¢ k € n, and there is a point b of B. such that (e, b)

k

is in every entourage of the uniformity on X. This implies

that e is in 3% and hence in Ak' Therefore the collection

{Al, Ays <oes An} covers E, and this proves that E is compact.
It now follows immediately that the isomorphism

a: EX) + &x') takes C(X) onto C(x').

The Robertsons proved in (28) that if X is a complete,
separated uniform space then the set of non-empty compact
subsets of X forms a complete subspace of EE(X). This was
achieved by embedding the space X in a product of complete
metric spaces,and thus making very real use of the separated-
ness of X. Using the foregoing PROPOSITION there is an
immediate slight generalisation of their result - by

elimination of the separatedness hypothesis.

THEOREM 2.5.2. For any complete uniform space (not necessarily

separated), the set of non-empty, compact, closed subsets

forms a complete space.

There is a further generalisation of this result,

obtained by considering the Hausdorff completion of the space



of non-empty, compact closed subsets, as promised at the
end of the previous section. The following Lemma will be

needed in the proof.

LEMMA 2.5.3. Let Y be a uniform space and A a dense subspace

of Y. Then the set of compact (resp. precompact) subsets

of A forms a dense subspace of the space of compact

(resp. precompact) subsets of Y.

Proof. Clearly any compact (resp. precompact) subset of

A is a compact (resp. precompact) subset of Y. Let B be a

compact (resp. precompact) subset of Y and let V be any

entourage of the uniformity on Y. Choose a symmetric

entourage V, with 31c=-v, and let by, by, +.., b be points

of B such that the sets vl(bi)’ i=1,2, ..., n, cover B.
Now for each i choose a point <y in A such that ¢y is in

vl(bi)’ and let C = {cl, Cos vees cn}’ Then C is a compact

(resp. precompact) subset of A, and we have Cc:Vl(B)c: V(B),

and also B& U{vl(bi) :i=1,2, ..., nlc

k){%l(ci) :i=1,2, ..., n} = GI(C) C V(C). We have

shown that C is in V(B), and the result follows.

THEOREM 2.5.4. For any uniform space X, the Hausdorff

completion of the space of non-empty, compact, closed
gsubsets of X is isomorphic to the space of non-empty,

compact subsets of its Hausdorff completion X.

Proof. The space C(X), being Hausdorff, is demse in &(X),
and since X' is dense in X it follows by LEMMA 2.5.3. that
C(X') is dense in C(X). By PROPOSITION 2.5.1. there is

an isomorphism between C(X) and C(X'), and both A(X)

and C(X) are complete Hausdorff spaces, using THEOREM 2.5.2.
for the latter. Therefore the isomorphism between ((X)

and (3(X') can be extended by THEOREM 2.2.2. to an isomorphism
between (2(X) and C(R).



For the closing Theorem of this section we allow a few

more of the common subspaces of S(x) to enter the picture,

A summary of notation follows.
C(X) : the set of non-empty, compact, closed subsets of X;
(zj(x) : the set of non-empty, compact subsets of X;
J(X) : the set of non-empty, precompact, closed subsets of X;
?O(X) : the set of non-empty, precompact subsets of X;
R(X) : the set of non-empty, relatively compact subsets of X;

%(X) : the set of non-empty, finite subsets of X.

First we prove a Proposition showing that the isomorphism
between €. (X) and £(X') not only takes the compact sets onto
the compact sets, but also takes the precompact sets onto the
precompact sets. Using this fact we can then give the
relations between the Hausdorff completions and associated

Hausdorff spaces for the various hyperspaces listed above.

PROPOSITION 2.5.5. For any uniform space X, the spaces F(X)

and P(X') are each isomorphic to the subspace of Cx)
consisting of those sets which are the closures of their
intersections with X'.

Proof. Firstly, P(X) and P(X') are isomorphic. We
already have the isomorphism a : € (X) + £(X') defined by
a() = i(M) for each M in £(X), where i : X + X' is the
canonical mapping. If P belongs to P (X) then a(P) = i(P)
is in P(X') since i is uniformly continuous. Now let Q
belong to P (X') and let U be any entourage of X. Then

(1 x i)(U) is an entourage of X' and there is a finite
covering {BK} for Q, consisting of (i x i)(U)-small sets.
But then { i-l(Bk)} is a finite covering for i 1(Q),

3 -
consisting of U-small sets, and thus i l(Q) is precompact.
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Since a-l(Q) = i-l(Q), this proves that a takes'7>(x)

onto P(x').

Next, P (X') is isomorplic to the subspace of C(X)
described. To show this we use the diagram in 2.4
analysing the isomorphism between é(x) and é(i). It
is clear, from the diagram, that in the construction of
the isomorphism each set P belonging to $(X') is taken
onto its closure in i, which is the Hausdorff completion
of P and so must be compact. Conversely, any compact
subset C of X which is the closure in X of its inter-
section with X' must be the image, in the aforementioned
sense, of this intersection, which is a precompact, closed

subset of X'.

THEOREM 2.5.6. For any uniform space X the following

isomorphisms are true:

(a) R'(X) = C(x), e(')(x) g Cw), ‘P(')(x) z P,
B) FBROIFX:ICR RN EPH R =

BoX) 2 o0 = R 2 R1K).
Proof. (a) This is immediate on observing that, when
&'(xX) and £(X) are identified using PROPOSITION 2.4.1.,
the canonical mapping S(X) + S'(X) takes each of (?O(X)
and R (X) onto C(X), and takes P,(X) onto P(x).
(b) Since the Hausdorff completion of any space is
isomorphic to that of its associated Hausdorff space,

part (a) yields the following isomorphisms:

Ax) T FRX)
A t R

&, P
&), P

950()(),

P ().
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Also by replacing X by £ in part (a), we have the

isomorphisms:
Ck E Ry 2 Gy, Py Py,

Since F(X) is dense in *?%(X), they have the same
Hausdorff completion, up to isomorphism, and similarly
for F(X) and 930(5‘(). Since every precompact, closed
subspace of a complete Hausdorff space must be compact,
(%) and C(R) are the same, and since every compact
subset of a Hausdorff space must be closed, C(R) and
C;(ﬁ) ave the same. We also know that C(R) and C(X)
are isomorphic, by THEOREM 2.5.4. Consequently the
situation simplifies, leaving two classes of isomorphic

spaces:

R T AK TROO 2 B0 FCH FRIKX) ¥ PR,

E) TP £ f)o(x).
To conclude the proof it is sufficient to show that

95 (X) is isomorphic to C(R). Now, by LEMMA 2.5.3.,
PO(X') is dense in ‘Po(f(), and so these spaces have
isomorphic Hausdorff completions; but then so also do
their associated Hausdorff spaces which, by part (a),
are P(x') and P(X) respectively. By PROPOSITION 2.5.5.,
P(X) is isomorphic to P(x'), and so, finally,
$x) &P ¥ PE) ¢ CX), since P(X) and C(X)

are the same Hausdorff complete space.

COROLLARY 2.5.7. For any complete uniform space the

following hyperspaces are complete:
(a) the space of non-empty compact (compact and

closed) subsets;
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(b) the space of non-empty precompact subsets;

(c)' the space of non-empty relatively compact subsets.
Remark. An investigation relating to the results in
this section was made by V. M. Ivanov in (1%), who showed
that the space of closed subsets of the Wallman
compactification of a topological space X can be realized
as the Wallman compactification of the space of closed
subsets of X, ﬁsing the finite topology. See also
Flachsmeyer and Poppe (8).

2.6 Some applications to topological vector spaces.

A topological vector space X has a natural uniform
structure as described in Section 1.10. Thus we may form
the associated Hausdorff space X', and the Hausdorff
completion X. These uniform spaces are, in fact, also
topological vector spaces, for the linear structure on X
is carried over directly to X' by the canonical mapping
i : X+ X', and the linear structure on X is obtained
by extending the operational mappings (x, y) + X + y
and (A, x) + Ax for X' by continuity, using THEOREM 2.2.1.,
to operational mappings for X,

Using results of the previous two sections there is
a uniform isomorphism between the hyperspaces &.(X) and
&£.(x'), taking the compact sets onto the compact sets
and the precompact sets onto the precompact sets. The
next Proposition extends this "preservation" to all the
cormon types of subsets deriving from the presence of the
linear structure. The proof is straightforward and is

omitted.
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PROPOSITION 2.6.1. If X is a topological vector space and X'

is its associated Hausdorff topological vector space, then the
uniform isomorphism between e (X) and €(X') takes the convex
(resp. balanced, bounded, absorbent) sets onto the convex (resp.

balamced, bounded, absorbent) sets. -

THEOREM 2.6.2. Let X be a locally convex topological vector

space and let ¥ (X) denote the collection of non-empty, absolutely
convex closed subsets of X. Then ﬁ(x) is uniformly isomorphic

to ')‘{(;(), and so, if X has a hypercompletion if the sense of
Kelley, to ?{(;() itself,

Proof. Clearly any absolutely convex subset of X' is also an
absolutely convex subset of X. Let )to(x) denote the collection
of all non-empty absolutely convex subsets of X, We show that
%(X') is a dense subspace of 7{0(;2). For this purpose, let K
be any set in the latter collection and let V be an absolutely
convex O-neighbourhood in )‘E Then K + V is absolutely convex

and so also is the set J = (K + V)ﬂX'. It is easy to see that
(J, K) belongs to the entourage “l' and so ?{o(x') is dense in %o(;(),
and they must have isomorphic Hausdorff completions.

Now, as in THEOREM 2.5.6, we can show that ]((X') and %()?)
are the respective Hausdorff spaces associated with v}\’fo()(') and
xo()?), because the closure of any absolutely convex subset is
absolutely convex. Also, by PROPOSITION 2.6.1, the spaces '}{(x)
and /(X') are isomorphic. It followe that J(X) and }/(X)

have isomorphic Hausdorff completions.

For a normed space it is possible to prove a similar
result for the closed, bounded subsets, using the method of the
proof above and the fact that there is a base of bounded

O-neighbourhoods.
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THEOREM 2.6.3. Let X be a normed vector space and let

93(X) denote the collection of non-empty, closed, bounded sub-

sets of X. Then the spaces ‘é(x) and %()‘E) are isometric.

We turn now to consideration of the Hausdorff
completions of quotient spaces. Let M be a vector subspace
of a topological vector space X, and form its associated
Hausdorff space M', and its Hausdorff completion M. The
space M' can be identified with the subspace i(M) of X',
and the space M can be identified with the closure of
i(M) in X. Next, form the quotient spaces X/M, X/M,
X'/M' and X/M, which are topological vector spaces, and
uniform subspaces of 3(X), €(x), &(x') and €(X)
respectively (see section 1l.11). Furthermore, the
associated Hausdorff space (X/M)' is embedded as a
uniform subspace in gg'(x), and the Hausdorff completions
(x7M) and (i;ﬁ) are embedded as closed uniform subspaces

in £(X) and € (X) respectively.

PROPOSITION 2.6.4. If M is a vector subspace of a topological

vector space X, then the isomorphisms of section 2.4
between \2'(X), £(X) and E(X') induce linear isomorphisms
between (X/M)', X/M and X'/N'.

Proof. If (x + M) denotes a member of (X/M)' with
representative member x + M of X/M, then, under the
successive isomorphisms 8'(X) + éi(x) + &(x'), we have

(x+M)+*x+ M= x+HM(closures in X)

x+ M +i(x + M) = 4(x) + i(M) = i(x) + I(M) (closure in X')

i(x) + M',
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Thus it is clear that (X/M)' is taken onto X/M, which,
again, is taken onto X'/M¥., It is routine to verify that

these mappings are linear.

THEOREM 2.6.5. If M is a vector subspace of a topological

vector space X, then the isomorphism shown in section 2.4
between E;(X) and éi(i) takes (X/M) onto (i;ﬁ) and induces

a linear isomorphism between them.

Proof. Define a mapping f : X/M + X/M by £(x + M) = i(x) + M.
This coincides with the restriction to X/M of the mapping
poa: E?(X)<+ 6i(§) described in the diagram in section 2.4.,

because

~

x + B Ei(x) + TDX 3 i(x) + T= i(x) + M,
and therefore, by the discussion in section 2.4., f is
a uniform isomorphism of X/M onto the uniform subspace
L = {i(x) + M : x e X} of X/M. It is easy to see that, in
fact, f is a linear isomorphism, and L is a vector subspace
of X/M.

We next show that L is dense in X/M. Let %L be a
0-neighbourhood base for X, and Q : X + X/M the quotient

map. Then (section 1.11) the collection of sets

ij = {(a + ﬁ, b + ﬁ) i:b-~a+Me Q(u)},
where U runs through‘zk, forms a base for the uniformity
on §/ﬁ. Let a + ﬁ be a point in ﬁ/ﬁ and let U belong to 2.
Since X' is dense in &, there is a point x of X such that
i(x) belongs to a + U, and then i(x) - a + M belongs to
Q(U). Therefore (a + ﬁ, i(x) + M) belongs to G, and

since i(x) + # is a point of L, L must be dense in R/M.
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We have, also, that X/M is dense in (i;ﬁ), and so L
is dense in (X/M). By PROPOSITION 2.6.2., the space (X/M),
which is dense in (X/M), is linearly isomorphic to X/M,
and since we have shown that X/M is linearly isomorphic
to L, (X/M) must be linearly isomorphic to L. Finally,
using THEOREM 2.2.2., this isomorphism can be extended to
a uniform isomorphism of (X?M) onto (i;ﬁ), and the
extension is clearly also linear, and by its construction
must coincide with the restriction to (X/M) of the

isomorphism f§(X) -+ éi(ﬁ).

COROLLARY 2.6.6. The quotient space X/M can be embedded

as a dense vector subspace in the quotient space ﬁ/ﬁ.

Remarks. The quotient space of a complete metrizable
topological vector space by a closed vector subspace is
known to be complete. Hence, if X is a metrizable
topological vector space and M any vector subspace of X,
the quotient space X/M must be complete, and so by
THEOREM 2.6.3., (X/M) is isomorphic to X/M. That is, the
Hausdorff completion of any quotient space of X is a
quotient space of the Hausdorff completion of X. Which
spaces, besides metrizable ones, have this property?

A topological vector space X will certainly be a
successful candidate if all quotient spaces of its
Hausdorff completion X are complete, and in particular
if X is hypercomplete. For if E(X) is complete and M
is a vector subspace of X, then X/R is a closed uniform
subspace of 8()?) (see Chapter 1), and must itself be

complete. The class of spaces under consideration therefore
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contains the class corresponding to THEOREM 2.4.5, - those
with hypercomﬁlefions. Hheth;r the two classes are the’
same, or how mﬁcﬁdlarger the one is than the other, remain
open questions.'

An example of a complete locally convex topological
vector space X possessing a closed vector subspace M such
that X/M is not complete is given in Kelley and Namioka (18),
20D. It is interesting that while completeness is
inherited by products but not by separated quotients,
hypercompleteness is inherited by separated quotients

but not by products.

2.7. Hyperspaces arising from two related uniformities

for a set. For the remainder of this Chapter we shall be
considering a set X endowed with two uniformities £ and n
which are related to each other in a particular way.
Following the Robertsons in (28), we shall say that the
uniformity n <& assoctated with the uniformity E if € has
a base consisting of subsets of X X X closed in the
topology determined by n (briefly, n-closed). The
motivation behind the study, here, of associated uniformities
lies in an attempt to eliminate the hypothesis of separatedness
in the second Theorem of (28), which says that if (X, &)
is a complete separated uniform space and n is a coarser
separated uniformity on X, associated with £, then the
gset of non-empty n-compact subsets of X is complete under
the uniformity E.

The concept of associated uniformities probably arises

most naturally in the search for a sufficient condition



for the completeness of a uniform space under the coarser
of two uniformities to imply its completeness under the
finer - all that is required is for the coarser uniformity
to be associated with the finer. Bourbaki gives this
result for topological vector spaces in his treatise on
topological vector spaces, Chapter 1, section 1, Proposition 8.
We shall explore this and related ideas in connection
with the completeness and hypercompleteness of uniform
spaces in Chapter 3.

When X is a topological vector space under each of
two topologies £ and n, we say that n is associated with
E if the uniformity determined by n is associated with
that determined by £, and this is true if and only if there
is a base of n-closed §-neighbourhoods of the origin. The
most obvious example is when n is taken to be the weak
topology corresponding to a locally convex topology §.
Dr. Wendy Robertson studied this association between
topologies for a topological vector space in (29), under
the name "closed neighbourhood condition". The following
facts give some indication of the significance of the
notion.

If n is associated with § then the filter condition
holds for the identity mapping of (X, £) into (X, n)
(see Chapter 3). If n is a convex topology, £ is a weak
topology, and n is associated with £, then £ is coarser
than n. If n is a convex topology then (X, n) is barrelled
if and only if the only convex topologies with which n is
associated are those coarser than n, and if n is any vector
topology for X then (X, n) is ultra-barrelled if and only

if the only topologies which are compatible with the
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algebraic structure of X, and with which n is associated,

are those coarser than n.

Let X be a set endowed with two uniformities ¢ and n,
and let n be associated with &. Thus let u and 'Ybe
bases for £ and n respectively, with the sets of U Y -closed
in X x X. Form the Hausdorff spaces(xl, £') and (X2, n')
associated with (X, £) and (X, n) respectively, and let i
and j be the respective canonical mappings. We proceed to
construct another uniformity for X2.

Consider the collection Y of sets of the form (3 x §(0),
for U in ZL We show that this is a base for a uniformity on
x2, by verifying the four requirements below.

(1) For any two members of‘)f'there is a third member
contained in their intersection; because if Uc:lﬁJF]U2 then
2w e 52w (152w,

(2) Each member ofcyfhcontains the diagonal; this
follows immed’ately from the fact that each U in ?i.contains
the diagonal in X x X.

(3) For each member of W there is another member

-1
C U, then

contained in its inverse; because if 02 1

2w, 3@ = 2.
(4) For each member of W there is another member
whose square is contained in the first. This is not so
obvious as the previous three requirements, and, in fact,
is the only one to make use of the association of n with &.
That it is necessary to make use of it is why, in general,
the image of a uniformity under a mapping from product
space onto product space is not a uniformity. To prove

the fourth requirement, let W = jz(U), and choose Ul in



3 .
such that U, U. Let W, = 3°(U)). Then if (p, q)

2 :
belongs to W, there is a point r in X, such that (p, )

and (r, q) are both in Wl

a, b, cand d in X with r = j(b) = j(c) , p = j(a), q = j(d),

,» 80 that there are four points

and both of (a, b) and (¢, d) belonging to U Since

1.
j(b) = j(c), we have, for each V in‘ﬁ’, that (b, c) belongs

to VU.V, and hence also belongs to Ul’ because U1 is

1
3
%Y -closed in X x X. Thus (a, d) belongs to Ul’ and hence to
U, and so (p, q) belongs to j2(U) = W. This proves that
2c‘.’:w
Hl .

The requirements (1)-(4) being satisfied, W is the

base of a uniformity for X_, and this uniformity is clearly

2°
independent of the particular choice of base U for Es

we denote it by w. We know that each U in?LL is p-closed —
it is also true that j2(U) is n'-closed. For if (j(xll j(x2))
is a.n'-limit point of j2(U), so that for each symmetric

V in UY there is (ul, u2) belonging to U such that

(3(x;), 3(u))} and (3(x,), 3(W,)) both belong to 3°(V), then
(xl, x2) belongs to 3 U 3, and since U is n-closed (xl, x2)
belongs to U. Thus w has a base of sets n'-closed in

x2 X x2, that is, n' is associated with w.

PROPOSITION 2.7.1. The Hausdorff space (Xé, w') associated
with (x2, w) is isomorphic to the Hausdorff space (Xl. E')

associated with (X, £).
Proof. Let k : X, + Xi be the canonical mapping, and

define a mapping f of Xi into X, as follows. Given z

1

belonging to x;, choose a point y belonging to X, such

2
that k(y) = z, and then choose a point x belonging to X

such that j(x) = y. Put £(z) = i(x).
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To show that this is well-defined, let X)s X, be
points in X with kj(x,) = kj(x,), and let U be any member
of U. Since kj(xl) = kj(xz), (j(xl), j(xz)) belongs to
each entourage of w, and in particular, belongs to
(§ x §)(U). Thus, for any V in 'Y, (xl, x2) belongs to
VUV, and since U is'Yﬂ-closed, (xl, x,) belongs to U,
Hence i(xl) i(x ), and fkj(x ) = fkj(x ).

To show that f is injective, let f(zl) = f(z2), so
that i(x ) = i(x ). For each U in 21, (xl, x2) belongs
to U, and so (j(xl), j(xz)) belongs to (3 x 3)().

Hence kj(x ) = kj(x ), which means zi = z,.

To show that f is surjective, let p be any peint
belonging to Xl We can choose a p01nt x in X such that
i(x) p, and then kj(x) belongs to Xé and f(kj(x)) =

Now, since the aentourages of w' are the images
under k x k of the entourages of w, which are themselves
the images under j x j of the entourages of §, and £
is the invers~ image under i of the uniformity £', we
conclude that w' is the inverse image under f of &',

and hence f is an isomorphism of (Xi, w') onto (Xl, g').

COROLLARY 2.7.2. If (X, §) is complete, then so also

is (Xz, w).
As the notation is becoming rather complicated, the

situation is represented in the following diagram:

(X, §) — (%, €')

x,, n") ¥
(x’ n) "‘L"{ 2 k
(Xz. w) —— (Xé, w')



PROPOSITION 2.7.3.

(a) The following four spaces are isomorphic:
(E(x,, ), @), (E(x}, w"), 8"), (&x, &), E),
(&, &), ).

(b) The following four spaces are isomorphic:
(C(xy, ), @), (C(XS, 0"), 0", (C(X;, €"), &N,
(C(x, &), ).

(c) The following four spaces are isomorphic:
(Pxy, w), &), (P(xy, v, B, Pxy, &), &),
(Px, ), &).

Proof. The first and last pairs of spaces are isomorphic by
PROPOSITION 2.4.3. for (a), PROPOSITION 2.5.1. for (b)
and PROPOSITION 2.5.5. for (c). The middle pairs are

isomorphie in (a), (b) and (c) by PROPOSITION 2.7.1.

COROLLARY 2.7.4. If (X, &) is complete then so also are

the eight spaces in (b) and (c), by the results of section

2.5. If (X, £) is hypercomplete then so is (X2, w).

PROPOSITION 2.7.5.

(a) (&(X, n), §) is isomorphic to (&(X,, n'), ).
(b) (C(X, n), &) is isomorphic to ((9(X2, n'), @).

(e) (P(X, n), §) is isomorphic to (F(X,, n'), ).

Proof. Define a mapping f of €(X, n) into éngz, n')
by £(M) = j(M) for each M in €(X, n). This is bijective
by PROPOSITION 2.4.3., and takes (X, n) onto G(xz, n")
and P (X, n) ento P(X,, n') by PROPOSITIONS 2.5.1. and
2.5.5. respectively.

Now the entourages of w are precisely the images

under j x j of those of £, and it is also true that the
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entourages of & are the images under £ x £ of those of &.
In fact, for each U in ZL, fz(U) = j’z\("}). For if (A, B)
is in U then £(A) = 3(A) = $(U(B)) = (32(U))(§(B)), and
sinilarly £(B) < (52(U))(3(A)), so that (£(A), £(B))
belongs to 55?5). If, conversely, (£f(A), f(B)) is in
jizb), then j(A)CZZ(jz(U))(j(B)) so that for each a in

A there is a b in B such that (a, b) belongs to VU V
for each V in“Y". Thus, since U isY-closed, (a, b)
belongs to U, and hence AC U(B). Similarly Bc U(A),

so that (A, B) is in U. That f is an isomorphism of

(€(X, n), £) onto (éﬁ(x2, n') w) follows immediately.

Thus far in this section we have required only that
the uniformity n be associated with the uniformity .
At this point we demand more - from now on n will also be
coarser than £. Since the entourages of the uniformities
n' and w are the images under j x j of the entourages of
n and £, respectively, n' must be coarser than w.
Therefore w is a separated uniformity, and by PROPOSITION
2.7.1., (X2, w) is the Hausdorff space associated with
(X, £). A summary of the situation is given in the

next result.

PROPOSITION 2.7.6. If n, E are two uniformities for a

set X, with n associated with g, and j is the canonical
mapping of (X, n) into its associated Hausdorff space

(x2, n'), then the collection of subsets of X2 X x2 of
the form (j x j)(U), where U runs through a base for

the uniformity E, is itself the base of a uniformity w for

X., and n' is associated with w. If, in addition, n is

2’
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coarser than & then n' is coarser than w and (X2, w) is

the Hausdorff space associated with (X , £).

As mentioned at the beginning of this section Theoremn 2
of the Robertsons' paper(28) states that if (X, £) is a
complete, separated uniform space, and n is a coarser
separated uniformity on X, associated with £, then the
set of non-empty n-compact subsets of X is complete under
the uniformity E. In proving this X is regarded as
embedded in its n-Hausdorff completion i, € and n are
extended to ﬁ, and use is made of Thereom 1 of the same
paper, thus involving the separatedness hypotheses quite

considerably. These hypotheses can now be eliminated.

THEOREM 2.7.7. Let (X, &) be a complete uniform space

(not necessarily separated) and let n be a coarser
uniformity on X, associated with £. Then the set of
non~empty, n-compact, n-closed subsets of X is complete

under the uniformity €.

Proof. Let (Xz. n') be the Hausdorff space associated

with (X, n), and construct the uniformity w for X, as

2
in PROPOSITION 2.7.6. By this PROPOSITION n' is coarser
than w dnd associated with w, and clearly both uniformities
are separated. Also by PROPOSITION 2.7.6. (xz, w) is the
Hausdorff space associated with (X, £) and so is complete.
Theorem 2 of (28) then implies that CZ(x2, n') is complete
under the uniformity w. But by PROPOSITION 2.7.5. (b)

this space is isomorphic to the space ( C(x, n), £), which

is therefore also complete. This was what we were trying

to prove.
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Remarks. It has already been observed in COROLLARY 2.5.7.
that if (X, £) is complete then the set of non-empty
g-relatively compact subsets of X is complete under E.
Concerning the n-relatively compact subsets of X, the
Robertsons give a Corollary to Theorem 2 of (28) which
states that, under the same hypotheses as Theorem 2, the
n-relatively compact, £-closed subsets form a closed
subspace of ( £(X, £), £). Here again the separatedness
is not necessary and the proof in (28) goes through
almost unchanged, using THEOREM 2.7.7. instead of Theorem 2
of (28). That the set of n-relatively compact, {-closed
subsets of X is not complete under £ is demonstrated by

a counterexample in (28). The n-relatively compact,
n-closed subsets are of course, just the n-compact,

n~-closed subsets.,

There is a standard procedure for deducing results
about the completeness of function spaces from results,
like that mertioned in the previous paragraph, asserting
closedness of a subspace of €(X). More will be said
about this in section 6.5. Thus the Robertsons apply
the Corollary of Theorem 2 in (28) to deduce their third
theorem. Advancing further on the anti-separatedness
crusade, this theorem can be released from separatedness
hypotheses, together with its analogue for locally

convex spaces. It then becomes the following.

Let S be a set and éz a family of subsets of S.
Also let (X, &) be a complete uniform space and let n be
a coarser uniformity on X associated with £€. If F is the

set of mappings from S into X which take *‘he sets of 5%
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onto n-relatively compact subsets of X, then F is complete
under the uniformity of E-uniform convergence on the

on the sets ofcfE. For locally convex spaces this says
that the space of linear mappings from a locally convex
space into a complete locally convex space which take
bounded sets onto weakly relatively compact subsets is
complete under the topology of uniform convergence on

the bounded subsets. Note that the corresponding
analogue for THEOREM 2.7.7. says that the weakly compact
and weakly closed subsets of a complete locally convex

space form a complete space.



CHAPTER 3

FUNDAMENTAL FAMILIES AND COMPLETIONS OF HYPERSPACES

3.1 Introduction. This chapter looks at completeness in

hyperspaces from a rather different angle from that of the last
chapter, but the results are intimately related. The notion of
a fundamental family of subsets was introduced by J. L. Kelley (16)
for families of nonempty, absolutely convex subsets of a locally
convex space F. He showedvthat the collection of all such sub-
gets of F is complete under the Hausdorff uniformity if and only
if every fundamental family of them converges on a certain sense.
These ideas are applied in section 2 to the collection S§(X) of
all nonempty subsets of a uniform space X, and it is hsown that
the space B(X) is complete if and only if every fundamental
family on X converges. On an arbitrary uniform space every
fundamental family of compact subsets converges.

The properties of fundamental families are investigated and
shown to be closely related to those of Cauchy filter bases. This
leads on to the construction by means of fundamental families of a
uniform space &(X) which is uniformly isomorphic to éf(x), the
Hausdorff completion of the space of nonempty closed subsets of X.
The spaces &(X), ’E(i), Cx), C(;‘) and é(x) are each identified
with natural subspaces of &(X), corresponding to particular kinds
of fundamental families, and the latter two shown to be isomorphic
by a method independent of that in chapter 2. When X is a lécally
convex topological vector space, then the space ?{SX) of nonempty,
closed, absolutely convex subsets of X, its Hausdorff completion
'}"((x), and the space A(X) of closed vector subspaces of X are each
likewise identified with subspaces of ¢(X), corresponding to
particular kinds of fundamental families. As a bonus, the construction

of ¢(X) allows an embedding of dﬁ(x) as a closed uniform subspace of
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&(E4X)), bringing the range of spaces embeddable in the hyper-
hyperspace to include the following (assuming X is separated) :
X, X, X x X, £X), EX) and £X).

In section 4 a study is made of two conditions on a mapping
between uniform spaces - the filter condition, introduced by Dr.
Wendy Robertson (29), and the analogous fundamental family
condition. The latter is strictly-stronger, and bears a relation-
ship to hypercompleteness similar to that of the former to
completeness. The fundamental family condition holds for a
mapping if and only if the filter condition holds for the induced
mapping between hyperspaces. Dr. Wendy Robertson showed that
when t + X + Y is an injective, continuous linear mapping between
topological vector spaces, the filter condition is necessary and
sufficient for the extension ; 3 i -+ ; to be injective. For
uniform spaces, sufficiency breaks down, and the only conditions
I have been able to find which are sufficient achieve their ends in
rather violent fashion. I do not know whether the fundamental
family condition is sufficient.

Equivalent conditions for each of the filter condition and the
fundamental family condition are given, in terms of the extension
mappings ; : )‘;+§ and ;:' : é(X) + é(Y), respectively, when X
and Y are uniform spaces. Applying these results to the case when
t : X+ Y is a continuous linear mapping between topological vector
spaces, and M is a closed vector subspace of X, shows that, if the
fundamental family condition holds and if t induces an injective
mapping on the quotient space x/H, then its extension to the
completion x;u is also injective. This motivates a general study

in section 5 of induced mappings between hyperspaces, and their

extensions.
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Finally, in section 6 the concern is with two uniformities
E, n on a set X such that the uniformity n on S(X) is associated
with the unjformity E, in the sense of chapter 2. The uniformity
n is then said to be hyperassociated with £. If n is associated
(resp. hyperassociated) with §, the filter conditon (resp.
fundamental family condition) holds for the identity mapping
(X, £) > (X, n), and if in addition n is coarser than £, then
(X, n) complete (resp. hypercomplete) implies (X, &) complete (resp.
hypercomplete). It is sufficient for hyperassociation that

n be proximity-finer than £.

3.2 Fundamental families. A nonempty family afof nonempty

subsets of a uniform space (X, L) will be called fundamental if

(1) it is directed by C(thatis, it is a filter base), and

(2) for each U in eU.d:her'e is a member A of Qf such that
Ac U(F) for all F in F.

The family 93faonvcrges in X if, putting C = []{f': F eqéf},
for each U in U there is a member F of ?with FczU(C); in other
words, U(C) eventually contains g?f. Clearly every convergent
family is fundamental and the closures of its members have non-
empty intersection.

As a preliminary to dealing with the role of fundamental
families in hypercompleteness, the following LEMMA records the

facts relating them to Cauchy nets in S(X).

LEMMA 3.2.1 If Fis a fundamental family on X and I is an index
set directing the members ofﬁfiby &, then {Fu :ael)isa
Cauchy net in Sw). If’%F(converges then F, (\{?': F e?}f}

in 8(X). If, on the other hand, F,>Ain S(X) then g§fconverges

and A = r]{?': Fe¥F).
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if {Aa : a g I} is any Cauchy net in S(X) then, putting
FB = U{Aa : o 3 B}, %= {F8 : 8 ¢ I} is a fundamental family.
If A, > Ain S(x) then &F converges and A = ﬂ{?s : Be I}
1f, on the other hand, c.}’is known to converge, then
A, ﬂ{'f"B : 8 ¢ I},
Proof Let ’3{be a fundamental family. Then for each U in U there

isa in I such that F = U(Fa) for all @ in I, and thus, for

@, 830, Fc& Faoc:: U(Fu), which proves {E‘m : o ¢ I} is a Cauchy

8
net in J(X). Let %*/converge. Then for each U in ?L, if C Zdenotes
the set ﬂ{'f : F eq;’}/}, Fac;‘:. U(C) eventually. Since also C << U(Fu)
for all ain I, it follows that F+ C in S(X). Now let it be given
that F + A in Z(x). It is sufficient, for convergence of the family
%, that & = ﬂ{f : F e &}, for clearly F oo U(A) eventually, for any
given U in ¢, But (fF: F ey F o= B(&), so that & must contain
the intersection. Also, for each U in ?-i, U(Fq) eventually, and hence
always, contains A, so that A is contained in the intersection, and
equality is proved.

For the second part, let {Aa : a € I} be a Cauchy net in (x)
,

and put FB = U{A(’l : a3 B} for each B in I. Then % {pB : B e I}

- 2
is clearly a filter base. Given U in /. choose Ul in ¢/ with U .= U,

1l
There exists a in I such that A = Ul(AB) for alla, 8 3 a_, and
o
2
hence Fo o= U (A, ) = U,(A,) = U(A)) for all @ 3 a_. Therefore

Paoe::" U(FB) for all B in I, which proves that Q3( is a fundamental family.
Let Aa + A in }(X). Then, for given U in o » A is eventually

contained in U(Aa), which implies that, eventually, FBC': U(A). There-

fore ﬂ{?‘a : 8 ¢ I}¢- A, and equality is proved. Since it is shown

t— Lo}
that FBc". U(A) eventually, the family 3"/ converges.

Finally, let it be given that " converges. Then, putting

C = l'-}{-f'-a : 8 € I}, and choosing U in ?’L= Fg— U(C) eventually and

8
hence A“"': U(C) eventually. Also, if a is chosen such that



Aac‘ U(AB) for all a, B 3 s then, as shown above,
2 3
Paor.....U(Aa) for all @ 3 a_. Hence C~ U(Fao) < U(Aa) for all

@ 3a. It now follows that Aa +C in 3(x).

PROPOSITION 3.2.2. If X is a uniform space and rj'l is any complete

uniform subspace of J(X), then every fundamental family on X
consisting of elements of M converges. If, conversely, every
such family is known to converge and if o’(l is closed under
unions of its members then every Cauchy net on J‘(converges in
B(x) to some element of S(X).

Proof. The first part follows immediately from LEMMA 3.2.1.
For the second part, let {Mc 2 @ € I} be a Cauchy net in c«-}(ﬂ, and
put FB = U{uc : a 3 8}. Then %‘/= {PB : Bel} is a funda-
mental family consisting of elements of J7, by LEMMA 3.2.1. By

hypothesis F converges, and again by the LEMMA,
- )
M, * i{rB : B e I} in J(X).

COROLLARY 3.2.3. Ifc'lis a dense subspace of 3(X) closed

under unions, and every fundamental family of elements of oM,

converges then Swx) is complete.

THEOREM 3.2.4. A uniform space X is hypercomplete if and only

if every fundamental family (of closed sets, resp. of open sets)
on X converges.

Proof. If 3(X) is complete then by PROPOSITION 3.2.2 every
fundamental family on X converges, and conversely. The proof
is completed by observing firstly that the collection of open
subsets of X satisfies the conditons in COROLLARY 3.2.3, and
secondly that the closures of the members of any fundamental
family form a fundamental family which converges if and only if

the original family converges,
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A little more than this can be said. The next result is a
strajghtforward consequence of the fact that for any fundamental
family “Fon (X,%0), the family {U(F) : FeF, U c¢U} is
fundamental and converges if and only if Q;!{c:o:w'ex'ges. The trace
of this family on any dense subset of X will also be a fundamental
family on X. A more elegant proof is by applying COROLLARY 3.2.3

to the collection of subsets of any dense subset of X.

PROPOSITION 3.2.5. If A is a dense subset of a uniform space X

and if every fundamental family on X consisting of subsets of A

converges, then X is hypercomplete.

Remarks Isbell, in (12), calls a filter etable if its
members form a Cauchy net in the hyperspace, and hyperoonvergent
if this net converges. The terms are also meaningful for filter
bases, and it is easy to see that a fundamental family is
precisely a stable filter base, and a convergent family is
precisely a hyperconvergent filter base. Thus THEOREM 3.2.4
corresponds to Isbell's result that a uniform space is hypercomplete
if and only if every stable filter is hyperconvergent. We note
here that Isbell uses the term supercomplete where we use
hypercomplete; his usage does not seem to have general appeal.

The second part of LEMMA 3.2.1 remains true if, for a Cauchy
net {Au : o € I} of absolutely convex subsets of a locally convex

topological vector space, we take F_, to be the convex hull of

8
U{Aa : & 3 B}, With this alteration the LEMMA leads immediately
to Kelley's result, mentioned in sectionl, that the space of non-
empty absolutely convex subsets of a locally convex space is

complete if and only if every fundamental family of absolutely

convex sets converges.
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Knowing that the space of compact subsets of a complete uniform
space is itself complete, we can expect any fundamental family con-
sisting of compact sets on such a space to converge, by PROPOSITION
3.2.2, In fact there is the following stronger and rather surprising

result.

PROPOSITION 3.2.6. On an arbitrary uniform space, every fundamental

family of compact subsets converges.

Proof Let &= (Fu : @ € I} be such a family on the uniform space
X, directed by C-. For each nonempty finite subset ¢ of I,

B¢ = (\{?; : a € ¢} is a nonempty compact subset of X. Directing
the finit- subsets of I by =, {B

¢
Given any entourage U of X there exists a  in I such that

} is a decreasing net.

Faocz U(Fu) for all @ in I, and therefore, because each B¢
contains some E,» Fuo™ U(B¢) for each finite subset ¢. Let

wo be any finite subset of I containing ao. Then, if ¢1, ¢2::>¢°,
By U(B¢2) and By £ U(B¢1), so that {B¢} is a Cauchy decreasing
net of compact sets. It therefore converges in S(X) (see section
1.8) to the intersection, which is the set C = fﬂkf;: a €I},

Thus for each entourage U there exists ¢ such that B¢ < u(c).

But there is some F B¢ , and so Pd:: u(c), and %;:converges.

Remarks. The previous PROPOSITION and its proof suggest
that there is a proof by this route of the Robertsons' result in (28)
that the space of nonempty compact subsets of a complete separated
uniform space is complete. But it does not appear to be easy
to make the step from convergence of every fundamental family of
compact subsets to completeness of the space of compact subsets of
a complete space.

The notion of fundamental family is not greatly different from
that of Cauchy filter base, and the similarity of their basic

properties is illustrated by the remaining results of this section.
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PROPOSITION 3.2.7. If t is a uniformly continuous mapping from a

uaiform space X into a uniform space Y, and ¥ is any fundamental
family on X, then the family t(%F) = {t(F) : F ¢ ¥} is fundamental
on Y. Furthermore if ?converges so does t().
Proof. Clearly t(%¥) is a filter base. For each entourage V
of Y there is an entourage U of X with t2(U)<=V, by uniform
continuity, and then since ‘fis fundamental there is some B in
such that B c<ZU(F) for all F in F. Then t(B) = V(t(F)) for all
t(F) in t(¥) and so (%) is fundamental.

Suppose ©F converges. Let C = ﬂ{f" : Fe ¥}, and
D = ﬂ{'{'(ﬂ' : F e F}. When V and U are as above, there is some
A in Fsuch that A U(C), and then t(A) = V(t(C)) = V(D),

using continuity of t. This means that t(% converges.

PROPOSITION 3.2.8. If t is a uniformly continuous mapping from a

uniform space X into a uniform space Y, and maps entourages of X into
entourages of Y, then for each fundamental family G on Y, the family
?:{t'l(G) : @ €3} is fundamental on X.

Proof. Clearly Qf/is a filter base. For each entourage U of X,
tz(U) is an entourage of Y, 80 there is some A in - such that

A< 2(U)(C) for all G in G Thent1(A)= 0(+"1(6)) for all G in

@‘, and so cfis fundamental.

PROPOSITION 3.2.9. If F is a Cauchy filter base on a uniform

space X then efis also a fundamental family on X, and chonverges
as a fundamental family if and only if it converges as a Cauchy
filter base to a point of X.

Proof. Let ube a base for the uniformity on X. For each U in
oL there is a U-small set B in of, and then B U(C) for all F in
?f’, since Bﬂ F#¢. Thus 93{18 a fundamental family. If QJ"/

converges as a fundamental family then C = ﬂ{'f' t F ecf}is non-
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empty, and so we can choose x in C. But x is a cluster point

of the Cauchy filter base, and therefore a limit point of it. Con-
versely if Q:I’/-b x as a Cauchy filter base, then x is a limit

point of the filter base and so also a cluster point, so that x
belongs to C. For each U in U there is some F in Q:r{such that

F =2 U(x), which implies that C cztzl(x). The upshot ofall this is that

{X} = C, and, for each U in U, U(C) eventually contains F.

Thus there are more fundamental families on a uniform space
than Cauchy filters - in fact the powers of the respective
collections are related as the powers of hyperspace to space. This
will become apparent in the next section. It is easy to see in this
context how hypercompleteness implies completeness, for if
every fundamental family converges so must every Cauchy filter.

There is a mild generalization of PROPOSITION 3.2.9. A
filter (or filter base) %Tfon a uniform space X is called
semi—Cauchy if for each entourage U there is some integer n > O
such that ?Ffﬁontains a 8- small set. 1Isbell uses the notion in
(12) to show that the hyperspace of a compact space is compact,
by first proving that each semi-Cauchy filter is a Cauchy net in
the hyperspace, which converges when X is complete to a compact
set. In our language, each semi-Cauchy filter base is also a
fundamental family, convergent when X is complete. Notice that

each filter base consisting of precompact sets is semi-Cauchy.

LEMMA 3.2.10. For each nonempty subset A of a uniform space X

with uniformity base T(, the collection T(A) = {U(A) * U e U} is
a convergent fundamental family on X.

Proof. If Ul’ 02 are in ?Lthen there is some U in ?i with

tc U ﬂu and then U(A)C Ul(A) ﬂUQ(A). Thus 8(A) is a

1 2
£ilter base. For each U in TL , U(A) CU(X),and & is the intersection
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of the closures of the members of T (A), so T(A) converges, and is
fundamental.

For comparison with this last result, if x is any point of X,
the collection 3(X) = {U(x) : U e 7L} is a Cauchy filter base
convergent to x. But while 8(:&) is a neighbourhood base for x,

“3(A) is not in general a neighbourhood base for A.

3.3 The Hausdorff completion of the hyperspace, That

fundamental families play a role in the hyperspace S(X) very like
the role played by Cauchy filters in X in now quite obvious. Not
only do they act analogously in determing hypercompleteness and
completeness, but, as the first THEOREM of this section will show,
the Hausdorff completion of the hyperspace can be constructed using
fundamental families in much the same way that the Hausdorff
completion of X can be constructed using Cauchy filters.

Let X be a uniform space with uniformity base 2( In the
collection of fundamental families on X define a uniformity as
follows. For e~ch U in U 1let U be the collection of pairs (Q}/, G)
of fundamental families such that there exist Fo in QFand G, in
G with F = U(G) for all 6 in G and G = U(F) for all F in ¥,
To show that ﬂ = {6 : Uell) is a base for a uniformity, four
standard properties must be verified.

(1) By definition of a fundamental family (¥, %) belongs
to 6 for each 6 in i(

(2) 1f l{ , U, belong to 2L , there is some V in 21 with

, N
ve Ulﬂuz, anf then also V& Ul.' U2.
(3) Each U is symmetric by definition.
» CJ 2
(4) If U belongs to ¢L, there is some W in CL with WU,
then suppose (?, G) and (@, 3¢) both belong to G There exist

F, in ?and Go in & such that Foc: W(G) for all G in G and
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6 <W(F) for all F in ¥, and there exist G, in G* and H_ in
3 such that G, < W(H) for all H in g4 and H < W(G) for all G
in %. The, upshot of all this is that F< H(Gl)c: izl(H) for all
H in ¢, and Hoc—:; W(Go) e VZI(F) for all F in Qj’f, so that (%", 96)
belongs to U We have shown that iaic:ﬁ

Next, form the associated Hausdorff space, denoted by
#(X). Let |[%] denote the element of #(X) determined by the
fundamental family ¥. 1t may be regarded as an equivalence
class of fundamental families under the relation: F R & if and only
if the intersection of the filters generated by ¥ and G is a
fundamental family. We will continue to use the notation é( for
the uniformity base on ®(X); thus a pair ([Q.F] ,[@]) belongs to
a member 6 of '&. if there exist Fo in ¥ and Go in @& such that

F_c 0(6) for all G in G and G U(F) for all F in %.

THEOREM 3.3.1. Let X be a uniform space with wniformity base

ZL, and construct the separated uniform space (#(X), ﬁ) as above.
(1) Let h : S(X) + #(X) be the mapping which takes each
subset A of X onto the element [B(A)] of ¢(X), where
B(A) = {U(A) : Ue2f). Then h is uniformly continuous and the
uniformity on 3(X) is the inverse image under h of that on #(X).
(2) The space €(X) of nomempty closed subsets of X is
uniformly isomorphic to the subspace h(S(X)), which is dense in
#(X).
(3) The space #(X) is complete.
Proof. From LEMMA 3.2.10, 3(A) is a fundamental family on X
for each nonempty subset A. Suppose v is in {L, with (h(A),h(B)) in

a 3
V. Then there exist U., U. in ({ such that U, (8) & V(U(B)) and

t
. 1° 2 . \
U,(B) S V(U(A)) for all U in . Thus A V(B) and B =V(A),

5
that is, (A, B) belongs to the entourage V of S3(X). Convergely,
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if (A, B) belongs to \7, then A V(B) and B < V(A), so that
V(A) <= V(U(B)) and V(B) = V(U(A)) for all U in U. Thus (h(A),h(B))
belongs to \2! This hasshown that the inverse images under h x h of
the members of 'ZL form a base for the uniformity i(, on S(X),
which is therefore the inverse image under h of the uniformity on
#(X). It is also the coarsest uniformity on S(X) for which h is
uniformly continuous. Thus (1) is proved,

To prove (2), let P, Q be nonempty subsets of X with
h(P) = h(Q). This means that for each V in €L there exist

U.. U. in C( such that Ul(P) & V(U(Q)) and UZ(Q)C V(U(P)) for all

1* "2
U in ?,(, so that Pc‘zl(Q) and Q C:\ZI(P). Therefore P = Q. Conversely
if it is given that P = Q then h(P) = h(Q). Thus h is injective
on €(X), and is an isomorphism.because of (1), between £ (X) and
nEx) (= nSN).
Next, we show that h(S(X)) is dense in ¢(X). Let [_"3:] be an
arbitrary element of ¢(X) and let “; belong to é( Choose Vo in 2L
with 3°<':: V. There exists F_ in %‘ such that F VO(F) for all F
in QJ{, since c.{is fundamental. Put A = VO(FO). Then VO(A)Cso(F) <V(F)
for all F in F, and F_c=V(U(A)) for all U in CL. Thus :
([¥], [B(a)]) belongs to ¥, and since |B(A)] = h(A), this proves
that h( 8(X)) is dense in #(X).
It remains to prove (3). Since h( $(X)) is dense in &(X) it
will be sufficient to show that every Cauchy net in h(3(X)) converges
to an element of #(X). Let {[8(A°)] : a € I} be a Cauchy net.
Then by (1), {A“ + acl} is a Cauchy net in S(x). Put Fg =
|Jta, : & 28} for each 8 in I. Then by LEMM 3.2.1,F = (F, : B e}
is a fundamental family. We will show that [H(A )] + [¥] in
o(X).

y
Let V belong to &, and choose Vo in Zc with VOC: V.
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Since {[fB(Aa)] : o € I} is Cauchy there exists a_ in I such that
([@(Aa)] , [@(AB)]) belongs to Vo for a, B 3 @, and since e?

is fundamental there exists Bo in I such that F, = vo(FB) for all

go
B in I. Take v 3 @ Bo' Then consider @(Ay) = {U(AY) : U e?,l.}.
We show that ([%], [B(AY)]) belongs to V. By choice of v,
2
Vo(Ay)Cvo(FBO)C Vo(FB) [ V(FB) for all B mal. Ifa 3 C
then there exists Vl in ?l such that Vl(Aa)c::VO(U(Ay)) for all
4

Uin &, sothat A =V (A ) V(A). Thus F_c= V(A )= V(U(A ))

o I ¢ Y Y Y Y
for all U in 2(. It has been proved that if y 3 as Bo’ then
([‘:ﬂ s [Q(Ay)]) belongs to V, so that the net {[B(Aa)] t ace I}

converges to [F] in 9(X). Therefore ¢(X) is complete.

COROLLARY 3.3.2. The Hausdorff completion é(x) of the space of

nonempty closed subsets of X is isomorphic to ¢(X). This iso-
morphism takes e’l(x) onto the subspace ¢°(x) = h(@(x)) which consists
of all elements of ®(X) determined by convergent fundamental

families on X.

THEOREM 3.3.3. Let X be a locally convex topological vector space,

and let ?{(X) denote the set of nonempty, absolutely convex, closed
subsets of X. Then the Hausdorff completion 5{()() is uniformly
isomorphic to the subspace 0k(X) of #(X) consisting of all elements
of ¢(X) determined by fundamental families of absolutely convex sets.
Proof. Let 2L be a O-neighbourhood base for X consisting of
absolutely convex sets. The mapping h : 6(X) + #(X) of the
previous THEOREM takes each closed, absolutely convex set A onto
the element [B(A)|, where B(A) = {A + U : U € 2L}, and so,

since 8(A) is a fundamental family of absolutely convex sets, h
takes H(X) into ¢ (X). Because of THEOREM 3.3.1 it will be
sufficient to show that h(%(x)) is dense in QR(X), and that

ok(x) is closed in ¥(X).
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Let [F] be any element of ¢, (X) with %Fa fundamental family
of absolutely convex sets, and let V belong to % . Cchoose Vo in
?J,such that '-}VOC V. Then there exists Fo in efsuch that Poc: F + Vo
for all F in ¥, Put A = F, + V,. Then A belongs to /(X), and
F+V o F+W CF+V forallFin ¥, and F =R+ U+ V for
a11 U in 2. Thus ([%], [B(E)]) belongs to V, so that h(K(X))
is dense in &k(X).

To show 9, (X) is closed, let [G-] be an element in the closure.
Thus, for each U in U there is a fundamental family F(U),
consisting of absolutely convex sets, such that there exists some
F (V) in ¥(U) with F(U) &G + U for all G in G, and there
exists some GO(U) in Gwith GO(U)C-‘ F(U) + U for all F(U) in F(U).

Let A be the collection of all sets of the form F(U) + 2U,
as F(U) runs through e:r(U) and U runs through Ct. Then 9{ is a
fundamental family of absolutely convex sets. For if F(Ul) + 2Ul,

F(U,) + 2U, are any two members, there exist 6,(U;) and 6 (u,)

2

with Go(Ul)C:F(Ul) + Ul and Go(Uz)t: F(Uz) + U Let Go be

2'
a member of @ with ¢ = Go(Ul) ﬂGo(U2), and let Uo be a member
of ZL with auoc:: Ulﬂ 02. There is some F(Uo) in ?’(Uo) with

F(Up) <= Go + Uo’ so that
Fo(uo) + 2U°c: Go + suoc:: (Go(Ul) + Ul) P!(Go(uz) + U2)
= (F(U,) + 20 )ﬂ(F(Uz) +20,) ,

and therefore $¢ is a filter base. Now if V is any member of 7,(,
there is PO(V) in‘?}/(v) with FO(V) C-G + V for all G in @‘, and
80 also F (V) + 2Ve=G + 3V for all G in . Hence

F (V) + 2VCSF(U) + U + 3VCSF(U) + 2U + 3V for all U in &,
which shows that % is a fundamental family.

Next, [@]= [%' . For if U Q is any member of 2L then there

is some H = F(U) + 2U in % with HCH+ U, for all H in 9.
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But then there is G_(U) in ( with G,(U) F(U) + U, so that
GO(U)c::H + Uo for all H in ?{. Also, if Ul is a member of 21

chosen so that 3U,c= U _, there is F_(u,) in ??Qul) with

1l

Fo(Ul) G ¢ U1 for all G in . Hence

F(U) + 20,6+ 3,6+ U farall G in &.

1l 1
Therefore, finally, |(?] belongs to ¢, (X), which must then be

closed in ¢(X), and complete.

When X is a topological vector space over the real number
field, a fundamental family 5’on X which consists of absolutely
convex sets and has the property that, for each F in QEfand
each positive real number r, rF is in %F: is called a scalar
fundamental family, following Kelley in (17). The space X is called
fully complete . if every scalar fundamental family on X converges.
For locally convex spaces this conditon is equivalent to "full
completeness" of H. Collins and "B-completeness" of V. Pték, and
1ies between completeness and hypercompleteness conditions. It is
of some interest to look at the behaviour of the subspaces of #(X)
determined by the scalar fundamental families and convergent scalar
fundamental families, under the identification with éi(x).

Denote the two subspaces by ¢S(X) and wso(x), respectively. Con-

cerning the latter there is the following result.

PROPOSITION 3.3.4. The space IJ(X) of closed vector subspaces of

the locally convex topological vector space X is uniformly isomorphic
to the subspace 08°(X) of #(X), determined by the convergent

scalar fundamental families.

Proof. Let ZL be a O-neighbourhood base for X, consisting of
absolutely convex sets. The mapping h : 5§(x) + &(X) of THEOREM 3.3.1

takes each M inlzg(X) onto the element [Ea(ui], where
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BM)=M+U:Ue Z2L{}. Clearly the collection {M} consisting
of the one set M is a convergent scalar fundamental family on X,
and [{M}] = [B(M)].

If Q:7-(18 any convergent scalar fundamental family. then,
putting M = ﬂ{f‘— : Fe Q{}, the set M is easily seen to be a closed
vector subspace of X. Also [B(M)] = [¥], for if U_ is any
member of ?.( then M + Uoc:: F+ 2U° for all F in QJ”,
and there exists Fo in %—'/with Foc:: M+ UM +U + Uo for all
v in U.

It follows that h takes L(X) onto oso(x), and since h is
a uniform isomorphism between &(x) and h(&(X)) by THEOREM 3.3.1,

the proof is complete.

PROPOSITION 3.3.5. If X is any uniform space, the space (C(X) of

nonempty, compact, closed subsets of X is isomorphic to the subspace
QC(X) of ¢(X), determined by the collection of fundamental families
of compact subsets.
Proof. Let 2 be a base for the uniformity on X. The isomorphism
h: E€(x) + h(€(X)) of THEOREM 3.3.1 takes each nonempty, compact
closed set C onto the element [‘B(C)] ., where B(C) = {U(C) : U ¢ 2}.
Clearly the collection {C} consisting of the one set C is a
fundamental family and [{C}] = |B(C)].

Now let bee any fundamenital family of compact subsets.
Then by PROPOSITION 3.2.6 O is convergent, and C = n{'i : F ¢ %)
is a nonempty, compact, closed subset of X. Furthermore, as in the
proof of the previous PROPOSITION, J3(C) and ydetermine the same
element of ¢(X).

Thus h takes C(X) onto ¢.(X), and the result is proved.

Remarks. If ?’is a fundamental family on a uniform space X

then it is easily seen that yconverges if and only if there is
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a closed subset A of X such that Q3*(and H(A) determine the same
element of ®(X), and thenA ﬂ{f : F e %). This observation leads
immediately to the following two results of section 2, which can
now be regarded as corollaries of THEOREMS 3.3.1 and 3.3.3.

The space £.(X) of nonempty, closed subsets of a uniform
space X is complete if and only if every fundamental family on
X converges.

The space ?((x) of nonempty absolutely convex, closed subsets
of a locally convex topological vector space X is complete if
and only if every fundamental family on X consisting of

absolutely convex sets converges.

For a suitable space X the spaces é(x), €y, Cx), X,
)%(x) and ) (X) have all been identified with natural subspaces of
$(X) corresponding to various kinds of fundamental families on X.

To do the same for the Hausdorff completions ):(X) and é (X) is not
so straightforward. Thejare, of course, the closures in #(X) of
oso(x) and 0c(x), respectively, by the previous two PROPOSITIONS.
The space Qs(x) corresponding to the scalar fundamental families

is an appealing candidate for identification with ):(x) , but Kelley
has pointed out in (16) that although convergence of every scalar
fundamental family implies completeness of L(X), the converse is
not true. This does suggest, however, that the required set lies
between OSO(X) and ¢_(X).

when X is any uniform space, it has been shown that (X)
can be identified with QC(X), and ¢ c(x) is easily seen to be dense
in the space ¢p(X) determined by the fundamental families of pre-
compact sets. There is considerable attractiveness in the conjecture
that é(x) can be identified with OP(X). If this could be done then
the Robertsons' result, asserting completeness of (P(X) if X is

complete and separated, would be an easy consequence. The problem
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is to show ¢p(x) is closed in o(X).

It has only been possible to achieve the following PROPOSITION
- the proof relying on the Robertsons’ result. To state the
PROPOSITION concisely, we introduce here a theoretical tool, which
will be useful again later. If X and Y are uniform spaces and
t : X+ Y is a uniformly continuous mapping then we define the
mapping t* : &(X) + ¢(Y) by t*fff] = [t(oa‘)] . It is easily seen

to be well-defined and uniformly continuous.

PROPOSITION 3.3.6. Let X be a uniform space and i the

canonical mapping of X into its Hausdorff completion )‘E Then the
closure in ®(X) of OC(X) is the inverse image of 00():) under the
mapping i* : #(X) + (X) induced by i.
Proof. Denote the inverse image by oq(x). First, it will be
shown that ¢ (X) is dense in ¢ (X). Let [R] belong to oq(x),
and let Uo belong to the base U for the uniformity on X. Now
the closures in X x X of the sets iz(U), U in U, form a base
for the uniformity on )‘E, so, if bars denote closures in X x f(,
there is some Ul in & and some entc;umge W of ;(, such that
SCIYT%FC%—;). Since the fundamental family i(() is
identified in N)?) with a fundamental family of compact sets on
)‘E, which must converge by PROPOSITION 3.2.6, it follows that
i(®) converges, and that the set C = ﬂ{m :Ge (G} is a
nonempty, compact closed subset of )2 Thus there is a finite
subset D of C, with Cc—~W(D). Then, since i(X) is dense in
}‘E, there is a finite subset E of X such that i(E)c= W(C) and
c< %(i(E) ).

The family {E} consisting of the set E alone clearly
determines an element of ¢ c(x). This element will now be shown

3
to belong to the U-neighbourhcod of [@-] . By the convergence of
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i(B), there exists G, in G such that

i(Go)c: W) < a(i(E))C-ﬂ%I)(i(E))c: ING)(i(E)) so that, in

fact, i(Go)c:'fiQ)(i(E)), and therefore Goc: a(E). Also

c<=I(6) for all G in & and so i(E)C:W(C)C%I(i(G)) for all

G in G-. As before this implies that E<::a£G) for all G in &. This
proves that ([G], [{E}]) belongs to a,, and hence ¢ _(X) is

dense in ¢q(X).

Next to show that ¢q(x) is closed in ¢(X) it is sufficient
to show that ¢c(i) is closed in O(;(), because the mapping i*
is uniformly continuous. But 0c(§) is isomorphic to e(X) by
PROPOSITION 3.3.5, so complete by the Robertson's Theorem, and
hence closed in the separated space 0(;().

The mapping i* can easily be shown to be an isomorphism
between ¢(X) and 0()?), and corresponds to the isomorphism betwcen
é(x) and é()?) of Chapter 2. Denote by or(x) the subspace of
#(X) determined by those fundamental families on X whose images
converge in ;( Then Qr(x) can be identified with 00(;() and
hence with E(;(). Under the same isomorphism, Qq(x) is identified
with ¢ c(;{), which leads immediately, using the THEOREM above,

to the following result of Chapter 2.

COROLLARY 3.3.7. The space ((X) is uniformly isomorphic to the

space C(X).

Remark. Since the closures in X of the images under i of
the members of any fundamental family of precompact sets on X

form a fundamental family of compact sets on ﬁ, we have
¢c(X)c:¢p(X)c: Oq(x)cﬁr(x) .

In Chapter 2, section 3, it was shown that for any uniform

space X the Hausdorff completion X can be embedded as a uniform
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subspace in S(3(x)) and, in fact as a closed uniform subspace in
€(€(X)). It now turns out that the Hausdorff completion é(x) can
also be embedded as a closed uniform subspace in &(£(X)). by
means of the construction by fundamental families developed in this

section.

PROPOSITION 3.3.8. Let X be a uniform space and 2 a base for the

uniformity. Construct the space #(X), and define a mapping
w: o(X) + S(8(X)) by taking the image under w of an element
[%¥] to be the filter Yo generated by the collection

{U(F) : F e e_f, Uedl). Then w is an isomorphism of ¢(X) onto

its image in S(8(X)).

Proof. It must first be shown that w is well-defined. Let e&(and
G be fundamental families on X with [7] = [G]. 1f A belongs to
the filter Y5, then there exist G in G and U in a(.with

U(G) cZA. Choose Ul in U such that 615 U, and then there is some
F in cEi—"such that Ul(F)c: él(G)c:A. Thus A belongs to ¥e¢ , and it
follows that ¥o = ¥g .

Next, w is injective. For if ¥¢ = Yo , and U is any member
of 2L, there exists Fo in ea{ such that F .. U(F) for all F in F,
and then U(I—‘o) must belong to ¥g , so that there exist G in &
and V in &L such that G V(G)= U(Fo)c::(zJ(F), for all F in ¥ .

It follows that [F] =[&] .

Now suppose that (¥g. , ¥g ) belongs to the entourage \zl of
S(8(x)). Choose F, in ¥ such that F& V(F) for all F in J .
Since V(F ) belongs to Yy, there is some A in ¥g such that
Ac%(ro). Then there exist G in G and U in ¢( such that
6 U(C) e AC_\%(FO)C:.\?(F) for all F in F. Hence ([%], F&dd)

belongs to the entourage ¥ of o(X).
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Conversely, suppose (['f‘fl s [@]) belongs to \7, and let A be
any set in ¥;. Then there exists F in S such that Fe= V(G) for
all 6 in &, so that V(F)= ¥(A). Put B = AlUwE). hen clearly
B is a member of 47.5, , and (A, B) belongs to \21 Hence (¥ , Yo )
belongs to \ZI

It has been proved that both w and its inverse are uniformly

continuous, and the result follows.

COROLLARY 3.3.9. The Hausdorff completion £ (X) can be embedded

as a closed uniform subspace in EEWX)).

Proof. By COROLLARY 3.3.2, € (x) is isomorphic to #(X). From the
PROPOSITION, the mapping [%] + Y5 is an isomorphism of ¢(X)
into its image in B(S(x)). But then, since ¢(X) is separated, and
since the collection \l';,. of closures in X of the members of Y-
satisfies (‘{";, s Yo ) € U for each U in U, the mapping [F] - ‘l’;
is an isomorphism of ®(X) onto its image in S(£E(X)). Furthermore
if "73', denotes the closure in &(X) of ‘!5',; , then the mapping
{F] Tl"%« is an isomorphism of ®(X) onto its image in E(&(X)),
because E(€(X)) is the Hausdorff space associated with Scéxx)),
by PROPOSITION 2.4.1.

The image in €(&(X)) must be closed, being a complete

subspace of a Hausdorff space.

Remarks. Caulfield (5) has shown that the mapping
(x, y) +» {{x}, {%, y}} is an isomorphism of X x X into S(3x)).
The hyperhyperspace thus contains a surprising number of the
significant spaces derivable from X. An application of Caulfield's

embedding is given in Nachman's paper (22).

3.4 The filter condition and the fundamental family condition

Dr, ¥endy- Robertson discussed in (29) a condition on a mapping between
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two topological vector spaces, called the filter condition. It
is also meaningful for uniform spaces and will be said to hold
for a mapping t from a uniform space X into a uniform space Y
if the following is true.

FILTER CONDITION If ¢ is a Cauchy filter base on X and t(¢)

is convergent to a point of t(X) then ¢ is convergent to a
point of X.

An analogous conditon in terms of fundamental families is
now intreduced.

FUNDAMENTAL FAMILY CONDITION. If %Fis a fundamental family

on X and t(F) is a convergent family on t(X) then sf'converges
in X.

I1f A is a subset of X, the fundamental family conditon will
be said to hold on A if the above condition is satisfied with
A in place of X. The fundamental family condition has, as
might be expected, properties analogous to those of the filter
condition, with hypercompleteness taking the place of completeness.
The next result followsdirectly from the definitions and

THEOREM 3.2.4.

PROPOSITION 3.4.1. If X is hypercomplete the fundamental family

condition holds for every t. If t is uniformly continuous and
the fundamental family conditon holds, then if t(X) is hypercomplete,

X must be hypercomplete.

PRCPOSITION 3.4.2. If the fundamental family holds on a subset

A of X then it holds on any closed subset of A.

Proof. Let B be a subset of A closed in A, and let Fbe a
fundamental family consisting of subsets of B ( just a funda-

mental family on B). Then clearly %Ffis also a fundamental family
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on A. If t,, t_ are the restrictions of t to A, B respectively,

A’ B

then tA(%F3 = tB(ﬁfj and if tB(?Fj converges on tB(B) so does
tA(9§§ on tA(A) because the intersection of the closures in
tB(B) is contained in the intersection of the closures in

tA(A). But then F must converge in A, or, in other words,

if C denotes the intersection of the closures in A of the
members of f?fénd U is any entourage of X, U(C) eventually
contains f?ﬁ Since B is closed in A, C is also the intersection

Q.. o
of the closures in B of the members of 3, and hence # converges

in B.

PROPOSITION 3.4.3. If the fundamental family condition holds

for a mapping t between uniform spaces X and Y, then so does the

. filter condition.

Proof. Let ?f/be a Cauchy filter base on X with t(5) converging
to a point of t(X). By PROPOSITION 3.2.8 3 is also a fundamental
family on X and t(F) is a convergent family on t(X). If the
fundamental family holds F must converge in X as a fundamental
family and so again by PROPOSITION 3.2.9 ?"converges as a Cauchy
filter base to a point of X. Thus the filter condition holds.
That the two conditions are not equivalent in general will
now be demonstrated by a counterexample. Because of PROPOSITION
3.4.1 it will be sufficient to show the existence of a uniformly
continuous surjective mapping from a complete but not hyper-
complete uniform space X onto a hypercomplete uniform space Y.
For then the filter condition obviously holds by the completeness
of X, but if the fundamental family condition held X would be

hypercomplete.

COUNTEREXAMPLE 8.4.4. Take for Y any infinite dimemsicrnal Fanach

space and
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let X be the same vector space endowed with its finest locally
convex topology T(X, X*). Then X is complete because it is a
topological direct sum of copies of the scalar field, but if
it were hypercomplete (or even fully complete) then a closed
graph theorem of Kelley (16) could be applied to the identity
mapping of Y onto X to imply that the norm topology and
(X, X*) were identical, which is not true (see for example
(27)). However Y is hypercomplete being a complete metric
space. Finally, the identity mapping of X onto Y is clearly
uniformly continuous, and so the counterexample is supplied.
When X is a topological vector space over the real
number field we can define a weakened sort of fundamental

family condition on a mapping t from X into a uniform space Y.

SCALAR FUNDAMENTAL FAMILY CONDITION. If ¥ is a scalar

fundamental family on X and t(F) is a convergent family in
t(X) then Fconverges in X.

If X is fully complete then, of course, the scalar funda-
mental family condition holds for every t. If, in addition,
Y is a topological vector space over the real number field and
t is a continuous linear mapping, then t(F) is a scalar
fundamental family for each scalar fundamental family ¥ on X.
It follows that if,in this situation, the scalar fundamental
family condition holds and t(X) is fully complete, then X is
fully complete.

The COUNTEREXAMPLE 3.4.4, provides a situation where
the filter conditon holds, but not the scalar fundamental
family condition. That the latter condition is stronger for

continuous mappings is the next result.



PROPOSITION 3.4.5. If X, Y are separated locally convex

topological vector spaces and t : X + Y is a continuous

linear mapping for which the scalar fundamental family

condition holds, then the filter condition holds.

Proof. Let U be a base of absolutely convex O-neighbourhood,

in X, and let G : )‘E > § be the extension of t to the

completions. Suppose that the filter condition does not hold.

Then by Theorem 1 of Dr. Wendy Robertson's paper (29), there

exists a point a in )‘E such that E(a) = 0, but t(a) # 0.

Clearly a does not belong to X. Let A = {\a : X any scalarl}.

For each U in L let F(U) = (A + G)f‘x, where 6 is the

closure of U in § X § Then ¥ = {F(U) : U e U} is a

scalar fundamental family. For clearly each F(U) is non-

empty and absolutely convex, and AF(U) = F(AU) € %-/ Let U

be any member of u. If, for some scalar A , y belongs to

(Aa + G)H X, then y ~ Aa belongs to G, and so for any U'

in i there exists z belonging to Uﬂ (y - 2a + G'). Hence

y - z belongs to (Aa + 6')“ X, so that y belongs to

(A + G')ﬂx + U. Thus F(U)=F(U') + U, and ¥ is fundamental.
Next, since ;:(A) = {0}, it is clear that t(U)ct(F(U))=

Z(G)Dtm, for each U in . By continuity of t and ;, there-

fore,ﬂ{m : Uell} = {0}, and (%) is a convergcnt

scalar fundamental family on t(X). By the hypothesis '}'

must converge on X. Now ﬂ{m :UelUr =10} . Forify"

is a point of X belonging to the intersection then y belongs

to the closure of A + G, for each U, and so belongs to

A+ ﬁ + ﬁ, and hence belongs to A itself, since A is one-

dimensional and therefore closed in X; since a does not

belong to X, and y does, we must have y = 0.
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Choose U in ({ such that G + 6 does not contain a. Then
because %F’must converge to {0}, we can choose U'c U with
F(U') ¢-U., But then there exists z in (a + G')ﬂ X< FUu)cu,
so that a belongs to U + G'C’-G + 6 This is a contradiction,
and therefore the filter condition must hold.

We return to studying the behaviour of the fundamental
family condition towards uniform spaces. The vague observation
that fundamental families tend to behave towards the hyper-
spaces as Cauchy filters towards the spaces themselves is

given more substance by the next result.

THEOREM 3.4.6. Let t be a mapping from a uniform space X

into a uniform space Y, and let t° be the induced mapping
of 3(x) into S(Y) defined by t°(A) = t(A) for each subset A,
Then the fundamental family condition holds for t if and only
if the filter condition holds for t°.
Proof. Suppose the fundamental family condition holds for t,
and let {Aa : g ¢ I} be a Cauchy net in &(X) with its image
{t(Aa) : « ¢ I} converging in S(Y) to t(B), for some subset
B of X. By LEMMA 3.2.1 the family F= (F, : 8 ¢ I}, where
F, = l---;{Aa : a 3 B}, is a fundamental family on X, and its image
%) = +?(F) = {U{t(Aa) a3 Bt :Be I} is a convergent
fundamental family on t(X). By the fundamental family condition
“~converges in X,and again by LEMMA 3.2.1 this implies that the
net{A, : a ¢ I} converges to n{?s : B € I} in S(X). There-
fore the filter condition holds for t°.

Conversely suppose the filter condition holds for t° and
let q}/be a fundamental family on X with tF) convergent in
t(X). Put B = ﬂ{ﬁﬂ : Fe C‘?}, where the closures are in t(X).

By LEMMA 3.2.1, c)},dir'ec‘ted by CCis a Cauchy net in S(X) and
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t(*¥) is a net converging to B in S(t(X)). Since B belongs to
£%( S(X)) the filter condition demands that the net ?converges
to a point in 3(X). But then by LEMMA 3.2.1 Qf/converges as a
fundamental family on X, and therefore the fundamental family
condition holds for t.

Dr. Wendy Robertson showed in (29) that when X and Y are
separated topological vector spaces, t : X + Y is a continuous
linear mapping and ;: : )? -+ §’ is the extension to completions,
then the filter condition holds if and only if t Y0 = t1(0).
In particular, when t is injective the filter condition holds
if and only it t is injective. She gives the following example
to demonstrate that, when t is a uniformly continuous mapping
from a uniform space X into a uniform space Y, the filter condition

is not sufficient to infer injectiveness of t from injectiveness

of t.

COUNTEREXAMPLE 3.4.7. Let X be the interval -v < x < 7, and

let Y = {eie : -m < 6 < 7}, with topologies induced by real line

and complex plane topologies, respectively. Define t(x) = ot*.

Then t is injective and uniformly continuous, and the filter
condition holds,but t(-%) = t(x),
The fundamental family condition does not hold for this

example. For consider the family S on x consisting of the sets
1 1

Fn = (-“’ - +K)U(" - X - ;, '), ns= l, 2’ 3, ceoo

where x is any small positive number. Then clearly Q‘-"‘is

'

fundamental, Furthermore,

{eie

- . - I 3 1
t(Fn)- Pem<B < ~meoOrE-X-<0 <),

n

C=(}{Fn tn=1,2, ...} = [r-x, n), and

i
D=ﬂ{HFn):n=l,2, ...}={ee:n-xse<n}.



Now any ¢-neighbourhood of D eventually contains t(Fn), 8o
£(F) converges in t(X). But an ¢-neighbourhood of C may not
contain any F.» because each F has component distant
2 - -’]-"- - -;1; from C. Thus F does not converge in X.

Ir, in an attempt to find a situation where the funda-
mental family does hold and t is still not injective, we take
X to be the interval (-n, w]and Y the circle {ej'e :-w < 0 € 7},
with t(x) = eix, then the fundamental family F described above
suffices again to thwart the attempt.

I do not know if the fundamental family condition is
sufficient for inferring injectiveness of ; from injectiveness
of t. But there is a strengthening of the condition which does

achieve this in a very heavy-handed way.

STRONG FUNDAMENTAL FAMILY CONDITION. If F is a fundamental

family on X and () is a convergent family in ;(i), then F
converges in X. .

This condition implies that every Cauchy filter on X which
has image converging to a point of %(i) mist converge to a
point of X. Hence X must be complete.

There is also another kind of filter condition which

achieves similar ends in more gentle fashion.

SECOND FILTER CONDITION. If ¢ is a filter base on X and t(¢)

is a Cauchy filter base on t(X), then ¢ is also Cauchy.

PROPOSITION 3.4.8. If t is a uniformly continuous mapping

from X into Y, where X, Y are separated uniform spaces, and if
the second filter condition holds, then t is open and injective

and its extension t : X + Y is also injective.

Proof. Let U, Y be bases for the uniformities on X,t00,



respectively. Let x be a point of X. Then the collection
{V(t(x)) = VeY)} is a Cauchy filter base on t(X), so that
{E?RV(t(x))) : V¢Y) is also a Cauchy filter base on X, by
the second filter condition. Thus for each U in U there is some
Vv in Y such that V(t(x))<= t(U(x)), and so t is open.

Now let ; belong to ;(i), and put C = ;-1(;). Then
C is a nonempty closed subset of ﬁ, and there existsa fundamental
family {:’F on X such that ffconverges in )? and ﬂ{-f'R : Fe c}/'} =C
(take the family {W(C)f—]X : W is an entourage of i}).
By PROPOSITION 3.2.7, t(‘F) = t(%F) is a convergent family in
(X).

Let W  be any entourage of t(X). Choose an entourage
W of X such that ;2(W)c:.wo, using uniform continuity of t.
Then Q(w(c))<::w°(§). But since ?chonverges in i, W(C)
eventually contains ?F} and therefore W°(§) eventually contains
t(F). This implies that t(¥) is, in fact, a Cauchy filter
base on t(X), converging to ; in ;(i).

By the second filter condition F must be a Cauchy filter
base on X, and thus for any entourage W of ﬁ, there is some F

o

in “F such that ?x is W-small. Hence C must be a singleton,
and t is injective.

It has been observed that for topological vector spaces
the filter condition is necessary and sufficient for a continuous,
injective mapping t : X + Y to extend to an injective mapping
; : § -+ Q, but that, for uniform spaces, sufficiency fails.
However, there is another condition in terms of the behaviour

of ; which is equivalent to the filter condition for uniform

spaces.

THEOREM 3.4.9. Let X and Y be separated uniform spaces and

let t be a uniformly continuous mapping from X into Y. Then



if ; : X > § is the extension of t to the completions, the filter
condition holds for t if and only if %-l(t(x)) = X,
Proof. Suppose the filter condition holds. Let ; belong to ;_l(t(x)),
so that ;(;) belongs to t(X). There is a Cauchy net {xa} in X con-
verging to the point x in X. Since t is uniformly continuous
;(xh) -+ %(ﬁ) in %(ﬁ), so that the net {t(xa)} converges to a point
of t(X). Then, by the filter condition X, *x in X, and hence
% = x and ;-l(t(x))C:LX. The reverse inclusion is trivial,and thus
equality holds.

Conversely suppose that ;-l(t(x)) = X. Let {xa} be a Cauchy
net in X with {t(xu)} converging to a point t(x )of t(X). There is
a point ; in § such that xh + % in ﬁ, and then also %(xh) > %(Q) in
;(i). But then t(x) = ;(Q), and x belongs to %'l(t(x)), and hence,
by hypothesis, to X. Thus {xa} converges to a point of X, and the
filter condition holds.

There is an analogue of the foregoing result for the fundamental
family condition. First, two lemmas are given concerning the
induced mappings t° : 8(x) + S(Y) and t' : 3x) » E).

Recall that for each A in S(x), £°(A) = t(A) and t'(A) = T(a).

LEMMA 3.4.10. If t is uniformly continuous then, for the induced

mapping t', the filter condition holds on S(X) if and only if it
holds on E(X).
Proof. Suppose it holds on S(X). Let {M } be a Cauchy net in
€ (x) with t'(M) + t'(R) in t'(&€(X)). Then {M } is a Cauchy net
in S(X) and {t(#)} converges to a point of t'(S(X)), so by the
filter condition on 3(X), Ha -+ M in £3(x). But then M+ M in é?(x),
and therefore the filter condition holds on EE(X).

Conversely, suppose the filter condition holds on éixx), and
let {Aa}be a Cauchy net in 3()() with t'(Aa) > t'(B) in t'¢( S(x)).

Then {K;} is a Cauchy net in E(X) and, by uniform continuity,



t(Ka) = t(A ) for each a, 80 that t'(A,) > t'(B) = £'(B) in t(&(X)).
Hence by the filter condition on &), {'A"a} converges to a point in
€(X). But {Aa} must converge to the same point in S(x), and

therefore the filter condition holds on Swm).

LEMMA 3.4.11., Let iﬁbe a subset of Q(x). Then the filter condition

holds for t' on cq if and only if it holds for t° on .‘Q:
Proof. Suppose the former is true, and let {A“} be a Cauchy net
in cQ with t(Aq) + t(B), for some B in 4" Then t'(Au) + t'(B), so,
by the supposition, {Au} converges to a point of ﬁ Therefore the
f11ter condition holds for t° on 4.

Conversely suppose the latter is true, and let {Aa} be a
Cauchy net in S with t'(Au) + t'(B), for some B in dt. Then
t(Aa) + t(B), and by supposition, {Au} converges to a point of &,

Therefore the filter condition holds for t' on rﬁ"

THEOREM 3.4.12. Let X, Y be uniform spaces and t be a uniformly

continuous mapping from X into Y. Let t' : &(X) + &(Y) be the
induced mapping defined by t'(M) = t{M) for each M in &(X), and

;:' : é(x) + é(Y) the extension to completions. Then the funda-
mental family condition holds for t if and only if ;:"l(t'( £(x)))
= €(x).

Proof. The fundamental family condition holds for t if and only
{f the filter condition holds for the induced mapping t° on 5(X),
by THEOREM 3.4.6, which is true if and only if the filter condition
holds for t' on &(X), by LEMMA 3.4.10 and LEMMA 3.4.11, which in

turn is true if and only if t'-l(t'(é(X))) = &(X), by THEOREM 3.4.9.

Remarks. The foregoing result can be deduced quite easily
from the development in section 3.3, and the method has some

intrinsic interest. Thus if t: X =+ Y is a uniformly continuous



- 79 -

mapping between uniform spaces, define the mapping t* : &(X) + &(Y)
by putting t*f3?l = [p(%F)], as in the preamble for PROPOSITION
3.3.6. The mapping t® is easily seen to be well-defined and
uniformly continuous. If h,, h2 are the canonical embeddings

of £(X) and €(Y) in #(X) and ¢(Y) respectively, the following

diagram is commutative.

&xy X e

hy| Im2

8(X) —Ers &)

Furthermore, on identifying éi(x) with ¢(X) and éi(Y) with ¢(Y),
the mappings t' and t* coincide. Recall that hl(éi(x)) = ¢O(X)
and hz(éz(Y)) = 0°(Y), the respective subspaces of ¢(X) and ¢(Y)
determined by the convergent families; by uniform continuity of
t, t* takes ¢°(x) into 06(Y).

Now the fundamental families which converge in t(X) can
easily be seen to determine the same elements of ¢(Y) as the
images t(%{) of families convergent in X, and so the fundamental

family condition can be expressed in the form

-1
* * =
tR (R0 (X)) = o (X)),
and the scalar fundamental family condition (for suitable X, Y),

in the form

2, (X) N 47l (Ao (X)) = o (%),
But the first equation is just the condition in THEOREM 3.4.12
when the appropriate identifications are made.

It is noteworthy that in situations like COUNTEREXAMPLE
3.4.7, where ff(ﬁ) and Ef(?) are complete and can therefore
be identified with EE(X) and éi(Y), the THEOREM provides a useful
approach to the problem of ascertaining whether the fundamental

family contition holds or not. It was the negative conclusion
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arrived at by this approach that intensified the half-hearted
search for the particular fundamental family exhibited in COUNTER-
EXAMPLE 3.4.7.

When t is a continuous linear mapping from a topological
vector space X into a topological vector space Y, the funda-
mental family condition has significant implications for the
induced mappings between quotient spaces. Let M be a closed
vector subspace of X. Then the quotient space x/M is a
separated topological vector space, and a closed uniform sub-
space of €(X) (section 1.11). The mapping t' : £(X) + E(Y)
induces a continuous linear mapping t'l : X/H -+ Y/?T—T’
and the extension t' :”gé(x);: é:(Y) induces the continuous
linear mapping 3'1 : x/M > Y/¥(ﬁj-which is the extension of t'l
to the completions of the topological vector spaces x/M and
Y/;(ﬁy. The mapping t', is injective if and only if t'1(¥Tﬁ))
= M. If this condition holds and if in addition t is injective
on M, then t is injective on X.

Given that t'l is injective, we may ask under what circum-

stances the extension t'. is also injective. An answer is

1l
given by the following result.

PROPOSITION 3.4.13. Let X and Y be topological vector spaces,

t: X + Y a continuous linear mapping, and M a closed vector
subspace of X. Then if the fundamental family condition holds
and if the induced mappine\t' is injective on X/H, its extension
;' must be injective on x/ )

Proof. If the fundamenta? family condition holds for t then by
THEOREM 3.4.6 the filter condition holds for t° : S(x)+ S(1),
and by LEMMA 3.4.10 and LEMMA 3.4.11, the filter condition holds

for t' : E&(X) + E(1). It follows easily that the filter condition
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holds on every closed subspace of E(x), and in particular it must

hold on the quotient space x/M. But the restriction t' 1} x/M -+

Y/m is a continuous linear mapping between separated
topological vector spaces, so if it is injective we can apply
Dr. Wendy Robertson's Theorem 1 in (29) to deduce that the

A ~

extension t' 1 X/M + Y/:t—(m- is also injective.

3.5 The induced mapping t' and its extension. The mappings

t' and ;' have figured quite considerably - notably in connection
with the fundamental family condition. Thils section is devoted
to further study of their properties.

Let X and Y be uniform spaces, let A be a uniform subspace
of X and let t: A+ Y be a uniformly continuous mapping with
domain A. If Y is a complete separated space there exists a
unique extension :: : A +Y to the closure of A in X, whose graph
is the closure in X x Y of the graph of t (see for example
Kelley (15) ). Similarly, if Y is also hypercomplete, the induced
mapping t' : S() » €(Y) has a unique extension ;' : 3(a) » @(Y)
to the closure of 3(A) in 3(X), whose grarh is

the closure in S(X) X E(Y) of the graph of t' (or the "hyper-
graph" of t, which is studied in Chapter §). The next Proposition
will show that this extension exists even if Y is not hyper-
complete.

Now we can arrive at another mapping between 3(x) and E(Y)
by reversing the order of the inducing and extending operations.
Thus the extended mapping t : A+ Y induces the mapping
Q': 8(®) + €4Y). It turns out that these two operations are

commutative, in the sense of the following result.

PROPOSITION 3.5.1. When t is a uniformly continuous mapping

from a subspace A of a uniform space X into a hypercomplete

separated uniform space Y, then the two derived mappings
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t' : 3@ +» E(Y) and G. : S(E) » E(Y) have the same domain
and coincide thereon.
Proof. First we show that G(A) = S(A). Let B belong to
S(2). Then for each symmetric entourage U of'X the set
C = U(B)ﬂA belongs to S(A), and C< U(B). Ifb is a
point of B there is some point a of A with a € U(b)<: U(B).
Thus a belongs to C, and since b € U(a) T U(C), we have
Bc=U(C). Therefore (B, C) belongs to U and this shows
that B is in 3(A).

Conversely, if B belongs to .3(A) and U is any entourage
of X, there exists a subset C of A with B U(C)cz u(A).
Therefore B<= A, that is, B belongs to S(&).

To show that ‘:' and ':' coincide on B (A), it is
sufficient to show that they coincide on the dense subspace

8(a). 1f B is in S(A) then

At
t (B)

() » where the closure is in Y,

t(B) , since B A,

t'(B)

£'(8).

COROLLARY 3.5.2. If Y is a separated, complete space (not

necessarily hypercomplete) then the induced mapping t' of
S(A) into &(Y) still has a unique extension mapping S(A)
into €(¥).

Proof. The mapping t: A + Y has a unique extension

; : A+ Y, and the induced mapping ‘tu : S(B) ->€(Y) is the
required extesnsion of t', from the proof of the previous
THEOREM.

Now suppose that X and Y are separated uniform spaces

and that t is a uniformly continuous mapping from X into Y.
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Then t induces the mapping t' of €(x) into #(Y), which extends
to the mapping t' of é(x) into é(\'). The mapping t itself
extends to the mapping % of ;( into 'Y‘., which induces the

mapping ?:‘ of g(;() into é’.(:!), and finally this also extends
to the mapping ;' of é(;() into e(’;). Out of this rather
complex situation one consoling fact emerges. It was shown

in Chapter 2 that the spaces é(x) and é(;() are isomorphic,
and likewise the spaces é(Y) and §(§) are isomorphic;

this suggests that under these identifications the mappings ?:'

A
and ;:' may be the same.

PROPOSITION 3.5.3. When X and Y are separated uniform spaces

and t is a uniformly continuous mapping from X into Y, the

derived mappings ;' : é(X) + é(Y) and ;:. : é(;() -+ é(})

coincide on identification of é(x) with ‘é(i) and é,(Y) with

£,

Proof. This can be shown by the method of the previous

PROPOSITION - identifying each closed subset of X with its

closure in X according to the isomorphism é(x) > é(i)

exhibited in Chapter 2 section 4, and verifying that ;:' and %.

take the respective sets thus identified onto identified sets

in é(Y) and é(;?), and so coincide on a dense subspace of é‘l(x).
It is more elegant, and simple, to deduce theresult from

the work in section 3. Recalling the remarks after THEOREM

3.4.12, the problem becomes that of showing that the mappings

Lk o(X) + ¥(Y) and ’1‘:* : ‘b(;) + 0(‘;) coincide when the

corresponding spaces are identified. By the remarks after THEOREM

3.3.6, an element m in ¢(X) and an element [G] in 0()?) are

identified if % and G determine the same element in 0()‘;). But

then t(%) and ;( %) must determine the same element in O(Q) by

a®
the very well-definedness of t | This completes the proof.
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There is an immediate application of the foregoing result

to quotient spaces of topological vector spaces.

PROPOSITION 3.5.L. If X and Y are separated topological vector
spaces, M is a closed vector subspace of X, and t is a continuous
linear mapping from X into Y for which the fundamental family
condition “holds, then pz:c;\vided that t' is injective on x/M, 8o

is & on X/ﬁ and £ on x/ﬁ. .
Proof. By PROPOSITION 3.h.13, &' is injective on %/, But

by PROPOSITION 3.5.3, t' co incides with £ under the indentifi-
cation of éi(x) and é\(ﬁ), and by THEOREM 2.6.5 this identifica-
tion takes x;;l onto x/ﬁ.

The last result of the section is a generalisation to
uniform spaces of one of Dr. Wendy Robertson's results concerning
the filter condition for topological vector spaces, allowing
as & corollary an analogous result concerning the fundamental

family condition.

PROPOSITION 3.5.5. Let X and Y be separated uniform spaces and

let t be a surjective, uniformly continuous mapping from X to Y.

If the filter condition holds then for any precompact subset A

of X, t(R) = t{a).

Proof. Since A is precompact ﬁ, and hence also t(A), are compact,
and so complete. Here t is the extension of t to the completions

%. Y. But t(A)= £(A) c=t(A), and therefore £(A) = 4(A). Since
¢ is surjective, T(AY = £(x) | J&(h) = e V).

Let y belong to t(A). Then y = t(a) for some & in ﬁ, and
t":(;) belongs to t(X). By THEOREM 3.4.9 the filter condition is
equivalent to £ (t(x)) = X, end so a belongs to Xni = A.
Thus y belongs to t(A), and t(A) t(A).

Since t(K)c:: tiAS by continuity, the result follows.
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COROLLARY 3.5.6. If the fundamental family condition holds

for t, then for any precompact subset '-‘pf of & (X), t'(3) =t @)
Proof. By THEOREM 3.4.6 and LEMMAS 3.4.10 and 3.k4.11, the

filter condition holds for the ma-ping t' : Ex) » £(y). 1r

t is surjective so also is t', and application of the

PROPOSITION concludes the proof.

3.6 Hyperassociated uniformities. Let X be a set

endowed with two uniform structures £ and n. As in Chapter 2,
section 7, ve shall say that n is q8sociated with Eif £ has a
base consisting of sets closed in X x X relative to the
topology derived from n.

Furthermore we shall say that n is hyperassociated with &
on a subset $gof S(X) if the uniformity n on R is
associated with the uniformity £ on 42

Also, in future, we shall say that the filter condition
(or the fundamental family condition) holds for £ and n when

it holds for the identity mapping (X, £) -+ (X, n).

PROPOSITION 3.6.1. IfD = {{x} : x ¢ X} Jt — 8(X) and

n is hyperassociated with g onﬁ, then n is associated with §.

Proof. The uniformity £ on & has a base of ;r-cloced
entourages, and induces a uniformity on?) wvhich is isomorphic to

g. The result follows easily.

PROPOSITION 3.6.2. If £ and n are uniformities on a set X and

n is associated with g, then the filter condition holds for E and
TN

Proof. Let ¢ be a ¢-Cauchy filter and let ¢ + x relative to 1.
Then for each V in n there exists F in ¢ such that F <V(x),

and for each U in E there exists G in ¢ which is U-small.
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Then if U is chosen to be symmetric we have G = U(V(x)),
since FﬂG ¥ ¢. Hence G —(VUV)(x) for all V in n, and,
provided U is a n-closed entourage, G < U(x). But £ has a base
of such entourages, and therefore ¢ + x relative to the

uniformity &.

PROPOSITION 3.6.3. If £ and n are uniformities on a set X with

n hyperassociated with £ on 3(X), then the fundamental family
condition holds for & and n.

Proof. Since n is associated with E on 3(X) the filter

condition must hold for the identity mapping (.S(X), E) + (&(x),n),
by PROPOSITION 3.6.2. But this mapping is induced by the identity
mapping (X, £) +(X, n), and so by THEOREM 3.4.6 the fundamental

femily condition holds for £ and n.

COROLLARY 3.6.4. If n is hyperassociated with £ and coarser than

£ then (X, n) hypercomplete implies (X, §) hypercomplete.
Proof. The result follows immediately from the PROPOSITION and

PROPOSITION 3.k.1.

We set out now to find out when two uniformities are hyper-
associated. To begin with, it is clear that if n induces a
finer topology than £ on a subset ft ot (X) then n will be
hyperassociated with £ on ‘Q For any base of E-—closed entourages
for E will be a base of ;t-closed entourages for E. We can now
make immediate use of results and notation of the next Chapter
to obtain the following:

If n induces a finer topology than £ on X then n is
hyperassociated with £ on the n-compact subsets. If £ and n
are two uniformities compatible with a given topology on X
then they are each hyperassociated with the other on the compact

subsets.
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If ninduces a finer proximity than £ on X, and is
uniformly finer over X on every g-discrete subset, then  is
hyperassociated with £ on S(x).

It is plainly desirable to find weaker conditions than
these. The next PROPOSITION deals with hyperassociation on
campact sets; this is followed by a LEMMA and THEOREM dealing

with hyperassociation on Z(x).

PROPOSITION 3.6.5. If £, n are two uniformities on a set

X, and n is associated with §, then n is hyperassociated with
£ on the set of Mn-compact subsets of X.
Proof. Let U be an entourage of £, closed with respect to the
topology derived from n. It is sufficient to show that the
entourage {J of the uniformity E on the set of n-compact subsets
is ;-closed. Let (A, B) be a pair of n-compact subsets
belonging to the closure of {I Then foreach V in n there
exists (A', B') in E! sach that (A, A') belongs to V end (B, B')
belongs to \} Hence we have
A (VoUoV)(B) and Be= (Vel'eV)(A).

This being true for each V in 7} we have Acﬂ{(v U V)(B) = Ve n},
But this intersection is just U(B). For if x is any point in the
intersection, there are points bv in B such that (bv’ x)
belongs to VU V. Since B is n-compact there is a limit
point b of the set {b_: V € n} in B, so that for each V there
exists V'< V with (b, bv') in V. Thus (b, x) belongs to
V! UV'VCVV U VV for each V in n. BSince U is n-closed,
(b, x) belongs to U, and y belongs to U(B).

Consequently Ac= U(B), and similarly Bcs U(A), so that

(A, B) belongs to U and U is p-closed.
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LEMMA 3.6.6. If g, p are two uniformities for a set X and , is

proximity-finer than £ on X, then for each subset A of X and

each U belonging to & there exist V_, V2 belonging to n such that
(v, UV,)(A) = B(a)

Proof. The sets A and X-U(A) are f-remote, and must also be

n-remote. Thus there is some V2 in n such that VZ(A) < U(a).

Hence (Wa)(A)CIZJ(A). Then, similarly, there is some v, in

n such that V,((UV,)(A)) C-U((UV,)(A)). Hence (V. UV,)(A) = U(A).

THEOREM 3.6.7. If £, n are two uniformities for a set X and

n is proximity-finer than &, then n is hyperassocisted with £ on

S(x).

Proof. For each U in £ let W(U) dencte the ;)-closure in

S(x) x S(X) of the entourage U. Put W = (W(U) : U e £}.

We will show that Wis a base for the uniformity E on 3(x).
Let U belong to £ and choose Uo in £ with goc U. Let

1* 2

exists (B, B,) in U such that (A,B,) is in V. and (a,, B,)

is in V,. It follows that A <= (V,UV,)(A)) and

(Al’ A2) belong to W(Uo). Then for each V., V_, in n there

A2C (vauovl)(Al). fov. by the LEMMA 3.6.5..V:L and V2 can be

3
chosen so that (vluov2)(A2) c:Uo(Aa), which implies that

Alc: U(Aa). Furthermore Vl and V2 can be chosen so that

3
(vauovl)(Al) C:UO(A ), which implies that A U(Al). Therefore
(A, ,) belongs to U. Ve have shown thet W(U )= U. Trivially

U<=W(U), and so ‘W is a base consisting ,'-,—cloaed entourages for
the uniformity E.
COROLLARY 3.6.8. 1If (X, §) is a proximity space then the

uniformities belonging to #(6) (that is all uniformities
inducing the proximity &) are each hyperassociated with every

other.



Remarks. It is not difficult to show that if n is
proximity-finer than £ then every n-convergent family of subsets
of X is also f{-convergent. I suspect there is partial converse
but cannot find it. It is noteworthy that if n is associated
with £ and every n—convergent family of subsets is also

E-convergent, then n induces a finer topology than &.



CHAPTER 4

TOPOLOGIES INDUCED ON HYPERSPACES

4.1. Introduction. Let &, n be two uniformities on a

set X. In section 3.6. attention was paid to the problem of
vhen ; is associated with E. We proceed now to consider
conditions under which these respective Hausdorff uniformities
and their induced topologies on various hyperspaces are
comparable. This subject has had an interesting history

over the last decade or so, and the relevant results are
included and discussed in this Chapter. The central problem
has been to determine when two uniformities on X induce

the same topology on S(X). Such uniformities are called
B-equivalent; if they induce the same topology on some

R = 3(X) we shall call them H-equivalent on J¢.

J. R. Isbell asserted (wrongly as it turned out) in
(12), page 35, exercise 17, that distinct uniformities are
not H-equivalent, with the implication that the topology on
8(X) is "sufficient" to distinguish between uniformities
on X. D. H. Smith in (30) showed that Isbell's proof was in
error, but proved some partial results tending to support the
conjecture. In particular, H-equivalent uniformities must lie
in the same proximity class; this has two significant
corollaries : that two distinct uniformities, at least one
of which is precompact, cannot be H-equivalent, and that two
distinct uniformities, each with countable base, cannot be
H-equivalent. Two uniformities in the same proximity class
must each be hyperassociated with the other (see section 3.6),

but they need not be H-equivalent, as it will appear.
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A. J. Ward (34), A, A, Ivanov (13) and Isbell himself (1l1)
found counterexamples to the conjecture, and finally Ward
gave, in (35), necessary and sufficient conditions for two
uniformities to be H-equivalent. Strangely enough, F. Albrecht
(1) had given slightly different equivalent conditions years
before, but due (I suggest) to a misrepresentation in Maths.
Reviews his result appears to have passed unnoticed. Ward's
and Albrecht's results are included in section 2. In response
to Ward's and Isbell's counterexamples, and in the following
year 1967, J. L. Hursch (10) brought his notion of "height"
to the problem - this is a relation between uniformities which
is dual in a sense to that of proximity. He showed that two
uniformities equal in both proximity and height must satisfy
Ward's conditions, and so are H-equivalent. That there exist
distinct uniformities of this intimacy had previously been
demonstrated by Hursch.

In section 3 we ask when two uniformities are H-equivalent
on various smaller sets than :S(x). If ¢ and n are simply
given to induce the same topology on X (we shall describe them
as ocompatible for brevity), then they are H-equivalent on the
set of compact subsets. But they are not necessarily H-equivalent
on the set of n-precompact subsets; for this to be true it is
necessary that every n-precompact subset be {-precompact.
Sufficient conditions involving the notion of height are given
for £ and n to be H-equivalent on the set of all precompact
subsets. They may still not be H-equivalent on éS(x), however.
For this they must be proximity-equivalent and each must be
uniformly finer than the other over X on each subset which
is discrete with respect to the other (these are Ward's

conditions - see section 2 for the definitions). Given all
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fhis, g and n will certainly induce the same topology on the
set of compact subsets of 3(x), but they may yet induce
different topologies on S(.S(X)).

In order to induce the same topology on SC5(x)), the
Hausdorff uniformities £ and n must be proximity-equivalent
on 8(X), and V. Z. Poljakov (24) showed in 1968 that in that
case £ and n must coincide, so that of course all the induced
uniformities and topologies coincide. Poljakov's proof is
given in slightly different form in section 4, and it is
apparent that even on the set ‘3-’-()() of finite subsets of X
the proximity structure distinguishes between uniformities on X.

Thus, where the topology on 8(X) is insufficient for
distinguishing uniformities, the topology on S¢ S(X)), and
even on S(F(X)), is sufficient. While the topology on X
is insufficient for determining the topology on S(X), it is
sufficient for determining the topology on C(X). 1In general,
one topology on a set may arise from many uniform structures,
unless it iseepavatedand compact, when there is only one. Also
one proximity structure may arise from many uniform structures,
precisely one of which is precompact. Of the class of all
induced uniformities on S(X) or ?(x), however, we can say that
no two have the same proximity structure, and of the class of
all induced uniformities on S(3(X)) or S(?(x)), we can say
that no two have the same topology.

Next we consider the problem of when H-equivalence of two
uniformities implies identity. Ward has shown in (35) that
when the uniform space (X, £) has a certain rather complicated
homogeneity of structure, there can be no other uniformity on
X H-equivalent to E. It is proved in section 5 that if (X, &)

is the union of a compact collection of discrete sets then the
same thing can be said. Ward's result follous from this
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4,2. The H-equivalence of uniformities. We call pn

H-finer than € on a subset & of E(X) if 1 induces a finer
topology than £ ongt. When ,&Q= S(X) we merely say H-finer.
The two uniformities £, n are H-equivalent if each is H-finer
than the other. To begin with, it is obvious that if n is
finer than £ it must be H-finer. Before concentrating on
topologies it seems logirally desirable to state the case for
comparability of uniformities; the following THEOREM is
immediate.

THEOREM 4.2.1. If £, n are uniformities on a set X which are

either compatible or both separated, then the following are
equivalent:
(1) n is finer than £ on X;
(2) ® is finer than £ on the set of f-compact subsets;
(3) f is finer than £ on the set of n-compact subsets;
2

(4) % is finer than £ on the set of {-precompact subsets;

o™ik

(5) K is finer than £ on the set on n-precompact subsets;
(6) f is finer than E on the set of £-closed subsets;
(7) % is finer than t on the set of n-closed subsets;

(8) W is finer than & on 3(X).

For n to be H-finer than £ on S(X) it is clearly necessary
that n induce a finer topology on X. However it is not necessary
that the various conditions of THEOREM 4.2.1. should hold, as was

demonstrated by the counterexamples of Ward, Ivanov and Isbell.

It was Albrecht (1) who first found necessary and sufficient
conditions, in the following form:

Given that &, n induce the same topology on X, n is H-finer
thaa £ if and only if, for each M in &€(X) and each U in £, there

exists V in n such that
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(i) V(M) = U(M), and
(ii) for each point x in M there is some point x' in M

with V(x') <= U(x).

Ward (35) gave necessary and sufficient conditions in
somewhat more elegant form and we include his result, together
with a slightly altered version of Albrecht's, in the next
THEOREM and (lest there be any further confusion on the
matter!) prove them equivalent.

First, some definitions are required, for use throughout

the Chapter.

Let A be any subset of X. Then n is said to be wuntiformly
finer than £ on A over X if, given any U in £, there exists
V in n such that V [ﬁ\(A x X) < U (or, equivalently,

V(a) — U(a) for each point a in A).

A subset B of X is called U-disorete, for U in §, if,
for each point b in B, U(b) ﬂ B = {b}. The subset B is called
g-discrete if it is U-discrete for some U in §.

We recall that n is proximity~finer than § if and only
if for each A X and each U in § there exists a V in n such
that V(A) < U(A). We describe this by saying that n induces
finer uniform neighbourhoods of A than £.

THEOREM 4.2.2. Let §,n be two uniformities on a set X. Then

the following are equivalent:

(1) n is H-finer than §;

(2) (WARD'S CONDITIONS) n is proximity-finer than £ and
uniformly finer over X on every {-discrete set;

(3) (ALBRECHT'S CONDITIONS) for each AC: X and U in §

there exists V in n such that
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(i) v(A)=u(a), and
(ii) for each x in A there is some x' in A with
V(x') = W(x).
Proof. The equivalence of (1) and (2) was proved by Ward (35).
We shall simply show that (2) and (3) are equivalent,

Suppose that (2) is true, and let Ac_X and U in § be
given. Let Ul be a symmetric entourage in { with 6lc::U, and let
B be a maximal Ul-discrete subset of A. By (2) there exists
V,s V, in n such that v,(A) = U(A) and Vzﬂ(B x X)=U,.
Put V = Vln V2. Then V belongs to n and V(A) c=U(A). Further-
more, if x is any point in A, there is a point x' in B such
that (x,x') belongs to Ul,by the maximality of B; also
Vz(x') c:Ul(x'), so that V(x') c:V2(x') < Ul(x') C:Sl(x) U(x).
Therefore (3) is true.

Conversely, suppose that (3) is true. Then, quite
trivially, n is proximity-finer than {. Let A be a U-discrete
subset of X, for some U in . Then there exists V in n such
that condition (ii) of (3) holds, where in fact x' = x since A
is U-discrete. Thus V(x) < U(x) for each x in A, which means

that n is uniformly finer than £ on A over X.

Remark. It is easy to see that if £ and n are compatible
uniformities on X then n is H~finer than £ on S(X) if and only
if it is H-finer on &(X), and this is true if and only if n
induces a finer proximity between the closed subsets of X and

is uniformly finer over X on every {-discrete subset.

4.3 The H-equivalence of uniformities on subsets of .5(X).

When two uniformities are not H-equivalent on 3(X) then looking
for subsets of S(X) on which they are H-equivalent can yield a

measure of their failure in this respect. The next result fixes
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the zero - any two compatible uniformities must at leastbe

H-equivalent on the set of compact subsets.

THEOREM 4.3.1. Let £, n be two uniformities on a set X.

Then the following are g¢quivalent:
(1) n induces a finer topology than £ on X;

(2) n induces finer uniform neighbourhoods of n-compact

subsets;

(3) n is uniformly finer over X on every finite {-discrete

subset;

(4) n is uniformly finer over X on every finite subset;

(5) n is H-finer on the set of n-compact subsets.

Proof. Trivially, (2) implies (1). To show that (1) implies
(2) let C be any n-compact subset and let U in & be given. Then
A =X -U(C) is a £-closed set and s0 is also n-closed. Since

C is n-compact and disjoint from A, there exists V in n such
that V(C)fA‘A z ¢ (see e.g. Bourbaki (4)). Thus V(C) <u(C),
and (2) follows. Next, it is obvious that (4) implies (3) and
clear that (3) implies (1). We prove that (1) implies (4). Let
B be a finite subset and let U in £ be given. For each bi in
B there is a V, in n such that vi(bi)c'U(bi)' Then V =Qvi
belongs to n, and if b is any point in B, V(b) = U(b) so

that v| J(B x X) =U. We now have (1), (2), (3) and (4)
equivalent.

That (5) implies (1) is obvious, so it remains to prove
that the truth of the conditions (1) - (4) implies the truth of
(5). Let C  be an n-compact subset and let U in § be given. By
(2) there is some V_ in n such that Vo(c°)<::U(C°). Choose a
symmetric U1 in € with 51c= U. Then, since Co must also be
E-compact by (1), there is a finite £-discrete set B<::c° such

that C < Ul(B)' By (4) we can choose a symmetric V in n such
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that both V<V  and V‘q](B x X) CU,. Now let C be any n-compact
set such that (C, Co) belongs to V. For any point b in B there exists
a point.c in C such that (b, ¢) belongs to V, because Bc:Cocz v(c).

Then (b, c) must also beleng to U,, because V (B x X):=U Since

l.

2
U, is symmetric we have B<::Ul(c), and hence C < Ul(C) <u(e).

1
Also, C =V(C_) =V (C,) =U(C,), so that (C, C_) belongs to U,
and the truth of (5) is established.

It is natural to ask whether this result can be extended -
whether compatible uniformities must be H-equivalent on the set
of E-precompact subsets or the set of n-precompact subsets. An

examination of the foregoing proof yields the following:

COROLLARY 4.3.2. If n induces finer uniform neighbourhoods

of E-precompact subsets than does £, then nis H-finer on the set
of {-precompact sets. If n induces finer uniform neighbourhoods
of n-precompact subsets and if every n-precompact subset is also
g-precompact, then n is H-finer on the set of n-precompact
subsets.

However, in general, compatible uniformities are not H-
equivalent on the set of all precompact subsets. This is a con-
sequence of the following two LEMMAS, the first of which is

proved using ideas of Ward's paper (35).

LEMMA 4.3.3. If n is H-finer than ¢ on the set of p-precompact
subsets, then n is uniformly finer over X on every g-discrete
n-precompact subset.

Proof. Let A be an n-precompact and Uo-discrete subset of X,
vhere Uo Belongs to £, and let U ingbe given. Let Ul be a
symmetric entourage of §{ contained in UoﬂU. Then there is
some symmetric V in n such that any n-precompact set B
belonging to V(A) must belong also to Gl(A). In particular, the

get B = {yo} U(A - {xo}), where X, belongs to A and (xo, yo)
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belongs to V, must belong to Gl(A), and therefore A C’-Ul(B).
Thus there exists y' in B such that (xo, y') belongs to

UJ.C: Uo. Since A is Uo-discrete, y'= Yo Thus for any peoint
x in A and any point y in V(x) we must have y belonging to

Ul(x) < U(x), and so V n(A x X) cuU.

LEMMA 4.3.4. If n is uniformly finer than £ over X on

every E-discrete n-precompact subset, then every n-precompact
subset is E-precompact.

Proof. Let A be n-precompact, and let Uo in & be given.
Choose a symetric Ul in £ with 615 Uo’ and choose a maximal
Ul-dj.screte subset of A, say B. Then A C:Ul(B) and there exists
by hypothesis some V in n such that V ﬂ(B x X) <U,. Since

B is n-gompact there exists a finite set FcB such that
B<V(F). But then also Be=U (P) and so AcU (F) U (r)

Therefore A is g-precompact.

By the previous two LEMMAS, in order that £ and n be
H-equivalent on the set of n-precompact subsets, every
n-precompact subset must also be {-precompact, and in order that
£ and n be H-equivalent on the set of subsets which are either
E-precompact or Nh-precompact, we must have the respective
collections of precompact subsets coinciding. If, on the other
hand, these collections are known to coincide, and if the
respective systems of uniform neighbourhoods of each precompact
set induced by &€ and " form equivalent filter bases, then by
COROLLARY 4.3.2,§ and N are H-equivalent on the set of all
precompact subsets,

At this point we recall Hursch's notion of height. The
uniformity & is said to be l¢ss than or equal in height (%)

to n if for each U in E there exists a finite covering {Ai} of X
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and a V in n such that V(}(Ai X Ai) < U for each i. Hursch

showed in (10) that if £ ¢ n and n ¢ £, and £, n are proximity-
equivalent, then. they are H-equivalent. By means of COROLLARY
4.,3.2 and the following LEMMA, we can state a sort of half-way

result.

LEMMA 4.3.5. If g g n then every p-precompact subset is also
g-precompact.
Proof. Let A be np-precompact and let U be any symmetric
entourage in g. Then there exists a finite covering {Ai} of X
and a V in n such that Vﬂ(Ai x Ai) < U for each 1. Let B be
a maximal U-discrete subset of A, and choose Vl in n with 6lc: v.
Since A is np-precompact, there exists a finite set Fc= A such
that A ch(F).

Now,for each f in F, Vl(f) contains at most a finite number
of points of B, For if bl’ b2 are two points of B in Vl(f)
which belong to the same member A,of the finite covering, then
(by, b2) belongs to V n(Ai X A;) <U, and since B is U-discrete,

b, = b,. Hence V(F) contains at most a finite number of points

1
of B; but B V(F), so B must be a finite set. By maximality

of B, A <U(B), and therefore A is {-precompact.

PROPOSITION 4.3.6. If § is less than or equal in height to n,

and if n induces finer uniform neighbourhoods of n-precompact sub-

sets, then n is H-finer than § on the set of n-precompact subsets.

Remarks. It is quite possible that the part of the hypothesis
concerning uniform neighbourhoods could be considerably weakened.
Perhaps compatible uniformities which are equal in height must be
H-equivalent on the set of precompact subsets? It is also tempting
to conjecture that compatible uniformities must be H-equivalent on

the set of subsets which are precompact with respect to each uniformity.
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b4 The sufficiency of the set \_3 (Hx)). After Ward,

Ivanov and Isbell had succeeded in-~showing the “"insufficiency of
the. hyperspace" (Isbell's phrase), Poljakov proved in (24) that
if £, n ave digtinct compatible uniformities on X then the
uniformities E and ; on 8(X) are not proximity-equivalent,
and hence by Ward's conditions in THEOREM 4.2.2. the uniformities
z and i induce distinct topologies on- S(Sx)). Actually,
his proof shows that even the set of subsets of F1X) (the set
of finite subsets of X) is sufficient for distinguishing
uniformities on X.

We present here a slight adaptation of Poljakov's original

proof.

THEOREM 4.4.1. Let £, n be two uniformities on a set X. Then

n is proximity-finer than E on the set F(X) if and only if n

is finer than £.

Proof. Ifn is finer than £ then it is clear that :\ is
proximity-finer than E on F(x). Conversely, suppose the latter
if true and let U in £ be given. Choose a symmetric Ul in &
such that l?l < U.

1
Consider the following two subsets of LX)

= {{x} : x ¢ X},
R = {{x, y} : (x, y) £ U}.

We show that & and J are E-remote. Let {x, y} belong to
61(&), so that there exists A in $with {x, y} belonging to
61(“; this means that there is some point z in X such that
{x, y}=U,(z). Then (x, y) belongs to 615‘- U, so that {x, y}
does not belong to B. Thus l.ll(.ﬂ)ﬂ 8 = ¢,

Since n is proximity-finer than E on ?(x),ﬁand &
must also be :\-remote. Thus there exists a symmetric V in n

such that ‘;(Q)ﬂﬁ = ¢ . That is, for each x, y in X, (x, y)
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belongs to U whenever {x, y} belongs to G({z}) for some z in X.
Let (x, y) belong to V. Then {x, y} belongs to ;({x}), and so

(x, y) must belong to U. Therefore V< U, and n is finer than ¢.

COROLLARY 4.4.2. If n induces a finer topology than ¢ on

S(% (X)), then n is a finer uniformity than .

4,5 The H-singularity of uniformities. When can we say

of a uniform space (X, £) that there is no other uniformity on
X H-equivalent to £? Such a uniformity is called H-stngular, and
Ward (35) has given sufficient conditions for H-singularity,

in the following form:

Let (X, £) be a uniform space such that there exists a
compact uniform space K and a family of mappings fi : K+ X (ie I),
satisfying:

) Jg 00 = x,

(2) the set Ex = (fi(x) : ie I} is g-discrete for every

x in K,

(3) the mappings f,, i ¢ I, are uniformly equicontinuous.

Then & is H-singular.

These conditions can be made intrinsic for X at the expense
of their strength by supposing K to be a subspace of X, as pointed
out by Ward. In any case they are rather complex. A more
general result is possible, which can be stated much more simply.
The following PROPOSITION will be the basic tool, and Ward's

original proof will beam the guiding light.

PROPOSITION 4.5.1. If §, n are two uniformities on a set X,

and if X is the union of a &-compact collection of subsets on
each of which § is uniformly finer than n over X, then f is

finer than N on X.
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Proof. Let @ = {Di : 1 € I} be the collection of subsets, and
2

let V in n be given. Choose a symmetric Vo in n such that Voc V.
Then there exists, for each i in I, a Ui in £ such that
3 (\ ~
Ui (Di x X) <v,. The collection {U:1 (Di) : 1e I} is
an open covering offD and since Q) is E-compact there is a
finite subcover Uj_ (D305 «ovs Uin(Din) Let U be a symmetric
entourage in £ such that Ucﬂ{ui :1€kgnl.

Now suppose (x, y) belongs to U. For some i in I, x belongs
to Dy, and for some 1 & k & n, D; belongs to Gik(Dik). Thus y

2

belongs to U(D,) < U(uy, (D1, ) cuik(nik)’ and so there is some

d in D;. such that (4, y) belongs to Uik Since UCUj_k and (y, x)

ix
belongs to U, we also have that (d, x) belongs to uik' But then
both (d, x) and (d, y) must belong to V _, so that (x, y) belongs
to V.

It has been proved that U<V, and therefore £ is finer than n.

THEOREM 4.5.2. If (X, g) is any uniform space which is the union

of a compact collection of discrete subsets, then ¢ is H-singular
Proof. Suppose that n is a uﬁiformity on X H-equivalent to ¢,
and let ) be the g-compact collection of g-discrete subsets. By
Ward's Theorem 1 in (35), each f-discrete subget is p-discrete, and
E is uniformly finer over X than n on each n-discrete set. Hence by
PROPOSITION 4.5.1, £ must be finer than n on X.

But since £ and n are H-equivalent, J) is also an ;-compact
set, and again by Ward's theorem n is uniformly finer than £ over X
on each E-discrete set. Therefore PROPOSITION 4.5.1 can again be
applied, with £ and n in reversed positions, to show that n is

finer than & on X.

That Ward's result on H-singularity follows from THEOREM

4.5.2 can be seen by taking Q= {E_ : x € X} , and cbserving that
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the mapping x + E x °F K onto ® is continuous by the uniform equi-
continuity of the mappings fi’ iel.
In view of another result of Ward - Theorem 3 in (36) - I

make the following conjecture:

CONJECTURE 4,.5.3. Let £ be a uniformity on X with countable base,

and let (X, ) be the union of a precompact collection of discrete
<ets. Then £ is H-singular, provided tkat the cardinal of X is

non-measurable.



CHAPTER 5

GRAPHS AND HYPERGRAPHS

5.1 Introduction. Let X and Y be sets with

topological structures and let t be a mapping of X into Y.
The graph G(t) of t is the subset {(x, t(x)) : x ¢ X} of

X x Y, and we say that t has a closed graph if G(t) is closed
in X x Y with respect to the product topology. We define the
hypergraph ‘%‘(t) of t to be the subset {(A,t{A)) : A ¢ S(x)}
of S(x) x e(Y), that is, the graph of the induced mapping
e Sx) » £(Y).

Provided that Y is separated, every continuous mapping has
a closed graph, but the converse is not true in general and the
many Closed-graph Theorems of functional analysis have been
concerned with situations in which continuity and closed-graph
conditions are equivalent. It will be shown in section 2 that
vhen X and Y are arbitrary uniform spaces and S(x) and 6(Y)
have their Hausdorff uniformities, then any uniformly continuous
mapping has hypergraph closed in 3(X) x €(Y), and any mapping
with a closed hypergraph is continuous. Thus, in particular,
when X and Y are topological vector spaces the closed-hypergraph
condition is equivalent to continuity for a linear mapping.

Ir F is any collection of subsets of X we will say that
QE(t) is olosed on the eate of S ir J{(t) ﬂ(ﬁx €(1)) is
closed in of#x €(Y). This is a weaker condition than the
closed-hypergraph condition and for a suitable choice of &
lies in between closed-graph and closed-hypergraph conditions
when Y is separated. In section 3 some situations are found in
which such a condition implies continuity. For example, when
X and Y are locally convex topological vector spaces and X is

barrelled then a linear mapping is continuous if and only if its
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hypergraph is closed on the absolutely convex absorbent subsets
of X.

In section U the hypergraph of a relation R on a uniform
space X is defined and it is shown that the separatedness of the
quotient space X/R of an equivalence relation is in a somewhat
similar position,with regard to closed- graph and closed- hypergraph
conditions , to continuity in the case of a mapping. Some

examples are given in section 5.

5.2 The closed hypergraph theorem. let (X, £) and (Y, n)

be uniform spaces and let £ and :1 be the Hausdorff uniformities
on 5 (X) and €(Y) respectively. There are simple characterizations

of mappings with closed graph, and mappings with closed hypergraph.

LEMMA 5.2.1. The graph G(t) of t is closed if and only if
Ntv(t(u(x))) : Ue &, Ve nd = {t(x)} for each x in X, and the
hypergraph $¢(t) of t is closed in 8(x) x &(y) it and only if
ﬂ{{r(t'(fl(l\))) :UekE, Ven)s= {t(A)) for each A in S(X).
Proof. The two results are parallel statements about the graphs
of t and t'; it is enough to prove the second. Let 9£(t) be
closed. If B is a closed subset of Y belonging to the given
intersection then, for each U, V, t'({I(A)) n v(8) ¥ ¢ since V is
symmetric, and so (U(A) x O(B))n"((t) ¥ ¢. Thus (A, B) belongs
to the closure of the hypergraph, and by hypothesis must actually
belong to hypergraph itself, so that B = t{A).

Conversely if we assume the intersection is {t(A)} and if
(P, Q) belongs to the closure of the hypergraph, then for each U,V,
(G(P) x ;(Q))ﬂ%(t) # ¢,‘so that t'(a(P))ﬂ ;(Q) # ¢, and hence Q
belongs to V(t'(U(P))). Thus Q = T(P) and (P, Q) belongs to the

hypergraph, which must therefore be closed.

Remarks. There are analogous characterizations for
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relations, which will be given later. When X and Y are
topological vector spaces and U and Y are their respective
0-neighbourhood bases, the above result about the graph of
t takes the well-known form:

a linear mapping t has closed graph if and only if

Ntewy +v:vel, veY) = (0}

If, back in the uniform space situation,rj% is any collection
of subsets of X then a slight modification of the foregoing
proof shows that the hypergraph of a mapping t is closed on
the sets of ¢f if and only if n{;(t'({)&(A))) 2Ueg, Ve n}
= {T(A)) for each A in S¥, where G"' denotes the entowrage

induced onﬁs' by the entourage B on S(x).

THEOREM 5.2.2. Let X and Y be uniform spaces and t be any
mapping of X into Y. If t is uniformly continuous then its
hypergraph is closed. If the hypergraph is closed, on the
other hand, then t is continuous.

Proof. If t is uniformly continuous then the induced mapping
t' of 8(x) into €(Y) is uniformly continucus, and since &(Y)
is separated the graph of t', which is the hypergraph of t,
must be closed.

Now let the hypergraph be closed, and let A be any subset
of X. By LEMMA 5.2.1 the intersection of the sets ;(t'(a(A))),
where U and V are any entourages of X and Y respectively, is
{T(AY}. But consider the set t(A). Clearly A belongs to
G(A) for each U, and so ;(K—)- = t'(A) belongs to t'(ﬁ(A));

thus t(A) belongs to V(t'(a(A))) for each U, V and t(RA) = t(A)

by the LEMMA. This being so for each subset A of X, t must

be continuous.
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COROLLARY 5.2.3. The closed hypergraph condition is

equivalent to continuity for a mapping t of X into Y, in the
following situations:
(1) X, Y topological vector space, t a linear mapping,
(2) X, Y uniform spaces, and the uniformity on X the
fimst inducing the given topology;
(3) X, Y uniform spaces, and X compact,
Proof. In each case it is well-known that continuity and uniform

continuity are equivalent.

Remarkse. I have not been able to find any continuous
mapping with non-closed hypergraph, nor any mapping with closed
hypergraph which is not uniformly continuous, but I conjecturs
that the converses of the THEOREM are false. Note that the use
of the separated space e (Y) in the LEMMA, instead of S(Y),
and the definition of the hypergraph as the graph of t' (as

apposed to 'c°), are essential for the theory.

5.3. Weaker conditions on the hypergraph. Ifgﬂis any

subset of S(X), it is clear that the hypergraph of a mapping
will be closed on the sets of cQ’ if it is closed in S(X) x €(Y).
If Y is separated and {{x} = x¢ X}Cﬁ, then the condition

that the hypergraph be closed on the sets of & is intermediate

to the closed graph condition and uniform continuity. This
follows from the identity G(t) = g¢(t) ﬂ(&x (1)) ﬂ(x x Y),
where X and Y are regarded as isomorphically embedded in dﬂ:

and (Y) respectively. Similarly the condition that
C)((t)n(ﬂ{x @(Y)) be a Borel set int x €(Y) 1s intermediate
to the condition that G(t) be a Borel set in X x Y and the
condition that t be uniformly continuous. It is natural to ask

what structures on X and Y will enable continuity or uniform
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continuity to be inferred from any of these in{ermediate conditions.
When X and Y are general uniform spaces it is sufficient
for continuity of t that its hypergraph be closed on B(x).

Consider the following diagram:
°
Sx) —— S

1| N |

EX) —— E(Y)
t"

Here we regard £.(X) and €(Y) as the Hausdorff spaces associated
with B(X) and S5(Y) respectively, and 51’ 52 are the respective
canonical mappings, taking each set onto its closure (see section
2.4). The mappings t° and t' are the usual induced mappings,

and t" is the restriction of t' to 8()(). Now if A belongs to

8 (X) we have (jzoto)(A) = t(A) = t(A), and (t" o § )(A) = t(R).
Hence t is continuous if and only if the diagram is commutative,
which is true if and only if saying (t(A), t(B)) belongs to

the intersection of the entourages of 8(Y) is equvalent to
saying (t(Z), t(B)) belongs to the intersection of the entourages
of S(Y).

Also, because jl is continuous, the mapping t' has closed
graph if t" has closed graph, and because jl is open, t" has
closed graph if t' has closed graph. Thus G¢(t) is closed in
Sx) x €(Y) if and only if it is closed on the sets of Ex).

PROPOSITION 5.3.1. If X is a metrizable space and Y any uniform

space then a mapping t of X into Y is continuous if its hyper-
graph is closed on the bounded subsets of X.

Proof. By the remarks after LEMMA 5.2.1, the condition implies
that the intersection of the sets V(t'(U(B))), where U is any

entourage of the Hausdorff uniformity on the set % of bounded
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subsets of X, and V is any entourage of the Hausdorff uniformity

on E(Y), must be {tzBS}, for each B ing. Since the closure

of any bounded set is bounded, this implies that t(¥) = t(B)

for each B in ? - Now if B is a fixed member of 8 and B is
any subset of B_, then B belongs to % and t(§B°)¢: t(B*)= t(B).
Hence t is continuous on B . But each point of X has a neigh-

bourhood belonging to@ , and so t must be continuous on X.

Remarks. It is clear from the proof of the PROPOSITION
that if, for any € > 0, we let 8 be the collection of subsets
of X with diameter less than or equal to ¢, then the condition
that t has hypergraph closed on the sets of 8 is sufficient
for continuity of t. This approximates, intuitively at least,
remarkably closely to the closed graph condition.

We can extract from the PROPOSITION some closure conditions
on the collection 8 and local conditions on X which enable
the following more general result to be proved by exactly the

same method.

THEOREM 5.3.2. Let X and Y be uniform spaces and let ¢ be a

collection of subsets of X such that for each A in ﬂ the closure
of A belongs tocQ' and any subset of A belongs toﬂ. Suppose
also that each point of X has a neighbourhood base consisting
of sets of ﬂ' . Then a mapping t of X into Y is continuous if

its hypergraph is closed on the sets of ,.Q .

COROLLARY 5.3.83. If X is a locally compact (resp. locally

precompact uniform space and Y is any uniform space then a
mapping t of X into Y is continuous if its hypergraph is
closed on the relatively compact (resp. precompact) subsets

of X.
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Note that we could replace the condition "X is a locally
compact space” with "X is a k-space" ~ that is, one in which
every set intersecting each compact, closed set in a closed
set must be closed. For then continuity on X can be inferred
from continuity on each compact subset. Clearly the topology
of a k-space is determined by the collection of compact closed
gets. One of the most important properties of a k-space is
that the set of all continuous mappings from a k-space to a
complete uniform space is complete with respect to the
unformity of uniform convergence on the compact subsets. If
X is separated, and is either locally compact or first-
countable, then it is a k-space; in particular a pseudometrizable
space qualifies (see e.g. Kelley (15)).

There is a further, slightly different, result along the

lines of the previous THEOREM.

THEOREM 5.3.4. If X and Y are locally convex topological

vector spuces and X is barrelled, then a linear mapping t of
X into Y is continuous if and only if its hypergraph is closed
on the absclutely convex, absorbent subsets of X.

Proof. The condition implies, as in the proof of PROPOSITION

5.3.1, that t(A) = t(A) for each absolutely convex, absorbent
subset A, because the closure of such a subset is also absolutely
convex and absorbent. Let V be any neighbourhood of the origin

in Y. Any locally convex space has a neighbourhood base consisting

of barrels, so we can choose V.,V where V1 is a member of

1
such a base. Then t-l(Vl) is absolutely convex and absorbent

by linearity of t, and hence t(t‘l(vl))<=:t(t’l(vl)) =V V.
But t‘I(Vl) is a barrel and consequently a neighbourhood of the

origin in X, because X is barrelled. Therefore t is continuous.



- 11 -

The converse follows immediately from THEOREM 5,2.2.

S.4 _The hypergraph of a relation. Let X be a set and

R a relation on X. We denote by xRy the statement "x is in
the relation to y", or just "x is relsted to y". Let R(x)
denote the set of points to which x is related, and for any
subset A of X let R(A) denote the set of points to which some
point of A is related. The graph G(R) of the relation is the
subset {(x, y) = xRy} of X x X; the distinction between the
concepts of a relation and its graph is essentially one of
convenience.

The relation R induces a natural relation R' on .§(X) as
follows. For A, B in S(X) we put AR'B if for each point a in
A there exists b in B such that aRb and for each point b' in
B there exists a' in A such that a'Rb'. We then define the
hypergraph 3{(R) of the relation R to be the subset
{(a, B) : A R'B} ofﬁ(x) x S(x), that is, the graph of R'.

If R is reflective, symmetric or transitive then R!
inherits the corresponding property. Thus if R is an
equivalence relation, so is R'. In this case, for A in S,
the set R(A) is the same thing as what is usually called the
saturation of A with respect to R, and

G4(R) = {(A, B) : R(A) = R(B)}.
A set A is called saturated with respect to R if A = R(A). Note
that this will be so if and only if each member of R'(A) is
contained in A. .

Now let X be a uniform space with uniformity . In this
section E will denote the Hausdorff uniformity on S(X). There
are simple characterizations, analogous to those for mappings,
of those relations with graph closed in X x X and those with

hypergraph closed in S(x) x {S(X).



LEMMA 5.4.1. The graph G(R) of R is closed in X x X if and only
iffW{V(R(U(x))) : U, Ve £} = R(x) for each x in X, and the
hypergraph 9{(R) of R is closed in Sx) x S(x) 1f and only if
(V(R'(UCA))) : U, V € £} = R'(A), for each A in 3(X). If R
is symmetric, the latter follows if n{V(R(U(A))) : U, V ¢ E}= R(A).
Proof. As with LEMMA 5.2.1, it is enough to prove the result

for %(R). Let ‘){(R) be closed, and kt A and B be subsets such
that for each U, V in g, B belongs to V(R'(U(A))). Then, for

each U, V in &, (R‘(G(A)))fQ];(B) # ¢, since V is symmetric, so
that () x ¥(8)) [| JCR) # 4. Thus (A, B) belongs to FE(R)

and hence to 9{KR), so that AR'B and B belongs to R'(A). Since
R"(A) is easily seen to be contained in the intersection of the
sets G(R'(G(A))), this concludes one part of the proof.

Conversely, assume that the intersection is R'(A), and let
(P, Q) belong to'§z(—Y. Then for each U, V in £,

@@ x @) (YR # ¢, that 1s ROEN( ¥ # o,

and so Q belongs to ;(R'(GiP))), v being symmetric. By assumption,
then, Q belongs to R'(P), so that (P, Q) belongs to‘j((k), which
must therefore be closed.

Now suppose that R is a symmetric relation, and that
(]{V(R(U(A))) : U, V € E} = R(A) for each A in S(X). Let (P, Q)
belong to $¢(R). Then for each U, V, there exists (A, B) in
9{(R) such that (A, P) belongs to 6 and (B, Q) belongs to ;.

We have AR'B and since R is symmetric this implies both A= R(B)
and BC=R(A). We also have ACCU(P), PC-U(A), B—V(Q) and
Qc=V(B), and hence P U(R(V(Q))) and Q= V(R(U(P))). By the
supposition, P<= R(Q) and Q=R(P), and so (P, Q) belongs to
4¢(R), which is therefore closed.

We shall now show that, if R is an equivalence relation,

the relation of closed graph and closed hypergraph conditions to
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the separatedness of the quotient space X/R closely parallels the
relation of these conditions to continuity in the case of a
mapping.

If X is a uniform space and Q : X + X/R is the quotient
mapping, then the quotient topology on X/R is the finest for
which Q is continuous. The equivalence relation R is called open
(resp. closed) if the mapping Q is open (resp. closed) with
respect to the quotient topology. If X/R is known to be
separated than G(R) is closed for it is the inverse image of the
diagonal under the continuous mapping Q x Q : X x X + X/R x X/R.
The converse is not true in general, but is true if R is open
(see e.g. Bourbaki ( 4), Chapter 1, section 8, no. 3). However
if we assume that gé(R) is closed, then the quotient space becomes

as separated as a space can be.

THEOREM 5.4.2. If R is an equivalence relation on a uniform

since X and if R has a closed hypergraph, then the quotient
topology on X/R is the discrete topology, thus making X/R
separated, every saturated subset of X both open and closed, and
R both an open and a closed relation.

Proof. By LEMMA 5.4.1 if R has closed hypergraph then the
intersection of the sets G(R'(G(A))) is R'(A), for each subset A.
For each U in £,:R(A) belongs to R'(G(A)) and so for each U, V
in £, R(A) belongs to ;(R'(G(A))). Thus R{A) belongs to R'(A),
which implies that R(R{A)) = R(A) and therefore R(A) = R(A).
That is, the saturation of each subset of X is closed in X, All
the statements of the THEOREM follow immediately from this.

5.5 Examples. (1) Some interesting things can be said

about relations on a topological vector space X. A relation R

on X is called limear if G(R) is a vector subspace of X x X.
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A symmetric and reflexive linear relation must also be transitive.
It is easily seen that an equivalence relation R is linear if and
only if it is a relation modulo some vector subspace M of X;

then M= {m : m= x - y and xRy} = {m : mRo}. The graph G(R)

of R is closed if and only if M is closed, if and only if the
quotient space X/M is separated. The latter equivalence is very
well known and the former is a consequence of the quotient
mapping being open (see the remarks preceding THEOREM 5.4.2.).

It follows also from LEMMA 5.4.1, since []{x +U+M+V:

U, V 0-neighbourhoods} = x + M if and only if x + M is closed,
if and only if M is closed.

The hypergraph 9{R) of the equivalence relation R is the

set {(A, B) : A+ M =B + M}. By the proof of the last part of
LEMMA S.4.1, if A + M is closed (so thatﬂ(A +M+0:0a
O-neighbourhood} = A + M) for each A in a collection de'of
subsets of X, then ¢{(R) n(,,Q’x.Q) is closed in ¢ x:Q’. In
particular this will be true when R= C(x), the collection of
compact, closed subsets of X. If X is complete, C(X) is closed
in €(X), and so also Y{(R) ﬂ(é(x) x E(X)) is closed in
E(x) x £(X).

When R is any linear relation on X with closed graph, we
can no longer talk about the quotient mapping, but we may still
ask whether R(A) is open for each open subset A. This is not
true in general, but (see Kelley and Namioka (18), section 1l1E)
is true when X is a complete metrizable space and R(X) is of the
second category in X. The latter condition will certainly be
satisfied if R is reflexive. It might be expected from experience
with mappings, that the answer to our question is "yes" for
arbitrary X provided that the linear relation R has closed
hypergraph; this is certainly true for equivalence relations,

but I do not know if it is true for arbitrary linear relations.
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(2) Let (X, £) be a uniform space and X' its associated
Hausdorff space. Define an equivalence relation R by xRy if
i(x) = i(y), where i is the canonical mapping of X into X'.

Then X' is homeomorphic to X/R, and i is the quotient mapping.
Thus R is open and closed, and X/R is separated. The graph G(R)
of R is the set n{U : Ue £}, and is closed.

Consider the induced relation R' on S(X). We have AR'B if
and only if i(A) = i(B), if and only if a(A) = a(B), where
a: S~ S(X') is the mapping whose restriction to €.(X) has
been proved in section 2.4 to be an isomorphism onto E(x").
Thus R' restricted to &(X) becomes the equality relation. We
know also that a : S(X) + S(X') is an open mapping, and there-
fore R' ie an open relation and S(X)/R' is homeomorphic with
8S(X') (see Bourbaki (%), Chapter 1, section 5.2).

If the hypergraph 9f(R) is closed then, by THEOREM 5.4.2,
X! must be a discrete space.

(3) Let (X, §) be a pre-ordered uniform space, so that the
pre-order & is a reflexive, transitive relation. It is not
symmetric unless it reduces to the equality relation. For each
subset A let d(A) denote the smallest decreasing set containing
A, and let i(A) denote the smallest increasing set containing A.
These coincide with R™1(A) and R(A), where R™} is the inverse
relation.

Define a pre-order on 3x), by putting A & B if ACTdA(B)
and Bc= 1(A). This coincides with the induced relation R'. If
G(R) is closed then for each x in X the sets d(x) and i(x) are
closed; if G€(R) is closed then for each ACS X the sets d(A)
and i(A) are closed, and also d(R) = d(A) and i(R) = i(A).

We could define another pre-order on S(x) by putting A ¢ B
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if Ac— D(B) and Bc=I(A), where D(B) denotes the smallest
closed decreasing set containing B, and I(A) the smallest
closed increasing set containing A. If H(R) is closed, this
relation coincides with R'.

There is yet another obvious pre-order relation on S(X)
- that of inclusion. This is anti-symmetric, sometimes referred
to as an order. The graph of this relation is not closed in
S(X) X S(X), for any topological space equipped with an order
with closed graph must be separated. However its intersection

with €(x) x E(X) is closed in this space.



CHAPTER 6

CGiPACT, COLLECTIVELY COMPACT AND HYPERCOMPACT
SETS OF MAPPINGS

6.1. Introduction. This chapter is a study of sets of

mappings characterized by looking at the collections of
images of various subsets of the domain space as subsets of
the hyperspace of the range space. Many of the concepts
involved, such as compact mappings and collectively compact
sets of mappings, usually appear in the context of normed
vector spaces or topological vector spaces, but they are
treated here in a very general way. The unification

achieved seems worth the sacrifice of notational simplicity.

Let X be a set and Y a uniform space, and let F(X, Y)
denote the set of all mappings from X into Y. For any
(non-empty) collection c)Qof subsets of X we make the
following definitionms.

A mapping t in F(X, Y) is called &compact if it maps
the sets of &z'onto relatively compact subsets of Y.

A set of mappings Tcz F(X, Y) is called collectively
.‘.Q-compact if, for each A in &, T(A) = {t(a) : aec A, t €T}
is a relatively compact subset of Y.

A set of mappings T is called cﬂ-hypercompact if, for
each A in cﬂ, {t(A) : t ¢ T} is a compact subset of S(Y),
and relatively ¢ﬂ-hypercompact if, for each A in .E:,

{t(A) : t € T}is a relatively compact subset of S(Y).

The set F(X, Y) can be endowed with the uniformity
c(‘Q) of uniform convergence on the sets of St (see section

1.9), which has a subbase consisting of all sets of the form
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WA, V) = {(£, g) : (f(a), g(a))e V for all a ¢ A}
where A is a member of dQ and V is an entourage of Y.

Where there is no possibility of ambiguity about the
collection(f%, it will be understood that F(X, Y) has the
uniformity 5(8%), and the prefixeséﬁ} will be omitted in
fhe terms just defined.

In section 6.3, hypercompact and relatively hypercompact
sets are investigated, and in particular it is shown that
for compact mappings hypercompactness is an intermediate
condition to compactness and collective compactness; if
Y is complete then for compact mappings relative
hypercompactness is equivalent to collective compactness.

In section 6.4 the concepts of hyperprecompact and
hyperbounded sets of mappings are introduced and studied.

The theory parallels that of section 6.3 much of the way,

and proofs are omitted. A set of mappings is collectively
precompact if and only if it is a hyperprecompact set of
precompact mappings, and collectively bounded (or uniformly
bounded on the sets of JT) if and only if it is a hyperbounded

set of bounded mappings.

6.2. Preliminary results about hyperspaces. Throughout

this section Y will be a uniform space. The proof of the
first lemma is omitted; the remaining results supplement
the two well-known facts that the union of a compact
collection of closed subsets is closed and the union of

a compact collection of compact subsets is compact.

LEMMA 6.2.1. A subset M of fg(Y) is relatively compact in
fS(Y) if and only if (M : M e M) is relatively compact in
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Z(Y) if and only if the latter set is relatively compact
in €(Y). The same is true if relatively compact is

replaced by compact.

PROPOSITION 6.2.2. The union of a compact collection of

relatively compact subsets ig relatively compact.

Proof. Let ‘%, be such a collection. Then each R in ],
has compact closure in the uniform space Y, and by LEMMA
6.2.1. the set {R : R ¢9 }is compact. But then

|J{R : Re R} | R : R ¢ L} which is the union

of a compact collection of compact sets, and so is compact.

PROPOSITION 6.2.3. The union of a precompact collection

of precompact subsets is precompact.

P_g_og_i: . Let ‘P be such a collection, and let U be any

entourage of Y. Choose a symmetric entourage V such that

$ < U. Then there exists a finite subcollection {Pi} of

% such that the union of the sets V(Pi) covers 9, and for
each i there exists a finite set F = P i such that

Pi‘: V(Pi). Let F be the union of the sets Fi. Then for

each P in‘P there is some i such that P V(Pi)c_—_G(Pi)c:U(P).

Since F is finite the result follows.

A subset A of Y is called bounded if for each entourage
U there exists a finite set FC A and an integer n > 0 such
that A E(P). Every precompact subset is bounded, and the
closure of every bounded subset is bounded. The image of
a bounded set under a uniformly continuous mapping is
Lounded. In a product of non-empty uniform spaces, a

subset is bounded if and only if each projection is bounded.
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For topological vector spaces this definition of
boundedness (with respect to the natural uniformity)

coincides with the usual definition.

PROPOSITION 6.2.4. The union of a bounded collection of

bounded subsets is bounded.

Proof. Let ‘3 be such a collection, and let U be any
entourage of Y. Then there exists a finite subcollection
{B i} of B gnd an integer n > 0 such that the union of
the sets U(B,) covers %, and for each i there exists a
finite set F i< B i and an integer m 1> 0 such that
c:mé(f'i). Let F be the union of the sets F, and let

i i

N=n+ max{mi}. Then for any B in 5, and for some i,
n n+mji N
B U(Bi) c U (Fi)c‘: U(F). Since F is finite the

B

result follows.

6.3, Hypercompact and relatively hypercompact sets

LEMMA 6.3.1. The mapping 65 of F(X, Y) into S(Y) defined
by 6,(t) = t(B) is uniformly continuous relative to the
uniformity £E(FY) on F(X, Y), for each subset B of X which

is covered by a finite subcollection of .)Q

Proof. Let V be an entourage of Y and let {Ai) be a finite
subcollection of e, covering B. Let (f, g) belong to the
intersection of the sets W(Ai, V), so that (£(x), g(x))
belongs to V for each x in the union of the sets A;, and s0
for each x in B. Then (£(B), g(B)) belongls to V, and @

B
is uniformly continuous.

THEOREM 6.3.2. If T is a set of mappings from the set X

into the uniform space Y, and if T is (relatively) compact
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with respect to the uniformity of uniform convergence on

the sets of éQC 8(x), then T is (relatively)&-hypercompact.

Proof. The mapping € A of LEMMA 6.3.1. is uniformly continuous,
for each A in(ﬂ:, and since GA(T) = {t(A) : t € T}, the

result follows.

THEOREM 6.3.3. If T is an cﬂ-hypercompact set of .Q-compact

mappings from the set X into the uniform space Y then T
is collectively éﬁf.—compact. If Y is complete and T is only
a relatively ‘R-hypercompact set of ;Q—compact mappings

then T is again collectively J?—compact.

Proof. For the first part, observe that, for each A in J?,,
T(A) = U{t(A) : t € T} is the union of a compact collection’
of relatively compact sets, and so is relatively compact by
PROPOSITION 6.2.2.

For the second part, when Y is complete, it is sufficient
to show that T(A) is precompact. But T(A) is clearly the
union of a precompact collection of precompact sets, so

PROPOSITION 6.2.3. brings us home.

THEOREM 6.3.4. If T is a collectively &-compact set of

mappings from the set X into the uniform space Y then T

is a re tively A‘hypercampact set of &-compact mappings.

Proof. Since T(A) is relatively compact, there is a
compact subset K such that T(A)C~ K< Y. Then for each
tin T t(A) c K, s0 t is ﬂ‘-compact. Also

{(t(a) : t.e T} & S(T(A))  B(K) which is compact (see

section 1.7), and therefore T is relatively .R-hypercompact.
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From the previous two THEOREMS the next is immediate:

THEOREM 6.3.5. If T is a set of mappings from the set X

into the complete uniform space Y then T is collectively
ﬁrcompact if and only if T is a relatively J%-hypercompact

set of d%-compact mappings.

The completeness hypothesis here is not superfluous -
that is, the converse of THEOREM 6.3.4. is not true; this
will be demonstrated by the examples to follow. They will
also demonstrate that the converses of THEOREM 6,3.2. and
the first part of THEOREM 6.3.3. are not true. First we
consider the situation when X and Y have additional structure.

If X and Y are both topological vector spaces and cﬁ'
is the collection of bounded subsets of X then every linear
mapping t from X into Y which is compact in the usual sense
is also Ja-compact. For this means that there is some

-neighbourhocod U of X and some compact subset K of Y such
that t(U) CZ K. If A is any bounded subset of X there is

a real number A > O such that A< AU, and then

t(a) = t(AU) < At(U) €< AK which is compact, If X and Y
are actually normed vector spaces then the uniformity ESE)
of uniform convergence on the bounded subsets of X is
normable on the set C(X, Y) of continuocus linear mappings,
with norm |[t|] = sup {t(x)|] ¢ x|l s 1}. In this case the
,prcompact and usual compact (sometimes called completely
continuous) mappings are the same - they are just the ones
for which the image of the unit ball B={x e X : x| ¢ 1}
has compact closure. Similarly a collectively «ﬁ-compact set
of mappings T is just a set for which T(B) has compact

closure; this is the definition used by Anselone and Palmer (3 ).
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Thus THEOREMS 6.3.2. and 6.3.3. together yield the result
for normed spaces in (3 ) that every compact set of compact
linear mappings is collectively compact.

When talking about normed spaces it will always be
understood that CQ is the collection of bounded sets, unless
otherwise stated. Observe that by taking R = B} the
uniformity E(f) is unchanged, and THEOREM 6.3.3. implies
that a set T of compact mappings for which the set of images
of the unit ball is compact must be collectively compact.

A set which is thus "hypercompact on the unit ball" is not
necessarily hypercompact, even if it consists f compact
mappings; this will be demonstrated in EXAMPLE 6.3.7.

By taking St = B} in this EXAMPLE, a counterexample is
constructed for the converse of THEOREM 6.3.2. Placing
various conditions on the collection R’.such as covering
X or being closed under scalar multiplication.effectively
invalidates the counterexample and leaves it open whether
the converse of the THEOREM then holds. EXAMPLES 6.3.6.
and 6.3.7. do show, however, that in general hypercompactness
lies strictly in between compactness and collective

compactness, for compact mappings.

EXAMPLE 6.3.6. One of the most fruitful fields for

applications of the theory of compact mappings, and
collectively compact sets of mappings, is the theory of
integral equations of Fredholm or Volterra type. Ve
proceed now to construct a sequence of mappings, each
representing an integral equatior of Volterra type. Let
X=Y= e[a, b] s the set of continuous, real-valued

functions on the closed interval [a, b]; this is a normed
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vector space with norm Ix) = sup{|x(t)] : t e [;, b]h

For each m = 1, 2, .«sy and each x in X, define

b fl,agvea+=2
ym(u) = J k(u, v)x(v)dv, where k(u, v) = Uea m
a {0, a + S < VE b

x(v)dv.

a + (u=a)/m
l,
Then,for each m, Y belongs to X, and the mapping tm defined
by tm(x) =y, is a compact (continuous) mapping of X into
itself., Let T = {tm : m a positive integer}.
Then T is collectively compact. To show this, let

{xn} be any bounded sequence in X, and {m(n)} any sequence
of positive integers. It must be proved that the sequence
Yoln)yn - tm(n)(xh) has a subsequence convergent in X. By
Ascoli's Theorem it is sufficient to prove that the

sequence is bounded and that its members form an equicontinuous

femily. Now

Uy ol & eauyll lig)
a+(u-a)/m(n)
£ Rsup{” x(v)dv

a

: e [anb], fxll u}

where R = sup {“xnl : n> 0},

< R(b - a
m(n)

3 R(b - a)o

Therefore the sequence is bounded. If U5 u, are points of

a, b] with Ju, - u,| < €/R, € any positive number, then
’ 2 1

a+(u2-a)/m(n) a*(ul-a)/m(n)
ym(n),n(u2) ym(n),n(“l) Ia x, (v)dv - I. x (V)dv
a+(u2-a)/m(n)
= I (v)dv| < ¢, for all n > 0.

a«-(ul-a]/ min)
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Therefore the family {ym } is equicontinuous. This

(n) 4n
completes the proof that T is collectively compact.

It follows that T is relatively hypercompact, but it
is not hypercompact - in fact it is not even hypercompact

on the unit ball. For

It (oIl = suly (w : vefa, b]} e =2 |y,

and hence for any bounded subset A of X, tm(A) is eventually
contained in any e-neighbourhood of the origin. Thus tm(A)
converges in G(X) to {0}. Since t () # {0} for all m > O,
for suitable A (the unit ball, for instance), the set
{tm(A) : m > 0} is not compact, and so T is not hypercompact.
Although T is not a compact set it is relatively compact,
for if T* is the set cbtained by appending the zero mapping.
t,, to T, then because utm - t“" + 0. T* is compact (and

so also hypercompact.

EXAMPLE 6.3.7. Let X =Y = 2P, 1 s p s », the set of

infinite sequences x = {xn} of real numbers satisfying

) |xn|p < »; this is a normed vector space with nomm
n=l

. o0 l
Ixll = (nzllxnlp)p » and basis (¢4 #,s +o:), where ¢,

is the sequence with unit ith component and zeros elsewhers.,
Define a sequence of mappings of X into itself by putting
tn(x) = xn«tl, n > 0. Then for each n t is a compact linear
mapping.

The set T = {tn : n > 0} is hypercompact on the unit
ball., For tn(B) = {0¢l :I.cll € 1 for each n, so that
{tnG) : n > 0} is a singleton in S(%).

Rt T is not hypercompact. For if a is the element of
X with a_ = & then {t{{ah: n >0} = {{Z ¢} :+ n > o} which

is not closed in e(X) and sc not compact.




It can be inferred now by THEOREM 6.3.2. that T is not
a compact set. In fact it is not even precompact, for

1
be, - el = supt ex, - %oyl ¢ lxll €23 = 2B, m#m,

In spite of not.being relatively compact, T is relatively
hypercompact, because it is collectively compact. This
follows from the fact that T(B) is bounded and one-dimensional,
or from T being a set of compact mappings, hypercompact on

the unit ball.

EXAMPLE 6.3.8., Let X and Y be normed vector spaces, and let

(tn} be a sequence of compact linear mappings in C(X, Y)
converging (in norm) to the non-compact continuous linear
mapping t. This situation is known to exist when Y is not
complete. Then for each bounded subset A of X, tn(A) + t(A)
in S(Y) by LEMMA 6.2.1., and so the collection

{t (A} L){t(A)}is compact.

Putting T = {tn}. the set T l} {t} is hypercompact and
the set T is relatively hypercompact. Rut T is not
collectively compact; for if so t would be a compact mapping
since t®) c T(@). This falsifies the converse of

THEQOREM 6.3.4.

This section concludes with some properties of
hypercompact and relatively hypercompact sets. In many
respects they behave like compact and collectively compact
sets. Any finite union and any intersection of such sets
is a set of the same type. If Y is a topological vector
space and F(X, Y) has its natural linear structure, then
any scalar multiple of a hypercompact or relatively

hypercompact set is again a set of the same type. Any
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subset of a relatively hypercompact set must be relatively
hypercompact, but a subset of a hypercompact set need not
be hypercompact whether closed or not. Of particular
interest is the fact that the union of a compact set and
a collectively compact set need inherit neither property,

but must be relatively hypercompact.

PROPOSITION 6,3.9. If T is (relatively) J¢-hypercompact

then so is the E(ﬂ)-closure T, When X and Y are normed
vector spaces, the balanced hull of any set in C(X, Y)
which is relatively hypercompact, hypercompact, or
hypercompact on the unit ball, is a set of the same type.
Proof. The mapping t + t(A) is wniformly continuous from
F(X, Y) into €(Y) with respect to the uniformity e(&).
for each A in . This follows from LEMMA 6.3.1. and the
uniform continuity of the closure operation from 3(Y) into
€.(Y). Hence the set {t{2Y : t ¢ T} is contained in the
closure in &(Y) of the set {t(A) : t € T}, If the latter
set is campact then it must coincide with the former set,
and if relatively compact its closure is compact and
contains the former set, With the aid of LEMMA 6.2.1. this
proves the first part.

For the second part, wvhen X and Y are normed vector
spaces the mapping (A; B) + AB is continuous from Sox 8
into 8 where S 0 is the set of scalars with absolute value

¢ 1 and'P is the set of bounded subsets of Y, and hence

if {t(A) : t € T} is (relatively) compact so is

(O : |2 €1, teTh

Remark. I do not know if, for suitable spaces, the convex

hull or the pointwise closure of a (relatively) hypercompact
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set must be of the same type, although these hold for a

collectively compact set.

Now let Y and Z be uniform spaces, while X is any set.
Again let F(X, Y) denote the set of all mappings from X into
Y, and let C(Y, 2) denote the set of all uniformly continuous
mappings from Y into Z. As always, fis a non-empty
collection of subsets of X, and 8 will now be any non-empty
collection of subsets of Y. It is easily shown that if T
is a E(FL)-compact subset of F(X, Y) and S is a ;(8)-compact
subset of C(Y, Z) and if, in addition for each A in §¢
there exists B in J4 such that T(A) < B, then ST is a
£(dY)-compact subset of F(X, Z). Also, if T is collectively
,ﬁ-compact and § is £()-compact then ST is collectively
Jt-compact, provided that for each A in & there exists
B in QD such that T(A) <= B. This last provision is
automatically made when considering only continuous linear
map; ings between normed vector spaces, and the two foregoing
results may then be stated briefly : the composite of two
compact sets is compact, and the composite of a collectively
compact set and a set with compact closure is collectively
compact. This last result for normed spaces was proved by
Anselone and Palmer in (3 ). A further result along

these lines follows.

PROPOSITION 6.3.10. Let X be a set, Y and Z uniform spaces,

& a collection of subsets of X and B a collection of

subsets of Y. If T F(X, Y) is (relatively) &-hypcmt
and S < C(Y, Z) is a E(P)-compact set of uniformly
continuous mappings, then ST is (mlatiwly)& ~hypercompact,
provided that for each A in S there exists B in 3 such that

T(A) & B.
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Proof. E;or' each A in ﬂ the set {t(A) : t ¢ T} is
(relatively) compact and so, for each s in S, is the set
{st(A) : t ¢ T}, since the latter set is the image of
the former under the uniformly continuous mapping induced
by s between 5(Y) and S5(Z). For each A in ST define a
mapping o of C(Y, 2) into B(&(2)) by putting

a(f) = {ft(A) : t € T}. We will show that a is uniformly
continuous, with respect to £(J).

Let B be a member of 53 containing T(A). For any
entourage V of Z choose the entourage W(B, V) of E(B).
1f (£, g) belongs to W(B, V) we must have (ft(a), gt(a))
belonging to V for each a in A and each t in T. Hence
(£t(A), gt(A)) belongs to the entourage 3 of 3(2) for
each t in T, and so, finally, (a(f), a(g)) belongs to the
entourage V of 8(5(2)).

Since a is uniformly continuous, a(S) is compact, and
hence {st(A) : s € S, te T} = U{c(s) : 8 ¢ S) is the
union of a compact collection of (relatively) compact sets,

and so is (relatively) compact.

COROLLARY 6.3.11. Let X, Y, Z be topological vector spaces

and let j&, 8 be the collections of bounded subsets. I1f
T is a (relatively) hypercompact set of continuous mappings

and S is a compact set of continuous mappings then ST is

(relatively) hypercompact.

Proof. It is clearly sufficient to show that T(A) is
bounded for each bounded subset A of X, But each t in T
is continuous, so t(A) is bounded, and {t{(A) : t ¢ T}

is bounded by hypothesis; hence T(A) is the union of a
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bounded collection of bounded sets and must be bounded

by PROPOSITION 6.2.4.

It is easy to see that the statement of the COROLLARY
will still be true when :Q and 8 are the collections of
precompact subsets, and the hypercompactness part will
still be true when &Q is the collection of compact (or even
relatively compact) subsets of X and @ is the collection

of compact subsets of Y.

6.4. Hyperprecompact and hyperbounded sets. In this section

some further definitions are made and the general theory
extended to include what are sometimes called totally
bounded mappings and totally bounded sets of mappings (see
e.g. Palmer (23)), and also bounded mappings and bounded
sets of mappings. Since the proofs follow much the same
pattern as the proofs in the previous section for the
theory of relatively hypercompact sets, they are omitted.
Suffice it t« say that they rely heavily on PROPOSITIONS
6.2.3. and 6.2.4. and LEMMA 6.3.1.

Let X be a set and Y a uniform space, and lot&bc
any (non-empty) collection of subsets of X. We make the
following definitions.

A wapping t in F(X, Y) is called Q-pucompact
(&-bounded) if it maps the sets of 82' onto precompact
(bounded) subsets of Y.

A set T < F(X, Y) is called collectively J-precompact
(collectively F2-bounded) if T(A) is precompact (bounded)
for each A in J2.

A set T < F(X, Y) is called Q—hyperpmooupact
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(&khyperbounded) if {t(A) : t ¢ T} is precompact (bounded)
for each A in R.

It is clear that the conditioms &-hyporcompact,
relatively &-hypercompact, &-hyperprecompaet and
‘Q-hyperbounded become progressively weaker. When Y is
hypercomplete the middle two are equivalent. Also
(collectively) ﬁ'—compact implies (collectively)
,j}.pmcompact, which implies (collectively) Q—bomdod,

and when Y is complete the first two coincide.

Now let Y be a topological vector space. The set of
J¢-bounded mappings is a closed subspace of F(X, Y) with
respect to the uniformity (D), which actually induces
a vector topology on it. The set of &-pncompact mappings
is a closed subspace as well. Both subspaces inherit the
property of completeness from Y (see e.g. Kelley and
Namioka (18), section 8).

Next, let X also be a topological vector space, and
let us consider only linear mappings. Let 3?: be the
collection of bounded subsets of X. Then the &-pmcmpact
mappings are just the usual precompact (or totally bounded)
mappings, and the SEbounded mappings are the usual bounded
mappings. A set of mappings is collectively Shbounded
(sometimes called uniformly bounded on the sets of &) ir
and only if bounded with respect to the topology of
uniform convergence on the sets of cQ'. In particular this
is true for every equicontinuous set. Each continuocus
mapping is bounded, and if X is pseudo-normable the

converse holds. If X and Y are normed the a@-pncoqact
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and collectively &-precompact sets of mappings coincide
with Palmer's, Anselone's and Vala's precompact mappings
and collectively precompact sets (see (2?), (2), (32)) -
just those for which the (collective) image of the unit

ball is precompact.

For the following theorems we return to the general

situation invhich the definitions were framed.

THEOREM 6.4.1. If T is E(S%)-precompact (-bounded) then

it is &-hyperprecompact (-hyperbounded). If Y is f@%ﬁhto
and T is E(SE)-precompact then T is cﬁ-hypercanpac!: and T

is relatively d%-hypercompact .

THEOREM 6.4.2. The set T is collectively cﬁ-preconpact irf

and only if it is an ﬁ-hyperprecompact set of «.'Q‘-precompact
mappings. If Y is complete these conditions are equivalent

to collective ﬁ‘-compactness.

The last two results together show that a precompact
set of precompact mappings is collectively precompact -

proved for normed spaces by Palmer (23).

THEOREM 6.4.3. The set T is collectively d#-bounded if and

only if it is an $&hyperbounded set of J¢-bounded mappings.
I1f Y is a topological vector space and the uniformity E(‘ﬂ)
induces a vector topology on T, then T is collectively
Se-bounded if and only if it is ¥f-hyperbounded if and only
if it is bounded with respect to £(S%).

Thus THEOREM 6.4.3. includes a partial converse for
the "boundedness" part of THEOREM 6.4.1. The EXAMPLE 6.3.7.

provides a case of a relatively hypercompact (and so, of
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course, hyperprecompact) set which is not a precompact set,

even though Y is complete and all the mappings are compact.

The permanence properties of hyperprecompactness and
hyparboundedness are similar to those of relative
compactness; any finite union or any intersection of such
sets is of the same type, and any subset inherits the
type. If Y is a topological vector space, any scalar
multiple of such a set is of the same type. Although the
union of a precompact set and a collectively precompact
set need have neither property,it is hyperprecompact, and
likewise the union of a bounded set and a collectively

bounded set is hyperbounded.

PROPOSITION 6.4.4. If T is &-hyperprecompact (.ﬁ-hyperbounded)

then so is the E(fE)-closure T. When X and Y are normed
vector spaces the balanced hull of a hyperprecompact
(hyperbounded) subset of C(X, Y) is of the same type.

PROPOSITION 6.4.5. Let Z be another uniform space, and 8

any collection of subsets of Y. Let T < F(X, Y) and
8 < C(Y, 2) and suppose that for each A in St there

exists B in B such that T(A) & B, Then

T is &-hyperprecompact and S is §{(B)-precompact implies

ST is i&—hyperprecompact;
T is gf-hyperbounded and S is §(@)-bounded implies

ST is &-hyperbounded.

COROLLARY 6.4.6. If X, Y and Z are topological vector

spaces and &, B are the collections of bounded subsets of
X and Y respectively, then the two implications of the

PROPOSITION hold provided that S and T are sets of continuous

mappings.
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6.5. Arzela-Ascoli Theorems and other results. Let X
and Y be uniform spaces. Some results of the Arzela-Ascoli

type can be proved very simply by means of hyperspace techniques.

PROPOSITION 6.5.1. If T < F(X, Y) is uniformly equicontinuous

on each set in ﬁ, the collection of compact subsets of X,
and if T(x) is relatively compact in Y for each x ¢ X, then
T is collectively ‘&compact.

Proof. For each A in & and each a in A the mapping

£ : A+ $(Y) defined by £(a) = T(a) is uniformly continuous,
and T(A) is the union of the collection {T(a) : a ¢ A}.

The result follows by PROPOSITION 6.2.2,

COROLLARY 6.5.2. The PROPOSITION holds also if "compact" is

replaced throughout by “precompact" or "bounded".

PROPOSITION 6.5.3. Let Y be complete and let & <S(x).

If t is an d‘z-coqnct mapping in F(X, Y) and is uniformly
continuous, then it is also JE-compact. If T F(X, Y)
is uniformly equicontinuous and collectively ft-oo-pact,

then it is also collectively saco-pact.

Proof. The mappings A + t{A) and A + T(A) are uniformly

continuous, and the set &(Y) is closed in £(Y) (see

sections 1.8 and 1.9).

PROPOSITION 6.5.4. Let & <S(X) and 16t B be any

closed subspace of £(Y). Then the set of mappings in
F(X, Y) which take the sets of & onto sets with closures

1n8 is closed in F(X, Y) with respect to the uniformity

&)

Proof. If t -+ t in F(X, Y) thcnma + t{RY for each A
in ¢, by LEMMA 6.3.1.
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COROLLARY 6.5.5. If Y is complete then the set of d¥-compact

mappings is complete; the sets of &-precanpact and ‘Q-bounded

mappings are closed in F(X, Y) whether Y is complete or not.

Remark. The Robertsons proved in (28) that if n is a

coarser uniformity on Y than §, associated with £, then the
n-relatively compact subsets in @(Y, §) form a closed subspace
of (Y, £). Their Theorem 3, discussed in section 2.7., is
then a direct application of the principle of PROPOSITION 6.5.4.
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