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Abstract 

Detrital quartz grains from Paleozoic and Mesozoic sandstones from North Africa and central 

Europe, respectively, and from recent siliciclastic sediments of the Elbe River from Germany 

were analysed by IR spectroscopy with respect to their OH defect content. Sample sets were 

carefully chosen to cover different stratigraphic units from different localities and according 

to previous findings that indicate a significant change in the source region in the respective 

sedimentary system. The validity of the new method is compared to heavy mineral and zircon 

age spectra analysis from previous studies. Results reveal that the OH defect inventory in 

quartz shows in all investigated sedimentary successions significant internal variations from 

sample to sample and thus may be used as a tool to identify changes in the source region. The 

degree of changes observed with the new method does not necessarily reflect the magnitude 

in differences observed by other methods (such as heavy minerals and/or zircon age spectra), 

underlining the potential as complementary tool for provenance analysis. The new tool is also 

tested to estimate mixing proportions between the Variscan and the Scandinavian signal in the 

Elbe River, resulting in a surprisingly high contribution of the Nordic source. 
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1. Introduction

Quartz belongs to the most abundant minerals in the Earth’s crust and is a major constituent 

of clastic sediments. Because of its high resistance against mechanical and chemical 

weathering and its stability up to low-grade metamorphic condition, individual grains often 

survive erosion and transport over long distances and even postdepositional diagenetic 

overprint up to low-grade metamorphism. Depending on the initial crystallisation conditions 

(often inherited from the parent igneous systems), quartz incorporates different amounts and 



3 

types of hydrous defects (OH defects), where Si
4+

 is replaced by metal cations and protons

(Bambauer, 1961; Kats, 1962; Aines and Rossman, 1984; Müller and Koch-Müller, 2009; 

Stalder and Konzett, 2012) that are very sensitive towards absorption of IR radiation. Hydrous 

defects are preserved over geological time scales at diagenetic conditions (Stalder, 2014) and 

are not totally reset until 300–400°C (Stalder et al., 2017), and therefore either serve as 

valuable archive for initial crystallisation conditions (OH defects still present) or indicate 

metamorphic overprint (OH defects largely destroyed). Compared to the most common 

characterisation tools of quartz in sediments – cathodoluminescence emission spectra (Matter 

and Ramsayer, 1985; Götze et al., 2001; Augustsson and Reker, 2012) and trace element 

analysis by laser ablation-ICP-MS (Müller and Knies, 2013; Ackerson et al., 2015) – IR 

spectroscopy adds additional characteristics to discriminate detrital quartz: (1) major defect-

types give rise to energy specific IR absorption bands without significant overlap (Kats, 1962; 

Aines and Rossman, 1984), (2) IR absorption bands are chemically well understood and can 

be linked to a specific type of defect (Stalder and Konzett, 2012; Baron et al., 2015; Frigo et 

al., 2016), and (3) OH defect concentrations in nominally anhydrous minerals can be 

quantified down to the ppm level (Aines et al., 1984; Libowitzky and Rossman, 1997). 

Quartz from igneous rocks generally contains significantly higher amounts of OH 

defects than quartz annealed under metamorphic conditions (Müller and Koch-Müller, 2009; 

Stalder and Neuser, 2013). A rough distinction between granitic, pegmatitic and metamorphic 

sources is possible, in that pristine granitic quartz generally exhibits OH defects, late stage 

igneous quartz (pegmatitic, hydrothermal) shows increased content in Li- and/or B-specific 

OH defect, and metamorphic quartz is poor in OH. It was also suggested that very old igneous 

sources are often poor in OH (Stalder et al., 2017), probably because they nearly always 

experienced at least low-grade metamorphism once in their geological past. 
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In this study, it is tested whether the change in source material in sedimentary systems 

is visible in the OH defect inventory in detrital quartz grains and in how far these differences 

can be applied to provenance analysis. For this purpose, three sets of two samples were 

chosen (Table 1), for which a substantial change with respect to provenance is documented by 

other methods such as heavy mineral analysis and zircon U–Pb age determination. 

2. Samples and methods

2.1.Samples 

Three case studies were performed representing siliciclastic sedimentary successions from the 

Lower Paleozoic of southern Libya and the Lower Mesozoic of southern Germany, and 

modern sediment from a major river system in Germany. From each of the three sample sets 

detrital quartz grains from two different stratigraphic units (in case of the Elbe River: different 

localities) were analysed by IR spectroscopy with respect to their OH defect content. Sample 

sets were carefully chosen according to previous findings that indicate changes in sediment 

provenance in the respective sedimentary system. Sample details are summarised in Table 1. 

W5207 is a medium-grained quartz arenite from the Hasawnah Formation (Cambrian) of 

central Dor el Gussa (DEG), Libya. The Hasawnah Formation represents a braided fluvial to 

shallow marine environment (Čepak, 1980; Le Heron et al., 2013). Heavy minerals are 

strongly dominated by zircon (90%). About 80% of the zircon grains exhibit Pan-African ages 

(<1000 Ma, ~70% are between 550–700 Ma), ~15% are 1000–2500 Ma old, and only 3% are 

Archean. A more detailed documentation can be found in Meinhold et al. (2011) and Morton 

et al. (2011). 
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H6048 is a medium-grained quartz arenite from the Hawaz Formation (Middle Ordovician) of 

central Dor el Gussa (DEG), Libya. The sample was deposited in a near-shore platform 

setting (Ramos et al., 2006; Le Heron et al., 2013). The heavy mineral spectrum is similar to 

sample W5207, but only ~50% of the zircon grains exhibit Pan-African ages (<1000 Ma, 

~25% are between 550–700 Ma), roughly 40% are 1000–2500 Ma old, and ~11% are of 

Archean age (Meinhold et al., 2011). 

EY54-18 is a fine- to medium-grained quartz-rich sandstone (lithic subarkose) from a 

borehole at Ensingen/Germany, which represents the Bausandstein unit of the Lower Triassic 

Lower to Middle Buntsandstein (Simon et al., 2013). The Buntsandstein was deposited in a 

fluvial to lacustrine continental red bed setting in the Central European Basin related to the 

breakup of Pangea (e.g., Bourquin et al., 2006). The heavy mineral fraction is dominated by 

the ultrastable minerals zircon, tourmaline and rutile, complemented by apatite, while zircon 

U–Pb age spectra are dominated by Variscan, Caledonian and Cadomian age components 

(Schade, 2018). 

EY54-11 is a fine-grained quartz-rich micaceous sandstone (lithic subarkose) derived from a 

borehole at Ensingen/Germany, which represents the Plattensandstein unit from the Lower 

Triassic Upper Buntsandstein (Simon et al., 2013). The heavy mineral fraction is, besides a 

high amount of barite, dominated by apatite, zircon, tourmaline and rutile (Schade, 2018). 

Similarly, zircon ages resemble the data from the Lower to Middle Buntsandstein sample 

EY54-18. This observation is in contrast to significant changes in facies and texture generally 

described at the transition from the Middle to the Upper Buntsandstein (e.g., Bourquin et al., 

2006, Lepper et al., 2013). 
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EY49-29 is a quartz-rich sand from the Elbe River close to Torgau/Germany, about 100 km 

downstream from Dresden. The heavy mineral composition is characterised by high 

proportions of pyroxene and amphibole, and zircon U–Pb ages reveal a strong Variscan age 

component  (360 – 300 Ma; Aschoff, 2017), indicating a predominant provenance from 

primary and recycled sources of the Bohemian massif (e.g., Erzgebirge). 

EY53-23 is a quartz-rich sand from the Elbe River close to Geesthacht/Germany, about 25 

km upstream from Hamburg. The heavy mineral composition is characterised by high 

proportions of garnet and zircon, and zircon U–Pb ages reveal a major Grenvillian 

(Sveconorwegian) age component (approximately 1200 to 950 Ma) followed by 

Paleoproterozoic ages and minor Variscan ages (Führing, 2017). This indicates a strong 

downstream admixture (as compared to sample EY49-29) of Scandinavian sources, most 

likely through extensive recycling of Pleistocene glacial deposits from the lowlands of 

northern Germany. 

2.2.Sample preparation and infrared (IR) spectroscopy 

Quartz grains in the sandstone samples (W5207, H6048, EY54-11, EY54-18) were prepared 

as double-polished thick sections (120 µm), and the sand material (EY49-29, EY53-23) was 

prepared as grain mounts with a thickness of 120 µm from the 250–500 µm fraction. In order 

to remove the glass slides and the resin used for preparation, all mounts and thick sections 

were rinsed for several hours in acetone. 

IR spectra were recorded at room temperature in transmission mode using a Bruker 

Vertex 70 FTIR spectrometer, coupled to a Hyperion 3000 microscope equipped with a liquid 

nitrogen-cooled MCT-detector, a globar light source, a KBr beamsplitter and a wire-grid IR-

polariser and two polarisers for visible light. Absorption bands of OH defects energetically 
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overlap with absorption bands from fluid inclusion that may be by far the most important 

repository of OH in quartz (Bambauer, 1961; Aines et al., 1984; Müller and Koch-Müller, 

2009). However, in contrast to the isotropic signal of liquid water from the fluid inclusions, 

OH defects are strongly polarised perpendicular to the crystallographic c-axis (identical to the 

optical axis). In order to eliminate the molecular water signal from the OH defect signal, we 

followed the strategy described by Stalder and Konzett (2012) and Stalder and Neuser (2013), 

and performed polarised spectroscopic measurements on oriented grains. Specifically, crystal 

sections parallel to the c-axis are selected, and measurements ||no and ||ne were performed. The 

pure OH defect signal was derived by subtracting the absorbances A of the two polarised 

measurements (A||no - A||ne). Appropriate crystal sections were selected based on their 

interference colour in visible light under crossed nicols under the FTIR microscope. Given the 

sample thickness (d) of 120 µm and the maximum birefringence (∆) of 0.009, only grains 

with an interference colour close to red II (the theoretical value for our samples is d∆=1080 

nm path difference, close to the 1100 nm for red II) were taken into consideration for IR 

measurements. As for practical reasons not every grain could be checked for perfect 

orientation by conoscopic illumination, it is estimated that all grains with a path difference 

down to 1030 nm (where red II starts to turn into orange) were considered for measurements. 

This deviation corresponds to a tilt angle of 12–13° from the perfect orientation (following the 

function ∆/∆max=cos
2
). Assuming random orientation, theoretically 7% of all grains fulfil

this requirement (in uniaxial crystals the abundance H(∆) is proportional to the square root of 

∆ and integration of this function between ∆/∆max=0.95 and 1 yields 0.07), which is in 

agreement to the practical observation that in a grain mount of 1000–2000 grains 100 grains 

could be measured. The error for the measured absorbance A||ne follows the same function as 

the deviation from interference colour (A||ne = cos
2
), leading to a systematic error of A||no -

A||ne of 5% and values reported for OH contents may therefore be up to 5% too low (note that 



8 

A||no has no such systematic error as the refractive index no is exhibited in all sections in 

uniaxial crystals). 

After selection of a suitable grain the optical polarisers were removed, the IR polariser 

was adjusted, and two measurements were performed with a spectral resolution of 2 cm
-1

 in

the 550 to 7500 cm
-1

 range.  No fitting procedure was applied to the observed absorption

bands, instead the defect water content (expressed as wt ppm water) was derived by 

multiplying the absorbance for each measured channel with an individual extinction 

coefficient according to the calibration of Libowitzky and Rossman (1997). If necessary, a 

thickness correction (Stalder et al., 2017) according to the lattice overtones between 1200 and 

2200 cm
-1

 was applied. Subtracted spectra (no-ne) were normalised to thickness and corrected

by a linear baseline between 3250 and 3610 cm
-1

. In a few cases, when B-related OH

absorption bands (occurring at 3595 cm
-1

 and exhibiting absorption ||no and ||ne) were

observed, spectra were corrected in the 3585–3605 cm
-1

 range, taking into account the total

dipole intensity defined as 2o+e (Stalder and Neuser, 2013; Baron et al., 2015). For the used 

sample thickness the detection limit of OH (expressed as water equivalent) is around 1 wt 

ppm H2O.   

3. Results

The number of successfully measured grains and OH contents are given in Table 1. Samples 

within one case study or sedimentary succession show significant variations with respect to 

the OH defect inventory and the average OH content within one sample set spread by a factor 

of 1.5–2, which is clearly mirrored in the magnitude of the IR absorption bands (Fig. 1). All 

spectra are dominated by the absorption band at 3378 cm
-1

 caused by the Al-specific OH

defect, followed by the Li-specific defect at 3470–3480 cm
-1

, which is very minor in the

Paleozoic samples from Libya (W5207, H6048), discernable in the Elbe River samples 
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(EY49-29, EY53-23) and very clear in the Lower Triassic sandstones from Germany (EY54-

11, EY54-18). For better comparison of absorption band ratio of the two samples from each 

set, spectra with the lower absorbance were scaled (Fig. 1) to match the total absorbance of 

the sample with the stronger absorbance. After scaling, the spectra from both Elbe River 

samples are identical within error, but the other two sample sets show subtle differences with 

respect to the band ratio, where EY54-18 and H6048 have slightly higher ratios of Li- (at 

3480 cm
-1

) to Al-specific (at 3378 cm
-1

) absorption bands than their counterparts in the same

sedimentary succession. 

The distribution of OH defect contents show significant differences within all three 

sample sets (Figs. 2, 3): (1) in the Paleozoic sandstones from Libya the OH rich fraction (15–

40 wt ppm) is much more abundant in sample W5207 (Cambrian Hasawnah Formation) than 

in the Ordovician sample (H6048); (2) in the Lower Triassic sandstones from Germany the 

OH rich fraction (15–40 wt ppm) is much more abundant in sample EY54-18 (Lower to 

Middle Buntsandstein) than in the Upper Buntsandstein sample (EY54-11) and the OH poor 

fraction (<5 wt ppm) is much more abundant in the Upper Buntsandstein sample (EY54-11); 

(3) in the recent Elbe River sediment the downstream sample EY53-23 is strongly enriched in 

OH poor grains (<5 wt ppm) compared to the upstream sample EY49-29 (thereby all other 

classes appear less abundant). 

Finally, it is worth noting that the average of all samples again clusters around 10 wt 

ppm, representing the global average of crustal quartz (Stalder, 2014). 

4. Discussion

Spectral shapes and OH distributions can be used to evaluate possible scenarios that lead to 

the changes in OH inventory in quartz. Specifically, strong absorption bands at 3470–3480 

cm
-1

 and 3595 cm
-1

 are linked to Li- and B-related OH defects (Müller and Koch-Müller,
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2009; Baron et al., 2015; Frigo et al., 2016) and may hint to quartz from late stage igneous 

sources such as low-T hydrothermal and pegmatitic quartz (Stalder and Neuser, 2013). Based 

on these thoughts, data from the Elbe River samples are in accord with the interpretation that 

the detritus from the Bohemian massif (containing an average of 12 wt ppm defect water as 

observed in sample EY49-29) is mixed with reworked glacial deposits initially derived from 

the Scandinavian shield, which are generally very OH poor (Stalder et al., 2017). There are 

several ways to estimate the mixing ratio of both sources. If an average of 4 wt ppm defect 

water for the glacial deposits (corresponding to dune sands from the southern Baltic Sea, 

Stalder et al., 2017) is assumed and taking sample EY49-29 as “Bohemian endmember” the 

ratio of both sources is 1:1, resulting in an average of 8 wt ppm water, as observed in the Elbe 

River sample from Geesthacht (EY53-23). If we assume that the glacial source was virtually 

OH free, we get a mixing ratio Bohemian:Scandinavian source of 2:1. The latter interpretation 

is supported by the fact that the average IR spectra are identical after rescaling (Fig. 1), 

meaning that the Bohemian signal is just diluted by a zero-signal. A more sophisticated 

deconvolution of the OH defect distributions applying the algorithm of Dunkl and Székely 

(2002) yields three components for each of the two samples (Fig. 4): 0.6  0.2 ppm (5%), 7.7 

 4.8 ppm (66%) and 23.9  8.5 ppm (29%) at Torgau (EY49-29), and 0.9  1.1 ppm (39%), 

4.6  2.4 ppm (30%) and 18.2  9.3 ppm (31%) at Geesthacht (EY53-23). Attributing only the 

<2 ppm components (i.e. virtually OH free) to the Scandinavian source would imply 

admixture of about 1/3 of such grains in the downstream sample at Geesthacht, supporting a 

mixing ratio Bohemian:Scandinavian source of approximately 2:1. Additional attribution of, 

at least, part of the 4.6  2.4 ppm component in the Geesthacht sample to the Scandinavian 

source, which seems plausible according to previous results (Stalder et al., 2017), would push 

the ratio towards 1:1. These ratios suggest a smaller Scandinavian component compared to 

rough estimates based on the heavy mineral and zircon U–Pb data (Führing, 2017). In view of 
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the complex factors controlling heavy mineral assemblages and especially zircon age 

distributions (e.g., Garzanti et al., 2009; Malusa et al., 2016), mixing calculations based on a 

major sediment component like quartz may be more robust than those based on very small 

fractions of the detrital grains, particularly if the mixed sources have strongly different 

contents in accessory minerals. 

Despite a well-documented general change in sedimentary facies, texture and 

composition in the Lower Triassic around the Middle to Upper Buntsandstein transition (e.g., 

Bourquin et al., 2006; Lepper et al., 2013; Meyerink et al., 2017) a significant difference in 

heavy minerals and/or zircon ages has not been detected between the two Buntsandstein 

samples EY54-18 and EY54-11. A fortiori, it is astonishing that the OH defect inventory 

between both samples shows very clear differences (Figs. 2, 3). The total average absorbance 

(Fig. 1) differs nearly by a factor of two and the IR spectra of the OH poorer, younger sample 

(EY54-11) has a lower ratio of Li- to Al-specific bands. The distribution suggests at least 

three different sources, one OH poor (only in EY54-11), one OH rich (only in EY54-18) and 

one common source (Fig. 5). A rough estimate of the relative proportions between these 

different sources is 1:1:2, respectively. The shift towards more OH poor sources along with 

relative increase of Al-specific OH defects for the younger Upper Buntsandstein sample most 

likely points to a higher proportion of metamorphic and/or deeper seated and/or older igneous 

rocks in the source area (Stalder et al., 2017). 

Concerning the Paleozoic sandstones from Libya, the change towards gradual lower 

OH defect contents from the Cambrian (W5207) to the Ordovician (H6048) correlates well 

with the increase of 1-Ga-old zircons interpreted as detritus from the Transgondwana 

supermountain supplied via the Gondwana super-fan system (Meinhold et al., 2013) and older 

sources. However, the difference in OH is not as clear as expected from the change in zircon 

ages, suggesting that either (1) the older sources supplied (related to quartz) more heavy 
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minerals, (2) zircon became enriched relative to quartz during transport over long distances 

because of its higher hardness (3), the difference in OH in quartz of the older sources was not 

well pronounced. 

In summary, results reveal that the OH defect inventory, expressed in the shape of the 

IR spectra, the average total absorbance and the distribution from grain to grain, offer many 

parameters to characterise sedimentary samples, and thus can be used as tool to identify and 

interpret changes in the source region. However, a strong change in OH defects within a given 

succession does not necessarily coincide with strong differences in heavy minerals and/or 

zircon age spectra, underlining the potential as new and complementary tool for provenance 

analysis. 

5. Conclusions

(1) Siliciclastic samples show significant variations with respect to the OH defect inventory in 

quartz grains within a sedimentary succession or spatially evolving sedimentary systems and 

thus may be used as tool to identify changes in the source region. 

(2) Changes in different samples from one succession may or may not reflect the differences 

in heavy minerals and/or zircon age spectra, underlining the potential as new and 

complementary tool for provenance analysis. 

(3) OH defect distributions allow us to estimate mixing relations between different sources in 

modern river systems, which are based on major constituents such as quartz and may thus turn 

out to be more robust than estimates based on accessory minerals. 

(4) Average IR spectra can be used to discriminate contributions of young igneous and old 

metamorphic overprinted material. 
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Table 1. Sample descriptions and OH contents 

Figure captions: 

Figure 1 Average IR spectra (E||no-E||ne) of each sample. Bold spectra are scaled (according 

to the ratio of the average OH contents of the respective sample pair) in order to allow a better 

comparison of the band ratios of the two spectra of one succession. Spectra are normalised to 

1 mm thickness and offset vertically for graphical reasons. 

Figure 2 Histograms showing the OH defect contents in the analysed detrital quartz grains 

arranged in bins of 5 ppm. The black curve indicates a weighed distribution, taking into 

account an error of 2 wt ppm for each single data point > 2 ppm and 1 wt ppm for each data 

point < 2 ppm defect water. Average OH defect contents and number of measured grains are 

displayed in each plot. 



19 

Figure 3 Overview of the OH defect content of all samples as cumulative curves. 

Figure 4 Component identification according to OH defect distribution for samples EY49-29 

(A) and EY53-23 (B) assuming three OH defect components each (algorithm by Dunkl and 

Székely 2002): Results suggest the following component means, standard deviations (s.d.) 

and component percentages: (A) 0.6  0.2 ppm (5%), 7.7  4.8 ppm (66%) and 23.9  8.5 

ppm (29%), (B) 0.9  1.1 ppm (39%), 4.6  2.4 ppm (30%) and 18.2  9.3 ppm (31%). For 

the model fitting all values below 1 ppm have been replaced by simulated values assuming 

normal distribution, mean of 0.5 ppm and s.d. of 1 ppm. 

Figure 5 Decomposition of the OH defect distribution of the two Triassic samples assuming 

three potential sources, one OH poor source (only in EY54-11), one common intermediate 

source, and one OH rich source (only in EY54-18). Distribution of sample EY54-11 (sum of 

white and grey bars) and EY54-18 (sum of grey and black bars) results in a relative 

proportion of of 1:2:1, respectively. See Fig. 2 for comparison. 
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Table 1: Sample descriptions and OH-contents 

Sample 

Sedimen

tation Locality 

Dept

h 

Latitu

de 

Longit

ude 

N 

(grai

ns) 

OH content (wt 

ppm water) 1 Reference 

Period average range 

W52

07 

qtz-

arenite 

Cambria

n 

Central 

DEG/Libya 

25°32.

22' N 

16°35

.89' E 97 11 0-60 

Morton et 

al. (2011) 

H60

48 

qtz-

arenite 

Ordovici

an 

Central 

DEG/Libya 

25°38.

54' N 

16°34

.25' E 64 7 0-30 

Morton et 

al. (2011) 

EY5

4-18 

lithic 

subarko

se 

Triassic 

(su-sm) 

Ensingen/G

ermany 

672.

5 m 

48°58.

5' N 

8°56.

2' E 84 17 0-40 

Schade 

(2018) 

EY5

4-11 

lithic 

subarko

se 

Triassic 

(so) 

Ensingen/G

ermany 

426.

0 m 

48°58.

5' N 

8°56.

2' E 128 9 0-45 

Schade 

(2018) 

EY4

9-29 

river 

sand recent 

Torgau/Ger

many 

51°33.

1' N 

13°01

.2' E 88 12 0-45 

Aschoff 

(2017) 

EY5

3-23 

river 

sand recent 

Geesthacht

/Germany 

53°25.

2' N 

10°16

.2' E 82 8 0-65 

Führing 

(2017) 
1 calculated using calibration of Libowitzky and Rossman (1997) 

so = Upper Buntsandstein, sm = Middle Buntsandstein, su = Lower Buntsandstein 
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