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ABSTRACT

Let S and X be any two sets; then a mapping T which 

assigns to each point t  in  S a set T (t )  o f points in  X is  called a 

multifunction (o r  set-valued function) from S into X . A selector fo r 

T is  a function f  from S into X such that f ( t )  belongs to the set 

r(t) fo r  each t . This thesis contains a systematic study o f multifunct

ions, especia lly measurable multifunctions, and a number o f instances are 

given where a multifunction T has a selector which inherits the good 

properties o f T , or at least is  not much worse. The problem o f proving 

that selectors ex is t can be approached from more than one d irection ; in  

particu lar the class o f multifunctions o f Souslin type is  introduced. This 

class is  comprehensive, containing the kinds o f measurable multifunction 

most commonly studied previously, i t  is  closed under the usual operations 

o f analysis and set-theory, and yet i t  is  well-supplied with measurable

selectors
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INTRODUCTION

Set-valued functions, or multifunctions, have in  recent years 

been turning up in  several branches o f applicable mathematics; fo r instance, 

R.J. Aumann ( l )  and G. Debreu (14) have used them in  mathematical economics, 

and a number o f papers have been written about measurable multifunctions by 

authors who have an in terest in  control theory. Among these are 

C. Castaing (6-10), M.Q. Jacobs (2A, 25), R.T. Rockafellar (2+2) and 

M. Valadier (50, 51)• Drawing on the work o f A.F. F ilippov (15 ), H. Hermes 

and J.P. LaSalle (18) have produced an exposition o f time optimal control 

which makes use o f set-valued functions.

What I  have attempted here is  a systematic study o f the 

properties o f  measurable multifunctions; I  have looked at continuous and 

semicontinuous multifunctions as w ell, especia lly where the methods overlap. 

C learly the most general setting fo r the study o f measurable multifunctions 

is  an abstract measurable space, and this is  the setting I  have used; 

however i t  is  occasionally useful to place restriction s on the kind o f 

measurable space we use, and I  have included one or two results which are 

va lid  fo r  multifunctions defined on a lo c a lly  compact Hausdorff space with 

a Radon measure.

The f i r s t  chapter o f this thesis is  concerned mainly with the 

s ta b ility  properties o f  various classes o f measurable multifunctions; that 

is ,  whether they are closed under such operations as taking intersections 

or products.

The selection problem fo r  multifunctions is  in terestin g fo r  i t s  

own sake as w ell as fo r  i t s  importance in  applications; Chapter I I  gives an 

introduction to the problem and follows th is with a number o f selection  

theorems fo r  closed-valued or compact-valued multifunctions.



In  Chapter I I I  I  have taken a d iffe ren t approach to measurable 

selectors and introduced a new class o f multifunctions called multifunctions 

o f Souslin type. Every multifunction with non-empty values which belongs to 

this class has at least a countable dense co llection  o f measurable selectors 

(Theorem 11.1), and so in  order to prove that a multifunction has a 

measurable selector i t  is  enough to show that i t  is  o f Souslin type» I t  

turns out that the class o f multifunctions o f Souslin type contains within 

i t  most o f the kinds o f set-valued function which have been studied 

previously, including some which arise naturally in  im p lic it function 

problems. I t  has good s ta b ility  properties as w ell, admitting a l l  the 

commonly used operations o f set-theory and analysis.

Chapter IV is  about multifunctions with values which are compact 

convex subsets o f a topological vector space. I t  is  shown in  particu lar 

that in  some cases measurable multifunctions with non-empty compact convex 

values have extreme-valued measurable selectors. Results o f th is kind lead 

to the bang-bang principle o f control theory ( c f .  Hermes and LaSalle (18 ), 

and Himmelberg and Van Vleck (2 2 )).

The four chapters are divided into sections which are numbered 

throughout. The f i r s t  section o f Chapter I  consists o f a summary o f facts 

and defin itions from elsewhere which are used repeatedly, and the second 

section contains the main defin itions fo r  the present work. Theorems, 

lemmas and propositions are numbered consecutively in  each section; thus 

Lemma 16.5 is  the f i f t h  resu lt displayed in  section 16, fo r  example. A ll  

other numbered references are to the bibliography at the end o f the thesis.



I .  MULTI FUNCTIONS

0. Prelim inaries. We mention here various notations and facts 

o f topology which w il l  he used in  the fo llow ing sections.

( i )  A Polish space is  a separable metrisable space which is  complete 

with respect to some compatible metric. A Souslin space is  a metrisable 

space which is  the continuous image o f a Polish space.

( i i )  The product o f countably many Polish spaces is  a Polish space, 

and the product o f countably many Souslin spaces is  a Souslin space. 

S im ilarly the topological sum E 0f  a countable co llection  (X^) o f
t

Polish spaces is  a Polish space. We mean by the topological sum that 

E is  the d is jo in t union o f the spaces X_̂  , and that a set & in

Ê X̂  is  open i f  and only i f  & i ) X  ̂ i s  open in  X̂  fo r each i  . The 

topological sum o f a countable co llection  o f Souslin spaces is  also a. 

Souslin space.

( i i i )  Let N denote the space o f positive integers £1,2, . . . ]  . Let 

I  denote the in terva l [ 0, 1 ] , and 1 ^ the topological product o f I  

with i t s e l f  countably many times. Then any separable metrisable space can 

be embedded in  1^ (sometimes called the H ilbert cube) ,  and hence has a 

compatible to ta lly  bounded m etric. An open subset o f a Polish space is  a 

Polish subspace.

( i v )  Let S be any set, and A a class o f subsets. Then A is  

said to be a ring i f  fo r  any A,B in  A , A U B and A \ B are also in  

A • I f  also A is  closed under the operation o f forming countable unions, 

then A is  ca lled  a cr-r in g . I f  a ring A in  S contains S as an 

element, then A is  ca lled  an algebra. An algebra which is  closed tinder 

the formation o f countable unions is  called  a <y-algebra.

(v )  I f  X is  a topological space, then the cr-algebra (8  ̂ generated 

by the closed sets o f X is  called  the cr-algebra o f Borel sets. I f  X

is  a Polish space, every Borel set in  X is  a Souslin subspace. The
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Souslin subspaces o f a Polish space are frequently referred to as the 

analytic sets, or Souslin sets. We, however, shall be defining the term 

Souslin set somewhat d iffe ren tly , in  a la te r  section.

( v i )  I f  S is  any set, and A any class o f subsets, then A
denotes the class o f countable unions o f sets in  A ,  and A g  denotes the 

class o f countable intersections o f sets in  A . S im ilarly, A  ̂ is  the 

class o f countable intersections o f sets in  /̂  . We define in  the sameO'

way 4 < r  » 4<xS » and so on.

( v i i )  I f  X is  a topological space, S^(x), 5 (X ), <7£(x) shall denote 

respective ly the closed, open and compact sets o f X . We shall re fe r  to 

these classes more b r ie f ly  as S&, §, and X  .

( v i i i )  I f  X and Y are topological spaces, and f  : X -> Y is  a

mapping, then f  is  said to be o f the f i r s t  class o f Baire i f  f  (&)

is  an S& set fo r  every open set G- in  Y . I t  is  o f the second class

“1i f  fo r  every open set G- in  Y , f  (&) is  a $ set •
oO*

( i x )  Any Polish space is  homeomorphic to a ^  set in  the H ilbert 

cube 1^ .

(x )  A topological space X w i l l  be said to be perfec tly  normal i f  

i t  is  normal and i f  every open set in  X is  an ^  • In  particu lar, every 

metrisable space is  p erfec tly  normal. I f  F is  closed in  X , then there 

exists a sequence (&^) o f open sets such that F = fL  Ĝ  and

(x i )

G1 D &2 D &2 D &3 D . . .  .

Let X be ar̂ y separable metrisable space, and d a compatible

metric. Then there exists a countable co llection  (th ) o f closed sets,

each o f diameter  ̂ — , which cover X . S im ilarly, fo r  each i  ,

has a covering £u. . : j  = 1 , 2 , . . . }  by closed sets o f diameter ** T  •

Carrying on in  this way, we obtain a co llection  (U ) o f closedo** • • • cr 1 n
sets, indexed by the set o f f in ite  sequences o f positive in tegers. For 

convenience, we shall denote the sequence . . .  o' by crln , a notation
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which is  used in  (43 ), pp. 44-49. We may c lea rly  choose the sets

[U. . : j  = 1,2, . . . j  to be subsets o f U. . Thenjif <r = (cr., <r2, . . . )

is  a sequence o f positive integers, the sets U^.^, ••• form a

descending sequence. We c a ll the co llection  (U ^ ^ ) a s ift in g  o f X .

Clearly i f  X is  a Polish space, i t  has a s ift in g  (U^.^) such that fo r

each in fin ite  sequence o' , the sets U ••• in tersect in  a

single point, which we shall c a ll x .cr

( x i i )  A topological space w i l l  be said to be second countable or to 

be a 2C-space i f  i t  has a countable base o f open sets«,

( x i i i )  Let X be any topological space and le t  3* and X* denote 

the spaces o f non-empty,closed and non-empty compact subsets o f X . Then 

the V ie to ris  topology (o r  exponential topology) on 3* is  defined to be 

the topology generated by the sets

[P e 3 *  : P C &} and jF e 3 * : F il G / f  j

where G ranges over a l l  the open sets in  X 0 S im ilarly we may define 

the V ietoris  topology on the space X* . C learly the V ietoris  topology on 

3* (and s im ilarly  on X* ) is  the upper bound o f the topologies x+ and 

x where x+ is  generated by the sets [ l  f  3 *  : i  C &j and x~ is  

generated by the sets |F e 3 *  : F n & / .

(x iv )  Let (X ,d ) be a metric space. Then we define a metric 8 , 

ca lled  the Hausdorff m etrioTon the space ’3 '* by

8(A,B) = sup {sup d(x,B) , sup d (y ,A )] , 
xeA  yeB

where fo r  each x e X ,  C C X ,  d(x,C ) = in f  d(x, c) . 8 can take the value
c eC

+ oo , and i t  determines a topology on 3* , which in  general depends on 

the metric d . The subspace topology induced by the Hausdorff topology 

on the subspace X* o f 3 * is  iden tica l to the V ie to ris  topology on X * 
(Lemma 4.2 o f ( 8) ) ,  and hence is  the same fo r  any equivalent metric on X .
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For a non-compact metric space, the Hausdorff topology on

<3'* is  in  general d iffe ren t from the V ietoris  topology,as is  shown by the

2
fo llow ing examples in  R with the Euclidean norm:

Example 1. Let A = f (x ,y ) : y , x  > 0| .

For each positive  in teger n le t

Then i f  5 is  the Hausdorff metric determined by the Euclidean metric on 
2 -|

R , we see that S(A ^A ) $ — , whence A^ -+ A in  the Hausdorff topology. 

However An /■ A in  the Y ie to r is  topology, since A C S ,  where 

G = { (x ,y )  : x > 0, y  > 0} , but A £  G fo r  a l l  n .

2
Example 2. Let A = R and le t  A^ = [ (x ,y ) : x < n] , fo r  each n .

Then i t  is  clear that A^ -* A , as n -+ »  , in  the V ietoris  topology. But 

A^ A  A in  the Hausdorff topology as S(An,A ) is  in fin ite  fo r  each n .

(x v ) I f  X is  a topological space, then a real-valued function f

on X is  said to be upper semicontinuous at x e l  i f  fo r a l l  e > 0■ o

the set (x e X : f ( x )  < f ( x  ) + e] is  a neighbourhood o f xq • I t  is  

said to be lower semicontinuous at x i f  fo r  a l l  e > 0 the set
---------------------------------------------------------------------- Q

(x e X : f ( x )  > f ( x  ) -  e] is  a neighbourhood o f xq . f  is  continuous 

at xq i f  and only i f  i t  is  both upper and lower semicontinuous there.

An upper semicontinuous function attains a maximum on any compact subset 

o f X ( (2 ) ,  P. 76).

(x v i )  A measurable space S is  a set with a <r-algebra A  o f subsets, 

called  the measurable sets. I f  (S ^ i) and (T,(6) are measurable spaces,

Id shall denote the cr-algebra in  S x T generated by the class 

[A x B : A e A ,  B e (8] . I f  S is  a measurable space and X a 

topological space, a function f  : S -> X w i l l  be said to be measurable
U

— 1
i f  f  (F ) is  measurable fo r  every closed set F in  X . A function f  

is  then measurable i f  and only i f  f  (&) is  measurable fo r  every open

set G in  X
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Proofs o f the resu lts mentioned in  paragraphs ( i i ) ,  ( i i i ) ,  (v )  

and ( i x )  can be found in  references ( 3 ) and (28 ).

1. Basic Properties o f Multifunctions. Let S,X be any two 

sets. Then a mapping T which assigns to each t  e S a subset T (t )  o f 

X is  called  a multifunction (o r set-valued mapping or correspondence) from 

S into X , and we express this by w riting T : S -+ X . To avoid confusion 

with the notation used fo r mappings we shall denote multifunctions by upper

case Greek le tte rs  and mappings by lower case Greek or Roman le t te rs . I f  

( r  ) is  a sequence o f multifunctions from S into X . then U P shall 

denote the multifunction

t - u  r ( t ) ,
n= 1

and fl T shall denote the multifunction n n
00

t  -» n r ( t )  „
n = 1

I f ,  fo r  each positive in teger n , is  a multifunction from S into a

space X , then II T shall denote the multifunction * n * n n
00

t  -» n r  ( t )
n=1

from S into II X 0 n n

I f  cp : X -> Z is  a mapping, then cp o T denotes the 

multifunction

t  -+ <p( r ( t ) )

from S into Z .

I f  § : X -* Z is  a multifunction, then § o T denotes the 

multifunction

t  -► U [§ (x ) : x (  f ( t ) i

from S into Z
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I f  T : S -> X is  a multifunction and B C X , then we define 

the upper inverse image o f B to he the set

T+(B) = |t e S : T (t )  C Bj ,

and the lower inverse image o f B to he the set

r"(B) = it  f  s : r ( t )  n B / ^ i  .

T+( b ) is  the complement in  S o f the set T (X \ B) .

Now le t  X he a topological space. Then a multifunction 

T : S X w i l l  he^said to he closed-valued i f ,  fo r each t  , r ( t )  is  a 

closed set» I t  w i l l  he said to he compact-valued i f ,  fo r each t  , r ( t )  

is  a compact se t. S im ilarly, i f  X is  a lin ear space, we may speak o f 

convex-valued multifunctions. I f  T is  a multifunction, we define T 

to he the multifunction whose value at a point t  (  S is  the closure o f

r ( t )  .

PROPOSITION 1.1. I f  r  : S -+ X is  a multifunction, where X

is  a topological space, then T (G) = T (&) fo r  every open set & in  X .

P roo f. This proposition follows at once from the fact that, 

i f  r ( t )  meets G , then T (t )  meets G , hy the de fin ition  o f the closure 

o f  a set.

PROPOSITION 1.2. I f  ( r  ) is  a sequence o f multifunctions 

from S into the space X , then fo r any set B in  X ,

(u  r  ) - ( b ) = u r"(B) .v n n ' v '  n nv '

P roo f. This follows from the d e fin ition  o f lower inverse

image .

PROPOSITION 1.3o I f  r : S - + X , f : X - ^ Y  are multifunctions.' 

then fo r any set B in  Y

(§  o r)"(B ) = r “( s “(B))
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Proof. ($  o r )  ( b ) = [t  : $ (x) HB ^ $ fo r  some x e r ( t ) ]

= [t  : r ( t )  H $"(B) i  <f>]

= r “ ( § ' ( B ) ) .

PROPOSITION 1.4. I f

a sequence o f sets in  X ,

00

r " (  u b )- - i n '

T : S -y X is  a multifunction and

U r “ (B ) .
-i n

)

Proof. r ( t )  meets 

fo r  some n .

U B i f  and only i f  t  (  T (B ) 
n= 1 n

This proposition c lea rly  holds fo r  arbitrary unions o f sets in

X o

PROPOSITION 1.5. Let (T ) be a descending sequence o f 

closed-valued multifunctions from the set S into the topological space 

X such that, fo r  each t  , r  ( t )  is  compact fo r  some n . Then fo r  any 

closed set F in  . X ,

00

(n  r ) - ( f ) = n r "  ( f ) .v n n' '  '  nn= 1

Proof. I f  r  ( t )  meets F fo r  each n , then the sets-------  n '

(F n T ( t ) )  fbrm a descending sequence o f closed sets. Since one o f these 

is  compact, this sequence has a non-empty in tersection . Hence (n  Tn) ( t )  

meets F , as required.

I t  is  clear that i f  r  ( t )  is  non-empty fo r each n , then 

(n  r  X t )  is  also non-empty. This proposition also holds fo r a descend

ing transfin ite  sequence o f closed-valued multifunctions,,

The follow ing resu lt is  a version o f Theoreme 1.1 o f ( 8 ) .



8

THEOREM 1.6. Let S be any set, X a -perfectly normal space, 

and I* : S -+ X a compact-valued multifunction. Then i f

A= fr"(& ) : & open in  Xj , 

r ” (F ) € fo r. every closed set F in  X .

P roo f. Let F be a closed set in  X . Then from §0, (x ) ,  

there exists a sequence (Gh) o f  open sets such that

&1 D G2 D G2 D G3 D . . .

and - F = n &
n = 1 n

Then r “(F) = n r “ (& ) .
n = 1

I t  is  clear that i f  r ( t )  OF /  ^ , then T (t )  Pi <}> fo r

a l l  n o Conversely, i f  t  belongs to i  (G^) > a l l  n , then 

r ( t )  n G"n ¥ 4> a l l  n • Since r ( t )  is  compact, r>n ( r ( t )  H G )̂ / <f> .

Thus P (t )  meets f\ G = F > which completes the proof o f statement ( i ) .  

Hence r  ( f ) e ^  , as required.

One technique which we shall use fo r manipulating set-valued 

functions is  that o f forming "refinements" o f multifunctions. This idea 

has been applied in  (41 )•  Let S and X be sets, and T : S X a 

multifunction. I f  B is  a set in  X . we define the refinement o f T b£

B to be the multifunction T where
23

r  ( t )  = r ( t )  nB  fo r  t  e t“ ( b ) 

and r _ ( t )  = r ( t )  otherwise.
23

For any set C in  X we have the formula:

r ' ( c )  = r “ (B n c ) u ( r " ( c )  \ r " (B ))

We conclude from th is :
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PROPOSITION 1.7. Let S be a space on which is  defined an 

algebra A  o f  subsets, X a topological space, and T : S -+ X a 

multifunction such that T ( f ) e A  fo r  every closed set F in  X • Then 

i f  B is  a closed set in  X , T also has this property.

In  the same way we have:

PROPOSITION 1 .8. Let S be a space on which is  defined a ring 

C o f subsets. X a topological space, and T : S X a multifunction 

such that r"(K) e C fo r  every corn-pact set K in  X . Then i f  H is  a 

closed compact set in  X , r also has this property.

We now introduce the notions o f continuity and measurability 

fo r  multifunctions. Let T and X be topological spaces. Then, follow ing 

(2 ) and (2 8 ),we define a multifunction T : T -» X to be upper semi- 

continuous (u .s .c . )  i f  F^G) is  open in  T fo r every open set G in  X ; 

T is  said to be lower semicontinuous ( l . s . c . )  i f  T (G) is  open fo r  every 

open set & in  X . We shall use the abbreviations u .s .c . and l . s . c .  

to avoid confusion with the d iffe ren t, but not unrelated, notion o f 

semicontinuity fo r  real-valued functions. I f  T is  both u .s .c 0 and

l . s . c . ,  we shall say that i t  is  continuous. C learly, i f  T is  closed

valued, i t  i s  continuous in  this sense i f  and only i f  i t  is  continuous as a 

point-valued function into S^(x) with the V ietoris  topology.

I f  t  e T . T is  said to be upper semicontinuous at t  i f  o ------------------------- o

fo r  any open set G , such that r ( t  ) C G , T+( g) is  a neighbourhood o f 

tQ . S im ilarly, T is  said to be lower semicontinuous at t  i f , f o r  any

open set & , such that r ( t ) n & / 0 , r ( & )  is  a neighbourhood o f t  .
0 o

I f  S is  a measurable space and X a topological space, then 

follow ing ( 8) ,  (18 ), ( 19 ) ,  (41) and ( 42) we define a multifunction 

T : S -► X to be measurable i f  T ( f ) is  measurable fo r  every closed set 

F in  X o
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r  w i l l  te said to te  ¿/-measurable i f  r  (&) is  measuratle fo r 

every open set G in  X .

We shall c a l l ' T ./̂-measurable i f .  T ( k ) is  measurable fo r 

every compact set K in  X . In  this case, we usually take the measurable 

sets o f S to form a cr-ring rather than a o'-algebra.

I t  follows from Proposition 101 that i f  T is  ¿/-measurable, 

then so is  T .

I f  (T  ) is  a sequence o f measurable multifunctions, i t  follows

from Proposition 1.2 that i s measurable. The same thing is  true fo r

§- and X-measurable multifunctions.
§

I f  S is  a measurable space, X,Y topological spaces, 

r : S -+ X a measurable multifunction and $ : X -* Y is  u .s .c ., then 

§ o T is  measurable (Proposition 1 .3 ). S im ilarly, i f  T is  ¿/-measurable 

and § is  l . s . c . ,  then § o T is  ¿/-measurable.

I f  X is  a topological space ( fo r  instance, a metrisable space) 

in  which every open set is  an , then we see from Proposition 1.4 that 

every measurable multifunction in to X is  also ^-measurable0

Theorem 1.6 shows that every compact-valued ¿/-measurable 

multifunction into a perfec tly  normal space is  also measurable.

Prom Propositions 1.7 and 1.8 we see that the refinement o f a 

measurable multifunction by a closed set is  i t s e l f  measurable, and that the 

refinement o f a X-measurable multifunction by a closed compact set is  

^-measurable.

2. Measurability and the Souslin Q-peration. Let (A )
................................  °1  “  * °n

be a countable co llection  o f sets in  a given space, indexed by the set o f

a l l  f in ite  sequences c^, . . . ,  o*n o f positive in tegers. Then the set

00

A = U n A 
<r n=1 °1 . cr 9n
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the union being taken over the co llection  o f a l l  in fin ite  sequences cr

o f  positive integers, is  said to be obtained from the family (A )
„1 n

by the Souslin operation. I f  the sets (A _) belong to a given
1 n

class N o f  sets, then A w il l  be said to belong to the class SouslinJV . 

This operation appears in  a paper o f M. Souslin, (4-9)o We shall use the 

convenient notation adopted by C.A. Rogers in  (43), pp. 44-4-9, and write

00

A = u n 
cr ,n = 1

4 , ,crjn

where a|n denotea the f in ite  sequence cr̂ , . . . ,  cr̂  .

The measurable space S w il l  be said to admit the Souslin 

operation i f  every subset formed in  this way from measurable sets is  

measurableo Every measurable space derived from an outer measure admits the 

Souslin operation; this is  proved in  pp. 44-49 o f (43 ). Moreover, i t  follows 

from the remarks on p. 95 o f (28) that, i f  S is  a lo ca lly  compact Hausdorff 

space with a Radon measure |-i , then the class o f p-measurable sets admits 

the Souslin operation.

Suppose that the class Jf ,is closed under the formation o f 

f in i t e  in tersections; then every set A in  Souslin-x/V can be represented 

in  the form

A = U n  
cr n =1 Acr|n ’

where, fo r  each sequence cr , the sets A^.^, A ^ j . . .  form a descending 

sequence. I f  the sets (A^.^) do not have this property we replace them 

by the sets ( b n) where, for each f in ite  sequence crln ,

Bcr|n Acr|1 n n acrin

We shall re fe r  to the Souslin-3? sets o f a topological space as
3

the ''Souslin sets ''. We shall make use o f the follow ing important resu lt, 

which is  proved in  (17 ), §19 :
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PROPOSITION 2,1. jPF A is  any class o f subsets o f a given se t. 

and i f  (8 = Souslin-/?, then Souslin (8 = Souslin A •

That is , we obtain no new sets by the ite ra tion  o f the Souslin

operation.

PROPOSITION 2.2«, _If X is  a topological space in  which every 

open set is  a Souslin set, then every Borel set in  X is  a Souslin se t.

P roo f. Let C be the class o f a l l  Souslin sets whose 

complements are also Souslin sets. Since, by Proposition 2.1, the class o f 

Souslin sets is  closed under the formation o f countable unions and in ter

sections, C is  closed,under the formation o f countable unions. As C is  

also closed under the operation o f complementation, i t  is  a <r-algebra. I t  

contains the closed sets o f X and hence i t  contains the Borel sets.

The conclusion o f Proposition 2.2 holds in  particu lar when X is  

a metrisable space. Clearly, in  the statement we can replace "open set" by 

"closed set" and "Souslin" by "Souslin-$". The proof is  unaltered.

PROPOSITION 2.3. I f  S is  a measurable space which admits the 

Souslin operation. X a topological space, and T : S -> X a measurable 

compact-valued multifunction, then T ( a ) is  measurable fo r  every Souslin 

set A in  X .

Proof. Let A = U n A_. ,-------  . cr ncr n=1

where the sets (A n) are closed subsets o f X , and the sequence

(A0./1, A ^ 2, . . . )  is  descending fo r every sequence cr o f positive in tegers.

Then

00

T ( a ) = UT ( n A |n) (Proposition 1.4),
cr n = 1

00

= U r> r  (Ag.^) £ f. Proposition 1.5 ),
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which,being the resu lt o f applying the Souslin operation to measurable sets, 

is  measurable.

Sim ilarly we have :

PROPOSITION 2,4. I f  S is  a measurable space which admits the 

Souslin operation. X a Hausdorff space, and r : S -* X a Jf-measurable 

closed-valued multifunction, then T ( a ) is  measurable fo r  every Souslin-^f 

set A in  X .

I t  is  a t r iv ia l  consequence o f Proposition 2.3 that i f  X is  a 

space in  which every open set is  a Souslin set, then a compact-valued 

measurable multifunction from S to X , where S admits the Souslin 

operation, is  ^-measurable. We can obtain a p a rtia l "converse" o f this as 

fo llow s:

PROPOSITION 2.5. Let S be a measurable space which admits the 

Souslin operation, X a topological space in  which every closed set is  a 

Souslin-^  set, and P : S -> X a ^-measurable multifunction such that, for 

each t , r(t) is  f in ite  ( though the cardinal number o f T(t) may vary) . 

Then T is  measurable.

Proof

representation

Let F be a closed set in  X , with the Souslin

OO

F = u n
cr n = 1 cTin >

where & . is  open fo r  each o"ln , and the sequences [G G , . . .  
cr|n  ̂ a-12*

are descending.

Suppose that, fo r  some sequence o' , T (t )  meets G fo r  each
oln

n , in  the point xn say. Since T (t )  is  f in ite ,  there is  a point y in  

r(t) which occurs in f in ite ly  many times in  the sequence (x^) . This

y e n gn cïn

t e r"(nn o"ln

9 and so
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Therefore

r"(n G. , ) = n r"(& , ) ,v n crin' n ' crin' *

and so

r-(p) = u n r‘(Gff|n) ,
cr n=1

which is  a measurable set.

We conclude th is section with a resu lt on the composition o f 

measurable multifunctions :

PROPOSITION 2.6. Let S be a measurable space which admits the 
*

Souslin operation. X a topological space in  which every open set is  a 

Souslin set, and Y any other topological space. Let T : S -* X be a 

measurable compact-valued multifunction and § : X -* Y a multifunction 

which is  measurable with respect to the Borel sets o f X . Then f  o T is  

measurable.

P roo f. This resu lt follows at once from Propositions 1.3, 2.2,

and 2 .3 .

I f  in  Proposition 2.6 § is  ^-measurable, then we conclude that

$ o T is  ^-measurable.

3. The Graph o f a Measurable Multifunction. I f  S and X are 

any two sets and r  : S -+ X a multifunction, then the graph o f T is  

defined to be the set

G(T) = f (x ,y ) e X x Y : y e r (x ) ]  .

I f  M is  any subset o f S x X , then M is  the graph o f the 

multifunction

fi : t  -+ [x : ( t , x )  € M] ,

and th is multifunction, obtained by taking cross-sections o f M , is
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uniquely defined. We shall denote the natural projection from S x X onto 

S by ^  . Then i f  B is  any subset o f X ,

r"(B) = ^(&(r) n (s x b)) .

In what follows, S w i l l  be a measurable space and X a 

topological space. R w il l  denote the class o f a l l  sets A x B where A 

is  a measurable set in  S and B is  a closed set in  X . We shall need 

the follow ing lemma, which is  a generalization o f resu lt (3*4) o f (14), and 

o f the main resu lt o f (34 ):

LEMMA 3.1. Let X̂  be a topological space and JĈ the class 

o f sets which are closed and corn-pact in  . Let Y be a Souslin-JCj 

subsnace o f X̂  • Then i f  S is  a measurable space which admits the 

Souslin operation. 7̂  (A ) is  measurable fo r every Souslin-r/? set A in  

S x Y .

00

Proof. Let A = U H (A . x B . ) ,
------- cr n=1 ^ n aln

where each A . is  measurable and each B . • is  closed re la t iv e  to Y . crln crln

Now fo r each crln , B , = C , O Y , say, where C , is  closed in  XJ .1 * o"ln crln * , crln 1

Hence each B is  Souslin-X in  X, , and as the ite ra tion  o f the crln 1 1 ’

Souslin operation produces no new sets (Proposition 2 .1 ), A is  Souslin-/?

in  S x X̂  . Thus, with new notation, we may write

A = U
cr

00

n
n=1

x E , ) crln' >

where each D . is  measurable, and each E_„ is  a closed compact set in  cri n cr| n c

X̂  o Eor each f in ite  sequence cr|n , we define

E* = E n o1 n cr̂ HE cr * 
n

D*. = A i f  E*crln ^ crln D* = D 
cr|n crln

and we put otherwise
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Then

A = U H (D*. x E* , ) , 
<r n=1 aln CT,n

= u (n r* ) x (r\ E» )
x c|n' cr n=1 <r|n' n = 1 1

Thus
W  vw

« . (a) = u*.(n d* , x n e* , ) ,1V ' 1 '  . crin . crjn' *ct n=1 n=1

= U H D* ,^  a cr n »cr n=1

since i f  H E *  is  empty ' E* = % fo r  some n , by compactness^in
n=1 n

which case D* = 6 by our de fin ition , crin

We may extend this resu lt a l i t t l e :

LEMMA 3*2. Let X̂  , S and Y be as in  Lemma 3 d .  Then i f  

Z = cp(Y) , where cp is  a continuous mapping, and A is  a Souslin-/̂  set in  

S x Z , (A ) is  measurable.

Proo f. l e t  A = U  n (A  XB ) ,
cr n=1

where each A is  measurable and each B is  closed. We define cr|n (Tin

- 1,A. = U n (A X 9 (is ) )  , in S X Y 1 _  ' cr n T v (T n/7 *cr n=1

I t  is  eas ily  shown that ^ (A )  = ^ (A ^ ) ; the resu lt follows at 

once from Lemma 3 d .

Now le t  X be a Polish space. We know that X is  homeomorphic

Nto a Borel subset o f the compact metrisable space I  (§0, ( i x ) ) .  Hence, by 

Proposition 2 .2 ,any Polish space is  homeomorphic to a Souslin-JC subset o f
tN
I  and so sa tis fies  the hypotheses o f Lemma 3 d .  We deduce from Lemma 3.2 

the fo llow ing:

- LEMMA 3.3. I f  S admits the Souslin operation and X is  the
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continuous image o f a Polish space, then ^ (A )  is  measurable fo r every 

Souslin-/? set A in  S x X .

COROLLARY. I f  S admits the Souslin operation. X is  the 

continuous image o f a Polish space and r : S -» X has Souslin-/? graph. 

then T is  measurable.

P roo f. I f  F is  a closed set in  X ,

r " (F ) = ^ (& (r )  n (s  x f ) )  ,

which is  the projection o f a Souslin-/? set.

LEMMA 3 A .  Let (S ,A ) he a measurable space and X a #

topological space in  which every open set is  a Souslin set. Then every set 

in  the cr-algebra A ® <¡8 is  Souslin-/? .
A

Proo f. Let A  be the class o f sets A in  S x X such that 

both A and its  complement A* are Souslin-/? . This class is  a cr-algebra, 

since by Proposition 2.1 any Souslin class is  invariant under the formation 

o f countable unions and in tersections. A  also contains the sets o f /? , 

fo r  i f  M is  measurable and F is  closed, the complement o f M x F is

(M x F ) ' = (M* x X) U ( S x F' )  ,

which is  c lea r ly  Souslin-/? .

........... The sets M x F generate the cr-algebra A ® IB . since the
A

cr-algebra generated by the sets [M x F : F closed in  X] fo r  a fix ed  set 

M in  S contains a l l  the sets M x B where B is  a Borel set in  X „

Hence A  contains A ® (8 , and so every set in  A ® B is
X X

Souslin-/? •

In  particu lar, the conclusion holds i f  X is  metrisable.

PROPOSITION 3.5» I f  (S,X) is  a measurable space which adm-i t.s 

the Souslin operation and X is  a topological space which is  the continuous
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image o f a Polish space, then the projection into S o f any set in  A ®  I0JL
is  measurable.

Proo f. Let X = cp(p) , where P is  a Polish space. Consider 

the mapping i|r from S x p into S x X defined by

iK t,p ) = ( t ,  tp(p)) .

Then i f  A e A and B e 6 ,
A

t|r 1(A x B) = A x cp "'(b ) ,

which belongs to A® <8 , cp being continuous. Thus i f  M e A ®  i8 ,
P x

—1
( m) e A® lB . Therefore 

P
*

^ (M ) = j t  e S : ( t , x )  e M some x e Xj ,

= [ t  f  S : ( t ,  cp(p)) € M some p e P j ,

= j t  f  S : ( t ,p )  €  ̂ ( m) some p € P] »

= * 1 ( f 1 0 0 ) ,

and this is  measurable, by Lemma 3.4 and Lemma 3«3.

We now consider the relationship between the measurability o f a 

multifunction and the nature o f it s  graph. The fo llow ing theorem comes 

from statement 4.3 o f (14) and from Theorem 2 o f (42 ).

THEOREM 3*6. I f  (S,X) is  any measurable space, X a 

2C-space and T any ^-measurable closed-valued multifunction from S into 

x , G(r) belongs to the cr-algebra A ®  18 •A

Proo f. Let (U ) be a countable co llection  o f open sets 

forming a base fo r the topology o f X .

Then ( t , x )  / G-(r) i f  and only i f  x e fo r  some n , where

un n r ( t ) = < £ ,

3 That is ,  ( t , x )  / &(T) i f  and only i f  ( t , x )  e T+(U^) x Un fo r  

some n .- Thus the complement o f the graph is

& (r )' = u ( r +(u ‘ ) x u ) ,
n=1
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and so G(r) is  measurable.

S im ilarly we have:

THEOEEM 3.7. I f  (S,A) is  any measurable space, X any 

regular space which is  the continuous image o f a 2C-space, and T a closed

valued measurable multifunction from S into X , then G(T) belongs to 

the cr-algebra A ®  (B̂  .

P roo f. Let (U^) be a countable base o f open sets fo r the

2C-space Y , where X = cp(Y) , cp being a continuous mapping. For each n ,

le t  Vn = <p(un) • Then, since cp is  continuous, i f  x is  any point o f X

and U a neighbourhood pf x , there exists an integer n such that 

x <r Vn C U . Therefore, i f  x / T ( t )  , Vn fl T ( t )  = $ fo r some n and so

&(r)' = u  (r+(vy x vn) ,
n = 1

which c lea rly  belongs to A ®  .

THEOEEM'3.8. Let (S ,A ) be a measurable space which admits the 

Souslin operation, X a Souslin space and T : S -+ X a closed-valued 

multifunction. Then the statements ( i )  to ( i v )  are equivalent:

( i )  T is  measurable;

( i i )  T is  ^-measurable;

( i i i )  &(r) <r A® ¿8X ;
( i v )  r"(B) is  measurable fo r  every Souslin set B in  X .

Proo f. From Proposition 1.4, we deduce that ( i )  implies ( i i ) .

The fact that ( i i )  implies ( i i i )  has already been shown (Theorem 3 .6 ).

Suppose that ( i i i )  holds. Then G(T) is  a Souslin-# set, by Lemma 3.4, 

and so i f  B is  a Souslin set in  Y ,

r"(B) = ^(&(r) n (s x b)) ,

which is  the projection o f a Souslin-# set, and so is  measurable, by 

Lemma 3.3.
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The chain o f implications is  closed by the t r iv ia l  fact that 

( i v )  implies ( i ) .

The equivalence o f ( i )  and ( i i )  has also been shown by A.P0 

Robertson, in  Theorem 3 o f (A-1)«

THEOREM 3o9. Let (S,A) be a measurable space which admits the 

Souslin operation. X the regular continuous image o f a Polish space and 

r  : S -♦ X a closed-valued multifunction. Then the fo llow ing three state

ments are equivalent:

( i )  T is  measurable ;

( i i )  & ( r ) . e A ® ^ ;

( i i i )  T ( b ) is  measurable fo r  every Souslin set B jin Y .

P roo f, I t  follows from Theorem 3»7 that ( i )  implies ( i i ) .  I f  

( i i )  holds, then ( i i i )  fo llows from Lemma 3*3 and Lemma 3A> because

r “ (B ) = ^ (& (r )  n (s x b ) )  .

I t  is  t r iv ia l  that ( i i i )  implies ( i ) 0

In  this case, T is  also ^-measurable, a conclusion which holds 

under more general hypotheses, as is  shown in  Theorem 3o11 below. F irs t we 

need •

LEMMA 3»10. I f  X is  the regular continuous image o f a 

2C-space, then every open set in  X is  an s e t.

P roo f. Let X = <p(Y) , where Y is  a 2C-space and 9 is  a

continuous mapping. Let (U ) be a countable base o f open sets fo r  Y .

Now i f  G is  open in  X , and x e G , there is  a closed neighbourhood V

o f x contained in  G . Now there is  a point y in  Y such that

x = cp(y) • Since 9 is  continuous . 9(11 ) C V fo r  some neighbourhood Un n

o f y . Hence <p(Un) C G . I t  follows that every open set G is  a union

o f the sets 9(U ) , and so is  an 3 .n ' * cr
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THEOREM 3.11. I f  S is  any measurable space, and X is  the 

regular continuous image o f a 2C-space, then every measurable multifunction 

from S into X is_ . ¿/-measurable.

Proo f. This follows immediately from Proposition 1.4 and

lemma 3 . 10 .

We end this section with two results which are related  to 

Theorems 3*8 and 3*9 tut are not oovered by them.

THEOREM 3.12. Let (S jCM) be any measurable space. X any 

topological space and T : S -> X a multifunction such that G(T) e A ® (8 .
A

Then ( i )  fo r each t  C S , r ( t )  is  a Eorel measurable set,

and ( i i )  fo r  each x e X , r “ ( [ x j ) = [ t  e S : x e r ( t ) j  is  measurable.

P roo f. This theorem is  a restatement in  the language o f 

multifunctions o f (16) ,  §3 f̂, Theorem A.

THEOREM 3»13» Let (S,X) be a measurable space which admits

the Souslin operation, X the continuous image o f a Polish space, and T 

a multifunction with graph in  A ® (8 • Then T ( b ) is  measurable fo r
a

every Borel set B in  X .

P roo f. I f  B is  a Borel set in  X , 

r " (B ) = ^ (G (r )  n (s X b ) )  ,

and this is  the projection  onto S o f a set in  A ® <8 „  . This set T ( b )
A

is  measurable, by Proposition 3«5»

A. Intersections and Products o f Measurable Multifunctions. I f  

S is  a measurable space, X a topological space and (T^) a sequence o f 

measurable multifunctions from S into X , then i t  follows from 

Proposition 1.2 that al so a measurable multifunction. In  general,

in  order to prove sim ilar theorems fo r  intersections and products, we have



22

to place restriction s on the kind, o f spaces we use.

LEMMA 4.1. Let S be any measurable space. X a separable

metrisable space and , Tg two measurable compact-valued multifunctions

from S into X . Then the set [ t  : T ^ (t ) C\ ]?2 ( t )  = <f>] is  measurable.

P roo f. Let A = [ t  : I ^ ( t )  H r ^ ( t )  = <£,}

Let (U ) be a countable fam ily o f open sets forming a base fo r  the 

topology o f X . Then t  e A i f  and only i f  there exists a f in ite  sub

co llection  U. U. o f these sets such that
1 5 Xk

T ( t )  C U. U . . .  UU. and T ( t )  n (U. U . . .  U U. ) = <j> . 
1 "  xk 1 1 1k

Hence

A = u (r+(u, u ... uu. ) \  rl(u u ... uu ))
i , , . . . , i  1 1 n 1 nr  ' n

the union being taken over the countable set o f f in ite  sets* o f positive 

in tegers. A is  a countable union o f measurable sets, and so is  measurable,

PROPOSITION 4.2. Let S be any measurable space, X a 

separable metrisable space and , T2 two measurable compact-valued 

multifunctions from S into X . Then the multifunction

r : t  n r 2( t )

is  also measurable.

Proo f. I f  F is  any closed set in  X ,

r ' ( F )  = [ t  : r ^ t )  n r 2 ( t )  n j / ^ !  ,

= [ t  : r ^ t )  n r 2 jJ ( t )  /<*>} a r “ (F ) ,

where T2 ^ is  the refinement (§1 ) o f r 2 by the closed set F . This 

is  a measurable compact-valued multifunction, by Proposition 1.7, and hence 

r'(F ) is  a measurable set, by Lemma 4.1.

THEOREM 4.3» Let S be any measurable space. X a separable 

metrisable space and (^ n) a sequence o f measurable compact-valued
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multifunctions from S into X 

measurable.

Then the multifunction Pi T is  also -------------------------------- n n -----

P roo f. I t  fo llow s from Proposition 4.2, by induction on n , 

that the multifunction

fi : t -+ r,(t) Pi pi r (t)
n 1 v '  n' 7

is  measurable fo r  each n . Hence (^ n) is  a descending sequence o f

compact-valued measurable multifunctions. Now PI T = Pi fi , and the r  n n n n

measurability o f PI follows immediately from Proposition 1.5.

This la s t result generalizes Theoreme 4.10 o f ( 8) ,  where i t  is  

stated fo r the case where S is  a lo ca lly  compact Hausdorff space with a 

Radon measure. In  fact, our hypotheses can be relaxed; Lemma 4.1 s t i l l  

holds i f  X is  a 2C-space and any ^-measurable closed-valued

multifunction. The same applies to Proposition 4.2. We state Theorem 4.3 

with relaxed conditions as fo llow s; the proof is  unchanged.

THEOREM 4.4. Let S be any measurable space. X a 2C-space, 

and ( rn) a sequence o f multifunctions from S into X . Suppose that 

is  measurable and compact-valued, and that a l l  the others are 

^-measurable and closed-valued0 Then the multifunction Pl^ is  measurable.

We now turn to the question o f closed-valued multifunctions; we . 

place more restriction s on S and X .

THEOREM 4.5o Let S be a measurable space which admits the

Souslin operation. X the regular continuous image o f a Polish  space, and 

( r ) a sequence o f closed-valued measurable multifunctions from S into 

X o Then the multifunction is  also measurable.

00

Proof. &(p> r ) = n G(r ) .-------  v n n' v n? n=1

Each T has measurable graph, by Theorem 3*9» and hence so has PI T ,n ^  r J . n n



24

I t  follows from the same theorem that H T is  measurable. , n n

I f  ( r  ) is  any sequence o f multifunctions which sa tis fy  the 

hypotheses o f Theorem 4.5* then we can show in  the same way that the resu lt 

o f applying any f in ite  sequence o f countable operations to (T ) is  a
CO CO

measurable multifunction. For instance, the multifunction t  -> H U T ( t )
, , n n=1 k=n

is  measurable in  this case. We next consider the question o f products o f

set-valued functions«

PROPOSITION 4.6. Let S be any measurable space. X any 
*

topologica l space and Y any 2C-space. Then i f  : S -♦ X and 

Tg : S -► Y are ^-measurable multifunctions, the multifunction

r : t -+ ^ (t) x r2(t)

from S to X x Y is  also ^-measurable.

P roo f. Let G be any open set in  X x Y , Then

G = U (A. x B .) , say, 
i e l  1  1

where A  ̂ is  open in  X , a l l  i  , and is  open in  Y . The index

set I  need not be countable« Let (U ) be a countable fam ily o f open 

sets forming a base fo r the topology o f Y . Then, i f  we define fo r each 

in teger n

0n U A i : Dn C B± i »

we have

Therefore

G = U (0 x U ) . n n n=1

r “ (G) = u ( r ”(0 ) n r2(u ) )  ,
n = 1

which is  c lea r ly  measurable.

COROLLARY. I f  S is  any measurable space. X any
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topological space, Y any 2C-space, and f : S - * X , g : S - > Y  are 

measurable functions, then the function

t  -► ( f ( t )  , g ( t ) )  ,

is  also measurable»

PROPOSITION 4.7. Let S be any measurable space. (X^) a 

sequence o f 2C-spaces, and ( I\ ) a sequence o f ^-measurable multifunctions 

from S into X  ̂ respective ly . Then n r  _is ¿/-measurable with respect

to the product topology on n X .

P roo f. Let G = n̂ Ĝ  be any basic open set in  ÏÏJ4 (that is ,  

Ĝ  = fo r  a l l  but f in i t e ly  many i  ; each Ĝ  is' open). Then i t  is  

ea s ily  seen that

( n r ) »  = n r'(c ) ,
j  = i J 0

which is  a measurable set«, Since any open set

union o f basic ones 14( i  = 1 , 2 , , . . )  ,

00
(n r  ) - ( H) = u  (n r  )-(H  )

1 1  J=1 1  1  J

H

>

in  n.x.1  1 is  a countable

which is  measurable.

COROLLARY. Let S be any measurable space. (X^) a sequence . 

o f 2C-spaces. and ( f^ )  a sequence o f measurable functions from S into 

X_̂  , respective ly . Then the function

t  -+ ( f ^ ( t )  , f 2 ( t )  , . . . )

from S in to II^X ■ is  measurable with respect to the product topology on

n.x. . . 'x i

THEOREM 4.8. Let S be any measurable space. (X^) a sequence 

o f  separable metrisable spaces and (T^) a sequence o f measurable compact-
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valued multifunctions from S into X  ̂ , respective ly . Then the 

multifunction ILI\ is  also measurable, with respect to the product 

topology on ILX^ o

P roo f. T is  ^-measurable, by Proposition 4.7« r is  also 

compact-valued, and so is  measurable by Theorem 1.6, the space ILX^ being 

metrisable.

We now consider the graph o f a product o f measurable multifunct

ions; this w i l l  enable us to prove stronger results than those obtained so 

fa r . '

THEOREM 4.9« • Let (S ,A ) be any measurable space and (X^) 

any sequence o f topological spaces. Let X = , with the product

topology. Then i f . f o r  each i  , T is  a multifunction from S into X̂  

with G (T.) e A ® i6L , we have G-(n.I\) e
l  l

P roo f. Consider the mapping <p : S x X -» n_̂ (S x X^) defined by

cp(s,(x± ))  = ( ( s , x i ) )  ,

where s e S and (x . ) e n.X. .
l  i i

Let %. be the natural projection o f n.(S x X .) onto S x X. ;

le t  A be the smallest cr-algebra on II (S x ^ 0  such that, fo r  a l l  j  ,

A f  implies tc~1 ( a ) e ^ °  Suppose that j  is  fix ed ; then the set

{B C S x x . : 7iT \ b ) t A ]  is  a cr-algebra. I t  contains A  ® (8̂  and hence 
J tJ j

a l l  the sets C x D . where C c 1  and D. is  closed in  X. . Now these
j  J  J

sets [c x D.l generate A  ® l8 . Thus A  is  generated by the sets
A
(C x D .) , as j  runs through the positive in tegers.

tJ 0

Now <p ( tc. (S x D .)) = C x (X x .o . x D x X. . x • • « ) ,
.1 J * .1 .1 ' •

X.
J

j ' «3 ’ 1 j

which c lea rly  belongs to A  ® B o
?

- Therefore, i f  E e ip \ e ) f  A ®
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Now

c K y ^ )  = cp”1 (n±G(r±) )  ,

which therefore belongs to A  ® (8 .jL

THEOREM 4.10. Let (S ,A ) he a measurable space which â nri ts the 

Souslin operation and (X^) a sequence o f regular topological spaces, each 

o f which is  the continuous image o f some Polish space. Then.if : S -> 

is  for each i  a measurable closed-valued multifunction. II.T. is  also
------------------------ -------------------------------------------------------------------------------------  X X ---------------

measurable with respect to the product topology on 14 X  ̂ .

P roo f. Suppose that fo r each i  X. = i|r (̂P )̂ , where P is  a 

Polish space and i|̂  is  a continuous mappingo Then IIJ4 is  the image o f 

the Polish space II P (§0, ( i i ) )  under the continuous mapping

i' : (p±) -♦ ( ^ ( P i ) )  •

Now fo r each i  G-(l\) e A  ® (B , by Theorem 3*9. Thus i ff  ̂ 1  A.1
x = n.x. ,

X X

&(r) e A ® ,

by Theorem 4.9, and so by Theorem 3o9 r is  measurable.

C learly a l l  the results from Proposition 4o7 to Theorem 4.10 

hold fo r  f in it e  products o f multifunctions as w ell as fo r  countably in fin ite  

products.

Theorem 4.9 is  also true fo r uncountably in fin ite  products, as 

nowhere in  the proof do we use the fact that (X^) is  a countable fam ily.

5. The Limit o f a Sequence o f Measurable Multifunctions. Let 

, X by any topological space and (An) any sequence o f subsets o f X . Then, 

fo llow ing K. Kuratowski ((2 8 ), §29) and C. Berge ( (2 )  pp. 118-119), we make 

the fo llow ing defin itions:

A noint x in  X is  a lim it  point o f (A ) i f  to each o — — j— n
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neighbourhood U o f xq there corresponds an integer N such that 

k  ̂ N implies H U f  <f> .

A point xq in  X is  a cluster -point o f (A ) i f ,  for each 

neighbourhood U o f xq , A^ meets U fo r in f in ite ly  many k .

The set o f lim it points o f (A ) is  called the lower lim it o f 

( A j  and is  denoted by L i(A n) ; the set o f cluster points o f (A ) is  

ca lled  the upper lim it o f (A ) and is  denoted by Ls(A ) on n

I t  follows from these defin itions that L i(An) Ç Ls(A^) forn'

every sequence (A ) , and that the two lim its  are always closed sets. I t  

is  possible that one or both o f them may be empty.

I f  L i(A n) = Ls(An) = Aq , we shall say that the sequence (A^)

converges to A ■, or that Aq i s  the lim it o f the sequence (A^) . We

write A -* A or A = Lim (A ) to express th is , n o o x n' r

The fo llow ing proposition, due to Hausdorff, is  quoted in  (28 ),

P. 337.

PROPOSITION 5.1. I f  (A ) is  any sequence o f sets in  a 

topological space, then

©0 00

Ls(a ) = n ( u a ) .
k =1 n=k

We can get a sim ilar formula fo r  L i(A n) i f  we admit uncountable 

operations (cf. (28 ), p. 337, footn ote ).

PROPOSITION 5.2. I f  (A ) is  a sequence o f sets in  a 

topological space, then

L i(A  ) = n ( U A ) ,
<r k =1 °k

the in tersection  being taken over a l l  s t r ic t ly  increasing sequences o' o f 

pos itive  in tegers.



29

Proo f. I f  x is  a lim it point, then i t  follows from the 

de fin ition  that x belongs to the right-hand side o f the above formula,,

Now suppose that x is  not a lim it point o f (An) • Then there

is  a neighbourhood U o f x , and an increasing sequence (c, ) o f

positive  integers such that^for each k ^ A ^ flU  = 4> • Thus U does not
uk

meet U, A and so x does not belong to the right-hand side o f the k crk

formula, which is  a l l  we need to prove the proposition.

PROPOSITION 5«3» l e t  S be any measurable space, and (T  )

a sequence o f measurable or ^-measurable multifunctions from S into a 

p er fec tly  normal space X , such that fo r  each t  the set U. r . ( t )  _is 

re la t iv e ly  compact. Then the multifunction t  -► L s (rn( t ) )  is  measurable.

Proo f. r  is  ^-measurable fo r  each n , and so, by

Propositions 1.1 and 1.2 the multifunction

00

t  -♦ u r  ( t )nn=k

is  ^-measurable fo r  each k . Since i t  is  compact-valued, i t  is  

measurable, by Theorem 1.6. The fa c t that t  -+ Ls(Tn( t ) )  i s  measurable 

then follows from Proposition 1.5.

PROPOSITION Let S be a measurable space which admits

the Souslin operation, and (T ) a sequence o f measurable or ¿/-measurable 

multifunctions from S into the Souslin space X . Then the multifunction 

t - * L s ( r  ( t ) )  is  measurable.

Proof. For each n , T is  ^-measurable. Therefore fo r — ...... n

each k the multifunction
00

t  -+ u r ( t )
- i  nn=k

is  ^-measurable, and hence measurable, by Theorem Thus

t  - L S(r ( t ) )  is  a measurable multifunction, by Theorem 4 .5o
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PROPOSITION 5.5» Let S be a measurable space which admits

the Souslin operation. X a Polish space, and ( I* ) a sequence o f 

measurable multifunctions from S into X . Then the multifunction 

r  : t  - » L i ( r  ( t ) )  is  also measurable«

Proof. Define T .. ( t )  = T _ . _ ( t )  , fo r  each t e S .crn Oi + ••• + u1 n
Then, with th is re-indexing,we have

iKr„ ( t ) )=n S r Ct),
cr n=1

from Proposition 5 »2, the in tersection  being taken over a l l  sequences o f 

positive in tegers.

Let F be a closed subset o f X . Since X is  a separable 

metrisable space, F has a countable covering (th ) by open sets o f 

diameter less than ^  . ¥e suppose that 1  ^ fo r  each i  .

S im ilarly, fo r  each i  , F illJ. has a countable covering

1[u. . : j  = 1 , 2 , . . . ]  by open sets o f diameter less than r* , where again 
ij  *”

U. . H F / i  fo r  each j  .

Continuing in  this way we obtain a family (U n) o f open sets,

where U . f\ F 4 6 fo r  each n , and U . has diameter less than 2 n . c ln   ̂ ' cr/n

For each in fin ite  sequence cr o f positive integers contains a

single point o f F , x say, as X is  a complete space. Conversely, i f

x e F , there exists at least one sequence cr such that x e U fo r  a l l  ' cr| n

n .

Now r ( t )  O F / <f> i f  and only i f  fo r  every cr there exists a 

sequence t o f positive  integers such that

V '  •n=1

This is  true i f  and only i f  there ex ists an integer k

U n r . ( t )  = d> fo r a l l  n . Therefore cr|k -tin' '  r

r+(F ’ ) = n U
cr k=1

[U  n
t n=1

r* (u 1 , ) ]Tfn ' o"|k'J

such that

>
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where U ^ n denotes the complement o f U ^ . The term in  square brackets 

is  measurable; thus r +( F ’ ) is  the complement o f a set obtained by 

aPp!ying the Souslin operation to measurable sets. I t  is  therefore 

measurable, and so T is  a measurable multifunction,.

Let (A ) be a sequence o f closed sets in  a topological space

X , and suppose that An -> A in  the V ietoris  topology on S?(X) . I t  is

easy to show that A C L i(A n) . Moreover, i f  X is  a regular space,

Ls(A ) C A and so A = Lim (A ) . n' n

Sim ilarly, i f  (X ,d) is  a metric space and (A ) is  a sequence

o f closed sets in  X such that A -+ A in  the Hausdorff topology on ¿?(x) ,
• ^

then again A = Lim (A ) o However, Lim (A ) may ex is t even though the 

sequence does not converge in  the Hausdorff topology.

Example. Take X = R , and le t  A = (“  , n} • Then

Lim (An) = [Oj , but S(An , {o } )  = n , and so there is  no convergence in

the Hausdorff, or the Y ie to r is , topology.

Hence convergence in  the V ietoris  or Hausdorff topology is  a 

stronger condition than the existence o f Lim (A ) , and so we expect to be 

able to prove stronger results fo r  convergent sequences o f multifunctions 

than we have obtained so fa r .

THEOREM 5*6. Let S be a measurable space. X a perfec tly  

normal space and (T ) a sequence o f  measurable (o r ^-measurable) closed

valued multifunctions from S to X such that fo r  each t  the sequence 

(r (t)) converges in  the V ie to ris  topology to the closed set r(t) . Then 

the multifunction T _is ^-measurable.

P roo f. I f  F is  a closed set in  X , there exists -a sequence

(G ) o f open sets such that F = n G and v n' r  n n-u

&1 D G2 D G2 D &3 D . . .
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Then i t  fo llow s that

r+(F ) = n u n r+(&k) , . . . d )
k = 1 m=1 n = m

from which we deduce that T is  ^-measurable. I t  remains to prove that 

( i )  holds.

I f  t e  r+(F) , then T (t )  C F and so T ( t )  C & a l l  k .
Jv

Moreover, fo r each k ,  there exists an integer m(k) such that n £ m(k) 

implies that ^n( t )  C &k f and hence t  e ) . Thus t  belongs to the

right-hand side o f { i ) .

Conversely i f  l ( t )  ^  F , then r(t) &k , fo r some k .
9

Thus r(t) n  ̂ ,
K.

Hence there exists an in teger m(k) such that n £ m(k) implies

that T ( t )  ^  G, fo r  n £ m(k) . In  particu lar there is  fo r  each m an n ic

in teger m, > m such that T ( t )  ^  G .1 m̂ x

Therefore, i f  t  does not belong to the left-hand side o f  ( i ) ,  

i t  does not belong to the right-hand side0

COROLLARY. I f  S is  a measurable space, X a perfectly  

normal space and ( f  ) a sequence o f measurable functions from S into X 

such that fo r  each t  the sequence ( f n( t ) )  converges to the point f ( t )  , 

then the function f  is  measurable.

PROPOSITION 5.7. I f  T is  a topological space. X a p erfec tly  

normal space and ( f  ) a sequence o f  continuous functions from T into X 

such that fo r  each t  the sequence ( f n( t ) )  converges to the point f ( t )  , 

then the function f  is  a Baire class 2 ; that is , fo r  every open set & 

in  X , f  ^(G) is  a s e t .

Proof. I f  F is  a closed set in  X , and F = H G where ■ — — n n
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is  a sequence o f open sets such that

&1 D &2 D &2 D &3 D G3 D • • •

then statement ( i )  o f Theorem 5*6 holds in  the form:

f " 1 (F ) = n u n f “ 1^  ) ,
k=1 m = 1 n =m

cy
which is  an ^ set. Hence f ”  (F ' )  is  a , which is  the required

resu lt.

I t  is  well-known that a function which is  the pointwise lim it o f 

a sequence o f continuous functions need not be continuous. This la s t 

proposition sets a bound' to the possible bad behaviour o f f  .

We now examine the case where a sequence o f multifunctions 

converges in  the Hausdorff topology.

THEOREM 5.8. Let S be a measurable space, (X ,d ) a metric 

space and (T^ ) a sequence o f measurable or ^-measurable closed-valued 

multifunctions. I f  fo r  each t  ( r  ( t ) )  converges, in  the Hausdorff 

topology induced by d , to the closed set r(t) , then T is  a 

^-measurable multifunction.

P roo f. Let F be a closed set in  X . Then le t  

Fm = [x e X : d (x ,F )  ̂ “ Jn

fo r  each positive in teger n . We then have

00 00 00
r+(F ) = n u n i£ (Fn) .

n = 1 m = 1 k=m
. . . ( i )

I f  r ( t )  C F , then r ( t )  C Fq fo r  a l l  n . Let S be the 

Hausdorff metric induced by d on S?(x) . Then there exists a positive
<4

in teger n̂  such that S(Tk( t )  , r ( t ) )  < — fo r  a l l  k i  n̂  . This 

implies that r, ( t )  C F fo r  k i n . ,  and so t  belongs to the r igh t-j£ n I

hand side o f ( i ) .
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Conversely, suppose that T (t )  ^  F . Then there exists an 

in teger n such that r(t) ^  F̂  . Suppose that x e r(t) \ F̂  . Then 

there exists a rea l number e > 0 such that the set

Bf (x ) = | y f  l  : d (x ,y ) < <?]

does not meet F . However, there exists an in teger m. such that for

m is m̂ , 8(r (t) , r(t)) < e . Thus fo r m £ m̂ , r^(t) C\ B^(x) f <j> , from

the d e fin ition  o f the Hausdorff m etric0 In particu lar, fo r every integer

m , there exists an integer k 5 m such that T ( t )  F .J£ n

Thus i f  T (t )  ^  F , t  does not belong to the right-hand side o f

( i ) .

This proves statement ( i ) ,  from which i t  follows at once that 

f  is  ^-measurableo
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I I .  THEOREMS ON SELECTORS

6 . The selection problem. Let S,X be two sets and 

r  : S -* X a multifunction with non-empty values. Then a selector fo r  T 

is  a function y : S -> X such that, fo r a l l  t  e S , y ( t )  e r ( t )  . We 

shall be concerned mainly with the problem of the existence o f measurable 

selectors fo r  measurable multifunctions; though, fo llow ing the example o f 

K. Kuratowski and C. Ryll-Nardzewski ( in  ( 29) ) ,  we shall state the results 

in  a more general form. This measurable selection  problem has been 

investigated by several authors ( f o r  example in  ( 6) -  ( 10 ) ,  ( 13 ) ,  ( 20) ,  ( 2 1 ), 

(29 ), ( 3 1 ) ,  (41), (42), (45 ), ( 50) and ( 5 1 ) ,  some o f whom have also 

considered applications o f the theory. We shall also touch on the question 

o f the existence o f continuous selectors; much work has been done on this 

by E. Michael ((35 ) -  (3 8 )).  M.M. Coban ((1 1 ), (12 )) has shown that under 

quite general conditions continuous or semicontinuous multifunctions have 

Borel measurable selectors.

The d ifference between the selection  problem and the uniformizat- 

ion problem, which has been studied by several authors (see fo r instance 

(44 ), (47) and ( 52) ) ,  is  mainly o f approach; there i t  is  not the continuity 

or measurability o f T and i t s  se lector y which are studied so much as 

the topological properties o f G (r) and &(y) .

A selection  o f results from the works cited  above is  presented 

by T. Parthasarathy in  his lecture notes ( (4 0 ) ) .

7. Conrpact-valued multifunctions.

THEOREM 7.1« Let S be a space on which is  defined an algebra.

<£ o f subsets. X a 2C-space, and T .: S -*■ X a multifunction with non

empty compact values such that, fo r  any closed set F in  X , T (F ) e £  . 

Then T has a selector y  such tha t.fo r every open set G in  X

r~V ) « •
>
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Proo f. Let (U ) be a sequence o f open sets forming a base

fo r the topology o f X . We write r = and then define a sequence

( r n) o f multifunctions such that, fo r each n > 1 , is  the refinement

(§1 ) o f r   ̂ by the closed set (X \ Un) . Thus ( r  ) is  a descending

sequence o f multifunctions such that, fo r each t  , I* ( t )  is  non-empty and

closed re la tive  to T ( t )  . Hence the multifunction A = n T has non-o n n

empty values. A selector y  o f A exists, by the Axiom o f Choice. We 

now examine the properties o f y  . Let F be any closed subset o f X . 

Then

f = n (x  \ u± ) ,
i e l

where I  is  some subset o f the positive integers, and so

y“ 1 (F ) = n y "1(x  \ U. )  . 
i e l

To complete the proof o f the theorem, i t  is  su ffic ien t to show that fo r 

each i  , y- \ x  \ Ih ) e •£ , fo r  then y \ f ) e and hence, fo r any open 

set & , y” "'(&) e . We observe that, fo r  any n and any closed set B , 

r  (B ) e ¿2 ; this follows from Proposition 1.7, by induction on n .

We now show that y  \ x  \ Ih ) e fo r  each i  : i f  

y ( t )  f  X \ l l ,  , then A (t ) meets X \ U± , and hence so does I h ^ t )  , a 

f o r t i o r i  . Conversely, i f  r^_^ (t) meets (X \ Ih ) , then 

r  ( t )  C (X \ Ih ) by de fin ition , and so A (t ) C (X \ th ) . We have proved 

therefore that , ,

Y' 1(x  \ u .) = rT^Cx \ u . )  ,

which belongs to £  .

Any selector y  fo r  A would have given the same result,,

THEOREM 7.2. Let S be a space on which is  defined an algebra 

o f subsets. X the regular continuous image o f a 2C-space, and
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F : S -+ X a multifunction with non-empty compact values such that, fo r  any

closed set F in  X , T ( f ) e . Then T has a selector y such that

“1fo r any open set & in  X , y  (&) e .

P roo f. Let X = cp(Y) , where Y is  a 2C-space and 9 a

continuous mapping. Let (U ). he a countable base fo r  the topology o f

X . We. define Vn = 9( 1̂ )  fo r each n . Writing = T , we define a

sequence (T^) o f multifunctions such that, fo r each n £ 1 , T is  the

refinement o f T . by the closed set V . Thus (T ) is  a descending

sequence o f multifunctions such that fo r each t  ^n( f )  is  non-empty and

closed re la t iv e  to T ( t )  , and so the multifunction A = H T has non-o n n

empty values. Let y  be any selector fo r  A . I f  & is  an open set in  

X , then

& = U V. , 
i  e l  1

fo r  some set I  o f positive integers ( c f .  Lemma 3«10). We now show that 

y ”*(V^) e £  fo r  each i  : i f  y ( t )  e Y/ , then A (t ) meets , and hence 

so does r  , j ( t )  * Conversely, i f  I\ ^ (t )  meets , T ^ (t) C by 

d e fin ition  and so A (t )  CY^ . We have proved therefore that

•'■'"'(V = r-^or.} ,

which belongs to ' <£ , by Proposition 1.7«

In  fa c t, rather more is  true in  this case:

THEOREM 7.3. I f  S,X and T are as in  the statement o f 

Theorem 7 .2 , then T has a countable fam ily (y  ) o f selectors such that 

fo r each t  the set [y ( t )  : n = 1 , 2 , . . . }  is  dense in  T (t )  and such 

that fo r  any n and any onen set & in  X , y (G-) e ."

P roo f. As before, l e t  X = 9( y ) , where Y is  a space with a

countable base (U ) o f open sets, and 9 is  a continuous mapping. We
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define V = c p ( ) . fo r  each n , and take T to be the refinement of

r by Vn . rn has a selector Yn such that, fo r  any open set G- in  X ,
—  1

Y (G) e JL , by Theorem 7.2. n o"

Let t  e S be fixed , and le t  x e T (t )  . I f  N is  any 

neighbourhood o f x , then, since cp is  continuous and since X is  

regular, x e CM fo r  some integer i  . Therefore N contains I\ ( t )  

and hence the point Y^ (t) • I t  follows that the set lY^ (t) : i  = 1,2, . . . ]  

is  dense in  T (t )  .

Let X * (-X) denote the space o f non-empty compact subsets o f a 

topological space X with the V ie to ris  topology. A choice function is  a 

function f  from X* (x) into X such that,fo r every K e (x) , 
f ( k ) e K .

COROLLARY. I f  X is  a regular 2C-space, then there is  a choice 

function f  : X* (x) -► X o f the f i r s t  c lass.

Proo f. In  Theorem 7»1 put S = X* (x) , £  the algebra o f 

subsets o f X* (x) which are both c? and , and define T(k ) = K 

fo r  every K e X* (K ) . For any closed set F in  X ,

r”(F) = [K : K n F / < t > ] ,

which is  a closed set in  the Y ie to r is  topology. Now le t  (th ) be a 

countable base o f open sets in  X , and G an open set. Since X is  a 

regular space, a compact set K is  contained in  G i f  and only i f  there 

exists a f in ite  subset I  o f the positive integers such that

K C U U. C G .
— i e l  1 _

Therefore T+( g) = U I^ (U  U.) ,
I  i e l  1

the union being taken over the countable set o f a l l  such f in ite  sequences o f 

positive  in tegers. Thus T+( g) is  an % , and i t  follows that, fo r  any
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closed set F in  X , T ( f ) is  a §„ as w ell as being closed. By TheoremO

7.1, T has a selector f  such that fo r  ary open set & in  X , 

f  (&) € . Since every set in  <£ is  an is  an , and

hence f  is  o f the f i r s t  class o f Baire.

Let X be any space. Then we shall say that a family 

[B^ : X e A] o f  subsets o f X separates the points o f X i f ,  fo r any two 

d istin ct points x and y , there is  a X in  A such that B  ̂ contains 

one or other o f x ,y but not both. We shall say that a topological space 

X sa tis fie s  condition (S ) i f  there exists a countable family o f closed

sets which separates the points o f X .

#

PROPOSITION 7.4. Any Hausdorff continuous image o f a 2C-space 

sa t is fie s  condition (S ) .

P roo f. Let X be a Hausdorff space, and suppose that 

X = cp(Y) , where cp is  a continuous mapping and Y is  a 2C-space. Let

(U ) be a countable base o f open sets fo r Y and le t  V\ = cp(iP ) fo r

each i  . I f  x f  y in  X , there exists a closed neighbourhood V o f x

which does not contain y . Now x = cp(z) , fo r some z e Y , and since <p

is  continuous there is  a neighbourhood IP o f z such that cp(lh) C V . ■ 

Hence x e C V . Therefore the points o f X are separated by the 

countable family ( IP ) .

PROPOSITION 7.5« A topological space sa tis fie s  condion (s )  

i f  and only i f  there is  a countable family o f upper semicontinuous rea l

valued functions which separates points.

P roo f. I f  (Bn) 1-s a countable family o f closed sets which 

separates the points o f the topological space X , then their characteristic 

functions also separate the points o f X , and are upper semicontinuous.

Conversely, i f  ( f n) is  a sequence o f upper semicontinuous rea l



valued functions which separates the points o f X , the closed sets

fx <f X : f n(x ) * r ] ,

where r  is  a rational number, form a countable family o f sets which 

separate points.

THEOREM 7.6. Let . S be a space on which is  defined an algebra 

<£. o f subsets and X a topological space which sa tis fies  condition (s )  . 

Then i f  T : S -» X is  a multifunction with non-empty compact values such 

that, fo r any closed set F , T ( f ) € £  , there is  a selector y fo r  f

such that y  ^(&) e fo r  any open set & in  X .

Proo f. Let *(B ) be a countable family o f closed sets which

separate the points o f X . We then write r  = T and define a sequence

( r  ) o f multifunctions such that, fo r  each n £ 1 , T is  the refinement

o f T . by the closed set B . As in  Theorem 7*1 or 7.2 we define 
n-1  J n

A = n nTn , and A (t )  is  non-empty fo r  every t  . I f  F is  a closed set 

in  X , i t  follows from Proposition 1.5 that

A '(F ) = n r"(F) , 
n= 1

and so the resu lt w i l l  fo llow  when we have shown that, fo r  every t  , A (t )  

consists o f a single point, y C )̂ , say.

Suppose that x ,y e A (t ) and that x f  y . Then there exists a 

closed set B_̂  which contains x , say, but not y . Now meets A (t )

and hence I\ ^ (t )  . Therefore A (t )  CB . , which contradicts our assumpt

ion that y e A (t ) .

Y i s  then the required s e le c to r .

COROLLARY. Let X be a 2C-space, or the regular continuous 

image o f a 2C-snace, or any space which sa tis fies  condition (S ) . Then i f  

T is  a topological space in  which every open set is  an 3 , every upper

40
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semicontinuous multifunction from T into ,X with non-empty compact 

values has a selector o f the f i r s t  c lass.

P roo f. This resu lt follows from Theorems 7.1, 7.2, and 7.6 on 

taking in  each case £  to be the algebra o f subsets o f T which are both

and h  •
The method o f Theorem 7.6 has been used previously by

A.P. Robertson to prove a measurable selection  theorem ((4 1 ), Theorem 1) in

the case where X is  the Hausdorff continuous image o f a separable

metrisable space. Prom Proposition 7.5 we see that the conclusion o f

Theorem 7.6 holds’ i f  X is  a lo c a lly  convex Hausdorff topological vector
0

space with separable dual.

So fa r  we have used only countable processes in  proving the 

existence o f selectors. We now consider transfin ite methods. We shall say 

that X sa tis fie s  condition ( b ) i f  i t  has a family (B .) o f closed sets, 

whose power is  at most that o f the f i r s t  uncountable cardinal, which 

generates the B0re l cr-algebra on X . The fo llow ing theorem is  in  e f fe c t  a 

generalization o f a theorem o f M. Sion ((4 6 ), Theorem 4 .1 ). Condition (B ) 

is  sa tis fied  by a l l  spaces which sa tis fy  Sion's condition ( i ) .  We do not 

require the space to be e ither regular or Hausdorff0

THEOREM 1.1 . Let S be any measurable space, and X any 

topological space which sa tis fies  condition ( b ) . Let T : S -* X be a 

measurable multifunction with non-empty compact values. Then T has a 

measurable selector.

Proof. Let [B_ : 1  ̂ a < a , ] be a fam ily o f closed sets whi chCt I

generates the Borel cr-algebra, indexed by the ordinals less than , 

where is  not greater than the f i r s t  uncountable ordinal. We write

= T , and we define a sequence (T^ : 0  ̂ a < ) o f measurable

multifunctions recursively as fo llow s. We assume that is  defined and



is  a measurable multifunction fo r  (3 < a , where a < •

Then the multifunction

n : t -> n rft(t)
a P<a P

is  measurable, by Proposition 1.5, since the set [fi : (5 < aj is  at most 

countable. We then define T to be the refinement o f 0 by the closed
CL CL

set B . C learly T is  a measurable multifunction, a a

Define A (t )  = H T ^ t )  » a l l   ̂ • 
a < a .N 1v

For each t  , A (t )  is  non-empty since i t  is  the in tersection  o f. 

a descending (tra n s fin ité ) sequence o f sets which are closed re la tive  to 

the compact set r  ( t )  .

Let 8 be any selector fo r the multifunction A . Then 8 is  a 

measurable selector. To prove th is, we f i r s t  show that;fo r  any a ,

r 1CBa) = A-(Ba) = ¡ r o g  ,

and so is  a measurable set. This la s t  step follows from the de fin ition  o f 

refinement. I t  is  clear that 8 \ b ) Ç fi (B ) . Conversely, i f
CL ^  CL CL

t  e Q (B ) , then T ( t )  C B , whence 8( t )  e r  ( t )  C B , as required. av a a — a a' '  — a

Therefore 8 (B ) is  measurable fo r a l l  a ; since the sets 
v a/

( Ba) generate <8̂  , 8”  ( b) is  measurable fo r every Borel set B in  X , 

and so 8 is  measurable.

COROLLARY 1. Let S be any measurable space and X any 

topological space in  which the family o f a l l  closed sets has power less 

than or equal to the f i r s t  uncountable cardinal. Then i f  r  : S X is  

a measurable multifunction with non-empty compact values. T has a measur

able selector.

In  order to test whether the spaces which arise in  analysis
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sa tis fy  conditions such as our condition ( b ) , i t  is  useful to assume the 

continuum hypothesis, as is  done By McShane and W arfield ((3 3 )» Theorem 4 ). 

As an example o f the use o f th is device we have:

COROLLARY 2. I f  S is  a measurable space. and X is  the 

continuous image o f a 2C-suace, then every measurable multifunction from S 

into X with non-empty compact values has a measurable se lec tor.

P roo f. The class o f closed subsets o f X has at most the same

cardinal number as the space o f rea l numbers and, under the continuum

hypothesis, this is  the f i r s t  uncountable cardinal. The existence o f a

measurable selector then follows from Corollary 1.
*

We conclude th is section with an example which shows that a 

topological space can sa tis fy  condition ( b ) without being the continuous 

image o f a 2C-space. We take X to be the set o f a l l  ordinals less than 

the f i r s t  uncountable ordinal, with the topology in  which a l l  non-empty open 

sets are o f the form £[3 e X : (3 > a] fo r  some ordinal number a . This 

space is  not separable and so cannot be the continuous image o f a 2C-space; 

however i t  sa tis fies  the hypotheses o f Corollary 1.

Consider now the space X x [0,1] , where the in terva l [0,1] 

has the usual topology. This has a base o f open sets o f the form

Jp e X : (3 > a] x ( r , s )  ,

where a runs through a l l  the ordinals up to the f i r s t  uncountable 

ordinal, and r ,s  are ra tiona l. Any open set in  X x [0 ,1 ] is  the union 

o f a countable subfamily o f these basic sets, and so th is space sa tis fies  

condition ( b ) . This provides an example o f  a space which sa tis fies  

condition (B ) and which is  not a 2C-space or a continuous image o f one. 

Moreover, the class o f closed sets in  this space has power at least equal 

to the power o f the continuum.
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8 . Closed-valued multifunctions. The selection  theorems which 

we have proved fo r compact-valued multifunctions enable us to deduce 

corresponding theorems fo r closed-valued multifunctions with values in  

certain cr-compact topological spaces. Any topological space fo r  which the 

conclusion o f Theorem 7.1 holds w il l  be said to sa tis fy  condition ( a ) . 

Condition (A ) is  sa tis fied  by any 2C-space, or the regular continuous 

image o f one (Theorem 7 .2 ), or by any space which sa t is fie s  condition (s) 

(Theorem 7 .6 ).

THEOREM 8.1. Let S be a space on which is  defined an algebra 

£  o f subsets. X a topological space which is  the union o f countably 

many closed compact subspaces each satis fy ing condition (A ) , and 

T : S -> X a multifunction with non-empty closed values such that 

T ( f ) e £  fo r  every closed set F in  X . Then T has a selector y

such that fo r  every open set G in  X , y  (&) e £  •

Proof. Let X = K. U L  U . . .  where the sets K. are closed,

compact, and sa tis fy  condition (A ) . For each, positive in teger i  we 

define

E. = r"(K ) \ (u r"(K )) J
j < i  J

that is ,  E. is  the set o f t  in  S such that K. is  the f i r s t  o f the 
x i

sequence , K^, . . .  to in tersect r(t) . Clearly E  ̂ € £  fo r  each i  . 

We define multifunctions T± : E± -> K± by w riting I\ ( t )  = T (t )  HK. 

fo r  each t  e E , . Then, fo r  each i  , I\ has a selector such that,

fo r  ary set Ck open re la tive  to K_̂  , y^ (G^) € £^ • Hence, since the sets 

E form a p a rt it io n 'o f S, T has a selector y defined by

y ( t )  = 8̂ ( t )  fo r  t  f  E .
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I f  G is  any open set in  X ,

00

r " 1 (G) = U 5“ 1(& H K .) , 
i =1

which c lea rly  belongs to £  .

I f  in  the above theorem S is  a topological space in  which every 

open set is  an and T is  upper-semicontinuous, then a selector y

can be found o f the f i r s t  Baire class.

We now consider other cases in  which the selection  problem fo r  a 

closed-valued multifunction can be reduced to a selection  problem fo r 

compact-valued multifunctions. We shall need the fo llow ing set-theoretic 

lemma: *

LEMMA 8.2. Let £  be a ring o f sets in  a space S , and •

(An) any sequence o f sets in  £  . Then there exists a partition  o f

U A by a sequence (B ) o f sets in  «&_ such that B C A fo r  each n .n n n —■ ~ u ■ - n — n — -
00

Proo f. For each n , 

each n ,r . We rearrange the sets 

this we obtain a d is jo in t sequence

An = U Anr * say* where Anr « £  fo r 
r = 1

A as a single sequence (C^) ; from 

(D^) where, fo r each in teger k ,

Dk = °k W hh<k

some n

and

Then D, e £  , fo r a l l  k . Now, fo r each k , D, C A fo r 
k k ™ n

and so there is  a f i r s t  such n . We define, fo r  each n ,

Bn = U D̂k : Dk -  An but Dk ^  Am fo r  m < nl • 

Clearly B  ̂C An fo r each n , the sets [Bn] are d is jo in t,

U B n n = uk \ = U, C, = U Ak k nrn,r
A .n

THEOREM 8.5. Let S be a space on which is  defined an algebra 

£  o f subsets, and Y a topological space. Let (K4 , )  be a double•ij
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sequence o f closed corn-pact subsets o f Y , and le t  X be the sub space

H. U. K. . o f Y . Then i f  r  : S -* X is  a multifunction with non-empty 
i  J  i j  —  ------------  -----------------------------------------------------

closed values such that T ( f ) e fo r every closed set F in  X , there 

exists a multifunction A : S -» X with non-empty compact values such that 

A(t) c r(t) fo r a l l  t f S and A ( f ) e <£ g fo r  every closed set F in  

X .

Proof. For each f in ite  sequence crln o f positive integers we

define Hcrln = K n . . .  n kn, o'* n

Thus
00

x = u, n h
cr n = 1 crin 9

the union being taken over a l l  sequences (T o f positive in tegers. Now the

sets r  (X f» IL ) form a covering o f S by sets in  <£ . Therefore, by

Lemma 8.2, there exists a partition  (A^) o f S by sets in  <£ such that

A. C r " (x  H H .) fo r  each i  . 
x — v 1

I f  we f ix  i  , then the sets X n H.\. ( j  -  1,2, . . . )  cover
J

X H H. . Therefore A. i s  covered by the sets T (X fl H. ,) , and so, l  x J v i j

applying Lemma 8.2 again, bhis time to the sets A. H T  (H. . D X) , weX 1 J

obtain a sequence (A ^  : j  = 1 , 2 , . . . j  o f sets in  which form a

p artition  o f Ai  . Continuing in  this way we obtain a fam ily (A ^ ^ ) o f

sets in  <£ , such that A,_, C T (X C\ H ) fo r  each cr|n , and such that O' 9 o jn *“ (j in

fo r  each fixed  sequence <T|n ,

A = U A criIn i= 1  cr̂  . cr i  n
9

th is being a d is jo in t union. Thus, i f  t  e S , there is  a unique sequence 

cr o f positive integers such that t  € A n fo r  a l l  n , and we define

A (t )  = r ( t )  n  n  h .
n= 1
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Since, fo r  th is value o f t  , T (t )  meets H „ fo r  a l l  n , 

A (t )  is  compact and non-empty. Moreover, i f  F is  any closed set in  X ,

A '(F ) = n [ u ( a  n r ' (F  n h . ) )  ] , 
n = 1 01 n ain

where the union inside the square brackets is  taken over a l l  f in ite  

sequences crln o f fix ed  length n . I t  remains to prove th is statement, 

fo r then i t  is  clear that A (F ) e •

Suppose that t  e A ( f ) . Then there is  a unique sequence o"

such that t  e A , a l l  n , and so, from statement (i), r(t) meets

F H . fo r a l l  n . Hence t belongs to the right-hand side o f the erf n

above formula. <

Conversely, suppose that t  belongs to the right-hand side.

There is  a unique sequence cr such that t  e fo r  a l l  n . Since fo r

each fixed  m the sets [A . ] are d is jo in t, t  f  I  (F ^  ôr ea°4t  i in Oj n

n . Therefore r(t) O F meets H , fo r  each n , and since the setso' |n

are compact

00

r(t) nF n n ^ 1n t  <t> •
n=1

Therefore A (t )  meets F , as required.

We may use the main idea o f the previous proof to give a new 

proof o f the theorem o f K, Kuratowski and C. Eyll-Nardzewski ( ( 29) ) :

THEOREM 8.4. (Kuratowski and Ryll-Nardzewski). Let S be a 

space on which is  defined an algebra <£ o f subsets, l e t  X be a Polish 

space, and le t  T : S -+ X be a multifunction with non-empty closed values * 1

such that, fo r every open set & ij-l X , T (§ ) e . Then T has a 

selector y such that y  ( &) e ^  fo r  every open set & in  X .

P roo f. Let d be a metric such that (X ,d) is  a complete
1

space. Let ( ih )  be a covering o f . X by open sets o f diameter  ̂ £ •



Sim ilarly fo r  each i  , we take (U. .) to be a covering o f th by open
1

sets o f diameter i  . Continuing in  this way, we obtain a family o f

sets (U ) , where diam (U )  ̂ 2 n . v 0"|n a ln '

Now the sets T ( lh ) ( i  = 1,2, . . . )  are a l l  in  and their

union is  S . Therefore, by Lemma 8.2, there is  a partition  (A^) o f S

by sets in  £  such that A, C T (U .) fo r  each i  .J o' x — v 1

The sets T (lh ^ ) ( j  = 1,2, . . . )  fo r  a fixed  i  are also in

, and they cover A  ̂ . Hence, applying Lemma 8.2 to the sets

[A., H r - (lJN j ) ]  s we obtain a partition  ( A „ )  o f A  ̂ by sets in  .

Continuing, we obtain a family (A n) ■ se^s i *1 such that, fo r  each

ain  , A C T (u ) , and such that fo r  every o"ln the sets* crin -  v cm '

iA_ _  . : i  = 1,2, . . . ]  form a partition  o f A .
°1 * * * °n  1 cri n

I f  t  e S , there is  a unique sequence <r such that t  e Acr|n

fo r  a l l  n . I f  t  e A „, fo r a l l  n , we defineo^n

Y (t )  = ,

where x is  the unique point o f X which is  " contained in  IT fo r  a l l  

n • The sets (u^.^) c lea rly  form a base o f  open sets fo r  X . Therefore 

i f  G is  any open set in  X ,

-1r - ’ W - u U  : ü  CG¡  ,

which c lea rly  belongs to the class £  . I t  is  clear that i f  y ( t )  e & >

where t  e n A , then U , C G fo r  some n , and so t  belongs to n crin rr,Ti —o"ln

the right-hand side o f the above formula. Conversely, i f  t  belongs to 

A , where C G , then crln consists o f the f i r s t  n terms o f a

uniquely defined sequence o' such that t  e A * m • Hence

y ( t )  = x^ , which belongs to G .

I t  remains to prove that y is  a selector fo r  T . This is  so 

because i f  t f  ' W i n  * then meets U^(n fo r each n ; as (X ,d )
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is  a complete* metric space and diam (T ( t )  H U ) 0 , T (t )  contains the

point x , which is  equal to y ( t )  .

The proof o f the above theorem relates the existence o f the 

selector y to the "s ift in g "  property o f Polish spaces. The conclusion 

also holds under the follow ing hypotheses:

( i )  X is  a topological space with a family (U n) o f subsets such

that X = U. U. and. fo r  each cr|n . U , = U. U . :
x 1  '  * crln i  cr.. . .  cr i1 n

( i i )  Por each sequence cr , there exists an element x in
. cr

^ n ^ ln  Such that’ xn e Uo-|n i>or each n » ‘tilen is  the lim it  o f

the sequence (x  ) > •.

( i i i )  S is  a space with an algebra £  , and T : S -+ X is  a

multifunction with non-empty closed values such that T (U . )  € £  fo r' txln cr

each crln .

LEMMA 8.5. Let S be a measurable space which admits the 

Souslin operation, and le t  Y be a Souslin-JT̂  subset o f a topological 

space, where JCj is  the class o f closed, compact subsets. Let also X be 

a regular space, the image o f Y by a continuous mapping cp , and le t  

r  : S X be a closed-valued measurable multifunction. Then T (cp(F)) is  

measurable fo r  every closed set F in  Y .

Proof. Let

Y = U H K 
cr n=1 <rln *

where (K^. ) is  a fam ily o f closed compact subsets o f a topological space.

For each crln , l e t  B n = cp(E , where F is  a closed subset o f

Y . Then we show that

r"(cp(F)) = u n r“(B ) ,
cr n = 1 crin' . . . ( i )
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which is  a measurable set. Now

9(F ) = q>(U n (F H K ) )  = U 
cr n = 1 ' cr

00 00 

<p( n ( f n k )) c u n b .
n =1 "  a  n =1 <r" i

Therefore, i f  r(t) meets 9(F ) , i t  must meet D B . fo r  some cr ,

and hence ■ t  f  T (B , ) , a l l  n .v cr/n'  ’

Conversely, suppose that r(t) does not meet 9(F ) , but that 

t  belongs to the right-hand side o f  the formula ( i ) .  Then r(t) meets 

B^.^ fo r a l l  n , fo r  some sequence cr , but r ( t )  does not meet 

9(n  (F OK ) )  . ^This set is  compact, and as X is  a regular space 

there exists an open set & such that

T (t )  C & and & H 9(0  (F H K , ) )  = <f> . . . . ( i i )n <x|n" , '

Since r(t) meets B , fo r  each n , G meets 9(F f lK  . ) fo r  each v / crln * oMn'

n , in  9(yn) say, where yn e K n D F . The sequence (y n) has a

cluster point, yQ say, which must be contained in  r>n (F fl • Now

9(y  ) e & fo r  a l l  n , and so <p(yo ) <= & , 9 being a continuous mapping,,

This contradicts statement ( i i ) ,  and so our assumption that / *,

r(t) fi 9(F ) = (p is  fa ls e .

This conclusion holds in  particu lar i f  X is  the regular 

continuous image o f a Polish space, as ary Polish space is  homeomorphic to 

a JCg.g subset o f the H ilbert cube (§0, ( i x ) ) .

Following Bressler and Sion ( (5 ) ) »  we shall say that a 

topological space is  analytic i f  there exists a topological space Q and 

a double sequence (K. .) o f closed compact sets in  Q such that X is  the 

image o f the subspace H. U. K under a continuous mapping. The theory o f 

sets and spaces which are analytic in  th is or a sim ilar sense has been 

developed by G. Choquet, M. Sion and others; a discussion o f the theory may 

be found in  ( 5 ) ,  ( 46) or (48 ), where further references are given.
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THEOREM 8 .6. Let S be a measurable space which admits the 

Souslin operation, and X a regular analytic space. Then i f  T : S -+ X is  

a measurable multifunction with non-empty closed values, there exists a 

measurable multifunction A : S -> X with non-empty corn-pact values such 

that A (t )  C T (t )  fo r  every t  f  S ,

P roo f. There exists a topological space Q and a double 

sequence (K ) , o f closed compact subsets o f Q such that

X = cp(fl U. K. .) ,

cp being a continuous mapping. Let Y = H. U. K. . . Then, by Lemma 8.5,
 ̂ J

the multifunction
0

ft : t -> <p \r(t))

is  closed-valued and measurable, since fo r  any closed set F in  Y ,

n "(F ) = r “ (q>(F)) .

We now apply Theorem 8.3, taking £  to be the <y-algebra o f measurable 

sets in  S ; there is  a measurable multifunction $ : S -> Y with non-empty 

compact values such that $ (t )  C ft (t )  fo r  each t  e S . We take therefore 

A = cp o § , which is  compact-valued and measurable and sa tis fie s  the 

condition that A (t )  C T (t )  fo r  each t  .

I f , i n  Theorem 8 .6, X is  such that every compact-valued measur-. 

able multifunction with non-empty values has a measurable selector, then T 

must have a measurable se lector. In  particu lar we have:

COROLLARY. Let S be a measurable space which admits the 

Souslin operation, and X a regular analytic space which sa tis fies  

condition (S ) or ( b ) £ f  §7. Then every measurable multifunction from 

S into X with non-empty closed values has a measurable se lec tor.

This holds i f  X is  the regular continuous image o f a Polish 

space, which gives us Theorem 2 o f (41 ). We close this section with a 

theorem on approximate selectors.



52

THEOEEM 8.7. Let S be a s-pace with an algebra £  o f subsets, 

(x,a) a separable metric space, and T : S -+ X a multifunction with non

empty values such that T ( &) e . fo r every open set G in  X . Then. 

given any rea l number S > 0 , there is  a function y : S -+ X such that 

Y (G) € £̂ _ fo r every open set G in  X , and such that d (y (t ) ,  T ( t ) )  < 8 

fo r  every t  e S .

P roo f. Let [x^j be a countable dense subset o f X , and 8 a 

positive rea l number. Then fo r each i  we define

-Ih = [x e X : d(x, x^) < S] .

Now the sets T (B .) are in  £_  and cover S . Therefore by Lemma 8.2,
x '  ,  <5 J 3

there is  a partition  o f S by a sequence (A^) o f sets in  £ ,̂ such that 

A. C T  (B^) fo r each i  . We define

r ( t )  = x±

fo r  t  e . Then d (y (t ) ,  r ( t ) )  < 8 for every t  , and i f  G is  an 

open set

y " 1 (G) = U [A± : x± e G] , 

which c learly  belongs to £  .

9. Selectors in  normed spaces. In  certain normed spaces a 

closed or compact convex set has a unique point which is  nearest to a fixed  

point in  the space. In  this section we investigate the properties o f the 

selector obtained from a convex-valued multifunction T by taking fo r  each 

argument t  the point o f r ( t )  nearest the o rig in .

LEMMA 9.1. Let S be a space with an algebra £  o f subsets.

X a topological space, f  a lower semicontinuous real-valued function on 

X and g a real-valued funtion on S such that (t  : g ( t )  < cf is  an 

£  set fo r every rea l number c . Then i f  T : S -+X is  a compact-valued
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multifunction such that r +(G) e <£ fo r every open set G- , the multifunct

ion

A : t  -> fx € T (t )  : f ( x )  i  g ( t ) j  

has the same -property.

P roo f. We define, fo r  each t  e S,

n (t )  = |x e X : f ( x )  S g ( t ) ]  ,

and so, fo r each t  , A (t )  = T (t )  fl f i ( t )  . Now le t  G be any open set in

X . Then

a+( g) = [ t  e s : r ( t )  n  n (t )  c  g]

= it  e s : r ( t )  n  n (t )  n &• = <t>} .

The set r ( t )  H G1 is  compact and so the function f  attains a

minimum on i t ,  which fo r  t  e A+( g) is  s t r ic t ly  greater than g ( t )  . There

is  therefore a rational number r such that g ( t )  < r  and r ( t )  n &' C ,

where, fo r  each rea l number c , C denotes the open set (x e X : f ( x ) > c] .c

Conversely, i f  g ( t )  < r  and r ( t )  H &' C , then t  e A+( g) 0 N ow

r ( t )  fl &' C i f  and only i f  r ( t )  C U G , Therefore

A+(&) = U [ { t  e S : g ( t )  < r ] n r +(Cf  U &)] , 
r

the union being taken over a l l  rational numbers r . I t  follows from this 

that A+(G) e £  as required.

LEMMA 9.2. Let T and X be topological spaces, f  a lower 

semicontinuous real-valued function on X , and g an upper semicontinuous 

rea l—valued function on-' T . Then i f  r  : S -> X is  a u .s .c .  compact-valued 

multifunction, so is  the correspondence

A : t  -+ [x e r ( t )  : f ( x )  g ( t ) ]  .
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Proof. I f  G- is  an open set in  X , the argument o f Lemma 9.1*

shows that

A+(&) = U [ f t  e T : g ( t )  < r ] H T+(C U &)] , 
r  r

the union being taken over a l l  rational numbers r . Thus A+( g) is  an 

open set. A (t )  is  a closed subset o f r(t) fo r each t and so is  compact.

We now apply these resu lts . A normed lin ear space E is  said to 

be rotund (o r  s t r ic t ly  convex) i f ,  fo r  any two d istin ct elements x,y in  E 

such that ||x|| =[|y|| = 1  , ||^ (x+y)||  < 1  .

A normed lin ear space is  said to be s t r ic t ly  normable i f  i t  has 

an equivalent s t r ic t ly  convex norm ( fo r  a discussion o f s t r ic t  convexity, 

see (27) p. 342 et s eq .). In particu lar i t  is  shown that every re flex iv e  

Banach space is  s t r ic t ly  normable; this is  proved in  (3 2 ).

I f  E is  a s t r ic t ly  convex space, a compact convex set K in  E 

has a unique point nearest the o rig in ; i f  not,the function x -*■ | | x| | 

attains a minimum on K , at x̂  and x  ̂ » say. I f  x̂  / , then

■̂ (x̂  + Xg) e K and | |^(x^ + x^) | | < | | x̂  | | , which contradicts our 

supposition that x̂  is  at minimum distance from the o rig in .

THEOREM 9.3. Let S be a space with an algebra £  o f subsets 

and E a s t r ic t ly  normable space. Then i f  T : S -* E is  a multifunction 

with non-empty compact convex values such that T ( f ) e £  fo r  every closed 

set E in  E ( or a ltern a tive ly  T ( g) e £  fo r  every open set G in  E) , 

there exists a selector y  fo r  r  such that Y (&) * £  fo r  every open 

set G in  E .

Proo f. We assume that E has a s t r ic t ly  convex norm. Then we 

apply Lemma 9.1 taking f ( x )  = ||x]| (x  e E) , and

g ( t )  = min lx| | : x <r T ( t ) }  ( t  e S) .



55

In  this case

A (t )  = {x € T ( t )  : f ( x )  = g ( t ) ]  ,

and, fo r each t  , A (t )  contains just one point, y ( t )  say. This 

function y is  the required se lector. I t  remains to show that T and g 

sa tis fy  the hypotheses o f Lemma 9.1.

Suppose f i r s t  that T ( f ) e £  fo r  every closed set F . I t  

follows at once that r+(G) = (T (& ') ) '  e £  . I f  c is  a rea l number,

[t  € S : g ( t )  < c] = r " (  [x e E : | |x| | < c ] )  ,

which belongs to £^ , as the set [x e E : 11 x| | < c} is  c lea rly  an S& 

set. <

Suppose now that T (&) € £  fo r.every  open set & . I f  c , is  

a rea l number,

! t f S :  g ( t )  < cj = r “ ( { x  e E : ||x|| < c } )  ,

which belongs to £  . I f  & is  any open set in  E , then r+(& )= ( r “ (G’ ) ) ' ,  

and the set r (& ')  is  in  £^ , by Theorem 1.6. Hence it s  complement,

T+( g) , is  in  £ ,  and so the hypotheses o f Lemma 9.1 are sa tis fied  in  

each case.

COROLLARY. I f  T is  a topological space in  which every open set 

is  an and E is  a s t r ic t ly  normable space, then every u .s .c , or l . s . o .

multifunction T : T -» E with non-empty compact convex values has a 

selector o f the f i r s t  c lass.

Proo f. This follows from Theorem 9.3 on taking S = T , and £

to be the algebra o f subsets o f T which are both and .o o

THEOREM 9 .4-0 Let T be a topological space. E a s t r ic t ly  

normable space, and I* : T -+ E a continuous multifunction with non-empty 

compact convex values. Then T has a continuous se lector.
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Proo f. As before we assume that E has a s t r ic t ly  convex norm, 

and take f ( x )  = | | x| | (x  e E) , and

g ( t )  = min [\ |x| | : x e T ( t ) }  ( t e l ) .

We take, fo r  t  e T ,

A (t ) = [x e T (t )  : f ( x )  = g ( t ) }  ,

and th is is  u .s .c ., by Lemma 9,2,  For each t  , A (t ) contains just one 

point, y ( t )  say; the function y is  therefore continuous.

Now le t  C(E) denote the space o f non-empty compact convex 

subsets o f the normed space E with the Hausdorff topology, which is  in  

th is case the same as the 'V ietoris  topology (§0, ( x i i i ) ,  ( x iv ) )  . From 

Theorem 9.4 we deduce:

COROLLARY. I f  E is  a rotund space, then the choice function 

f  : C(E) -* E , where, fo r  each K e C{E) , f (K ) is  the unique point o f K 

nearest to 0 , is  continuous.

Theorem 9*4 could have been obtained with the aid o f the nearest- 

point property from the "Maximum Theorem" o f C. Berge ( (2 ) ,  pp. 116 -  117), 

which holds fo r  compact-valued multifunctions. However, we go on to extend 

these results to the case o f multifunctions which are not necessarily 

compact-valued.

A normed lin ea r space is  said to be uniformly convex i f  i t  always

follow s from ||x l I I « 1 , I | y j  I « 1 and lim | |£(*n + yQ)|I = 1  th a t
n-><»

lim  | | ac -  y j  | = 0 .
n-+oo

A normed lin ea r space is  said to be uniformly normable i f  i t  has 

an equivalent uniformly convex norm. Uniform convexity is  discussed in  (27), 

§26. In particu lar the standard Banach spaces 1P and LP are uniformly 

convex fo r 1 < p < <» .



LEMMA 9.5. I f  C is  a non-empty closed convex subset o f a

uniformly convex Banach space E , then there is  a unique point o f C which 

is  nearest the o rig in .

Proo f. This result is  t r iv ia l  i f  0 <r C . Suppose therefore

that d(0,C) = c > 0 . Let ( cn) a decreasing sequence o f rea l numbers

such that c -* c , and le t  C = [x e E : 11 x| I ¡S c } . Then n ’ n 1 1 1 1 n'

diam (C fl C) -+ 0n

as n -► 00 ; fo r  i f  this were not so, there would ex is t sequences (x  ) ,n'

(y  ) o f points such that, fo r  each n , x and y are both in  C D C , * w n * * ■ * n •'n n *'

and a positive rea l number € such that I Ixn “  y j  I > c , fo r a l l  n .n'

Now fo r  each n , as —(x  + y ) e C HC , * 2 n •'n' n ’2 n

* I lw(* + y J ! I < 4(c + O  = cn n12 n ' "  2 ' “n

Hence, by uniform convexity, — | |x - y | | -* 0 , and as
cn n n' c -> c n (> 0) ,

xn -  y^l | -♦ 0 as n -* eo , which contradicts our supposition. Therefore,n

as E is  a complete metric space, the sets (C HC) in tersect in  one and

only one point, which is  at least distance from 0 .

LEMMA 9.6. I f  C is  a non-empty closed convex set in  a

uniformly convex space, and i f  E is  any closed set which does not contain

the point o f C nearest to 0 , then d(0, C f l i )  > d(0,C) .

P roo f. Clearly d(0, C f l i 1) 5 d(0,C) . Suppose that there is  

equality here. Let xq be the point o f C nearest to 0 . There is  a

sequence (y  ) o f points in  C H E  such that | | y j | -» d(0,C) = 11 xq | | .

We may assume that xq / 0 , as the conclusion is  t r iv ia l  when Xq = 0 „ 

Since C is  convex,

x0

fo r  each n , and hence

9
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Applying the de fin ition  o f uniform convexity to the two sequences 

( x q/  ||ynl| ) and (y^/ ||ynl ! )  > we see that yn x q  , which contradicts 

our assumption that x q / F . Therefore d(0, C H F ) is - s t r ic t ly  greater 

than d(0,C) .

These two lemmas enable us to extend Theorems 9.3 and 9.4 to the 

case o f multifunctions with closed convex values in  a uniformly normable 

space.

THEOREM 9*7» Let S be a space with an algebra JL o f subsets

and E a uniformly normable space. Then i f  T : S -> E is  a multifunction

with non-empty closed convex values such that T (F ) e £  fo r  every closed
§

F in  E ( or a ltern ative ly  r (G) e <£ fo r  every open G in  E ), there

“ 1exists a selector y fo r  r  such that y”  (G) e Jt fo r every open set G 

in  E .

• P roo f. We assume that the norm on E is  uniformly convex. 

Then, fo r  each t  e S , we define y ( t )  to be the unique point o f T (t )  

which is  closest to the o rig in . I f  G is  any^open set in  E , i t  follows 

from Lemma 9.6 that i f  y ( t )  e & then

d(o, r(t) n &•) > d(o, r(t)) .

Conversely, i f  this inequality holds, y ( t )  e & . For each rea l number c

le t  B = [x e E : 11x|! < c] and le t  C = [x e E : 11 x| | > c] . Then 
c c

Y' 1 ( s )  = u (r - (B r ) n f ( c r  u s ) )  , . . . ( i )
r

the union being taken over a l l  rational numbers r  . We now prove this 

fa c t . I f  y ( t )  «■ G , then there ex is t rational numbers r  ̂ and r^ such 

that

d(o, r(t) n & ' ) > y r 2 > d(o, r(t)) .

Then r(t) meets B and T (t )  flG 1 C C , i . e .  r(t) C C UG .
r2 r2 “  r2
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Conversely, i f  T (t )  meets and T (t )  C U & , then d(0, T ( t ) )  < r

and d(0, T (t )  H &’ ) £ r  , whence y ( t )  e G .

The set is  an , and so, i f  T ( f ) e ¿£ fo r every closed

set F , r"(B ) e . Therefore i t  follows from statement ( i )  that 

Y (G) e fo r  every open set G .

Consider now the case where we are given that T (&) e jt for

every open set & . Let F be a closed set in  E . Then F = D G ,
n n

where, fo r  each n ,

Gn = fx e E : d (x ,F ) < 1/nj .

C learly y C^) / E i f  and only i f  Y (t )  / Ĝ  fo r  some n . Therefore 

Y ( t )  / F i f  and only i f

d(o, r(t) n &n) > d(o, r(t))

fo r some n . This holds i f  and only i f  there is  a rational number r such 

that T (t )  n &n C B̂  and T (t )  n B  ̂ j  <f> , and so we have

Y '1 ( i ” ) = u  u ( r ' (B r ) n / (B '  u & ;) )  ,
n = 1 r

where r  runs through the rational numbers. Hence y  (E 1) belongs to

D “1, and so Y (G) e ■ fo r  every open set G .

COROLLARY. I f  T is  a topological space in  which every open 

set is  an c? , and E is  a uniformly normable space, then every u .s .c . nr 

l . s . c .  multifunction from T into E with non-empty closed convex values 

has a selector o f the f i r s t  c lass0

THEOREM 9.8. Let T be a topological space. E a uniformly 

normable space, and T : T -* E a continuous multifunction with non-empty 

closed convex values. Then T has a continuous se lec tor.

. I f  we use the same notation as in  Theorem 9.7, then, fo rProof
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any open set & in  E , the re la tion

Y_1(&) = u(r"(Br) nr+(c us))
r

s t i l l  holds, the union being taken over a l l  rational numbers r . As B
r

— 1and U & are open sets and T is  continuous, y  (&) is  open, and so 

Y is  continuous.

Let now C3̂ (e ) denote the space o f non-empty closed convex sets 

in  E with the V ietoris  topology. Then we have:

COROLLARY. I f  E is  a uniformly convex space, then the choice

function f  : E) -» E where, fo r  each E e C3?(e ) , f (E ) is  the unique

point o f E nearest to 0 , is  continuous.

Lastly we suppose that E is  a re flex ive  Banach space with it s  

equivalent s t r ic t ly  convex norm and its  weak topology o^EjE') .

LEMMA 9.9. I f  C is  a non-empty closed convex subset o f E , 

then there is  a unique point o f C which is  nearest the o r ig in .

P roo f. I f  d(0,C) = rQ , and (r^ ) is  a descending sequence

o f real numbers such that r -* r  , then the set o f nearest points isn o
00

H (C n ix e E : | |x| | i  r  j )  , 
n = 1

which is  non-empty since the sets [x : | | x|| i  rnj are weakly compact^by 

the Banach-Alaoglu theorem. The uniqueness o f the nearest point follows 

from the s tr ic t  convexity o f the norm.

We also have in  this case an analogue o f Lemma 3.6:

LEMMA 9.10. I f  C is  a non-empty closed convex set in  E , 

and i f  E is  any weakly closed set which does not contain the point o f C 

nearest to 0 , then d(0, C H E ) > d(0,C) .

Proo f. Using the argument o f Lemma 9*9 we see that C H P has
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a point which is  nearest the o rig in . I f  d(0, C ( IF )  = d(0,C) , then this 

point must be the same as the nearest point o f C , which contradicts our 

hypotheses.

THEOREM 9.11. Let S be a space with a f ie ld  £  o f subsets

and E a re flex iv e  Banach space. Then i f  T : S E is  a multifunction

with non-empty closed convex values such that T (F ) e £  fo r  every weakly

closed set F in  E , there exists a selector y fo r Y such that 

“1Y ( g) e £^ fo r  every weakly open set G in  E .

P roo f. We assume that the norm on E is  s t r ic t ly  convex. Then,

fo r  each t (  S , we define y C^) to be the unique point o f r(t) nearest
#

the o rig in . I f  we define B = [x : ||x|| < c] and C = £x e E : | | x| | > c ]c c

fo r  each rea l number c . then B is  a weak S and C is  weakly open.’ C O’ c

As in  the proof o f Theorem 9.7 we have

y ' 1( g) = u (r"(B ) nr+(cr uc)) ,
r

the union being taken over a l l  rational numbers r  , which c lea rly  belongs 

to £  . As this re la tion  holds fo r  every weakly open set G , the proof is

complete.

COROLLARY 1. I f  T is  a topological space in  which every open 

set is  an S' and E is  a re flex iv e  Banach space, then every u .s .c . fq fETKr) )  

multifunction T : S -* E with non-empty closed convex values has a selector 

o f  the f i r s t  class.

COROLLARY 2. I f  E is  a re flex iv e  Banach space with the weak 

topology, and CS(E) the space o f non-empty closed convex subsets o f E 

with the weak V ietoris  topology, then there exists a choice function 

f  : CS(E) ->• E o f the f i r s t  class.

In  this section we have obtained selectors by making use o f the 

fa c t that, in  the cases we have considered, one point o f T (t )  is  in  some
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sense "better" than the others. A d iffe ren t approach to continuous 

selectors is  taken by E. Michael in  (35) -  (38) ( c f .  especia lly (37),

Lemma 8.3, p. 389).

10. Application to measurable multifunctions. We co llec t 

together here the results o f the previous three sections as applied to the 

case o f a measurable multifunction and we give su ffic ien t conditions fo r the 

existence o f measurable selectors0

THEOREM 10.1. Let S be any measurable space. X a topological 

space, and T : S -> X a measurable multifunction with non-empty values.

Then the existence o f a measurable selector fo r  T is  implied by any one o f 

the follow ing conditions:

( i )  T is  compact-valued and X sa tis fies  either condition 

(B) or (S ) o f §7 ;

( i i )  T is  compact-valued and, assuming the Continuum 

Hypothesis, X is  the continuous image o f a 2C-space:

( i i i )  T is  closed-valued and X' is  either a Polish space or 

the union o f countably many closed compact subsets, each 

o f which sa tis fies  e ither condition (B ) _or (S ) ;

X is  a s t r ic t ly  normable space and f has compact

convex values ;

X is  a uniformly normable space and T has closed

convex values;

( v i )  X is  a re flex iv e  Banach space with the weak topology. 

and T has closed convex values;

( v i i )  S admits the Souslin operation. X is  a regular 

analytic space which sa tis fie s  condition (B) or (s) , 

and T is  closed-valued.

Proof. Result ( i )  follows from Theorems 7.6 and 7*7. Result
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( i i )  fo llows from Corollary 2 to Theorem 7.7. The second part o f ( i i i )  is 

a coro llary o f part ( i i )  ( c f .  Theorem 8 .1 ), and the f i r s t  part o f ( i i i )  

fo llows from Theorem 8.4. Results ( i v ) ,  (v )  and ( v i )  fo llow  respectively 

from Theorems 9.3, 9.7 and 9.11. Part ( v i i )  is  the same as the Corollary to 

Theorem 8.6.

Parts ( i v )  and (v )  o f Theorem 10.1 have been presented by the 

Author in  (31 ), with a d iffe ren t method o f proof. Condition (B) is  

sa tis fied  by any 2C-space, or the regular continuous image o f a 2C-space 

( c f .  Lemma 3*10) .  Condition (s) is  sa tis fied  by any Hausdorff continuous

image o f a 2C-space (Proposition 7 .4 ).

0

THEOREM 10.2. Let S be a measurable space, X a topological 

space and I* : S -» X a ^-measurable multifunction with non-empty values. 

Then the existence o f a measurable selector fo r T is  implied by any one o f 

the follow ing conditions:

(i) r is  compact-valued and X is  a separable metrisable

( i i )

space;

T is  closed-valued and X is  a Polish space;

( i i i )  X is  a s t r ic t ly  normable space and T has compact 

convex values;

( i v ) X is  a uniformly normable space and T has closed

convex values;

(v ) S admits the Souslin operation. T is  closed-valued.

and X is  a Souslin space.

Proo f. Result ( i )  fo llows from Theorems 7.1 and 1.6. Results 

( i i ) ,  ( i i i )  and ( i v )  fo llow  respective ly from Theorems 8.4, 9.3 and 9.7. 

Result ( v )  follows from Theorem 10.1 ( v i i )  and Theorem 3.8, owing to the 

fa c t  that a Souslin space is  an analytic space, being the continuous image 

o f a K g . subset o f the H ilbert cube (§0, ( i x ) ) .
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THEOREM 10.3. Let S be a measurable space, X a topological 

space and T : S -* X a multifunction with non-empty values. Then i f  any 

one o f the fo llow ing conditions is  sa tis fied . T has a countable family 

(y  ) o f measurable selectors such that, fo r each t  (  S , the set 

^ ( i O  •• i  = 1,2, ...] is  dense in  r(t) :

( i )  T is  a compact-valued measurable multifunction, and X 

is  the regular continuous image o f a 2C-space:

( i i )  T is  closed-valued and ¿/-measurable, and X is  a 

.Polish space;

( i i i )  S admits the Souslin operation. T is  closed-valued 

and measurable, and X is  the regular continuous image 

o f a Polish space.

Proo f. I f  condition ( i )  is  sa tis fied , then the resu lt follows 

from Theorem 7.3. Result ( i i i )  follows from the Corollary to Theorem 8.6 in  

the sam way that Theorem 7.3 follows from Theorem 7.2. I t  remains to prove 

the theorem in  the case where condition ( i i )  is  sa tis fied . Let (th ) be a 

base o f open sets fo r  the Polish space X . For each i  l e t  I\ be the 

refinement o f T by the open set IL . This is  a ¿/-measurable multifunct

ion, and hence so is  r , by Proposition 1.1. r has a measurable

selector y^ , which is  also a selector fo r  T , since, fo r  each t  , 

r ( t )  C r(t) . The family fy^j o f selectors has the required property, 

since, i f  x e r(t) , then any neighbourhood o f x contains y ^ (t ) , fo r  

some i  , because o f the construction we have used.

Theorem 10.3 has already been proved under more re s tr ic t iv e  

hypotheses by C. Castaing ( ( 8) ,  Théorèmes 5.3 and 5*4) and our deduction o f 

Theorem 7.3 from Theorem 7.2 was essen tia lly  by Castaing's method.

In  the case o f the "nearest-point" selectors, i t  is  possible to

re lax  the conditions on X at the expense o f placing s tr ic te r  conditions on
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S . In  ( 19 ) ,  the authors have relaxed the uniform convexity condition by 

re s tr ic tin g  S to be a lo ca lly  compact Hausdorff space in  which every 

compact subspace is  metrisable, and also by modifying the defin ition  o f 

measurability,,

Further results on selectors w il l  be given in  the fo llow ing

chapters„
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I I I .  MULTIFUNCTIONS OF SOUSLIN TYPE

11 . D efin ition  and “basic properties. We now take a d iffe ren t 

approach to the measurable selection problem; we consider a class of 

multifunctions which are by de fin ition  w ell supplied with measurable 

selectors, and we examine it s  s ta b ility  properties with respect to the 

usual set-theoretic and algebraic operations. Since this theory has 

para lle ls  with the c lassica l theory o f Souslin sets (which is  set out in  

( 3 ) and (2 8 )),  we shall say that these multifunctions are o f Souslin type.

DEFINITION. Let S be a measurable space and X a 
»

topologica l space. Then a multifunction T : S -+ X is  said to be o f 

Souslin type i f  there exists a Polish space P , a measurable closed-valued 

multifunction fi : S -+ P and a continuous mapping cp : P -+ X such that 

r  = cp o fi .

I t  follows immediately from this d e fin ition  that every 

multifunction o f Souslin type is  measurable. Moreover, i f  T is  o f Souslin 

type and has non-empty values, then T has a measurable se lector. In  fa c t 

we have:

THEOREM 11.1. I f  S is  a measurable space, X a topological 

space, and T : S -+ X a multifunction o f Souslin type with non-empty values. 

then there exists a sequence ( Yn) o f measurable selectors o f T such that 

fo r  each t  the set Jy ( t )  : n = 1 , 2 , . . . ]  is  dense in  T (t )  .

P roo f. There exists a Polish space P , a continuous mapping

cp : P -> X , and a closed-valued measurable multifunction 0 : S -> P such

that r ( t )  = cp(fi(t)) fo r  each t . Since T ( t )  is  non-empty fo r  each t  ,

so is  n (t )  . By Theorem 10.3, A has a countable dense family (a>n) o f

measurable selectors. The resu lt follows on setting y  = cp o co fo r  eachn n

n .
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The fo llow ing proposition follows immediately from the

defin ition :

PROPOSITION 11.2. Let X,Y be topological spaces, and 

i|f : X -♦ Y a continuous map-ping. Then, i f  S is  a measurable space and. 

r  : S -> X a multifunction o f Souslin type, so is  the multifunction i|r o T .

THEOREM 11.3. I f  (T ) is  a sequence o f multifunctions o f

Souslin type from any measurable space S into the topological snace X ,

then so is  the multifunction U T ----------------------------;------------  n n

Proo f. Let the corresponding closed-valued multifunctions and

mappings be *

: S -► P^ , 9n : P^ X , n = 1,2, . . .  .

Let P be the Polish space EnPn (§0, ( i i ) ) ,  and le t  cp be 

the continuous mapping from P to X defined by

<p(t) = cfu(t) fo r  t  f  P. .

We then define

fi (t )  = 2 Q ( t )  v ' n nv '

fo r  each t  . This is  a closed-valued measurable multifunction, and 

c lea r ly  T = cp o fi .

THEOREM 11.4. I f  S is  a measurable space which admits the 

Souslin operation. (X ^  a sequence o f topological spaces and ( r  ) a 

sequence o f multifunctions o f Souslin type from S into X̂  respective ly , 

then the multifunction II. T, is  also o f Souslin type.

Proof. Let the corresponding closed-valued multifunctions and

n.
X 9j P.

1
X. i  = 1 , 2 ,

mappings be
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We then define fl = 14 i4 and P = IIJP . P is  a Polish space (§0, ( i i ) ) ,  

and i2 is  a closed-valued measurable multifunction by Theorem 4.10. We 

define a continuous mapping 9 from P into 14 X  ̂ by

cp( p^>P2> • • • )  — ( 9-| ( P̂  ) > 9 2 ^2 '>  • • • )  > P^ e p^ •

Then IT.T. = 9 0  0 , and so is  o f Souslin type.
1 1 T

THEOREM 11.5. I f  S is  a measurable space which admits the

Souslin operation, and (T ) a sequence o f multifunctions o f Souslin type

into a Hausdorff space X , then so is  the multifunction H T . -------------------------- a.---- ----- ------------------------------------ n n

Proof. Let the corresponding closed-valued multifunctions and

mappings be *

n : S P , 9 : P  - » X ,  n = 1,2, . . .  .n n ’ rn n

Then the multifunction 1 4 ^  is  measurable, by Theorem 4.10. We define a 

mapping 9 : jfl^P  ̂ -»• £  by

9 (p 1>P2> = (^ (P - j)»  92( p2)> •••) (P± e p±) •

This is  a continuous mapping. Let D be the diagonal o f X  ̂ , and le t  

ij/ : D —► X be the natural homeomorphism between D and X . D is  a closed 

subspace o f X̂  , since X is  Hausdorff. Then, i f  fi = , the

correspondence

: t  n (t )  n 9_1( p)

is  a closed-valued measurable multifunction from S into the Polish space 

9 (D) . Moreover, fo r  each t  ,

T (t )  = '|f(9( n* ( t ) ) )  = , (*  0 9) ( n* ( t ) )  .

Hence P is  o f Souslin type.

12. Characterisation by means o f the Souslin operation, and 

examples. In what fo llows, i f  (S ,A ) is  a measurable space and X a 

topological space, fl shall denote the class o f sets A x B , where
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A e A  and B is  closed in  X . Then multifunctions o f Souslin type can 

be characterized by means o f the Souslin operation as follows:

THEOREM 12.1. Let S be a measurable space. X a Hausdorff 

space and T : S -+ X a multifunction o f Souslin type. Then the graph of 

T is  Souslin- R.
Proo f. Let P be a Polish space, cp : P -+ X a continuous

mapping, and fi : S -+ X a closed-valued measurable multifunction such that

T = cp o Q . Let (U ) be a countable family o f closed sets o f P form-
(T in *

ing a s ift in g . For each f in ite  sequence crin o f positive integers we 

define

A = n (U ) , and B = cp(U ) . cr|n ' cr|n' '  (Tin crfn'

Then we have

00

G(r) = u n (a x b . ) , ...(i)
cr n=1

which is  c lea rly  Souslin-ft . I t  remains to prove that this statement holds.

Suppose that ( t , x )  e G-(r) 0 Then there exists y  (  P such that x = cp(y)

and y  f 0 (t )  . There also exists a sequence cr o f integers such that

[y ] = H U . . Therefore x e cp(U.. ) C B_, , a l l  n , and ft (t ) meets J n crin crin' -  cr|n

U n fo r  a l l  n , i . e .  t  e fi (U R) . Hence ( t , x )  belongs to the r igh t- 

hand side o f statement ( i )  .

Conversely, suppose that, fo r  some sequence cr ,

M  e Acrin *  B<r|n » fo r  311  n *

Then f i ( t )  meets ~U fo r  a l l  n . Therefore f i ( t )  contains y , wherecr|n cr

v is  the unique element o f the set H U , . Moreover x = cp(y_) ; fo r
•'O' n ° l n TWCT

i f  not, there is  a closed neighbourhood V o f cp(y^ such that x / V ;

since cp is  continuous, cp(u ) C V fo r some n , and so B , C V ,T oj n — crin —

which contradicts our supposition that x e B n fo r  a l l  n .
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Therefore x e cp(ft(t)) = r(t) , as required.

The converse also holds under s ligh tly  d iffe ren t hypotheses:

THEOREM 12.2. Let S he a measurable space which admits the 

Souslin operation. X a space which is  the continuous image o f a Polish 

space, and T : S -* X a multifunction with Souslin- R graph. Then T is  

o f Souslin type.

P roo f. Suppose that X = cp(p) where P is  a Polish space, and

00

G(r) = u n (a x b ) ,v '  crin crin' ’- cr n=1

where each A is  measurable and each IS is  closed. Let N be the cri n m oi n

space o f positive integers with the discrete topology, and le t  denote

the Polish  space which is  the product o f N with i t s e l f  countably many 

times. Consider now the multifunction ft : S ->P x /  defined by

G(ft) = U n x (B*. x C ) ]  , v '  . crin v crin cr|n/J *cr n=1

where, fo r each <r,n * BJ,n *  <p' 1 (B(rin) ^

c = h  e ^crin —
II v*

C learly the sets C are closed. cr|n ft is  a

the Corollary to Lemma 3«3»

Moreover, ft is  closed-valued; suppose that ft (t ) f  $ and that 

(x , k) / ft (t ) . Then, fo r  every cr fo r which f*n A ^ is  non-void,

( x , k )  /  H (B*. x C , )  = n  B , x [cr] .\ > y f- n v crin crin' n crin 1 *

■ There are two cases: i f  C\ A = <f>, then the neighbourhoodn k  I n

X x o f ( x , k)  does not meet ft (t ) . On the other hand, i f

f'n 'Adn  then x ^ n B*|n > and since the la t te r  is  a closed set, there

ex ists a neighbourhood U o f x which does not in tersect i t .  Then the 

neighbourhood U x { k ] o f ( x , k ) does not meet ft (t ) .
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F inally , le t  i|r be the mapping 9 0 ^  where 7̂  is  the 

natural projection P x -* p . Then, fo r  each t  , T (t )  = | (n (t ) )  , 

and so T is  o f Souslin type»

This la s t step needs to be proved: i f  ( t , x )  e G-(r) , then, for 

some U , ( t , x )  € x ^or a11  n • S u P P ° s e  also that x = 9(y )  ,

where y  e P . Then y e B£. fo r  a l l  n , and so (t,y ,cr) e &(Q) .

COROLLARY. I f  S is  a measurable space which admits the 

Souslin operation and X is  a Hausdorff space, then the class o f multifunct- 

ions o f Souslin type from S into X is  closed with respect to the Souslin 

operation.

Proof. Let (T  ) be a countable family o f multifunctions o f -------  v crin'

Souslin type from S into X . Let the corresponding Polish spaces and 

continuous mappings be P n and 9 n . Then iwithout any loss o f 

generality we may replace X by the space 9( p ) where P is  the 

topologica l sum o f the spaces (P n) and 9 : P -*■ X is  the continuous 

mapping which coincides with 9 n on P^.^ v Let

CO
r ( t )  = U n r  . ( t )  fo r  each t  „

'  ^ . crlncr n=1

Now each G(T ) is  a Souslin-/? subset o f S x 9(P ) , by Theorem 12.1.
(Tin

Hence & (r) is  Souslin-/?, by Proposition 2.1, and so T is  o f Souslin 

type, by Theorem 12.2.

As the operation o f forming countable intersections is  a special 

case o f the Souslin operatipn, this Corollary gives an alternative proof o f 

Theorem 11.5. We now consider some particu lar examples o f multifunctions 

which are o f Souslin type.

Example ( i ) .  I f  I* : S -* X is  a measurable closed-valued 

multifunction, and X is  a Polish space, then T is  o f Souslin type.
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Example ( i i ) .  I f  T : S -+ X is  a compact-valued measurable
A

multifunction, X being a separable metrisable space, and i  : X -> X is
A

the embedding o f X in  it s  completion X with respect to some suitable 

metric, then the multifunction t  i ( T ( t ) )  is  o f Souslin type.

Example ( i i i ) .  Sim ilarly, i f  (X ,d ) is  a separable metric 

space, and T : S -> X is  a multifunction with values which are complete 

subsets o f X , then T is  o f Souslin type i f  X is  regarded as a subset 

o f i t s  completion (multifunctions o f this type are studied in  0 9 ) ) .

Example ( i v ) .  I f  S admits the Souslin operation and X is

a regular continuous image o f a Polish space P , then any measurable closed-
0

valued multifunction r : S -► X is  o f Souslin type,, This follows from the 

fa c t that i f  X = <p(p) , cp being a continuous mapping, then the correspond- 

ence t  -+ cp (T ( t ) )  is  also a measurable closed-valued multifunction ((4 1 ), 

Lemma 1 ) .

In  each o f the four examples considered so fa r , G-(r) has 

belonged to the a-algebra A ® , where A is  the <r-algebra o f

measurable sets in  the domain S o f T (th is  follows from Theorem 3 .7 ).

We have the fo llow ing generalization o f th is :

THEOREM 12.3. Let (S,<M) be a measurable space which admits 

the Souslin operation. X a space which is  the continuous image o f a Polish 

space, and T : S -* X a multifunction such that G-(T) belongs to the 

O'-algebra A ® . Then T is  o f Souslin type.

P roo f. G(T) is  Souslin-/?, by Lemma 3.4; hence T is  o f 

Souslin type, by Theorem 1202.

We deduce from this and from Theorem 11*1, the follow ing some

what stronger version o f Théoreme 1 o f (45 ):
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COROLLARY. _If S,X,T sa tis fy  the hypotheses o f Theorem 12.3, 

and r ( t )  is  non-emnty fo r each t  , there exists a sequence ( y  ) °£

measurahle selectors o f T such that fo r each t  f  S , the set 

hfn( t )  : n = 1 , 2 , . . . }  is  dense in  T (t )  .

Example ( v ) .  In  Theorem 12.3, we cannot in  general relax the 

requirement that S admit the Souslin operation. Eor instance, take both 

S and X to be the in terva l [ 0, 1 ] , with the usual topology. We take A 
to be the Borel cr-algebra on S . Then A ® (8  ̂ is  just the Borel 

cr-algebra on S x X. . Now S contains a set A which is  Souslin-S? , but 

not a Borel set ((1 7 ), §33, Theorem i ) .  Moreover there is  a Borel set B 

in  S x x such that ^ " (b ) = A ((2 8 ), p 458, Theorem). Now le t  T be the 

multifunction with graph B . Then T (x) = A , and hence T is  not 

measurable with respect to the Borel cr-algebra on S . Therefore T is  

not o f Souslin type.

Example ( v i ) .  I t  is  elementary (Proposition 1.4) that, i f  S 

is  a measurable space, then a measurable multifunction T from S in to a 

metrisable space X is  ^-measurable. The converse o f this statement is  

not true; we shall show that there exists a measurable space S ( in  fa c t, 

[0 ,1 ] with the <r-algebra o f Borel se ts ), a Polish space X , and a closed

valued ^-measurable multifunction T : S ->■ X which is  not measurable. In  

order to do th is, we consider the fo llow ing a lternative proof o f Theorem 

12.3:

Let S be any measurable space which admits the Souslin 

operation, and l e t  X be the continuous image o f a Polish space« I f  A is  

a subset o f S x X , l e t  denote ( fo r  now) the unique multifunction

with graph A . We shall denote by S the class o f a l l  sets A in  S x x 

such that rA is  o f Souslin type. I t  follows at once from Theorems 11.3 

and 1 1 . 5  that S is  closed with respect to the formation o f countable

unions and intersections
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N ow  l e t  A =  B x C , where B is  measurable and C is  closed. 

Now X = cp(p) , say, where 9 is  a continuous mapping and P is  a Polish 

space,, I f  we define a multifunction Q : S -+ P by f i ( t )  = cp (C) ( t  e B) 

and f i ( t )  = <f> ( t  4 B) , then = 9 0  fl and so is  o f Souslin type. 

Consider the complement o f A . This is  the set

A' = (B* XX ) U (S  x C ') .

The multifunction T „  is  o f Souslin type, by the argument we have justD X A

used. The set 9 (C ')  is  open, and so is  a Polish subspace o f P . Hence,
A

i f  P. = 9 ( C )  and f i ( t )  = P. , a l l  t , then T = 9 e ft , so that
1 1 b ^ C '

Tgxct is  Souslin type. I t  follows from Theorem 11.3 that r  f is  o f
0

Souslin type.

Let 5̂  be the class o f a l l  sets A in  ^  such that A' is  

also in  y  , This is  c lea rly  a cr-algebra and contains the sets B x C 

where B is  measurable and C is  closed. I t  therefore contains the class 

A  ® ^  , which completes this proof o f Theorem 1 2 .3 .

Let (S ,A ) be the in terva l [0,1 ] -. with the cr-algebra o f Borel 

sets. We shall assume that every ^-measurable closed-valued multifunction 

from S into a Polish space is  measurable, and we shall show that this 

assumption leads to a contradiction. The f i r s t  consequence o f this assumpt

ion is  that, i f  (X^) is  a sequence o f Polish spaces and ( l\ )  a sequence, 

o f measurable closed-valued multifunctions from S into X  ̂ respective ly, 

then the multifunction ILT is  measurable, by Proposition 4.7. The 

conclusion o f Theorem 11.5 would then hold without the hypothesis that S 

admit the Souslin operation; i f  we apply th is to the above alternative 

proof o f Theorem 12.3, we conclude that, i f  X is  a Polish  space and 

r  : S -> X a multifunction with Borel measurable graph, then T is  o f 

Souslin type; this is  in  contradiction to what we have established in  

Example ( v ) .
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Therefore, there exists a Polish space X and a closed-valued 

¿/-measurable multifunction T : S -+ X which is  not measurable (however, T 

is  measurable with respect to the cr-algebra o f Lebesgue measurable sets in  

S , by Theorem 3 »8 ).

Example ( v i i ) .  Several authors ( fo r  instance Castaing ( 8) and

Himmelberg and Van V leck (2 l)) have studied the case o f a multifunction 

whose graph is  the continuous image o f a Polish space. In  the two papers 

cited  here the multifunctions considered are o f Souslin type, as is  shown by 

the theorem below. We shall need the follow ing lemma:

LEMMA 12.4. Let Y be a Hausdorff space, X a Polish space 
0

and cp : X -> Y a continuous mapping. Then cp(x) i s  a Souslin set in  Y .

Proo f. This follows from Theorem 12.1 on talcing S to be the 

measurable space consisting o f one point, s say, and T (s ) = cp(x) .

THEOREM 12.5. Let S be a lo c a lly  compact Hausdorff space with 

a Radon measure (a,X a topological space, and T : S -► X a multifunction

such that G(T) is  the continuous image o f a Polish space. Then T is  o f

Souslin type.

Proo f. There is  a Polish space P and a continuous mapping 

cp from P into S x X such that cp(P) = G-(r) . We define a multifunction

ft from S into P by

f i ( t )  = cp"1 ( [ t }  x r ( t ) )  , fo r  t  € S .

Since the set [ t ]  x T ( t )  is  closed re la tive  to G(r) and cp is  

continuous, ft is  closed-valued. The proof w i l l  be complete when we have 

shown that ft is  measurable, since, fo r each t  ,

r(t) = rc2 (cp (ft(t ))) ,

where : S x X X is  the natural projection . Thus T is  o f Souslin

type
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Let' F be any closed set in  P . Then

o~(f) = [t e s : <p"1Ut] x r(t))

= [t  e S : ( ( t j  x r ( t ) )  n 9(F ) / <f>] .

Now . [ t j  x r ( t )  = ( [t ]  x x) n &(r) = ( { t }  x x) n 9(p ) .
Therefore

fi- (F ) = i t  e S : ( i t j  x X )  n 9(F ) £ <f>]

= ,

where ^  : S x X -» S is  the natural projection . The set F is  a Polish 

subspace o f P , and so ft ( f ) is  a Souslin set, by Lemma 12.4. I t  is  

therefore a (i-measurable set ( c f .  remarks on p. 1 1 ) ,  and so ft is  

measurable, as required.

The key idea in  the above proof is  taken from the proof o f 

Theorem 1 o f Himmelberg and Van Vleck's paper (21 ); however they make the 

additional assumption that every compact subspace o f S is  metrisable, or 

a ltern a tive ly  that S is  the union o f countably many compact metrisable 

subspaces.

Example ( v i i i ) .  We close this section with an example which 

shows that a multifunction may be o f Souslin type and yet have a graph which 

is  not the continuous image o f a Polish space. Let S be the in terva l 

[0 ,1 ] with the cr-algebra o f Lebesgue measurable sets, and le t  X be the 

same in terva l, with the usual topology. The set S contains a set A 

which is  a Souslin set, but not a Borel set ((1 7 ), §33, Theorem i ) .  The 

complement A' o f A cannot then be a Souslin set ((2 8 ), p0 486).

Consider the multifunction whose graph is  the set A ' x X , This graph is  

Souslin- R, and so the multifunction is  o f Souslin type, by Theorem 12.2. 

However, A' x X . is  not the continuous image o f a Polish space, for that 

would imply that A' is  Souslin (Lemma 12.4).
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The values which are taken by a multifunction o f Souslin type 

are always continuous images o f some Polish space, from the de fin ition .

13« Further properties o f multifunctions o f Souslin type.

THEOREM 13.1. Let S be a measurable space which admits the 

Souslin operation. H a topological semi-group and multifunctions

o f Souslin type from S into H . Then the multifunction r is  of

Souslin type, where, fo r each t ,

( V r2 ) ( t )  = ^ ( t )  • r2 ( t )  = i»y  : x f  ^ ( t )  , y e r2 ( t ) ] .

P roo f. From Theorem 11.4, the multifunction t  -4 r ( t )  x ^ ( t )  

from S into H x H is  o f Souslin type., Now the mapping cp : H x H -4 H 

defined by cp(x,y) = x*y (x ,y  f  H) is  continuous. Hence ^*^2  -*-s

Souslin type, by Proposition 1 1 .2 , since, for each t  ,

rr r2(t) = cpCr/t) x r2(t)) .

The fo llow ing theorem extends some results o f C. Castaing ( ( 8), 

Theoreme 4.4, Corollaries 1 and 2) to the case o f multifunctions o f Souslin 

type.

THEOREM 13.2. Let S be a measurable space which admits the 

Souslin operation. E a topological vector space, and mul^ lfunct

ions o f Souslin type from S into E „ Then the multifunction

t -> r^t) + r2(t) ( tcs)

is  o f Souslin type. Moreover, i f  a is  any measurable scalar-valued 

function on S , the multifunction

t  -4 a ( t )  I\|(t) ( t  f  S) ,

is  also o f Souslin type.

Proof. The f i r s t  part o f th is theorem follows from Theorem

13.1. To prove the second part, we use the fact that the multifunction

t  -4 f o ( t ) ]  X I\ ,(t) ( t  e S)
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is  o f Souslin type, from Theorem 11.4. The mapping cp : (X ,x ) -+ Xx , 

where X belongs to the f ie ld  o f scalars and x belongs to E , is  

continuous, and for each t  e S we have:

o,(t) ^ ( t )  = cp( [o ( t ) j  x ^ ( t ) )  .

The multifunction t  -♦ a (t )  T ^ (t) is  therefore o f Souslin type, by 

Proposition 1 1 .2 .

The above conclusion s t i l l  holds i f  a is  taken to be a 

multifunction o f Souslin type from S into the f ie ld  o f scalars. The 

proof is  the same.

THEOREM 13.3: Let S be a measurable space which admits the 

Souslin operation. E a topological vector space, and r : S -► E a
A

multifunction o f Souslin type. Then the multifunction T , where, fo r  each 

t , r(t) is  the convex hull o f T (t ) , is  also o f Souslin type.

P roo f. Let A  ̂ be the simplex in  Rn defined by:

n
X € A i f  and only i f  X. £ 0 a l l  i  , and 2 X. = 1 .
~  n x . _, xx=1

We then define a sequence (Tn) o f multifunctions by taking, fo r  each n 

and each t  ,

T ( t )  = [X.x. + . . .  + X x : X e A , x. e T (t )  a l l  i j  . 
n 1 1 n n ~ n x  J

Let En denote the product o f E with i t s e l f ,  with n factors. We define

a mapping cp̂  : A^ x En -> E by the formula :

cp ( X, x . , . . . ,  x ) ~ X x + . . .  + X x . 
rn '~  1 n' 1 1  n n

This mapping is  continuous, since E is  a topological vector space,. By

Theorem 11.4, the multifunction

A : t -» A x r ( t )  x . . .  x r (t )  ,

where the factor r(t) occurs n times, is  o f Souslin type. Now, fo r  each 

 ̂ > ^n( t )  = » arû  so -̂s Souslin type, by Proposition
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11.2. Therefore, since r = Un r , T is  o f Souslin type, by Theorem 11.3.

THEOREM 13.W  Let S be a measurable space which admits the 

Souslin operation, and X a closed convex Souslin subspace o f a topological 

vector space. Then, i f  T : S -» X is  a multifunction o f Souslin type, the 

multifunction T is  also o f Souslin type, where,for each t , r(t) is  the 

closed convex hull o f r(t) .
^  A A

Proo f. For each t  e S , T (t )  is  the closure o f T (t )  . T is

o f Souslin type, and so is  ^-measurable; therefore T is  ^-measurable, by

Proposition 1.1. I t  follows from Theorem 3*8 that T is  measurable, and so

is  o f Souslin "type, from Example ( i v )  o f §1 2 .
m

14. Applications o f the theory. Let S be a measurable space 

and X,Y topological spaces. A function f  : S x X -» Y w i l l  be said to 

sa tis fy  condition (C) (C stands fo r  Caratheodory) i f  fo r  each t  e S the 

function x -+ f ( t , x )  from X to Y is  continuous, and i f  fo r  each x <f X 

the function t  -♦ f ( t , x )  from S to Y is  measurable.

LEMMA 14.1. Let (S ,A ) be any measurable space, X the 

regular continuous image o f a 2C-space, and Y a p erfectly  normal space. 

Then, i f  f  sa tis fie s  condition (C ), f  is  measurable with respect to the 

cr-algebra A  ® ^  on S x X 0

Proo f. Let X = cp(Z) , where Z is  a 2C-space, and 9 is  a

continuous mapping. Let (U^) Le a cou^ts-ble base o f open sets fo r  Z ,

and le t  V. = <p(U.) fo r each i  . 
x x

Let [x11 : n = 1,2, . ¿0} denote a countable dense subset o f V .
x i  *

fo r  each i  .

I f  E is  a closed subset o f Y , there exists a sequence (Gfc) 

o f open sets in  Y such that F = and

G1 D G2 D G2 D D . . .  .
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Suppose that f ( t , x )  f  F . Then f ( t , x )  e , a l l  k , and

moreover there is  a closed neighbourhood V o f x such that f ( t ,V )  C ^  , 

since X is  a regular space. Hence

f ( t ,  V. ) C & , where x e V. ,

fo r  some i  , as cp is  continuous. Therefore f ( t ,  x̂ 1) e & , a l l  n .

Conversely, i f  f ( t ,  x?) e G fo r  a l l  n , then f ( t ,  V .) C G ,X K x *■" k

taking closures, and so f ( t , x )  e Gk i f  x e . We have, therefore,

0 0  o o  CO

f  ( f ) = n U n [ [ t  e S : f ( t ,  X?) e G ] x V. ] , 
k=1 i  = 1 n = 1 1 X 1

which c lea rly  belongs tq A ® •

LEMMA 14.2. Let (S,<M) be a measurable space, X and Y 

topological spaces and f  : S x X -> Y a function which is  measurable with 

respect to the <r-algebra A® SSt̂  on S x X .  Then, i f  u : S -* X is  a 

measurable function, the function t -*■ f ( t ,  u ( t ) )  from S into Y is  

measurable.

Proo f. Let h (t ) = f ( t ,  u ( t ) )  , fo r  each t  . We define a 

function g : S -+ S x X by

g ( t )  = ( t ,  u ( t ) )  , fo r  t  e S  .

Then h = f  o g 0 Since f  is  measurable, i t  is  su ffic ien t to show that i f  

M e A®<B̂  , then g” 1 (M) e A . Now A® is  generated by the sets 

A x B where A £ A  and B is  a closed subset o f X . For one o f these 

sets

g \ a  x b ) = A x u \ b ) ,

which is  c lea rly  measurable. Therefore g is  measurable, as required.

PROPOSITION 14.3» Bet S be a measurable space. X the 

regular continuous image o f a 2C-space, and T : S -► X a multifunction o f
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Souslin type, with non-empty values. Then, i f  f  is  a real-valued 

function on S x X which sa tis fies  condition (c) , the function

w : t  -* su p [f(t,u ) : u e r(t)j

is  measurable.

P roo f. By Theorem 11.1, there is  a countable family o f

selectors fo r  T such that, fo r each t  , the set [y^C^) ‘ i  = 1,2, . . . ]  

is  dense in  r ( t )  . Then, for each t  ,

w (t) = sup i f ( t ,  Yi ( t ) )  : i  = 1 , 2 , . . . }  .

Each o f the functions t  -+ f ( t ,  Y ^ (t )) is  measurable, by Lemmas 14.1 and

1 4 .2 , and so w is  measurable.

The above conclusion s t i l l  holds i f  X is  any topological space 

and f  is  any measurable real-valued function on (S x X, A  ® (8^) •

A type o f im p lic it function theorem useful in  the theory o f 

optimal control is  that which is  known as "F ilipp ov1s Lemma" from it s  

appearance in  a paper o f A.F. F ilippov (15 ). We now prove another version 

o f this resu lt:

THEOREM 14.4. Let (S,eM) be a measurable space which admits 

the Souslin operation, X a Hausdorff space, and Y a separable metrisable 

space. Let f  : S x X - * i  be a function which is  measurable with respect- 

to the cr-algebra A <8> lŜ  , and le t  g : S -» Y be a measurable function. 

Suppose that T : S -» X is  a multifunction o f Souslin type such that, fo r  

each t  , g ( t )  e f ( t ,  T ( t ) )  . Then T has a measurable selector y  such 

that g ( t )  = f ( t ,  Y i f ) )  for each t  .

P roo f. There exists a Polish space P , a measurable closed

valued multifunction fi and a continuous mapping cp : P -+ X such that 

r = cp o Q . We may therefore replace X by the subspace cp(P) .
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In  order to prove that the selector y  ex ists, i t  is  su ffic ien t 

to show that the multifunction

ft : t -+ {u e T (t )  : f ( t ,u )  = g ( t ) j

is  o f Souslin type0 Let

A (t )  = fu e cp(p) : f ( t ,u )  = g ( t ) j  ( t  e S) ,

Then f i ( t )  = r(t) H A (t )  fo r  each t  e S , and so, by virtue o f Theorem 

11.5* i t  is  su ffic ien t to prove that A is  o f Souslin type. Now

-G{A) = K t,u ) e S x cp(p) : f ( t ,u )  = g ( t ) ]  .

Y has a countable base o f open sets, (U .) say. Then (t ,u )  / G-(A) i f
0

and only i f  there exists an integer i  such that g ( t )  e lh and 

f ( t ,u )  e . Thus

&(A)« = U [ f - 1 (U ')  n  (g " 1 (u .) X cp(p))] ,
• __ A i  -Lx=1

and so G-(A) belongs to cMx • Therefore A

Theorem 12.3; i t  follows that ft is  o f Souslin type, 

se lector y ex ists , by Theorem 11.1.

is  o f Souslin type, by 

and so the measurable

In  the previous theorem, Y could have been any space which 

sa tis fies  what we called condition (s) in  §7. We now prove another version 

o f F ilip pov 's  lemma, in  a d iffe ren t setting. Let S be a lo ca lly  compact 

Hausdorff space with a Radon measure ja . I f  Y is  a topological space, a 

function g : S -* Y is  said to be m-measurable i f ,  given any compact set 

K C S and any positive  real number e , there is  a compact subset K o f 

K such that | fi| (K \ Kf ) < e and such that the res tr ic tion  o f g to 

is  continuous.

THEOREM 14.5. Let S be a lo ca lly  compact Hausdorff space 

with a Radon measure (i . Let X,Y be Hausdorff spaces, f  : S x X -+ Y a 

continuous function. T : S X a multifunction o f Souslin type, and
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g : S -» Y a u-measurable function such that g ( t )  e f ( t ,  T ( t ) )  for a l l  

t  . Then T has a measurable selector y such that f ( t ,  y ( t ) )  = g (t )  

fo r  a l l  t  e S .

Proo f. There exists a Polish space P , a measurable 

multifunction fi : S -► P with closed values, and a continuous mapping 

cp : P -► X such that T = cp o fi . Therefore, without any loss o f generality, 

we may suppose that X = cp(P) . For each t  e S , le t

A (t )  = fu e <p(p) : f ( t ,u )  = g ( t ) ]  .

This multifunction*has non-empty closed values0 Let K be any compact

subset o f S ; then fo r  any in teger n there exists a compact set
•>

K C K such that I ul (K \ K )  ̂ 1/n and such that the res tr ic tion  o f g

to the set K is  continuous. Then the res tr ic tion  o f A to the set K 
n n

has a closed graph. Consider the multifunction ¥ : S P defined by

Y (t )  = < p "V ( t ) )  ( t < S )  .

This is  closed-valued, and it s  res tr ic tion  to the set Kn has a closed

graph. Now the union U K d iffe rs  from K- by a set o f  measure zero. r  n n

Therefore i f  F is  a closed subset o f P ,

'T (F )  DK = *  [(L^K ^  x F) n & ( f ) ]  UA ,

where A is  a set o f measure zero. The set inside the square brackets is

an subset o f K x P and so belongs to the cr-algebra A  ® <Bp . This

is  true because, i f  ( ih )  is  a countable base o f open sets fo r  P , every

open set in  K x p is  o f the form x U ) where the Ai 's  are open

subsets o f K ; hence any closed or set in  K x p belongs to A  ® .

Therefore, by Proposition 3»5> ^ (^ ) H K is  a measurable s e t0 Since the

in tersection  o f ¥ ( f ) with any compact subset o f S is  measurable,

» ’ (F ) is  i t s e l f  a measurable set ( (4 ) ,  ch. IV, §5.1, Proposition 3 ).

Therefore ¥ is  a measurable closed-valued multifunction. As 

A = i p o ! ,  A is  o f Souslin type. The multifunction t  -♦ T (t )  f\ A (t ) is
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o f Souslin type, by Theorem 11.5, and i t  has non-empty values. I t  has a 

measurable selector y  , by Theorem 11.1, which sa tis fies  the equation 

f ( t ,  y ( t ) )  = g ( t )  ( t  e S) .

From Theorems 14.4 and 14.5, together with Lemma 14.1, we may 

deduce the various versions o f F ilippov 's  Lemma which are given in  ( 8) ,  (19), 

(21 ), (24) and ( 25) .  'A s ligh t d if f ic u lty  arises when the multifunction T 

is  a compact-valued measurable multifunction with values in  a separable 

metrisable space, which may not be the continuous image o f a Polish space.

We overcome this a§ fo llow s:

THEOREM 14.6. Let (S,X) be a measurable space which admits
m

the Souslin operation and X,Y separable metrisable spaces. Let 

f  : S x X -* Y be a function which is  measurable with respect to the 

cr-algebra A  ® i8„ , and le t  g : S -► Y be a measurable function. Suppose 

that r : S -* X is  a measurable compact-valued multifunction such that, for 

each t , g ( t )  € f ( t ,  r(t)) . Then T has a measurable selector y such 

that g ( t )  = f ( t ,  y ( t ) )  fo r  each t  .

P roo f. Consider the multifunction A : S -+ X defined by

A (t )  = [u <r T (t )  : f ( t ,u )  = g ( t ) j  .

Now G-(r) e X ®  <8 by Theorem 3*6, and the set
A

[ (t ,u )  e S x X : f ( t ,u )  = g ( t ) ]

also belongs to X ® (8„  as in  the proof o f Theorem 14.4. We may regard XA

as a subset o f i t s  completion X with respect to some compatible metric.

Then G-(A) belongs to X ® i 8̂  , and so A is  o f Souslin type, by Theorem
X

12.3. Therefore A has a measurable selector y  .

Here is  another example o f an im p lic it function theorem ( ( 8) ,  

Corolla ire 5 «1)•
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THEOREM 14.7« Let S be a lo ca lly  compact Hausdorff space with 

a Radon measure |i . Let X be a separable metrisable space. Y a 

Hausdorff space, f  : S x X -> Y a continuous function, and g S -> Y a 

^-measurable function. Suppose that I* : S -» X is  a measurable compact

valued multifunction such that, fo r each t , g ( t )  e f ( t ,  r(t)) . Then T 

has ~a measurable selector y  such that g ( t )  = f ( t ,  y ( t ) )  fo r each t  .

P roo f. Let A denote the a-algebra o f (i-measurable sets in  

S . For each t  e S , we define

- A (t ) = [u e X : f ( t ,u )  = g ( t ) ]  .

This multifunction has non-empty closed values. Let K be any compact
•>

subset o f S ; then fo r any integer n there exists a compact set K ^ C K

such that | (_l| (K \ K ) < 1/n and such that the res tr ic tion  o f g to the

set K is  continuous. The re s tr ic tion  o f A to the set K has a n n

closed graph. Consider the multifunction f2 : S —► X defined by

n (t ) = r ( t )  n A (t )  (t  < s) ,

This has non-empty closed values. Now the union unKn d iffe rs  from K by 

a set o f measure zero. Therefore i f  F is  a closed subset o f X ,

n '(F ) h k  = ^ [ ( u  k x p) n G (n )] u a  , 

where A is  a set o f measure zero. Therefore,
CO

Q"(F) DK = A U U w t(Kn x F) H &(r) n G(A)] . 
n=1

Now G(r) <■ A* , by Theorem 3.6, and the set (K x  F) D G(A) is  closed. 
x ~ n

Therefore, i f  we regard X as a subset o f X , i t s  completion with respect

to some suitable metric, the set (Kn x F) D G(T) n G-(A) belongs to

A x  Hence Q~(F) HK is  measurable, by Proposition 3.5. I t  follows
X _

that Q~(f ) is  measurable ( (4 ) ,  ch. IV, §5.'l, Proposition 3 ), and so Q is  

a measurable compact-valued multifunction, which has a measurable selector
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Y sa tis fy ing the equation

g ( t )  = f ( t ,  y ( t ) )  ( t  f  S) .

In  Theorems 14.6 and 14.7 we could instead have taken T to he a 

measurable multifunction whose values are non-empty complete subsets o f a 

separable metric space; the proofs remain unaltered.

As a further application we give two propositions which have 

some app licab ility  to the theory o f optimal control, and which can be proved 

in  a sim ilar manner to Theorem 14.4.

PROPOSITION 14.8. Let (S ,X ) be a measurable space which admits 

the Souslin operation, X a Hausdorff space, and f  a real-valued function 

on S x X which is  measurable with respect to the cr-algebra A  O (8  ̂ .

Then i f  T : S -► X is  a multifunction o f Souslin type with non-empty 

values, and i f ,  fo r each t  € S ,

g ( t )  = sup[ f ( t ,u ) : u e r ( t ) ]  ,

the multifunction

n : t  -♦ [u e r(t) : f ( t ,u )  = g ( t ) j  

is  also o f Souslin type.

P roo f. The function g is  measurable, by Proposition 14.3.

The rest follows exactly as in  the proof o f Theorem 14.4.

This la s t  proposition is  a more general form of a resu lt o f 

G-. Debreu ( (  14 ),resu lt 4 .5 ) which is  said there to be "basic to the theory 

o f economic equilibrium".

PROPOSITION 14.9 ( c f .  ( 8) ,  Théorèmes 4.6 and 4 .6 ') .  Let 

S ,X ,f,T  be as in  Proposition 14.8, and le t  w be any measurable rea l- 

valued function on S . Then the multifunction

t -♦ fu e T (t )  : f ( t ,u )  $ w (t ) ]

is  o f Souslin type.
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Proo f. The set [ ( t ,u )  : f ( t ,u )  $ w (t)| is  in  , and so

i t s  in tersection  with G-(r) determines a multifunction o f Souslin type.

We now consider an important special case o f Theorem 14.4. This 

is  an example o f a " l i f t in g  theorem"; such theorems, with applications, 

have been given by McShane and Warfield (33) and H.J. Kushner (3 0 ). The 

present resu lt is  a more general version o f a theorem o f Himmelberg and 

Van Yleck (21).

THEOREM 14.10. Let S be a measurable space which admits the 

Souslin operation. X the continuous image o f a Polish space, and Y a 

separable metrisable space. Let f  : X -» Y be a Borel measurable function, 

-and g : S Y a measurable function such that g(S) C  f (X ).  Then there 

exists a measurable function h : S -> X such that f ,o  h = g. .

P roo f. Let X = <p(p) where P is  a Polish space, and cp is  

a continuous mapping. I t  follows from Theorem 14.4, by taking r(t) to be 

constant and equal to P , that there exists a measurable function 

Y : S P such that f(cp (Y (t)))  = g ( t )  fo r  a l l  t  f  S . Then h = cp o y  

is  the required l i f t in g  o f g .

In  Theorem 14.10, Y can be any topological space which sa tis fie s  

condition (S ) (§7 ) ; more generally, i t  could be any topological space with 

a countable fam ily o f Borel sets which separate points. I f  we id en tify  the • 

spaces S and Y , we obtain a theorem on inverse functions1

THEOREM 14.11. Let X be the continuous image o f a Polish 

space. Y a separable metrisable space, and f  : X -» Y a Borel measurable 

function. Suppose also that Y has a cr- algebra A  o f subsets which 

admits the Souslin operation and which contains the Borel sets. Then there 

is  a function h : f (X ) -♦ X which is  measurable with respect to A  and

which is  such that h ( f (x ) )  = x fo r a l l  x in  X .
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Proo f. This follows from Theorem 14.10 on taking S = f (x )  
and taking g : f (x )  -♦ Y to he the inclusion mapping,.

Again, Y could be ary topological space with a countable 

family o f Borel sets which separate points. Hence i f  f  is  a continuous 

mapping, we need only assume that Y is  a Hausdorff space. This gives us 

the measurable choice theorem o f J . von Neumann ( ( 33) ,  p. 448, Lemma 3) ,  

which has been used by R.J. Aumann to prove another measurable selection  

theorem ( ( l ) ,  Proposition 2.1 .)0
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IV . MULTIFUNCTIONS IN LINEAR SPACES

. . 15. The continuity and semicontinuity o f convex-valued 

multifunctions. Let T he some space, E a lo ca lly  convex Hausdorff 

topological vector space over the real numbers, and r : T -> E a 

multifunction with non-empty compact convex values; then i t  is  possible to 

re la te  the behaviour o f T to the behaviour o f the real-valued functions

M̂ , : t  -+ max (^x,x* : x e r ( t )]

where x ' belongs "to the dual space E* o f E (the work o f L. Hb'rmander

(23) on the support function o f a convex set is  o f in terest in  this
*>

connection). I f  T is  a measurable space and i f  each o f the functions 

M__, is  measurable, then T is  said to be scalarly measurable (Valadier 

(50)).

THEOREM 15.1. Let S be a measurable space. E a separable 

metrisable lo c a lly  convex space over the reals, and r : S ->• E a 

multifunction with non-empty corn-pact convex values. Then T is  measurable 

i f  and only i f  i t  is  sca larly measurable.

Versions o f  this theorem are given by C. Castaing ( ( 8) ,  p. 119), 

G. Debreu ((1 4 ), resu lt 5*‘l0)* and M. Valadier ((5 0 ), p. 272, Remarque).

In  th is section we prove sim ilar theorems fo r  continuous or semicontinuous 

multifunctions. Throughout the section, unless stated otherwise, T w il l  

denote a topological space, E a rea l lo ca lly  convex Hausdorff space, and 

E' the dual o f E .

For our purposes, a -polyhedron in  E is  a set o f the form 

£u e E : <(u,x^)> < ou, a l l  i  e i ]

where [ x| : i  f  i !  is  a f in ite  fam ily o f points in  E' and the cu are 

rea l numbers.
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LEMMA 15 »2. Let K C E be a convex compact set and G a set 

containing K which is  open fo r the weak topology on E . Then there 

ex ists a polyhedron P such that K C P C S  .

Proo f. There ex ist convex open neighbourhoods U , . . . ,  U
1 k

of p o i n t s . i n  K such th a t

K C . . .  V/Uk CG

We may suppose that fo r  each j  (1 $ j  < k) ,

U. = u., n . . .  H U. ,J J 1 jin .
where

uj-e = e* E : < au l  ( 1 * 1 * »

each m. (1 ¡S j   ̂ k) being a positive integer and each x '
J J'b

(1 < j ^ k , 1 $ £ $ m . ) a n  element o f E* . The a. are rea l. Then
J 0-**

u ... u Uk)' = U' n ... n

= <ui i  u - u n -  •

By the d istribu tive law, this is equal to the Union o f a l l  sets o f the form

U' n . . .  n U' (1 p. < m. > a l l  j ) .1 P-j •KPjc J J

These sets are closed, convex and d is jo in t from K . We shall 

c a ll them , . . . ,  , where n is  some in teger. • By the Hahn-Banach

theorem there ex ist points xjj, •••, in  E' such that, fo r  each i  

(1 si i  n) , <u,x|> < fo r a l l  u in  K and <u,x|> > ou fo r  a l l  

u in  V ., where the a. are rea l numbers.

Therefore, since G contains the set

(v, u ... u v )• = v* n ... n v« ,v 1 n 1 n

we have

K C [u e E : <^u,x|]> < a ., a l l  i ]  C G , 

which is  the required resu lt»
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THEOREM 15.3. Let T : T -*■ E be a multifunction with non

empty compact convex values. Then T is  weakly u .s .c . at a point t  in 

T i f  and only i f  each o f the functions M , is  upper semicontinuous 

there, where

Mx , ( t )  = max (<x,x')> : x e T (t ) ]  

fo r  t  e T and x* e E' .

P roo f. I f  T (t ) is  weakly u .s .c . at t  , then fo r any 

x ’ e E' and any e > 0 ,

r ( t Q) C }u f  E : <u,x'> < Mx , ( t 0) + e] = G say.

*>
The set G is  open and so there exists a neighbourhood U o f t such 

that t  e U implies that r ( t )  C G , whence

Mx . ( t )  < M3C»(t0)

Thus M , is  upper semicontinuous at t  . 
x ’ o

Conversely, suppose that G is  open in  the weak topology on

E , and that T (t ) C G . Then, by Lemma 15.2., there are points

x*, . . . ,  x* in  E' and rea l numbers a. such that 1 ’ n 1

r ( t  ) C [u e E : <(u,x )̂> < a^, 1 < i ^ n ] C & .

Since M , , is  upper semicontinuous fo r  each i  , there is  a neighbourhood
X.X

U o f t  such that M , ( t )  < a. fo r  each t  in  U and fo r each i  .0 x. 1X
Therefore T (t )  C G fo r  each t in  U , and so T is  weakly u .s .c . at 

t 0

This result depends en tire ly  on the duality (E,E*) ; i t  does 

not hold in  general for a topology on E other than the weak topology.

Any point-valued function into E which is  weakly continuous but not 

continuous w i l l  provide a counterexample.

The next two lemmas lead to a theorem which is  analogous to 

Theorem 15.3 fo r  the case o f lower semicontinuity.
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LEMMA 15 A .  I f  E is  a lo ca lly  convex Hausdorff space, then a 

base o f neighbourhoods o f the o rig in  fo r the weak topology on E is  given 

by the sets

U = [x <r E : |<x,x!>| < 1 , i  = 1, . . . ,  nj

where each [x* , . . . ,  is  a f in ite  lin ea rly  independent subset o f E' .

Proo f. Suppose th a t. U is  a weak neighbourhood o f the origin ,

where

and

U = [x  € E : |^x,xj^>| < 1 , i  = 0, . . . ,  m] ,

x' = A. x ' + . . .  + A x ' , 
o * 1 1  m m

the A*s being real numbers. Then the weak neighbourhood

U1 = (x e E : |<x, (i±x^>| < 1 , i  = 1, . . . ,  m] ,

where ii max [1, m| Â

since, fo r x in  E ,

l<x»Xo>l

Hence we have e ffe c t iv e ly  removed the dependent vector x^ . We repeat 

th is process un til we obtain a neighbourhood defined by a set o f lin ea rly  

independent vectors in  E' .

LEMMA 15.5. I f  {x j, . . . ,  x^j is  a lin ea rly  independent 

subset o f E' , where E is  a rea l lo ca lly  convex Hausdorff space, then the

manning f  defined by

f (x )  = (<x,x_j> , . . . ,  <x,x£>) (x  e E) ,

mans E onto Rn .

P roo f. Suppose that f (E ) is  a proper subspace o f Rn . Then 

there is  a non-zero lin ear functional on Rn which vanishes on f(E ) .
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That is , there exists a non-zero n-tuple (X , . . . ,  X ), in  Rn such 

that, fo r  a l l  x <r E ,

\  <x,x.j> + . . .  + Xn <x,x^> = 0 .

Therefore

X,x* + . . .  + X x* = 0 ,11 n n *

which contradicts our in i t ia l  assumption that the x^ are lin ea rly  

independent. Therefore f(E ) = Rn .

THEOREM-15.6. Let Q be a bounded convex subset o f E , and

T : T -♦ Q a multifunction with non-empty compact convex values. Then T
*•

.is weakly l . s . c .  at a point t  • o f T i f  and only i f  each o f the functions 

M , (x* e E ')  is  lower semicontinuous there.

Proof. I f  x 1 e E* and c is  a rea l number, M , ( t  ) > c i f  -------  x' o

and only i f  r ( t  ) meets the set {u : <ju,x'^ > c} , which is  open in  the

weak topology. Therefore, i f  T is  l . s . c .  at t  , M f is  lower semi-o x

continuous at t  .
0

Conversely, suppose that T is  not weakly l . s . c .  at t  . Then 

there exists a set G which is  open in  the weak topology and which meets 

r ( t Q) , and a net (t^ ) such that t^ -+ tQ and r ( ^  G- = <f> fo r a l l  p .

„ Without loss o f generality we may take G to be the set y  + U ,'

where y  e r(tQ) and U is  the neighbourhood

[x e E : |<x,x!>| < 1 , i  = 1, . . . ,  n] ,*

the set £x,j, . . . ,  x^j being a lin ea rly  independent subset o f E'

(Lemma 15.4). Eor each x f  E , we define

p (x ) = max £|<x,xp>| : i  = 1, . . . ,  n} .

Then p is  a continuous seminorm.- By the Hahn-Banach theorem there exists
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fo r  each index |3 a lin ear functional f  E' such that

<x - y> XJ3> < -  1 fo r  x e T (tp ) 

and

<x»xj3> > -  1 fo r  x e U .

Since U is  absolutely convex, i t  follows that,for each (3, 

|<(x,x£)>| < 1 whenever p (x ) < 1 . Hence

|<x,x£>| «= p (x ) (x  e E) .

I t  fo llow s from the-Banach-Alaoglu theorem that there is  a subnet o f ( x ' )
P

which is  convergent in  the weak* topology on E’ . We shall retain  the 

notation (x£ ) fo r  this subnet, and we shall use (t^ ) to denote the 

corresponding subnet o f  . ( t^ )  > Let x^ be the weak* lim it of (x^) . 

Then

|<jx,x')>| < p (x ) fo r a l l  x e E . . . . ( i i )

C learly, as y e r ( t  ) ,

M , ( t  ) £ <y,x*> • 
x ' o oo

The proof w i l l  be complete when we have shown that M , is  not
o

lower Semicontinuous at tQ • For each (3 , there exists a point x^ in  

T (tp ) such that

<x&’ xS> = " x t ( V  • ̂ o r

Then

Therefore

Mx , ( t p) = -  *p>

$ M ^ (tp ) + <xp,x  ̂ -  x ‘ > , fo r  each p

Mx ' ( V  i  <̂ r,Xp> "  1 + < V Xo "  X|3>’ • • • (* * )

from statement ( i ) .  Since the set Q is  bounded, the set [<Xp,x£>] is
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bounded fo r each i  . In  particu lar, the set

i s  a bounded subset o f Rn . Hence (x^) has a subnet such that, fo r

some n-tuple (k^, . . . ,  kn) e Rn ,

<(xn.x iy  -* k. , each i  .p i  i

By Lemma 15 >5> there exists a point xq in  E such that 

<x0,x '>  = k^ ( i  = 1, . . . ,  n) . Therefore p (x0 “ xp) -+• 0 » from the 

d e fin ition  o f p .

Summarizing, we have nets ( t^ ) ,  ( xp)» (x^ ) with the same index

set such that

and

W
x^ -* x^ in  the weak* topology,

p (x0 -  x ) -+ 0 , where xQ e T (t  ) ,(3 o ' * ¡3 v o

Mx ^ y  * <5r»xp> - 1 + - x?> •

The right-hand side o f this la s t expression is  equal to

< y , ^ > -  1 + <*p -  v  ^  -  * [,> +  < *„ ,%  -  *p> ,

which, by statement ( i i ) ,  is  not greater than

<y,x^> -  1 + 2p(xo -  xfi) + <Xo,x'o -  x p ,  

and this tends to <y,x^> - 1 as |3 -» .

However M , ( t )  £ <y,x')> , so that M , is  not lower semicontinuous at 
Xo ° Xo

t o

Example. We cannot re lax the condition that Q be bounded in  

Theorem 15.6, even when E is  fin ite-dim ensional. Take T to be the 

in terva l [0, 7/ 2] and. le t  E = R . For t  > 0 , le t  T (t )  be the lin e  

segment

[ ( -  cot t  , -1 ), (co t t  , 1 )] ;
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the ends o f the segment l i e  on the lines y = + 1 , and i t  makes an angle 

t  with the x-axis. Let r(o) "be the lin e  segment whose end points are 

(0 , -1) and (0, 1) . T c learly  fa i ls  to he lower (and upper) semi- 

continuous at t  = 0 . This may he seen by drawing a diagram. Now le t  

(\ j ,  X2) e R  ̂ . Then, fo r  t  > 0 ,

Mx( t )  = max [-  cot t  -  Xj cot t  + »

and

Mx(0 ) = |X2| .

This function is  always lower semicontinuous at t  = 0 .

1
Example. The^boundedness condition is  not needed i f  E = R 

I f  T i s l . s . c .  and has non-empty compact convex values in  R , then there 

is  an upper semicontinuous function f  and a lower semicontinuous function 

g such that f ( t )   ̂ g ( t )  fo r a l l  t  , and

T (t )  = the in terva l [ f ( t ) ,  g ( t ) ]  ( t  e T) .

I f  (a ,b ) is  an open in terva l, r ( t )  H (a ,h ) = <f> i f  and only i f  

g ( t )   ̂ a or f ( t )  £ h .

We now combine Theorems 15«3 and 15*6 to obtain a resu lt which 

does not need any boundedness condition.

THEOREM 15.7. I f  E is  a lo ca lly  convex Hausdorff space, and 

r  : T -»E  a multifunction with non-empty compact convex values, then T is  

weakly continuous at a point tQ o f T i f  and only i f  M , is  continuous 

there fo r  every x ' e E' .

P roo f. I f  T is  weakly continuous at t  , i t  follows from 

Theorems 15*3 and 15*6 that, fo r  each x ' f  E1 , M , is  both upper and 

lower semicontinuous at t  , and so i t  is  continuous there.

Conversely, suppose that M , is  continuous at t  fo r  each 

x ' . I t  follows from Theorem 15«3 that T i s  weakly u .s .c . there0
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Suppose that T is  not l . s . c .  at t  ; then we proceed exactly as in  the 

proof o f Theorem 15.3, down to the lin e  ( * * )  ; we keep to the same 

notation. Let

Ĝ  = [x e E : p (x -  z ) < 1/4 fo r some z e r(t )) .

The set Ĝ is  open fo r the weak topology on E , and as T is  u .s .c . at

t  , there is  an index B such that r(tQ) C G fo r  |3 £ B . Ino ro p 1 ro

particu lar, there is  fo r  each |3 £ Pq an element o f r(tQ) such that

p(yp -  Xp) < 1/4 . Since r ( t Q) is  compact, the net (y^) has a subnet

which converges to  a point yQ , say, o f r(tQ) . Taking the corresponding

subnets, we have t Q -+ t  , x ' -*■ x* as before, yQ y and7 p o  p o  p o

p(yp - Xp) < 1/4 . We substitute a l l  these into line ( * * )  o f the previous 

proof and we obtain:

M V  < - 1 + <y>xp > + <xP - xi - xp >+ < V  xo -  xp> »

« - 1 + <y>*p> + 2p^xp -  V  + <yp -  v  xo ~ ^ 0j xo ~ M 3

< -  2 + <y^xp > + 2p(yp -  V  + ^ o j  x o  ~  xp  •

1
This expression has the lim it  -  ^ + <̂ y,x )̂> as ¡3 -+ .

However, as y e r ( t ) , M , ( t ) >  <y,x*^> .O X o oo

This is  in  contradiction o f the hypothesis that M , be
o

continuous, and so T is  l . s . c .  a fter a l l .

This resu lt does not hold i f  r(tQ) is  not convex; take fo r  

instance, T = R , E  = R ,  r(o) = [ - 1 ,  1 ] and T (t )  = [ -  1, 1] fo r  t ^ O .  

Then M , is  constant fo r a l l  x ' , but T is  not u .s .c . at t  = 0 .

We end th is section with some results on the continuity o f the 

convex hull o f a multifunction. The fo llow ing lemma is  the lo ca l version 

o f a theorem o f C. Berge ( (2 ) ,  p. 114, Theorem 4 ).

LEMMA 15.8. Let T, , . . . ,  X be topological spaces and 

ri : T ^  X. ( i  ~ 1, ..., n) multifunctions which are l . s . c .  at the point
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t  o f T . Then the multifunction o —  ----------------------------

r  ; t —» r ^ ( t )  x . . .  x r^ (t )  ( t  f  l )  ,

is  also l . s . c .  at t  .— ■ o

Proof. Let A. be an open subset o f X. fo r  each i  , such --------  l  x
that . T (t  ) meets A. x . . .  x A , a basic open set in  X. x . . .  x X . v o 1 n ’ r  1 n

Then there ex is t neighbourhoods , . . . ,  U o f tQ such that, fo r

t .e  U, , r . ( t )  meets A. ( i  = 1, . . . ,  n ) .  Thus fo r  t  f  U, D „ .  H U ,

r ( t )  meets A. x . . .  x A . Hence T is  l . s . c .  at t  .
'  ■ 1 n o

' THEOREM 15.9. Let T be a topological space, and E any

topological vector space. , Then, i f  T : T -* E is  a multifunction which is
A

l . s . c .  at the point t  e T , the multifunctions T and T are also l . s . c .  

at t  , where, fo r  each t  in  T , r ( t )  is  the convex hull o f r ( t )  and

T (t )  is  the closed convex hull o f r ( t )  .

P roo f. Eor each positive in teger n l e t  A^ be the simplex in

Rn consisting o f a l l  points X where 0 ^ 1 ( 1  ( i = 1 ,  . . . ,  n) and

X, + . . .  + X =1 . Eor each t  , we define 1 n *

Qn(t) = A x r(t) x . . .  x r(t) ,

the factor r(t) being taken n times0 The multifunction fi is  l . s . c .  

at t  , by Lemma 15*8. Let En denote the product space o f E with 

i t s e l f ,  taken n times in  a lio  Then the mapping cpn from An x En into 

E defined by

cp ( X I x , , . . . ,  x ^  X. X + yn ~  1 n' 11

is  continuous. For each n ,t we define

+ X x
n n

r „ ( t )  = <pn(nn( t ) )  .

Since q>n is  continuous, is  l . s . c .  at t Q , by Proposition 1.3. Now,

fo r  each t  ,

r ( t )  = Z  r  ( t )  .
n = 1
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Therefore T is  l . s . c . ,  hy Proposition 1.4; applying Proposition 1.1, we
A /

see that T is  l . s . c .  as w e ll.

THEOREM 15.10. Let T be a topological space, and E a 

lo c a lly  convex Hausdorff space. Then i f  T : T -+ E is  a multifunction
^  A *

which is  u .s .c . at a point t  o f T and i f  r ( t Q) is  corn-pact. T _is

u .s .c . at t  --------------- s--------- 0

Proo f. Suppose that r ( t Q) C G , where G is  an open set in  

E . Then there exists an open neighbourhood U o f the o rig in  such that 

r ( t  ) + U C G , and moreover ( r ( t  ) + U) C G .

There is  a neighbourhood V o f ■ t  in  T such that, fo r  

t  e V , r(t) C r(tQ) + U . Since I*(t ) + U is  a convex set, this la s t
A  / v  A *

statement implies that r(t) C r(t ) + U , and hence T (t )  C G , as 

required.

I f  the space E is  complete, and T is a compact-valued 

multifunction, then T is  also compact-valued ( fo r  a proof o f th is , see 

G. Kothe (2 7 )) .

16. Extreme points o f  multifunctions. I f  A is  a non-empty 

subset o f a vector space over the rea ls , then a point x e A is  an

extreme point o f A i f  and only i f  x is  not an in te rio r point o f any lin e

segment whose end-points are contained in  A . I f  A is  convex, th is is

equivalent to  saying that there is  no pair u,v o f d istin ct points in  A 

1such that x = ^(u  + v ) .

I f  T is  a multifunction with values which are convex subsets 

o f a rea l topological vector space, then, fo r  each argument t , r°(t) 

shall denote the set o f extreme points o f r(t) . The next few results are 

extensions o f a resu lt o f Himmelberg and Van Vieck ((2 2 ), Proposition 1 ).

We shall need to consider dual pairs (E,E’ ) o f  vector spaces, where E'
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contains a countable subset which separates the points o f E . This 

property may be characterized as fo llow s:

PROPOSITION 16.1 . Let (E,E*) be a dual pair o f vector spaces. 

Then E* has a countable subset separating the points o f E i f  and only i f  

i t  is  weak*-seuarable.

LEMMA 16.2 ( ( 9) ,  Theorème 5)* Let E be a lo c a lly  convex 

Hausdorff space over the reals with a weak*-separable dual E' . Then E’ 

has a countable subset A with the follow ing property:

i f  K is  a non-empty compact convex subset o f E and 

i f  y / K , then there exists x ' e A such that

max Kx,x'^> : x e K] < <3r,x')> .

COROLLARY. I f  E is  a lo c a lly  convex Hausdorff space over the

reals such that E' is  weak*-separable, then every compact convex set in

E is  a Sr. set .—  0 '

PROPOSITION 16.3. Let T be any topological space. E a 

lo c a lly  convex Hausdorff space with a weak*-separable dual, and r  : T -> E 

a u .s .c . multifunction with corn-pact convex values. Then G(r°) is  a Sg 

subset o f G-(r) .

Proo f. Let (x^ ) be a sequence o f points in  E' which 

separates the points o f E (Proposition 16.1). For each pair ( i , j )  o f 

positive integers and each argument t  , l e t

i'ijC-t) = ^ ( y  + z ) : y »z  e r(t) and |<y -  z, x!>| £ 1/ j ]  .

Then, fo r  each t  ,

r°(t) = r(t) \ u r (t) .

Hence

G ( r ° )  = o ( r )  \  u  & (r  )  . ( i )
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We now prove that G(I\ .) is  closed fo r each i , j  . We define a
J

multifunction : T-+E  x E  hy taking, fo r  each t  f  T ,

= ( r ( t )  X r ( t ) )  n $ (y,z) e E x 'E : I<7 -  z, x*>| £ 1/j] .
J-J 1

Then Q .. is  compact-valued and u .s .c . ( (2 ) ,  p. 114, Theorem 4 * ).  Let 
J

cp : E x E -+ E be the continuous mapping defined by

<p(y} z) = ^ (y  + z ) (y , Z <r E) .

Then . = cp o Q. . and so T . ... is  u .s .c .. I t  is  also comp act-valued, 
i j  i j  i j

and so has a closed graph ( (2 ) ,  p. 112, Theorem 6) .  Hence & (r°) is  a 

subset o f G-(r) , from statement ( i ) .

PROPOSITION 16\4. Let T beany topological space, X a 

metrisahle subspace o f  a topological vector space E , and T : T -* X a 

u .s .c . multifunction with compact convex values. Then G-(rC 3) is  a Ss 

subset o f G(T) .

P roo f. Let d be a compatible metric fo r  X . Then, fo r  each 

positive  integer m and each t  e T , we define

rm( t )  = [| (y + z) : y, z e T (t )  and d (y ,z ) > J\/m] .

Then, fo r  each t  ,

i*(t) = r(t) \ umrm(t) ,

and so

s(r°) = a(r) \ umG(rm) .

To complete the proof, we show that ^(^m) i s  a closed set fo r 

each m , as in  Proposition 16 .3 • We define a multifunction 0^ from T 

into X x X by taking

flm( t )  = ( r ( t )  X r ( t ) )  n [ ( y , z )  : d (y ,z )  2 1/m] .

Then 0^ is  compact-valued and u .s .c 0 fo r  each m ( (2 ) ,  p. 114,

Theorem 4 ' ) .  • Let 9 be the continuous mapping from E x E into E
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defined by

<p(y»z) = ^ (y  + z) (y , z e E) .

Then T = cp o T fo r each m . Hence T is  compact-valued and u .s .c .. m m  m

Therefore &(r ) is  closed fo r each m , which completes the proof.

LEMMA. 16.5. Let T he any topological space. E a lo ca lly  

convex Hausdorff space with a weak*-separahle dual space, and T : T E an 

l . s . c .  multifunction with compact convex values. Then G-(r) is  a set

in  T x E .

Proof.. Let [x^] be the countable subset o f E’ which has the 

property described in  Lemija 16.2. As in  §15» we define

max : u e r(t)} ,

fo r  each x^ and each t  e T . Then, by Lemma 16.2, ( t , x )  / G(r) i f  and 

only i f  there is  a positive  integer n and a rational number a such that

Mx , ( t )  S a < <x,x£> .
n

Therefore

G(r)* = U [t  : M , ( t )  < a] x [x e E : <(x,x^> > a] , 
n,a n

the union being taken over a l l  positive integers n and a l l  rationals a .

The set [ t  : M , ( t )  < a] is  closed, since M , is  lower semicontinuous x Xn n
(c f .  Theorem 15*6), and the set [x e E : <^x,x^> > aj is  c lea r ly  an 3  ,nr cr
Hence G(r)' is  an 3 ■ set , and so G-(r) is  a §s .

LEMMA 16.6. Let T be any topologica l spaces. X a separable 

metrisable space, and T : T -» X a closed-valued l . s . c .  multifunction. Then 

G-(r) is  a set in  T x X .

P roo f. Let (U ) be a countable base o f open sets fo r  X .

Then ( t , x )  / &(r) i f  and only i f  there exists a positive  integer m such

that T (t )  fi U = d> and x e U . Thus x '  n r  n

G (r)' = u ( r +(u *) X  U ) . 
n = i n n
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Each r+(u') is  closed, since T is  l . s . c . ,  and each U is  
' n n

an S& set. Hence G-(r) is  a set .

PROPOSITION 16.7. Let T be any topological space, E a 

lo c a lly  convex Hausdorff space with a weak*-separable dual, and r : T -» E 

a continuous multifunction with corn-pact convex values. Then G (r°) is  a 

¿L set in  T x E .0 ■

P roo f. This follows immediately from Proposition 16.3 and

Lemma 16.5.

PROPOSITION 16.8. Let T be any topological space, X a

separable metrisable subspace o f a topological vector space, and T : T X

a continuous multifunction with convex compact values. Then G (r°) is  a

set in  T x X .0 —

Proof. This resu lt fo llow s from Proposition 16.4 and Lemma 16.6.

Himmelberg and Van Vleck ((2 2 ), p. 723) ask whether i t  is  

possible to obtain a resu lt fo r  l . s . c .  multifunctions which is  analogous to 

their resu lt fo r  u .s .c . multifunctions ( ib id . ,  Proposition 1 ). The 

fo llow ing resu lt is  in  answer to th is question.

PROPOSITION 16.9. Let T be any topological space. X _a

separable metrisable subspace o f  a topological vector space E , and

r : T -*■ X an l . s . c .  multifunction with compact convex values. Then G(r°)
is  an ct „ subset o f G (r) .

Co

Proo f. For each positive integer m we define

rm( t )  = i^ (y .+  z ) : y, Z e r ( t )  and d (y ,z ) > 1/m} ,

where d" is  a compatible metric fo r X . We also define, fo r  each m and 

t  ,

= (r(t) x rCt) n Ky,z) : d(y,z) > 1/mj .
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Then, fo r  each m , ft is  an l . s . c .  multifunction from T into X x X ,m

by Lemma 15*8. Let cp .: E x E -> E be the continuous mapping defined by

1<p(y»z) = 2 (y + z ) (y , z e E) .

Then T = cp o Q , and so T is  l . s . c . .  By Proposition 1.1, T  is  also m m '  m * m

l . s . c .  . G-(Tm) is  therefore a set in  T x X , fo r a l l  m , by Lemma

16.6.

Eor each m,t , we have:

rB(t) c  ! i ( y + 0  : y, z e T ( t )  and d (y ,z ) £ 1/m] , 

and so, as the set on the right is  compact,

rm( t )  C f^ (y + z ) : y, z e T (t )  and d (y ,z ) > 1/m} C r ^ t )  . 

Therefore

s(r°) = G(r) \ umG(rm) , 

= G(r) \ umG(TB) .

Since G(T ) is  a §~. set fo r  each m , the result fo llow s, ' m o

I f  T is  a topological space in  which every open set is  an , 

then, in  the above Proposition, G-(r°) is  an subset o f T x X .

We now consider extreme points o f measurable multifunctions.

The follow ing Theorem has been proved in  the finite-dimensional 

case by Himmelberg and Van Vleck ((2 2 ), Theorem 4 ).

THEOREM 16.10. Let (S ,X ) be any measurable space. X a 

separable metrisable subspace o f a topologica l vector space and T : S X 

a measurable multifunction with compact convex values. Then G(T°) belongs 

to the cr-algebra A  ® lQ̂  •

P roo f. Let d be a compatible metric fo r  X . Then, as before, 

we define, fo r  each t  e S and each positive  in teger m ,

rm^^ = + z ) : y* z * r ( t )  and d (y ,z ) 5* 1/mj ,
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and so

& (r°) = o (r )  \ um&(rm) . . . . ( i )

We also define, fo r  each m , a multifunction

: T -0 ( r ( t )  X  r ( t ) ) n  [ ( y , z )  : d (y ,z ) ^ l/m] ,

from S into X x X . Each fi is  measurable, by Theorem 4.8. Thenm

T = ip o Q fo r  each m , where m T m *

<p(y>z) = y + z ) (y* z « x) .

This mapping 9 is  continuous, and so r  is  measurable fo r  each m ;

G(Tm) therefore belongs to A  ® , by Theorem 3 .6. G (r) belongs to

A ®  6  s im ilarly, and therefore so does G-( r ° )  , from lin e  ( i )  .

I f ,  in  Theorem 16.10, (S,X) also admits the Souslin operation

and X is  a Souslin space, then r °  is  also a measurable multifunction, by 

the Corollary to Lemma 3.3« The fo llow ing proposition enables us to prove 

a converse resu lt to Theorem 16.10.

PROPOSITION 16.11. I f  S is  a measurable space. E a separable 

metrisable topological vector space and T : S -* E any ^-measurable 

multifunction, then the multifunction T is  also ^-measurable, where, fo r
/ s

each t f S , r(t) is  the convex hull o f r ( t )  .

Proo f. The proof o f th is resu lt is  sim ilar to that o f the 

corresponding resu lt fo r  multifunctions o f Souslin type (Theorem 13.3). For 

each pos itive  in teger n , l e t  A be the simplex o f  points \ in  Rn 

such that 0  ̂ $1 ( i  = 1, . . . ,  n) and \| + . . .  + Xn = 1 . Then fo r

each n we define

^n(t)  = x r ( t )  x . . .  x r ( t )  ,

the factor r( t )  occurring n times. Then the multifunction Q is
. n

^-measurable, by Proposition 4.7. We define a continuous mapping

cpn : A n x E x ** , x E “>E
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by the formula

(p (x > x. « . . ■ , x Ì Trr~ ’ v  ’ n ' \,x. + 1 1 • • + \  X •n n

Now

r = u (<p o n ) ,n ' T n'

and so T is  also ^-measurable.

COROLLARY. Let S, E, T be as in  Proposition 16.11. Then the 

multifunction T is  ^-measurable where, fo r each t f  S , T (t )  is  the 

closed convex hull o f T ( t )  .

~ A
Proof; r(t) is  fo r each t  the closure o f  the set T (t )  .

*  a ~The multifunction T is  * ¿/-measurable, and therefore so is  T , by

Proposition 1,1.

Proposition 16.11 generalizes a result o f C. Castaing ( ( 8) ,  

p. 107, Corolla ire 2 ), and i t  enables us to prove the fo llow ing partia l 

converse o f Theorem 16.10:

THEOREM 16.12. Let S be a measurable space, E a separable 

metrisable lo ca lly  convex Hausdorff space and T : S -> E a multifunction 

with values which are non-empty weakly compact convex subsets o f E . Then 

i f  r° is  ^-measurable, so is  T .

P roo f. This follows from the Corollary to Proposition 16.11, 

s in ce,for each t ; T(t) is  the closed convex hull o f r°(t) , by the 

Krein-Milman theorem.

The rest o f this section is  devoted to a study o f selection  

theorems involving extreme-valued selectors. Theorem 16.10 y ie ld s  the 

fo llow ing coro llary:

THEOREM 16.13« bet S be a measurable space which admits the 

Souslin operation, X a Souslin subspace o f a lo c a lly  convex Hausdorff
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«pace and T : S -+ X a measurable multifunction with non-empty compact 

convex values. Then T has a countable family [y ] o f  measurable 

selectors such that:

( i )  fo r  each n and each t , y ( t )  is  an extreme point o f

r(t) ;

( i i )  fo r  each t  , r(t) is  the closed convex hull o f  the set

irn( t )  : n = 1,2, . . . ]  .

P roo f. Since r(t) is  compact and convex fo r  each t , r°(t) 

is  non-empty, by the Krein-Milman theorem. G(r°) is  a measurable subset 

o f  S x X , by Theorem 16.10. By Theorem 12.3 (C oro lla ry ), r° has a 

countable family (y  ) o f measurable selectors such that the set 

SYnCt) ! n = 1 .2 , . . . !  is  dense in  r°(t) fo r  each t  . Therefore

r ° (t ) c  irn( t ) i ' c r ( t )

fo r  each t  . Now T(t) is  the closed convex hull o f r ° (t ) ,  by the 

Krein-Milman theorem; therefore i t  is  also the closed convex hull o f the 

set [yn( t )  : n = 1 , 2 , . . . j  . .

The fo llow ing resu lt is  obtained from Theorem 16.10 in  the same

way:

THEOREM 16.4. Let S be a measurable space which admits the 

Souslin operation. X a Souslin subspace o f a topological vector space. 

and T : S -► X a measurable multifunction with compact convex values. Then 

provided r°(t) is  non-empty fo r  each t f S , P has a measurable 

selector y  such that y ( t )  is  an extreme point o f r(t) fo r  each t  .

Now le t  X be a topological space on which there exists a 

sequence ( f  ) o f upper semicontinuous real-valued functions which 

separate the points o f  X . Let K be a non-empty compact set in  X .

We define a descending sequence (K ) o f  subsets o f K as fo llow s: we
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take K = K : then i f  we assume that K . is  defined (n  £ 1 ) .  we take o n-1  v '*

K = [u e K : f  (u ) ? a j , n n-1  nv ' n ’

where

a = max [ f  (u ) : u e K , ] . n n̂  ' n-1

Then the in tersection  is  non-empty and contains just one point. We

c a ll this point the lexicographic maximum o f K with respect to the 

sequence ( f  ) , and denote i t  by the abbreviation lex . max. K.

I f  E is  a lo c a lly  convex Hausdorff space over the reals with a 

sequence (x^) in  E' which separates the points o f E , and K is  a 

non-empty compact subset o f  E , then the lexicographic maximum o f K with 

respect to (x^) i s 311 extreme point o f K ; this follows from the 

d e fin ition  o f an extreme point given at the beginning o f th is section.

THEOREM 16.15. Let S be a measurable space, and X a 

topological space on which is  defined a sequence ( f  ) o f upper semi- 

continuous real-valued functions which separate the points o f X . Then i f  

r  : S -+ X is  a compact-valued measurable multifunction with non-empty 

values, the function

t  -+ le x . max. r(t) (t e S)

is  a measurable selector for T .

P roo f. Let = T ; we define a sequence ( r  ) o f measurable

multifunctions from S into X inductively as fo llow s. Suppose that

n »  1 and that T . is  defined; le t  g . be the functionn-1  n- 1

t  max Jfn(u ) : u e r ^ C t ) }  .

Then we define fo r  each t

rn( t )  = [x e ^ ( t )  : f n(x )  = g ^ C t ) !  .

Each multifunction is  compact-valued, and the sequence ( r  ) is
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descending. Moreover, is  measurable, fo r  each n ; th is follows from

Lemma 9«1j by induction on n . Therefore the multifunction Pi T is  

also measurable, by Proposition 1.5» Now, fo r each t  , PI T ( t )  contains 

just one point, namely le x . max. T (t )  ; hence the function

t -*■ le x . max. r(t) 

is  measurable, as required.

C. Castaing ( 9) has obtained a result sim ilar to th is, but in  a 

d iffe ren t setting; in  his paper, S is  a lo ca lly  compact Hausdorff space 

with a Radon measure, and T is  required to sa tis fy  a Lusin-type condition. 

We now use Theorem 16.15 to prove another theorem on extreme-valued 

selectors.

THEOREM 16.16. Let S be any measurable space, E a lo ca lly  

convex Hausdorff space over the reals, with a weak*-separable dual, and 

T : S -* E a measurable multifunction with non-empty compact convex values. 

Then T has a countable family (y ] o f  measurable selectors such that:

( i )  fo r  each n , y  ( t )  is  an extreme -point o f T (t )  ;

( i i )  fo r  each t  , T (t )  is  the closed convex hull o f the set 

iyn( t )  : n = 1,2, . . . }  .

P roo f. Let (x^ ) be a sequence o f elements o f  E* which has 

the property o f Lemma 16.2, Eor each n , we take

Mx , ( t )  = max Ku,x£> : u <r T ( t ) j  ( t  e S) , 
n

and we define, fo r each t  f  S and each n ,

T ( t )  = [u e r(t) : <u,x^> = Mx , ( t ) j  .
n n

Then, fo r each n , is  measurable and has non-empty compact values, by 

Lemma 9.1; i t  therefore has a measurable selector yn , by Theorem 16.15; 

since y  ( t )  is  fo r  each t  a lexicographic maximum, i t  is  an extreme 

point o f r(t ) .
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In  order to prove part ( i i ) ,  we consider the multifunction 

0 , where f i ( t )  is  fo r  each t  the closed convex hull o f the set 

ir (t) : n = 1,2, . . . ]  . Q has compact convex values and fi(t) r(t)
fo r  each t  . Suppose that fo r some t  there is  a point x in  

T (t )  \ f i ( t )  . Then, by Lemma 16.2, there exists an integer n such that

max ^ u ,x ,-S : u e n ( t ) ]  < < x ,x '>  .
N nr n '

In  particu lar,

<Yn( t ) /  x ;>  < <*>*;> , 

which contradicts the,fact that

<rn(t) ,

Hence f i ( t )  = r(t) fo r a l l  

theorem.

t  , which proves the second part o f the

M. Valadier ((5 0 ), p. 271), has proved a sim ilar resu lt fo r  

multifunctions which are " scalarly measurable".

LEMMA 16.17. Let S be a measurable space and E a separable 

metrisable- lo ca lly  convex space over the rea ls . Then a function from S 

into E is  measurable i f  and only i f  i t  is  measurable with respect to  the 

weak topology on E .

Proo f. Let f  : S -+ E be a measurable function. Then i t  is  

c lea rly  measurable with respect to the weak topology on E .

Conversely, le t  (U ) be any countable base o f open sets fo r  

the topology on E ; then the sets (V ) also form a base fo r  the 

topology, where, fo r  each n , Vn is  the closed convex hull o f Un . This 

fo llow s from the fa c t that E has a base o f  neighbourhoods o f the o rig in  

which consists o f closed convex sets. Then i f

& = U [V. : i  € 1}
- 1
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is  an open set in  E , where I  is  some subset o f N f and f  is  a 

weakly measurable function,

f “ 1(G) = U f ’ 1(V ) . 
i  e l

Since each is  closed and convex, i t  is  closed in  the weak topology on

“ 1 “1E . Hence f  (V\) is  measurable fo r  each i  . Therefore f  (G) is

measurable fo r  every open set G in  E , and so f  is  measurable.

THEOREM 16.18. Let S be any measurable space. E a separable 

metrisable lo ca lly  convex space over the reals, and T : S -* E a 

measurable multifunction with non-empty weakly compact convex values. Then 

T has a countable family [y ] o f measurable selectors such that:

( i )  fo r each n , y ( t )  is  an extreme point o f T (t )  ,

( i i )  fo r each t , r(t) is  the closed convex hull o f the set

: n = 1,2, . . . ]  .

P roo f. E has a countable base (U ) o f open sets consisting

o f convex open sets. Eor each d is jo in t pair U^j o f these, there is

a functional x ' e E* which separates them, by the Hahn-Banach theorem, 
mn

Hence the fam ily [x j^ } separates the points o f  E , and so (Proposition 

16.1), E with i t s  weak topology and T sa tis fy  the hypotheses o f 

Theorem 16.16.

Hence T has a co llection  [y ] o f weakly measurable selectors 

which sa tis fie s  conditions ( i )  and ( i i ) .  I t  follows from Lemma 16.17 that 

each o f the selectors [y j is  measurable, which completes the proof.

We now consider the algebraic properties o f lexicographic

maxima.

THEOREM 16.19« Let E be a lo ca lly  convex Hausdorff space 

over the reals such that E* contains a sequence (x^) separating the 

points o f . E . Let X *  be the space o f non-empty compact subsets o f E
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with the V ietoris  topology. Then the mapping f  : K* -* E defined hy 

f ( k ) = lex . max. K (K e K*) is  Borel measurable. Moreover, fo r  any pair 

K^j ^  in  K * and fo r  any positive  scalar X ,

( i )  fCK, + K2) = f ^ )  + f(K2) ,

and

( i i )  f ^ )  = x fC ^ ) .

P roo f. The measurability o f f  follows at once from Theorem 

16.15, on taking r (K ) = K fo r  each K .

We now prove that condition ( i )  is  sa tis fied . Let x̂  = f(K ^ )

and x2 = f(K 2) . Let also ( ^  ) ,  ( i^  ) ,  ( ( ^  + K ^ )  be the
*•

descending sequences o f compact sets formed f.s in  our de fin ition  o f 

lexicographic maximum. Then i t  is  enough to show that

Xl + x2 e + K2)n

fo r  a l l  n . This follows from the fac t that fo r  each n ,

K1,n + K2,n = (K1 + K2>n ’

which we prove by induction on n . I t  c learly  holds fo r n = 0 , and i f  

i t  holds fo r  n = k ,

<K1 + K2^k+1 = iul +u2 1 < V U2> *k*1> = maJC-’  U1 '  ( V n ’ u2 '  ( K2>„!

= K  ‘  <KA  ! <u1>^+1> = maX-i+  lu2 '

= (KA +1 + A A l  '

The proof o f part ( i )  is  therefore complete, and the proof o f ( i i )  is  

s im ila r.

In  Theorem 16.19, the choice function f  is  c lea r ly  Borel 

measurable fo r  any topology on K *  fo r  which the sets

{K e K* : K n P £ <f>] , P closed,

are a l l  closed
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We now extend the idea o f lexicographic maxima to the case 

where the space E* has no countable sequence which separates the points 

o f E . Let E be a lo ca lly  convex Hausdorff  space and [x!  ̂ : ”i  e i j  a 

fam ily in  E' which separates the points o f E . We suppose that the 

index set I  is  well-ordered; le t  0 denote it s  f i r s t  element. I f  K is  

a non-empty compact set in  E , we define Kq = K , and fo r  i  > 0 ,

K. = £u e n K. : \u, x !/  = maximum] . x . . j  ’ 1
J<x 0

Then we define

lex max K = n 
i e l

K. .l

The function K -+ le x . max. K may not be well-behaved 

topo log ica lly . However, i t  s t i l l  has properties ( i )  and ( i i )  o f Theorem 

16.19. In  order to prove that i t  has property ( i ) ,  i t  is  su ffic ien t to 

prove that

K. . +.K, . 
1,x 1,1

(£, + k2).

fo r  each i e l .  We do this by transfin ite  induction; we assume that this 

statement is  true fo r j  < i  . Then

(K + K j .  = [u e fl (K, , + K ) : <u, x!> = max.]
I c. 1  j < i  * ̂  J~

= [u, e n K, . : < U , ,  x '>  = max.]+ e n K : <u?, x '>=m ax.], 
1 j < i  1,3 j < i  J 1

. . . ( • )

provided that

n k + n k = n ( k + k )
,i< i ,J j < i  ,J j  < i  >J

I f  statement ( * * )  holds, then the right-hand side o f ( * )  is  equal to

(K, . + K0 . )  . Therefore, fo r  a l l  i  ,v 1 ,x 2 , i '

* *2 e (K1 + K2). ,le x . max. + le x . max
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and hence

le x . max. + le x . max. K = le x . max. (K  ̂ + .

In  order to v e r ify  ( * * )  , i t  is  su ffic ien t to prove that the right-hand 

side is  contained in  the left-hand side. This is  c lea rly  true i f  i  has 

an immediate predecessor; otherwise, suppose tha t,fo r each j  < i  ,

x = a. + h . ,
J J

where a. e K. . and b. f  L  . ; then the sequence (a . )  has a clusterJ * 9 J J J J
point a in  H K. . and (b . )  has a cluster point b in  rï K„ . .

j < i  1’ ° •> 0 j < i  2’ 3
Then x = a + b , and so x belongs to the left-hand side, o o

Property (ii)*m ay be v e r ified  s im ilarly.

We conclude this section by considering the relationship between 

the extreme-valued measurable selectors o f a multifunction and the class o f 

a l l  measurable selectors. We shall need the fo llow ing lemma:

LEMMA. 16.20. Let S be a measurable space. E a separable 

metrisable topological vector space, and , r  measurable compact-valued 

multifunctions from S into E ; then the multifunction

t  r,j ( t )  + T^( t )

is  also compact-valued and measurable. I f  ct is  a measurable scalar

valued function on S , then the multifunction

t  -+ a( t )  r1 ( t )

is  also measurable.

P roo f. Let <p : E x E -+ E be the continuous mapping defined by 

cp(x,y) = x + y (x ,y  e E) .

Then, fo r  each t  ,

r,(t) + r2(t) = ^ ( t )  x r2(t)) 9
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and since the multifunction

t -► ^ (t )  x r2(t)

is  measurable and compact-valued (Theorem 4 .8 ), so is  the multifunction

t -* r_j(t) + r2(t ) .

The second part o f this lemma is  proved s im ila rly .

As in  Lemma 16.20, le t  S be any measurable space, E a 

separable metrisable topological vector space, and T a measurable 

multifunction from S into E with values which are non-empty, convex and 

compact. The class o f a l l  measurable functions from S into E is  c lea rly  

a vector space under the'usual operations o f addition and scalar m u ltip licat

ion, and the set Mp o f measurable selectors o f T is  c learly  a convex 

subset o f this space. We have the fo llow ing generalization o f a result o f 

Aumann ( (1 ) ,  p. 10):

THEOREM 16.21. The set o f extreme points o f M„ is  M-------------------------------------------------------------------------  I  —

where M denotes the set o f measurable selectors o f T° .-------  p0 --------------------------------------------------r----------

P roo f. Suppose that f  e Mp is  not an extreme point. Then 

there ex ist functions g,h in  Mp such that f  = —(g  + h) , and which are

not equal. Therefore there is  a point t  f  S such that

f ( t )  = ^ (g ( t )  + h ( t ) )  and g ( t )  f  h (t )  . Hence f ( t )  / T ° ( t )  and so f

does not belong to M . Therefore i f  ext. Mp denotes the set o f extreme
r°

points o f Mp ,

M C ext. MppO -  1

Conversely, l e t  f  be a measurable selector fo r  T such that

f ( t )  / r ° ( t )  fo r some t  . Then there exists a non-zero element x o f
o

r(t) such that f ( t )  + xq e r(t) .

Consider the multifunction

t -  (r (t ) -  f (t ) )  n (f (t )  -  r (t )) n [x e e : d (x,o) * a(xo,o)] .
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This multifunction is  measurable, by Lemma 16.20 and Theorem 4.3. I t  is  

non-empty fo r  at least one value o f t  , and, on the set A (which is  

measurable) on which i t  is  non-empty, i t  has a measurable selector g 

(Theorem 10.1).

We extend g to the whole o f S by taking g ( t )  = 0 fo r 

t  / A . Then, fo r  a l l  t  e S ,

f ( t )  + g ( t )  e r(t) ,

and, as g is  not everywhere zero, f  cannot be an extreme point o f Mp . 

Hence

ext.^Mp CM Q , 

which completes the proof.

The above conclusion is  va lid  i f  S is  a measurable space 

which admits the Souslin operation and T is  a multifunction o f Souslin 

type with convex (but not necessarily closed or compact) values.

Lastly, we present Theorem 16.21 again, in  a form which is  more 

useful from the point o f  view o f applications. Let (S,jH, |i) be a measure 

space, (i being a positive measure, E a separable metrisable topological 

vector space, and T : S -> E a measurable multifunction with values which 

are non-empiy, convex and compact. We consider again the vector space o f a l l  

measurable functions from S into E , but we do not distinguish between 

functions which d if fe r  only on a set o f measure zero. We define Mp to be 

the set o f measurable functions f  : S -> E such that

f(t) e r(t) a .e .,

and M q is  defined s im ilarly. Then, i f  ext. Mp denotes the set o f 

extreme points o f Mp , we have:

THEOREM 16.22. ex t. Mp = M
r r°
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Proo f. Suppose that f  e Mp is  not an extreme point. Then 

there ex is t functions g,h in  Mp f which d if fe r  on a set o f positive 

measure, such that f  = —(g  + h) . Therefore there is  a set o f positive 

measure on which

f ( t )  = | (6( t )  ♦ h ( t ) )

and g ( t )  f  h (t )  . Hence f ( t )  / r ° ( t )  on a set o f positive measure, and 

so f  does not "belong to M . Thus
r°

M C ext. M_. .
.  r °  “  r

Conversely, l e t  f  be a measurable selector fo r  T such that 

f ( t )  / r ° ( t )  fo r  t  e A ., where A is  o f positive measure. Consider the 

multifunetions

r : t -*• (r (t )  + f ( t ) )  C\ ( f ( t )  -  r ( t ) )  n fx e E : d(x,0) £ 1/nj ,

fo r  n = 1,2, . . .  . Each o f these is  measurable, by Lemma 16.20 and

Theorem 4.3« Moreover, there exists an in teger m such that r  ( t )  is  

non-empty on a set o f positive measure; i f  this were not so, would

be empty almost everywhere, and so the set

( r ( t )  + f ( t ) )  n ( f ( t )  -  r ( t ) )  n [x <=• e : x / o]

would be empty a .e . .  However, th is  set is  empty i f  and only i f

f ( t )  e T ° (t )  , and we have assumed that f ( t )  / r ° ( t )  on a set o f positive

measure -  a contradiction.

So the multifunction is  non-empty on a set B o f positive

measure; l e t  g be a measurable selector fo r on B . We extend g

to the whole o f S by taking g ( t )  = 0 fo r  t  / B . Then, fo r  a l l  t  e S,

f ( t )  + g ( t )  e r ( t )  ,

and, as g is  not almost everywhere zero, f  cannot be an extreme point 

o f Mp . Hence

ext. Mp C M
-  P °

as required
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