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ABSTRACT
We present the first asteroseismic results for δ Scuti and γ Doradus stars observed in
Sectors 1 and 2 of the TESS mission. We utilise the 2-min cadence TESS data for a
sample of 117 stars to classify their behaviour regarding variability and place them in
the Hertzsprung-Russell diagram using Gaia DR2 data. Included within our sample
are the eponymous members of two pulsator classes, γ Doradus and SX Phoenicis.
Our sample of pulsating intermediate-mass stars observed by TESS also allows us to
confront theoretical models of pulsation driving in the classical instability strip for the
first time and show that mixing processes in the outer envelope play an important
role. We derive an empirical estimate of 74% for the relative amplitude suppression
factor as a result of the redder TESS passband compared to the Kepler mission using
a pulsating eclipsing binary system. Furthermore, our sample contains many high-
frequency pulsators, allowing us to probe the frequency variability of hot young δ Scuti
stars, which were lacking in the Kepler mission data set, and identify promising targets
for future asteroseismic modelling. The TESS data also allow us to refine the stellar
parameters of SX Phoenicis, which is believed to be a blue straggler.

Key words: asteroseismology – techniques: photometric: TESS – binaries: chemically
peculiar – stars: interiors – stars: variables: δ Scuti: variables: γ Doradus
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1 INTRODUCTION

One of the important and long-standing goals within astron-
omy is to constrain the largely unknown interior physics of
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2 V. Antoci et al.

stars across the Hertzsprung–Russell (HR) diagram, and ul-
timately improve our understanding of stellar evolution. In
particular, the interior rotation, mixing and angular momen-
tum profiles represent significant uncertainties in theoretical
models of stellar structure. All these uncertainties propagate
from the main-sequence into later stages as these strongly in-
fluence the evolution of a star (Maeder 2009; Meynet et al.
2013; Aerts et al. 2018a). The only observational method
for determining these unknowns in models is asteroseismol-
ogy, which uses stellar oscillations to probe the sub-surface
physics of stars (Aerts et al. 2010). Asteroseismology allows
us to test internal stellar physics across the entire HR dia-
gram, since different classes of pulsating stars exist at various
stages of stellar evolution.

Stellar pulsations in intermediate-mass stars are prin-
cipally of two main types, characterised by their respective
restoring mechanisms: pressure (p) modes, where pressure
forces restore perturbations, and gravity (g) modes, where
buoyancy does (Aerts et al. 2010). However, for moderately
and rapidly rotating stars, the Coriolis force is also impor-
tant as a restoring force, leading to gravito-inertial modes, or
Rossby (r) modes (Saio et al. 2018a). Typically p modes are
most sensitive to the stellar envelope whereas g modes probe
the near-core region, with pulsations described by spherical
harmonics such that each p or g mode has a radial order, n,
angular degree, `, and azimuthal order, m.

In the last two decades, space telescopes such as WIRE
(Buzasi et al. 2005), MOST (Matthews 2007), CoRoT (Au-
vergne et al. 2009), Kepler (Koch et al. 2010) and BRITE
(Weiss et al. 2014) have provided the necessary continu-
ous, long-term and high-precision time series photometry
for the identification of large numbers of individual pulsa-
tion modes in single stars. Hence asteroseismology has been
successfully applied to hundreds of solar-type and tens of
thousands of red giant stars (Chaplin & Miglio 2013), as
well as dozens of pulsating white dwarfs and intermediate-
mass main-sequence stars (e.g., Aerts et al. 2017, 2018a; Li
et al. 2019a).

Among the intermediate-mass main-sequence A and F
stars, there are different pulsator classes, such as the δ Sct,
γ Dor and rapidly oscillating Ap (roAp) stars. These classes
are located at the intersection of the main-sequence and the
classical instability strip in the HR diagram, and exhibit
p modes and/or g modes pulsations (Breger 2000; Aerts
et al. 2010). The high-frequency (ν & 4 d−1), low-radial-
order p modes in δ Sct stars1 are excited by the opac-
ity mechanism operating in the He ii ionisation zone, as
well as by turbulent pressure, which has also been shown
to be responsible for excitation of moderate radial order
p modes within the classical instability strip (Antoci et al.
2014; Xiong et al. 2016). On the other hand, low-frequency
(ν . 4 d−1) g modes in γ Dor stars are excited by a con-
vective flux modulation mechanism (Guzik et al. 2000; Gri-
gahcène et al. 2010; Dupret et al. 2005). The instability re-
gions of the δ Sct and γ Dor stars partially overlap in the HR
diagram (Dupret et al. 2005), and include stars on the pre-

1 The exact boundary between p and g modes depends on the

stellar parameters, and especially the rotation of the star.

main-sequence, the main-sequence and post-main-sequence
with typically masses in the range of 1.2 6 M 6 2.5 M�2.

Space telescopes have provided continuous, long-term
light curves of tens of thousands of pulsating stars. In par-
ticular, Kepler heralded a large and important step forward
for asteroseismology of δ Sct and γ Dor stars, since its 4-
yr light curves provided unprecedented frequency resolution
and duty cycle, both of which are necessary for accurate
mode identification. An unexpected discovery was that many
pulsating A and F stars are hybrid pulsators exhibiting both
p and g modes (Grigahcène et al. 2010; Uytterhoeven et al.
2011; Balona & Dziembowski 2011), although pure pulsators
of both types do exist (see e.g. Van Reeth et al. 2015a; Bow-
man 2017; Barceló Forteza et al. 2018; Li et al. 2019a). The
high incidence of hybrid stars remains unexplained, particu-
larly if a single excitation mechanism should responsible for
both the p and g modes in hybrid stars (Balona et al. 2015;
Xiong et al. 2016). This incomplete understanding of pul-
sational excitation in A and F stars is further complicated
by the observation that a significant fraction of hybrids, γ
Dor and δ Sct stars are hotter than their theoretically pre-
dicted instability regions, and that constant stars also exist
within the δ Sct instability domain (Bowman & Kurtz 2018;
Murphy et al. 2019).

A major advance in asteroseismology has been the char-
acterisation of internal rotation profiles of dozens of A and F
stars using their g mode pulsations (Van Reeth et al. 2016;
Aerts et al. 2017; Li et al. 2019a). From these studies, it
has been inferred that a significant fraction of intermediate-
mass main-sequence stars have, at first sight, near-uniform
radial rotation profiles (e.g., Kurtz et al. 2014; Saio et al.
2015; Van Reeth et al. 2016, 2018; Ouazzani et al. 2017;
Christophe et al. 2018; Li et al. 2019a,b), however in order
to draw a final conclusion detailed studies in the manner of,
e.g., Ouazzani et al. (2012) and Hatta et al. (2019) are re-
quired. Furthermore, the large number of excited g modes in
these stars allow the physics of convective core overshooting
and chemical mixing to be probed, as well as accurate de-
terminations of stellar masses and ages using forward seis-
mic modelling (Schmid & Aerts 2016; Aerts et al. 2018b;
Mombarg et al. 2019). These studies clearly demonstrate
the asteroseismic potential of high quality space-based ob-
servations of intermediate-mass stars.

Although the pulsation mode density is typically high in
δ Sct stars hampering mode identification, some stars have
been shown to show regularities in their spectra consistent
with the so-called large frequency separation which may aid
in mode identification and modelling of p modes (see, e.g.,
Garćıa Hernández et al. 2015, 2017; Paparó et al. 2016a,b;
Barceló Forteza et al. 2017). The large frequency separation
is the separation between consecutive radial order modes of
the same degree and is a well-known quantity in the context
of Sun and Sun-like stars (Aerts et al. 2010). When using
the same quantity for δ Sct stars, special care must be taken
as these stars typically pulsate in lower radial order modes,
where the large frequency separation deviates from the one
measured at higher radial orders. Nevertheless, it was shown
that these patterns are also proportional to the mean density

2 In the case of low metallicity the mass can be lower than 1.2 M�,

see, e,g, Sec. 6.3
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of the stars (Suárez et al. 2014) which was observationally
confirmed (Garćıa Hernández et al. 2015, 2017).

More recently, the successful launch of TESS and the
delivery of the first TESS mission data (Ricker et al. 2014,
2015), which are in the southern ecliptic hemisphere, provide
new insight into pulsation and rotation in intermediate-mass
stars (e.g., Cunha et al. 2019; Sikora et al. 2019). The pri-
mary mission of TESS follows the groundwork of the Kepler
mission, and aims to detect planetary transits in the bright-
est stars across the sky. TESS data cover almost the entire
sky (|b| > 6 deg) at a cadence of 30 min and are publicly
available to the community in the form of full frame images.
However, a sub-sample of stars were selected to be observed
at a 2-min cadence in each TESS observing sector and light
curves of these stars are being delivered to the community
a few months after observations have been obtained. There-
fore, TESS provides a unique homogenous data set to test
and constrain much of the currently unknown physics inside
main-sequence A and F stars.

In this paper, we demonstrate the asteroseismic poten-
tial of TESS for the study of intermediate-mass stars, specif-
ically for δ Sct and γ Dor stars. We show a selection of differ-
ent types of pulsator classes, including some of the class pro-
totypes, and the significant advantages and inference that
can be achieved using TESS mission data. In addition, we
show how theoretical models regarding the excitation of pul-
sations in A and F stars can be tested. In the following
subsections, we briefly outline the different pulsator classes
within the A and F stars.

2 THE PULSATION ZOO OF A AND F STARS

It is estimated that approximately half of the stars within
the classical instability strip are pulsating at the µmag pho-
tometric precision provided by space telescopes (Balona &
Dziembowski 2011; Murphy et al. 2019). It remains a mys-
tery why the other half do not show pulsations, especially
at that precision. Among the intermediate-mass stars there
is a veritable zoo of different pulsator classes. The hetero-
geneity of variability in these stars allows us to test different
physical phenomena, such as rotation, diffusion, and convec-
tion. Obviously, this is because the differences in observed
pulsation characteristics are caused by differences in stellar
structure, evolutionary stage and/or metallicity. Here, we
briefly discuss the zoo of pulsating A and F stars.

2.1 Ap and Am stars

Stars within the δ Sct instability strip are predicted to pul-
sate in p modes excited by the opacity mechanism operating
in the He II ionisation zone (Cox 1963; Aerts et al. 2010)
as well as by turbulent pressure (e.g., Antoci et al. 2014).
However, whether a star is unstable to pulsation strongly de-
pends on mixing processes, such as rotation or the presence
of a strong magnetic field, which can suppress the excitation
of heat-driven (opacity mechanism) pulsation modes.

Slow rotation in intermediate-mass stars is typically
caused by one of two mechanisms: (i) magnetic braking
by a large-scale magnetic field; or (ii) tidal braking due to
tidal forces caused by a close companion. Approximately
10 per cent of A-type stars are observed to have a strong,

large-scale magnetic field, which is likely of fossil origin and
causes magnetic braking during the pre-main-sequence stage
(Stȩpień 2000). The slow rotation and strong magnetic field
allow atomic diffusion – radiative levitation and gravita-
tional settling of different ions – to give rise to surface spec-
tral peculiarities (Abt 2000), which define the sub-classes of
the magnetic Ap stars, and suppress the excitation of low
radial-order p modes by the opacity mechanism (Saio 2005).
However, a small fraction of these magnetic Ap stars pulsate
in high-radial order modes; these are the rapidly oscillating
Ap (roAp) stars (Kurtz 1982). The excitation of low-degree,
high-radial order magneto-acoustic modes in roAp stars pro-
vides the opportunity to study the effects of pulsation and
rotation in the presence of strong magnetic fields (Cunha
& Gough 2000; Cunha 2001; Bigot & Dziembowski 2002;
Cunha 2006; Saio & Gautschy 2004; Saio 2005). We refer
the reader to Cunha et al. (2019) for the first results on
roAp stars based on TESS data.

The second main sub-class of slowly rotating A and F
stars are the non-magnetic Am stars (Conti 1970; Breger
1970; Kurtz 1978; Aurière et al. 2010). The presence of a
close companion causes tidal braking such that atomic dif-
fusion and gravitational settling separate chemical elements
in the stellar envelope, deplete helium from the excitation
region and inhibit the efficiency of pulsational excitation
(Michaud 1970; Baglin et al. 1973; Turcotte et al. 2000).
However, recent studies focussed on the incidence of pulsa-
tions in Am stars have found a non-negligible fraction pulsat-
ing in p modes (Smalley et al. 2011, 2017) with a significant
amount of excitation connected to the turbulent pressure in
the hydrogen rather than the He II ionisation layer (Antoci
et al. 2014; Smalley et al. 2017). We present our analysis of
TESS photometry of pulsating Am stars in Section 5.

2.2 Metal-poor stars

Among the A-type pulsators are two classes of metal-poor
stars: the λ Boo stars and SX Phe stars. The λ Boo stars are
a spectroscopically defined class in which refractory chemical
elements – those with high condensation temperatures in
pre-stellar disks – are underabundant by 0.5 to 2 dex, but
volatile elements such as C and O show solar abundance
(Heiter 2002; Andrievsky et al. 2002). The peculiarity of
these stars is believed to originate from selective accretion
of gas with little dust, but the specifics remain uncertain
(Venn & Lambert 1990; King 1994; Kama et al. 2015), and
it is not clear whether the peculiarity is restricted to surface
layers only. Approximately 2 per cent of A stars are λ Boo
stars (Gray & Corbally 1998), for which a catalogue has been
compiled by Murphy et al. (2015). At present, there is no
known difference between the pulsational characteristics of
λ Boo δ Sct stars and ‘normal’ δ Sct stars.

SX Phe stars, on the other hand, are not a spectroscop-
ically defined class but comprise Population II δ Sct stars,
though not all of them are metal poor (Nemec et al. 2017).
Many SX Phe stars are identified as blue stragglers in clus-
ters, while those in the field are often identified kinemati-
cally. The dominant pulsations in SX Phe stars are typically
high-amplitude radial modes (Nemec & Mateo 1990; Tem-
pleton et al. 2002; Murphy et al. 2013) but can also have
low amplitudes (Kurtz et al. 2014). We analyse TESS data
for SX Phe itself in section 6.3.

MNRAS 000, 1–32 (2019)
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2.3 High-amplitude δ Sct stars

High-amplitude δ Scuti stars (HADS) are usually recognized
by their large amplitude, non-sinusoidal light curves and
small rotational velocities, but their most essential property
is the dominant presence of the fundamental and/or first
overtone radial mode(s) (McNamara 2000; Breger 2000). In
the HR diagram, ground-based observations indicated that
HADS occupy a narrow strip in the centre of δ Sct insta-
bility region, perhaps because the efficiency of mode exci-
tation is maximised in this region (Petersen & Christensen-
Dalsgaard 1996). However, space photometry revealed that
some HADS can be found throughout the entire instability
strip (Balona 2016).

Some studies have investigated whether the proper-
ties of HADS could be explained by them being in a
post-main-sequence stage of stellar evolution (e.g. Petersen
& Christensen-Dalsgaard 1996; Bowman 2017), since they
obey a period-luminosity relation which allows an indepen-
dent distance determination for some stellar systems (e.g.,
Nemec et al. 1994; McNamara et al. 2007; Cohen & Saraje-
dini 2012; Kopacki 2015; Ziaali et al. 2019), such as globular
clusters in which SX Phe stars are abundant. However, there
remains no clear consensus on a physical difference between
HADS and their lower amplitude δ Sct counterparts. Im-
portant remaining questions concerning HADS include: the
excitation (e.g., Poretti et al. 2011); the relation between the
single and double-mode HADS and the stellar parameters;
and whether the pulsational properties of SX Phe stars differ
from those of Population I HADS. The all-sky TESS sam-
ple of HADS will be particularly useful for addressing these
questions and will extend the study of a handful of Kepler
stars, particularly the seismic modelling of HADS such as
those by Breger et al. (2011) and Balona et al. (2012).

The TESS sample of HADS and SX Phe stars in Sectors
1 and 2 includes at least 19 stars proposed for 2-min cadence
observations based on a review of the ASAS-3 (Pojmański
1997, 2002) database (Pigulski & Kotysz, in preparation).
The sample includes several known HADS, e.g., ZZ Mic,
RS Gru, BS Aqr and SX Phe itself (see Sect. 6.3). An exam-
ple of a known HADS star observed by TESS, HD 224852
(TIC 355687188 ), is presented in detail in Sect. 6.6.

2.4 Pre-main-sequence stars

Intermediate-mass pre-main-sequence stars within the insta-
bility regions can become unstable to p and g-modes dur-
ing their evolution from the birthline to the zero-age main-
sequence (ZAMS). Pre-main-sequence stars differ from their
main-sequence and post main-sequence analogues of similar
mass because of their interior structure (Marconi & Palla
1998). Since pulsation modes carry information about the
inner parts of stars and show a different pattern for stars
on the pre- or the post-main-sequence phases (Suran et al.
2001), it is possible to use asteroseismology to constrain the
evolutionary stage of a star (Guenther et al. 2007). This is
important because the evolutionary tracks for stars before
and after the ZAMS intersect in this part of the HR diagram
making it impossible to constrain a star’s evolutionary stage
from only its effective temperature and luminosity.

In general, without asteroseismology, the pre-main-
sequence stage of a star in this region of the HR diagram

can only be assessed using certain observational features as
indicators. Such indicators for young stars are emission lines
in the spectra, infrared or ultraviolet excess, X-ray fluxes,
and membership of a young open cluster or a star-forming
region, i.e., younger than approximately 10 million years
(Sloan et al. 2004). However, some of these features can also
be misleading, since the comparatively old, low-mass asymp-
totic giant branch (AGB) and post-AGB stars show similar
observational properties and populate the same region in the
HR diagram as young stellar objects (Kamath et al. 2014).
Therefore, special care has to be taken when investigating
the potential early evolutionary stage of a given star.

Currently, about 80 pre-main-sequence stars are known
to be p- and g-mode pulsators of three different types: Slowly
Pulsating B (SPB) stars (Gruber et al. 2012), δ Sct stars
(e.g., Zwintz et al. 2014) and γ Dor stars (Zwintz et al. 2013).
Based on their basic properties, such as spectral types and
effective temperature, TIC 150394126 and TIC 382551468
are two candidates for δ Sct and γ Dor pulsations. The for-
mer has an infrared excesse (Sloan et al. 2004) and the latter
is potentially an Herbig Ae/Be type star, identifying them as
likely being in their pre-main-sequence evolutionary stages.
We analyse these stars in Section 6.5.

3 FREQUENCY ANALYSES OF TESS DATA

The TESS data analysed in this work are the 2-min ‘Simple
Aperture Photometry’ (SAP) light curves provided by the
TESS Science Team, which are publicly available from the
Mikulski Archive for Space Telescopes (MAST)3. As part of
the framework of the asteroseismic working group on pulsat-
ing stars of spectral type A and F within the TESS Astero-
seismic Science Consortium (TASC)4, 117 known pulsating
stars were allocated observing slots at a 2-min cadence by
the TESS Mission in Sectors 1 and 2 of its 1-yr observing
campaign in the southern ecliptic hemisphere. There were
more δ Sct stars observed in the first two sectors, but for this
study we decided to concentrate on those that were allocated
to the TASC working group on A and F stars (TASC WG
4). Because g modes have long periods, we did not specif-
ically include known γ Dor stars in our 2-min target list,
since these stars will be observed with a cadence of 30 min,
which is sufficient to determine their frequencies. We dis-
cuss one star that was not observed during Sectors 1 and 2
later on. This target is the eponymous star γ Doradus and
is described in Section 6.7.

We analysed the TESS light curves of our sample in dif-
ferent independent groups, using various frequency extrac-
tion software routines. Commonly used programs to perform
frequency analysis of light curves are PERIOD04 (Lenz &
Breger 2004) and SigSpec (Reegen 2007), while the KU Leu-
ven and Aarhus University ECHO (Extraction of CoHer-
ent Oscillations) pipelines were used also. We discuss these
pipelines in Sections 3.1 and 3.2, and conclude that they
yield compatible results for peaks in the amplitude spec-
trum with signal-to-noise (S/N) > 4. A comparison of the
significant frequencies identified in two stars by the Leuven
and Aarhus pipelines is shown in Fig. 1. We plan to compile

3 https://archive.stsci.edu 4 https://tasoc.dk
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Figure 1. Comparison between the frequency extraction
pipelines from Leuven (blue squares) and Aarhus (red circles)

showing good agreement between the two different pipelines. The

amplitude values are offset for clarity. Upper panel: HD 210111
(TIC 229059574). Lower Panel: TX Ret (TIC 38587180).

a catalogue of pulsating A and F stars observed by TESS at
the 2-min cadence in the entire southern ecliptic hemisphere,
which will include all significant pulsation frequencies and
identification of their combination frequencies.

3.1 The KU Leuven pipeline

The KU Leuven iterative pre-whitening pipeline was used to
extract significant periodic variability in time series data. It
uses Lomb-Scargle (Scargle 1982) periodogram and multi-
frequency non-linear least-squares optimisation to extract
significant frequencies and their associated amplitudes and
phases. Uncertainties on frequencies, amplitudes and phases
are calculated according to Montgomery & O’Donoghue
(1999), and corrected for the correlated nature of over-
sampled time series data following Schwarzenberg-Czerny
(2003). The pipeline was developed by Degroote et al.
(2009), and improved by Pápics et al. (2012) and Van Reeth
et al. (2015b); detailed discussions and applications to pul-
sating stars observed by CoRoT and Kepler were provided
by these studies.

With this pipeline, peaks in the amplitude spectrum can
be extracted in order of decreasing amplitude or decreasing
S/N, as specified by the user. Normally, a lower limit of S/N
> 4 (Breger et al. 1993) is chosen, where the noise is calcu-
lated as the average amplitude in a symmetric 1-d−1 win-
dow in the residual periodogram after pre-whitening. From
extensive testing, it has been found that using a window
around the extracted peak for calculating a local noise esti-
mate (and hence the S/N) is more pragmatic and reliable for
iterative pre-whitening than using a p-value (Pápics et al.
2012). Otherwise, hundreds or even thousands of individ-
ual frequencies can be found to be statistically significant,
yet with an increasing probability of an artificial frequency
having been injected during the prewhitening process into
a light curve when the number of iterations becomes large.
Typically, this limit is a few hundred frequency extraction

iterations for a 4-yr Kepler light curve of a δ Sct or γ Dor
star, but this depends on the quality and lengths of the data,
and assumes that peaks are coherent and so varies from star
to star.

3.2 ECHO

The ECHO program (Extraction of CoHerent Oscillations)
was developed at Aarhus University. It extracts coherent
signals from photometric light curves using an optimized,
iterative pre-whitening technique. Coherent signals are it-
eratively identified using a Lomb-Scargle periodogram that
is calculated using the Press & Rybicki (1989) algorithm,
which allows a fast computation for unevenly sampled data.
The frequency, amplitude and phase of an oscillation is
computed using the algorithm described by Frandsen et al.
(1995). The statistical uncertainties on the amplitudes, fre-
quencies and phases are calculated according to Montgomery
& O’Donoghue (1999). The statistical significances of the
extracted signals are estimated from the periodogram using
Scargle’s significance criteron (Scargle 1982). The extracted
signals are continuously optimized at each iteration, taking
into account the influence of one signal on another. This is
done by reinserting previously extracted signals back into
the pre-whitened light curve and redetermining the maxi-
mum amplitude of the peak. This may be slightly differ-
ent from the previously found value, due to the influence of
neighbouring peaks (Handberg 2013).

Using simulated light curves, Balona (2014) showed that
iterative pre-whitening can lead to a very large number of
false detections. This is because imperfect subtraction of sig-
nals will inject new, statistically significant signals into the
light curve. For this reason, the reliability of each extracted
oscillation is determined by comparing the amplitude of an
extracted signal Aex

f
to the corresponding amplitude Aog

f
in

the unaltered, original light curve. If the amplitudes do not
agree within a certain limit α, such that

α <
Aex

f

Aog
f

<
1
α
, (1)

the extracted signal is rejected. From simulated light curves,
we found that α = 0.75 is a suitable value, keeping the num-
ber of false detections to a minimum while still extracting
most of the real signals present in the light curve. These sim-
ulations were based on 4 years of Kepler data. For shorter
observations, our tests showed that a more conservative fac-
tor of α = 0.8 is required. This method is similar to that
used by Van Reeth et al. (2015b), although they started
with α = 0.5 and allowed it to vary during pre-whitening.
In our use of the Leuven and ECHO pipelines, we enforced
a maximum of number of 100 frequencies that could be ex-
tracted, although it was not typically needed since peaks
became insignificant before this criterion was met. This is
because the pre-whitening of so many peaks can introduce
additional signals, and make the results unreliable.

In addition, we must be aware that observations of
‘only’ 27-56 days may not sufficient to resolve closely-spaced
frequencies clearly known to be present in many δ Sct and
γ Dor stars. Kallinger et al. (2017) have gone beyond the
formal frequency resolution of 1/∆T in their frequency anal-

MNRAS 000, 1–32 (2019)
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ysis5, using a probabilistic approach. We, however, prefer to
use the traditional Rayleigh criterion because extracting un-
resolved frequencies, can lead to over-interpreting the data
and wrong input for asteroseismic modelling. We recommend
using formally unresolved peaks with extreme caution, and
only based on careful testing and the use of additional inde-
pendent information (e.g., for roAp stars, where an assump-
tion of the oblique pulsator model requires exact splitting
in the rotational multiplets). The statistical significance of
extracted peaks is an important topic that goes beyond the
scope of this paper as we are only showing a first view into
TESS δ Sct and γ Dor stars. At this stage we are expanding
ECHO to also include the ’traditional’ SNR test.

4 TARGET STARS

In this section, we present the details of all TASC WG4
A and F stars that are not bona fide or suspected Ap or
roAp stars observed in a 2-min cadence in Sectors 1 and 2.
The variability type for each star was identified, based on
TESS data, by visual inspection of the light curves and their
Fourier spectra. Spectroscopic and photometric parameters
from the literature for all the stars, where available, are as-
sembled in Table A1 in the appendices, including claimed
detections of binarity. Note that here we do not evaluate
the robustness of these literature values and leave it to the
reader to investigate these in detail.

In Table 2, we list the newly derived effective tempera-
tures using the spectral energy distribution method (SED)
(see Section 4.1), new spectroscopically derived parameters
(see Section 4.2), the dereddened luminosities from Gaia and
Hipparcos data (Section 4.3), and the TESS stellar variabil-
ity type. The latter is one of the following categories: (1)
δ Sct star: ν > 4 d−1; (2) γ Dor star: ν 6 4 d−1; (3) hy-
brid star: when frequencies were detected in the γ Dor and
the δ Sct frequency ranges. Note that in many cases the
peaks in the γ Dor range were not resolved and more data
are required to fully characterise the frequencies. (4) bina-
rity: eclipses and/or ellipsoidal modulation were detected;
(5) rotational variable (rot): variability is consistent with
rotational modulation of spotted stellar surfaces. (6) no de-
tection: no significant variability was detected. We also note
that ν Pic (TIC 260416268) was observed during sectors 1
and 2 but the amplitude differs significantly between the
sectors suggesting a problem in the data extraction.

5 where ∆T is the lengths of the data set.
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Table 1: Stellar parameters for the TESS δ Sct and γ Dor pulsators observed at 2-min cadence during the first two pointings
(Sectors 1 and 2) in the ecliptic Southern hemisphere. The columns indicate: the TESS Input Catalogue (TIC) number, the
TESS magnitude, an alternative identifier of the star, spectroscopic (Spec.) and photometric (Phot) effective temperatures
and log g values and their associated uncertainties from literature respectively. The reference is indicated next to each value.
In addition, we list the projected rotational velocity and binarity status as available in literature. The full table is available
in the online version in the appendix.

TIC TESS alternative Teff[K] σTeff Teff[K] σTeff log g σlog g log g σlog g v sin i σvsini binarity

mag identifier Spec. Spec. Phot. Phot. Spec. Spec. Phot. Phot. [km s−1] [km s−1]

9632550 9.06 BS Aqr 72451 751 - - 3.821 0.121 - - 231 - -

12470841 8.44 HD 923 - - 7832 2 - - - - - - - -

12784216 8.92 HD 213125 - - 65193 1783 - - 4.033 0.263 - - -

12974182 6.78 HD 218003 74714 954 75845 2085 3.864 0.184 4.055 - - - -
... ... ... ... ... ... ... ... ... ... ... ... ... ...

Table 2: Stellar parameters and variability type of the 2-min cadence TESS δ Scuti and γ Dor pulsators determined in
this work. In this table we list the TESS Input Catalogue (TIC) name, an alternative name for each star, the effective
temperatures derived using the SED method (Section 4.1), the luminosities derived based on the Gaia and when available
Hipparcos parallaxes and the respective uncertainties (Section 4.3). In column 9 we describe the variability type determined
from the TESS data. The question mark means that the variability type is uncertain (e.g. due to unresolved peaks). HAGD
denotes a High Amplitude γ Dor star. The last column describes the chemical peculiarity as described in Renson & Manfroid
(2009). The full table is available in the online version in the appendix.

TIC alternative Teff [K] σTeff log(L/L�) σ log(L/L�) log(L/L�) σ log(L/L�) variability chem.
identifier SED Gaia HIPP. type pec.

9632550 BS Aqr 6760 140 1.62 0.03 1.96 0.94 HADS
12470841 HD 923 8090 230 1.64 0.02 2.01 0.43 one large peak only
12784216 HD 213125 6390 120 1.14 0.01 δ Sct/hybrid?
12974182 HD 218003 7670 170 1.103 0.008 1.08 0.04 rot?/binary?

... ... ... ... ... ... ... ... ... ...

1 Kunder et al. (2017)
2 McDonald et al. (2012)
3 Huber et al. (2016)
4 Stevens et al. (2017)
5 McDonald et al. (2017)

M
N

R
A

S
0
0
0

,
1
–
3
2

(2
0
1
9
)



8 V. Antoci et al.

4.1 Effective temperatures derived from Spectral
Energy Distributions

Effective temperature can be determined from the stellar
spectral energy distribution (SED). For our target stars
these were constructed from literature photometry, using,
B and V magnitudes from either Tycho (Hoeg et al. 1997)
or APASS9 (Henden et al. 2015), USNO-B1 R magnitudes
(Monet et al. 2003), J, H and K from 2MASS (Skrutskie
et al. 2006), supplemented with CMC14 r ′ (Evans et al.
2002) and APASS9 g′, r ′, i′ photometry.

Stellar energy distributions can be significantly affected
by interstellar reddening, which was calculated as described
in Section 4.3 The SEDs were de-reddened using the analyt-
ical extinction fit of (Howarth 1983). The stellar Teff values
were determined by fitting solar-composition Kurucz (1993)
model fluxes to the de-reddening SEDs. The model fluxes
were convolved with photometric filter response functions. A
weighted Levenberg-Marquardt non-linear least-squares fit-
ting procedure was used to find the solution that minimized
the difference between the observed and model fluxes. Since
log g is poorly constrained by our SEDs, we fixed log g = 4.0
for all the fits. The uncertainties in Teff includes the formal
least-squares error and adopted uncertainties in E(B −V) of
±0.02 and [M/H] of ±0.5 added in quadrature.

4.2 New spectroscopic determinations of Teff
based on archival data

Spectroscopic data were taken from the ESO archive6. We
used medium and high signal-to-noise ratio (> 65) spectra
from FEROS (Fiber-fed Extended Range Optical Spectro-
graph; R∼48000), HARPS (High Accuracy Radial velocity
Planet Searcher, R∼115000), and UVES (Ultraviolet and Vi-
sual Echelle Spectrograph, R∼65000). Observational details
are given in Table 3.

We applied two methods to derive spectroscopic param-
eters for the 14 stars that had available archival data. For
the first method we used, the hydrostatic, plane-parallel line-
blanketed, local thermodynamic equilibrium ATLAS9 model
atmospheres (Kurucz 1993). The synthetic spectra were gen-
erated by using the SYNTHE code (Kurucz & Avrett 1981).
The projected rotational velocities, v sin i, were calculated by
fitting the profiles of non-blended metal lines (Gray 2008).
The Hβ lines were used to derive Teff by considering the min-
imum difference between the synthetic and observed spectra.
In this analysis, a solar metallicity and the obtained v sin i
values were fixed. In addition, we assumed log g = 4.0 (dex).
This was done because the hydrogen lines are not sensitive
to log g for stars with Teff 6 8000 K (Heiter et al. 2002). Our
results are listed in Table 4, with 1σ uncertainties.

In addition, the Grid Search in Stellar Parameters
(GSSP; Tkachenko (2015)) software package was used as an
alternative method for determining the atmospheric param-
eters of our stars. GSSP is a multi-purpose spectrum anal-
ysis tool that is designed for precision spectrum analysis of
single and binary stars. As the name suggests, the method
is based on a grid-search in 6-D parameter space (metal-
licity [M/H], Teff , log g, micro- (vmicro) and macro-turbulent
(vmacro) velocities, and v sin i) utilising atmospheric models

6 http://archive.eso.org/cms.html

Table 3. Spectroscopic data.

TIC alternative Instrument Observation S/N Nr. of
name spectra

9632550 BS Aqr FEROS 2007 July 200 4
32197339 HD 210139 HARPS 2005 July 105 11

38587180 TX Ret HARPS 2011 Dec. 270 1

52258534 BG Hyi HARPS 2011 July 125 2
139825582 CF Ind HARPS 2011 July 190 1

183595451 AI Scl UVES 2001 Dec. 280 1

224285325 SX Phe FEROS 2007 June 330 6
229154157 HD 11667 HARPS 2006 Nov. 65 2

253917376 UV PsA HARPS 2011 July 150 1

265566844 BX Ind HARPS 2011 July 125 1
303584611 BS Scl HARPS 2011 July 205 2

355687188 HD 224852 FEROS 2007 June 100 8
382551468 CD-53 251 HARPS 2008 Nov. 65 28

394015973 BE Ind HARPS 2011 July 150 1

and synthetic spectra. Each synthetic spectrum in a grid
is compared to the normalised observed spectrum of a star
with the chi-square (χ2) merit function being used to judge
the goodness of fit. Parameter errors are computed from χ2

statistics by projecting all grid points onto each individual
parameter so that correlations are taken into account. GSSP
employs the SynthV radiative transfer code (Tsymbal 1996)
for calculation of synthetic spectra and LLmodels software
package (Shulyak et al. 2004) for computation of atmosphere
models. Both codes operate under the assumption of local
thermodynamical equilibrium and allow for extra function-
ality such as vertical stratification of elemental abundances
in the atmosphere of a star. The log g value is not well con-
strained in the temperature range in question, which is the
reason for fixing it to 4.0 dex (as was also done in the previ-
ous method). This is because the hydrogen Balmer lines are
largely insensitive to changes in the surface gravity in this
particular temperature regime, while significant broadening
of metal lines and correlations of log g with [M/H] and vmicro
results in typical uncertainties as large as 0.3–0.5 dex.

The photometric and spectroscopic effective tempera-
tures determined here typically agree within the uncertain-
ties. There are few exceptions all of which are either (spec-
troscopic) binaries or HADS. For the latter the observed Teff
depends on the pulsation cycle (see Sec. 6.3 for a discussion).

4.3 Luminosities derived from the Gaia parallaxes

We calculated the absolute magnitude and luminosity for
each target (see Table 2) using the parallaxes from both the
re-reduced Hipparcos data (van Leeuwen 2007) and Gaia
DR2 (Lindegren et al. 2016). This was done to check for
biases in our parameters, especially for nearby and bright
stars. All but two stars from our sample (HD 4125 and α Pic)
have Gaia DR2 parallaxes, but only 65 stars have Hipparcos
parallaxes including HD 4125 and α Pic.

To estimate the total interstellar extinction, we used
several published reddening maps (Arenou et al. 2018; Chen
et al. 1998; Schlegel et al. 1998; Drimmel et al. 2003; Green
et al. 2015, 2018). The distances and their uncertainties were
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Table 4. Spectroscopic parameters determined using two different methods as described in detail in Section 4.2. In columns three and
four we list the Teff determined from the hydrogen lines and GSSP methods, respectively. The parameters agree within their uncertainties.

The v sin i values were also calculated by two different teams, and agree well within the error bars (here we chose to display the values

determined with the GSSP method). The metallicity and vmicro were determined using the GSSP code. In the last column LPV stands
for line profile variations. The asymmetries observed in the Hβ line in HD 224852 are likely due to the data extraction pipeline.

TIC alternative Teff [K] Teff [K] v sin i [M/H] vmicro comments

name H lines GSSP [km s−1] [km s−1]

9632550 BS Aqr 7100± 150 7240± 290 21 ± 6 −0.2± 0.3 3.3 ± 2.5 SB2
32197339 HD 210139 7600± 200 7960± 95 8 ± 1 −0.05± 0.08 2.9 ± 0.6 pronounced LPVs

38587180 TX Ret 7200± 150 7310± 40 70 ± 3 −0.01± 0.04 3.8 ± 0.5

52258534 BG Hyi 6900± 120 6980± 50 25 ± 1 −0.35± 0.07 4.3 ± 0.5
139825582 CF Ind 7100± 150 7090± 40 227 ± 13 −0.22± 0.06 3.6 ± 0.5 pronounced LPVs

183595451 AI Scl 7300± 120 7315± 40 102 ± 5 −0.05± 0.07 4.0 ± 0.6

224285325 SX Phe 7500± 150 7500± 115 18 ± 2 −0.1± 0.2 1.9 ± 0.4
229154157 HD 11667 7300± 200 7185± 75 16 ± 1 −0.06± 0.07 3.1 ± 0.5 SB2, with LPVs

253917376 UV PsA 7000± 200 7025± 50 76 ± 4 −0.16± 0.06 4.0 ± 0.5

265566844 BX Ind 6800± 220 6790± 60 5 ± 1 0.04 ± 0.06 1.3 ± 0.3
303584611 BS Scl 7900± 150 7955± 55 32 ± 1 −0.08± 0.05 3.2 ± 0.4

355687188 HD 224852 7000± 150 7335± 90 14 ± 1 −0.04± 0.08 3.0 ± 0.5 asymmetric Hβ

382551468 CD-53 251 6500± 200 6800± 80 13 ± 1 −0.08± 0.07 2.0 ± 0.4 pronounced LPVs
394015973 BE Ind 7500± 200 7500± 50 45 ± 2 0.06 ± 0.06 3.3 ± 0.5

calculated directly from the parallaxes. Almost all stars are
within 1 kpc from the Sun, which means that the extinction
is small but not negligible (total absorption AV < 0.25 mag,
with a mean and median of 0.05 and 0.04 mag, respectively).
We calculated a mean value from the above-listed refer-
ences, which are all consistent within 0.01 mag. This value
of 0.01 mag was adopted as the extinction uncertainty for all
targets. We chose to do so because there are no estimates of
the individual errors from the different maps and methods.

To calculate luminosities for our targets, we used the
bolometric corrections for the V magnitudes from Flower
(1996). The bolometric correction is at a minimum for A
stars and does not influence the luminosity calculation sig-
nificantly. The effective temperatures were taken from Sect.
4.1. However, there is no homogeneous source of V magni-
tudes that includes all our targets. We therefore calculated
the averages from the magnitudes published by Kharchenko
(2001) and Henden et al. (2016), and transformed the Gaia
DR2 G magnitudes according to the calibration by Arenou
et al. (2018). Within these three data sets, we found no out-
liers larger than 0.015 mag. For the error calculation, we took
a full error propagation of the individual errors into account.

Lindegren et al. (2018) found that the Gaia parallaxes
require a zero-point offset of 0.03 mas, although, the offset
is dependent on the colour, magnitude and position on the
sky (Lindegren et al. 2018; Zinn et al. 2019). Murphy et al.
(2019) have experimented with applying the suggested offset
of 0.03 mas, but found that this correction results in unre-
alistically low luminosities for A and F stars. They deduce
that the zero-point offset may be smaller for bluer stars.
Since there is no consensus on the exact correction, we fol-
low Murphy et al. (2019) and do not apply any zero-point
offset in our analyses. We also note that Arenou et al. (2018)
discourage users of applying the offset to individual paral-
laxes.

The stellar parameters with their respective uncertain-
ties are listed in Table 2. If we compare the absolute magni-
tudes derived from the Hipparcos and Gaia DR2 data sets

using the identical apparent magnitude, reddening and Bolo-
metric correction, we find only three targets for which the
deviation is larger than 3σ, specifically ν Pic, BX Ind, and
θ Gru. This proves that the Gaia DR2 data have no signif-
icant discrepancies (in a statistical sense) when compared
to the Hipparcos ones. We also note that these stars are
bright which may explain the deviation. In addition, θ Gru
was identified as a binary (see A1), which may apply for the
other two as well.

In Fig. 2 we plot our stars in the HR diagram using
Gaia luminosities and Teff determined in this work using the
SED method. Due to binarity, large error bars in their Gaia
measurements or missing parallaxes the following stars have
been omitted: θ Ret (V = 6.05), HD 223991 (V = 6.35), HD
216941 (V = 9.49), and HD 210767 (V = 7.78).

5 UNDERSTANDING THE EXCITATION
MECHANISM OF δ SCT STARS USING AM
STARS

In the absence of mixing, which is usually related to rotation
and efficient convection in the outer envelopes, atomic dif-
fusion, which includes radiative levitation and gravitational
settling, plays an important role in A stars. As a result,
Am stars display underabundances of Sc and Ca and over-
abundances of Ba, Sr and Y, among other elements, in their
photospheres (Preston 1974).

Traditionally, the excitation mechanism associated with
δ Sct pulsations is the κ-mechanism acting in the He II ioni-
sation layer (Cox 1963). However, observations (Antoci et al.
2011; Murphy et al. 2019) clearly indicate that this mech-
anism alone is insufficient. This is especially the case for
the chemically peculiar Am stars where He is expected to
be depleted from the He II ionisation layer where the κ-
mechanism operates. Even when including atomic diffusion
(Turcotte et al. 2000), models in only a very narrow region
in the instability strip were found to have unstable modes,
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Figure 2. Intermediate-mass A and F stars observed by TESS

in sectors 1 and 2 in the HR diagram. Non-variable stars are

shown as black downward facing triangles, δ Sct stars as blue
squares, γ Dor stars as violet circles, hybrids or suspected hybrids

in yellow diamonds, and HADS stars as left-facing red triangles.

Stars marked with a black circle are known binary stars. The
blue and red edges of the δ Sct instability domain (marked by

the straight, continuous black lines) are taken from Pamyatnykh

(2000) and Dupret et al. (2005), respectively. The blue edges from
Pamyatnykh (2000) and Dupret et al. (2005) more or less overlap.

The γ Dor instability strip marked by the dashed lines is from

Dupret et al. (2005). In addition, we highlight in white the δ Sct
instability strip found empirically by Murphy et al. (2019) within

which >20% of the population pulsates (peaking at 70%). The
evolutionary tracks were computed with the Warsaw-New Jersey

models (Dziembowski 1977; Pamyatnykh et al. 1998; Pamyatnykh

1999) using no rotation and solar metallicity. The evolutionary
tracks, labeled with masses expressed in M�, are only displayed

to guide the eye.

which is clearly contradicted by observations (e.g., Smalley
et al. 2017).

Here we investigate to what extent the pulsational sta-
bility changes when helium is depleted from the outer lay-
ers. More specifically we have used the same approach as
described in Balmforth et al. (2001) to model the helium
abundance in the outer layers, to mimic atomic diffusion.
For our models with a chemically homogenous envelope, the
helium abundance by mass is Y= 0.28, whereas for our de-
pleted models the helium abundance was decreased to Y =
0.15 in the outer layers, extending down beneath the He II
ionisation layer.

In Fig. 3 and Fig. 4 we show results of our stability com-
putations, in which we include the pulsationally perturbed
radiative (κ-mechanism) and convective heat fluxes as well as
the perturbed momentum flux (turbulent pressure). These
computations were obtained from models following the pro-
cedures described in detail in Houdek et al. (1999) and Balm-
forth et al. (2001). These models adopt the time-dependent
non-local convection formulation by Gough (1977a,b). In ad-
dition to the mixing length parameter, αMLT, this formula-
tion uses three additional non-local convection parameters,
a, b and c. Here we adopt the values a2 = b2 = c2 = 950,
which allowed Antoci et al. (2014) to reproduce roughly

85 per cent of the observed frequency range of HD 187547 (a
pulsating Am star) and Balmforth et al. (2001) to reproduce
oscillations in roAp stars.

In Fig. 3 we plot the theoretical instability region of our
‘mixed models’ (i.e., He non-depleted) and Fig. 4 illustrates
the instability domain of our depleted models. The aster-
isks show the locations of the computed models in the HR
diagram and the number of excited radial orders found for
that particular model is indicated. The contour levels in this
plot delineate the number of consecutive excited radial-order
modes. The redder the area, the larger number of modes to
be excited. Yellow indicates no excitation at all. We note
that in both cases, i.e. in the homogenous and the depleted
envelope models, there seems to be a maximum in the num-
ber of excited radial orders at an effective temperature of
7500 K. Interestingly, the largest number of unstable modes
roughly corresponds with the temperature where Murphy
et al. (2019) found the largest fraction of pulsating stars,
although slightly shifted in luminosity.

In Fig. 5, panels (a1) and (b1), we show the accumulated
work integrals for a radial mode with n = 6 and a mode with
n = 15, respectively, in our chemically homogeneous and He-
depleted models. Regions where the accumulated work inte-
gral increases towards the surface of the star contribute to
the driving of the mode while regions where it decreases con-
tribute to the damping. Panels (a2) and (b2) further show
the individual contributions to the total accumulated work
integral of the gas (dashed line) and of the turbulent pres-
sure (solid line). For both the homogenous (Fig. 3) and the
He-depleted envelope models (Fig. 4), the turbulent pressure
contributes crucially to mode instability.

In this paper, we do not aim to fully reproduce the in-
stability domain of δ Sct stars, but to show that diffusion,
especially of He, plays an important role in driving pulsa-
tions in δ Sct stars, and that turbulent pressure, acting in
the H ionisation zone is a significant driving agent. There-
fore, excitation by turbulent pressure offers a solution to the
long-standing question of the driving mechanism in pulsat-
ing Am stars. In Fig. 6 we plot all Am stars from Renson
& Manfroid (2009) that were observed by TESS in sectors
1 and 2. We distinguish between constant (black triangles)
and pulsating Am (blue) stars, and mark known binaries
with black rings. We find good agreement between the ob-
served Am stars and the predicted instability region when
turbulent pressure is included. Our findings also agree well
with earlier ground-based observations, showing that pul-
sating Am stars tend to be found in the cooler part of the
instability region (Smalley et al. 2017).

To conclude this section, we show that even in the case
where He is depleted from the outer layers, excitation of
pulsations is still possible and matches the observed distri-
bution of known pulsating Am stars observed by TESS. In
addition, we see an increase in the number of unstable ra-
dial orders and magnitude of the linear growth rates in stars
with Teff ' 7500 K. Here we demonstrate the potential of how
TESS observations of many Am stars will improve our un-
derstanding of pulsation driving in intermediate-mass stars.
Before drawing any final conclusions, however, we need to
perform in-depth analyses and to vary parameters in our
computations, e.g., metallicity, the mixing length and the
non-local convection parameters a, b, and c. In addition, we
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will also explore the excitation at different helium depletion
values. This will be done in a future paper.

6 EXAMPLES OF VARIABILITY

As TESS is observing almost the entire sky, we have
the unprecedented opportunity to obtain continuous, high-
precision light curves of a variety of pulsating stars as de-
scribed in Section 1. The 2-min TESS sample in sectors
1 and 2 presented in this work includes some prototypes,
i.e., SX Phe and γ Dor. In this section, we demonstrate the
power of TESS data for a variety of different pulsator classes
amongst A and F stars and the potential of future astero-
seismic modelling. The stars shown here were chosen either
because they are eponymous for their classes (SX Phe and
γ Dor), very bright (α Pic) or to cover the entire variety
of the stars studied here: δ Sct, γ Dor, λ Boo, HADS, pre
main-sequence, eclipsing binary stars.

6.1 TIC 229059574 = HD 210111

TIC 229059574 (HD 210111), is a λ Boo star in a double-
lined spectroscopic binary (SB2) system (Paunzen et al.
2012). SB2 line profiles were seen in all 24 high-resolution
spectra taken by Paunzen et al. (2012) with UVES, from
which the authors concluded that this is a pair of equal-
mass stars with both stars having Teff ≈ 7400 K, log g =
3.8, [Fe/H] = −1.0 dex and v sin i = 30 km s−1. By comput-
ing composite spectra with various atmospheric parameters,
they also concluded that neither component has a solar
metallicity, from which we infer that they are both λ Boo
stars.

Paunzen et al. (1994) first discovered the δ Sct variabil-
ity of HD 210111, and Breger et al. (2006) carried out the
most extensive analysis of its variability with a multi-site
ground-based campaign over a 30-d period. The TESS light
curve is of similar duration, but almost uninterrupted and
of space-telescope quality.

The TESS light curve from sector 1 shows HD 210111
to be highly multi-periodic with frequencies in the range
10−40 d−1 and amplitudes of order 100−1000 ppm (Fig. 7).
The highest peak lies at 30.2 d−1, consistent with the non-
radial pulsation with a 49-min period identified by Bohlen-
der et al. (1999). Many of the 18 oscillation frequencies re-
ported by Breger et al. (2006) are present in the TESS data,
but the amplitudes are significantly different. This may be
due to the different passbands, although amplitude variabil-
ity is not uncommon in δ Sct stars (Lenz et al. 2008; Barceló
Forteza et al. 2015; Bowman et al. 2016). In the TESS pass-
band, HD 210111 has 59 peaks with amplitudes exceeding
200 ppm, where our analysis is terminated because of the
high density of peaks.

Visual inspection of the amplitude spectrum of the light
curve (Fig. 7) suggests there may be a common frequency
spacing between ∼ 2 and 2.5 d−1. When using all 59 peaks
above 200 ppm, a histogram of frequency differences showed
no outstanding features compared to a randomly generated
set of frequencies covering the same frequency range. How-
ever, a subset of the strongest peaks (with amplitudes above
500 ppm) showed an excess of peaks spaced by ∼2.2 d−1.
Common spacings can sometimes be attributed to rotational
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Figure 3. Theoretical instability strip from models including

time-dependent non-local convection treatment (Section 5). The
asterisks indicate the location of our theoretical models and the

adjacent number indicates the number of excited radial orders.

In straight, continuous black lines we mark the theoretical blue
and red edges of the δ Sct instability domain from Pamyatnykh

(2000) and Dupret et al. (2005), respectively. The blue edges from

Pamyatnykh (2000) and Dupret et al. (2005) are more or less over-
lapping. The black square is the red edge computed by Houdek

(2000). For convenience we also indicate the γ Dor instability

strip in dashed lines (Dupret et al. 2005). In addition, we also de-
pict the empirical δ Sct instability strip boundaries from Murphy

et al. (2019) at which the pulsator fraction is 20% (dashed-dotted
line). The evolutionary tracks were computed with the Warsaw-

New Jersey models (Dziembowski 1977; Pamyatnykh et al. 1998;

Pamyatnykh 1999) using no rotation and solar metallicity. The
evolutionary tracks are only displayed to guide the eye.
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Figure 4. Theoretical instability strip with depleted helium in

the outer layers mimicking helium settling. Models include time-

dependent non-local convection treatment (Section 5). The as-
terisks indicate the location of our theoretical models and the

adjacent number indicates the number of excited radial orders.
The instability domains and evolutionary tracks are the same as
in Fig. 3.
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Figure 5. Accumulated work integrals (solid curves in panels

(a1) and (b1)) as a function of the total pressure for two differ-
ent radial orders, n = 6 and n = 15, for the homogeneous model

(black) and the He-depleted model (red in the online and grey in

the printed version). The modes are unstable whenever the ac-
cumulated work integrals are positive towards the surface of the

star, as displayed in (a1) and (b1). In panels (a2) and (b2) we
show the contributions of the gas pressure (dashed line) and the

turbulent pressure (solid line). The grey region at log P = 6 indi-

cates theHe II, and at log P = 4 the H I and He I ionization zones.
From panels (a2) and (b2) it is evident that turbulent pressure

in the H I and He I ionisation zones plays a significant role in

the excitation of both modes. Specifically in the case of n = 15,
it is the only driving agent, while the gas pressure (responsible

for the κ-mechanism) is damping pulsations in the He II ionisa-

tion zone. The model parameters are in both cases the following:
M= 2.3 M� , Teff = 7500 K, log L = 1.48 L� and correspond to the

model with 13 unstable radial orders in Fig. 3 and 12 in Fig. 4,
respectively.

splittings, or to the large frequency separation ∆ν, which is
the frequency spacing between consecutive radial orders7.
The v sin i of these stars is low, at about 30 km s−1, so it is
unlikely that the rotational splitting of one or both stars is
being observed, unless the inclination i happens to be low.
We therefore find it more plausible that the identified spac-
ing corresponds to the large frequency separation or half this

7 The exact spacing depends on the radial orders and can only
be directly related to the Sun or Sun-like stars in case high radial

order modes are observed.
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Figure 6. Comparison between the observed TESS Am stars and
the theoretical instability strip including He depletion in the outer

envelope. All stars are identified to be Am stars based on the Ren-

son catalogue (Renson & Manfroid 2009). The blue circles depict
the pulsating Am stars; the black triangles identify constant Am

stars. Known binaries (see Table 1) are marked by black rings.

The square, asterisks and all lines have the same meaning as in
Fig. 3.
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Figure 7. TESS light curve (top) and amplitude transform (bot-

tom) of the λ Boo star HD 210111.

value. A more accurate assessment using a Gaia luminosity
is prevented by the SB2 nature of the target. It is also not
clear whether solar-metallicity tracks should be used. The
reported [Fe/H] is -1 dex, but in λ Boo stars the low metal-
licity might be a surface phenomenon only. Asteroseismology
is one of the tools that can be used to probe the global stellar
metallicity, but HD 210111 is perhaps too complex a target
to be a good starting point because of it being a binary of
two similar stars. At this stage it is unclear whether only one
or both components are pulsating. A more detailed analysis
is beyond the scope of this paper.
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Figure 8. A histogram of the frequency differences from the

peaks extracted from HD 210111 that have amplitudes exceeding

500 ppm. The peak at 2.2 d−1 is marked with a red arrow. Integer
multiples of this peak (4.4, 6.6, . . . d−1) are also expected.

6.2 TIC 167602316 = α Pictoris

α Pictoris is the brightest star in the sample presented here
(V = 3.3) and was not known to be a pulsating star prior to
TESS observations. This makes it one of the brightest known
δ Sct stars. This star has Teff = 7550 ± 35 K (Zorec & Royer
2012a), a Hipparcos luminosity of log (L/L�) = 1.47 ± 0.14
and is rapidly rotating with v sin i = 206 km s−1 (Zorec &
Royer 2012a).

α Pic has a rich pulsation spectrum (Fig. 9), with 39
significant peaks after 2 sectors of observations. From the
lower panel of Fig. 9 it can be clearly seen that many addi-
tional peaks are observed in the low-frequency region that
are consistent either with g and/or Rossby modes. In the
high frequency range we detect a spacing that is consistent
with the large frequency separation of about 2.7 d−1 and fits
well the stellar parameters given Table 2.

Based on the known stellar parameters, the highest peak
at f1 = 5.74 d−1 could be the fundamental radial mode.
The frequency f3 is close to 2 f1, which may imply that this
frequency is the second harmonic, however it is not an exact
match (the difference is 0.017 d−1), which is similar to the
resolution. This issue will be resolved with one year of data,
as this star is in the continuous TESS viewing zone. No other
obvious combination frequencies were detected.

6.3 TIC 224285325 = SX Phe

SX Phe is a remarkable HADS star, whose strongest peak
exceeds 100 ppt. The light curve is highly asymmetric, with
minima of a consistent depth, but maxima spanning a wide
range in brightness (Fig. 10). Such light curves are common
among high-amplitude SX Phe stars dominated by one or
two mode frequencies and their combinations (e.g., the Ke-
pler SX Phe star KIC 11754974; Murphy et al. 2013). The
shapes of the light curves arise from specific phase relation-
ships between parent pulsation modes and their combination
frequencies (Kurtz et al. 2015).

The amplitude spectrum of the light curve of SX Phe
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Figure 9. Amplitude spectra of the original data of α Pic (top)

and after pre-whitening the dominant mode (bottom). This star is

in the TESS continuous viewing zone on the Southern hemisphere
which makes it a promising target for further study.
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Figure 10. A 1-d extract of the TESS light curve of SX Phe (top).
Amplitude spectrum of the entire TESS light curve of SX Phe

(bottom). The two strong independent mode frequencies are la-

belled along with combination frequencies belonging to three dis-
tinct families, and two other combinations at lower frequencies.
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Table 5. The list of extracted significant frequencies of SX Phe
from TESS Sector 1 and 2 data.

fn Frequency Amplitude Combinations

[d−1] [ppt]
±0.040

f1 18.193565(6) 136.284
f2 23.37928(2) 33.079

f3 36.38712(2) 48.757 2 f1
f4 41.57284(4) 20.286 f1 + f2
f5 5.185718(4) 20.133 f2 − f1
f6 54.58069(5) 16.653 3 f1
f7 13.00784(8) 10.237 2 f1 − f2
f8 59.766413 9.801 2 f1 + f2
f9 72.7742(1) 6.939 4 f1
f10 77.9599(2) 5.047 3 f1 + f2
f11 31.2014(2) 4.948 3 f1 − f2
f12 46.7585(2) 3.572 2 f2
f13 90.9678(2) 3.527 5 f1
f14 96.1535(3) 2.893 4 f1 + f2
f15 22.6303(3) 2.774
f16 28.5650(3) 2.692 2 f2 − f1
f17 64.9521(3) 2.632 f1 + 2 f2
f18 27.5864(4) 2.074
f19 114.3471(4) 1.931 5 f1 + f2
f20 109.1613(4) 1.831 6 f1
f21 49.3950042 1.798
f22 83.1456(5) 1.738 2 f1 + 2 f2
f23 132.5406(5) 1.495 6 f1 + f2
f24 40.823(3) 1.198 f1 + f20
f25 127.355(1) 1.118 7 f1
f26 17.2645(7) 1.105

f27 45.7806(7) 1.072

itself is indeed dominated by two parent radial modes and
their many combination frequencies (Fig. 10). These com-
binations and their harmonics continue to high frequencies:
even at 7 f1 (127 d−1), the pulsation amplitude is over 1 ppt.
We extracted frequencies down to an amplitude of 1 ppt.
Five other apparently independent peaks exist with ampli-
tudes above 1 ppt. Although it is possible to assign combi-
nations to some of them, the combinations are not simple
(i.e. they do not have low coefficients), so we conclude that
some of these peaks could be independent mode frequencies
and speculate that resonance may play an important role.
A frequency list is provided in Table 5.

The strongest mode corresponds to the frequency f1 =
18.193565(6) d−1, which is high for the fundamental radial
mode but rather typical for SX Phe-type stars (e.g., Mc-
Namara 2011; Ziaali et al. 2019). The frequency ratio of
f1/ f2 is 0.778192(6), is consistent with the identification of
f1 as the fundamental radial mode and f2 as the first ra-
dial overtone. Normal δ Sct stars have values around 0.772,
but SX Phe itself has a rather high value of 0.778192(6),
owing mostly to its low metallicity. Petersen & Christensen-
Dalsgaard (1996) showed that higher values of this frequency
ratio correlate well with lower metallicity, and SX Phe itself
has a low metallicity, with Z ≈ 0.001. In addition, Pigulski
(2014) shows that other SX Phe stars can also have such a
high ratio.

Using the Warsaw-New Jersey evolutionary code (e.g.,
Pamyatnykh et al. 1998; Pamyatnykh 1999) and the nona-

diabatic pulsational code of Dziembowski (1977), we com-
puted models for SX Phe with the aim of fitting f1 and f2
as the radial fundamental and first overtone modes, respec-
tively, using the so-called Petersen diagram (e.g., Petersen
& Christensen-Dalsgaard 1996). We searched a wide range
of effective temperatures ranging from 7200 K to 8700 K.
The OPAL opacity tables and the solar element mixture of
Asplund et al. (2009) were adopted. We considered different
metallicity values, Z, and initial hydrogen abundance, X0, in
the ranges (0.001, 0.002) and (0.66, 0.74), respectively. The
value of the mixing length parameter, αMLT = 1.5 and over-
shooting from the convective core was not included. We note
that, at the metallicities and effective temperatures specified
above, the choice of the αMLT does not have a high impact
on the exact values of the mode frequencies. Our pulsations
models, confirm that the observed frequencies f1 and f2 can
only correspond to the radial fundamental and first overtone
modes, respectively. Thus, for further seismic modelling we
will only consider these radial orders.

As a start, we used the model parameters M = 1.0 M�,
Z = 0.001, X0 = 0.70 and an age of roughly 3.9 Gy8 as given
by Petersen & Christensen-Dalsgaard (1996). Our best seis-
mic model for these input values has an effective tempera-
ture of Teff = 7660 K, a luminosity log L/L� = 0.811 and a
frequency ratio of the radial fundamental mode to the first
overtone of f1/ f2 = 0.780014. The observed counterparts are
log L/L� = 0.842±0.09 and a frequency ratio of 0.778192(6).
The theoretical values for the radial fundamental and the
first radial overtone are 18.193565 d−1 and f2 = 23.324654
d−1, respectively. Both radial modes are unstable (excited).
However, as one can see, the difference between the theoret-
ical and observed value of f1/ f2 is 0.001822 and is above the
numerical accuracy which is around the fifth decimal place,
making it clearly significant. In the next step, we varied the
metallicity and found a model with Z = 0.0014 and a mass
M = 1.15M�, which fits better the observed frequency ra-
tio. The model has the following parameters: Teff = 8270,
log L/L� = 0.984, an age of ∼2.5 Gy and a frequency ratio of
f1/ f2 = 0.77841. The individual radial modes frequencies are
f1 = 18.19357 d−1 and f2 = 23.37268 d−1. This model gives
a better fit but still there is a room for improvement, espe-
cially because the radial fundamental and the first overtone
in this model are both stable.

As a next step, we changed the initial abundance of
hydrogen. The model reproducing the observed frequency
ratio up to the fifth decimal place has the following param-
eters: M = 1.05 M�, X0 = 0.67, Z = 0.002, Teff = 7760 K,
log L/L� = 0.844, an age of 2.8 Gy and it was interpolated
to the dominant observed frequency f1 = 18.193565 d−1. The
value of the second frequency is 23.37976 d−1, and differs by
only 0.00048 d−1 from the observed value. Thus, the theo-
retical value of the frequency ratio is 0.77818, whereas the
observed value is 0.77819. Taking into account the numeri-
cal accuracy, which is not better than five decimal places as
specified above, we can conclude that this model reproduces
the observed frequencies of the two radial modes of SX Phet
well. In addition, this model also predicts instability (excita-

8 Given that SX Phe is consistent with the scenario of a blue
straggler, the age in this context represents the time since its

formation through mass transfer or a merger of two stars.
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Figure 11. Petersen diagram illustrating the frequency ratio of
the first radial overtone to the radial fundamental as a function of

the radial fundamental mode for SX Phe. The model reproducing

the observations best is depicted in blue. We refer the reader to
the text for further details.

tion) of both radial modes, the radial fundamental and first
overtone. In Fig. 11, we show the evolution of the frequency
ratio of the first radial overtone to the radial fundamental
as a function of the radial fundamental mode (the Petersen
diagram) for the three seismic models described above. The
observed value is marked as an open square.

The lower hydrogen abundance (higher helium abun-
dance) is not unlikely because, as other SX Phoenicis vari-
ables, SX Phe itself can be a blue straggler. Such objects
are presumably formed by the merger of two stars or by in-
teractions in a binary system (e.g., McNamara 2011; Nemec
et al. 2017). As a consequence, these stars may have en-
hanced helium abundance. This is also consistent with the
models fitting KIC 11145123, which is also a suspected blue
straggler (Kurtz et al. 2014). In addition, the model lumi-
nosity also agrees with the Gaia luminosity and the model
effective temperature is within 2σ of the spectroscopically
derived value (Teff = 7500± 150 K, and 3.7σ within the pho-
tometrical (Teff = 7210 ± 150 K). Measured differences in ef-
fective temperature are to be expected, because as noted by
Kim et al. (1993), the effective temperature of a star display-
ing large amplitudes of pulsations depends on the pulsation
phase at which the observations were made. In the case of
SX Phe the spectroscopic Teff was determined based on one
spectrum taken at a single unknown pulsation phase.

6.4 TIC 49677785 = HD 220687

HD 220687 (TIC 49677785) is a known eclipsing binary
system hosting a pulsating primary (Pigulski & Michalska
2007). Recently, HD 220687 was observed for approximately
80 d by the K2 mission (Howell et al. 2014). From these
K2 data and estimates of the primary’s surface gravity and
effective temperature from RAVE spectroscopy, Lee et al.
(2019) obtained a binary model with the Wilson Devinney
Code, albeit without an estimate for the mass ratio from
radial velocities. After subtracting their binary light curve
solution, Lee et al. (2019) found 35 significant frequencies
with a S/N > 4 using a noise window of the size 5 d−1 cen-

tred around each peak; all of these frequencies were inferred
to be δ Sct pulsations.

Since the K2 observations, HD 220687 was observed by
the TESS mission in Sector 2 for 27.4 d (Fig. 12). Given the
lack of an accurately constrained mass ratio and the pres-
ence of remaining harmonics after the binary model subtrac-
tion, we chose to not adopt the binary solution by Lee et al.
(2019). Instead, we directly subtracted the orbital frequency
( forb = 0.62725 d−1) and all its significant harmonics up to
80 d−1 and then examined the remaining variance. From
iterative pre-whitening pipeline we obtained 25 significant
frequencies, 11 of which can be explained as harmonics or
combination frequencies. We note that seven of the frequen-
cies reported by Lee et al. (2019) are either harmonics of the
orbital frequency, or can be explained as second-order com-
bination frequencies with the orbital frequency. Finally, 12
of the 25 frequencies in the TESS light curve of HD 220687
are above the Kepler/K2 long-cadence Nyquist frequency of
24.49 d−1 which emphasizes the usefulness of short-cadence
observations for studying δ Sct stars.

The TESS and K2 light curves of HD 220687 also of-
fer the only opportunity we are aware of to determine an
empirical estimate for the amplitude suppression factor of
pulsation modes observed in the Kepler/K2 and TESS pass-
bands. Since the TESS passband (6000 – 10 000 Å) is redder
than that of Kepler/K2 (4300–8300 Å), the photometric pul-
sation mode amplitudes in early-type stars appear smaller
in TESS photometry compared to bluer passbands since the
wavelength range mainly probes the Rayleigh-Jeans tail, as
opposed to the peak of the blackbody function. The ratio
of pulsation mode amplitudes in the TESS and Kepler/K2
passbands for A and F stars was estimated to be of the order
50 per cent by Bowman et al. (2019), yet this value included
many assumptions.

Here, we provide an empirical measurement of the
ratio of pulsation mode amplitudes for the TESS and
Kepler/K2 passbands using HD 220687 (TIC 49677785;
EPIC 245932119). We downloaded the K2 target pixel files
of HD 220687, created custom aperture masks and detrended
light curve spanning approximately 80 d using the method-
ology described by Bowman et al. (2018). The calculation of
an amplitude spectrum using a Discrete Fourier Transform
(Deeming 1975; Kurtz 1985) allowed the determination of
the amplitudes of pulsation modes and harmonics associated
with the eclipses present in the light curve. We performed
independent frequency extraction using the K2 and TESS
light curves via iterative pre-whitening and corrected the
observed amplitudes of each extracted peak for the ampli-
tude suppression caused by the sampling frequency of each
instrument using

A = A0 sinc
( π

N

)
= A0 sinc

(
πν

νsamp

)
, (2)

where A and A0 are the observed and corrected pulsation
mode amplitudes, respectively, N is the number of data
points per pulsation cycle, ν is the pulsation mode frequency
and νsamp is the instrumental sampling frequency (Murphy
2014; Bowman et al. 2015).

Under the assumptions of negligible amplitude modula-
tion of its pulsation modes (see e.g. Bowman et al. 2016) and
negligible contamination in HD 220687, which is reasonable

MNRAS 000, 1–32 (2019)



16 V. Antoci et al.

1354.1 1359.6 1365.1 1370.6 1376.0 1381.5

-1.5×105

-1.0×105

-5.0×104

0

1354.1 1359.6 1365.1 1370.6 1376.0 1381.5
BJD - 2457000

-1.5×105

-1.0×105

-5.0×104

0

R
el

at
iv

e 
flu

x 
[p

pm
]

0.00 15.00 30.00
Frequency [c/d]

0
2.0×103
4.0×103
6.0×103
8.0×103
1.0×104
1.2×104
1.4×104

A
m

pl
itu

de
 [p

pm
]

Figure 12. HD 220687. Upper panel: light curve. Lower panel:

amplitude spectrum. The equally spaced peaks at low frequencies

are due to the eclipses clearly visible in the light curve displayed
in the upper panel.

given that HD 220687 is V = 9.6 and no other nearby sources
are apparent, the ratio of the corrected pulsation mode am-
plitudes gave an empirical estimate of the TESS/Kepler am-
plitude suppression factor. For the dominant, independent
pulsation mode amplitudes in HD 220687, we measured an
average ratio of their amplitudes in the TESS to Kepler/K2
passbands to be 74± 1 per cent. Thus, the reduction in pul-
sation mode amplitudes when observing A and F stars with
TESS is non-negligible compared to bluer wavelength in-
struments such as Kepler/K2, but importantly this pass-
band suppression does not prevent the detection of pulsa-
tion modes. On the other hand, the vast number of A and
F stars observed in the 2-min TESS cadence is a major ad-
vantage for the study of high-frequency pulsations in δ Sct
stars, given that the bias introduced by the 30-min Kepler
cadence into the observed frequency distribution of these
stars is much more significant (Murphy 2015; Bowman &
Kurtz 2018). We note that the suppression factor is not a
constant but depends on the spectral type of the target star
and to a lesser extent on the geometry of the pulsation modes
(limb-darkening).

It is worth noting that δ Sct/γ Dor pulsators found in
close binaries, are not only in detached systems but also in
those that are undergoing or have experienced mass transfer
(Guo et al. 2016, 2017). Among the 303 pulsating EB iden-
tified by Gaulme & Guzik (2019, in prep.) in about 3000
Kepler EB stars, most are δ Sct and γ Dor pulsators (264
out of 303, 87%). We expect that the TESS 2-min cadence
data can yield about 300 eclipsing binaries per sector, and
more than 1/10 are expected to contain pulsating stars.

6.5 TIC 150394126 = HD 46190

HD 46190 was observed in sectors 1 and 2 in the TESS
mission (Fig. 13); its light curve has a total time base of
56 d. Prior to TESS observations, this star was thought to
be a young star with a spectral type of A0, but its pulsational
variability was unknown. We include HD 46190 in this paper,
as it is a potential pre-main-sequence δ Sct star.
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Figure 13. TESS light curve (top) and amplitude spectrum (bot-

tom) of the young star HD 46190.

In total 65 frequencies between 15 and 76 d−1 were
found to be statistically significant by both the KU Leu-
ven and Aarhus ECHO pipelines. Many of these peaks can
be explained by combination frequencies, depending on the
number of parent modes assumed. However, some of these
identified linear combinations are quite complex, and hence
could also be accidental matches.

There are no estimates of fundamental parameters or
binarity from spectroscopy in the literature, and only an
approximate effective temperature of 8450 ± 600 K in the
catalogue of Oelkers et al. (2018) and Gaia DR2. Our de-
termined effective temperature based on the SED method is
8850±100 K (Table 2). Sloan et al. (2004) report a debris disk
and an infrared excess around HD 49160 using Spitzer spec-
troscopy, and identify this star as a Vega-like main-sequence
star.

The highest-amplitude p-mode frequency in HD 46190
is at 49.09 d−1, which supports the interpretation that this
star is a hot and young star near the ZAMS and the blue
edge of the classical instability strip (Zwintz et al. 2014).
Yet without fundamental parameters from spectroscopy, we
cannot infer if HD 46190 is a pre-main-sequence or main-
sequence star. Once these data become available, and should
a pre-main-sequence status be established, we can deter-
mine its properties based on the range of modes excited in
the star. For pre-main-sequence stars, Zwintz et al. (2014)
showed that there is a significant relationship between the
pulsational properties and its evolution. Such a relation
could not be established for δ Sct stars on the main-sequence
or the post main-sequence.

6.6 TIC 355687188 = HD 224852

The variability of the HADS star TIC 355687188
(HD 224852, BV 1007, NSV 14800, A8 V, V = 10.2) was
discovered by Strohmeier (1967), but the nature of this vari-
ability was only revealed from the ASAS-3 observations by
Pojmański (2002), who reported a period of 0.122072 d and
classified the star as δ Sct. Poretti et al. (2005) carried out a
detailed analysis of the ASAS-3 data and found the star to be
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Figure 14. Upper panel: A 4-day section of the TESS light curve

of HD 224852. The highly non-sinusoidal light curve and the beat-

ing between the two dominant modes are clearly visible. Lower
panel: amplitude spectrum. The large majority of these peaks

are combination frequencies and harmonics of the 4 independent

modes. Although there are statistically significant peaks up to
frequencies of 75 d−1, for illustrative reasons we only plot up to

75 d−1.

a double-mode pulsator with the frequency ratio of 0.77339
matching the ratio of the fundamental and first-overtone ra-
dial modes for HADS stars. In addition, the amplitude of
the first overtone mode is higher than that of the funda-
mental mode. The full model describing the variability of
the star in the ASAS data included 10 terms: the two radial
mode frequencies, three harmonics of these frequencies and
five combination frequencies.

HD 224852 was observed in Sectors 1 and 2 of the TESS
mission with 2-min cadence; these data span 56.2 d with
small (∼1-d) gaps in the middle and between each observing
sector. A 4-d section of the TESS light curve is shown in
Fig. 14, in which the strong beating of the two radial modes
can be seen. Frequency analysis of the TESS data indicates
that the observed variability in HD 224852 can be accounted
for by only four independent modes, their harmonics and
combination terms. In total, the model including all signif-
icant frequencies contains 96 sinusoidal terms yet only four
independent pulsation modes (Table 6), 12 harmonics (of f1
and f2 only), and 80 combination frequencies.

Both radial modes have non-sinusoidal light curves,
which is in accordance with the findings of Poretti et al.
(2005). The first overtone mode has a larger amplitude than
the fundamental mode, which is more commonly found for
HADS stars in the LMC (Poleski et al. 2010) as opposed to
the Milky Way. We infer that the independent frequencies
f3 and f4 are non-radial modes. However, we cannot exclude
that f4 may be a higher-overtone radial mode. This can only
be verified by detailed seismic modelling. We also note that
no low-frequency modes were detected in HD 224852 above
the detection threshold of 0.023 ppt corresponding to S/N
≈ 2.8. The two radial modes show slight amplitude modu-
lation during the TESS observations. In particular, the am-
plitude of f1 drops by about 0.7 per cent and f2 by about
0.4 per cent during this time. This effect has also been ob-

Table 6. Characterization of the amplitude spectrum of
HD 224852.

Mode Frequency Harmonics Combinations S/N

[d−1] detected detected

f1 8.1919470(07) 7 78 8855.39

f2 6.3355745(10) 5 79 6414.12

f3 7.9646(05) 0 5 14.47
f4 13.1380(18) 0 0 4.28

served for other high-amplitude radial pulsators, such the
HADS star KIC 5950759 (Bowman 2017).

6.7 TIC 219234987 = γ Dor

γ Dor is a bright (V = 4.20) F1V (Gray et al. 2006) and
is eponymous for an entire class of gravity/Rossby modes
pulsators, the γ Dor stars. Although this paper concentrates
only on sectors 1 and 2, we decided to make an exception
and to also include this prototype in this first-light article.

TESS observed γ Dor in sectors 3, 4 and 5. The light
curve was extracted by performing aperture photometry
on target pixel files downloaded from MAST using the
LIGHTCURVE python package (Barentsen et al. 2019).
Bright as it is, γ Dor saturates TESS CCDs. We settled on a
classic approach for the preliminary analysis presented here.
The photometric data extraction will be refined in the future
using the halo photometry technique (White et al. 2017).
The frequency analysis was subsequently done following an
iterative pre-whitening procedure with the PERIOD04 soft-
ware. The light curve and amplitude spectrum are plotted
in Fig. 15 along with the 17 extracted frequencies with S/N
> 4.

γ Dor has been extensively studied in the literature.
Ground-based photometric (Cousins 1992; Balona et al.
1994a,b; Tarrant et al. 2008) and spectroscopic observations
(Balona et al. 1996; Brunsden et al. 2018) dedicated to this
star allowed the identification of a handful of frequencies.
Brunsden et al. (2018) recently performed a comprehensive
study of all available ground-based data. They found four
consistent frequencies (1.3209, 1.3641, 1.4742, 1.8783 d−1)
that can all be confirmed with TESS data. The frequency
at 0.31672 d−1, previously identified as a daily alias, is also
present here, suggesting that it is indeed intrinsic to the star.
We also corroborate the 2.7428 d−1 combination frequency.
The amplitude spectrum shows amplitude excess at multi-
ples of the main frequency group around ∼1.3 d−1, which
is most likely due to harmonic and combination frequen-
cies (e.g. Kurtz et al. 2015; Saio et al. 2018b), however, we
cannot explore this further given the limited frequency res-
olution. Nevertheless, based on the observations and theory
by Li et al. (2019b) and Saio et al. (2018b), we can specu-
late that the power excess around 1.4 d−1 and 2.8 d−1 could
correspond to prograde l=1 and l=2 g modes, respectively.
Further observations are needed to resolve the modes and
confirm this hypothesis. No significant p modes were de-
tected, ruling out a hybrid nature. TESS observations in
synergy with available spectroscopic (e.g. Gray et al. 2006;
Ammler-von Eiff & Reiners 2012) and astrometric (Gaia
Collaboration et al. 2018) measurements will be presented
in a forthcoming paper.
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Figure 15. Amplitude Spectra of γ Doradus from TESS observa-

tions before (top) and after pre-whitening the first two frequencies

(bottom). Red vertical bars mark the 17 frequencies with S/N > 4
extracted from TESS data. Orange triangles indicate frequencies

found in Brunsden et al. (2018).

6.8 TIC 154842794 = π PsA

TIC 154842794 (π PsA, HD 217792) is a F1V type star (Gray
et al. 2006) and a newly classified γ Dor pulsator. (David
& Hillenbrand 2015a) find the following stellar parameters:
Teff = 7400 ± 250 K, log g = 4.3, and M = 1.5 M�, with the
effective temperature agreeing well with our determination
of Teff = 7440±110 K. Additional values that may be relevant
for the reader are vturb = 2 km s−1 from Gray et al. (2006)
and [Fe/H] = −0.25 ± 0.06 from Gáspár et al. (2016) and a
radius of R = 0.87 R� from Pasinetti Fracassini et al. (2001).
We note that the radius of this star may be underestimated,
as it is unrealistically low for an early F type star on or near
the main-sequence.

Strohmeier et al. (1965) classified the star as a Cepheid
with a period of 7.975 d and amplitude of 0.3 mag. It is thus
likely the complex beating of the low-amplitude pulsations
resulted in the misclassification. π PsA is a known spectro-
scopic binary (Buscombe & Morris 1961) with a low mass
companion and an orbital period of 178 d (Allen et al. 2012;
Pourbaix et al. 2004a) and eccentricity 0.53 (Abt 2005). The
velocity amplitude of the primary is 21.3 km s−1 (Pourbaix
et al. 2004a). It has also been flagged as a possible astromet-
ric binary (Jancart et al. 2005). None of the frequencies are
multiples of the orbital frequency. The star has an IR excess
(Chen et al. 2014; Trilling et al. 2007), indicating the pres-
ence of a debris disk around the star and has been identified
as a variable with a frequency of 0.94305 d−1 (Koen & Eyer
2002). This frequency was confirmed using the original Hip-
parcos data. The sole Hipparcos frequency, calculated from
104 data-points, is inconsistent with any of the frequencies
found in the TESS data.

The TESS light curve indicates the presence of a flare at
BJD = 2458370.162 (Fig. 16), which might originate either
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Figure 16. Flare observed in the TESS data of π PsA.
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Figure 17. π PsA. Upper panel: here we show the light curve
that clearly resembles the variability of a typical γ Dor star. Lower

panel: Fourier spectrum of the TESS light curve. Here we find 6

statistically significant frequencies. See text for details.

from a background star or a possible companion. Detailed
analyses as described in Pedersen et al. (2017) are required
to identify the flare origin, but are out of the scope of this
paper.

Based on TESS observations we find six statisti-
cally significant frequencies, which are 0.6721(2), 1.0242(2),
1.2688(3), 1.3814(3), 1.6385(5), 1.8376(3) d−1, with addi-
tional peaks that are unfortunately unresolved, as this star
was only observed for 27 days (Fig. 17). Based on the ex-
tracted peaks no clear period spacing can be detected. This
shows that γ Dor stars require longer observations.

7 CONCLUSIONS

We highlighted the different aspects of the pulsational vari-
ability of intermediate-mass A and F stars observed by the
TESS mission in its first two sectors. The 2-min cadence of
the TESS mission data is particularly useful for studying
high-frequency pulsations in δ Sct stars; many modes are
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found which are often higher than the Nyquist frequency of
24.5 d−1 provided by 29.4-min cadence data of the Kepler
mission (e.g., Bowman & Kurtz 2018; Michel et al. 2017).
The homogenous, all-sky sample of δ Sct stars observed by
TESS is a significant advantage over previous ensembles of
stars observed by, for example, the Kepler mission, and of-
fers opportunities to test the physics of pulsation driving for
a range in stellar mass, metallicity and rotation. In addition
we used Gaia DR2 data and SED Teff values to calculate
stellar luminosities and place our sample in the HR diagram
(Fig. 2).

In this study, we have also demonstrated that using
models with time-dependent non-local convection treatment
and mimicking He depletion in the outer envelopes as ex-
pected for Am stars, we can explain the driving of pulsa-
tions in these stars. The distribution of 31 known Am stars
observed by TESS in the HR diagram is consistent with our
theoretical predictions, which show that turbulent pressure
plays a very important role. Driving pulsations in Am stars
has been a long-lasting mystery as the κ mechanism alone
could not explain the observations in the presence of He
depletion through gravitational settling. Furthermore, the
parameter space for which pulsation driving by turbulent
pressure is predicted to be at its strongest is shown to be in
the centre of the classical instability strip, corresponding to
Teff ' 7500 K. This is compatible with the parameter space
for which the pulsator fraction also reaches its maximum of
∼ 70 per cent within the classical instability strip (Murphy
et al. 2019).

We highlighted the unprecedented asteroseismic poten-
tial that the TESS mission data provides for A and F
stars, especially for pulsators that have previously not been
observed with high-precision space telescopes such as the
brightest known δ Sct and γ Dor stars (e.g., α Pic, β Pic, γ
Dor, etc). In addition, the near full-sky TESS observations
will allow us to perform unbiased variability studies of A and
F stars in general, but also in particular of, e.g., pre main-
sequence and chemically peculiar stars, such as Am and Ap
stars. We provided case studies of different variability types,
including pulsators in eclipsing binaries, high-amplitude pul-
sators, chemically peculiar stars, and potential pre-main-
sequence stars. We also show that the rather short observing
periods of each sector (27 days) impose in some cases severe
constraints on our ability to perform asteroseismic studies
of, e.g., γ Dor, δ Sct or hybrid stars due to their unresolved
pulsation spectra. A limited frequency resolution will pre-
vent us from detecting consecutive radial orders of gravity
and Rossby modes as well as rotational splitting in pressure
modes. Future studies using longer TESS light curves (ob-
tained during the nominal and a possible extended mission),
which are necessary for detailed asteroseismic modelling, will
naturally build on this work and improve stellar structure
and evolution theory for intermediate-mass stars.
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R. A., 2017, A&A, 601, A57
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614, A46

Barentsen G., et al., 2019, KeplerGO/lightkurve: Lightkurve

v1.0b29, doi:10.5281/zenodo.2565212, https://doi.org/10.

5281/zenodo.2565212

Bigot L., Dziembowski W. A., 2002, A&A, 391, 235

Bohlender D. A., Gonzalez J.-F., Matthews J. M., 1999, A&A,

350, 553

Bowman D. M., 2017, Amplitude Modulation of Pulsation Modes

in Delta Scuti Stars. Springer International Publishing, 2017,
doi:10.1007/978-3-319-66649-5

Bowman D. M., Kurtz D. W., 2018, MNRAS, 476, 3169

Bowman D. M., Holdsworth D. L., Kurtz D. W., 2015, MNRAS,

449, 1004

Bowman D. M., Kurtz D. W., Breger M., Murphy S. J.,
Holdsworth D. L., 2016, MNRAS, 460, 1970

Bowman D. M., Buysschaert B., Neiner C., Pápics P. I., Oksala
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Table A1: Stellar parameters for the TESS δ Sct and γ Dor pulsators observed at 2-min cadence during the first two pointings
(Sectors 1 and 2) in the ecliptic Southern hemisphere. The columns indicate: the TESS Input Catalogue (TIC) number, the
TESS magnitude, an alternative identifier of the star, spectroscopic (Spec.) and photometric (Phot) effective temperatures
and log g values and their associated uncertainties from literature respectively. The reference is indicated next to each value.
In addition, we list the projected rotational velocity and binarity status as available in literature.

TIC TESS alternative Teff[K] σTeff Teff[K] σTeff log g σlog g log g σlog g v sin i σvsini binarity

mag identifier Spec. Spec. Phot. Phot. Spec. Spec. Phot. Phot. [km s−1] [km s−1]

9632550 9.06 BS Aqr 72451 751 - - 3.821 0.121 - - 231 - -

12470841 8.44 HD 923 - - 7832 2 - - - - - - - -

12784216 8.92 HD 213125 - - 65193 1783 - - 4.033 0.263 - - -

12974182 6.78 HD 218003 74714 954 75845 2085 3.864 0.184 4.055 - - - -

29281339 6.63 HD 198501 - - 75115 2845 - - 3.885 - - - -

30531417 11.03 XX Dor - - 67696 2026 - - - 1.826 - - -

32176627 6.90 HD 209970 - - 71565 3475 - - 4.105 - - - -

32197339 6.97 HD 210139 - - 77665 1255 - - 3.505 - - -

33911462 8.06 HD 222828 - - 69877 987 - - 3.537 - - - -

33984043 6.37 HD 223466 - - 84338 588 - - 4.239 - 69.510 110 -

34038105 6.74 HD 223991A - - 885411 - - - - - -

38587180 7.69 TX Ret 800912 - 72582 - 3.6212 - - - - - -

38602305 6.13 θ Ret A - - 124422 - - - - - - - binary13

38847248 5.86 θ Tuc - - 763814 9014 - - 3.5914 0.0814 8015 - binary16

44627561 8.98 HD 215559 - - - - - - - - - - -

49677785 9.35 HD 220687 70331 771 - - 3.391 0.121 - - 911 - -

51991595 12.07 2MASS J01011055-6843069 - - 67946 2016 - - 4.196 - - - -
52244754 9.04 HD 8438 - - - - - - - - - - -

52258534 7.71 BG Hyi 728912 - 69282 - 2.9112 - - - - - -
66434034 8.88 HD 5497 - - - - - - - - - - -
70744515 8.80 HD 225077 - - - - - - - - - - -

71334169 8.52 HD 209430 - - 687217 12517 - - - - - - -

79394646 3.58 θ Ind A 787018 - - - 4.1418 - - - 13510 210 binary19

80474886 6.23 AZ Phe - - 727814 3514 - - 3.965 0.1114 - -
88277481 9.04 HD 210740 - - - - - - - - - - -

89464315 5.29 WX PsA 743039 3439 75099 2559 - - 3.679 0.149 918 - -

89542582 9.71 HD 223587 - - 72955 2085 - - 3.975 - - - -
92734713 8.32 HD 200835 - - - - - - - - - - -

99839685 8.46 HD 204972 - - 7153 2 - - - - - - - -

102090493 9.20 HD 7454 - - 719511 - - - - - - - -

116157537 5.88 BB Phe 697339 10739 70002 - - - - - 8315 - -

126659093 9.18 ZZ Mic 72171 541 761311 - - - - - 351 - -

137796620 9.87 HD 216728 - - 75596 2136 - - 4.136 0.486 - - -

139131968 5.52 Tau3 Gru - - 782021 10021 - - 3.7235 - - - -

139232635 3.94 θ Gru - - - - - - - - 6422 - binary19

139825582 7.40 CF Ind 693823 - 70752 - 3.323 - - - - - -

M
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Table A1: Stellar parameters for the TESS δ Sct and γ Dor pulsators observed at 2-min cadence during the first two pointings
(Sectors 1 and 2) in the ecliptic Southern hemisphere. The columns indicate: the TESS Input Catalogue (TIC) number, the
TESS magnitude, an alternative identifier of the star, spectroscopic (Spec.) and photometric (Phot) effective temperatures
and log g values and their associated uncertainties from literature respectively. The reference is indicated next to each value.
In addition, we list the projected rotational velocity and binarity status as available in literature.

TIC TESS alternative Teff[K] σTeff Teff[K] σTeff log g σlog g log g σlog g v sin i σvsini binarity

mag identifier Spec. Spec. Phot. Phot. Spec. Spec. Phot. Phot. [km s−1] [km s−1]

139845816 8.02 RS Gru 785312 - 69337 817 - - 3.537 - 4015 - binary24

141026903 6.37 HD 35184 - - 80178 2068 - - 3.75 - 9425 625 -

144309524 11.33 TYC 8459-201-1 - - 78186 2176 - - 4.116 1.766 - - -

144387364 7.16 BF Phe - - 72415 1855 - - 4.025 0.1714 80 - -

147085268 8.02 HD 203880 - - 704626 - - - - - - - -

147113185 5.30 HD 204018 - - 71182 - - - - - - - binary27

150101501 9.49 HD 42780 - - 805128 20028 - - - - - - -

150394126 6.54 HD 46190 979029 9729 83465 6695 - - 4.215 - - - -
152864226 7.84 HD 217417 - - - - - - - - - - -

154842794 5.15 π PsA 719418 - - 4.24 - - - - binary30

161172103 6.34 CC Gru - - 703114 6514 - - 3.5514 0.149 122 18 - -

166808854 4.88 η Hor - - 720331 9031 - - - - 731 231 binary32

167602316 3.04 α Pic - - 755133 3533 - - - - 2068 - -

183532876 11.24 CD-34 16262 - - 68446 2036 - - 4.186 1.496 - - -

183595451 5.73 AI Scl 714739 14539 75029 2559 3.2123 - - - - -

197686479 5.86 BZ Gru - - 698214 8114 - - 3.2614 - - - -
197759259 8.68 HD 209689 - - - - - - - - - - -

198035211 9.45 HD 26058 73351 4421 79501 3301 - - - - - - -

201250317 9.23 HD 225032 74741 831 811511 - 4.251 0.161 - - - - -
206660904 7.65 HD 216290 - - - - - - - - - - -

211379298 9.46 HD 203513 - - 801928 20028 - - - - - - -

219332123 7.16 DR Gru - - 744714 13714 - - 3.8214 0.134 - - -

224280541 7.21 HD 222701 - - 74202 - - - - - - - -
224285142 8.68 HD 222987 - - - - - - - - - - -

224285325 7.01 SX Phe 913823 - - - 5.0223 - - - 1815 - -

229059574 6.15 HD 210111 740014 10014 755014 12314 3.814 0.114 3.8414 - 3014 - binary35

229150702 5.76 BD Phe 795039 - 80509 2749 3.83 - 3.999 0.0914 11831 1531 -

229154157 9.53 HD 11667 70611 811 71794 1464 3.481 0.121 - - 311 - -
229810275 9.03 HD 19098 - - - - - - - - - - -

231014033 9.23 HD 10961 74821 831 806911 - 4.341 0.161 - - 391 - -
231020078 9.01 HD 11333 - - - - - - - - - - -

231048083 6.55 FG Eri 898623 40023 79988 938 3.9323 0.523 3.155 - 10731 431 -

231632224 12.72 2MASS J21101928-5750453 - - 70276 2026 - - 4.176 - - - -

234498473 5.21 HD 4125 794339 9239 - - - - - - 1531 531 binary32

234516307 8.78 HD 5648 - - - - - - - - - - -

234528371 8.97 HD 6622 - - 723036 2736 - - - - - - -
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Table A1: Stellar parameters for the TESS δ Sct and γ Dor pulsators observed at 2-min cadence during the first two pointings
(Sectors 1 and 2) in the ecliptic Southern hemisphere. The columns indicate: the TESS Input Catalogue (TIC) number, the
TESS magnitude, an alternative identifier of the star, spectroscopic (Spec.) and photometric (Phot) effective temperatures
and log g values and their associated uncertainties from literature respectively. The reference is indicated next to each value.
In addition, we list the projected rotational velocity and binarity status as available in literature.

TIC TESS alternative Teff[K] σTeff Teff[K] σTeff log g σlog g log g σlog g v sin i σvsini binarity

mag identifier Spec. Spec. Phot. Phot. Spec. Spec. Phot. Phot. [km s−1] [km s−1]

234548714 7.21 BS Tuc 733737 - 732814 10214 - - 3.8414 0.1738 13015 - -

237318602 9.18 HD 216941 - - 71754 4964 - - - - - - -

237881239 9.38 HD 8052 74771 831 72384 4694 4.151 0.161 - - 1981 - -

238185398 9.14 HD 23537 - - 817311 - - - - - - - -
246845553 8.35 HD 1619 - - - - - - - - - - -

246853154 8.03 HD 2026 - - 65772 - - - - - - - -

253917376 8.07 UV PsA 791812 - 68897 1547 4.0012 - - - - - -

260353074 8.96 HD 44596 - - 703126 - - - - - - - -

260416268 5.47 ν Pic 753720 7620 - - - - - - - - -

260654645 12.44 2MASS J06324522-5748198 - - 68266 2016 - - 4.186 - - - -

261089835 11.45 TYC 9492-1017-1 - - 69786 2056 - - 4.176 - - - -

265566844 7.52 BX Ind 696812 - 67627 887 3.627 - 0.197 - - - -

267094416 8.51 HD 18006 - - 71722 - - - - - - - -
269994543 8.63 HD 197648 - - - - - - - - - - -

270067755 7.09 2MASS J20472005-2624547 - - 70985 1635 - - 3.835 - - -
277682809 8.32 HD 208154 - - - - - - - - - - -

278611926 7.51 HD 210767 - - - - - - - - - - binary19

279361762 8.04 V383 Car 68387 957 - - 3.687 - - - - - -

279613634 8.77 HD 54480 - - 714728 15028 - - - - - - -

303584611 6.74 BS Scl 821623 40023 77645 1755 3.7623 0.523 3.835 - - - -

308396022 10.99 TYC 8928-1300-1 - - 67305 2485 - - 3.815 - - - -

340705975 6.51 AW Scl - - 81035 1435 - - 3.605 - - - binary30

348762920 5.42 HD 20313 - - 70002 - - - 3.98 - 7515 - binary16

348772511 7.25 CP Oct 702839 12039 690038 10038 3.4423 - 3.6338 - 7240 - binary41

350431472 9.57 HD 38081 - - 762428 7528 - - - - - - -

350563225 9.07 HD 39131 763242 9542 782711 - 4.142 0.1842 - - 15742 - -

355547586 12.56 2MASS J21242025-5751539 - - 70736 2066 - - 4.166 - - - -

355687188 9.72 HD 224852 683443 30043 68655 3605 3.5043 0.343 3.555 - - - -

358070081 9.47 HD 16938 709044 - 70324 2084 3.9544 - - - 1091 - -

358502706 11.60 2MASS J04032009-8341586 - - 73696 2106 - - - - - - -

364399376 7.16 V393 Car - - 740034 10034 - - 3.734 - - - -
381204458 8.76 HD 19532 - - - - - - - - - - -

381857833 8.15 HD 204352 - - 730845 8145 - - - - - - -

382551468 10.44 CD-53 251 676146 9346 58366 1906 4.0346 0.1046 3.646 - 1746 146 -

394015973 7.96 BE Ind 783023 - - - 3.5623 - - - 3923 123 -

396720223 9.57 HD 28001 872052 - 72334 1864 - - - - - - -
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Table A1: Stellar parameters for the TESS δ Sct and γ Dor pulsators observed at 2-min cadence during the first two pointings
(Sectors 1 and 2) in the ecliptic Southern hemisphere. The columns indicate: the TESS Input Catalogue (TIC) number, the
TESS magnitude, an alternative identifier of the star, spectroscopic (Spec.) and photometric (Phot) effective temperatures
and log g values and their associated uncertainties from literature respectively. The reference is indicated next to each value.
In addition, we list the projected rotational velocity and binarity status as available in literature.

TIC TESS alternative Teff[K] σTeff Teff[K] σTeff log g σlog g log g σlog g v sin i σvsini binarity

mag identifier Spec. Spec. Phot. Phot. Spec. Spec. Phot. Phot. [km s−1] [km s−1]

399572664 9.78 HD 215353 - - 78265 2475 - - 4.105 1.56 6 - - -
402047030 8.05 HD 221098 - - - - - - - - - - -
402318229 8.96 HD 221576 - - - - - - - - - - -

426012953 9.62 HD 8096 80001 831 891911 - 4.501 0.161 - - - - -

431589510 11.81 TYC 9158-919-1 702347 4147 - - 4.0447 0.1747 - - - - -

439399707 8.82 HD 225186 - - 75182 3772 - - - - - - -

441110063 5.54 8 PsA - - - - - - - - 2325 - -

469844770 9.62 HD 199247 - - 79505 2085 - - 4.305 - - - -

469933721 5.88 DQ Gru - - - - - - - - 17925 - -
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Table A2: Stellar parameters and variability type of the 2-min cadence TESS δ Scuti and γ Dor pulsators determined in
this work. In this table we list the TESS Input Catalogue (TIC) name, an alternative name for each star, the effective
temperatures derived using the SED method (Section 4.1), the luminosities derived based on the Gaia and when available
Hipparcos parallaxes and the respective uncertainties (Section 4.3). In column 9 we describe the variability type determined
from the TESS data. The question mark means that the variability type is uncertain (e.g. due to unresolved peaks). HAGD
denotes a High Amplitude γ Dor star. The last column describes the chemical peculiarity as described in Renson & Manfroid
(2009).

TIC alternative Teff [K] σTeff log(L/L�) σ log(L/L�) log(L/L�) σ log(L/L�) variability chem.
identifier SED Gaia HIPP. type pec.

9632550 BS Aqr 6760 140 1.62 0.03 1.96 0.94 HADS
12470841 HD 923 8090 230 1.64 0.02 2.01 0.43 one large peak only
12784216 HD 213125 6390 120 1.14 0.01 δ Sct/hybrid?
12974182 HD 218003 7670 170 1.103 0.008 1.08 0.04 rot?/binary?
29281339 HD 198501 7430 160 1.205 0.007 1.17 0.04 almost const
30531417 XX Dor 6800 150 1.64 0.03 HAGD
32176627 HD 209970 7140 140 0.883 0.006 0.92 0.04 const
32197339 HD 210139 8120 180 1.9 0.1 1.69 0.13 γ Dor (unresolved)
33911462 HD 222828 6700 140 1.28 0.02 1.52 0.33 δ Sct
33984043 HD 223466 8340 80 1.257 0.008 1.33 0.05 const Am
34038105 HD 223991A 8640 90 1.131 0.007 1.02 0.06 const
38587180 TX Ret 7230 160 1.343 0.006 1.38 0.1 δ Sct Am
38602305 θ Ret A 12000 390 2.101 0.006 2.09 0.04 binary or multiple system
38847248 θ Tuc 7510 150 1.831 0.007 1.77 0.03 δ Sct/EB
44627561 HD 215559 6410 140 1.44 0.02 δ Sct/binary?/Ap? Am
49677785 HD 220687 7360 180 1.42 0.02 δ Sct /binary
51991595 2MASS J01011055-6843069 6890 150 1.25 0.03 HADS Am
52244754 HD 8438 6650 140 1.240 0.009 δ Sct Am
52258534 BG Hyi 6990 140 1.233 0.006 1.33 0.1 δ Sct
66434034 HD 5497 7830 200 0.94 0.01 δ Sct
70744515 HD 225077 9870 550 1.27 0.03 1.21 0.18 const
71334169 HD 209430 7150 160 1.21 0.01 0.62 0.21 δ Sct
79394646 θ Ind A 8090 60 1.074 0.008 1.1 0.01 δ Sct/binary/rot Am
80474886 AZ Phe 7030 120 1.308 0.006 1.39 0.09 δ Sct Am
88277481 HD 210740 7520 170 0.852 0.008 γ Dor/hybrid/1 peak only in δ Sct regime
89464315 WX PsA 7250 150 1.68 0.01 1.7 0.02 δ Sct Am
89542582 HD 223587 7430 170 1.09 0.03 0.81 0.36 δ Sct
92734713 HD 200835 8420 270 1.12 0.01 δ Sct
99839685 HD 204972 7210 160 1.10 0.01 0.84 0.16 δ Sct/ hybrid?

102090493 HD 7454 5890 110 1.28 0.01 0.79 0.21 δ Sct /Ap/binary?
116157537 BB Phe 7070 120 1.749 0.006 1.7 0.05 δ Sct
126659093 ZZ Mic 8110 210 1.2 0.02 1.03 0.33 HADS
137796620 HD 216728 7840 200 0.89 0.03 δ Sct

139131968 τ3 Gru 7550 160 1.457 0.009 1.38 0.02 const Am
139232635 θ Gru 6990 90 1.4 0.02 1.45 0.02 rot
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Table A2: Stellar parameters and variability type of the 2-min cadence TESS δ Scuti and γ Dor pulsators determined in
this work. In this table we list the TESS Input Catalogue (TIC) name, an alternative name for each star, the effective
temperatures derived using the SED method (Section 4.1), the luminosities derived based on the Gaia and when available
Hipparcos parallaxes and the respective uncertainties (Section 4.3). In column 9 we describe the variability type determined
from the TESS data. The question mark means that the variability type is uncertain (e.g. due to unresolved peaks). HAGD
denotes a High Amplitude γ Dor star. The last column describes the chemical peculiarity as described in Renson & Manfroid
(2009).

TIC alternative Teff [K] σTeff log(L/L�) σ log(L/L�) log(L/L�) σ log(L/L�) variability chem.
identifier SED Gaia HIPP. type pec.

139825582 CF Ind 7250 140 1.504 0.009 1.47 0.14 δ Sct/ hybrid? Am
139845816 RS Gru 7780 170 1.45 0.01 1.41 0.25 HADS
141026903 HD 35184 8120 160 1.455 0.005 1.43 0.03 const
144309524 TYC 8459-201-1 7220 240 1.32 0.04 HADS
144387364 BF Phe 7350 170 1.013 0.005 0.97 0.06 δ Sct/ hybrid?
147085268 HD 203880 7290 160 1.062 0.008 δ Sct/ hybrid?
147113185 HD 204018 6900 120 1.175 0.006 1.21 0.03 const Am
150101501 HD 42780 7920 240 1.09 0.01 δ Sct
150394126 HD 46190 8850 100 1.167 0.005 1.16 0.02 δ Sct
152864226 HD 217417 7200 150 0.93 0.01 0.91 0.1 δ Sct/ hybrid
154842794 πPsA 7420 110 0.783 0.007 0.82 0.02 γ Dor Am
161172103 CC Gru 7160 150 1.466 0.006 1.57 0.06 δ Sct
166808854 ηHor 7840 500 1.06 0.02 1.14 0.04 δ Sct Am
167602316 α Pic 7350 660 1.56 0.05 δ Sct/hybrid
183532876 CD-34 16262 7140 280 1.55 0.04 HADS Am
183595451 AI Scl 7360 140 1.234 0.009 1.23 0.02 δ Sct Am
197686479 BZ Gru 6950 130 1.69 0.01 1.77 0.05 δ Sct
197759259 HD 209689 7510 180 1.135 0.009 δ Sct/ hybrid
198035211 HD 26058 7530 170 0.95 0.01 δ Sct
201250317 HD 225032 7410 250 1.01 0.01 δ Sct Am
206660904 HD 216290 7450 170 1.33 0.01 1.26 0.12 const
211379298 HD 203513 8110 210 1.20 0.03 δ Sct /binary Am
219332123 DR Gru 7830 160 1.062 0.007 1.02 0.07 δ Sct/ hybrid?
224280541 HD 222701 7420 140 1.35 0.01 1.46 0.08 const
224285142 HD 222987 7730 190 1.23 0.01 1.09 0.18 δ Sct
224285325 SX Phe 7320 170 0.844 0.009 0.79 0.04 HADS Am
229059574 HD 210111 7910 110 1.157 0.006 1.15 0.03 δ Sct
229150702 BD Phe 8300 80 1.343 0.005 1.33 0.02 δ Sct Am
229154157 HD 11667 6660 140 1.33 0.01 δ Sct
229810275 HD 19098 8250 220 1.17 0.008 const
231014033 HD 10961 7150 150 0.88 0.01 δ Sct
231020078 HD 11333 7450 180 0.94 0.02 δ Sct/ hybrid?
231048083 FG Eri 7940 140 1.984 0.007 2 0.07 developed δ Sct?
231632224 2MASS J21101928-5750453 7210 280 1.56 0.08 HADS
234498473 HD 4125 7960 160 1.61 0.08 δ Sct Am
234516307 HD 5648 7520 180 1.097 0.008 δ Sct
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Table A2: Stellar parameters and variability type of the 2-min cadence TESS δ Scuti and γ Dor pulsators determined in
this work. In this table we list the TESS Input Catalogue (TIC) name, an alternative name for each star, the effective
temperatures derived using the SED method (Section 4.1), the luminosities derived based on the Gaia and when available
Hipparcos parallaxes and the respective uncertainties (Section 4.3). In column 9 we describe the variability type determined
from the TESS data. The question mark means that the variability type is uncertain (e.g. due to unresolved peaks). HAGD
denotes a High Amplitude γ Dor star. The last column describes the chemical peculiarity as described in Renson & Manfroid
(2009).

TIC alternative Teff [K] σTeff log(L/L�) σ log(L/L�) log(L/L�) σ log(L/L�) variability chem.
identifier SED Gaia HIPP. type pec.

234528371 HD 6622 7180 220 0.91 0.007 δ Sct Am
234548714 BS Tuc 7290 160 0.981 0.005 0.95 0.04 δ Sct/ hybrid?
237318602 HD 216941 δ Sct Am
237881239 HD 8052 7400 180 0.913 0.008 δ Sct/ hybrid?
238185398 HD 23537 8100 210 1.011 0.007 roAp candidate?
246845553 HD 1619 7200 160 1.00 0.01 spots Am
246853154 HD 2026 8340 160 1.39 0.01 1.27 0.12 rot?/binary?
253917376 UV PsA 6850 140 1.24 0.01 δ Sct Am
260353074 HD 44596 7010 150 1.26 0.02 δ Sct/ hybrid?
260416268 ν Pic 7830 300 1.20 0.02 1.04 0.02 rot?/binary? Am
260654645 2MASS J06324522-5748198 7050 160 1.24 0.03 HADS
261089835 TYC 9492-1017-1 6310 160 1.32 0.03 HADS Am
265566844 BX Ind 6640 130 1.46 0.01 1.09 0.1 δ Sct? 1 peak
267094416 HD 18006 7300 160 1.08 0.02 1 0.1 almost const
269994543 HD 197648 7430 170 0.95 0.02 δ Sct/ hybrid? Am
270067755 2MASS J20472005-2624547 7790 200 1.077 0.008 1.13 0.1 almost const Am
277682809 HD 208154 8320 240 0.936 0.007 0.98 0.14 δ Sct/ hybrid? Am
278611926 HD 210767 7370 140 4 3 rot?/binary?
279361762 V383 Car 6950 140 1.612 0.008 1.38 0.1 δ Sct
279613634 HD 54480 7190 160 1.00 0.01 δ Sct
303584611 BS Scl 8050 140 1.370 0.008 1.27 0.04 δ Sct
308396022 TYC 8928-1300-1 6860 150 0.94 0.01 δ Sct/HADS/hybrid?
340705975 AW Scl 8010 150 1.757 0.009 1.63 0.06 Ap?
348762920 HD 20313 7370 130 1.461 0.007 1.48 0.04 δ Sct/hybrid
348772511 CP Oct 6810 140 1.47 0.01 1.63 0.12 δ Sct
350431472 HD 38081 7020 170 0.998 0.007 δ Sct
350563225 HD 39131 7610 180 1.07 0.01 δ Sct
355547586 2MASS J21242025-5751539 7240 170 1.05 0.08 HADS
355687188 HD 224852 6510 140 1.45 0.02 HADS
358070081 HD 16938 6540 140 0.9 0.2 δ Sct
358502706 TYC 9492-02623-1 7220 190 1.12 0.02 HADS
364399376 V393 Car 7330 170 1.489 0.008 δ Sct
381204458 HD 19532 7730 180 1.48 0.01 δ Sct /binary Am
381857833 HD 204352 7460 170 1.102 0.008 0.98 0.11 δ Sct
382551468 CD-53 251 6080 110 0.83 0.01 const
394015973 BE Ind 7520 180 1.33 0.01 1.42 0.23 δ Sct/ hybrid?
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Table A2: Stellar parameters and variability type of the 2-min cadence TESS δ Scuti and γ Dor pulsators determined in
this work. In this table we list the TESS Input Catalogue (TIC) name, an alternative name for each star, the effective
temperatures derived using the SED method (Section 4.1), the luminosities derived based on the Gaia and when available
Hipparcos parallaxes and the respective uncertainties (Section 4.3). In column 9 we describe the variability type determined
from the TESS data. The question mark means that the variability type is uncertain (e.g. due to unresolved peaks). HAGD
denotes a High Amplitude γ Dor star. The last column describes the chemical peculiarity as described in Renson & Manfroid
(2009).

TIC alternative Teff [K] σTeff log(L/L�) σ log(L/L�) log(L/L�) σ log(L/L�) variability chem.
identifier SED Gaia HIPP. type pec.

396720223 HD 28001 7200 160 1.13 0.02 δ Sct/ hybrid?
399572664 HD 215353 8050 210 1.26 0.02 δ Sct /binary?/rot?
402047030 HD 221098 7080 150 1.213 0.008 1.25 0.16 const
402318229 HD 221576 7650 180 1.07 0.02 δ Sct/ hybrid? Am
426012953 HD 8096 8360 290 1.38 0.02 const
431589510 TYC 9158-919-1 6930 190 1.2 0.3 HADS
439399707 HD 225186 7250 170 0.99 0.02 1.19 0.25 δ Sct/binary/flares
441110063 8 PsA 7720 160 1.122 0.008 1.17 0.02 δ Sct
469844770 HD 199247 7980 210 0.92 0.01 δ Sct
469933721 V* DQ Gru 0 0 1.691 0.008 1.63 0.07 γ Dor/ δ Sct/hybrid?
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2722 MTA CSFK Lendület Near-Field Cosmology Research
Group
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