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ABSTRACT· 

This thesis is concerned with the properties and uses of 

the so-called Hausdorff uniform structure on the set of subsets 

of a uniform space. Sometimes the results are for more specialised 

spaces - metric spaces, normed spaces or topological vector 

spaces, or for the more general proximity spaces. Historically 

the hyperspace has probably derived its importance mainly from 

the concept of hypercompleteness. Here a study is made of 

hyperspaces of Hausdorff completions and Hausdorff completions 

of hyperspaces, and, in particular, of a case where these spaces 

derive from two related uniform structures on a set. Certain 

Hausdorff completions are shown to be uniformly embedded in the 

'hyperhyperspace', and some generalisations are proved of 

results of the Robertsons on sets of compact subsets. Making 

a completely different approach, J. L. Kelley's notion of a 

fundamental family of subsets is applied to uniform spaces and 

the Hausdorff completion of the hyperspace is constructed by 

means of fundamental families. A study is made of two conditions 

on a mapping between uniform spaces, the filter condition, 

introduced by Dr. Wendy Robertson, and the analogous fundamental 

family condition, which bears a relationship to hypercompleteness 

similar to that of the filter condition to completeness. 

Another subject which has attracted some interest recently is 

the comparability of the topologies induced on the set of subsets 

by various uniform structures on the original set. A survey 

of known results is given and the relationships between them are 

discussed. The question of when two uniform structures induce 

the same topology on sets of subsets of particular kinds is 

investigated, and finally a new condition is provided for a uniform 

structure to be unique in the sense that no other uniform structure 

ICont'd •• 



on the given set can induce the same topology on the set of 

subsets. The last two chapters deal with properties of mappings 

and sets of mappings, introducing two new concepts - the 

hypergraph of a mapping and a hypercompact set of mappings. 

The properties of the hypergraph are related to continuity 

and unifu~m continuity, giving rise to theorems similar to 

closed graph theorems. Hypercompactness is studied in 

relation to compactness and collective compactness of sets 

of mappings. 
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CHAPTER I 

INTRODUCTION 

1.1 ~rologue • To appreciate the set of subsets of any 

mathematical space as a space in its own right involves more than a 

step-up of cardinality - it requires a conceptual leap which lends to 

a study of these 'hyperspaces' a character all its own. Apart from 

the intrinsic interest, such a study can bring fresh insight into 

familiar ideas and can sometimes draw out the common essence in seemingly 

diverse situations. It is hoped that this will emerge during the 

course of the present thesis, in which the set of subsets of a 

uniform space, endowed with a derived uniform structure, is investigated 

in relation to a number of different mathematical situations. The 

investigation sets out in a spirit which owes mu~h to Ernest Michael, 

who really began it all, and J. L. Kelley, who observed the relevance 

of the hyperspace notion to the closed graph theorems of functional 

analysis. 

In this first chapter the mathematical structures which underlie 

the work to follow are described. Sinco uniform spaces do not appear 

to have yet claimed their rightful place amongst the toys in the 

mathematician's nursery their description is given in some detail. A 

survey of fundamental results in the general theory of hyperspaces is 

included, both to place the ensuing work in its wider context and 

to allow greater freedom of movement in the future. Many of these 

results will be recalled frequently. 

~.I Set-theoretical notions. These are used naively. The 

terms set~ oolleotion~ family and cLass will not be used in logically 

distinctive ways but simply to serve clarity. The set of non-empty 

subsets of a set X will be denoted by (3(X), and in general capit~ 

letters, e.g. A, will be reserved for subsets of X and curly letters, 
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e.g.~, for subsets of ~(X). The set ~(X) may also ~~ regarded as 

the set of functions from X into the t~o-point set {O, l}, sometimes 
X -¢ 

written 2 ,{,When the set X is endowed with a mathematical structure and 

the set ~(X) has a derived structure, it is called the hyperspace of 

the space X. The term hyperspace may also be useC-. when speaking about 

subspaces of S (X). 

Let U and V be relations on the set X - that is, subsets of the 

product X x X. Then U 0 V (or just UV) will denote the set 
1 

{(x, y) (x, Z) £ Ur (z~ y) £ V, some z £ X}. Also, U = U 0 U, 
3 -1 
U = U 0 U 0 U, etc., and U = {(x, y) : (y, x) £ U}, The relation U is 

-1 
called symmetric if U = U. For a relation U and a point x in X we 

write Uex) = {y £ X ex, y) £ U}; for a subset A of X we write 

U{A) = {y € X ; (a, y) £ U for some a £ A}. The set {{x, x) : X £ X} is 

called the diagonal and denoted by A. 

1.3 Uniform spaces. A uniform structure is the natural general-

ization of a metric structure, and is a special kind of topological 

structure in which the neighbourhoods of different points are comparable. 

The theory acquired its present form essentially at the hands of Weil in 

1937. A Uniform structUl'S" or unifCT1'lnity" on a set X is a collection t 

of subsets of X x X, each containing the diagonal A and together forming 

a filter, with the additional properties that, for each member U of t, 
-1 

the inverse U is also a member, and there is sorne member U' whose square 
2 
U' is contained in U. The members of ~ are called the entourages of the 

uniformity, following Bourbaki (4). 

A base v.. for the uniformi ty ~ is a collection of entourages such 

that a subset of X x X belongs to ~ if and only if it contains a member 

of the base. Conversely, a given collection of subsets of X x X will be 

a base for some uniformity on X if (1) each member contains the diagonal ll, 

(2) the intersection of any two members contains a third, (a) each member 



contains the inverse of some member, and (4) each member contains the 

square of SOITI6 member. The entourages of the generated uniformity will 

then be just those subsets of X x X which contain a member of the base. 

An important fact is that every uniformity has a base consisting of 

symmetric entourages, closed with respect to the product topology 

(see below). 

The set X, together with the uniformity t will be referred to as 

the uniform space (X, t), or just the uniform space X, where there is 

no possibility of confusion with another uniformity. Sometimes, when 

the uniformity is specified by a base U we will refer to the uniform 

space (X, U). The unique topology on X for which the neighbourhood 

filter of each point x is the collection S (x) = {U(x) : U £ t} is 

called the unifoPm topoLogy and denoted T(t). We may then refer to 

the topological space (X, T(t». If this topology satisfied Hausdorffs' 

separation axiom we call the uniformity separated or Hausdo~f. This is 

the case if and only if the intersection of the entourages is the 

diagonal. The distinction between separated and non-separated 

uniformities will be important in this thesis. 

1.4 Fundamental theory of uniform spaces. If A is a subset of 

the uniform space (X, t) then the petati~e uniformity on A is that whose 

entourages are the intersections of A x A with the entourages of t. 

The set A then becomes a uniform space itself. 

Taking closures with respect to the uniform topology on X and the 

product topology on X x X we have the following useful identies: 

X = f\{U(A) : U £ t} A any subset of X, 

~ = (\{U 0 SoU : U £ t} , S any subset of X x X. 

A mapping f from a uniform space (X, t) into a uniform space (y~ n) 

is called UKiformLy aontinuOU8 if for each V in n there is sorne U in t 

such that (f x f)(U) is contained in V. It is then certainly continuous 
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with respect to the uniform topologies. A bijective bi-uniformly 

continuous mapping is called a unifor-m isomorplLism and the two spaces at'e 

then called unifoPrnZy isomorphio. Since there will seldom be any possibility 

of confusion with other kinds of structural isomorphism we will usually 

abbr'~viate these to isomorrphism and isomorphic. A unifonn isomorphism 

is certainly a homeomorphism of the uniform topologies and so every 

topological in~'ariant is also a uniform invariant. 

There are certain concepts whose definition makes real use of the 

uniform structure, and which are thus uniform invariants but not topo-

logi~al invariants. Of particular importance are th~ concepts of 

precompactn6ss and comp Zetenoss • The uniform space (X, f;) is cdlled pre­

compact if, for each U in t, there exists a finite subset F of X such 

that X = U(F), or equivalently, if there exists a finite covering of X 

by U-small sets (a subset A is U-sma1,'/, it A x A C. U). This is the natural 

generalization of the concept of total boundedness in metric spaces. 

Completeness in uniform spaces may be formulated in terms of either filters 

or nets. Both formulations will be used freely. A filter is called a 

Cauchy filter if for each entourage U it contains a U-&rual1 set. The space 

is called complete if every Cauchy filter converges. A net (or directed 

set) {Xi : i £ Il in X is called a Cauchy net if, for each entourage U 

there is io in I such that (~i' Xj ) b~longs to U whenever i, j ~ i o ' 

The space is complete if and only if every Cauchy net converges to some 

point of X. 

1.5 MatI'ics I pseudometrics, uniform ties 3 proximi ties and topologies. 

If (X, p) is a metric (or pseudometric) space then the collection of 

subsets of X x X of the form U(p, £) = {(x, y) : p(x, y) < £} forms a 

base for a unifonni ty on X, c<:llled the metric (or pseudometric) Wliformi ty • 

A uniform space is called metrizable (pseudometrizable) if a metric 

(pseudometric) p can be defined on it so that the sets U(p, £) form a 
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base for the uniformity. The space is pseudometrizable if and only if 

it has a countable base, and is metrizable if and only if it is separated 

as well. A topological space is called uniformizable if there exists a 

unif~mity on it such that the uniform topology coincides with the 

given topology; this is the case if and only if the space is completely 

regular. Oll a oompact separated topological space tnure io precisely one 

uniformity compatible with the topology. In this thesis we shall always 

use the term oompact to mean what is sometimes called bicompact, or by 

Bourbaki, quasi-compact - that is, every open covering of the space has 

a finite subcovering. Note that although the closure of a compact sub­

space of an arbitrary topological space need not be compact, this is true 

in uniform spaces. Furthermore the closure of a relatively compact sub­

space is compact, even for non-separated spaces~ and the closure of a 

precompact subspace is precompact. An imp~tant fact is that a uniform 

space, is compact if and only if it is both precompact and complete. 

There is a structural layer lying in between the topological and 

the uniform - that possessed by a pro~ity space (X, 6), in which there 

is a relation 6 in 8 (X) specifying which pairs of subsets of X are 

in pz'o:ti.mity (A 6 B), and which are remote (A j B). The notion of proximity 

will occur in Chapters 3 and 4 but a detailed theory will not be required 

(see e.g. Thron (31». Every unif~m space (X, t) becomes a proximity 

space by putting A ~ B whenever there exists U in t such that A and U(B) 

do not meet, in which case A and B are called t-remote. If" is another 

uniformity on X we say that t is p~ty-finer than " if every pair of 

"-remote subsets is also ~-remote. The class of unif~mi ties on X 

inducing the same proximity 6 is denoted by ~(6) and has a unique coarsest 

member under which X is a precompact uniform space. Every proximity space 

(X, 6) becomes a topological space by taking, as pPOzimat neighbourhoods 

of a point x, the subsets A for which (X - A)'{x}. 
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1.6 Hyperspaces. As with so many things, the study of 

hyperspaces had its genesis in the mind of Hausdorff, who defined 

a metric on the set of closed, nonempty subsets of a bounded metric 

space. When X is any topological space, we shall denote the set 

of closed nonempty subsets of X by g(X). When (X, p) is a 

pseudometrizable space we can follow Hausdorff and define the 

distance d(A, B) between two subsets to be max {:u~ ~(a, B), 

~u~ ~(b, A)}. This may take infinite values if the subsets are allowed 

to be unbounded, but then min{d, l} defines a pseudometric on ~(X) 

ar.i a metric on e(X). We will refer to this metric as the 

Hausdorff mewio. 

Starting with a uniform space (X, ~), it is possible to define 

a number of structures for the set 3(X), most of them derived from 

the topological structure on X. First of all, ~(X) can be partially 

ordered by inclusion and the right and left order-topologies thereby 

defined. Ernest Michael, following Vietoris (33), studied the 

finite (or Vietoris) topology in (20); this topology is the supremum 

of two others, known as the upper-semi -fini te and 10'fTer-semi -fini te 

topologies, in the lattice of all topologies on '" (X), and has been 

the one to attract most interest. Other interesting and useful 

topologies have been defined by Mrowka (21) and Fell (7). 

It is natural to wonder what relationship any topological structure 

on ~(X) has to the fairly well known notion of topolgical convergence 

of subsets (see Mrowka (21». If {E.} is a net of subsets in a 
~ 

topological space X, let limsup E. be the set of points of X for which 
1-

E. frequently intersects each neighbourhood, and liminf E. be the set 
~ l. 

of points for which Ei eventually intersects each neighbourhood. Then, 

if limsup Ei = liminf Ei = E, the net {Ei } is said to be topologically 

convergent to E. When X is a compact metric space, convergence in the 

Hausdorff metric on €(X) coincides with topological convergence of sets, 
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and when X is any separated compact space the finite topology on 

e{X) induces topological convergence of sets. However these results 

fail for locally compact spaces; when X is a separable, locally compact 

metric space Watson (37) defined a new metric on ~(X) which induces 

topological convergence of sets, and when X is any locally compact 

space Mrowka defined what he called the lbc-topology on ~(X) having 

the same property, and coinciding with the finite topology if X is 

compact. Effros (6) showed that for a separable complete metric 

~pace X the Borelian structure generated on ~(X) by the topological 

convergence of sets is standard, and, if the space is locally compact, 

it is actually a topology, which turns out to be the same as that 

defined and studied by Fell (7 ), and only slightly different in 

construction from the finite topology. 

When X is a regular space (and in particular when X is a 

uniform space) which is not locally compact then (21) there is no 

topology on €,.(X) which induces the topological convergence of sets. 

The structure on ~(X) with which this thesis is concerned is the 

natural generalization of the Hausdorff metric and was introduced by 

Bourbaki and further' studied by lwl: .. chael (20), It derives essentially 

from the uniform structure on X. Let 'U. be a base for the uniformity. 

For each U in ZL let U be the collection of pairs (A, B) of subsets 

of X such that both A c: U{B) and B c: U(A). The sets U form a base for 

a uniformity ii on 3{x), called the Hausdoroff uniforomity, because it 

coincides for a metric space with the uniformity of the Hausdorff 

metric on ~(X), and with the uniformity of the pseudometric on ~(X). 

It is clearly independent of the choice of base for the uniformity t .. 
on X, and may be denoted by t. 

For an arbitrary uniform space (X, t) it is true that convergence 
... 

of sets with respect to the uniformity ~ implies topological convergence, 

but in general the uniform topology t{~) does not induce topological 
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convergence of sets, as indicated by the remarks earlier. It is known 

(see Michael (20» to cOincide with the finite topology on the set 

of compact subsets, and so when X is a compact separated space these 

two topologies, Mrowka's lbc-topology, and Fell's topology, all coin­

cide on ~(X) and induce the topological convergence of sets. 

Interestingly, the topology T(~) does not characterize the ,~.iformity 

~ from which it is derived. This, and related topics, will be con­

sidered in Chapter 4. 

L 7 Fundamental properties of the Hausdorff uniformity, The 

uniformity ~ is not separated on ~(x) but is easily seen to be separated 

when restricted to e:(X), For the pair (A, B) of subsets belongs to 

the intersection of the entourages U if and only if A <= U(B) and 

and B C U(A) for each U, and since the intersection of the uniform 

neighbourhoods U(B) of a subset B is just its closure, this will be 

true if and only if A and B have the same closure. For this reason 

most resuJ.ts concerning hyperspaces are formulated in e(X}, For 

simplicity we shsll also use the notation ~, i;.., when talking about 

the Hausdorff uniformity restricted to ~(X) or any other subspace of 

8KX), so long as there is no possibility of confusion. Most of the 

time from now on it will be understood that all hyperspaces Qre endowed 

with the Hausdorff uniformity. 

The mapping x + {x} is a uniform isomorphism of X onto a sub­

space of ~(X), and if X is separated, onto a closed subspace of ~(X). 

When the Hausdorff metric is applicable it is actually an isometry. 

Thus X inherits many properties possessed by ~(X); in particular X 

is metrizable, precompact or compact if and only if e.(X) has each 

respective property (see Michael (20», If ~X) is complete so is 

X. If X is a complete metrizable space then ~X) is complete, 

but this result is not true for arbitrary complete uniform spaces, a 
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fact which has interesting repercussions. The relation of the notion 

of completeness to hyperspaces will be the central theme in Chapters 

2 and 3. 

1.8 Subspaces of the hyperspace. When A is any subspace of X, 

the Hausdorff uniformity on ~(A) derived from the relative uniformity 

on A is the same as that induced on 3(A) as a subspace of S(X). If 

A is dense in X then ~(A) is dense in ~(X), and if A is closed in X 

then ~(A) is closed in ~(X). If A is compact and closed then the 

collection of sets of ~(X) which intersect A is closed in ~(X). 

The union of a collection of closed subsets of X which forms a 

compact subset of ~(X) is closed in X; the union of a compact collection 

of compact subsets is compact. These facts were proved by Michael (20), 

and will be used frequently. They allow some interesting, simple 

proofs of results in many different contexts. For example, when A 

is a compact subset of a uniform space and U is a closed entourage 

then U(A) is closed; the sum of a compact subset and a closed (resp. 

compact) subset of a topological vector space is closed (resp. compact); 

if G/H is the quotient of a topological group by a compact subset 

then the inverse image of any compact subspace of G/H under the 

canonical mapping G + G/H is compact. A number of Arze1l-Asco1i-type 

theorems can also be proved in this way (see Chapter 6). 

The space e.<X) is always dense in S(X). The set ~(X) of non.empbj 

finite subsets of X is dense in ~(X) if and only if X is precompact; 

in fact the closure of ~X) in ~(X) is just the set of all pre-

compact subsets of X. It is interesting to contrast the situation 

when (J(X) is regarded as a product 2X of copies of the discrete 
-~ 

space to, l}, with the product topology'k.1n this case ~(X) is 

always compact, and %=(X) is always a dense, PNcompact subspace. 

With the finite topology, too, ~X) is dense in (3(X). 
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In this thesis we shall be particularly concerned with the 

subsets of ~(X) consisting of the precompact sets and the compact 

sets, denoted respectively by ?'(X) and C(X); also with the set 

~(X) of relatively compact sets. The set sp(X) is closed in 

~(X). If X is complete the set (;(X) is closed in ~(X). Any 

decreasing net of sets in c:(X) which is Cauchy must converge to 

the intersection. Any decreasing net in e;.X) which converges 

must converge to the intersection, and any increasing net whose 

union is precompact must converge to its closure. Note that if 

Ai converges to A in ~(X) then it converges also to A, and Ai 

converges to A in e{ X) • 

1.9 Induced mappings I and spac_es of mappings. Every mapping 

t from a uniform space X into a uniform space Y induces a mapping 

to of SeX) into S{y) and a mapping t' of Sex) into &Y), 

defined by tOeA) = teA) and t'{A) = teA), for each subset A. This 

notation will be standard throughout the thesis, and the induced 

mappings to and t' will be basic tools in the development. They 

will be involved particularly in Chapter 3, and the graph of t' 

(introduced as the hYPB~h of t) will be the guest artist in 

Chapter 5. 

Each of to and t' is uniformly continuous if and only if t is 

uniformly continuous. Let T be a set of uniformly equicontinuous 

mappings (that is, for each entourage V of Y there is an entourage 

U of X such that t
2(U) c: V for each t in T); then the sets 

TO = {to: t £ T} and T' = {t' : t £ T} are uniformly equicontinuous 

as well, and the mappings A + T{A) and A + 1iJrr are both 

uniformly continuous on ~(X), where T(A) = l){t(A) : t £ T}. 

When X is any set and Y is a uniform space, let F(X, y) deDOte 

the set of all mappings from X into Y. For any collection A of 
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subsets of X, a uniformity can be defined on this set, called the 

unifomtity of unifom oonvel'gence on the sets of it, and denoted 

by t(6t). It has base consisting of all finite intersections of 

sets of the form 

W(A, V) = {{f, g) (f(a), g{a») £ V for all a £ A}, 

where V is any entourage of Y and A any member of J1:: • When 

~= {{x} : x £ B}, B some subset of X, then the uniformity t(Jt) 

is called the uniformity of pointu1ise convel'gtmCe on B. If 

B = X it is known simply as the uniformity of pointwise convergence, 

and coincides with the product uniformity on rex, Y) as the 

product YX. 
If ti + t in r(X, y) with respect to the uniformity t~) 

then to. + to in r{ $(X), S(Y» with respect to the uniformity of 
~ 

pointwise convergence on.Q. The converse is not true. We can, 

however. define a new uniformity on rex, Y) so as to have the two 

kinds of convergence equivalent. Because of the way each mapping 

in rex, Y) induces, in a one-to-one manner, a mapping in 

r(~(x), ~(Y»), the former set may be regarded as a subset of 

the latter. Then if Jt is any subset of ,s(X), the uniformity on 

F( S(X), s(n) of pointwise convergence on it- induces a uniformity 

on rex, y) for which fi converges to f if and only if fiCA) 

converges to f(A) in S(y) for each A in st. Other uniformities may 

be defined on rex, y} in a similar manner. 

Spaces of mappings and uniformly equicontinuous sets of 

mappings will come under consideration in Chapter 6. 

1.10 Topological vector spaces; normed spaces. Some of 

the most interesting and useful uniform spaces are those which have 

topological and linear structures, compatible with each other in 

the sense that the vector addition and scalar multiplication 
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operators (x, y) + x + y, (x, ~) + Ax are continuous. Such a space 

,.. is called a topotogical, veatoft spaae. We will always aSS\mHt the 

scalar field to be either real or complex. The topology on X is 

characterized by a base if'for the neighbourhoods of the origin 0, 

for if x is any point in X the sets x + V, V in Y, form a base 

for the neighbourhoods of x. Consequently. any mapping of X into 

a uniform space is continuous if and only if it is continuous at 0, 

and then it is actually uniformly continuous with respect to the 

natural uniform structure on X which has base consisting of the sets 

of the form U(V) = {(x, y) : y - x e V}, for V in 1'. The Hausdorff 

uniformity on ~(X) is derived from this uniformity and then has 

base consisting of the sets. 

U(V) = {(A, B) : At=. B + V and B c:. A + V}, 

for V in Y. For simplicity we shall denote this by V. 

A subset A of X is called oonv~ if pa + Ab belongs to A 

whenever a. b belong to A. and ll,A are non-.egative real numbers 

sWllning to one. A subset A is called ba1,anced if ).a belongs to A 

whenever a belongs to A and A has absolute value at most one i if 

A is both balanced and convex it is called abeotutel,y conV". The 

balanced (convex) (absolutely convex) hull of A is the smallest set 

with each respective property containing A. The closure of any 

balanced (convex) (absolutely convex) subset has the same property. 

The space X is called tooal,l,y oonV" if it has a base consisting of 

convex neighbourhoods of the origin. A subset A is said to 

absorb a subset B if there is some). > 0 such that B .'l1A for all 

II with Illi ~ ).. A set which absorbs points is called ab8o~bant. 

Each O-neighbourhood is absorbent. A set which is absorbed by each 

O-neighbourhood is called bO'U1J.tilui; the set A is bounded if and only 

if for each O-neighbourhood V there exists). > 0 such that A C:)'U. 

The set of nonempty, bounded subsets of X, and the set of 
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nonempty, balanced subsets of X are each closed in S (X). If X is 

lc~ally convex the set of nonempty, convex closed subsets is closed 

in ~(X), and henoe the set of nonempty, absolutely convex, closed 

subsets is closed in ~(X). 

An absorbent, absolutely convex, olosed set is oalled a barrel. 

Every locally oonvex spaoe has a base oonsisting of barrelsj a 

space is oalled barrr-e1Led if every ban-el is a O-neighbourhood. 

A pseudonO:ffli or~ a. veotor spaoe X, is a real-valued funotion 

x + II xII on X suoh that IIxli ~ 0, \I Axil = IAlllxll, and 

IIx + yll ~ Ilxli + lIyll. If IIxl! = 0 implies x = 0, the function is 

oalled a no~. A pseudonormed space is a topologioal vector 

spaoe under the topology defined by the metrio distance II x - y 1\. 
A topological vector space is pseudonormable if and only if it 

has a bounded, convex neighbourhood of the origin, and is normable 

if and only if it is separated in addition • 

. 1.11 Quotient spaces. Since these can be regarded as subspaoes 

of seX) under oertain circumstances, they provide a fruitful 

field for applications of the theory of hyperspaces. We shall 

investigate, particularly quotient spaces of topological vector spaces. 

For an equivalence relation R on an arbitrary uniform space 

X, the quotient topology on X/R may differ from the topology inducad 

by the Hausdorff uniformity, ancJ. from that induced by the finite 

topology on t)(X) (see Bourbaki (4), Chapter 2, exercise 1.5). 

Applying a result of Michael «20), Prop 5-11), we can deduce that 

far a compact, separated space X and a Hausdorff equivalence 

relation R, the quotient topology and Hausdorff uniform topology 

coincide on X/R, and the quotient space is a closed subspace of 

~(X). If X is a topological veotor space and M a vector sub­

space, then the natural uniformity on the quotient space X/M 
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generated by the sets of the form {(a + M, b + M) : b - a + M E Q{V)}, 

"here Q is the quotient map X -+ X/M and V is any O-neighbourhood, 

is the same as that induced by the Hausdorff uniformity on 

3{x), and the quotient topology is the uniform topology. 

If M is a closed vector subspace then the quotient space is a closed 

subspace of ~(X). 



CHAPTER 2 

HYPERSPACES AND HAUSDORFF COMPLETIONS 

2.1 Int~oduction. When X is a complete met~ic space the 

set ~(X) of non-empty closed subsets of X with the Hausdorff met~ic 

is a complete space also (see e.g. Kuratowski (19), Price (25), 

Bourbaki (4». However when X is any complete uniform space the 

set ~(X) with the Hausdo~ff uniformity need not be complete. 

We shall call X hyperooomptete if e.(X) is complete. The term 

was introduced by J. L. Kelley to describe topological vector 

spaces X for which the collection of absolutely convex sets in 

~(X) is complete - we have widened the definition to make it 

applicable to uniform spaces. Each compact space is hypercomplete 

(see Bourbaki (4), Chapte~ 2, ex. 4.6), and each hypercomplete 

space is complete. For topological vector spaces hypercompleteness 

(even in Kelley's sense) implies full completeness (~r 

B-completeness in the sense of Pt4k). 

If a uniform space X is not complete then, in a sense, it 

has 'insufficient' points, and if it is not hypercomplete the 

collection of subsets i~ similarly deficient. This unsatisfactory 

state of affairs can be remedied in a manner typical of many 

others in mathematics, by first replacing X, if it is not a~eady 

separated, by a separated uniform space X' closely associated 

with it, and then enlarging X' slightly to a complete separated 
A 

space X. This more pleasing space is called the Hausdorff 

completion of X. The hyperspaces S (X) and e.( X) may be dealt 

with similarly, and the question arises at once what the 

relationship is between such spaces as ~(X) and €(X). This 

chapter deals with questions like this, involving hyperspaces 

and the concept of Hausdorff completion. 
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The 'hyperhyperspace' ~(~(X» is neither separated nor 

complete in general, but it contains, uniformly embedded in 

it, a number of significant spaces including the Hausdorff 

completions ~ and ~(X). More will be said about this in 

Chapter 3. It is shown in 2.3 that X can be embedded in two 

ways in (;(~(X). Next, in 2.4, the relationships between the 

hyperspaces of X, X' and X are investigated together with their 

Hausdorff completions, and this leads to a consideration of 

the problem of which spaces are such that the Hausdorff 

completion of the hyperspace can be realized as a hyperspace 

itself, and the related problem of which spaces have hyper­

completions. In section 2.5 a study is made of various 

hyperspaces consisting of compact, precompact, relatively 

compact and finite sets, permitting some slight generalizations 

of Theorem 1 in the Robertsons' paper (28). It is shown that 

separatedness is unnecessary, and that for an arbitrary 

uniform space X the Hausdorff completion of the set of compact, 

closed subsetS is isomorphic to the set of compact subsets 

of the Hausdorff completion of X. The results of 2.4 are 

applied in 2.6 to linear spaces, and in particular to the 

completions of quotient spaces. Finally in 2.7 an investigation 

is made of hyperspaces arising from two uniformities for a 

set X, the one associated in a certain way with the other, and 

as a consequence separatedness is removed from the hypotheses 

for Theorems 2 and 3 of (28). 

_?~.Preliminaries - extension of mappings. In this section 

we state two well-known Theorems concerning the extension of 

mappings which will be useful throughout the Chapter, and 

incidentally probe a little deeper into the question of when 
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the extended mapping is injective. This question will arise 

again in the next Chapter. First the well-known results 

(see, for example Bourbaki (4), Chapter 2.): 

THEOREM 2.2.1. Let A be a subspace of a uniform space X and 

let f be a uniformly continuous mapping from A into a complete 

Hausdorff uniform space Y. Then f can be extended by continuity 

to the closure of A in X, and the extended function f* is 

uniformly continuous. The graph of f* is the closure in X x Y 

of the graph of f. 

THEOREM 2.2.2. Let Al , A2 be dense subsets of the complete 

Hausdorff uniform spaces Xl' X2 respectively. Then every 

isomorphism f of Al onto A2 extends by continuity to an 

isomorphism f* of Xl onto X2• 

If, in this last result, f is given to be only a bijective 

uniformly continuous mapping then f* is uniformly continuous 

but need be neither injective nor surjective. For (Bourbaki (4) 

Chapter 2, section 3, ex. 3) if ~ denotes the real line with 

additive uniformity, lR the extended real line, and ~ its 

one-point compactification, and ~ is the uniformity induced 

on IR by the uniformity of if, then the identity mapping of 

IR is uniformly continuous in each of the cases lR+ lr and 

(IR, ;) + lR, and extendsby continuity in the first case to 

an injective but not surjective mapping R + Dr, and in the 

second case to a surjective but not injective mapping it + ~ 

If, rather, we allow X, in THEOREM 2. 2 .1, to be an arb! trary 

un!fom space, and f is an isomorphism, then fit still need not 

be injective or surjective, let alone an isomorphism. There will 

be an example of this in 2.4. However, we can clear up the 
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situation a little using the next Theorem, which is preceded 

by a Lemma isolating the main argument from any completeness 

condition. 

LEMMA 2.2.3. Let X and Y be uniform spaces and let A be a 

dense subspace of X. If f is a uniformly continuous mapping 

of X into Y which induces an isomorphism between A and some 

subspace B of Y, then for Xl' x2 in X, f(xl ) = f(x2) implies 

(xl' x2) £. n {U :U £.'U} where U is a base for the uniformity 

on X. 

Proof. Let Xl' x2 be points of X with f(xl ) = f(x2), and let 

U € U. Let Ybe a base for the uniformity on Y. Choose a 
-1 1 

symmetric V in ~such that (f(bl ), f(b2» is in U whenever 
2 

bl and b2 are points of B with (bl , b2) in V. Then choose Ul 

in ~ such that (f(p), f(q» is in V whenever p and q are 

points of X with (p, q) in Ul • 

Now let U2 be a symmetric member of U with U2 c Un U
l

• 

There exist points al , a2 in A such that al is in U2(xl ) and 

a2 is in U2(x2), since A is dense in X. Then (al , Xl) and 

(a2, x2) are each in U2 and so (f(al ), f(xl » and (f(a2), f(x2» 
2 

are each in V. Hence (f(al ), f(a2» is in V since f(xl ) = f(x2), 

and therefore (al , a2) is in U. Therefore (Xl' x2) is in 
3 

U2 0' U 0 U2 C U, and the result follows. 

THEOREM 2.2.4. Let A be a dense subspace of a uniform space X 

and let A be isomorphic to a subspace B of a complete Hausdorff 

uniform space Y. Then the isomorphism extends to a uniformly 

continuous mapping of X into Y which is injective on every 

Hausdorff subspace of X. 
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Proof. Let U be a base for the uniformity on X. The isomorphism 

of A onto B can be extended to a uniformly continuous mapping 

f : X ~ Y by THEOREM 2.2.1. If xlj x2 are points of X with 

f(x1) = f(x2), then by LEMMA 2.2.3 (Xl' x2) is in rl{U : U £ (L}. 

The result follows immediately. 

2.3 The construction of ~ and its embeddings in 3 ( .s (X) ) . 

Let X be a uniform space and let ~be a base for the uniformity 

on X. Let X denote the set of minimal Cauchy filters on X, 

with the uniformity, generated by the sets 0, ~here 0 is the 

collection of pairs (~1' ~2) of minimal Cauchy filters such 

that ~l and ~2 have a U-small set in common, and U runs through 

the symmetric entourages in~. Let i : X + X be the mapping 

which takes each x in X onto its nieghbourhood filter. Then 
... 
X is a complete Hausdorff space, i is uniformly continuous~ 

and i(X) is dense in X. A 

X is called the Hausdorff completion of 

X and the subspace i(X) is called the Hausdorff space associated 

with X and denoted X'. 

We note the following facts about these structures (see 

e.g·. Bourbaki (4». 

(i) Given any \tiformly continuous mapping f of X into a 

complete Hausdorff uniform space Y, there is a unique uniformly 
.... 

continuous mapping g: X ~ Y such that f : g 0 i. 

(2) If i is a uniformly continuous mapping of X into a 

complete Hausdorff uniform space X, and the pair (il , Xl) has 

the property expressed for (i, X) in (1), then there is a 
A 

unique isomorphism' : X ~ Xl such that i1 = • 0 1. 

(3) The graph of the equivalence relation R: i(x) = i(x') 

is {U: U e U} and X' and X/R are homeomorphic as topological 
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spaces. If X is a Hausdorff space then X is isomorphic to 

X', and if X is a dense subspace of any complete Hausdorff 

space Y then the canonical injection X + Y extends to an 

isomorphism of X onto Y. 

( ... ) The uniform structure of X is the inverse image 

under i of that of X (or X'). The entourages of X, are the 

images under i x i of the entourages of X, and the closures 

in X x X of the entourages of X' form a base of entourages 

for X. 

From (3) it is clear that if X is dense in a Hausdorff 
A A 

space Y then X and Y are the same (up to isomorphism). When 

Y is not Hausdorff we use (2). Let i1 : X + Y be the composition 
A 

of the two canonical mappings k : X + Y, j : Y + Y. Then the 
A A 

pair (i1 , Y) has the property expressed in (1) for (i, X). 

because if f is any uniformly continuous mapping of X into a 

complete Hausdorff uniform space Z, we can extend f by continuity 

to a uniformly continuous mapping f' : Y + Z, and then by 
A 

(1) there is a unique uniformly continuous mapping g : Y + Z 

such that ft = g 0 j, and also f = g 0 i. Thus by (2) there 
.. .. 

is a unique isomorphism • : X + Y such that i1 = • 0 i. We can 

now state: 

(5) If X is dense in the uniform space Y then X and Y 

have the same Hausdorff completion (up to isomorphism). 

Note that X and Y may bave different associated Hausdorff 

spaces. For if X is a non-complete metric space and Y is the 

completion X of X, then €.(X) is not complete and edb is 

complete; but Sex) is dense in Sdh and e(X) and e.<X) 
are their respective associated Hausdorff spaces, as will be 

shown in the next section. 
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We t~n now to studying the relation between these ideas and 

the hyperspaces of the uniform space X. To begin with, there 
... 

are two nat~al ways of em~edding the Hausdorff completion X 

in the space ~(~(X»). The first is given as an exercise in 

Bourbaki (4), Chapter 2, section 3, ex. 7, and proceeds by 

extending the canonical mapping x + {{x}} of X into ~(~(X» 

(we assume X to be Hausdorff for the moment) to an isomorphism 

of X onto a closed uniform subspace of e ( e( X) ) • As will be 

shown in the next section, for an arbitrary uniform space X, 

~(X) and ~(X') are isomorphic, and this makes the embedding 

possible for any uniform space. 

PROPOSITION 2.3.1. For any uniform space X there is an 

isomorphism of X onto a closed uniform subspace of ~(~(X» 

which is an extension of the mapping i(x) + {{x}} of X, into 

~( E!.(X». 

The second embedding method proceeds directly from the 

definition given above of the Hausdorff completion. 

PROPOSITION 2.3.2. For any uniform space X, the Hausdorff 
... 

completion X, considered as the set of minimal Cauchy filters 

on X, is a uniform subspace of 8( S(x». 

Proof. Let ~be a base, consisting of symmetric entourages, 

for the uniformity on X. The uniformity on X has a base iL 
.. 

consisting of the sets U of all pairs of minimal Cauchy filters 

which have a U-small set in conunon, as U runs through U. As 

a subset of 3 ( S (X», X can also be given the uniformity 

induced by the Hausdorff uniformity on ~(~(X», with base ~ 

We will show that these two uniformities on X coincide. 
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Let (c:t;.. , ~) belong to o. Then let A be a U-sma~J. C5e1: 

in each of <J:i and J:;, at;Ld choose F in ~. We have 

F U A £ ~, and FU A c: U(F), since A is U-small and An F '#1._ 

Clearly F c= U(F U A) , so that (F, F U A) is in 6. Similarly 

for each F' in ~, F' U A is in ~, and (F I to F' U A) is in ij. 

Therefore (11, c:r;) is in U, and we have show.n that 0 c: u, 
so that V- is finer than ~. 

Now let V.be any member of tL, and choose U
l 

in tL with 

0l~U. Let C~, ~) belong to Ul , and let Fl be a Ul-small 
Q,...- ~ {F. c: U1 (F2.) 

set of ~l' Then there exists an F2 in ~2 such that ~~c: U1CF1 )· 

Thus Ul(Fl ) belongs to both ~l and ~, and is a U-small set, 

so that (~, J=;) belongs to U. This proves that ~ is 

finer than U, and so t finally') U and U determine the same 

uniformity on X_ 

2.4 The Hausdorff completions of ~(X) and ~(X). The 

main aim in this section is to show that for an arbitrary 

uniform space X, the hyperspaces !.(X) and €'CX) have the same 

Hausdorff completion, and this is achieved by first proving 

two Propositions to the effect that 500 and e:c X) have the same 

Hausdorff completion and that the hyperspaces €..(X) and &X') 

are isomorphic. 

PROPOSITION 2.4.1. For any uniform space X, ~(X) is isomorphic 

to the Hausdorff space ~'(X) associated with ~(X). 

Proof. Let 'l,!..be a base for the uniformity on X. Let 

j : SeX) + S' 00 be the canonical mapping, and define a 

mapping, : €(X) + 5'(X) by ,(M) = j(M) for each M in @.(X). 

If M, P are in ~(X) then ,(M) = ,(N) if and only if j(M) = j(N), 

if and only if (M, N) e n<lJ : U £ U} t if and only if 

M c:: U(N) and N C U(M) for each U in U, if and only if H = N. 
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For each R in ~(X), (R, R) is in each U, so that 

'(R) = j(R). Thus. is a bijective mapping. 

Since the uniformity on ~(X) is the inverse image 

under j of that on S' (X), .-1 is uniformly continuous, and 

since the entourages of e)'(X) are the images under j x j 

of those of !5(X) and hence of those of ~(X), • is 

uniformly continuous. Therefore. is an isomorphism of ~(X) 

onto S' (X). 

COROLLARY 2.4.2. ~(X) is isomorphic to ~(X). 

This Corollary also follows directly from fact (5) in 

2.3, because ~(X) is dense in tj(X). 

PROPOSITION 2.4.3. For any uniform space X, ~(X) is isomorphic 

to g(X'). 

Proof. Define a mapping a e(x) .. €eX') by a(M) = i(M) 

for each M in ~(X), where i is the canonical mapping of X 

onto X'. Again, let U be a base for the uniformity on X. 

Since the entourages of X, are the images under i
2 

of those of 

X and since !2(U)(i(x»C i(n(x» for each x in X and each 

U in~, i must be an open mapping. 

Given M in ~(X) and a point x in X - M, there is a U 

in 2L such that i(x) does not belong to i(M), and hence 

n -1 i(M)· i(X - H) = 0. Thus i (i(M» = Ht and i, being open, 

must also be a closed mapping; a therefore maps @:.(X) onto 

@.(X'). 

If H, N are in ~(X) and a(H) = a(N), then i-l(i(M» = i-1(!(N», 

so that M = N. If R is in ~(X') then i(i-l(R» = a(i-1(R», 

and i-l(R) belongs to ~(X) since i is uniformly continuous. 

Thus a is bijective. 

Since i is uniformly continuous, so is its induced 

mapping from ~(X) to ~(X'), which coincides with a on ~X). 
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Now the sets (i x i)U form a base of entourages for X', so 

the sets V(U) = {(P, Q) : pc: i 2(U)(Q) and Q C!2(U)(p)} 

form a base for the uniformity on ~(X'). Let P, Q belong 

to €(X') with (P, Q) in V(U). Then (i-l(P), i-l(Q» is 

2 -1 in U, and therefore a is a uniformly continuous mapping. 

We have now proved that ~is an isomorphism of ~(X) onto ~(X'). 

THEOREM 2.4.4. For any uniform space X, the Hausdorff 

completion ~(X) of the hyperspace of non-empty closed 

subsets of X is isomorphic to the Hausdorff completion 

~(X) of the hyperspace of non-empty closed subsets of the 
,.. 

Hausdorff completion X of x. 
Proof. We have that X', the Hausdorff space associated with 

X, is dense in X, and so Sex') is dense in S(X). Using 

fact (5) of 2.3, ~(X') and ~(i) are isomorphic. But then, 

by COROLLARY 2.4.2., t (X') and t< X) must be isomorphic. 

Finally, since €.(X) and €.(X') are isomorphic by 

PROPOSITION 2.4.3., the result follows. 

In order to actually exhibit the isomorphism between 

!(X) and edb and be able to use it in future, we resort 

to the rather terrifYing diagram below, which attempts to 

demonstrate how the initial isomorphism between ~(X') and 

~(X), resulting from PROPOSITIONS 2.4.1. and 2.4.3., is 

successively extended or restricted in each direction. 
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. (7'-1 " .'---' 
A ~. 

e{X) ~ 5LX):::> j;.y.!-~::l €(~): eoq! ~'(X) c Sex\ l!£ e.tN 
liS 1./ 
e(~) 

We have here an example of the fact mentioned in 2.2, that 

an isomorphism between dense subspaces of two uniform spaces, 

one of which is a Hausdorff complete space, need not extend 

to an injective or a surjective mapping. For in the diagram 

S(X)::::> e (X') = ~'(X) c: ~(X) 

the isomorphism certainly extends to the uniform continuous 

mapping 0* of ~(X) into ~(X). but this mapping does not 

distinguish between a subset of ~ and its closure in X, 
and does not map SeX) onto ~(X) unless SeX) is complete. 

THEOREM 2.2.4., however, insists that 0* be injective on the 

separated subspace €..(X), and in fact we know that ~X) is 
.. 

actually isomorphic to a subspace of ~(X). 

• A 
If X is a metr1c space its Hausdorff completion X is 

also a metric space, and £.eX) is a complete metric space. 

Therefore, by THEOREM 2.4.4., tJX) is isomorphic to £.db 
so that the completion of the hyperspace is again a hyperspace. 

Cl:t ia easy to see that the isomorphism is actually an isometry.) 

The question arises - which spaces have this property? 

Equivalently, which spaces have the property tbat the Hausdorff 

completion of the hyperspace is the hyperspace of its 

Hausdorff completion? Clearly, by THEOREM 2.4.4 •• this class 
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of spaces is precisely the class for which the Hausdorff 

completion is hypercomplete. 

There is another characterization of this class. We 

say that a uniform space X has a hypercompletion if X can be 

embedded in a hypercomplete space. It is wall-known that 

there exist complete spaces which are not hypercomplete. 

That not every space has a hypercompletion then follows from 

the fact that a complete subspace of a hypercomplete space 

must be hypercomplete. This is not quite obvious and so we 

shall establish it precisely. If X is a complete uniform 

subspace of a hypercomplete uniform space Y then X' is 

complete and is a closed subspace of yl. Therefore !.(X') 

is a closed subspace of ~(Y'). Now ~(y) is complete, 

and so also, by PROPOSITION 2.4.3., is ~(Y'). Thus ~(X') 

must be complete, and.again by PROPOSITION 2.4.3~ this 

implies that X is hypercomplete. 

Which spaces. then, have a hypercompletion,? Suppose 

that the uniform space X is embedded in a hyperco~plete 
.. ... 

uniform space Y. Then X is a closed subspace of Y. which 

is hypercomplete, and so e(X) is a closed subspace of the 

complete space e.( Y). and therefore is complete itself. 

Conversely, if €:(X) is given to be complete and we let 

X denote the (non-Hausdorff) completion of X, so that X 
is the Hausdorff space associated with Xt then by 

PROPOSITION 2.4.3. ~(X) is complete, and X is a hypercomple-

tion of X. We collect all these facts together in the 

following result. 
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THEOREH 2.4. 5. The class of uniform spaces X which have a 

hypercompletion is precisely the class for which the Hausdorff 

completion of the hyperspace e,(X) is the hyperspace e(X) of the 

Hausdorff completion, which is precisely the class for which 

the Hausdorff completion is hypercomplete. 

It is easily seen that this class includes all metric 

spaces, and also all hypercomplete spaces, but it is very 

restricted nonetheless. If we narrow our demands to the 

CGmp8C·t·" closed subsets in place of the closed subsets we 

might expect the corresponding class of spaces to expand 

enormously. Thus it turns out that for an arbitral'Y uniform 

space X, the Hausdorff completion of the space ~(X) of 

compact, closed subsets of X is the same thing as the 

space e(X) of compact subsets of X. This will appeal' in 

the next section. 

2.5. The Hausdorff completions of C(X), tp(X) and 1it<X). 

It has been shown that for any uniform space X t the space of 

closed subsets of X is isomorphic to the space of closed 

subsets of the Hausdorff space X' associated with X. This 

isomorphism also takes those sets in c!:(X) which are compact 

onto those in l!.( X') which are compact. 

PROPOSITION 2.5.1. For any uniform space X, the space ~(X) 

of compact, closed subsets of X is isomorphic to the space 

C(X') of compact subsets of X', the Hausdorff space associated 

with X. 

Proof. The isomorphism 0 : €(X) + €(X') is defined by 

oeM) = i(N) for each N belonging to ~(X), where i : X + X' 

is the canonical mapping. If e is a compact set in £.eX), 

then aCe) = ice) is compact, since i is uniformly continuous. 
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Now 'let D" be a compact subset of x,t ~ and let E = (J -1 (D ).' 

Then i(E} = D. Let Jtbe an open covering of E. Let J1 be 

an open covering of E such that for each B in ,53 there is a 

set A in .f( with B r= A. This is possible by the regularity 

of X. Since i is an open mapping the collection {i(B) : B £.9} 

is an open covering of the subset D of X', and since D is 

compact there is a finite subcovering {i(Bl }, i(B2), ••• , i(Bn)}. 

Let A. be such that BiC: A., for i = 1, ••• , n. If e is a 
1 1 

point of E, then i(e) is a point of i(Bk), for some 

1 ~ k , n, and there is a point b of Bk such that (e, b) 

is in every entourage of the uniformity on X. This implies 

that e is in Bk and hence in~. Therefore the collection 

{Al , A2, ••• , An} covers E, and this proves that E is com~act. 

a 

It now follows immediately that the isomorphism 

e(X) + €(X') takes e(X) onto C::(X'). 

The Robertsons proved in (28) that if X is a complete, 

separated uniform space then the set of non-empty compact 

subsets of X forms a complete subspace of ~(X). This was 

achieved by embedding the space X in a product of complete 

metric spaces,and thus making very real use of the separated­

ness of X. Using the foregoing PROPOSITION there is an 

immediate slight generalisation of their result - by 

elimination of the separatedness hypothesis. 

THEOREM 2. 5.2. For any complete uniform space (not necessarily 

separated), the set of non-empty, compact, closed subsets 

forms a complete space. 

There is a further generalisation of this result, 

obtained by considering the Hausdorff completion of the space 



of non-empty, compact closed subsets, as promised at the 

end of the previous section. The following Lemma will be 

needed in the proof. 

LEMMA 2.5.3. Let Y be a uniform space and A a dense subspace 

of Y. Then the set of compact (resp. precompact) subsets 

of A forms a dense subspace of the space of compact 

(resp. precompact) subsets of Y. 

Proof. Clearly any compact (resp. precompact) subset of 

A is a compact (resp. precompact) subset of Y. Let B be a 

compact (resp. precompact) subset of Y and let V be any 

entourage of the uniformity on Y. Choose a symmetric 

entourage V 1 with t 1 c: V t and let bl , b2, 

of B such that the sets V1Cbi ). i = 1, 2, 

... , 
• • • • 

b be points 
n 

n, cover B • 

Now for each i choose a point c i in A such that ci is in 

Vl(bi ), and let C = {cl • c2 ' •••• cn}. Then C is a compact 

(resp. precompact) subset of A, and we have C c: V 1 (B) c: V (B) , 

and also B c:: U{Vl (bi ) : i = 1. 2, •••• n} c 

U {~ 1 (c i) : i = 1. 2, ••• , n} = t 1 (C) c::. V (C ) • We have 

shown that C is in V(B). and the result follows. 

THEOREM 2.5.4. For any uniform space X, the Hausdorff 

completion of the space of non-empty, compact, closed 

subsets of X is isomorphic to the space of non-empty, 

compact subsets of its Hausdorff completion X. 
Proof. The space C(X), being Hausdorff, is dense in e(x), 

,. 
and since X' is dense in X it follows by LEMMA 2.5.3. that 

(!(X') is dense in ~(X). By PROPOSITION 2.5.1. there is 

an isomorphism between e (X) and e (X' ) t and both e (X) 

and e (X) are complete Hausdorff spaces, using THEOREM 2. 5 .2. 

for the latter. Therefore the isomorphism between e(X) 

and ~(X') can be extended by THEOREM 2.2.2. to an isomorphism 

between e.(X) and eC~). 
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For the closing Theorem of this section we allow a few 

more of the common subspaces of SeX) to enter the picture. 

A summary of notation follows. 

~eX) : the set of non-empty, compact, closed subsets of X; 

(?Oex) : the set of non-empty, compact subsets of X; 

,"eX) : the set of non-empty, precompact, closed subsets of X; 

1'oex) : the set of non-empty, precompact subsets of X; 

9<eX) the set of non-empty, relatively compact subsets of X; 

~eX) the set of non-empty, finite subsets of X. 

First we prove a Proposition showing that the isomorphism 

between ~eX) and e:ex') not only takes the compact sets onto 

the compact sets, but also takes the pre compact sets onto the 

pre compact sets. Using this fact we can then give the 

relations between the Hausdorff completions and associated 

Hausdorff spaces for the various hyperspaces listed above. 

PROPOSITION 2.5.5. For any uniform space X, the spaces 1PeX) 

and "eX') are each isomorphic to the subspace of eeX) 

consisting of those sets which are the closures of their 

intersections with X'. 

Proof. Firstly, 9'eX) and peX') are isomorphic. We 

already have the isomorphism a : e eX) + e (X') defined by 

aUt) = iHO far each M in e(X). where i : X + X, is the 

canonical mapping. If P belongs to <P (X) then aep) = UP) 

is in~eX') since i is uniformly continuous. Now let Q 

belong to ~ eX') and let U be any entourage of X. Then 

(i x i)(U) is an entourage of X' and there is a finite 

covering {Bk} for Q, consisting of (i x i)(U)-small sets. 

-1 -1 But then {i (Bk)} is a finite covering for i (Q), 
3 -1 consisting of U-smal1 sets, and thus i (Q) is Pl'ecompact. 
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Since Q-l(Q) = i-leQ), this proves that Q takes 1PeX) 

onto ~(X'). 

Next, rp (X') is isomorpt.ic to the subspace of C(X) 

described. To show this we use the diagram in 2.4 
A A A 

analysing the isomorphism between e (X) and eex). It 

is clear, from the diagram, that in the construction of 

the isomorphism each set P belonging to "(X') is taken 
A 

onto its closure in X, which is the Hausdorff completion 

of P and so must be compact. Conversely, any compact 

subset C of X which is the closure in X of its inter-

section ~-lith X I must be the image, in the aforementioned 

sense, of this intersection, which is a precompact, closed 

subset of X'. 

THEOREM 2.5.6. For any uniform space X the following 

isomorphisms are true; 

(a) 'R'(X) ; C(X), C'(X) :: (;eX), ~'(X) :: PeX), 
o 0 

(b) ~(X) = 'j:'(X) :: e(X) :: eex) :: peX) .; ~(X) = 
CO(X) ! ?O(X) ! <p ~ eX) :: tft' (X). 

Proof. ea) This is immediate on observing that, when 

~.' (X) and e,..e X) are identified using PROPOSITION 2.4.1., 

the canonical mapping SeX) + S' eX) takes each of eo ex) 

and ~(X) onto eeX), and takes 'Po(X) onto ?'(X). 

(b) Since the Hausdorff completion of any space is 

isomorphic to that of its associated Hausdorff space, 

part (a) yields the following isomorphisms: 

~(X) :: ~(X) :: ~O(X), 

e(X) ! ~(X) = eo(x), 
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Also by replacing X by ~ in part (a), we have the 

isomorphisms: 

e (x) = r,{. (X) = C~(X), '.P (X) = 9> o(X). 

Since ~(X) is dense in ?'o(X), they have the same 

.~ Hausdorff completion, up to isomorphism, and similarly 

for 3:"(X) and ~o(X). Since every precompact, closed 

subspace of a complete Hausdorff space must be compact, 

~(X) and e(X) are the same, and since every compact 

subset of a Hausdorff space must be closed, ~(X) and 
A 

~(X) are the same. We also know that (!(X) and C(X) 

are isomorphic, by THEOREM 2.5.~. Consequently the 

situation simplifies, leaving two classes of isomorphic 

spaces: 
A A .. A AI. .-

~X) ~ ~(X) !' R(X) ! C?o(X) = C(X) ! R' (X) ~ "o(X), 

~(X) ~ P (X) =- Po(x). 

To conclude the proof it is sufficient to show that 

cp(X) is isomorphic to e<X). NOW, by LEMMA 2.5.3., 

~O(X') is dense in ?>o(X), and so these spaces have 

isomorphic Hausdorff completions; but then 80 also do 

their associated Hausdorff spaces which, by part (a), 

are ~(X') and ~(X) respectively. By PROPOSITION 2.5.5., 

~(X) is isomorphic to "(X'), and so, finally, 

~ (X) ! P (X') = 5>(X) !! e(X), since ?'(X) and C(X) 

are the same Hausdorff complete space. 

COROLLARY 2.5.7. For any complete uniform space the 

following hyperspaces are complete: 

(a) the space of non-empty compact (compact and 

closed) subsets; 
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(b) the space of -non-empty precompact subsets; 

(c) the space of non-empty relatively compact subsets. 

Remark. An investigation relating to the results in 

this section was made by V. M. Ivanov in (llf.), who showed 

that the space of closed subsets of the Wallman 

compactification of a topological space X can be realized 

as the Wallman compactification of the space of closed 

subsets of X, using the finite topology. See alf'O 

Flachsmeyer and Poppe (8). 

2.6 Some applications to topological vector spaces. 

A topological vector space X has a natural uniform 

structure as described in Section 1.10. Thus we may form 

the associated Hausdorff space X'. and the Hausdorff 

completion X. These uniform spaces are, in fact, also 

topological vector spaces, for the linear structure on X 

is carried over directly to X, by the canonical mapping 

i : X + X', and the linear structure on X is obtained 

by extending the operational mappings (x, y) + X + Y 

and (A, x) + Ax for X' by continuity, using THEOREM 2.2.1., 

to operational mappings for X. 
Using results of the previous two sections there is 

a uniform isomorphism between the hyperspaces e(X) and 

~(X'), taking the compact sets onto the compact sets 

and the precompact sets onto the precompact sets. The 

next Proposition extends this "preservation" to all the 

common types of subsets deriving from the presence of the 

linear structure. The proof is straightforward and is 

omitted. 
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PROPOSITION 2.6.1. If X is a topological vector space and XI 

is its associated Hausdorff topological vector space, then the 

uniform isomorphism between e (X) and e (X I) takes the convex 

(resp. balanced, bounded, absorbent) sets onto the convex (resp. 

l>a1all4ed, bounded t absorbent) sets •. 

THEOREM 2.6.2. Let X be a locally convex topological vector 

space and let i{(X) denote the collection of non-empty, absolutely .. 
convex closed subsets of X. Then fleX) is uniformly isomorphic 

to 'R(X) t and so, if X has a hypercompletion if the sense of 

Kelley, to ?t<X) itself. 

Proof. Clearly any absolutely convex subset of XI is also an 

absolutely convex subset of X. Let ~(X) denote the collection 

of all non-empty absolutely convex subsets of X. We show that 

~<XI) is a dense subspace of Jro<X). For this purpose, let K 

be any set in the latter collection and let V be an absolutely 
A 

convex O-neighbourhood in X. Then K + V is absolutely convex 

and so also is the set J = (K + V) rlXf. It is easy to see that 

(J, K) belongs to the entourage V and so 1!O(XI) is dense in /(.o(X), 

and they must have isomorphic Hausdorff completions. 

Now, as in THEOREM 2.5.6, we can show that X<X'> and !t(X) 
are the respective Hausdorff spaces associated with ~ (X f) and 

o 

"o(X), because the closure of any absolutely convex subset is 

absolutely convex. Also, by PROPOSITION 2.6.1, the spaces ~(X) 

and j{<X') are isomorphic. It follows'that N(x) and .J~(X) 

have isomorphic Hausdorff completions. 

For a normed space it is possible to prove a similar 

result for the closed, bounded subsets, using the method of the 

proof above and the fact that there is a base of bounded 

O-neighboudloods. 
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THEOREM 2.6.3. Let X be a normed vector space and let 

~(X) denote the collection of non-empty, closed, bounded sub­

sets of X. Then the spaces ~(X) and 'B(X) are isometric. 

We turn now to consideration of the Hausdorff 

completions of quotient spaces. Let M be a vector subspace 

of a topological vector space X, and form its associated 

Hausdorff space M', and its Hausdorff completion M. The 

space M' can be identified with the subspace i(M) of X', 

and the space M can be identified with the closure of 
.. 

i(M) in X. Next, fOrm the quotient spaces X/M, X/M, 
- .... 

X' /M' and X/M, which are topological vector spaces, and 

uniform subspaces of .j(X), e(X), e(X') and ~X) 

respectively (see section 1.11). Furthermore, the 

associated Hausdorff space (X/M)' is embedded as a 

uniform subspace in g' (X), and the Hausdorff completions 

(xiM) and (xiA) are embedded as closed uniform subspaces 

in t,(X) and e (X) respectively. 

PROPOSITION 2.6.4. If M is a vector subspace of a topological 

vector space X, then the isomorphisms of section 2.4 

between ..!!' (X), g (X) and e:(X') induce linear isomorphisms 

between (X/M)', X/M and X'/M'. 

Proof. If (x + M) denotes a member of (X/M)' with 

representative member x + M of X/H, then, under the 

success! ve isomorphisms .3' (X) + e. (X) + e( X' ), we have 

(x + M) + x + M = x Tt{(closures in X) , 

x + ii + i(x + ii) = i(x) + i(i) = i(x) + U"M') (closure in X') 

= i(x) + M'. 
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Thus it is clear that (X/H)' is taken onto X/H, which, 

again, is taken onto x'/MT. It is routine to verify that 

these mappings are linear. 

THEOREM 2.6.5. If H is a vector subspace of a topological 

vector space X, then the isomorphism shown in section 2.4 

" between ~(X) and ~(X) takes (XiM) onto (X/H) and induces 

a linear isomorphism between them. 

Proof. Define a mapping f : X/H+ X/H by f(x + M) = i(x) + M. 
This coincides with the restriction to X/M of the mapping 

p 0 a : ~(X) + ~(X) described in the diagram in section 2.4.) 

because 

x + M ~ i(x) + "i("M'f" f i(x) + i(H)X= i(x) + H, 

and therefore, by the discussion in section 2.4., f is 

a wliform isomorphism of X/H onto the uniform subspace 

L = {i(x) + H : x e X} of X/H. It is easy to see that, in 

fact, f is a linear isomorphism, and L is a vector subspace 
A ... 

of X/H. 
... ... 

We next show that L is dense in X/H. Let tLbe a 

O-neighbourhood base for X, and Q : X + X/M the quotient 

map. Then (section 1.11) the collection of sets 

- A A A U = {(a + H, b + H) : b - a + H £ Q(U)}, 

where U runs through tL, forms a base for the uniformity 

on X/Me Let a + M be a point in X/M and let U belong to tt. 

Since X' is dense in ~, there is a point x of X such that 

i(x) belongs to a + U, and then i(x) - a + M belongs to 
... ... -

Q(U). Therefore (a + H, i(x) + H) belongs to U, and 

since i(x) + A is a point of L, L must be dense in x/A. 
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,. 
A A " A 

'''e have, also, that X/M is dense in (X/M). and so L 
AAA , 

is dense in (X/H). By PROPOSITION 2.6.2., the space (X/H), 

which is dense in (XiM), is linearly isomorphic to XIM, 

and since we have shown that X/M is line~ly isomorphic 

to L, (X/M>' must be linearly isomorphic to L. Finally, 

using THEOREM 2.2.2., this isomorphism can be extended to 
A ",,"#fir, 

a uniform isomorphism of (X/H) onto (X/H), and the 

extension is clearly also linear, and by its construction 

must coincide with the restriction to (XlM) of the 

isomorphism ~ (X) ... ~(X). 

COROLLARY 2.6.6. The quotient space X/M can be embedded 

as a dense vector subspace in the quotient space X/M. 

Remarks. The quotient space of a complete metrizable 

topological vector space by a closed vector subspace is 

known to be complete. Hence I if X is a metrizable 

topological vector space and H any vector subspace of X, 

the quotient space X/M must be complete, and so by 
,. ,. ,. 

THEOREM 2.6.3., (X/H) is isomorphic to X/H. That is, the 

Hausdorff completion of any quotient space of X is a 

quotient space of the Hausdorff completion of X. Which 

spaces, besides metrizable ones, have this property? 

A topological vector space X will certainly be a 

successful candidate if all quotient spaces of its 
,. 

Hausdorff completion X are complete I and in particular 

if X is hypercomplete. For if ~(X) is complete and M 

is a vector subspace of X, then X/M is a closed uniform 

subspace of €(X) (see Chapter 1), and must itself be 

complete. The class of spaces under consideration therefore 
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contains the class corresponding to THEOREM 2.4.5. - those 
~ . . 

with hypercompletions. Whether the two classes are the 

same, or how much larger the one is than the other, remain 

open questions. 

An example of a complete locally convex topological 

vector space X possessing a closed vector subspace M such 

that X/M is not complete is given in Kelley and Namioka (18), 

20D. It is interesting that while completeness is 

inherited by products but not by separated quotients, 

hypercompleteness is inherited by separated quotients 

but not by products. 

2.7. Hyperspaces arising from two related uniformities 

for a set. For the remainder of this Chapter we shall be 

considering a set X endowed with two uniformities t and n 

which are related to each other in a particular way. 

Following the Robertsons in (28), we shall say that the 

uniformity n is aBsoaiatild bri.th the unifomity t if t has 

a base consisting of subsets of X x X closed in the 

topology determined by n (briefly, n-closed). The 

motivation behind the study, here, of associated uniformities 

lies in an attempt to eliminate the hypothesis of separatedness 

in the second Theorem of (28), which says that if (X, t) 

is a complete separated uniform space and n is a coarser 

separated uniformity on X, associated with t, then the 

set of non-empty n-compact subsets of X is complete under 
.. 

the uniformity t. 

The concept of associated uniformities probably arises 

most naturally in the search for a sufficient condition 

.:': 
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for the completeness of a uniform space under the coarser 

of two uniformities to imply its completeness under the 

finer - all that is required is for the coarser uniformity 

to be associated with the finer. Bourbaki gives this 

result for topological vector spaces in his treatise on 

topological vector spaces, Chapter 1, section 1, Proposition 8. 

We shall explore this and related ideas in connection 

with the completeness and hypercompleteness of uniform 

spaces in Chapter 3. 

When X is a topological vector space under each of 

two topologies t and n, we say that n is associated with 

t if the uniformity determined by n is associated with 

that determined by (, and this is true if and only if there 

is a base of n-closed t-neighbourhoods of the origin. The 

most obvious example is when n is taken to be the weak 

topology corresponding to a locally convex topology t. 

Dr. Wendy Robertson studied this association between 

topologies for a topological vector space in (29), under 

the name "closed neighbourhood condition". The following 

facts give some indication of the significance of the 

notion. 

If n is associated with t then the filter condition 

holds for the identity mapping of (X, t) into (X, n) 

(see Chapter 3). If n is a convex topology, t is a weak 

topology, and n is associated with t, then ( is coarser 

than n. If n is a convex topology then (X, n) is barrelled 

if and only if the only convex topologies with which n is 

associated are those coarser than n, and if n is any vector 

topolOgy for X then (X, n) is ultra-barrelled if and only 

if the only topologies which are compatible with the 



- 1.4-0 -

algebraic structure of X, and with which n is associated, 

are those coarser than n. 

Let X be a set endowed with two uniformities t and n, 

and let n be associated with (. Thus let U and Y be 

bases for t and n respectively, with the sets of ~ ~-closed 

in X x X. Form the Hausdorff spacesOCl, (') and (X2, n') 

associated with (X, () and (X, n) respectively, and let i 

and j be the respective canonical mappings. We proceed to 

construct another uniformity for X2• 

Consider the collection rrrof sets of the form (j x j )(U), 

for U in U. We show that this is a base for a uniformity on 

X
2

, by verifying the four requirements below. 

(l) FoI' any two members of ~ there is a third member 

contained in their intersection; because if U c= Ul n U2 then 

j2(U) c: j2(U
l

) n j2(U2). 

(2) Each member of Yr contains the diagonal; this 

follows immed:~.ately from the fact that each U in U contains 

the diagonal in X x X. 

(3) FoI' each member of CW' there is another member 
-1 

if U2C Vl then contained in its inverse; because 
2 2 -1 ~1 

j (U2)c: j (Ul ) = (j (Ul »· 
('+ ) For each member of 1'( there is another member 

whose square is contained in the first. This is not so 

obvious as the previous three requirements, and, in fact, 

is the only one to make use of the association of n with t. 

That it is necessary to make use of it is why, in general, 

the image of a uniformity under a mapping from product 

space onto product space is not a uniformity. To prove 

the fourth requirement, let W = j2(U), and choose Ul in 
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such'that &1<::: U. Let'Wl::' ·j2(Ul ). 'Then if (p, q) 

2 
belongs to Wl there is a point r in X2 such that (p, r) 

and Cr, q) are both in Wl , so that there are four points 

a, b, c and d in X with r = j(b) = j(c) , p = j(a), q = jed), 

and both of (a, b) and (c, d) belonging to Ul • Since 

j(b) = j(c), we have, for each V in~, that (b, c) belongs 

to VU1V, and hence also belongs to Ul , because Ul is 
3 

~-closed in X x X. Thus (a, d) belongs to Ul , and hence to 

U, and so (p, q) belongs to j2(U) = W. This proves that 
2 
W1C:: W. 

The requirements (1)-(4) being satisfied, 1{ is the 

base of a unifomity fOl' X2, and this uniformity is clearly 

independent of the particular choice of base U for t ~ 

we denote it by Cod. We know that each U in 7..L is n-closed -

it is also true that j2(U) is n'-closed. For if (j(xl~ j(x2» 

is a.n'-limit point of j2(U), so that for each symmetric 

V in cy there is (ul ' u2) belonging to U such that 

(j(xl ), j(ul ») and (j(x2), j(~» both belong to j2(V), then 
9 3 

(Xl' x2) belongs to V U V, and since U is n-closed (Xl' x
2

) 

belongs to U. Thus Cod has a base of sets n' -closed in 

X
2 

x X
2

, that is, n' ia associated with Cod. 

PROPOSITION 2.7.1. The Hausdorff space (X2, Cod') associated 

with (X2, Cod) is isomorphic to the Hausdorff space (Xl' tl) 

associated with (X, t). 

PI'oof. Let k : X2 + X2 be the canonical mapping, and 

define a mapping f of X2 into Xl as follows • Given z 

belonging to X2, choose a point y belonging to X2 such 

that key) = z, and then choose a point X belonging to X 

such that j(x) = y. Put fez) = i(x). 
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To show that this is well-defined, let xl' x2 be 

points in X with kj(xl ) = kj(x2), and let U be any member 

of~. Since kj(xl ) = kj(x2), (j(x
l
), j(x2» belongs to 

each entourage of (I), and in particular, belongs to 

(j )( j)( U ) • Thus, for any V in cy , (xl' x
2

) belongs to 

V U V, and since U is ~-closed, (xl' x2) belongs to U. 

Hence i(xl ) = i(x2), and fkj(xl ) = fkj(x2). 

To show that f is injective, let f(zl) = f(z2)' 80 

that i(xl ) = i(x2 >. For each U in ti, (Xl' x
2

) belongs 

to U, and so (j(xl ), j(x
2
» belongs to (j )( j)(U)~ 

Hence kj(xl ) = kj(x2), which means zl = z2' 

To show that f is surjective, let p be any point 

belonging to Xl' We can choose a point x in X such that 

i(x) = p, and then kj(x) belongscto X2 and f(kj(x» = p. 

Now, since the ~ntourages of (I)' are the images 

under k )( k of the entourages of (I), which are themselves 

the images under j )( j of the entourages of t, and t 

is the invers"" image under i of the uniformity t', we 

conclude that (I)' is the inverse image under f of tt, 

and hence f is an isomorphism of (X2, (I)') onto (Xl' t'). 

COROLLARY 2.7.2. If (X, t) is complete, then so also 

As the notation is becoming rather complicated, the 

situation is represented in the fOllowing diagram: 

{

(X, t) 

(X, n) 

i 

j 

>" 

". 

(Xl' t t ) 

fX2 ' .') 
~ 

k (X2• 1.1) ~ (X2, (I)') 
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PROPOSITION 2.7.3. 

(a) The following four spaces are isomorphic: 

( €.( X
2

, 00), W), (e( X2, 00 I ), w'), ( ~(Xl) t'), t'), 

( ~(X, t), t). 

(b) The following four spaces are isomorphic: 

( e( X
2

, 00), w), (e( X2, 00'), w'), (C( Xl' t'), t'), 

(eOC, t), ~). 

(c) The following four spaces are isomorphic: 

(~(X2' 00), w), (1l(X2, 00'), lI), (tj'(X
l

, t'), t'), 

(<J>(X, e), i). 

Proof. the first and last pairs of spaces are isomorphic by 

PROPOSITION 2.4.3. for (a), PROPOSITION 2.5.1. for (b) 

and PROPOSITION 2.5.5. for (c). The middle pairs are 

isomorphic in (a), (b) and (c) by PROPOSITION 2.7.1. 

COROLLARY 2.7.4. If (X, t) is complete then so also are 

the eight spaces in (b) and (c)~ by the results of section 

2.5. If (X, t) is hypercomplete then so is (X2' 00). 

PROPOSITION 2.7.5. 

(a) (~(X, n) , t) is isomorphic to ( ecX2' n' ), w). 
(b) (e(X, n) , 0 is isomorphic to ( ~(X2' n'), w). 
(c) (cp (X, n) , ~) is isomorphic to (~(X2' n'), iii). 

Proof. Define a mapping f of ~(x, n) into ~(X2' n') 

by f(M) = j(M) for each M in ~(x, n). This is bijective 

by PROPOSITION 2.4.3., and takes ~(x, n) onto ~(X2' n') 

and 9D(X, n) onto 9'(X2, n') by PROPOSITIONS 2.5.1. and 

2.5.5. respectively. 

Now the entourages of 00 are precisely the images 

under j x j of those of t, and it is also true that the 
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entourages of w are the images under f x f of those of i. 
~ 

In fact, for each U in £JL, f 2(O) = j2(U). For if (A, B) 

is in U then f(A) = j(A)c: j(U(B» = (j2(U»(j(B», and 

similarly feB) c (j2(U»(j(A», so that (fCA), f(B» 

2" belongs to j (U). If, conversely, (f(A), feB»~ is in 

j2(~), then j(A) c: (j2(U»(j(B» so that for each a in 

A there is a b in B such that (a, b) belongs to V U V 

for each V in~. Thus, since U isrv:closed, (a, b) 

belongs to U, and hence Ac:. U(B). Similarly Be::: U(A). 

so that (A, B) is in U. That f is an isomorphism of 

( e,( X, n), t) onto (€,( X2, n I >, w) follows immediately. 

Thus far in this section we have required only that 

the uniformity n be associated with the uniformity t. 

At this point we demand more - from now on n will also be 

coarser than t. Since the entourages of the uniformities 

n' and w are the images under j x j of the entourages of 

n and t, respectively, n' must be coarser than w. 

Therefore w is a separated uniformity, and by PROPOSITION 

2.7.1., (X2, w) is the Hausdorff space associated with 

(X, t). A summary of the situation is given in the 

next result. 

PROPOSITION 2.7.6. If n, t are two uniformities for a 

set X, with n associated with (, and j is the canonical 

mapping of (X, n) into its associated Hausdorff space 

(X2, n'l, then the collection of subsets of X2 x X2 of 

the form (j x j)(U), where U runs through a base for 

the uniformity (, is itself the base of a uniformity w for 

x2' and n' is associated with w. If, in addition, n is 
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coarser than t then n' is coarser than wand (X2, w) is 

the Hausdorff space associated with (X , ~). 

As mentioned at the beginning of this section Theorem 2 

of the Robertsons' paper(28) states that if <X, () is a 

complete, separated uniform space, and n is a coarser 

separated uniformity on X, associated with t, then the 

set of non-empty n-compact subsets of X is complete under 
.. 

the uniformity t. In proving this X is regarded as 
... 

embedded in its n-Hausdorff completion X, t and n are 

extended to X, and use is made of Thereom 1 of the same 

paper, thus involving the separatedness hypotheses quite 

considerably. These hypotheses can now be eliminated. 

THEOREM 2.7.7. Let (X, t) be a complete uniform space 

(not necessarily s~parated) and let n be a coarser 

uniformity on X, associated with t. Then the set of 

non-empty,n-compact, n-closed subsets of X is complete 

under the uniformity i. 

Proof. Let (X2' n') be the Hausdorff space associated 

with (X, n), and construct the uniformity w for X2 as 

in PROPOSITION 2.7.6. By this PROPOSITION n' is coarser 

than wand associated with w, and clearly both uniformities 

are separated. Also by PROPOSITION 2.7.6. (X2 ' w) is the 

Hausdorff space associated with (X, t) and so is complete. 

Theorem 2 of (2.9) then implies that e(X2, n') is complete 

under the uniformity w. But by PROPOSITION 2.7.5. (b) 

this space is isomorphic to the space (~(X, n), t), which 

is therefore also complete. This was what we were trying 

to prove. 
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Remarks. It has already been observed in COROLLARY 2.5.7. 

that if (X, t) is complete then the set of non-empty 

t-relatively compact subsets of X is complete under t. 
Concerning the n-relatively compact subsets of X, the 

Robertsons give a Corollary to Theorem 2 of (28) which 

states that, under the same hypotheses as Theorem 2, the 

n-relatively compact, t-closed subsets form a closed 

subspace of (~(X, t), t). Here again the separatedness 

is not necessary and the proof in (29) goes through 

almost unchanged, using THEOREM 2.7.7. instead of Theorem 2 

of (28). That the set of n-relatively compact, t-closed 

subsets of X is not complete under t is demonstrated by 

a counterexample in (28). The n-relatively compact, 

n-closed subsets are of course, just the n-compact, 

n-closed subsets. 

There is a standard procedure for deducing results 

about the completeness of function spaces from results, 

like that meL'cioned in the previous paragraph, asserting 

closedness of a subspace of ~(X). More will be said 

about this in section 6.5. Thus the Robertsons apply 

the Corollary of Theorem 2 in (28) to deduce their third 

theorem. Advancing further on the anti-separatedness 

crusade, this theorem can be released from separatedness 

hypotheses, together with its analogue for locally 

convex spaces. It then becomes the following. 

Let S be a set and 6t a family of subsets of S. 

Also let (X, t) be a complete uniform space and let n be 

a coarser uniformity on X associated with t. If F is the 

set of mappings from S into X which take the sets of &t 
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onto n-relatively compact subsets of X, then F is complete 

under the uniformity of t-uniform convergence on the 

on the sets ofJt. For locally convex spaces this says 

that the space of linear mappings from a locally convex 

space into a complete locally convex space which take 

bounded sets onto weakly relatively compact subsets is 

complete under the topology of uniform convergence on 

the bounded subsets. N~te that the corresponding 

analogue for THEOREM 2.7.7. says that the weakly compact 

and weakly closed subsets of a complete locally convex 

space form a complete space. 



CHAPTER 3 

FUNDAMENTAL FAMILIES AND COMPLETIONS OF HYPERSPACES 

3.1 Introduction. This chapter looks at completeness in 

hyperspaces £rom a rather different angle £rom that of the last 

chapter, but the results are intimately related. The notion of 

a fundamental family of subsets was introduced by J. L. Kelley (16) 

for families of nonempty, absolutely convex subsets of a locally 

convex space F. He showed that the collection of all such sub­

sets of F is complete under the Hausdorff uniformity if and only 

if every fundamental family of them converges on a certain sense. 

These ideas are applied in section 2 to the collection ~(X) of 

all nonempty subsets of a uniform space X, and it is hsown that 

the space ~(X) is complete if and only if every fundamental 

family on X converges. On an arbitrary Wlifonn space every 

fWldamental family of compact subsets converges. 

The properties of fWldamental families are investigated and 

shown to be closely related to those of Cauchy filter bases. This 

leads on to the construction by means of fundamental families of a 

Wliform space I(X) which is Wliformly isomorphic to e:.(X), the 

Hausdorff completion of the space of nonempty closed subsets of X. 

The spaces «!{x),edb, C(X), e(i) and e(X) are each identified 

with natural subspaces of I(X), corresponding to particular kinds 

of fundamental families, and the latter two shown to be isomorphio 

by a method independent of that in chapter 2. When X is a locally 

convex topological vector space, then the space 1l,(X) of nonempty, 

closed, absolutely convex subsets of X, its Hausdorff completion 

;t(X), and the space ~(X) of closed vector subspaces of X are each 

likewise identified with subspaces of I(X), corresponding to 

particular kinds of fundamental families. As a bonus, the construction 

of I(X) allows an embedding of ~(X) as a closed Wliform subspace of 
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e( e,cX», bringing the range of spaces -.mbeddable in the hyper­

hyperspace to include the following (assl.Dlling X is separated) 

X, X, X x X, ~(X), ~(X) and ~(X). 

In section 4 a study is made of two conditions on a mapping 

between uniform spaces - the filter condition, introduced by Dr. 

Wendy Robertson (29), and the analogous fundamental family 

condition. The latter is strictly stronger, and bears a relation-

ship to hypercompleteness similar to that of the former to 

completeness. The fundamental family condition holds for a 

mapping if and only if the filter condition holds for the induced 

mapping between hyper spaces • Dr. Wendy Robertson showed that 

when t : X ... Y is an injective, continuous linear mapping between 

topological vector spaces, the filter condition is necessary and 
,. ,. ,. 

sufficient for the extension t : X... Y to be injective. For 

uniform spaces, sufficiency breaks down, and the only conditions 

I have been able to find which are sufficient achieve their ends in 

rather violent fashion. I do not know whether the fundamental 

family condition is sufficient. 

Equivalent conditions for each of the filter condition and the 

fundamental family condition are given, in terms of the extension 
,.. A "" #It A A 

mappings t : X .. Y and t' : e.(X) + e(y), respectively, when X 

and Y are uniform spaces. Applying these results to the case when 

t : X ... Y is a continuous linear mapping between topological vector 

spaces, and M is a closed vector subspace of X, shows that, if the 

fundamental family condition holds and if t induces an injective 

X mapping on the quotient space 'M' then its extension to the 
X" 

completion 1M is also injective. This motivates a general study 

in section 5 of induced mappings between hyperspaces, and their 

extensions. 



- 50 -

Finally, in section 6 the concern is with two uniformities 

t, 1"1 on a set X such that the uniformity n on ,g(X) is associated 

-with the uniform! ty t, in the sense of chapter 2. The uniformity 

1"1 is then said to be hWel"aBsociated wi th t. If 11 is associated 

(resp. hyperassociated) with t, the filter conditon (resp. 

fundamental family condition) holds for the identity mapping 

(X, t) + (X, 11), and if in addition 1"1 is coarser than t, then 

(X, 11) complete (resp. hypercomp1ete) implies (X, t) complete (resp. 

hypercomplete). It is sufficient for hyperassociation that 

1"1 be proximity-finer than t. 

3.2 Fundamental families. A nonempty family ~of nonempty 

subsets of a uniform space (X, U) will be called fu.ntlartrgntat if 

(1) it is directed by c:(thatis, it is a filter base), and 

(2) for each U in 1J.,there is a member A of <>:f' such that 
(" 

Ac. U(F) for all F in :f'. 

The family ~ ~ges in X if, putting C = n{F : F £ ~}, 
for each U in ?L there is a member F of ~ with F c= U( C); in other 

words, U(C) eventually contains~. Clearly every convergent 

family is fundamental and the c1osuI'es of its members have non­

empty intersection. 

As a preliminary to dealing with the role of fundamental 

families in hypercomp1eteness, the following LEMMA records the 

facts relating them to Cauchy nets in ~(X). 

LEMMA 3.2.1 If~is a fundamental family on X and I is an index 

set directing the members of ¥ by C, then {F : a £ I} is a a 

Cauchy net in g (X) • If ~ converges then Fa + n{ F : F £ Y-} 
in -S(X). If, on the other hand, Fa + A in S (X) then ~ converges 

and A = n{F : F I: Y}. 
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If {A : a E I} is any Cauchy net in 3(X) then, putting 
a 

Fe = lj{A
o 

: a ~ e}, ~= {F
S 

: e E I} is a fundamental family. 

If Aa .. A in Sex) then ~ converges and A = n{F e :: e E I}. 

If, on the other hand, <J:' is known to converge, then 

Aa .. n{F e : S f: I}. 

Proof Let Y-be a fundamental 'family. Then for each U in 'U. there 

is a in I such that F c: U(F ) for all a in I, and thus, for 
o ao a 

a, a ~ a , F Q<!:' F C U( F ), which proves {F : a £ l} is a Cauchy 
o ~ 00 a a 

net in 3(x). Let ~~ converge. Then for each U in 'U., if C denotes 

rj- ,., / the set I :{F : F EO:;}, FaC~:: U(C) eventually. Since also C ~'.:: U(Fa ) 

for all a in I, it follows that F .. C in S(X). Now let it be given a 
fO 

that F .. A in c (X) • 
a 

It is sufficient, for convergence of the family 

~r: that A = n{F : 
c-: 

F £ ';.r}, for clearly F c .. U(A) eventually, 
a 

for any 

'J (1- (l_~" - 2- -
given U in (.t.- But i f{F : F £ j-}:::': Fa';::- U(A), so that A must contain 

the intersection. Also, for each U in ~L, U(F ) eventually, and hence 
o 

always, contains A, so that A is contained in the intersection, and 

equality is proved. 

For the second part, let {Aa = 0 f: I} be a Cauchy net in :~(X) 
I '} (l ..... 

and put Fa = ~j{Ao : a ~ B for each B in I. Then ~ = {Fe: e f: I} 
q, ~ 2 

is clearly a filter base. Given U in :~. choose Ul in U. with U{-.:::. U. 

There exists a in I such that AaC U
l 

(AB) for all a, 
o 2 

hence Fa;:' U
l 

(Aao) '::. U1 (Aa )...:: U(Aa ) for all a ~ Clo • 

F c U(F Q) for all e in I, which proves that ¥ is a 
ao ~ 

e ~ CI , and 
o 

Therefore 

fundamental family. 

Let Aa .. A in >:~, (X) • Then, for given U in 11 • A is eventually 

contained in U(Aa ), which implies that, eventually, Fee:: U(A). There­

fore n{ Fe: B £ I} c:- A, and equality is proved. Since it is shown 

that FaC'· U(A) eventually, the family J::converges. 

€'/ 
Finally, let it be given that .; converges. Then, putting 

C = il{F
S 

: a £ I} t and choosing U in 71, F ef
::' U(e) eventually and 

hence A .-: U(C) eventually. Also, if a is chosen such that 
a 0 
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AoC:. U(A
13

) for all 0, a ~ 0
0

, then, as shown above, 
2 3 

F (:-.:. U(A ) for all a ~ o. Hence C (;:. U(F ) C, U(A ) for all 
00 a 0 00 a 

a ~ o. It now follows that A + C in 3(X). o a 

PROPOSITION 3.2.2. If X is a uniform space and cfrl is any complete 

uniform subspace of S(X), then every fundamental family on X 

consisting of elements of J( converges. If, conversely, every 

such family is known to converge and if J1. is closed under 

unions of its members then every Cauchy net on.J:( converges in 

SeX) to some element of Sex). 

Proof. The first part follows immediately from LEMMA 3.2.1. 

For the second part, let {M 2 a c I} be a Cauchy net in ""1, and a 

put F 8 = U{Mcs : cs ~ 13}. Then ~ = {F 13 : 8 c I} is a funda-

mental family consisting of elements of J1, by LEMMA 3.2.1. By 
~ .. 

hypothesis :r converges, and again by the LEMMA, ., 

Mo + r'j{F 13 : 13 t I} in :~(X). 

COROLLARY 3.2.3. If J1 is a dense subspace of S (X) closed 

under unions, and every ftmdamental family of elements of cJt 
converges then ~(X) is complete. 

THEOREM 3.2.4. A unifot'lll space X is hypercomplete if and only 

if every fundamental family (of closed sets, resp. of open sets) 

on X converges. 

Proof. If 3(X) is complete then by PROPOSITION 3.2.2 every 

fundamental family on X converges, and conversely. The proof 

is completed by observing firstly that the collection of open 

subsets of X satisfies the conditona in COROLLARY 3.2.3, and 

secondly that the closures of the members of any fundamental 

family form a fundamental family which converges if and only if 

the original family converges. 
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A little more than this can be said. The next result is a 

straightforward consequence of the fact that for any fundamental 

family Yon (X,1J.>, the family {U(F) : F e ~ , U e (J} is 

fundamental and converges if and only if ~ converges. The trace 

of this family on any dense subset of X will also be a fundamental 

family on X. A more elegant proof is by applying COROLLARY 3.2.3 

to the collection of subsets of any dense subset of X. 

PROPOSITION 3.2.5. If A is a dense subset of a uniform space X 

and if every flmdamental family on X consisting of subsets of A 

converges, then X is hypercomplete. 

Remarks Isbell, in (12), calls a filter s'tabl4 if its 

members form a Cauchy net in the hyperspace, and hJ/ptIroonvsrgtmt 

if this net converges. The terms are also meaningful for fil tel' 

bases, and it is easy to see that a fundamental family is 

precisely a stable filter base, and a convergent family is 

precisely a hyperconvergent filter base. Thus THEOREM 3.2. ~ 

cOlTesponds to Isbell's result that a unifoI'm space is hypercomplete 

if and only if every stable filter is hypereonvergent. We note 

here that Isbell uses the term suptll'oompZets where we use 

hypBl'OO11{>1.eu; his usage does not seem to have general appeal. 

The second part of LEMMA 3.2.1 remains true if, for a Cauchy 

net {A , a e I} of absolutely convex subsets of a locally convex 
IlL 

topological vector space, we talce Fe to be the convex hull of 

U<AIlL ' IlL ~ e}. With this alteration the LEMMA leads iDIDediately 

to Kelley's result, mentioned in section 1, that the space of non­

empty absolutely convex subsets of a locally convex space io 

complete if and only if every fundamental family of absolutely 

convex sets converges. 
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Knowing that the space of compact subsets of a complete uniform 

space is itself complete, we can expect any fundamental family con-

sisting of compact sets on such a space to converge, by PROPOSITION 

3.2.2. In fact there is the following stronger and rather surprising 

result. 

PROPOSITION 3.2.6. On an arbitrary uniform space, every fundamental 

family of compact subsets converges. 

Proof Let 0/ = {F : a £ I} be such a family on the uniform space a 

X, directed by C:. For each nonempty finite subset • of I, 

B. = n{F a : a £ .} is a nonempty compact subset of X. Directing 

the finit·· subsets of I by .=:J, {B.} is a decreasing net. 

Given any entourage U of X there exists ao in I such that 

F c::: U(F ) for all a in I, and therefore, because each B. ao a ., 

contains some Fa' Faoe::. U(B.) for each finite subset.. Let 

"0 be any finite subset of I containing a o' Then, if .1' .2::::>.0' 
B.IC= U(B.2) and B.~ U(B.l ), so that (B.l is a Cauchy cecreasing 

net of compact sets. It therefore converges in 3(X) (see section 

1.8) to the intersection, which is the set C = fl{Fa: a £ I}. 

Thus for each entourage U there exists. such that B. c:: U(C). 

(1.....-
But there is some F aC B. ' and so F rF- U( C), and .r converges. 

Remarks. The previous PROPOSITION and its proof suggest 

that there is a proof by this route of the RObertsons' result in (28) 

that the space of nonempty compact subsets of a complete separated 

uniform space is complete. But it does not appear to be easy 

to make the step from convergence of every fundamental family of 

compact subsets to completeness of the space of compact subsets of 

a complete space. 

The notion of fundamental family is not greatly different from 

that of Cauchy filter base, and the similarity of their basic 

properties is illustrated by the remaining results of this section. 
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PROPOSITION 3.2.7. If t is a uniformly continuous mapping from a 

lL1iform space X into a uniform space Y, and Y is any fundamental 

family on X, then the family t(~) = {t(F) : F € ~} is fundamental 

on Y. Furthermore if ~ converges so does t(~). 

Proof. Clearly t( <J1 is a filter base. For each entourage V 

of Y there is an entourage U of X with t 2(U) c:: V, by uniform 

continuity, and then since ~is fundamental there is some B in 

such that B C:U(F) for all F in Yo Then t(B) c::. V(t(F» for all 

t(F) in t(~) and so tf1:') is fundamental. 

Suppose ~ converges. Let C = n{ F : F € y}, and 

D = nfitr) : F € ~}. When V and U are as above, there is some 

A in ~such that Ac:.U(C), and then t(A)cV(t(C» c:;V(D) , 

using continuity of t. This means that t(~ converges. 

PROPOSITION 3.2.8. If t is a uniformly continuous mapping from a 

uniform space X into a uniform space Y, and maps entourages of X into 

entourages of Y, then for each fundamental family G- on Y, the family 

Y ={t-l(G) : G £~} is fundamental on X. 

Proof. Clearly ~ is a filter base. For' each entourage U of X, 

t 2(U) is an entourage of Y, so there is some A in (j, such that 

A c:: t 2(U)(G) for all G in (;.. Then £l(A) C 3( t -l(G» for all G in 

C:, and so ~ is fundamental. 

PROPOSITION 3.2.9. If ~is a Cauchy filter base on a uniform 

space X then ~ is also a fundamental family on X, and Y converges 

as a fundamental family if and only if it converges as a Cauchy 

filter base to a point of X. 

Proof. Let t.L be a. base for the lDliformity on X. For' each U in 

2L there is a U-small set B in ~ and then B c::. u( C) for all F in 

cy,.., since B n F 'I- •• Thus ~ is a fundamental family. If Y 
converges as a fundamental family then C = n{F : F £~is non-
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empty, and so we can choose x in C. But x is a cluster point 

of the Cauchy filter base, and therefore a limit point of it. Con­

versely if ~~ x as a Cauchy filter base, then x is a lim! t 

point of the filter base and so also a cluster point, so that x 

belongs to C. For each U in 'U. there is some F in ~ such that 
2-

F c': U(x), which implies that C c: U(x). The upshot of all this is that 

fxl = C, and. for each U in U, U( C) eventually contains ~ .... : 

Thus there are more fundamental families on a uniform space 

than Cauchy filters - in fact the powers of the respective 

collections are related as the powers of hyperspace to space. This 

will become apparent in the next section. It is easy to see in this 

context how hypercompleteness ~plies completeness, for if 

every fundamental family converges so must every Cauchy filter. 

There is a mild generalization of PROPOSITION 3.2.9. A 

filter (or filter base) ~ on a uniform space X is called 

8smi-Cauo~ if for each ento~age U there is some integer n > 0 
n 

such that Ycontains a U- small set. Isbell uses the notion in 

(12) to show that the hyperspace of a compact space is compact. 

by first proving that each semi-Cauchy filter is a Cauchy net in 

the hyperspace, which converges when X is complete to a compact 

set. In 0UI' language, each semi-Cauchy filter base is also a 

fundamental family, convergent when X is complete. Notice that 

each filter base consisting of precompact sets is semi-Cauchy. 

LEMMA 3.2.10. For each nonempty subset A of a uniform space X 

with uniformity base ~ the collection ~(A) = {U(A) , U £ ttl is 

a convergent fundamental family on X. 

Proof. If Ul ' U2 are in u'then there is some U in ~ with 

UC U
l 
nU

2 
and then U(A)C Ul(A) nU2(A). Thus ~(A) is a 

fil tar base. For each U in ~ • U(A) c. U(X), and A is the inte1'8ection 
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of the closures of the members of CP (A). so tJ::?U) converges, and is 

fundamental. 

For comparison with this last result. if x is any point of X, 

the collection 0(X) = {U(x) : U £ 1.L} is a Cauchy filter base 

convergent to x. But while ~(x) is a neighbourhood base for x, 

'D(A) is not in general a neighbourhood base for A. 

3.3 The Hausdorff completion of the hyperspace. That 

fundamental families playa role in the hyperspace ~(X) very like 

the role played by Cauchy filters in X in now qUite obvious. Not 

only do they act analogously in determing hypercompleteness and 

completeness, but, as the first THEOREM of this section will show, 

the Hausd~ff completion of the hyperspace can be const~ucted using 

fundamental families in much the same way that the Hausdorff 

completion of X can be constructed using Cauchy filters. 

Let X be a uniform space with uniform! ty base tL. In the 

collection of fundamental families on X define a uniformity as 

follows. For ei".ch U in U let U be the collection of pairs (~ G-) 

of fundamental families such that there exist F in o.r and G in o 0 

G-with F C; U(G) for all G in (j.. and G c::. U(F) for all F in Y-o 0 

To show that 11 = {U : U £ 2.L} is a base for a uniformity, four 

standard properties must be verified. 

(1) By definition of a fundamental family (,¥, ~) belongs 
,. ,.,. 

to U for each U in U" 

(2) If ~ , U2 belong to ic . there is some V in Zi with 

n Ito ... n" V C U
l 

U
2

, and then also VC:: Ul , U2" 
A 

(3) Each U is symmetric by definition. 

(~) If U belongs to t1, there is some W in Zc.. wi th ~ c. U • 

'then suppose (~ G-) and (c:,)() both belong to W. There exist 

F in ¥ and G in (J such that F c:: W(G) for all G in a- and 
000 
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G eW(F) for all F in c:r-, and there exist Gl in Q. and Ho in 

Jt such that Gl ,.:::.; W(H) for all H in ~( and HoC: W(G) for all G 
~ 2 

in \~-. The. upshot of all this is that FoC W(Gl)C W(H) for all 

-'\ 2 ~ c,..... ~l H in .~, and H c:.-~ W(G ) c:. W(F) for all F in j-, so that (3", ~) 
o 0 

~ ~ A 

belongs to U. We have shown that W <= U. 

Next, foI'Dl the associated Hausdorff space, denoted by 

t(X) • Let l~l denote the element of I(X) detennined by the 

fundamental family Yo It may be regaI'ded as an equi ·/alence 

class of fundamental families under the relation: ~ R fJ., if and only 

if the intersection of the filters generated by ~ and (J. is a 
A 

fundamental family. We will continue to use the notation ~ fOIl 

the uniformity base on I(X); thus a pair (~] ~ [0.1) belongs to 

a member U of it. if there exist F in ~ and G in (5. such that 
o 0 

F c.. U(G) for all G in (f. and G c:: U(F) for all F in %"'. 
o 0 

THEOREM 3.3.1. Let X be a unifOI'm space with unifOI'lllity base 

'll, and construct the separated uniform space (t(X), U) as above. 

(1) Let h : ~(X) + I(X) be the mapping which takes each 

subset A of X onto the element l5(A)] of I(X), where 

SeA) = {U(A) : U £ 2t}. Then h is unifoI'Dlly continuous and the 

unifOI'mity on 3(X) is the inverse image under h of that on I(X). 

(2) The space e(X) of nonempty closed subsets of X is 

uniformly isomorphic to the subspace h( 8 (x) ). which is dense in 

I(X). 

(3) The space t(X) is complete. 

Proof. From LEMMA 3.2.10, .!S(A) is a fundamental family on X 

for each nonempty subset A. Suppose V is in fL, with (h(A),h(B» in 

A ?I 3 
V. Then there exist U

l
, U

2 
in rJ.. such that U

1 
(A) c: V(U(B» and 

3 4 4 
U

2
(B) c: V(U(A» for all U in '2.£... Thus A':: V(B) and B eV(A), 

It 
that is, (A, B) belongs to the entourage V of ~(X). Conversely, 
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-if (A, B) belongs to V, then A c:.. V(B) and 13 c. V(A), so that 
2 2 

veAl C V(U(B» and V(B) c: V(U(A» for all U in tc.. , Thus (h(A) ,MB» 
~ 

belongs to V. This has shown that the inverse images under h x h of 
A .. 

the members of 1l form a base for the uniformity c( on ,S(X), 

which is therefore the inverse image under h of the uniformity on 

I(X). It is also the coarsest uniformity on ~(X) for which h is 

uniformly continuous. Thus (1) is proved. 

To prove (2), let P, Q be nonempty subsets of X with 

M p) = h( Q) • This means that for each V in ~ there exist 

U
l

, U
2 

in ~( such that Ul (P) c:;. V(U(Q» and U
2

(Q) c: V(U(P» for all 
2 2 

U in ca, so that PC:: V(Q) and Q c:V(p). Therefore P = Q. Conversely 

if it is given that P = Q then h(P) = h(Q). Thus h is injective 

on e(X), and is an isomorphism~because of (1), between e(X) and 

h(e(X» (= h(S(X»). 

Next, we show that h(~(X» is dense in I(X). Let r;F] be an 

arbitrary element of I(X) and let V belong to ,&. Choose V in?J,. 
o 

3 ~,~ 
with V <= V. There exists F in f such that F c:: V (F) for all F 

o 0 0 0 
~ ~ 3 

in .T", since r is fundamental. Put A = V (F). Then V (A)C::::V ('F) c..:V(F) 
o 0 0 0 

for all Fin);', and F 0 c:: V(U(A» for all U in~. Thus t, 

.. 
(~], r~(A)l) belongs to V, and since l~(A) J = h(A), this proves 

tbat h( §(X» is dense in I(X). 

It remains to prove (3). Since h( ~(X» is denae in I(X) it 

will be sufficient to show that every Cauchy net in h(~(X» converges 

to an element of I(X). Let {[5(Ao )1 : a E I} be a Cauchy net. 

Then by (1), {Ao tOE Il is a Cauchy net in S(X). Put Fa = 
U{A

o 
: 0 ~el for each B in 1. Then by LEMMA 3.2.1, ~= {Fa: 8 E I} 

is a fundamental family. We will show that [5(A
o

) 1 ... [):1 in 

I(X). 

Let V belong to ~, and choose V in &. with ~ c= V. o 0 
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Since {[~(Aa)] : a & I} is Cauchy there exists ao in I such that 

([~(Aa)l, [~(AB)]) belongs to Vo for a, B ~ ao ' and since ~ 
is fundamental there exists 8 in I such that Fa ~ v (Fo) for all o 0 0 P 

B in I. Take y ~ a , B. Then consider B(A ) = {U(A ) : U ~ Ll}. o 0 y y .. 
We show that ([~], Ll3(Ay)]) belongs to V. By choice of y, 

2 
V (A )eV (Fo )CV (Fo)c:V(Fo) for all a in I. If a ~ a 

o y 0 po 0 P P 0 

then there exists Vl in 2l. such that Vl(A ) c: ~ (U(A ) for all 
a 0 Y 

4 
U in 2L, so 'that A c: V (A ) C-~V(A ). Thus F c: V(A ) c::: V(U(A » 

a 0 y Y Y Y Y 

for all U in '2.(. It has been proved that if y ~ a , B , then o 0 
A 

([~, [:B(A
y
)l) belongs to V, so that the net {[S(Aa)l : ex £ I} 

converges to rJ1 in t(X). Therefore t(X) is complete. 

COROLLARY 3.3.2. The Hausdorff completion ~(X) of the space of 

nonempty closed subsets of X is isomorphic to t(X). This iso­

morphism takes ~X) onto the subspace to(X) = h(~(X» which consists 

of all elements of t (X) determined by convergent fundamental 

families on X. 

THEOREM 3.3.3. Let X be a locally convex topological vector space, 

and let ~(X) denote the set of nonempty, absolutely convex, closed 
A 

subsets of X. Then the Hausdorff completion X. (X) is uniformly 

isomorphic to the subspace tk{X) of t(X) consisting of all elements 

of t(X) determined by fundamental families of absolutely convex sets. 

Proof. Let 2L be a O-neighbo~hood base for X consisting of 

absolutely convex sets. The mapping h : ~(X) + t(X) of the 

previous THEOREM takes each closed, absolutely convex set A onto 

the element [$(A).1 t where SeA) = {A + U : U £ U}, and so, 

since ~(A) is a fundamental family of absolutely convex sets, h 

takes 9t(X) into tk(X). Because of THEOREM 3.3.1 it will be 

sufficient to show that h(~(X» is dense in tk(X} , and that 

tk(X) is closed in t(X). 
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Let ['3":J be any element of tk(X) with ~ a fundamental family 

of absolutely convex sets. and let V belong to 2J.. Choose V in 
o 

2.L such that ~V c V. Then there exists F in '¥ such that F c::: F ... V o 000 
p", - (' 

for all F in 7. Put A = F 0 ... V 0 • Then A belongs to 'jI (X), and 

A ... V c:::.. F + ~v C F + V for all F in ~, and F c:::::. A + U + V for 
000 

all U in tt. Thus <[¥l, [SeA)]) belongs to V, so that h(J(X» 

is dense in tk(X). 

To show tk(X) is closed, let [~] be an element in the closure. 

Thus, for each U in 2i there is a fundamental family ~ (U) , 

consisting of absolutely convex sets, such that there exists some 

Fo(U) in ~.-'(U) with Fo(U)C::G + U for all G in (;, and there 

exists some G (U) in Cwith G (U) c= F(U) + U for all F(U) in ~(U). 
o 0 

Let ?( be the collection of all sets of the form F( U) ... 2U, 

as F(U) rWlS through 31U) and U runs through~. Then ~ is a 

fundamental family of absolutely convex sets. For if F(U
l

) + 2U
l

, 

F(U
2

) ... 2U2 are any two members. there exist Go(Ul ) and Go(U2) 

with Go(U
l

) c: F(Ul ) + Ul and Go(U2 ) c: F(U2 ) + U2 • Let Go be 

a member of G'g. with G c::: G (Ul ) n G (U
2
), and let U be a member 

o 0 0 0 

of fL. with 3U c: Ul n U2 • There is some F(U ) in ~(U ) with o 0 0 

F(Uo ) c:::: G ... U , so that 
o 0 

F o(U 0) + 2UoC= Go + 3UoC: (GO(Ul ) + Ul ) n (Go(U2) + U
2

) 

c:::. (F(Ul ) + 2U, ) n (F(U
2

) + 2U
2

) , 

and therefore J.f. is a filter base. Now if V is any member of CZ(, 

there is F (V) in· jiV) with F (V) C:G + V for all G in (I., and 
o 0 

so also F (V) + 2V c:. G + 3V for all G in (J... Hence o 

F (V) + 2V c:::F(U) ... u + 3Vc.:F(U) + 2U + 3V for all U in 2L. 
o 

which shows that 9f is a fundamental family. 

Next. [~l= [~fl. For if U
Q 

is any member of 2.( then there 

is some H = F( U) + 2U in W with H c:. H + U for all H in 9t. 
o 0 0 
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But then there is G (U) in (i- with G (U) C::.F(U) + U, so that 
o 0 

G (U) c= H + U for all H in ~.. Also, if Ul is a member of 2.( 
o 0 

chosen so that 3U
1
C: Uo' there is Fo(Ul ) in ~Ul) with 

F 0 (U 1) c::. G + U 1 for all G in ~. Hence 

Fo(Ul) + 2Ul c.; G + 3Ul c:. G + Uo for all G in &-. 

Therefore, finally, [~] belongs to tk(X), which must then be 

closed in t(X), and complete. 

When X is a topological vector space over the real number 

field, a fundamental family ~on X which consists of absolutely 

convex sets and has the property that, for each F in ~and 

each posi ti ve real number I', rF is in '3-=: is called a scalar 

fundamental family, following Kelley in (17). The space X is called 

fully complete ~ if every scalar fundamental family on X converges. 

For locally convex spaces this condition is equivalent to "full 

completeness" of H. Collins and "B-completeness" of v. Pt4k, and 

lies between completeness and hypercompleteness conditionS, It is 

of some interest to look at the behaviour of the subspaces of t(X) 

dete~ined by the scalar fundamental families and convergent scalar .. 
fundamental families, under the identification with e(X). 

Denote the two subspaces by t (X) and t (X), respectively. Con-s so 

carning the latter there is the following result. 

PROPOSITION 3.3.~. The space ~(X) of closed vector subspaces of 

the locally convex topological vector space X is uniformly isomorphic 

to the subspace .so(X) of .(X), determined by the convergent 

scalar fundamental families. 

Proof. Let Lt be a O-neighbourhood base for X, consisting of 

absolutely convex sets. The mapping h : S(X) + t(X) of THEOREM 3.3.1 

takes each M in L(X) onto the element [S(M>1, where 
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~(M) = {M + U : U £ (L}. Clearly the collection {M} consisting 

of the one set M is a convergent scalar imdamenta~ fami~y on X, 

and [{M}] = [5 (M)] • 

If ~is any convergent s~ar fundamenta~ family,then, 

putting M = n {F : F £ %=,,}, the set M is easily seen to be a closed 

vector subspace of X. Al.so r~(M)l = l~, for if Uo is any 

member of (1. then M + U c= F + 2U for all F in ~ 
o 0 

and there exists Fo in ~ with F c=. M + U c:.::M + U + U for all o 0 

U in ?l. 
It fo~lows that h takes ~(X) onto t (X), and since h is so 

a uniform isomorphism between eOO and Me-(X» by THEOREM 3.3.1, 

the proof is complete. 

PROPOSITION 3.3.5. If X is any uniform space, the space (;(X) of 

nonempty, compact, closed subsets of X is isomorphic to the subspace 

~ (X) of t(X), determined by the collection of fundamental families 
c 

of compact subsets. 

Proof. Let U be a base for the uniform! ty on X. The isomorphism 

h: €(X) + Me(X» of THEOREM 3.3.1 takes each nonempty, compact 

closed set C onto the element [~(C~ , where ~<C) = {U<C) : U £ 2(.}. 

Clearly the collection {C} consisting of the one set C is a 

fundamental family and [{C}J = l8<C»). 

Now let CJC be any fundamental family of compact subsets. 

Then by PROPOSITION 3.2.6 ~is convergent, and C = n{F : F £ %:'} 
is a nonempty, compact, closed subset of X. Furthermore. as in the 

proof of the previous PROPOSITION, S< C) and ~ determine the same 

element of +(X). 

Thus h takes e(X) onto .c(X), and the result is proved. 

Remarks. If ¥is a fundamental family on a uniform space X 

then it is easily seen that ~converges if and only if there is 
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a closed subset A of X such that ~ and :B(A) determine the same 

element of .(X), and thenA =fI{F : F e ~}. This observation leads 

immediately to the following two results of section 2, which can 

now be regarded as corollaries of THEOREMS 3.3.1 and 3.3.3. 

The space E:(X) of nonempty. closed subsets of a Wliform 

space X is complete if and only if every fundamental family on 

X converges. 

The space 1(X) of nonempty absolutely convex, closed subsets 

of a locally convex topological vector space X is complete if 

and only if every fundamental family on X consisting of 

absolutely convex sets converges. 

.. 
For a suitable space X the spaces ~(x), €(X), C(X), X(X), 

... 
/i(X) and .l..,(X) have all been identified with natural subsJ:&Ces of 

.(X) corresponding to various kinds of fundamental families on X. 
,. ,. 

To do the same for the Hausdorff completions )L(X) and ~(X) is not 

so straightforward. Theg are, of cOllI'se, the closures in .(X) of 

• (X) and t (X), respectively, by the previous two PROPOSITIONS. 
so c 

The space ~ (X) corresponding to the scalar fundamental families s .. 
is an appealing candidate for identification with 1.(X), but Kelley 

has pointed out in (16) that although convergence of every scalar 

fundamental family implies completeness of ~(X), the converse is 

not true. This does suggest. however. that the required set lies 

between. (X) and .s(X). so 

When X is any uniform space, it has been shown that !~~(X) 

can be identified with .c(X), and .c(X) is easily seen to be dense 

in the space .p(X) determined by the fundamental families of pre­

compact sets. There is considerable attractiveness in the conjecture 
... 

that ~(X) can be identified with. (X). If this could be done then 
p 

the Robert sons , result, asserting completeness of C!(X) if X is 

complete and separated, would be an easy consequence. The problem 
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is to show I (X) is closed in I(X). 
p 

It has only been possible to achieve the following PROPOSITION 

- the proof relying on the Robertsons l result. To state the 

PROPOSITION concisely, we introduce here a theoretical tool, which 

will be useful again later. If X and Y are uniform spaces and 

t : X + Y is a uniformly continuous mapping then we define the 

mapping t* : I(X) + I(Y) by t.r~] = (t(JF»). It is easily seen 

to be well-defined and uniformly continuous. 

PROPOSITION 3.3.6. Let X be a uniform space and i the 
... 

canonical mapping of X into its Hausdorff complet ion X. Then the 
A 

closure in I(X) of • (X) is the inverse image of I (X) under the 
c c 

A 

mapping i* : I(X) + I(X) induced by i. 

Proof. Denote the inverse image by t (X). First, it will be q 

shown that. (X) is dense in Iq(X). Let [~1 belong to • (X), 
c q 

and let U belong to the base tL for the uniformity on X. Now 
o 

A ... 2 ~, 
the closures in X x X of the sets i (U), U in ~, fol'lll a base 

... A ... 

for the uniformity on X, so, if bars denote closures in X x X, 
. ... 

there is some U
l 

in & and sane entourage W of X, such that 
a 3 
we::::. i 2(u

1
5 c: i 2(Uo)' Since the fundamental family !(C) is 

A 

identified in t(X) with a fundamental family of compact sets on 
... 
X, which must converge by PROPOSITION 3.2.6, it follows that 

!(a> converges, and that the set C = nnrGT : G £ (;-) is a 
... 

nonempty, compact closed subset of X. Thus there is a finite 

subset D of C, with ec.W(D). Then, since i(X) is dense in 
... 
X, there is a finite subset E of X such that ICE) c Wee) and 

2 
e c:= W(i(E». 

The family {E} consisting of the set E alone clearly 

determines an element of t (X). This element will now be shown ... c 
3 

to belong to the ~-neighbourhood of [(J]. By the convergence of 
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i(G), there exists Go in a such that 

i(G
o

) c; W(C) c:. ~(i(E» c. i'(U1Hi(E»C:: ll'tJ)(i(E» so that, in 
3 

fact, i(G ) c nfl ) (i(E», and therefore G c: U(E). Also o ~ 0 
2 

C c::::. i(G) far all G in (j. and so ICE) c:. W(C)c;: W(i(G» for all 

G in ().. As before this implies that E c:::::: a( G) for all G in (j... This 

proves that ([e·], [(E}J) belongs to &... and hence I c 00 is 

dense in I (X). q 

Next to show that t (X) is closed in t(X) it is sufficient 
q 

A A 

to show that t (X) is closed in I(X), because the mapping i* 
c 

~ A 

is uniformly continuous. But tc<X) is isomorphic to C(X) by 

PROPOSITION 3.3.5, so complete by the Robertson's Theorem, and 
A 

hence closed in the separated space I(X). 

The mapping i* can easily be shown to be an isomorphism 
A 

between t(X) and I(X), and corresponds to the isomorphism between 

t(X) and e(X) of Chapter 2. Denote by tr(X) the subspace of 

t(X) determined by those fundamental families on X whose images 
A A 

converge in X. Then I (X) can be identified with I (X) and 
r 0 

hence with ~(X). Under the same isomorphism, t (X) is identified q 
A 

with t (X), which leads iDmediately, using the THEOREM above, c 

to the following result of Chapter 2. 

A 

COROLLARY 3.3.7. The space e (X) is uniformly isomorphic to the 
,. 

syace e(X). 

,. 
Remark. Since the closures in X of the images under i of 

the members of any fundamental family of precompact sets on X 

.' 
form a fundamental family of compact sets on X, we have 

In Chapter 2, section 3, it was shown that far any uniform 
A 

space X the Hausdorff completion X can be embedded as a uniform 
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subspace in $( 9(X» and, in fact as a closed uniform subspace in 
.. 

It now turns out that the Hausdorff completion e(X) can 

also be embedded as a closed uniform subspace in ~(e(X». by 

means of the construction by fundamental families developed in this 

section. 

PROPOSITION 3.3.8. Let X be a uniform space and ~( a base for the 

uniformity. Construct the space t(X), and define a mapping 

w : t(X) + 3(,f5(X» by taking the image under w of an element 

r.zrl to be the filter ,~ generated by the collection 

{U(F) : F £ y, U £ ZL}. Then w is an isomorphism of t(X) onto 

its image in S( B(X». 

Proof. It must first be shown that w is well-defined. Let <J"and 

C be fundamental families on X with r.f] = [G]. If A belongs to 

the filter 'i'$' then there exist G in Q., and U in et with 
2. 

U( G) CA. Choose U 1 in 2L such that U1 c:. U, and then there is some 
2 

F in ~ such that Ul (F) c::; Ul (G) c:: A. Thus A belongs to 'fer , and it 

follows that 'i'~ =,~ . 
Next, w is injective. For if 'f'cy- = 'c. , and U is any member 

of '2.L, there exists F in ~ such that F ,"::... U(F) for all F in '::;-, 
o 0 

and then U(F ) must belong to 'i'a. , so that there exist G in (') 
o 

fJ, 2,~ 
and V in u.. such that Gc. V(G)C::: U(F )c::: U(F), for all F in '3" • 

o 

It follows that ~l = [t11 . 
:: 

Now suppose that ('y , ,~ ) belongs to the entourage V of 

B(3 (X». Choose F 0 in ~ such that F oc. V(F) for all F in c:r. 
Since V(Fo) belongs to ,~, there is some A in'~ such that 

2. 
A c V(F 0). Then there exist G in (}., and U in 2.t such that 

2 3 
Gc: U(C)c:: Ac::..V(Fo)C:::V(F) for all F in Y. Hence ([':fl, [G]) .. 
belongs to the entourage ~ of t(X). 
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Conversely, suppose (r.f"\, [(;.J) belongs to V, and let A be 

any set in '",. Then there exists F in 0/ such that Fe V(G) for 

all G in r;" so that V(F)c:. ~(A). Put B = AU V(F). Then clearly -2 
B is a memb!r of 41,.. , and (A, B) belongs to V. Hence ('V"" , 'Va. ) 

2 
belongs to V. 

It has been proved that both w and its inverse are uruformly 

continuous, and the result follows. 

.. 
COROLLARY 3.3.9. The Hausdorff completion e.(X) can be embedded 

as a closed uniform subspace in ~(~(X» • 

.. 
Proof. By COROLLARY 3.3.2, e.(X) is isomorphic to t(X). From the 

PROPOSITION, the mapping [~J + ,~ is an isomorphism of t(X) 

into its image in ~(~(X». But then, since t(X) is separated, and 

since the COllection'~ of closures in X of the members of ,~ 

satisfies ('l'~ , 'y ) & U for each U in ZL, the mapping lYJ + ,; 

is an isomorphism of t(X) onto its image in $( e(X». Furthermore 

denotes the closure in e(X) of ,~: ,then the mapping 

is an isomorphism of t(X) onto its image in ~(~(X», 

because e:\~(X» is the Hausdorff space associated with ~(~(X», 

by PROPOSITION 2.4.1. 

The image in eA e(X» must be closed, being a complete 

subspace of a Hausdorff space. 

Remarks. Caulfield (5) has shown that the mapping 

(x, y) + {{x}, {x, y}} is an isomorphism of X x X into ~(~(X». 

The hyperhyperspace thus contains a surprising number of the 

significant spaces derivable from X. An application of Caulfield's 

embedding is given in Nachman's paper (22). 

3.4 The filter condition and the fundamental family condition 

DJ'. Wand¥. Robertson discussed in (29) a condition on a mapping between 
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two topological vector spaces, called the filter condition. It 

is also meaningful for uniform spaces and will be said to hold 

for a mapping t from a uniform space X into a uniform space Y 

if the following is true. 

FILTER CONDITION If. is a Cauchy filter base on X and t(.) 

is convergent to a point of t(X) then. is convergent to a 

point of X. 

An analogous conditon in terms of fundamental families is 

now intrOduced. 

FUNDAMENTAL FAMILY CONDITION. If '¥is a fundamental family 

on X and t(<:1) is a convergent family on t(X) then ~ converges 

in X. 

If A is a subset of X, the fundamental family conditon will 

be said to hold on A if the above condition is satisfied with 

A in place of X. The fundamental family condition has, as 

might be expected, properties analogous to those of the filter 

condition, with hypercompleteness taking the place of completeness. 

The next result follOW$directly from the definitions and 

THEOREM 3.2.4. 

PROPOSITION 3.4.1. If X is hypercomplete the fundamental family 

condition holds for every t. If t is uniformly continuous and 

the fundamental family condit'on holds, then if t(X) is hypercomplete, 

X must be hypercomplete. 

PROPOSITION 3.4.2. If the fundamental family holds on a subset 

A of X then it holds on any closed subset of A. 

Proof. Let B be a subset of A closed in A, and let'¥' be a 

fundamental family consisting of subsets of B ( just a funda-

mental family on B). Then clearly ~ is also a fundamental family 
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on A. If t A' tB are the restrictions of t to A, B., respectively, 

then tA(~) = tB(~ and if tB(~ converges on tB(B) so does 

tA(o~1 on tA(A) because the intersection of the closures in 

tB(B) is contained in the intersection of the closures in 

t A (A) • But then i¥ must converge in A, or, in other words, 

if C denotes the intersection of the closures in A of the 

members of ~y and U is any entourage of X, U(C) eventually 
c:..,. 

contains J~. Since B is closed in A, C is also the intersection 
Q.#/ !"J ., 

of the closures in B of the members of ~. t and hence 5- converges 

in B. 

ptpPOSITION 3.4.3. If the fundamental family condition holds 

for a mapping t between uniform spaces X and Y, then so does the 

filter condition. 

Proof. Let -:":f~be a Cauchy filter base on X with t(J-l converging 

to a point of t(X). By PROPOSITION 3.2.9):1s also a fundamental 

family on X and t(~) is a convergent family on t(X). If the 

fundamental family holds Y. must converge in X as a fundamental 
,.. , 

family and so again by PROPOSITION 3.2. 9 .~~ converges as a Cauchy 

filter base to a point of X. Thus the filter condition holds. 

That the two conditions are not equivalent in general will 

now be demonstrated by a counterexample. Because of PROPOSITION 

3.4.1 it will be sufficient to show the existence of a uniformly 

continuous surjective mapping from a complete but not hyper­

complete uniform space X onto a hypercomplete uniform space Y. 

For then the filter condition obviously holds by the completeness 

of X, but if the f\Uldamental family condition held X would be 

hypercomplete. 

COUNTEREXAMPLE 3.4.4. Take for Y any infinite d!~£~oio~al .~~ch 

space and 
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let X be the same vector space endowed with its finest locally 

convex topology T(X, X*). Then X is complete because it is a 

topological direct sum of copies of the scalar field, but if 

it were hypercomplete (or even fully complete) then a closed 

graph theorem of Kelley (16) could be applied to the identity 

mapping of Y onto X to imply that the norm topology and 

T(X, X*) were identical, which is not true (see for example 

(2'». However Y is hypercomplete being a complete metric 

space. Finally, the identity mapping of X onto Y is clearly 

uniformly cont inuous, and so the counterexample is supplied. 

When X is a topological vector space over the real 

number field we can define a weakened sort of fundamental 

family condition on a mapping t from X into a uniform space Y. 

SCALAR FUNDAMENTAL FAMILY CONDITION. If ~ is a scalar 

fundamental family on X and t(~) is a convergent family in 

t(X) then ¥converges in X. 

If X is fully complete then, of course, the scalar funda­

mental family condition holds for every t. If, in addition, 

Y is a topological vector space over the real number field and 

t is a continuous linear mapping, then t(c:t) is a scalar 

fundamental family for each scalar fundamental family ~ on X. 

It follows that if, in this situation, the scalar fundamental 

family condition holds and t(X) is fully complete, then X is 

fully complete. 

The COUNTEREXAMPLE 3.4.4, provides a situation where 

the filter condi'ton holds, but not the scalar fundamental 

family condition. That the latter condition is stronger for 

continuous mappings is the next result. 
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PROPOSITION 3.4.5. If X, Y are separated locally convex 

topological vector spaces and t : X + Y is a continuous 

linear mapping for which the scalar fundamental family 

condition holds, then the filter condition holds. 

Proof. Let U be a base of absolutely convex O-neighbourhood"., .. .. .. 
in X, and let t : X + Y be the extension of t to the 

completions. Suppose that the filter condition does not hold. 

Then by Theorem 1 of Dr. Wendy Robertson's paper (29), there 
.. .. 

exists a point a in X such that tea) = 0, but tea) ~ O. 

Clearly a does not belong to X. Let A = Ua : ). any scalar}. 
.. r .. 

For each U in ~ let F(U) = (A + U): !x, where U is the 

closure of U in X x X. Then:r-- = {F(U) : U E: 'Ll} is a 

scalar fundamental family. For clearly each F(U) is non­

empty and absolutely convex, and ).F(U) = F().U) e ¥. Let U 

be any member of 'lJ... If, for some scalar ). , y belongs to 

().a + U)(lx, then y - ).a belongs to U, and so for any U' 

in 7J. there exists z belonging to un (y - ).a + U'). Hence 

y - z belongs to ().a + UI)()X, so that y belongs to 

(A + U') n X + U. ThUB F(U) c: F(U I) + U, and ~ is fundamental • 
.. 

Next, since teA) = {OJ, it is clear that t(U)c=t(F(U»c: 

t(U)r-/t(X), for each U in Zt. By continuity of t and ~, there­

fore,n{tCF{U» : U E: tt} = {OJ, and t(~ is a convergent 

scalar fundamental family on t(X). By the hypothesis Y-
must converge on X. Now n{FroT : U E: ti } = {O}. For if y . 

is a point of X belonging to the intersection then y belongs .. 
to the closure of A + U, for each U, and so belongs to .. .. 
A + U + U, and hence belongs to A itself, since A is one-.. 
dimensional and therefore closed in X; since a does not 

belong to X, and y does, we must have y = O. 
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Choose U in Z~ such that U + U does not contain a. Then 

because 3=" must converge to {O}, we can choose U'c: U with 

F(U' ) c: U • But then there exists z in (a + U') n Xc:: F(U , ) c U, 
"" ,. ,. 

so that a belongs to U + ute U + u. This is a contradiction, 

and therefore the filter condition must hold. 

We return to studying the behaviour of the fundamental 

family condition towards uniform spaces. The vague observation 

that fundamental families tend to behave towards the hyper-

spaces as Cauchy filters towards the spaces themselves is 

given more substance by the next result. 

THEOREM 3.4.6. Let t be a mapping from a unifoI'lll space X 

into a uniform space Y, and let to be the induced mapping 

of 3CX) into g(y) defined by tOeA) = teA) for each subset A. 

Then the fundamental family condition holds for t if and only 

if the filter condition holds for to. 

Proof. Suppose the fundamental family conci! tion holds for t, 

and let {A : a £ I} be a Cauchy net in Sex) with its image 
a 

{teA ) ; a £ I} converging in ~(Y) to t(B), for some subset 
a 

B of X. By LEMMA 3.2.1 the family ~= {F
S 

: B € I}, where 

F = l ;{A : a ~ B}, is a fundamental famUy on X, and its i1llllge B .. a 

to(~ = t(~ = {U{t(Aa ) : a ~ B.. B £ I} is a convergent 

fundamental family on t(X). By the fundamental family condition 

~converges in X,and again by LEMMA 3.2.1 this implies that the 

net {Aa = a € I} converges to n{F s : B £ I} in 3(X). there­

fore the filter condition holds for to. 

Conversely suppose the filter condition holds for to and 

let ~be a fundamental family on X with t~ convergent in 

t(X). Put B =n{t(F) :F £~}, where the closures are in t(X). 

By LEMMA 3.2.1, Ydirected by C:is a Cauchy net in SeX) and 
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t(~) is a net converging to B in t)(t(X». Since B belongs to 

tOe S(X» the filter condition demands that the net ~converges 

to a point in ~(X). But then by LEMMA 3.2.1 )Fconverges as a 

fundamental family on X, and therefore the fundamental family 

condition holds for t. 

Dr. Wendy Robertson showed in (29) that when X and Y are 

separated topological vector spaces, t : X + Y is a continuous 
,. ,. ,. 

linear mapping and t : X + Y is the extension to completions, 

then the filter condition holds if and only if i-leo) = t-l(O). 

In particular, when t is injective the filter condition holds 
~ 

if and only it t is injective. She gives the following example 

to demonstrate that, when t is a uniformly continuous mapping 

from a uniform space X into a uniform space Y, the filter condition 
• A is not suff1cient to infer injectiveness of t from injectiveness 

of t. 

COUNTEREXAMPLE 3.4.7. Let X be the interval -11' < X < '11', and 

i8 } let Y = {e : -'II' < e < 'II' , with topologies induced by real line 

and complex plane topologies, respectively_ Define t(x) = ebo• 

Then t i, injective and uniformly continuous, and the filter 
... .... 

condition holds,but t(-'II') = t('II'). 
The fundamental family condition does not hold for this 

example _ For consider the family ')::'on X consisting of the sets 

F n = (-11', -'II' + !) U ('II' - X - !, 11'), n = 1, 2, 3, ••• 
... . 

where x is any small positive number. Then clearly Y is 

fundamental. Furthermore, 

t(F ) = {eie : -11' < e < -11' + 1 or 11' - X - ! < 8 < 'II'l, n n n 

C = n<'fn : n = 1, 2, ••• } = ('II' - x, '11'), and 

D = ri{t(F
n

) : n = 1, 2, ••• } = {eie : 11' - X , e < 'II'}. 
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Now any e-neighbourhood of D eventually contains t(F ), so 
n 

c,.... 
t( J) converges in t(X). But an £-neighbourhood of C may not 

contain any F n' because each Fn has component distant 

211' - ! - ! from C. Thus ~ does not converge in X. x n 

IT, in an attempt to find a situation where the funda-
.. 

mental family does hold and t is still not injective, we take 

X to be the interval (-11', 11'] and Y the circle {e ie : -'If < e ~ 11'}, 

with t(x) = eix , then the fundamental family ':f described above 

suffices again to thwart the attempt. 

I do not know if the fundamental family condition is 
A 

sufficient for inferring injectiveness of t from injectiveness 

of t. But there is a strengthening of the condition which does 

achieve this in a very heavy-handed way. 

STRONG FUNDAMENTAL FAMILY CONDITION. If ':f' is a fundamental 

family on X and t( %:) is a convergent family in t(X), then ~ 

converges in X. 

Th~.s condition implies that every Cauchy filter on X which 
A .... 

has image converging to a point of t(X) must converge to a 

point of X. Hence X must be complete. 

There is also another kind of filter condition which 

achieves similar ends in more gentle fashion. 

SECOND FILTER CONDITION. If t is a filter base on X and t(t> 

is a Cauchy filter base on t(X), then t is also Cauchy. 

PROPOSITION 3.4.8. If t is a uniformly cont inuous mapping 

from X into Y, where X, Y are separat;ed Wliform spaces t and if 

the second filter condition holds, then t is open and injective 
.... A .... 

and its extension t : X + Y is also injective. 

Proof. Let tL, 'Y' be bases for the uniformities on X,~ 
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respectively. Let x be a point of X. Then the collection 

{V(t(x» ~ V & 1(} is a Cauchy filter base on t(X), so that 

~l:."'!"I(V(t(x») : V & Y} is also a Cauchy filter base on X, by 

the second filter condition. Thus for each U in tt there is some 

V in ~' such that V(t(x» C' t(U(x», and so t is open. 
A A A A 1 A 

Now let y belong to t(X), and put C = t- (y). Then 
A 

C is a nonempty closed subset of X, and there existsa fundamental 

family ~~ on X such that f"~converges in X and n{1~ : F & c:r-} = C 

(take the family {W(C)(lX : W is an entourage of X}). 

By PROPOSITION 3.2.7, t(~) = t(~) is a convergent family in 
.. A 

t(X) • 
A A 

Let W be any entourage of t(X). Choose an entourage 
o 

A A2 ... 
W of X such that t '(W)c Wo ' using uniform continuity of t. 

Then ~(W(C» c: Wo(;). But since ~ converges in it W(C) 

eventually contains 1:=', and therefore W (;) eventually contains o 

t(~. This implies that t(~) is, in fact, a Cauchy filter 
.. A A 

base on t(X), converging to y in t(X). 

By the second filter condition ~ must be a Cauchy filter .. 
base on X, and thus for any entourage W of X, there is some F 

A 

in ~ such that r is W-small. Hence C must be a singleton, 
A 

and t i& injective. 

It has been observed that for topological vector spaces 

the filter condition is necessary and sufficient for a continuous, 

injective mapping t : X + Y to extend to an injective mapping 
.. .. ... 
t : X + Y, but that, for uniform spaces, sufficiency fails. 

However, there is another condition in terms of the behaviour 
A 

of t which is equivalent to the filter condition for uniform 

spaces. 

nmOREM 3. If.. 9. Let X and Y be separated lL'liform spaces and 

let t be a uniformly continuous mapping from X into Y. Then 
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• A A 
if t X + Y is the extension of t to the completions, the filter 

. 10-1 
condition holds for t if and only if t (t(X» = x. 

Proof. Suppose the filter condition holds. 
A A-l 

Let x belong to t (t(X», 
A A 

so that t(x) belongs to t(X). There is a Cauchy net {x } in X con­
a 

A A A 

verging to the point x in X. Since t is uniformly continuous 
A A A A A 

t(x ) + t(X) in t(X), so that the net {t(x )} converges to a point 
a a 

of t(X). Then, by the filter condition x + x in X, and hence 
a 

A A-l 
x = x and t (t(X»c::..X. The reverse inclusion is trivial,and thus 

equality holds. 
A_l 

Conversely suppose that t (t(X» = x. Let {x } be a Cauchy 
a 

net in X with {t(x )} converging to a point t(x ) of t(X). There is a 
A A A A A A A 

a point x in X such that x + x in X, and then also t(x ) + t(x) in 
a a 

A A A A A A_1 
t(X). But then t(x) = t(x), and x belongs to t (t(X», and hence, 

by hypothesis, to X. Thus {x } converges to a point of X, and the 
a 

filter condition holds. 

There is an analogue of the foregoing result for the fundamental 

family condition. First, two lemmas are given concerning the 

induced mapping'" to : SeX) + S(y) and t' : Sex) + e(y). 

Recall that for each A in ~(X), tOeA) = teA) and t'(A) = t(A). 

LEMMA 3.4.10. If t is uniformly continuous then, for themduced 

mapping t', the filter condition holds on ~(X) if and only if it 

holds on €.(X). 

Proof. Suppose it holds on S(X). Let {H } be a Cauchy net in a 

~(X) with t'(Ma ) + tieR) in t'(~(X». Then {Ma} is a Cauchy net 

in ~(X) and {t(Ma )} converges to a point of t'(~(X», 80 by the 

filter condition on 3(X), Mel ... M in S(X). But then M + if in e(X), 

and therefore the filter condition holds on ~(X). 

Conversely, suppose the filter condition holds on €.<X), and 

let {A }be a Cauchy net in SeX) with tt(A ) .. tt(B) in tt( S(X». a a 

Then {A
eI

} is a Cauchy net in €(X) and, by unifonn continuity, 
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-t(A) = ~(A ) for each 01 so that t'(Aa)4- t'(B) = t'(B) in t( Fs'(X». 
o a 

Hence by the filter condition on e(X), {A } converges to a point in a 

e.(X). But {A } must converge to the same point in SeX), and 
a 

therefore the filter condition holds on ~(X). 

LEMMA 3.4.11. Let ~be a subset of 8(x). Then the filter condition 

holds for t' on ~ if and only if it holds for to on &t. 
Proof. Suppose the former is true, and let {A } be a Cauchy net 

a 

in £l with teA ) ... t(B), for some B in~. Then t'(A ) ... t'(B), so, 
a a 

by the supposition, {A } converges to a point of!t. Therefore the 
o 

filter condition holds for to on At. 
Conversely suppose the latter is true, and let {A } be a 

o 

Cauchy net in eft with t'(A ) ... t'(B), for some B in~. Then 
o 

teA ) + t(B), and by supposition, {A } converges to a point of ~k . 
a 0 

Therefore the filter condition holds for t' on rft. 

THEOREM 3.1f.12. Let X, Y be uniform spaces and t be a uniformly 

continuous mapping from X into Y. Let t' : ~ (X) + €c y) be the 

induced mapping defined by t'(M) = tm for each M in t1X), and 
A #t. ... 

t' : ~(X) ... €J.Y) the extension to completions. Then the funda-

mental family condition holds for t if and only if t,-l(t'( ~(X») 

= €reX). 

Proof. The fundamental family condition holds for t if and only 

if the filter condition holds for the induced mapping to on ~(X), 

by THEOREM 3.4.6, which is true if and only if the filter condition 

holds for t' on ~(X), by LEMMA 3.4.10 and LEMMA 3.4.11, which in 
A 1 

tum is true if and only if t'- (t'(e<X») = !!(X), by THEOREM 3.4.9. 

Remarks. The foregoing result can be deduced quite easily 

from the development in section 3.3, and the method haa some 

intrinsic interest. Thus if t: X ... Y is a uniformly continuous 
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mapping between uniform spaces, define the mapping t* : t(X) + t(Y) 

by putting t*[cn = [t(J:")] , as in the preamble for PROPOSITION 

3.3.6. The mapping t* is easily seen to be well-defined and 

uniformly continuous. If hl , h2 are the canonical embeddings 

of eJX) and €,{Y) in t(X) and t(Y) respectively, the following 

diagram is commutative. 

t(X) t*. t(Y) 

Furthermore, on identifying ~(X) with t(X) and ~(Y) with t(Y), 

the mappings t' and t* coincide. Recall that hl(~(X» = to(X) 

and h2(~(Y» = to(Y)' the respective subspaces of t(X) and t(Y) 

determined by the convergent families; by uniform continuity of 

t, t* takes. (X) into t(Y). o 0 

Now the fundamental families which converge in t(X) can 

easily be seen to determine the same elements of I(Y) as the 

images t(%:') of families convergent in X, and so the fundamental 

family condition can be expressed in the form 

t*-l(t*CIO(X») = to(X), 

and the scalar fundamental family condition (for suitable X, Y), 

in the form 

I (X) nt*-l(ttc(to(X») = t (X). s so 

But the first equation is just the condition in THEOREM 3.4.12 

when the appropriate identifications are made. 

It is noteworthy that in situations like COUNTEREXAMPLE 
A ~ 

3 .. 4 .. 7, where eeX) and gey) are complete and can therefore 

be identified with t.(X) and teY), the THEOREM provides a useful 

approach to the problem of ascertaining whether the fundamental 

family contition holds or not. It was the negative conclusion 
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arrived at by this approach that intensified the half-he3rted 

search for the particular fundamental family exhibited in COUNTER-

EXAMPLE 3.~.7. 

When t is a continuous linear mapping from a topological 

vector space X into a topological vector space Y, the funda-

mental family condition has Slgnificant implications for the 

induced mappings between quotient spaces. Let M be a closed 

vector subspace of X. Then the quotient space X/M is a 

separated topological vector space, and a closed uniform sub­

space of €eX) (section loll). The mapping t' : e(X) + e(y) 

X Y induces a continuous linear mapping t' 1: I H + IttMT, 
A A A 

and the extension t' : ~(X) + ~(Y) induces the continuous 
A. A 

A X Y 
linear mapping t'l: 1M + ItTMTwhich is the extension of ttl 

to the completions of the topological vector spaces X/M and 

Y/ttMr. The mapping ttl is injective if and only if t-l(t(M» 

= M. If this condition holds and if in addition t is injective 

on H, then t is injective on X. 

Given that t' 1 is injective, we may ask lmder what circlDll-
A 

stances the extension t' 1 is also injective. An answer is 

given by the following result. 

PROPOSITION 3.4.13. Let X and Y be topological vector spaces, 

t: X + Y a continuous linear mapping, and M a closed vector 

subspace of X. Then if the fundamental family condition holds 

X and if the induced mapping tt is injective on 1M, its extension 
A 

A X 
t' must be injective on I 

M· 
Proof. If the fundamental family condition holds for t then by 

THEOREM 3.4.6 the filter condition holds for to : S(X)++ 3(y), 

and by LEMMA 3.4.10 and LEMMA 3.4.ll, the filter condition holds 

for t' : e(X) + ~(Y). It follows easily that the filter condition 
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holds on every closed subspace of ~(X), 
X 

and in particular it must 

hold on the quotient space 1M, But the restriction t'l 

y/~ is a continuous linear mapping between separated 
t\MJ 

X 
1M + 

topological vector spaces, so if it is injective we can apply 

Dr. Wendy Robertson's Theorem 1 in (29) to deduce that the 
A A 

I/o X Y 
extension t'l: 1M + IttMY is also injective. 

3.5 The induced mapping t' and its extension. The mappings 
A 

t' and t' have figured quite considerably - notably in connection 

with the fundamental family condition. This section is devoted 

to further study of their properties. 

Let X and Y be uniform spaces, let A be a unifonn subspace 

of X and let t: A + Y be a uniformly continuous mapping with 

domain A. If Y is a complete separated space there exists a 
... 

unique extension t : A + Y to the closure of A in X, whose graph 

is the closure in X x Y of1he graph of t (see for example 

Kelley (IS) ). Similarly, if Y is also hypercomplete, the induced 
A 

mapping t' : S(A); €.(Y) ~s a unique extension t' : B(A) + g(y) 
to the closure of ~(A) in ~(X)t whose grarh is 

the closure in ,5(X) X e(y) of the graph of t' (or the ''hyper-

graph" of t, which is studies in Chapter 5). The next Proposition 

will show that this extension exists even if Y is not hyper-

complete. 

Now we can arrive at another mapping between &X) and e(y) 

by reversing the order of the inducing and extending operations • 

.It. -Thus the extended mapping t : A + Y induces the mapping 

• t : SeA) + €,(Y). It turns out that these two operations are 

commutative, in the sense of the following result. 

PROPOSITION 3.5.1. When t is a uniformly continuous mapping 

from a subspace A of a uniform space X into a hypercomplete 

separated unifom space Y, then the two derived mappings 
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.. ",,' 

t' : 8tAT .. e(Y) and t S(A) .. €( y) have the same domain 

and coincide thereon. 

Proof. First we show that seA) = g(A). Let B belong to 

8(A). Then for each symmetric entourage U of X the set 
• 

C = U(B)nA belongs to ,'3(A), and CC::U(B). If b is a 

point of B there is some point a of A with a e U(b)C=U(B). 

Thus a belongs to C, and since b €.. U( a) c: U( C), we have 

B c:.:U(C). TheNfore (B, C) belongs to ii and this shows 

that B is in ~). 

Conversely. if B belongs to --S(A) and U is any entourage 

of X, there exists a subset C of A with Be U(C)c:. U(A). 

Therefore BC:::A, that is, B belongs to S(A). 
A A' 

To show that t' and t coincide on 9 ( A), it is 

sufficient to show that they coincide on the dense subspace 

$(A). If B is in ~(A) then 

A' .-
t (B) = t(B) , where the closure is in Y, 

= ttBT t since Be A, 

= t '(B) 
A 

= t'(B). 

COROLLARY 3.5.2. If Y is a separated, complete space (not 

necessarily hypercomplete) then the induced mapping t' of 

~(A) into ~(y) still has a unique extension mapping ~(A) 

into e(y). 

Proof. The mapping t: A.. Y has a tmique extension 
A .-' 

t : A .. Y, and the induced mapping t : S(A) .. €(Y) is the 

required exte/Ilsion of t', from the proof of the previous 

THEOREM. 

Now suppose that X and Y are separated uniform spaces 

and that t is a uniformly continuous mapping from X into Y. 
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Then t induces the mapping t' of €(X) into c!(Y), which extends 

to the mapping t' of ~(X) into ~(y). The mapping t itself 
,. ,. .. 

extends to the mapping t of X into Y, which induces the 
A' Ito ,. 

mapping t of €(X) into e(y), and finally this also extends 

" At A A ~ Ito 

to the mapping t of €(X) into !:..-(Y). Out of this rather 

complex situation one consoling fact emerges. It was shown 

in Chapter 2 that the spaces ~(X) and ~(X) are isomorphic, 
" A A 

and likewise the spaces e(y) and €(Y) are isomorphic; 
A 

this suggests that under these identifications the mappings t' ,. 
.... , 

and t may be the same. 

PROPOSITION 3.5.3. When X and Y are separated uniform spaces 

and t is a uniformly continuous mapping from X into Y, the 
A. 

derived mappings ~, : !(X) + e(y) and i' : ~(X) + ley) 
coincide on identification of €.(X) with €,(X) and €,(Y) with 

~(y). 

Proof. This can be shown by the method of the previous 

PROPOSITION - identifying each closed subset of X with its 

closure in X according to the isomorphism lex) + €.(x) 
A ~. 

exhibited in Chapter 2 section 4, and verifying that t' and t 

take the respective sets thus identified onto identified sets 
A A A • 

in c!.<Y) and €-(Y), and so coincide on a dense subspace of €(X). 

It is more elegant, and simple, to deduce theresult from 

the work in section 3~ Recalling the remarks after THEOREM 

3.4.12, the problem becomes that of showing that the mappings 
f!-. A A 

t* : t(x) + t(Y) and t : I(X) + I(y) coincide when the 

corresponding spaces are identified. By the remarks after THEOREM 

3.3.6, an element rl1 in t(X) and an element [~] in I(X) are 

identified if ¥ and (} determine the same element in I(~). But 
,. 

then t(~ and t( (J!..) must determine the same element in I(Y) by 
A* 

the very well-definedness of t ! This completes the proof. 
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There is an :immediate application ot the toregoing result 

to quotient spaces ot topological vector spaces. 

PROPOSITION 3.5.4. It X and Y are separated topological vector 

spaces, M is a closed vector subspace ot X, and t is a continuous 

linear mapping trom X into Y for which the fundamental family 

condition holds, then provided that t' is inj ecti ve on X / N' so 
'" A ",A 

~'X A' X 
is t on 'M and t on 'M· A. 

Proof. By PROPOSITION 3.4.13, tf is inje .. ctive on X'M. But 

" ",' by PROPOSITION 3.5.3, t' co: incides with t under the indentifi-

'" '" " cation of €(X) and €.(X), and by THEOREM 2.6.5 this identitica-
~ .. -"\ 

tion takes X'M onto X'M. 
The last result of the section is a generalisation to 

uniform spaces of one of Dr. Wendy Robertson' s results cOllC'erning 

the tilter condition for topological vector spaces, allowing 

as a corollary an analogous result concerning the fundamental 

family condition. 

PROPOSITION 3.5.5. Let X and Y be separated uniform spaces and 

let t be a surjective, lmitorml.y continuous mapping from X to Y. 

If the filter condition holds then tor any precompact subset A 

ot X, teA) • tOJ. 
Proof. Since A is precompact A, and hence also t(A), are compact, 

and so complete. Here t is the extension of t to the completion. 
'" A",...", '" 

X, Y. But teA) c teA) c:t(A), and therefore teA) • t(A). Since 

t is surjective, tVJ • t(x) nt(A) • t(X) n t(A). 

Let y belong to t(A). Then y • tea) tor some a in A, and 
... '" 
tea) belongs to t(x). By THEOREM 3.4.9 the filter condition is 

~ n" equivalent to t (tCX»· X, and so a belongs to X A. A. 

Thus y belongs to t(A). and mr t(A). 

Since t(A)C:: mr by continuity, the result follows. 
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COROLLARY 3.5.6. If the fundamental family condition holds 

for t, then for any pre compact subset iI: of €(X), t' (Jt) • t' @). 

Proof. By THEOREM 3.4.6 and LEMMAS 3.4.10 and 3. 4 .11, the 

filter condition holds for the D1&7Ping t' : <.!(X) -+ €(Y). If 

t is surjective so also is t', and application of the 

PROPOSITION concludes the proof. 

3.6 Hyperassociated uniformities. Let X be a set 

endowed with two uniform structures t and n. As in Chapter 2, 

section 7, we shall say that n is aBsociated tJ1'lth t if t bas a 

base consisting of sets closed in X x X relative to the 

topology derived tram n. 

Furthermore we shall say that 11 is hypeN880ciaud with f; 

on a subset /ftof SeX) if the uniformity n on i. is 

associated with the uniformity t on &t. 
Also, in future, we shall say that the filter condition 

(or the fundamental family condition) holds tor t and n when 

it holds for the identity mapping (X, t) -+ (X, 11)' 

PROPOSITION 3.6.1. If~. {<x} : x e X}Cjt c:S(X) and 

11 is byperassociated with t on it, then n is associated with t. 

Proot. The uniformity t on ac has a base of ~-clo.ed 

entourages, and induces a unitormity onq) which is isomorphic tA, 

t. The result follows easily. 

PROPOSITION 3.6.2. It t and 11 are uniformities on a set X and 

n is associated with t, then the filter condition holds for t and 

Proof. Let. be a t-Caucby filter and let. -+ x relative to n. 

Then tor each V in 1"1 there exists F in • such that F c:::V{x) , 

and tor each U in t there exists G in • which is U-small. 
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Then it U is chosen to be symmetric we have G ·~:U(V(x» , 

since Fn G ~ +. Hence G c:.(VUV)(x) tor all V in n, and, 

provided U is a n-closed entourage, G c: U( x) • But ~ has a base 

ot such entourages, and therefore..... x relative to the 

uniformity t. 

PROPOSITION 3.6.3. It ~ and n are unitormities on a set X with 

n hyperassociated with ~ on 3(X), then the fundamental. family 

condition holds tor t and n. 

Proof. Since Ti is associated with t on 8( X) the filter 

condition must hold for the identity mapping (~(x), ~) .... (~(X),Ti), 

by PROPOSITION 3.6.2. But this mapping is induced by the identity 

mapping (X, t) .... (X, n), and so by THEOREM 3.4.6 the fundamental. 

family condition holds for t and n. 

COROLLARY 3.6.4. If n is byperassociated with t and coarser than 

t then (x, l'l) bypercomplete implies (X, ~) hypercomplete. 

Proot. The result follows immediately from the PROPOSITION and 

PROPOSITION 3.4.1. 

We set out now to find out when two uniformities are byper-

associated. To begin with, it is clear that if " induces a 

tiner topology than t on a subset c!lt ot -S( X) then n will be 

hyperassociated with t on St. For any base of ~-closed entourages 

tor t will be a base of 1'I-closed entourages for t. We can now 

make iDillediate use ot results and notation of the next Chapter 

to obtain the tollowing: 

It 1'1 induces a finer topology than t on X then 1'1 is 

nyperasBociated with t on the ,,-compact subsets. It ~ and n 

are two unitormi ties compatible with a given topology on X 

then they are each byperasBociated with the other on the compact 

subsets. 
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If 11 induces a finer proximity than ~ on X, and is 

uniformly finer over X on every ~-discrete subset, then 11 is 

byperassociated with t on S (X). 

It is plainly desirable to find weaker conditions than 

these. The next PROPOSITION deals with hyperassociation on 

compact sets; this is followed by a LEMMA and THEOREM dealing 

with hyperassociation on .s'(X). 

PROPOSITION 3.6.5. It t, 11 are two uniformities on a set 

Xt and 11 is associated with ~, then n is hyperassociated with 

~ on the set of~compact subsets of X. 

Proof. Let U be an entourage ot ~, closed with respect to the 

topology derived from 11. It is sufficient to show that the 

entourage U of the unitormity ~ on the set ot n-campact subsets 

is n-closed. Let (A, B) be a pair ot 11-compact subsets 

belonging to the closure ot U. Then toreach V in n there 
... 

exists (A', B') in U s~~h that (A, A') belongs to V and (B, B') 

belongs to V. Hence we have 

A c: (Vl.IUoV)(B) and Be:: (V..,t~oV)(A). 

This being true tor each V in l') we have ACn{(V U V)(B) I V £ n}. 

But this intersection is just U(B). For if x is any point in the 

intersection, there are points bv in B Buch that (b
v

' x) 

belongs to VU V. Since B is "-compact there is a ltmit 

point b of the set {b : V £ "} in B, 80 that for each V there v 

exists V'C: V with (b, b ,) in V. Thus (b, x) belongs to v 

V' U v'vc:::.vv U vv tor each V in n. Since U is n-closed, 

(b, x) belongs to U, and y belongs to U(B). 

Consequently Ac U(B), and similarly B c: U(A), so that 

(A, B) belongs to U and U is n-closed. 
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LEMMA. 3.6.6. It~, 11 are two unitormities tor a set X and 11 is 

proximity-tiner than t on X, then tor each subset A ot X and 

each U belonging to t there exist Vl , V2 belonging to n such that 

(V
l 

U V
2

)(A) c.: U(A) 

Proof. The sets A and X-U(A) are t-remote, and must also be 

n-remote. Thus there is some V2 in n such that V2(A) CU(A). 
2 

Hence (UV2 )(A) CU(A). Then~ similarly, there is some V
1 

in 
3 

11 such that Vl «UV2)(A» c.. U( (UV2)(A». Hence (Vl U V2)(A) <."7 U(A). 

'IHEOREH 3.6.7. It t, n are two uniformities tor a set X and 

11 is proximity-tiner than t, then 11 is byperassociated with t on 

Sex) • 
~. For each U in t let W(U) denl)te the 11-closure in 

Sex) x Sex) of the entourage U. Put Y liI {W(U) : U E U. 

We will show that err is a base for the uniformity t on 8(X). 
3 

Let U belong to t and choose U in t with U c::: U. Let o 0 

(~~ A2) belong to W(Uo )' Then tor each Vl , V2 in T'I there 

exists (B
l

, B2 ) in U such that (~,Bl) is in V
l 

and (A2 , B2 ) 
... 

is in V2 • It tollows that ~ c:: (Vl Uo V2)(~) and 

A
2

C (V2UoVl)(~)' Iow.by the LEMMA 3.6.5;Vl and V2 can be 
3 

chosen so that (V
l

UoV2)(A2) C:Uo (A
2
), which implies that 

Al t:: U(A2)· Furthermore Vl and V2 can be chosen so that 
3 

(V2UoVl)(~) CUo(A )~.which implies that A2C. U(~). Therefore . -(~, A
2

) belongs to U. We have shown that W(Uo ) c:. U. Trivially 

U c:W(U), and s~ COW'is a base consisting ~-closed entourages tor 
the uniformity t. 
COROLLARY 3.6.8. It (X, 6) is a proximity space then the 

unitormities belonging to w(6) (that is all uniformities 

inducing the proximity 6) are each byperassociated with every 

other. 
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Remarks. It is not difficult to show that it n is 

proximity-finer than t then every n-convergent tamily ot subsets 

ot X is also t-convergent. I suspect there is partial converse 

but cannot tind it. It is noteworthy that it n is associated 

with t and every n-convergent tamily ot subsets is also 

t-convergent, then n induces a tiner topology than t. 



CHAPTER 4 

TOPOLCAiIES INDUCED ON HYPERSPACES 

4.1. Introduct ion. Let tt n be two uniformities on a 

set X. In section 3.6. attention was paid to the problem of .. 
when n is associated with t. We proceed now to consider 

conditions under which these respective Hausdorff uniformities 

and their induced topologies on various hyperspaces are 

comparable. This subject has had an interesting history 

over the last decade or so, and the relevant results are 

included and discussed in this Chapter. The central problem 

has been to determine when two uniformities on X induce 

the same topology on S(X). Such uniformities are called 

B-equi:rxiumtj if they induce the same topology on some 

il c Sex) we shall call them H-equi:f)a1.tmt on Je. 

J. R. Isbell asserted (wrongly as it turned out) in 

(12), page 35, exercise 17, that distinct uniformities are 

not H-equivalent, with the implication that the topology on 

3(X) is "sufficient" to distinguish between uniformities 

on X. D. H. Smith in (30) showed that Isbell t s proof was in 

error I but proved some partial results tending to support the 

conjecture. In particular, H-equivalent uniformities must lie 

in the same proximity class; this has two significant 

corollaries : that two distinct uniformities, at least one 

of which is precompact, cannot be H-equivalent. and that two 

distinct uniformities, each with countable base, cannot be 

H-equivalent. Two unifclna1tJ.ea in the same proximity class 

must each be hyperassociated with the other (aee aection 3.6), 

but they need not be H-equ1valent, as it will appear. 
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A. J. Ward (34), A. A. Ivanov (13) and Isbell himself (11) 

found counterexamples to the conjecture, and finally Ward 

gave, in (35), necessary and sufficient conditions for two 

uniformities to be H-equivalent. Strangely enough, F. Albrecht 

(1) had given slightly different equivalent conditions years 

before, but due (I suggest) to a misrepresentation in Maths. 

Reviews his result appears to have passed unnoticed. Ward's 

and Albrecht's results are included in section 2. In response 

to WaN' s and IsbeU' s counterexamples, and 1D the following 

year 1967, J. L. Hursch (10) brought his notion of "height" 

to the problem - this is a relation between uniformities which 

is dual in a sense to that of proximity. He showed that two 

uniformities equal in both proximity and height must satisfy 

Ward's conditions, and so are H-equivalent. That there exist 

distinct uniformities of this intimacy had previously been 

demonstrated by Hursch. 

In section 3 we ask when two uniformities are H-equivalent 

on various smaller sets than S(X). If t and n are simply 

given to induce the same topology on X (we shall describe them 

as aompatibu for brevity), then they are H-equivalent on the 

set of compact subsets. But they are not necessarily H-equivalent 

on the set of n-precompact subsets; for this to pe true it is 

necessary that every n-precompact subset be t-precompact. 

Sufficient conditions involving the notion of height are given 

for t and n to be H-equivalent on the set of all pre compact 

subsets. They may still not be H-equivalent on g(X), however. 

For this they must be proximity-equivalent and each must be 

uniformly finer than the other over X on each subset which 

is di.~te with respect to the other (these are Ward's 

conditions - see .ection 2 for the definitions). Given all 
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this, t and n will certainly induce the same topology on the 

set of compact subsets of 8(X), but they may yet induce 

different topologies on ~(~(X». 

In oroer to induce the same topology on S< S(X», the 

... -Hausdorff uniformities t and n must be proximity-equivalent 

on ~(X), and V. Z. Poljakov (2~) showed in 1968 that in that 

case t and n must coincide, so that of course all the induced 

uniformities and topologies coincide. Poljakov's proof is 

given in slightly different form in section 4, and it is 

apparent that even on the set ~(X) of finite subsets of X 

the proximity structure distinguishes between uniformities on X. 

Thus, where the topology on ,3(X) is insufficient for 

distinguishing uniformities, the topology on S( S(X». and 

even on S< c::f(X». is sufficient. While the topology on X 

is insufficient far determining the topolOgy on ~(X), it is 

sufficient for determining the topology on (!(X). In general, 

one topology on a set may arise from many uniform structures, 

unless it is apawated and compact, when there is only one. Also 

one proximity structure _y arise from many uniform structures, 

precisely one of which is precompact. Of the class of all 

induced unifOI'1llities on S(X) or ~(X), however, we can say that 

no two have the same proximity structure, and of the class of 

all induced uniformities on S( S(x» or S(~X», we can say 

that no two have the same topology. 

Next we consider the problem of when H-equivalence of two 

uniform! ties implies identity. Ward has shown in (35) that 

when the uniform space (X, t) has a certain rather complicated 

homogeneity of structure, there can be no other uniformity on 

X H-equivalent to t. It is proved in section 5 that if (X, t) 

is the union of a compact collection of discrete sets then the 
same thins can b.2.. said. \Jard's result fon~s froM this, 
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4.2 . The H-egui valence of uniformities. We call Yl 

B-finer than t on a subset cit. of 8(x) if n induces a finer 

topology than l on it . When it= 5( X) we merely say H-fineze. 

The two uniformities t t Yl are H-equivalent if each is H-finer 

than the other. To begin with, it is obvious that if Yl is 

finer than tit must be H-finer. Before concentrating on 

topologies it seems logi~ally desirable to state the case for 

comparability of uniformities; the following THEOREM is 

immediate. 

THEOREM 4.2.1. If t, n are uniformities on a set X which are 

either compatible or both separated, then the following are 

equivalent: 

(1) Yl is finer than t on X; 

(2) "is finer than! on the set of t-compact subsets; 

(3) "is finer than t on the set of n-compact subsets; 

-(4) "is finer than t on the set of t-precoq>act subsets; 

(5) "is finer than i on the set on Yl-preoompact subsets; 

(6) "is finer than l on the set of t-closed subsets; 

( 7) "is finer than ~ on the set of Yl-closecl subsets. 

(8) "is finer than t on ~(X). 

Fat' Yl to be H-finer than t on SeX) it is clearly necess&r"5' 

that Yl induce a finer topology on X. However it i. not necessary 

that the various conditions of THEOREM 4.2 .1. should hold, as was 

demonstrated by the counterexamples of Ward, Ivanov and Isbell. 

It was Albrecht (1) who first found necessary and sufficient 

conditions, in the following form: 

Given that t. Yl induce the same topology on X, Yl is H-finer 

tho t if and only if. for each M in e(X) and each U in t, there 

exists V in Yl such that 
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(i) V(M) c= U(M), and 

(ii) for each point x in M there is some point x' in M 

with V(x') c:: U(x). 

Ward (3S) gave necessary and sufficient conditions in 

somewhat more elegant form and we include his result, together 

with a slightly altered version of Albrecht's, in the next 

THEOREM and (lest there be any further confusion on the 

matter!) prove them equivalent. 

First. some definitions are required, for use throughout 

the Chapter. 

Let A be any subset of X. Then 1'\ is said to be unifozm'Z.lI 

fine%' than t on A OWl' X if, given any U in t, theN exists 

V in 1'\ such that V n (A )( X) c:: U (or, equivalently, 

V(a) c: U(a) for each point a in A). 

A subset B of X is called U-d:lsONtB. for U in t. if. 

for each point b in B, U(b) n B :; {~}. The subset B is called 

t-di.scNte if it is U-discrete for some U in t. 

We recall that 1'\ is pl'O:l:'imi.ty-fi.ne%' than t if and only 

if for each A C X and each U in t there exists a V in 1'\ such 

that V(A) c::: U(A). We describe this by saying that 1'\ induces 

finer uniform neighbourhoods of A than t. 

'l1lEOREM 4.2.2. Let t, 1'\ be two uniformities on a set X. Then 

the following are equivalent: 

(1) 1'\ is H-finer than t; 

(2) (WARD'S CONDITIONS) 1'\ is proximity-finer than t and 

uniformly finer over X on every t-discrete set; 

(3) (ALBRECHT'S CONDITIONS) for each A c:: X and U in t 

there exists V in 1'\ such that 
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(i) V(A) =: U(A), and 

(ii) for each x in A there is some x' in A with 

V{x') c: lJ(x). 

Proof. The equivalence of (1) and (2) was proved by Ward (3S). 

We shall simply show that (2) and (3) are equivalent. 

Suppose that (2) is true, and let A c=. X and U in ~ be 
2 

given. Let Ul be a symmetric entourage in t with Ul c.::: U, and let 

B be a maximal U l-discrete subset of A. By (2) there exists 

V!, V
2 

in n such that Vl(A) c::.U(A) and V2 n(B x X)c. Ul • 

Put V = V 1 n V 2. Then V belongs to n and veAl c::- U{A). Further­

more, if x is any point in At there is a point x' in B such 

that (x, x·) belongs to Urby the maximality of B; also 
2 

V
2
(x') C:::Ul(x')t so that V(x')C:V2(x') C::.Ul(x') C:Ul(X) c:::U(x). 

Therefore (3) is true. 

Conversely, suppose that (3) is true. Then, quite 

trivially, n is proximity-finer than~. Let A be aU-discrete 

subset of X, for some U in~. Then there exists V in 1'\ such 

that condition (ii) of (3) holds, where in fact x' = x since A 

is U-discrete. Thus V(X) c:. U(x) for each x in A, which means 

that n is uniformly finer than t on A over X. 

Remark. It is easy to see that if ~ and n are canpatible 

uniformities on X then n is H-finer than ~ on ~(X) if and only 

if it is H-finer on e(X), and this is true if and only if 1'\ 

induces a finer proximity between the closed subsets of X and 

is uniformly finer over X on every ~-diserete subset. 

4.3 The H-eguivalence of uniformities on subsets of ~(X). 

When two uniformities are not H-equivalent on S(X) then looking 

for subsets of ~(X) on which they are H-equivalent can yield a 

measure of their failure in this respect. The next result fixes 
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the zero - any two compatible uniformities must at leastbe 

H-equivalent on the set of compact subsets. 

THEOREM 4.3.1. Let~," be two uniformities on a set X. 

Then the following al'e • qui valent: 

(1) 1'l induces a finer topology than ~ on X; 

(2) "induces finer uniform neighboUl"hoods of "-compact 

subsets; 

(3) n is uniformly finer over X on every finite t-discrete 

subset; 

(4) 1'l is uniformly finer over X on every finite subset; 

(5) n is H-finer on the set of n-compact subsets. 

Proof. Trivially, (2) implies (1). To show that (1) implies 

(2) let C be any n-compact subset and let U in t be given. Then 

A = X - U(C) is a t-closed set and so is also "-closed. Since 

e is n-compact and disjoint from A, there exists V in n such 

that vee) n A = • (see e.g. Bourbaki (4». Thus V(C) c: U(C), 

and (2) follows. Next, it is obvious that (4) implies (3) and 

clear that (3) implies (1). We prove that (1) implies (4). Let 

B be a finite subset and let U in t be given. For each bi in 

B there is a Vi in 1'l such that Vi(bi)c:.U(bi ). Then V =nVi 
i 

belongs to n, and if b is any point in B, V(b) c. U(b) so 

that V n (B x X) c: U. We now have (1), (2), (3) and (4) 

equivalent. 

That (5) implies (1) is obvious, so it remains to prove 

that the truth of the conditions (1) - (4) implies the truth of 

(5) • Let eo be an "-compact subset and let U in t be gi van. By 

(2) there is some V in 1'l such that V (C ) c U(C ). Choose a o 0 0 0 
2 

symmetric U 1 in t with U 1 c:; U. Then, since Co must also be 

t-compact by (1), theN is a finite t-discrete set B c::..C such 
o 

that Co C U1 (B). By (4) we can choose a syuaetric V in Tl such 
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that both V c:::::. V 0 and Vn (B x X) c: U1 • Now let C be any n-compact .. 
set such that (C, Co) belongs to V, For any point b in B there exists 

a point. c in C such that (b, c) belongs to V ~ because B c: Co c: V(C), 

'l1len (b, c) must alao bel=S to U1 , because V (B x X) ;:: U1 , Since 
2 

U
1 

is symmetric we have Bc..Ul(C), and hence Coe. Ul(C) cU(C) • 
.. 

Also, C c::.V(Co)c::..vo(Co ) c:..U(Co)' so that (C, Co) belongs to U, 

and the truth of (5) is established. 

It is natural to ask whether this result can be extended -

whether compatible lDliformities must be H-equivalent on the set 

of ~-precompact subsets or the set of l"I-precompact subsets. An 

examination of the foregoing proof yields the following: 

COROLLARY ~.3.2. If 1"1 induces finer uniform neighbourhoods 

of t-precompact subsets than does ~, then 1"1 is H-finer on the set 

of t-precompact sets. If 1"1 induces finer uniform neighbourhoods 

of n-precompact subsets and if every n-precanpact subset is also 

e-precompact, then 1"1 is H-finer on the set of n-precompact 

subsets. 

However, in general, compatible uniformities are not H-

equivalent on the set of all pre compact subsets. This is a con­

sequence of the following two LEMMAS, the first of which is 

proved using ideas of Ward's paper (35). 

LEMMA ~.3.3. If 1"1 is H-finer than t on the set of ~-precompact 

subsets, then 1"1 is \Ulifomly finer over X on every t-d1screte 

n-precompact subset. 

Proof. Let A be an n-precompact and U 0 -discrete subset of X, 

where U 0 belongs to t, and let U in t be given. Let U
1 

be a 

symetric entourage of t contained in U 0 n U. Then there is 

some symmetriC V in 1"1 such that any n-precompact set B 

belonging to V(A) must belong also to 01 (A). In particular, the 

set B = {y } U(A - {x }), where x belongs to A and (x , y ) 
o 0 0 0 0 
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.. 
belongs to V, must belong to U 1 (A) t and therefore A c: U 1 (B) • 

Thus there exists y' in B such that (x t y') belongs to o 

U
l 
c: U 0 • Since A is U 0 -discrete, y' = Yo' Thus for any point 

x in A and any point y in V(X) we must have y belonging to 

U
l 
(x) C::U(x) t and so V n(A x X) cU. 

LEMMA 4.3.4. If n is uniformly finer than t over X on 

every t-discrete n-precompact subset, then every n-precompact 

subset is t-precompact. 

Proof. Let A be n-precompact, and let U 0 in t be given. 
2 

Choose a syumetric Ul in t with Ul c:::: Uot and choose a maximal 

Ul-discrete subset of A., say B. Then A C:Ul(B) and there exists 

by hypothesis some V in n such that V n(B x X) c::: Ul • Since 
pre 

B is ni:0mpact, there exists a finite set F c:: B such that 
2 

Bc::V(F). But then also Bc:::.:.Ul(F). and so A c:.U1(F) c::.Uo(F). 

Therefore A is t-precoapact. 

By the previous two LEMMAS, in order that t and n be 

H-equi valent on the set of n··precompact subsets, every 

n-precompact subset must also be t-precompact, and in order that 

t and n be H-equivalent on the set of subsets which are either 

t-precompact or n-precompact, we must have the respecti va 

collections of precompact subsets coinciding. If. on the other 

hand, these collections are known to coincide t and if the 

respective systems of uniform neighbourhoods of each precompact 

set induced by t and n form equivalent filter bases. then by 

COROLLARY 4.3.2, t and n are H-equi valent on the set of all 

precompact subsets. 

At this point we recall Hursch's notion of height. The 

uniformity t is said to be 1488 than Ol' squat in htlight (,> 
to n if for each U in t there exists a finite coverinl {Ai) of X 
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and a V in n such that V n(Ai x Ai) c: U for each i. Hursch 

showed in (10) that if t , n and n , t, and t, n are proximity­

equivalent, then. they are H-equivalent. By means of COROLLARY 

4.3.2 and the fo11owi~g LEMMA, we can state a sort of ha1f-w3Y 

result. 

LEMMA 4.3.5. If t ~ n then every n-precompact subset is also 

t-precompact. 

Proof. Let A be n-precompact and let U be any symmetric 

entourage in t. Then there exists a finite covering {Ai} of X 

and a V in n such that V n<Ai x Ai) c=u for each L Let B be 

a maximal U-discrete subset of A, and choose VI in n with ~1C= V. 

Since A is n-precompact, there exists a finite set F c:: A such 

that A c:.Vl (F). 

Now,for each f in F, V1(f) contains at most a finite number 

of points of B. For if bl , b2 are tWo points of B in Vl (f) 

which belong to the same member Aiof the finite covering, then 

(b
l

, b
2

) belongs to V n(Ai x. Ai) c:U, and since B is U-discrete, 

b
l 

= b
2

• Hence V(F) contains at most a finite number of points 

of B; but B c:.V(F), so B must be a finite set. By _ximality 

of B, A c:U(B), and therefore A is t-precompact. 

PROPOSITION 4.3.6. If t is less than or equal in height to n, 

and if n induces finer uniform neighbourhoods of n-precompact sub­

sets, then n is H-finer than t on the set of n-precompact subsets. 

Remarks. It is quite possible that the part of the hypothesis 

concerning uniform neighbourhoods could be considerably weakened. 

Perhaps compatible uniform! ties which are equal in height must be 

H-equivalent on the set of pre compact subsets? It ia alao tempting 

to conjecture that compatible uniformities must be H-equivalent on 

the set of subsets which are pre compact with respect to each uniformity. 
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1 •• 4 The sufficiency of the set S( ~X». After Ward, 

Ivanov and Isbell had succeeded in'showing the ""insufficiency of 

the· hyperSpace" (Isbell's phrase), Poljakov proved in (24) that 

if t, ''1 are· diStinct, compatible UDifomities on )C,t1len 'tlifl 

unifondtie. t ad ~ on 8CX) are not proxiidty-eqU!valent, 

and hence by Ward's conditions in THEOREM 4.2.2. the uniformities 

= : t and '1 induce'distinct topologies on' B( S(X». Actually, 

his proof shows that even the set of subsets of ~X) (the set 

of finite subsets of X) is sufficient for distinguishing 

uniformdties on X. 

We present here a slight adaptation of Poljakov's original 

proof. 

THEOREM 4.4 .1. Let (, '1 be two uniform! ties on a set X. Then" 

~ is proximity-finer than t on the set cr(X) if and only if '1 

is finer than t. 
... 

Proof. If '1 is finer than t then it is clear that '1 is 

proximity-finer than i on c:r<X). Conversely, suppose the latter 

if true and let U in t be given. Choose a synlDetric Ul in t 
2 

such that Ul c:::. U. 

Consider the following two subsets of ~X): 

lit: {{xl: x & X}, 

~ : {{x, y} : <x, y) I. u}. 

We show that ~and ~ are (-remote. Let {x, yl belong to 

U
l 
<dt), so that there exists A in Jt with {x, y} belonging to 

... 
Ul(A); this means that there is some point z in X such that 

2 
{x, ylcUl(z). Then <x, y) belongs to Ul ,-:, U, so that {x, y} 

does not belong to S. Thus ul<&t)n 8 = +. 
Since ~ is proximity-finer than ion'¥' (X) , Jt and ~ 

... 
must also be '1-remote. Thus there exists a symmetric V in '1 

such that V(~)n <8 = •• That is, for each x, y in X, (x, y) 
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.. 
belongs to U whenever {x, y} belongs to V({z}) for some z in X • .. 
Let (x, y) belong to V. Then {x, y} belongs to V({x}>, and so 

(x, y) must belong to U. Therefore V cU, and n is finer than ~. 

COROLLARY 4.4.2. If n induces a finer topology than t on 

~(~(X»t then n is a finer uniformity than ~. 

4.5 The H-singulari ty of uniform! ties. When can we say 

of a uniform space (X, t) that there is no other uniform! ty on 

X H-equi valent to ~? Such a uniform! ty is called B-si.ngu1.azt, and 

Ward (35) has given sufficient conditions for H-singularity, 

in the following form: 

Let (X, t) be a uniform space such that there exists a 

compact unifonn space K and a f.tmily of mappings f i : K + X (i E I), 

satisfying: 

(1) LJfi(K) = X, 

(2) the set Ex = {fi(x) i I: I} is t -discrete for every 

x in K, 

(3) the mappings f i' i I: I, are uniformly equicont inuoue • 

Then t is H-singular. 

These conditions can be made intrinsic for X at the expense 

of their strength by supposing K to be a subspace of X, as pointed 

out by Ward. In any case they are rather complex. A more 

general NSul t is possible, which can be stated much more simply. 

The following PROPOSITION will be the basic tool, and Ward's 

original proof will beam the guiding light. 

PROPOSITION 4.5.1. If t, " are two uniformities on a set X, 
... 

and if X is the union of a t-compact collection of subsets on 

each of which t is uniformly finer than " over X, then t is 

finer than " on X. 
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Proof. Let ID = {D. : i £ I} be th- ooUection of subsets, and 
l. 

2 
let V in n be given. Choose a symmetric V in n such that V c: v. o 0 

Then there exists, for each i in I, a Ui in t such that 

3
i
n(D

i 
x X) evo • The collection lUi (Di ) : i £ I} is 

an open covering of ~, and since <.D is t-compa~t there is a 

- -finite subcover Uil (Dil)' ••• , Uin(Diu)· Let U be a symmetric 

entourage in t such that U c: n{Ui
k 

: 1 , k , n}. 

Now suppose (x, y) belongs to U. For some i in I, x belongs 

-to D
i

, ~d for some 1 EkE n, Di belongs to Uik(Dik). Thus y 
2 

belongs to U(Di ) CU(Uik(Dik» C::Uik(D~), and so there is some 
2 

d in Dik such that (d, y) belongs to U~. Since U c::.Uik and (y, x) 

3 
belongs to U, we also have that (d, x) belongs to Ui. But then 

k 

both (d, x) and (d, y) must belong to Vo ' so that (x, y) belongs 

to V. 

It has been proved that U c::::. V, and therefore t is finer than n. 

THEOREM .... 5.2. If (X, t) is any uniform space which is the union 

of a compact collection of discrete subsets, then t is H-singular 

Proof. Suppose that n is a uniformity on X H-equ!valent to t, 

and let S) be the t -compact collection of t -discrete subsets. By 

ward t s Theorem 1 in (35), each t -discrete subset is "-discrete, and 

t is uniformly finer over X than n on each n-discrete set. Hence by 

PROPOSITION .... 5.1, t must be finer than n on X. 

But since t and n are H-equivalent. [) is also an ~-compact 

set, and again by Ward's theorem n is uniformly finer than t over X 

on each t-discNte set. Therefore PROPOSITION .... 5.1 can again be 

applied , with t and n in reversed positions, to show that n is 

finer than t on X. 

That Ward's Nsult onH-singularity follows from THEOREM 

4.5.2 can be seen by taking~. {Ex: x E K} , and observing that 
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the mapping x .. Ex .~ 1<' outo t[) is continuows by i:ho unifom equi­

continuity of the mappings fi' i £ I. 

In view of another result of Ward - Theorem 3 in (36) - I 

make the following conjecture: 

CONJECTURE 4.5.3. Let ~ be a uniformity on X with countable base, 

and let (X, U be the union of a precompact collection of discrete 

:,ets. Then t is H-singular, provided teat the cardinal of X is 

non-measurable. 



CHAPTER 5 

GRAPHS AND HYPERGRAPHS 

5.1 Introduction. Let X and Y be sets with 

topological structures and let t be a mapping ot X into Y. 

The graph G(t) ot t is the subset {(x, t(x» : x e X} of 

X x Y. and we say that t has a closed graph it G( t) is closed 

in X x Y with respect to the product topology. We detine the 

hypergztaph W t) ot t to be the subset {(A, tID) : A e 5 (X) } 

of Sex) x e:(y), that is, the graph of the induced mapping 

t' : SeX) + e(y)· 

Provided that y is separated, every continuous mapping has 

a closed graph t but the converse is not true in general and the 

many Closed-graph Theorems ot functional analysis have been 

concerned with situations in which continuity and closed-graph 

conditions are equivalent. It will be shown in section 2 that 

when X and Y are arbitrary unitorm spaces and Sex) and e(y) 

have their Hausdorff uniformities, then any unito~ continuous 

mapping has hypergraph closed in ~(X) x eey), and any mappins 

with a closed hypergraph is continuous. Thus, in particular, 

when X and Y are topological vector spaces the closed-bypergraph 

condition is equivalent to continuity tor a linear mapping. 

It eft is any collection ot subsets ot X we will say that 

9t(t) is otos.d 011 the 86ts of Jl it ?-t(t) n (c/tx e(Y» is 

closed in Jlx t.(y). This is a weaker condition than the 

closed-hypergraph condition and tor a suitable choice ot ,Jb 
lies in between closed-graph and closed-h1Pergraph conditions 

when Y is separated. In section 3 sCllle situations are tound in 

whiCh such a condition implies continuity. Por example, when 

X and Y are locaJ.l;y convex topological vector spaces and X ill 

barrelled then a linear mapping is continuous it and only it its 
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hyper graph is closed on the absolutely convex absorbent subset. 

of X. 

In section 4 the hypergraph of a relation R on a uniform 

space X is defined and it is shown that the separateclness ot the 

quotient space X!R of an equivalence relation is in a sOlllewhat 

similar posi tion, with regard to closed· graph and closed· bypergraph 

conditions ~ to continuity in the case ot a mappina. Some 

examples are given in section 5. 

5.2 The closed bypergraph theorem. Let (X, () and (Y, n) 
.. 

be unitorm spaces and let ~ and n be the Hausdortt unitormi ties 

on $(X) and e(y) respectively. There are simple characterizations 

of mappings with closed graph, and mappings with closed by'persraph. 

LEMMA 5.2.1. The graph G(t) ot t is closed it and only it 

ri{V(t(U(x») ; U £ t. V £ n} • {t(x)} tor each x in X, and the 

hyper graph 9(t) ot t is closed in SeX) x t(y) it and onJ.7 it 

n{V(t'(U(A») : U £ t, V £ n} • {iUJ} tor each A in S(X). 

Proot. The two results are parallel statements about the graphl 

of t and t' ; it is enough to prove the lecond. Let 9f. (t) be 

closed. It B is a closed sublet ot Y belonsill8 to the given 

intersection then, tor each U, V, t' (U(A» n V( B) ~ • since V is 

s7Jllll1etric, and so (U(A) x V(B)} n 1£(t) ~ t. Thus (A, B) belonp 

to the closure of the hypersraph, aDd by hypothesis must actuaJ.ly 

belong to hypergraph itselt. so that B • tTAT. 
Conversely if we assume the intersection is {trir} and it 

(p, Q) belongS to the closure ot the bypergraph. then tor each U.V. 

(U(P) x V(Q»fl~(t) ~ +,80 that tl(U(P»() V(Q) ~ +. and hence Q 
.. .. 

belongs to V(t'(U(P»). Thus Q • tm and (P. Q) belonp to the 

hyperaraph. which 1DU8t therefore be closed. 

Remarks. There are analoaoua characterizations for 
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relations, which will be given later. When X and Y are 

topological vector spaces and tL and ~are their re.pectiv~ 

O-neighbourhood bases, the above result about the graph of 

t takes the well-known form: 

a linear mapping t has closed graph if and only if 

n {t(U) + V : U £ U, V e Y} :I {O}. 

If. back in the uniform space situation,& is any collection 

of subsets of X then a slight modification of the foregoing 

proof shows that the hypergraph of a mapping t is closed on 

the sets of It if and only if n{V(t '(UJt(A») • U £ t. V £ n} 

:I {"t(l)} for each A in Jt. where (jJt denotes the ento~age 
induced on~· by the entourage U on ~(X). 

THEOREM 5.2.2. Let X and Y be uniform spaces and t be any 

mapping of X into Y. If t is uniformly continuous then its 

hypergraph is closed. If the hypergraph is closed, on the 

other hand, then t is continuous. 

Proof. If t is uniformly continuous then the induced mapping 

t' of SeX) into e(Yl ill uniformly continuous, and since €.(Y) 

i8 separated the graph of t', which is the hypergraph of t. 

must be closed. 

Now let the hypergraph be closed, and let A be any subset 
... .. 

of X. By LEMMA 5.2.1 the intersection of the •• ts V(t'(U(A»), 

where U and V are any entourqes of X and Y respectively, is 

{ttm . But consider the set t(A). Clearly 1: belonp to .. - ... 
U(A) for each U, and so t(l) • tl(A) belongs to t'(U(A»; - ...... 
thus teA) belonls to V(t'(U(A») for each U, V and teA) • teA) 

by the LEMMA. This being so for each subset A of X. t must 

be continuous. 
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COROLLARY 5.2.3. The closed·hypergraph Condition is 

equivalent to continuity for a mapping t of X into Y. in the 

following situations: 

(1) X, Y topological vector space, t a linear mapping, 

(2) X, Y uniform spaces, and the uniform! ty on X the 

fiast inducing the given topology; 

( 3) X, Y uniform spaces, and X compact. 

Proof. In each case it is well-known that continuity and uniform 

continuity are equivalent. 

Remarks. I have not been able to find any continuous 

mapping with non-closed hypergraph, nor any mapping with closed 

bypergraph which is not uniformly continuous, but I conjecture 

that the converses of the 'nlEOREM are false. Note that the use 

of the separated space ~(y) in the LEMMA, instead of ~(Y)t 

and the definition of the hypergraph as the graph of t' (as 

o opposed to t ), are essential for the theory. 

5 • 3 • Weaker conditions on the hyperSl'aph. If ,R.is any 

subset of ~(X). it is clear that the hypergl'aph of a mapping 

will be closed on the sets of Jt- if it is closed in S (X) x @:(y). 

If Y is separated and {{ x} = X £ x}c: Il, then the conditIon 

that the hypergraph be closed on the sets of it is intemediate 

to the closed graph condition and uniform continuIty. This 

follows from the identity G(t) I: cJ.t<t) n (cit x @.(Y» n (X x Y) t 

where X and Y are regarded as isomorphically embedded in .it 
and e.(y) respectively. Similarly the condition that 

ctt(t) n (~x e(y» be a Borel set in cit x €(Y) is intermediate 

to the condition that G(t) be a Borel set in X x Y and the 

cond! tion that t be uniformly continuous. It is natural to ask 

what structures on X and Y will enable continuity or uniform 
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continuity to be inferred from any of these in~ermediate conditions. 

When X and Y are general uniform spaces it is sufficient 

for continuity of t that its hypergraph be closed on ~(X). 

Consider the following diagram: 

to 
--..... S(y) 

~ Ih 
--.... + €(y) 

ttl 

Here we regard ~(X) and ~(y) as thu Hausdorff spaces associated 

with 5(x) and -3(Y) respectively, and :11 , 12 are the respective 

canonical mappings, taking each set onto its closure (see section 

o 2 .iJ) • The mappings t and t' are the usual induced mappings, 

and tit is the restriction of t' to e (X) • Now if A belongs to 

~ (X) we have (j2oto)(A) = ill) = t(A), and (tit 0 j )(A) • t(A). 

Hence t is continuous if and only if the diagram is commutative, 

which is true if and only if saying (t(A), t(B» belongs to 

the intersection of the entourages of ~(y) is equvalent to 

saying (t(A): t(B» belongs to the intersection of the entourages 

of S(y)· 

Also, because :11 is continuous, the mapping t' has closed 

graph if til has closed graph, and because :11 is open, til haa 

closed graph if t t has closed graph. Thus eft< t) is closed in 

$(X) x !(Y) if and only if it is closed ell the sets of e(X). 

PROPOSITION 5.3.1. If X is a metrizable space and Y any unifoX"lll 

space then a mapping t of X into Y is continuous if its hyper­

graph ia cloaed on the bounded subseta of X. 

Proof. By the remarks after LEMMA 5.2.1, the condItion implies 
• • 

that the intersection of the sets V(t'(U(B»), where U i8 any 

entourage of the Hausdorff uniformity on the set ~ of bounded 
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subsets of X t and V is any entourage of the Hausdorff uniform ty 

on e (Y), must be {tfi}}. for each B in '9. Since the closUl'e 

of any bounded set is bounded, this implies that t(E) = t(B) 

for each B in S? Now if Bois a fixed member of 9 and B is 

any subset of Bo~ then B belongs to'S and t(BBO)c=. t(BX)c: tTBT. 

Hence t is continuous on B 0 • But each point of X haa a neigh­

bourhood belonging to ~, and so t must be continuous on X. 

Remarks. It is clear from the pl'OOf of the PROPOSITION 

that if, for any £ > 0, we let~ be the collection of subsets 

of X with diameter less than 01' equal to £, then the condition 

that t has hypergraph closed on the sets of ~ is sufficient 

for continuity of t. This approximates, intuitively at least, 

remarkably closely to the closed graph condition. 

We can extract from the PROPOSITION some closure conditions 

on the collection ~ and local conditions on X which enable 

the following more general result to be proved by exactly the 

same method. 

THEOREM 5.3.2. Let X and Y be uniform spaces and let.R be a 

collection of subsets of X such that far each A inJl the closure 

of A belongs to it and any subset of A belongs to it . Suppose 

also that each point of X has a neighbourhood base consiating 

of sets of It. Then a mapping t of X into Y is continuous if 

its hypergraph is closed on the sets of ril. 

COROLLARY 5.:3.3. If X is a locally compact (resp. locally 

precompact uniform space and Y is any mifom space then a 

mapping t of X into Y is continuous if its hypel'graph is 

closed on the relatively compact (reap. pre compact ) subsets 

of x. 



- 110 -

Note that we could replace the condition "X is a locally 

compact space" with "X is a k-space" - that is, one in which 

every set intersecting each compact, closed set in a closed 

set must be closed. For then continuity on X can be inferred 

from continuity on each compact subset. Clearly the topology 

of a k-space is determined by the collection of compact closed 

sets. One of the most important properties of a k-space is 

that the set of all continuous mappings from a k-space to a 

complete uniform space is complete with respect to the 

unformi ty of uniform convergence on the compact subsets. If 

X is separated, and is either locally compact or first­

countable, then it is a k-space; in particular a pseudometrizable 

space qualifies (see e.g. Kelley (15». 

There is a further, slightly different, result along the 

lines of the previous THEOREM. 

THEOREM 5.3.4. If X and Y are loo81ly convex topological 

vector spuces and X is barrelled t then a linear mapping t of 

X into Y is continuous if and only if its hypergraph is closed 

on the absolutely convex, absorbent subsets of X. 

Proof. The condition implies, as in tbe proof of PROPOSITION 

-5.3.1, that t(i) • t(A) for each absolutely convex, absorbent 

subset A, because the closure of such a subset is also absolutely 

convex and absorbent. Let V be any neiahbourhood of the origin 

in Y. Any locally convex space has a neighbourhood base consisting 

of barrels, so we can choose V 1 c: V where V 1 is a member of 

such a baae. Then t -l(V 1) is absolutely convex and absorbent 

by linearity of t, and hence t(t-i(vl»ct(t-1(Vl » I: VlCV. 

But t-1(V
1

) is a barrel and consequently a neighbourhood of the 

origin in X, because X is barrelled. Therefore t is continuous. 
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The converse follows immediately from THEOREM 5.2.2. 

5.4 The hypergraph of a relation. Let X be a set and 

R a relation on X. We denote by xRy the statement "x is in 

the relation to y", or just I'X is raUted to y". Let R(x) 

denote the set of points to which x is related, and for any 

subset A of X let R(A) denote the set of points to which some 

point of A is related. The graph G(R) of the relation is the 

subset {(x, y) = xRy} of X x X; the distinction between the 

concepts of a relation and its graph is essentially one of 

convenience. 

The relation R induces a natural relation R' on ,~(X) as 

followS. For A, B in 3(X) we PUt AR'B if for each point a in 

A there exists b in B such that aRb and for each point b' in 

B there exists a' in A such that a'Rb'. We then define the 

hypergraph 'fie R) of the relation R to be the subset 

{(A, B) : A R'B} of0<X) x $<X), that is, the graph of R'. 

If R is reflective, symmetric or transi ti ve then R' 

inheri ts the corresponding property. Thus if R 1s an 

equivalence relation, so is R' • In this case, for A in 8( X) , 

the set R(A) is the same thing as what is usually called the 

saturation of A with respect to Rt and 

~R) = {(A, B) : R(A) = R(B)}. 

A set A is called saturated with respect to R if A :I R(A). Note 

that this will be so if and only if each member of R'(A) is 

contained in A. 

Now let X be a l.D1ifom space with l.D1iformity C. In this 

section t will denote the Hausdorff l.D1ifomity on ~(X). There 

are simple characterizations, analogous to those for mappings, 

of those relations with graph closed in X x X and those with 

hypergraph closed in 8(X) x S(X). 
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LEMMA 5.4.1. The graph G( R) of R is closed in X x X if and only 

if(KV(R(U(X») : U, V e U = R(x) for each x in X, and the 

hypergraph ~R) of R is closed in SeX) x Sex) if and only if 

fl<V(R' (U(A») : U, V e U = R' (A) t for each A in S(X). If R 

is symmetric, the latter follows if f!{V(R(U(A») : U, V e t}= R(A). 

Proof. As with LEMMA 5.2.1, it is enough to prove the result 

for ;t{R). Let ~(R) be closed, and let A and B be subsets such - ... 
that for each U, V in t, B belongs to V(R'(U(A»). Then, for 

each U, V in t, (R'(U(A») (lV(B) ~ ., since V is symmetric, so 

that (U(A) x V(B» n ~(R) f. +. thUs (A, B) belongs to ~(R) 
and hence to ~(R), so that AR'B and B belongs to R'(A). Since 

R"(A) is easily seen to be contained in the intersection of the 
... .. 

sets V(R'(U(A»), this concludes one part of the proof. 

Conversely, assume that the intersection is R'(A), and let 

(P, Q) belong to~. Then for each U, V in t, 

(U(P) x V(Q» n~R) ~ +t that is (R'(U(P») n V(Q) _ +t 
.. -

and so Q belongs to V(R'(U(P»), V being symmetric. By assumption, 

then, Q belongs to R'(P), so that (P, Q) belongs to 1t(R), which 

must therefore be closed. 

Now suppose that R is a symmetric relation, and that 

(I{V(R(U(A») : U, V £ t} = R(A) for each A in ~(X). Let (P t Q) 

belong to ~(R5. Then for each U, V, there exists (A, B) in 
.. -

9t'R) such that (A, P) belongs to U and (B, Q) belongs to V. 

We have AR'B and since R is symmetric this implies both ACR(S) 

and BCR(A). We also have ACU(P), PC::U(A), BC=V(Q) and 

QC:V(B), and hence Pc:.U(R(V(Q») and Qc::V(R(U(P»). By the 

supposition, Pc:- R(Q) and Q CR(P), and so (P, Q) belongs to 

~R). which is therefore closed. 

We shall now show that, if R is an equivalence relation, 

the relation of closed graph and closed hypergraph conditions to 
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the separatedness of the quotient space X/R closely parallels the 

relation of these conditions to continuity in the case of a 

mapping. 

If X is a uniform space and Q : X + X/R is the quotient 

mapping, then the quotient topology on X/R is the finest for 

which Q is continuous. The equivalence relation R is called open 

(resp. closed) if the mapping Q is open (resp. closed) with 

respect to the quotient topology. If X/R is known to be 

separated than G(R) is closed for it is the inverse image of the 

diagonal under the continuous mapping Q x Q : X x X + X/R x X/R. 

'nle converse is not true in general, but is true if R is open 

(see e.g. Bourbaki (4), Chapter 1, section 8, no. 3). However 

if we assume that ~R) is closed, then the quotient space becomes 

as separated as a space can be. 

tHEOREM 5.4.2. If R is an equivalence relation on a uniform 

since X and if R has a closed hypergraph, then the quotient 

topology on X/R is the discrete topology, thus making X/R 

separated, every saturated subset of X both open and closed. and 

R both an open and a closed relation. 

Proof. By LEMMA 5.4.1 if R has closed hypergraph then the - ... 
intersection of the sets V(R'(U(A») is R'(A), fOr each subset A • 

... 
For each U in ~ .. !R(A) belongs to R'(U(A» and so for each U, V 

in t, R(A) belongs to V(R,(U(A»). Thus iUTbelongs to R'(A), 

which implies that R(R{A) = R(A) and therefore iIAT = R(A). 

That is, the saturation of each subset of X is closed in X. All 

the statements of the THEOREM follow immediately from this. 

5.S Examples. (1) Some interesting things can be said 

about relations on a topological vector space X. A relation R 

on X is called z.":ume if G(R) i8 a vector subspace of X x x. 
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A symmetric and reflexive linear relation must also be transitive. 

It is easily seen that an equivalence relation R is linear if and 

only if it is a relation modulo some vector subspace M of X; 

then M = {m : m = x - y and xRy} = {m : mRo}. The graph G(R) 

of R is closed if and only if M is closed, if and only if the 

quotient space X/M is separated. The latter equivalence is very 

well known and the former is a consequence of the quotient 

mapping being open (see the remarks preceding THEOREM 5.4.2.). 

It follows also from LEMMA 5.4.1, since n{x + U + M + V : 

U, V o-neighbourhoods} = x + M if and only if x + M is closed, 

if and only if M is closed. 

The hypergraph 1t(R) of the equivalence relation R is the 

set {(A, B) : A + M = B + M}. By the proof of the last part of 

LEMMA 5.4.1, if A + M is closed (so thatrkA + M + U : U a 

O-neighbourhood) = A + M) for each A in a collection It of 

subsets of X, then cjt<R) n<Jfx,Q) is closed in Jt xR. In 

particular this will be true when it = c.(X), the collection of 

compact, closed subsets of X. If X is complete, ~(X) is closed 

in e.(X), and so also ~<R) n (€<X) x @:.(X» is closed in 

~X) x ~(X). 

When R is any linear relation on X with closed graph, we 

can no longer talk about the quotient mapping, but we may still 

ask whether R(A) is open for each open subset A. This 11 not 

true in general, but (see kelley and Namioka (18), section 11£) 

is true when X is a complete metrizable space and R(X) is of the 

second category in X. The latter condition will certainly be 

satisfied if R is reflexive. It miaht be expected from experience 

wi th mappings t that the answer to our question is "yes" for 

arbitrary X provided that the linear relation R haa closed 

hypergraph; this is certainly true for equivalence relations, 

but I do not know if it is true for arbitrary linear relations. 
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(2) Let (X, t) be a uniform space and X' its associated 

HausdoI'ff space. Define an equivalence I'8lation R by xRy if 

i(x) = ICy), where i is the canonical mapping of X into X'. 

Then XI is homeolllOI'phic to X/R, and i is the quotient mapping. 

Thus R is open and closed, and X/R is sepaI'ated. The gI'aph G(R) 

of R is the setn{U : U £ t}, and is closed. 

Consider the induced %'elation R I on Sex). We have AR IB if 

and only if i(A) = i(B), if and only if «(A) = «(B), where 

« : ~(X) + Sex') is the mapping whose restriction to e.(X) has 

been proved in section 2." to be an iSOlDOI'phism onto €..(X'). 

Thus R' restI'icted to e (X) becomes the equality relation. We 

know also that « : Sex) + 5(x') is an open mapping, and there­

fore R' is an open relation and 5<X) Ill' is homeomoI'phic with 

~(X') (see Bourbaki (~), Chapter 1, section 5.2). 

If the bypergI'aph ~ R) is closed then, by THEOREM 5. ~. 2, 

X' must be a disc%'ete space. 

(3) Let (X, t) be a pre-ordered unifom space, so that the 

pre-oI'deI' , is a reflexive, tI'ansitive I'elation. It ia not 

syBD8tric unless it reduces to the equality relation. For each 

subset A let deAl denote the smallest decreasing set containing 

A, and let i(A) denote the smallest incI'8uing set containing A. 

These coincide with R-l(A) and R(A), where R-l is the inverse 

relation. 

Define a pN-oI'der on 3(X), by putting A C B if A Cd(B) 

and Be: i(A). This coincides with the iuduced relation R'. If 

G(R) is closed then foI' each x in X the sets d(x) and i(x) are 

closed; if q( (R) is closed then for each AC X the sets deAl 

and i(A) are closed. and alao deAl = deAl and i(A) • i(A). 

We could define another pre-ordeI' on SeX) by putting A f B 
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if AC. D(B) and Be:. I(A), where D(B) denotes the smallest 

closed decreasing set containing B, and I(A) the smallest 

closed increasing set containing A. If ~R) is closed, this 

relation coincides with RI. 

'There is yet another obvious pre-order relation on SeX) 
- that of inclusion. This is anti-symmetric, sometimes refe!'red 

to as an order. The graph of this relation is not closed in 

~(X) x E)(X), for any topological space equipped with an order 

with closed graph must be separated. However its intersection 

with €.(X) x ~X) is closed in this space. 



CHAPTER 6 

CQi'i?ACT, COLLECnVEL Y COMPACT AND HYPERCOf4PACT 

SETS OF MAPPINGS . 

6.1. Introduction. This chapter is a study of sets of 

mappings characterized by looking at the collections of 

images of various subsets of the domain space as subsets of 

the hyperspace of the range space. Many of the concepts 

involved, such as compact mappings and collectively compact 

sets of mappings, usually appear in the context of normed 

vector spaces or topological vector spaces, but they are 

treated here in a very general way. The unification 

achieved seems worth the sacrifice of notational simplicity. 

Let X be a set and Y a uniform space, and let F(X, Y) 

denote the set of all mappings from X into Y. For any 

(non-empty) collection ~of subsets of X we make the 

following definitions. 

A mapping t in F(X, Y) is called Acompact if it _ps 

the sets of Jtonto relatively compact subsets of Y. 

A set of mappings Tc=F(X, Y) is called collectively 

~-compact if, for each A in Jt, T(A) = {tea) : a £ A, t £ T} 

is a relatively compact subset of Y. 

A set of mappings T is called ~-hypercompact if, for 

each A in Jt, {teA) : t £ T} is a compact subset of ~(Y), 

and relatively £hypercompact if, for each A in ,!l:, 

{teA) : t & T}is a relatively compact subset of ~(Y). 

The set F(X, Y) can be endowed with the uniformity 

~(~) of uniform convergence on the sets of at (see section 

1.9), which has a subbase consisting of all sets of the form 
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W(A, V) = {(f, g) : (f(a), g(a»e V for all a e A} 

where A is a member of ~ and V is an entourage of Y. 

Where there is no possibility of ambiguity about the 

collectionJ(, it will be understood that rcx. Y) has the 

uniformity teat), and the prefixes~ will be omitted in 

the terms just defined. 

In section 6.3, hypercompact and relatively hypercompact 

sets are investigated. and in particular it is shown that 

for compact mappings hypercompactness is an intermediate 

condition to compactness and collective compactness; if 

Y is complete then for compact mappings relative 

hypercompactness is equivalent to collective compactness. 

In section 6.4 the concepts of hyperprecompact and 

hyperbounded sets of mappings are introduced and studied. 

The theory parallels that of section 6.3 much of the way. 

and proofs are omitted. A set of mappings is collectively 

precompact if and only if it is a hyperprecompact set of 

precompact mappings, and collectively bounded (or uniformly 

bounded on the sets of Jl) if and only if it is a hyperbounded 

set of bounded mappings. 

6.2. Preliminary results about hYp!rspaces. Throughout 

this section Y will be a uniform space. The proof of the 

first lemma is omitted. the remaining results supplement 

the two well-known facts that the union of a compact 

collection of closed subsets is closed and the union of 

a compact collection of compact subsets is compact. 

LEMMA 6.2.1. A subsetJ'1 .... of SCY) is relatively compact in 

S(y) if and only if {ii : M E ,X} is relatively compact in 
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~(y) if and only if the latter set is relatively compact 

in e(y). The same is true if relatively compact is 

replaced by compact. 

PROPOSITION 6.2.2. The union of a compact collection of 

relatively compact subsets is relatively compact. 

Proof. Let fB be such a collection. Then each R in 11 
I '.J' 'I 

has compact closure in the uniform space Y, and by LEMMA 

6 • 2.1. the set {i : R t ex.}is compact. But then 

U {R : R t'R.} c:: U{i: R e 1t} which is the union 

of a compact collection of compact sets, and so is compact. 

PROPOSITION 6.2.3. The union of a precompact collection 

of precompact subsets is precompact. 

PrOof. I,et 'P be such a collection, and let U be any 

entourage of Y. Choose a symmetric entourage V such that 

f c::. U. Then there exists a finite subcollection {P.} of 
1 

~ such that the union of the sets V(P i) covers 9 , and for 

each i there exists a finite set Fic:: Pi such that 

PiC. V(F i). Let F be the union of the sets F i • Then for 

each P in l' there is some i such that Pc V(Pi)c::.~(Fi)CU(F). 

Since F is finite the result follows. 

A subset A of Y is called bounded if for each entourage 

U there exists a finite set Fe:. A and an integer n > 0 such 
n 

that Ac= U(F). Every precompact subset is bounded, and the 

closure of every bounded subset is bounded. The image of 

a bounded set under a unifOrmly continuous mapping is 

l;ounded. In a product of non-empty uniform spaces, a 

subset is bounded if and only if each projection is bounded. 
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For topological vector spaces this definition of 

boundedness (with respect to the natural uniformity) 

coincides with the usual definition. 

PROPOSITION 6.2.4. The union of a bounded collection of 

bounded subsets is bounded. 

Proof. Let 13 be such a collection, and let U be any 

entourage of Y. Then there exists a finite subcollection 

{B
i

} of S and an integer n > 0 such that the union of 
1) 

the sets U(Bi ) covers ~. and for each i there exists a 

finite set FiC: Bi and an integer mi > 0 such that 
mi 

BiC= U(Fi ). Let F be the union of the sets Fi and let 

N = n + max{mi }. Then for any B in $. and for SODle i, 
n n~i N 

Be U(B
i

) c::. U (F i) c U(F). Since F is finite the 

result follows. 

6.3. Hypercompact and relatively hypercompact sets 

LEMMA 6.3.1. The mapping aB of FeX, y) into g(y) defined 

by aBet) = teB) is uniformly continuous relative to the 

uniformity t~) on rex, V), for each subset B of X which 

is covered by a finite subcollection of Jl. 

Proof. Let V be an entourage of Y and let {Ai be a finite 

aubcollection of It covering B. Let (f, g) belona to the 

intersection of the sets W(Ai , V), so that (f(x), g(x» 

belongs to V for each x in the union of the sets Ai' and so 

for each x in B. Then (f(B), g(B» belongs to V. and 8
B 

is uniformly continuous. 

THEOREM 6. 3. 2. If T is a set of mappings from the set X 

into the uniform space Y. and if T is (relatively) compact 
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with respect to the uniformity of uniform convergence on 

the sets of cftC.O(X), then Tis (relatively)Jt-hypercompact. 

Proof. The mapping 8A of LEMMA 6.3.1. is uniformly continuous, 

for each A in~, and since 8A(T) = (teA) : t £ T}, the 

result follows. 

THEOREM 6.3.3. If T is an Jt-hypereompact set of it-compact 

mappings from the set X into the uniform space Y then T 

is collectively It-compact. If Y is complete and T is only 

a relatively Jt-hypercompact set of ~-compact mappings 

then T is again collectively Jt-compact. 

Proof. For the first part, observe that, for each A in it. 
T(A) = LJ{t(A): t £ T} is the union of a compact cOllection" 

of relatively compact sets, and so is relatively compact by 

PROPOSITION 6.2.2. 

For the second part, when Y is complete, it is sufficient 

to show that T(A) is precompact. But T(A) is clearly the 

union of a pre compact collection of precompact sets, so 

PROPOSITION 6.2.3. brings us home. 

THEOREM 6.3.4. If T is a collectively ~-compact set of 

mappings from the set X into the uniform space Y then T 

is a re tively ~hypercompact set of ~-compact mappings. 

Proof. Since T(A) is relatively compact, there is a 

compact subset K such that T(A) c: l( c:: Y. Then for each 

t in T t(A) c: K •. so t is .;t~compact. Also 

{teA) : t . .E: T} C S(T(A» c=.. ~(l() which is compact (.ee 

section 1.7), and therefore T is relatively ~-hypercompact. 
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From the previous two THEOREMS the next is immediate: 

'!HEOREM 6.3.5. If T is a set of mappings from the set X 

into the complete uniform space Y then T is collectively 

~compact if and only if T is a relatively~hypercompact 

set of~~compact mappings. 

The completeness hypothesis here is not superfluous -

that is, the converse of 'IHEOREI-l 6.3.4. is not true. this 

will be demonstrated by the eX3mples to follow. They will 

also demonstrate that the converses of '!HEOREH 6.3.2. and 

the first part of THEOREM 6.3.3. are not true. First we 

consider the situation when X and Y have additional structure. 

If X and Yare both topological vector spaces and t1t 

is the collection of bounded subsets of X then every linear 

mapping t from X into Y which is compact in the usual sanse 

is also 8t-compact. For this means that there is some 

-neighbourhood U of X and some compact subset K of Y such 

that t(U) c: K. If A is any bounded subset of X there is 

a real number A > 0 such that A c:: AU, and then 

t(A) c: t(AU) c:: At(U) c:: AK which is compact. If X and Y 

are actually normed vector spaces then the uniformity (~) 

of uniform convergence on the bounded subsets of X is 

normable on the set C(X, Y) of continuous linear mappings, 

wi th norm II t II ~ sup {II t(x) II :' I x II ~ l}. In this case the 

tR,-compact and usual compact (sometimes called cOlllpletely 

continuous) mappings are the same - they are just the ones 

for which the image of the unit ball • = {x E: X : Uxl 'l} 

has compact closure. Similarly a collectively A-compact set 

of mappings T is just a set for which T(IO has compact 

closure; this is the definition used by Anselone and Palmer (;S ) • 
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Thus THEOREMS 6.3.2. and 6.3.3. together yield the result 

for normed spaces in (oJ) that every compact set of compact 

linear mappings is collectively compact. 

wnen talking about normed spaces it will always be 

understood that It is the collection of bO\mded sets, unless 

otherwise stated. Observe that by taking Jt = 8} the 

uniformity t~) is unchanged, and tHEOREM 6.3.3. implies 

that a set T of compact mappings for which the set of images 

of the unit ball is compact must be collectively compac~. 

A set which is thus ''hypercompact on the unit ball" is not 

necessarily hypercompact, even if it consists ·'of compact 

mappings, this will be demonstrated in EXAMPLE 6.3.7. 

By taking cft. = {8} in this EXAHPLE, a counterexample is 

constructed for the converse of 'lHEOREM 6.3.2. Placing 

various conditions on the collection cR:.such as covering 

X or being closed under scalar multip1ication,effectively 

invalidates the counterexample and leaves it open whether 

the converse of the THEOREM then holds. EXAMPLES 6.3.6. 

and 6.3.7. do show, however. that in general hypercompactnesa 

lies strictly in between compactness and collective 

compactness, for compact mappings. 

EXAMPLE 6.3.6. One of the most fruitful fie1da for 

applications of the theory of compact mappings, and 

collectively compact sets of mappings, is the theory of 

integral equations of Fredholm or Volterra type. ,,_ 

proceed now to construct a sequence of mappings, each 

representing an integral equatior. of Vol terra type. Let 

X = Y = e[a. bJ, the set of continuous, real-valued 

functions on the closed interval [a. bJ; this is a nox.d 
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vector space with norm IIx(t)1I = sup{ Ix(t)1 : t £ [a. bT~ 

For each m = 1. 2, •••• and each x in X. define 

f
b '1, a ~ v ~ a + ~ 

Ym(U) = k(u. v)x(v)dv, where k(u, v) c, m 
a ,-0, a + 'L:!. < v , b m 

f
a + (u-a)/m 

: x(v)dv. 
a 

Then,for each m, Ym belongs to X, and the mapping tm dofined 

by tm(x) = Ym is a compact <continuous} mapping of X into 

itself. Let T = {tm : m a positive integer}. 

Then T is collectively compact. To show this, let 

{x
n

} be any bounded sequence in X. and {m( n)} any sequence 

of positive integers. It must be proved that the sequence 

y () = t ( ) (x ) has a subsequence conversent in X. By m n ,n m n n 
Asco1i IS Theorem it is sufficient to prove that the 

sequence is bounded and that its membeX'S form an equicontinuOWl 

family. Now 

where R = sup {~xnl : n > O}, 

R(b - a) 
~ men) 

, R(b - a). 

Therefore the sequence is bounded. If u1 , u2 al'8 points of 

[a, b] with IU2 - ull" < E/R, c any positive number, then 

I I f
a+(u2-a)Im<n) Ja+(U1-a)/m(n) I 

- y () (u) = x (v)dv - x (v)dv 
m n ,n 1 a nan 

Ifa+(~-a)/m~(n(v»~VI = ~ < c. for all n > O. 
a+(u

1
-a)/m n) 
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'!berefore the family {y () } is equicontinuous. This m n In 

completes the proof that T is collectively compact. 

It follows that T is relatively hypereompact , but it 

is not hypercompact - in fact it is not even hypercompact 

on the unit ball. For 

It (x) !I ::sup{y(u):.uE[a,b]}, (b-a) IIxll, 
m m m 

and hence for any bounded subset A of X, tm (A) is eventually 

contained in any £-neighbourhood of the origin. Thus t (A) m 
calverges in Sex) to {Ole Since tm(A) ~ {oJ fol" all m > 0, 

fol" suitable A (the unit ball, fol" instance), the set 

{t (A) : m > O} is not compact, and so T is not hypercompact. 
m 

Although T is not a compact set it is relatively compact, 

for if Tit is the set obtained by appending the zel'O mapping. 

t., to T, then.;because IItm - tClOIl + O! 1* 1s compact (and 

so also hypercompact. 

EXAMPLE 6.3.7. Let X :: Y :: R,p. 1 ~ p , CIO I the set of 

infinite sequences x :: {x } of real numbers satisfying n 
CIO 

I IxnlP < CIO; this 
n=l 

is a normed vector space with norm 

·CIO 1 

Ixil • (ntlxnIP)P" • 

is the sequence with unit i th component and zel'OS elsewhere. 

Define a sequence of mappings of X into itself by putting 

t (x) :: X +1' n > o. '!ben for each ntis a compact linear n n n 

mapping. 

The set T :: {t : n > o} is hypercompact 011 the un! t 
n 

ball. For tn<B> = {a'l : I.ClI ~ 1 for each n , 80 that 

{t (8) : n > o} is a singleton in ~OC) • 
n 

lbt T is not hypercOlllpact. Fol" if a is the element of 

X with a::!. then {t{{a}): n > O} = u!. +l} & n > O} which 
n n n n 

is not closed in €.(X) and so not compact. 
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It can be inferred now by TJ.t!:OREM 6.3.2. that T ia not 

a compact set. In fact it is not even precompact. for 
1 

Ut - t II = sup{ ''(x - x )+1 11 : II xII ~ l} = 21f, m ~ n. n m n m 

In spite of not .. :being relatively compact, T is relatively 

hypercompact, because it is collectively compact. This 

follows from the fact that TQS) is bounded and one-dimensional~ 

or from T being a set of compact mappings. hypercompact on 

the unit ball. 

EXA~~~E 6.3.8. Let X and Y be normed vector spaces, and let 

{t } be a sequence of compact linear mappings in C(X, Y) 
n 

converging (in norm) to the non-compact continuous linear 

mapping t. This situation is known to exist when Y is not 

complete. Then for each bounded subset A of X, t (A) + teA) 
n 

in $(Y) by LEI1MA 6.3.1 •• and so the collection 

{t (An U {t(A)} is compact. 
n 

Putting T = {t }, the set T U {t} is hypercompact and n 

the set T is relatively hypercompact. Ebt T is not 

collectively compact. for if so t would be a compact mapping 

since te) c:. T(a5. This falsifies the converse of 

'lHEOREM 6.3.~. 

This section concludes with some properties of 

hypercompact and relatively hypercompact sets. In many 

respects they behave like compact and collectively compact 

sets. Any finite union and any intersection of such sets 

is a set of the same type. If Y is a topological vector 

space and F(X, Y) has its natural linear structure, then 

any scalar multiple of a hypercompact or relatively 

hypercompact set is again a set of the s_ type. Any 
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subset of a relatively hypercompact set must be relatively 

hypercompact, but a subset of a hypercompact set need not 

be hypercompact whether closed or not. Of particular 

interest is the fact that the union of a compact set and 

a collectively compact set need inherit neither property, 

but must be relatively hypercompact. 

PROPOSITION 6.3.9. If T is (relatively) JC.-hypercompact 

then so is the t(lR,)-closure"T. When X and Y are nomed 

vector spaces. the balanced hull of' any set in C(X, y) 

which is relatively hypercampa.ct. hypercOlllp&Ct, or 

hypercanpact on the unit ball, is a set of the same type. 

Proof'. The mapping t ... "i'tAf is uniformly continuous traa 

F(X, y) into ~(y) with respect to the uniformity C(~). 

tor each A in cit. This follows fran LDiMA 6.3.1. and the 

uniform continuity of the closure operation trom dey) into 

£(y). Hence the set {trA}' : t £ T} is cOl1tained in the 

closure in l!.(Y) of' the set {tUJ : t & T}. If' the latter 

set is compact then it must coincide with the former set, 

and it rela.tively compact its closure is compact U1d 

contains the former set. With the aid of LD!MA 6.2.1. this 

proves the first part. 

For the second part, when X and Y are nomed vector 

spaces the mapping (A~ B) ... AB is continuous trca. SOx ~ 

into S where So is the set of scalars with absolute val1M 

~ 1 and fj is the set of bounded subsets of Y, ad hence 

if {teA) t & T} is (relatively) compact so ia 

{( A t)( A) .1 AI , 1, t &: T}. 

Remark. I do not know if, for sui table space.. the con ... x 

hull or the pointwise closure of a (Nat! 'Yely) hypercompact 
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set must be of the same type , although these hold for a 

collectively compact set. 

Now let Y and Z be uniform spaces. while X is any set. 

Again let F(X, Y) denote the set of all mappinp from X into 

Y. and let e(Y, Z) denote the set of all unifol'lll.y continuous 

mappings from Y into Z. As always, A is a non-empty 

collection of subsets of X. and S will now be any non-empty 

collection of subsets of Y. It is easily shown that if T 

is a ~<1ft)-compact subset of F(X, Y) and S is a \(2)-compact 

subset of en, z) and if, in addition for each A in R 
there exists B in 8 such that T(A) c::: B, then ST is a 

~(~)-compact subset of F(X, Z). Also, 1f T 1s co1lecti,"ly 

It-compact and S is ~<S)-compact then ST is collectively 

~-compact, provided that for each A in Jl there exists 

B in ~ such that Tt'iT c:: B. This last provision is 

automatically made when considering only oontinuous line.r 

mapl- ings between nomed vector spaces, and the two foreaoiDa 

l'88ul ts may then be stated briefly : the COIIIp08i te of two 

compact sets is compact. and the composite of a collecti"ly 

compact set and a set with compact C108\11'8 1s collecti,"ly 

compact. This last reault for nomed spacu 1fU pl'Ovecl by 

Anaelone and Palmer in (\5 ). A further reault alona 

these lines follows. 

PROPOSITION 6.3.10. Let X be a set, Y and Z uniform apacel. 

lit a collection of subsets of X and S a collection of 

lubaets of Y. If T c:. F(X, Y) is (relatiftly) 8t-hypel'COlllpaCt 

and S c: e(Y, Z) ia a ~(~ )-compact .et of unifomly 

continuous mappings, then ST is <relatiftly)cR -hypercOllpaCt. 

provided that for each A in st there exiata B in ~ lach that 

T(A) c: B. 
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Proof. For each A in It the set {teA) : t c T} is 

(relatively) compact and so, for each sinS, is the set 

{steAl : t I: T}, since the latter set is the image of 

the former under the uniformly continuous mapping induced 

by s between Bey) and ~(Z). For each A in ~ define a 

mapping (I of e(y, Z) into S( 5(Z» by putting 

(I(f) • {ft(A) : t I: T}. We will show that QI is uniformly 

continuous , with respect to t (~ ) . 

Let B be a member of ~ containing T(A). For any 

entourage V of Z choose the entourage WeB, V) of t(8). 

If (f, g) belongs to weB, V) we must have (ft(a), gt(a» 

belonging to V for each a in A and each tinT. Hence 
~ 

(ft(A), gt(A» belongs to the entourage V of &Z) for 

each t in T, and so, finally,(QI(f), «(g» belanls to the 

entourage; of ~(~(Z». 

Since QI is uniformly continuous, «(S) is compact, and 

hence {steAl : s I: S, t £ T} = LJ{(I(s) : S E S} is the 

union of a compact collection of (relatively) compact seta. 

and so is (relatively) compact. 

COROLLARY 6.3.11. Let X, Y, Z be topolOlical ftctor space. 

and let St. 8 be the collections of bounded lublets. If 

T i. a (relatively) hypercompact set of continuous upplnp 

and S is a compact set of continuous mappinaa then ST is 

(Nlati vely) hypercompact. 

Proof. It is clearly sufficient to show that T(A) 1s 

bounded for each bounded subset A of X. But each t ill T 

is continuous, so teA) 11 bounded, and {teA) : t C T} 

1s bounded by hypothesis; hence T( A) is the union of a 



- 130 -

bounded collection of bounded sets and must be bounded 

by PROPOSITION 6.2.~. 

It is easy to see that the statement of the COROLLARY 

will still be true when :Rand 9 are the collections of 

pre compact subsets, and the hypercompactness part will 

still be true when tR is the collection of compact (Ol' eYeD 

relatively compact) subsets of X and ~ is the collection 

of compact subsets of Y. 

6.4. HyPerprecompact and hyperbounded sets. In this seotion 

some further definitions are made and th. saneral theory 

extended to include what are sometimes callec1 totally 

bounded mappings and totally bounded set. of aappinaa (se. 

e.g. Palmer (2.~», and also bounded mappings and bounded 

.ets of mappings. Since the proofs follow much the .... 

pattern as the proofs in the previous section fOr the 

theory of relatively hypercompact sets, they aN CIIllttecl. 

Suffice it tl say that they rely heavily OIl PJOPOSITIORS 

6.2.3. and 6.2.~. and LEMMA 6.S.1. 

Let X be a set and Y a uniform space, and let ItN 
any (non-e~ty) collection of subsets of X. We IIa1ce the 

fbllowing definitions. 

A apping t in F(X. Y) is called 4 PNCOIIIpWlt 

(J't-bounded) if it mapa the sets of 6l cato pNCOIIpact 

(bounded) subsets of Y. 

A set T C rex. Y) is called collecti".ly.ll-pNCOIIIpact 

(collectively Jl.,.bo\Dlded) if T(A) is PNCOIIpaCt (bounded) 

for each A in Jt. 
A set T c::: r(X, y) is called ~-byperpreOOllp&Ct 
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(4-hyperbounded) if {t(A) t £ T} is preccaapact (hoQnded) 

for each A in J/:.. 

It is clear that the conditions ~hypercompact, 

Nlatively ~-hypercompact, ~-hyperprecompact and 

~-hyperbounded become progressively weaker. When Y is 

hypercomplete the middle two are equivalent. Also 

(collectively) cR--compact implies (collectively) 

Bt-precompact t which implies (collect i vely) le-bounc:lecl, 

and when Y is complete the first two coincide. 

How let Y be a topological vector space. The set of 

Jt'-bounded mappings is a closed subspace of F(X. y) with 

respect to the uniform! ty ~ (btl, which actually induces 

a vector topology on it. The set of St-precompact uppinp 

is a closed subspace as well. Both subspaces iDherit the 

pl'OpC'ty of completeness from Y (see e .1. Kelley and 

Namioka (18), section 8). 

Next. let X also be a topological wctor space. and 

let us consider only linear .ppin,s. Let il:be the 

collection of bounded subsets of X. Then the ~pNcnr"act 

.. ppinp are just the usual precompact (or totally bounded) 

mappings, and the Jb.bounded mappings are the usual bounded 

uppinp. A set of mappinp is collectively ..Rr.bounded 

(8anet!mes called unifcmnJ.y bounded on the sets of.il) if 

and only if bounded with respect to the topololY of 

uniform convergence on the sets of iC. In particular this 

is true for every equicontinuoua set. Each cOiltiDuoUil 

mappin, is bounded, and if X is paeudo-norlHble the 

converse holds. If X and Y are nomed the dC-pNCOIIp&ct 
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and collectively ~-precompact sets of mappinss coincide 

with Palmer' a, Anaelone' s and Vala'. precompact mapping. 

and collectively precompact sets (aee (~)), ( 1 ), (~2. » -

just thoae for which the (collective) image of the unit 

ball is pre compact • 

For the following theorems we return to the general 

situation in \bich the definitions weN framed. 

THEOREM 6. ~ .1. If T ia (cit) -preccmpact (-bounded) then 

Ll ~P'" it is t7C-hyperprecompact (-hyperbounc1ed). If Y is ",complete 

and T ia t(Jt)-precompact then T is dt-hypercompact and T 

is relatively ~-hypercompact. 

THEOREM 6.~.2. The set T is collectively ~precompact if 

and only if it is an ~-hyperprecompact .et of Jt-precompact 

aappbgs. If Y is complete these conditions are equivalent 

to collective dt~compactnes •• 

The last two results tOllther sbow that a precompact 

set of pre compact mappings is collecti'Vely precompact -

proved for nomed spaces by Palmer (13). 

'l1IEOREM 6. ~. 3 • The set T is collecti vely ~bounded if ad 

only if it is an ~hyperbounded set of It-bounded .. ppiDp. 

If Y i. a topological vector space and the unlforaity teat) 
induces a vector topology on T, then T is collecti "1)' 

6t-bounded if and only if it is R-hyperbounded if and cal)' 

if it is bounded with respect to t(~). 

Thus THEOREM 6. ~. 3. includea a partial COIl'ftll'ae for 

the ''boundedness'' part of THEOREM 6. ~ .1. The EXAMPLE 6.8.7. 

pE'Ovic1es a case of a relatively hypercc:.pact (and. so, of 
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course, hyperprecanpact) set which is not a pNCompact set, 

even though Y is complete and all the mappings are compact. 

The permanence ~operties of hyperprecompactness and 

hyparboundedness are similar to those of relative 

compactness; any finite union or any intersection of such 

.ets is of the same type, and any subset inherits the 

type. If Y is a topological vector space, any scalar 

multiple of such a set is of the same type. Although the 

union of a precompact set and a collectively precollpact 

set need have neither property,it is hyperprecompact, and 

l1kewise the union of a bounded set and a collectively 

bounded set is hyperbounded. 

PROPOSITION 6.4.4. If T is .te-hyperpNcompact (Jl'-hyperboundecl) 

then so is the ~(~-closure 'T. When X and Y are normed 

vector spaces the balanced hull of a hyperprecompact 

(hyperbounded) subset of C(X, Y) is of the same type. 

PROPOSITION 6.4.5. Let Z be another uniform space, ancl 5 
any collection of subsets of Y. Let T c F(X t y) and 

S c:; C(Y, Z) and suppose that for each A in & there 

exists B in ~ such that T(A) c.: B. Then 

T is tQ-hyperprecompact and S is ~(9)-pNcanpact 1Ilp11 •• 

ST is st-hyperprecompact i 

T is /f-hyperbounded and S is t(e) -bouncled. 11IpU .. 

ST is if-hyperbO\Dlded. 

COROLLARY 6.4.6. If X, Y and Z are topological vector 

spaces and.it, $ are the collections of boUDclec:l .ubset. of 

X and Y respectively, then the two implications of the 

PIOPOSITION hold provided that S and T are •• ta of CODtiDuoua 

uppinga. 
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6.5. Arzela-Aacoll Theorems aDd other resulta. Let X 

and Y be uniform apaces. Some results of the Arzela-booli 

type can be proved very aimply by Hana of hyperspace techniques. 

PROPOSITION 6.5.1. If T c:. F(X, y) ia unifonaly equicontinuoue 

on each set in It., the collection of COIIIp4ct subsets of X, 

and if T(x) is relatively compact in Y for each x I X, then 

T is collectively ~ct. 

Proof. For each A in 6l and eaoh a in A the mappinl 

f : A + S(y) defined by f(a) = T(a) is uniformly oontinuoua, 

and T(A) ia the union of the collectioo {T(a) : a £ Al. 

The result follows by PlWPOSITIOH 6.2.2. 

COROLLARY 6.5.2. The PROPOSITIOtf holds alao if "OOIIpact" 11 

replaced throughout by "precompact" or "bounded". 

PlWPOSITION 6. 5 ~. Let Y be COIIplete and let cR c:: .s(X) • 

If t ia an Jt-COlllpact mappinl in F(X, Y) and ia unifoNly 

continuous, then it ia alao J{-COIIIpCt. If Tc:: F(X, y) 

is uniformly equicontinuous and collecti ... ly St-OOIIpaot. 

then it ia alao collectively ~t. 

Proof. The mappinla A + ttiT and A • mr are unifonaly 

continuous, and the aet ~y) is olOHd 1D e(y) (an 

sections 1.8 and 1.9). 

PIOPOSITIOlf 6.5.4. Let A c:=&X) aDd lete be .y 

closed subspace of e(y). Then the aet of _ppinp in 

F(X, Y) which take the .. ta of dl OIlto .eta with olosUNa 

in CS is closed in F(X, Y) with rupect to the unifonaity 

teat) · 

Proof. If t CI • t in F(X, T) then tea CA' + itIT for e.ch A 

in c!R-, by LEIlIA 6.3.1. 
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COROLLARY 6.5.5. If Y is canplete then the set of cR-compact 

mappings is complete; the sets of 8l-preCClllpact and ~-boUDded 

mappings are closed in rex, y) whether Y is complete 01' not. 

RemarK. The Robensons proved in (28) that if TI is a 

coarser uniform1 ty on Y than ~, associated with t, then the 

o-relatively compact subsets in eey. t) form a closed subspace 

of €.< Y, t). Their Theol'e1l 3, discussed in section 2.1., is 

then a direct application of the principle of PROPOSITION 8.5.4. 
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