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Abstract 

Prognostic models are used to predict an individual’s future health outcomes, including 

the risk of disease progression and the development of further complications. The 

statistical methodology used to develop these models is often naïve to the presence 

of competing events, these are events which prevent or alter the probability of an 

outcome of interest from occurring. Not appropriately accounting for competing events 

is known to produce inflated absolute risk predictions for time-to-event outcomes, this 

bias is known as competing risks bias. However, there has been relatively little 

research about competing events in prognostic model research, for which absolute risk 

predictions are a key outcome. 

This thesis investigates the presence and impact of competing events on prognostic 

model research. To begin, two reviews were conducted to determine the presence, 

reporting, and management of competing events in current prediction model literature. 

Then competing risks statistical regression methods were applied to develop and 

internally validate a prognostic model using existing study data. These models were 

compared to models developed using standard time-to-event analysis techniques, 

naïve to competing events, with an external validation study. Finally, a simulation study 

was performed to identify the circumstances for which competing risks bias affects the 

predictive ability and calibration of prognostic models, with an overall aim to provide 

guidance for the optimal approaches to incorporate competing risks in prognostic 

model research. 
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1 INTRODUCTION 

1.1 Thesis overview 

Prognostic models provide personalised estimates of the risk of future events for 

patients in a given health state (Harrell, 2015, Steyerberg et al., 2013). Clinicians and 

patients may utilise prognostic models to predict the risks of future events, enhancing 

informed decision making and enabling tailored treatment strategies (Steyerberg et al., 

2013). In order to enhance decision making, prognostic models should produce reliable 

(i.e. accurate) estimates of the absolute risk of the event. Ideally, prognostic models 

estimate the risk of a clinically relevant outcome, often through the development of a 

statistical equation, such as via multivariable regression techniques (Steyerberg et al., 

2013). Time-to-event analysis (also known as survival analysis) methods are utilised 

when both the occurrence of an event of interest and the time until the occurrence are 

of interest (Harrell, 2015). 

However, it is common in clinical practice to have multiple events that could 

occur, which preclude or alter the probability of the event of interest occurring (Koller 

et al., 2012). These so-called competing events, if not appropriately accounted for 

when developing prognostic models, can result in inflated absolute risk estimates 

(Andersen et al., 2012, Berry et al., 2010, Koller et al., 2012, Wolbers et al., 2009), 

referred to as “competing risks bias” (Schatzkin and Slud, 1989, Schumacher et al., 

2016, Walraven and McAlister, 2016). For example, the risk of second hip fracture at 

10 years was estimated to be 21% when ignoring the competing risk of death. This is 

1.75 times greater than the true risk of 12%, estimated by appropriately accounting for 

deaths (Berry et al., 2010). Such biases in absolute risk predictions may result in 

inaccurate individual risk predictions which could impact the decisions and treatment 

strategies initiated by clinicians and their patients. This may be a particular issue when 
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developing prediction models in frail populations, such as the elderly, those with 

multimorbidities, or the critically ill, as in these settings individuals are more likely to 

experience a number of competing outcomes prior to the outcome of interest (Koller et 

al., 2012). 

In order to avoid competing risks bias, the appropriate competing risks statistical 

methods, rather than standard time-to-event methods, should be applied. However, 

while the theory of competing risks has been around since the 1760s (Bernoulli, 1760), 

investigations have revealed that the methods are not being applied adequately. A 

systematic review of scientific articles published in high-impact clinical journals 

between 2007 and 2010 found competing risks bias was present in 67% (24/35) of 

eligible studies (Koller et al., 2012). Additionally, a recent systematic review of articles 

that reported Kaplan-Meier estimates, published in prominent medical journals in 2013, 

revealed almost half (46/100) of the studies were susceptible to competing risks bias 

(Walraven and McAlister, 2016). An update of this review, focusing on articles 

published in the New England Medical Journal in 2015, similarly found almost half 

(25/51) of studies were susceptible to this bias (Schumacher et al., 2016). Finally, a 

systematic review of reports of randomized controlled trials published in 2015 found 

77.5% (31/40) of the studies were susceptible to competing risks bias (Austin and Fine, 

2017). Thus, it is likely that competing risks bias is present in prediction model 

research, but this needs to be formally examined. 

Though the potential impact of competing events on prognostic model research 

could be substantial, limited research has been conducted in this area. Therefore, the 

focus of this thesis is the investigation of the presence and impact of competing events 

on prognostic model research. This chapter lays the foundations on which the thesis 

is built. An overview of prognosis research is presented, followed by an introduction to 

statistical methods for standard time-to-event analysis and competing risks analysis. 
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Methods for developing and validating prognostic models are presented, and the aims 

of the thesis are outlined. 

1.2 Prognosis research 

Prognosis, a key concept in evidence based medicine, refers to the risks of future 

health outcomes in patients with a given disease or health condition (Hemingway et 

al., 2013). The focus of a number of clinical actions (including screening, diagnosis, 

and therapy) is to understand, predict, and improve individual prognoses (Steyerberg, 

2008). Thus, prognosis research seeks to investigate the relations between future 

outcomes in patients with a given health state, in order to improve health (Hemingway 

et al., 2013). This contrasts with diagnostic research, which investigates the probability 

that a disease or condition is already present in a patient. Prognosis research aids 

understanding of the natural history of the health state, indicating the most likely course 

of progression or recovery, identifying factors associated with the riski of future events, 

and identifying groups of individuals most at risk of these events (Steyerberg, 2008). 

The study of prognosis is crucial for the increased understanding and improvement of 

patient outcomes, and should thus be integral to clinical decision making and 

healthcare policy (Hemingway et al., 2013). 

The PROGnosis RESearch Strategy (PROGRESS) Partnershipii published a 

series of articles focusing on each of four research themes, listed below, which 

together outline a framework for prognosis research (Hemingway et al., 2013): 

                                                      
i The term “risk” is used throughout the thesis to convey the probability of a future event. While the 
connotation is that events are negative, this is not always the case e.g. predicting disease recovery. 
iiThe PROGRESS Partnership is a UK Medical Research Council (MRC) funded, international, 
interdisciplinary collaboration developing understanding in research into quality of care outcomes, 
prognostic factors, risk prediction models, and predictors of differential treatment response. 
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1. Overall prognosis research aims to describe and explain the average prognosis 

of future outcomes in relation to current diagnostic and treatment practices 

(Hemingway et al., 2013). 

2. Prognostic factor research aims to identify any measure (prognostic factor) that 

is associated with a subsequent clinical outcome among people with a particular 

disease or health condition (Riley et al., 2013). 

3. Prognostic model research utilises combinations of multiple prognostic factors 

to predict the risk of future clinical outcomes in individual patients (Steyerberg et 

al., 2013). 

4. Stratified medicine research involves tailoring therapeutic decisions to an 

individual or groups of individuals based on their predicted risk and/or predicted 

response to therapy (Hingorani et al., 2013). 

This thesis focuses on PROGRESS theme three (prognostic model research) as 

methods for the development and validation of multivariable prognostic models for 

time-to-event outcomes are explored. Prognostic models may be referred to as clinical 

prediction models/tools/rules, prognostic indices/scores, prediction models, predictive 

scores, risk scores, scoring systems, risk stratification tools, amongst others. Ideally, 

prognostic models estimate absolute risk predictions of a clinically relevant outcome, 

derived through a formal combination of multiple prognostic factors, typically by 

applying multivariable regression techniques (Steyerberg et al., 2013). Prognostic 

model research can be applied to identify high risk groups for targeted screening or 

prevention interventions, to aid therapeutic decision making and follow-up strategies, 

and in further medical researchi (Steyerberg, 2008). An example of a well-known 

prognostic model with a time-to-event outcome, used in daily clinical practice, is 

provided in Figure 1.1. 

                                                      
i Such as stratification in randomised controlled trials or adjusting baseline imbalance in observational 
studies. 
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Figure 1.1: Example of a prognostic model with time-to-event outcome - GRACE 

The GRACE risk scores (Fox et al., 2006) are NICEi recommended (NICE CG94) 
prognostic models which estimate in-hospital and 6 month risks of death and myocardial 
infarction at admission and discharge for patients presenting with acute coronary 
syndrome. The models were developed using data from 21,688 patients included in a 
prospective multinational observational study. 
 
Cox regression analysis was utilised to develop the models, which contain eight prognostic 
factors, including the patient’s age, heart rate (HR), systolic blood pressure (SBP), and 
serum creatinine (Creat.) measures and whether the patient has congestive heart failure 
(CHF), cardiac arrest at admission, ST-segment deviation, or elevated cardiac 
enzymes/markers. 
 
The GRACE risk scores were developed into an app, depicted below, and have been 
integrated into electronic medical record systems used in daily clinical management of 
acute coronary syndrome patients worldwide. 
 

 
GRACE risk calculator (www.outcomes.org/grace) (Fox et al., 2006)ii 

 

Numerous tutorials for prognostic model research have been published, including 

the BMJiii series “Prognosis and prognostic research” (Moons et al., 2009b, Royston 

et al., 2009, Altman et al., 2009, Moons et al., 2009a), the “Risk prediction models” 

series (Moons et al., 2012b, Moons et al., 2012a), and the “Clinical prediction models” 

(Steyerberg, 2008) and “Prognosis Research in Healthcare: Concepts, Methods, and 

                                                      
iThe National Institute for Health and Care Excellence (NICE) is a public body of the department of 
health in the UK, providing national guidance and advice to improve health and social care. 
ii Reproduced from “Prediction of risk of death and myocardial infarction in the six months after 
presentation with acute coronary syndrome: prospective multinational observational study (GRACE)” 
Fox et al., 333, 2006, with permission from BMJ Publishing Group Ltd. 
iiiThe British Medical Journal (BMJ) is an international peer-reviewed medical journal. 

http://www.outcomes.org/grace
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Impact” (Riley et al., 2019a) books. Although the number of prognostic models in 

medical and health research have proliferated in recent years, current evidence 

indicates deficiencies in the statistical methods (Hemingway et al., 2009) and poor 

quality of reporting (Collins et al., 2015), prompting the development of the Transparent 

Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 

(TRIPOD) guidelines (Collins et al., 2015). The above texts discuss the principles and 

methods for prognostic model research, though there remains much debate regarding 

ideal practices. However, it is generally accepted that prognostic model research can 

be split into different stages; these can be categorised as model development (with or 

without internal validation); model validation (with or without updating); and subsequent 

evaluation of impact in clinical practice (Collins et al., 2015, Steyerberg et al., 2013). 

It has been commented that prognostic models are more likely to be accepted 

and successfully implemented if shown to be clinically crediblei (Wyatt and Altman, 

1995), and show evidence of accuracy, generalisability, and effectiveness (Steyerberg 

et al., 2013). Further, a number of general principles for good practice are proposed 

for clinically useful prognostic models (Moons et al., 2012b, Steyerberg, 2008), outlined 

in Box 1.1. A recent review of prognostic models found models were more likely to be 

reliable when; developed using a large, high-quality dataset; based on a study protocol 

with a sound statistical analysis plan; validated in independent datasets obtained from 

different locations (Steyerberg et al. 2013). 

                                                      
i Clinically credible in this context refers to prognostic models which are supported by leading 
professionals and which contain all clinically important prognostic factors. 
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Box 1.1: Principles for good practice for clinically useful prognostic models 

1. There should be a clear aim to predict a clinically meaningful outcome; which 
ought to be assessed objectively and without bias. 

2. Participants should be representative and from a well-defined cohort. 
3. A pre-determined selection of standardised, clinically relevant, and readily-

available prognostic factors should be collected, at their intended moment of use 
(i.e. the time of prediction). 

4. Follow-up time ought to be sufficient for the appropriate number of events to be 
observed, i.e. the sample size should be sufficient. In particular, it is often 
recommended there be at least ten events per candidatei prognostic factor 
(Peduzzi et al., 1995)  

5. There should be an intention to apply the model in practice and/or research. 

 

The remainder of this chapter introduces the statistical considerations for 

prognostic model research, specifically focusing on fundamental statistical concepts 

for time-to-event outcomes, including the presence of competing events, and 

considerations for the development and validation of prognostic models with time-to-

event outcomes. Then from Section 1.7, the aims and objectives of the thesis are 

outlined. 

1.3 Statistical analysis of time-to-event outcomes 

Prognostic models predict the risks of an outcome within a specific time period 

(Steyerberg et al., 2013). When both the occurrence and the time until the occurrence 

of an event are of interest (such as time to next epileptic episode), or when long-term 

outcomes are of interest (such as 10 year risk of cardiovascular disease), the optimal 

approach is to apply time-to-event (also known as survival) analysis techniques 

(Harrell, 2015). Time-to-event analysis examines the time between a suitable starting 

point and the occurrence of an event. In prognosis research the starting point is usually 

patient diagnosis, first presentation of the health condition in clinical practice, or entry 

into a given health state, and the event is clinically relevant and binary (Collins et al., 

                                                      
i Candidate prognostic factors refers to the group of prognostic factors considered for use in the 
prognostic model Thus may include prognostic factors which are not included in the final prognostic 
model due to the application of a selection process (see Section 1.5.2). 
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2015). The response variable, the time to the event, may have an unusual distribution; 

it is usually continuous but is restricted to be positive, thus often has a skewed (not 

normal) distribution. Additionally, it is unlikely that the event of interest will be observed 

for all participants; some participants may not experience the event during the study 

and some may be lost to follow-up. Time-to-event analysis can incorporate 

incompletely determined outcome information (censoring), which is likely to occur with 

long-term outcomes, thus it uses data more efficiently than other regression methods 

(such as logistic regression) (Harrell, 2015). 

1.3.1 Censoring 

Censoring occurs when a participant is not observed to experience the event of 

interest during the study follow-up period. There are a number of censoring 

mechanisms which may result in the reporting of censored observations, including left, 

right, and interval censoring (Harrell, 2015). Left censoring occurs when a participant 

experiences the event prior to the study start time. Interval censoring occurs when the 

event is known to have occurred during a time interval though the exact time is 

unknown, such as when an outcome is assessed at periodic clinical examination. Both 

left and interval censoring are not often present in prognostic model research and are 

thus not considered further in this thesis. Right censoring may occur if participants 

have not experienced the event by the end of follow-up (administrative censoring), or 

if participants stop being observed before the end of the study (loss to follow-up). A 

graphical representation of time-to-event data containing right-censoring is provided in 

Figure 1.2. 
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Figure 1.2: Example of time-to-event data with right censoring. 

 
Participant follow-up time is shown by the solid blue lines. 
Participant A experiences the event of interest after six years. 
Participant B does not experience the event of interest during the study period, so is 
right-censored and contributes ten years of event-free time to the analysis. 
Participant C is lost to follow-up, so is right-censored; and contributes three years of 
event-free time to the analysis. 
Participant D joins the study at two years, and experiences the event at nine years; their 
time-to-event is 9-2 = 7 years. 
Participant E joins the study at five years, and withdraws from the study at eight years, so 
is right-censored and contributes 8-5 = 3 years of event-free time to the analysis. 

 

A key assumption of standard time-to-event analysis is non-informative (or 

independent) censoring; that those participants who are censored have the same 

probability of experiencing the event as others still at risk at the time the censoring 

occurred (Geskus, 2015). Under this assumption, removing those who are censored 

from the analysis at the time of censoring does not affect the overall risk of an event 

going forward. If informative censoring exists, then the time-to-event estimates may be 

biased. For example, if participants who are lost to follow-up withdrew from the study 

because they felt particularly unwell, their risk of experiencing an adverse event might 

be comparably worse than those who remain in the study. Whether the assumption of 

non-informative censoring is reasonable in the presence of other events, particularly 

ones which can alter the risk of the event of interest (competing events), will be 

discussed in detail later in this chapter. 

1.3.2 Introduction of the multi-state structure 
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Time-to-event analysis methods are now described in the context of a multi-state 

modelling structure. Under this structure, participants transition between states 

following the occurrence of an event. The simplest multi-state structure is depicted in 

Figure 1.3, and begins with all participants in a single initial state. Participants remain 

in this state until the occurrence of an event of interest, at which time they transition 

into a second state. Participants then remain in the second state until the end of the 

study, as there is no chance of exiting the second state it is referred to as an absorbing 

state. This structure can be used to describe standard time-to-event analysis 

techniques; for example, when analysing survival, all participants are alive (the initial 

state) until death (the event) after which they are dead (the absorbing state). 

Figure 1.3: Simple multi-state structure. 

 
Boxes represent states and arrows represent transitions. 
All participants begin in the initial state. Following an event, participants transition into the 
absorbing state. 

 

1.3.3 Key functions in time-to-event analysis 

Time-to-event analysis comprises a number of functions which are of interest in 

prognostic model research. These measures are detailed below for a continuous non-

negative random variable T, which represents the time between a defined starting 

point t = 0 and the occurrence of an event of interest. Hence, T has a probability 

distribution with an underlying probability density function f(t). 

1.3.3.1 The survival and cumulative incidence functions 

In prognostic model research, the key outcome of interest is the risk of either 

experiencing or surviving the event of interest before a given time t, for example the 

risk of relapse in the five years following breast cancer surgery. It is common in time-

to-event analysis to define a statistical model using the survival function S(t), a time 
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dependent function which estimates the probability of an individual not experiencing 

(i.e. surviving) the event of interest prior to a given time t, written: 

S(t) = P(T ≥ t),    0 < t < ∞ Equation 1.1 

However, in prognostic model research, it is often more intuitive to communicate risk 

as the probability of an individual experiencing the event prior to time t (such as five-

year mortality risk). This is estimated using the cumulative incidence function F(t), 

written: 

F(t) = P(T < t) = 1 − S(t),     0 < t < ∞ Equation 1.2 

The survival function, and thus the cumulative incidence function, can be 

estimated non-parametrically using the Kaplan-Meier method (Kaplan and Meier, 

1958). This method estimates the probability of survival at each unique event time, 

producing a step-function which is often shown graphically as a Kaplan-Meier curve, 

an example of which is provided in Figure 1.4. 

Figure 1.4: Example of a Kaplan-Meier curve. 

 
A Kaplan-Meier curve depicting survival and cumulative incidence functions for 
disease recurrence and death using a selection of patients from the Rotterdam 
breast cancer study data (Foekens et al., 2000). 
The Kaplan-Meier curve commonly depicts the probability of an event not occuring over 
time, i.e. the survival function (blue line). A curve depicting the risk of an event occuring 
over time, i.e. the cumulative incidence function (red line), is often referred to as the 1 – 
Kaplan-Meier curve. 
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At the study start time, i.e. when t = 0, all of the participants are event free, 

thus S(t = 0) = 1 and F(t = 0) = 0. The probability of experiencing the event (cumulative 

incidence) can only increase over time as more events occur, thus the probability of 

not experiencing the event (survival) can only decrease over time. 

1.3.3.2 The hazard and cumulative hazard functions 

The rate at which these survival and cumulative incidence functions change over time 

is also of interest in prognostic model research. This is measured using the hazard 

function h(t), which estimates the instantaneous rate of experiencing the event of 

interest at time 𝑡, conditional on the individual being at risk at that time (i.e. having not 

experienced the event prior to time t). The hazard function over time, for a small time 

interval 𝛿, is written: 

h(t) = lim
δ→0

P(t ≤ T < t + δ|T ≥ t)

δ
, δ > 0 Equation 1.3 

Another related quantity is the cumulative hazard function H(t), which estimates 

the total amount of hazard experienced up until time t, written: 

H(t) = ∫ h(u)
t

0
du Equation 1.4 

1.3.3.3 Theoretical relationships between key functions 

In time-to-event analysis, there exists a direct relationship between the risk 

(survival and cumulative incidence functions) and rate (hazard and cumulative hazard 

functions) of an event. For example, the survival function can be written as a 

transformation of the hazard function, and vice versa: 

S(t) = exp (− ∫ h(u)
t

0
du) ,     h(t) = −

d

dt
ln[S(t)] Equation 1.5 

Due to the relationship between the survival and cumulative incidence functions 

(Equation 1.2), the above equations can also be written: 
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F(t) = 1 − exp (− ∫ h(u)
t

0
du) ,     h(t) = −

d

dt
ln[1 − F(t)] Equation 1.6 

Similarly, due to the relationships between the hazard and the cumulative hazard 

function (Equation 1.4), these equations can also be written: 

S(t) = exp(−H(t)),     H(t) = −ln[S(t)] Equation 1.7 

These relationships result in what is often referred to as a one-to-one relationship 

between the risk and rate of the event of interest. 

1.3.4 Time-to-event regression 

Prognostic models usually need to incorporate combinations of multiple 

prognostic factors into the statistical model to accurately predict the risk of future 

outcomes (Steyerberg et al., 2013). Regression methods allow for multiple 

independent prognostic factors (variables) to be analysed simultaneously within a 

single multivariable model (Harrell, 2015). The Cox proportional hazard model (Cox, 

1972a) is considered to be the most commonly used model for the analysis of time-to-

event data (Royston and Lambert, 2011). Indeed, it has been shown to be one of the 

most frequently used regression models in prognostic model research, alongside 

logistic regression (Collins et al., 2015, Royston et al., 2009, Snell, 2015). However, 

recent research has highlighted many statistical advantages of using flexible 

parametric models, specifically the Royston-Parmar model (Royston and Parmar, 

2002), rather than Cox models in prognostic model research (Snell, 2015). These two 

models are discussed in greater detail below for the incorporation of 𝐗𝐢 = (x1, x2, … )T, a 

vector of prognostic factors for participant i. 

1.3.4.1 Cox proportional hazards models 

The Cox proportional hazards model estimates regression coefficients on the 

hazards scale: 

hi(t) = h0(t)exp(𝛃T𝐗𝐢) Equation 1.8 
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In which h0(t) represents the baseline hazard function and 𝛃 = (β1, β2, … ) 

represents a vector of regression coefficient estimates. The Cox model estimates the 

regression coefficients 𝛃 (also referred to as log hazard ratios) by maximising the 

partial likelihood on the hazards scale (Cox, 1972a). Following an exponential 

transformation, these estimates represent hazard ratios, which reflect the relative 

change in hazard rate for a unit increase in the associated prognostic factor. The 

baseline hazard function corresponds to the hazard rate over time when all prognostic 

factors are equal to 0. To make the interpretation of this function more meaningful, 

prognostic factors are often centred about their mean value prior to estimation, or 

similarly the linear predictor 𝛃T𝐗𝐢 (also known as prognostic index) is centred (Royston 

and Altman, 2013). The hazard ratio estimates obtained from the Cox model represent 

a change in hazard rate from a hypothetical “baseline participant”. If prognostic factors 

are centred, this “baseline participant” will be more representative of the participants, 

rather than, for example, a participant aged 0. The relative estimates produced by the 

model are useful for identifying differences in risks between participants with different 

prognostic characteristics, thus are essential for prognostic factor research. An 

example of a well-known prognostic model developed using Cox regression is provided 

in Box 1.4. 

The Cox model does not make any distributional assumptions with regard to the 

shape of the baseline hazard function h0(t), thus is described as a semi-parametric 

model. As a consequence, the model only estimates hazard ratios and does not directly 

estimate absolute risks (Royston and Altman, 2013), the more intuitive and 

interpretable output for prognostic model research. 
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Box 1.2: Example of a prognostic model developed using Cox regression 

The Nottingham Prognostic Index (Haybittle et al., 1982) is a well-known prognostic model 
which estimates the five year risk of death in patients that had a primary operable breast 
cancer. The model was developed using retrospective data from 387 patients from the 
Nottingham Breast Cancer Study. 
 
Cox regression analysis was utilised to develop the model, which contains three 
prognostic factors; tumour size (cms), lymph-node stage (coded A=1, B=2, C=3), and 
tumour grade (coded I=1, II=2, III=3). The model is described using the following linear 
predictor: 

𝐈 =  (𝟎. 𝟏𝟕 × 𝐬𝐢𝐳𝐞) + (𝟎. 𝟕𝟔 × 𝐬𝐭𝐚𝐠𝐞) + (𝟎. 𝟖𝟐 × 𝐠𝐫𝐚𝐝𝐞) 
 
The individual regression coefficients reflect the relationship between the prognostic factor 
and the five year risk of death. A 1cm increase in tumour size results in a hazard ratio 
equal to: 

𝐇𝐑 = 𝐞𝐱𝐩(𝟎. 𝟏𝟕) = 𝟏. 𝟏𝟗 
The hazard of death increases by a factor of 1.19 for each 1cm increase in tumour size. 
 
The index may be used to estimate the risk of death for a participant with a grade II 
tumour (coded II=2) of size 1.5cms and lymph-node stage A (coded A=1) as follows: 

𝐈 =  (𝟎. 𝟏𝟕 × 𝟏. 𝟓) + (𝟎. 𝟕𝟔 × 𝟏) + (𝟎. 𝟖𝟐 × 𝟐) = 𝟐. 𝟔𝟔 
 
This participants hazard of five year death is obtained following an exponential 
transformation of the linear predictor: 

𝐇𝐑 = 𝐞𝐱𝐩(𝟐. 𝟔𝟔) = 𝟏𝟒. 𝟑𝟎 
 
Hence this participant has a 14.3 times increased hazard in comparison to the “baseline 
participant”. 
 
The baseline participant has a tumour of size 0cms with implausible grade and lymph-
node stage classifications (as there exists no categories for grade=0 and stage=0)i.  

 

A key assumption made by the Cox (and other time-to-event) models is of 

proportional hazards (Harrell, 2015), that is the hazard ratios remain constant over 

time. This assumption may be examined using log-log plots (Royston and Lambert, 

2011) or applying a Grambsch-Theneau test (Grambsch and Therneau, 1994) of 

scaled Schoenfeld residuals (Schoenfeld, 1982). The proportional hazards assumption 

may be relaxed through the incorporation of interaction terms between prognostic 

factors and time (Cox, 1972b). 

In prognostic model research, estimates of the absolute risk of an event occurring 

over time are more intuitive and easier to communicate to clinicians and patients. A 

                                                      
iIt is not plausible for a real patient to have a tumour of size 0cms, and not providing baseline categories 
for the other two categories causes further problems. The interpretation of the estimated relative risks 
become complicated, thus highlighting the importance of centring prognostic factor values prior to model 
development. 
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commonly used approach to obtain absolute risk estimates from a prognostic model 

developed using Cox regression is through the formation of risk groups (Royston and 

Altman, 2013). The linear predictor 𝛃T𝐗𝐢 derived from the Cox model is split to create 

the risk groups. Kaplan-Meier curves for each risk group can then be utilised to obtain 

absolute risk predictions for each group at given time points, as depicted in Figure 1.5. 

Figure 1.5: Example of Kaplan-Meier curves for risk groups. 

 
Kaplan-Meier curves showing two year relapse-free survival for 2,780 patients with 
primary, operable, invasive breast cancer (Foekens et al., 2000)i. 
Risk groups were created by splitting the Cox model linear predictor at the 10, 25, 50, 75, 
and 90 perecentiles, producing groups a-f. The numbers in parentheses refer to the 
number of events/ patients per group. 

 

The disadvantage of grouping participants into risk groups is that information from 

the prognostic model is lost (Harrell, 2015) and individual predictions are less accurate 

(Steyerberg et al., 2013). An alternative and preferable approach is to utilise the 

relationship between the hazard, cumulative hazard, survival, and cumulative 

incidence functions discussed previously to determine an equation for the absolute risk 

of an event occurring over time, i.e. the cumulative incidence function: 

Fi(t) = 1 − S0(t)exp(𝛃T𝐗𝐢) Equation 1.9 

                                                      
i Adapted from Cancer Research, 2000, 60/3, 636-643, Foekens et al. “The Urokinase System of 
Plasminogen Activation and Prognosis in 2780 Breast Cancer Patients”, with permission from AACR. 
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Where S0(t) = exp(−H0(t)) represents the baseline survival function and H0(t) =

∫ h0(u)
t

0
du represents the baseline cumulative hazard function. 

Though not directly estimated in Cox regression, it is possible to derive a non-

parametric estimate for H0(t), known as Breslow’s estimate (Breslow, 1972). Let Rj 

denote the set of study participants at event time tj and l represent those at risk (i.e. 

the risk set). Assuming no tied event times, and utilising the estimated regression 

coefficients �̂� obtained from the Cox regression; the baseline cumulative hazard 

function can be approximated using the following formula: 

H0̂(t) = ∑
1

∑ exp(𝛃T𝐗𝐥)l∈Rj
j:tj≤t  Equation 1.10 

The above formulae estimates H0̂(t) at each unique event time, producing a step-

function. The estimates can be incorporated into Equation 1.9 and transformed to 

provide individual absolute risk estimates for the event of interest. Though the above 

methods are available to develop prognostic models which give absolute risk 

predictions, models built using Cox regression are often reported without estimation of 

the baseline hazard function (Royston and Altman, 2013). This limits the application of 

the prognostic models, as only estimates of relative risks (and not absolute risks) can 

be calculated. 

1.3.4.2 Royston-Parmar flexible parametric models  

Parametric models are fully specified, i.e. they make distributional assumptions 

about the baseline hazard functions. As such the models can directly estimate the 

absolute risks of events occurring over time, making them ideal for prognostic model 

research. Common examples of parametric models include the exponential model 

(Equation 1.11), which assumes a constant (λ) hazard over time, and the Weibull 

model (Equation 1.12), which assumes a monotone increasing or decreasing hazard 

over time: 
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hi(t) = λexp(𝛃T𝐗𝐢) Equation 1.11 

hi(t) = λγtγ−1exp(𝛃T𝐗𝐢) Equation 1.12 

Though explicitly defined, the shape of the baseline hazard functions in these models 

are limited and often not considered to be clinically plausible. Flexible parametric 

models, however, utilise spline functions to obtain a smooth estimate of the observed 

baseline hazard function (Royston and Lambert, 2011). These models can capture 

more flexible and clinically plausible baseline hazard functions than standard 

parametric models. Royston-Parmar models (Royston and Parmar, 2002) explicitly 

model the baseline cumulative hazard function with a large degree of flexibility, by 

utilising restricted cubic splines. 

Restricted cubic splines are piecewise cubic functions which join at predefined 

values of t; these points are called knots. Continuity constraints, which force the 

functions to have continuous first and second derivatives, ensure the splines connect 

smoothly at these knots. The functions before the first and after the final knot are 

restricted to be linear (Harrell, 2015). When modelling the time to an event, the first 

knot ηmin is defined at the time to the first observed (uncensored) event, and the final 

knot ηmax is defined at the time of the last observed event, these are the boundary knots 

(Royston and Lambert, 2011). A restricted cubic spline function for ln(t), with M interior 

knots, a vector of knot locations 𝚴 = (ηmin, η1, … , ηM, ηmax), and parameters 𝜸 =

 (𝛾0, … , 𝛾𝑀+1), is written: 

spline{ln[t]|𝛄, 𝐍} = γ0 + γ1z1 + ⋯ + γM+1zM+1 Equation 1.13 

In which the parameters γj are estimated and the variables zj are derived as follows: 

z1 = ln[t]  

zj = (ln[t] − ηj)+

3
− ϕj(ln[t] − ηmin)+

3 − (1 − ϕj)(ln[t] − ηmax)+
3   Equation 1.14 

where ϕ
j

=
η

max
− η

j
η

max
− η

min
⁄ ,  



 

19 

for j = 2, … , M + 1 and u+ = {
u,    if u > 0
0,    if u ≤ 0

 (Royston and Lambert, 2011). 

A restricted cubic spline function with M internal knots is estimated with M + 1 

degrees of freedom. The number of knots required to capture the shape of the hazard 

function can be determined through visual inspection of graphs depicting the different 

spline functions or through the comparison of Akaike and Bayesian information 

criterion estimates (AIC and BIC) (Royston and Lambert, 2011). However, functions 

with more than five internal knots are seldom required (Harrell, 2015), and functions 

containing between one and four internal knots have been advised specifically for 

modelling the baseline hazard function (Royston and Lambert, 2011). The position of 

the knots is usually determined using centiles of uncensored event times (Royston and 

Lambert, 2011). Numerous sensitivity analyses in various applications have shown 

that, once a sensible number of knots have been determined, any results are fairly 

robust to changes in knot locations (Hinchliffe, 2013). 

The Royston-Parmar flexible parametric model estimates regression coefficients 

through maximum likelihood on the more stable log cumulative hazard scale:  

ln[Hi(t)] = ln[H0(t)] + 𝛃T𝐗𝐢 Equation 1.15 

The log baseline cumulative hazard function ln[H0(t)] is modelled as a smooth non-

linear function of log time using restricted cubic splines: 

ln[Hi(t)] = Spline{ln[t]} + 𝛃T𝐗𝐢 Equation 1.16 

Again in prognostic model research, absolute risks, estimated using the survival 

and cumulative incidence functions, are of greater interest. Utilising the relationship 

between the survival and cumulative hazard functions (Equation 1.7) it is possible to 

determine the survival function for the Royston-Parmar model: 

ln[Si(t)] = −exp(spline{ln[t]} + 𝛃T𝐗𝐢) Equation 1.17 
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An example of a prognostic model developed using Royston-Parmar flexible 

parametric regression methods is provided in Box 1.3. 

Box 1.3: Example of a Royston-Parmar flexible parametric prognostic model 

A prognostic model to predict post-transplant survival for patients following kidney 
transplantation was developed using data from 12,000 recipients of kidney transplants 
from the UK Transplant Registry (Li et al., 2016). 
 
A flexible parametric proportional hazards model was utilised to develop the model, which 
contains six prognostic factors; recipient age, recipient gender, pre-emptive transplant, 
primary renal diagnosis, donor hypertension, and donor age. 
 
The number of knots required for the restricted cubic spline characterising the baseline 
hazard function was determined through comparisons of AIC. The model with optimal fit 
contained two internal knots (3 d.f.), depicted using the red line in the graph below, knot 
locations were not discussed: 

 
Comparison of smooth hazard functions to observed data (Li et al., 2016)i 

 
The regression coefficients for the spline function are provided below: 
 

Baseline hazard (log hazard scale) Coefficient p-value 95% CI 

Restricted cubic spline 1 1.03 <0.001 0.97 – 1.09 
Restricted cubic spline 2 -0.08 0.001 -0.12 - -0.03 
Restricted cubic spline 3 -0.14 <0.001 -0.16 - -0.12 
Constant -3.97 <0.001 -4.31 - -3.63 

Coefficients for baseline hazard function spline terms, adapted from (Li et al., 2016)i 

 

If the baseline cumulative hazard function is modelled with appropriate degrees of 

freedom, the regression coefficients estimated with a Royston-Parmar model are very 

                                                      
i “Predicting patient survival after deceased donor kidney transplantation using flexible parametric 
modelling”, Li et al., BMC Nephrology, 2016 17:51, CC BY 4.0. 

https://doi.org/10.1186/s12882-016-0264-0
https://doi.org/10.1186/s12882-016-0264-0
https://creativecommons.org/licenses/by/4.0/
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similar to those estimated with a Cox model (Snell, 2015). The Royston-Parmar model 

described above assumes proportional hazards. The proportional hazards assumption 

can be relaxed through the incorporation of interaction terms between prognostic 

factors and the spline functions for ln(t). Alternative Royston-Parmar models include 

proportional odds (a generalisation of log-logistic models) and probit (a generalisation 

of log-normal models) models (Royston and Parmar, 2002), however these are not 

covered within this thesis. 

There exist many statistical advantages for using Royston-Parmar models, rather 

than Cox models (Snell, 2015), these include: 

1. The direct estimation of the baseline hazard function; 

2. Practically identical regression coefficient estimates to Cox models; 

3. The ability to graphically represent population-averaged survival curves; 

4. The estimation of differences in absolute survival over time; 

5. Deriving absolute risk predictions for individuals; 

6. Identifying clinically important hazard ratios in relation to the baseline risk. 

1.4 Statistical analysis of competing events 

Competing risks are present when participants may experience an event other 

than the event-of-interest, and the occurrence of this competing event alters the 

probability of the event-of-interest occurring (Koller et al., 2012). The methods to 

appropriately account for competing events have been traced to a study investigating 

the consequences of mandatory vaccination against smallpox and the effects on 

population survival (Bernoulli, 1760). The standard time-to-event analysis methods 

described previously have been adapted to incorporate competing events. 

1.4.1 The multi-state structure with competing events 
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The simple multi-state structure depicted in Figure 1.3 can be extended to 

incorporate multiple absorbing states, allowing participants to experience one of 

multiple (K) mutually exclusive competing events Figure 1.6. 

Figure 1.6: Competing risks multi-state structure 

 
Boxes represent states and arrows represent transitions. 
All participants begin in the initial state. The occurrence of an event of interest causes 
participants to transition into the associated absorbing state. Participants who experience 
competing events transition into a different absorbing state. 

 

This structure can be used to describe competing risks analysis techniques; for 

example, when analysing a specific cause of death (such as cardiovascular deaths) in 

which other causes of death are competing events. All participants are alive (the initial 

state) until death from one cause or another (the events) after which they enter a 

cause-specific state (the absorbing states). When analysing a specific cause of death 

(such as cardiovascular death), other causes of death may be examined separately 

(i.e. have separate absorbing states), or can be combined into one competing state, 

namely other causes of death, such that K = 2. 

All-cause mortality (death) is generally considered a competing event for all non-

fatal events, particularly when studying elderly or frail populations as death prevents 

any non-fatal event from occurring. The analysis of non-fatal events can be 

represented using a simple competing risks multistate structure with K = 2 absorbing 



 

23 

states; for example, when investigating disease recurrence following breast cancer 

surgery (Figure 1.7). 

Figure 1.7: Competing risks multi-state structure with K=2 

 
Boxes represent states and arrows represent transitions. 
All participants begin in the initial state (e.g. successful breast cancer surgery). 
Following an event (e.g. disease recurrence, k=1), participants transition into the 
associated state (e.g recurrent cancer). 
Participants who experience competing events (e.g. death) transition into a different 
absorbing state (e.g. dead). 

 

All participants surviving surgery remain in the initial state until transition to 

another state occurs. For example, they may experience a disease recurrence (the 

event of interest, k = 1) which instigates a transition into the recurrent cancer statei. Or 

they may die before disease recurrence (the competing event), and so transition into 

the other absorbing state (dead, k = 2) and are no-longer at risk of experiencing 

disease recurrence (the event of interest). This example (breast cancer recurrence and 

the competing risk of death) will be used to introduce the functions of interest in 

prognostic model research, as the research often focuses on analysing a non-fatal 

event of interest with death as a competing event. 

1.4.2 Key functions in time-to-event analysis with competing events 

Similar to standard time-to-event analysis, competing risks analysis comprises a 

number of key functions which are of interest for prognostic model research. These 

key functions are similar to those obtained from a standard time-to-event analysis, but 

have been extended into the competing risks setting. These measures are detailed 

                                                      
i In this instance the “recurrent cancer” state is not absorbing; a patient may die following cancer 
recurrence, which would trigger a transition from the “recurrent cancer” state to the “dead” state. 
However, events which occur after the event of interest (cancer recurrence, 𝑘 = 1) are often not of 
interest, in which case the state is considered an absorbing state. 
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below for a continuous non-negative random variable T, which represents the time 

between a defined starting point t = 0 and the occurrence of 𝐤 = (1,2) mutually 

exclusive events. Thus, 𝑇 has a probability distribution with an underlying probability 

density function f(t). 

1.4.2.1 All-cause functions 

In prognosis research scenarios where multiple types of events can occur over 

time, the specific type of event is not always of importance or of interest. Rather, the 

research may focus on a combined (composite) outcome of all events (or causes). For 

example, when investigating recurrence-free survival following breast cancer surgery, 

it is not necessary to consider the events (disease recurrence and death) separately; 

instead the more relevant approach would be to investigate the occurrence of either 

disease recurrence or death. The rate of either event occurring is investigated using 

all-cause functions, which are equivalent to functions in standard time-to-event 

analysis (detailed in Section 1.3.3), with all mutually exclusive events combined into 

one composite event (i.e. all events transition into a single state) (Geskus, 2015). 

1.4.2.2 Cause-specific functions 

The cause-specific functions are relevant when the focus of the research is a 

specific event (referred to as the event of interest, k = 1), in the presence of competing 

events. In these instances, it is necessary to distinguish between the different types of 

events, and so allow the risk and rate of each event of interest to be investigated 

independently. For example, consider predicting the risk of disease recurrence (the 

event of interest) following breast cancer surgery; here it is important to account for the 

competing event of death, but predicting the actual risk of death in this instance is not 

of interest. The cause-specific functions provide relevant information about a specific 

event of interest (k = 1) from the K mutually exclusive events. Though the cause-

specific functions are similar to those used in standard time-to-event analysis, a 
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number of subtle differences distinguish between the interpretation of the standard 

time-to-event and competing risks approaches. 

The cause-specific cumulative incidence function 

In the presence of competing events, the key measure of interest for prognostic 

model research is the risk of a participant experiencing the event of interest (k = 1) 

prior to time t, allowing for the presence of competing events. For example, the five-

year risk of disease recurrence following breast cancer surgery, acknowledging that 

some participants may die prior to relapse. This is the estimated the cause-specific 

cumulative incidence function Fk(t), which is written: 

Fk(t) = P(T ≤ t|event = k) Equation 1.18 

The sum of all K cause-specific cumulative incidence functions is equal to the all-cause 

cumulative incidence function: 

F(t) = P(T ≤ t) = ∑ P(T ≤ t|event = k)K
k=1 =  ∑ Fk(t)K

k=1  Equation 1.19 

The cause-specific cumulative incidence function is not a proper probability 

distribution function, as it does not increase to one over time. This is because the 

competing events prevent the event of interest from occurring (Geskus, 2015). For 

example, it is possible for some participants to die prior to disease recurrence; these 

participants will no longer be at risk of recurrence, and thus the probability of 

recurrence will never reach 100%. 

The cause-specific hazard function 

Another measure of interest in prognostic research is the cause-specific hazard 

function, determined as the rate at which the cause-specific cumulative incidence 

function for the event of interest (k = 1) changes over time. This measure is conditional 

on participants not experiencing any of the K mutually exclusive events prior to that 

time. The cause-specific hazard function hk(t) is written: 
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hk(t) = lim
δ→0

{
P(t ≤ T ≤ t + δ, event = k|T ≥ t)

δ
} Equation 1.20 

The participants that have experienced a competing event prior to time t transition out 

of the initial state at the time the competing event occurs, and are thus censored for 

the event of interest (k = 1). The cause-specific hazard function is equal to the hazard 

function calculated using standard time-to-event analysis methods; competing events 

are not anticipated in a standard time-to-event analysis, thus are typically censored 

when they occur. 

The cause-specific hazard ratio reveals the effect of a prognostic factor directly 

on the event of interest. It ignores (censors) other types of events that can occur 

(competing events), and hence describes the effect of a prognostic factor assuming 

the competing events cannot occur (Koller et al., 2012). Thus cause-specific hazard 

ratios resemble those derived using standard time-to-event analysis methods. These 

direct effects are important for answering etiological questions, where the focus is more 

on causality of a factor, and are typically more of interest in prognostic factor research. 

1.4.2.3 Subdistribution hazard function 

Another measure of interest in prediction model research is the subdistribution 

hazard, determined as the instantaneous rate at which the cause-specific cumulative 

incidence function for the event of interest (k = 1) changes over time, conditional on 

participants not experiencing the event of interest prior to that time. To obtain these 

estimates the multi-state structure is modified (Figure 1.8). 
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Figure 1.8: Competing risks multi-state structure for subdistribution hazards 

 
Boxes represent states and arrows represent transitions. 
All participants begin in the initial state (e.g. successful breast cancer surgery). 
Following the event of interest (e.g. disease recurrence, k=1), participants transition into 
the associated absorbing state (e.g recurrent cancer). 
Participants who experience competing events (e.g. death) remain in the initial state. As 
these participants are not at risk of experiencing the event of interest, they remain in this 
initial state until the end of the study. 

 

All participants surviving surgery remain in the initial state until disease recurrence (the 

event of interest, k = 1), which instigates a transition into the recurrent cancer state. 

Those participants who die before disease recurrence (the competing event) remain in 

the initial state, but are no-longer at risk of experiencing disease recurrence, thus 

remain there until their known but unobserved censoring time (i.e. the end of the study) 

(Fine and Gray, 1999). The subdistribution hazard function λk(t), is written: 

λk(t) = lim
δ→0

{
P(t ≤ T ≤ t + δ, event = k|T ≥ t ⋃  (T ≤ t ⋂ event ≠ k))

δ
} Equation 1.21 

The subdistribution hazard is useful for considering prognostic model research 

questions, where estimation of the absolute risk is of primary importance (Koller et al., 

2012). The subdistribution hazard estimates the “real world” change in the risk of the 

event of interest, as it incorporates the indirect effects of a prognostic factor on the 

competing event. These indirect effects are important in prognostic model research as 

they explain the rate at which the risk of an event changes over time. 

1.4.2.4 Summary of the functions of interest in competing risks analyses 

The functions of interest are summarised below in Table 1.1. 
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Table 1.1: Descriptions of competing risks functions of interest 

Function name Notation Description 

All-cause survival 
𝑆(𝑡) Cumulative probability of not experiencing any 

event before time t 

All-cause cumulative 
incidence 

𝐹(𝑡) Cumulative probability of experiencing any 
event before time t 

All-cause hazard 
ℎ(𝑡) Instantaneous rate of experiencing any event at 

time t 

Cause-specific cumulative 
incidence 

𝐹𝑘(𝑡) Cumulative probability of experiencing event k 
before time t 

Cause-specific hazard 
ℎ𝑘(𝑡) Instantaneous rate of experiencing event k at 

time t, if no events previously 

Subdistribution hazard 
𝜆𝑘(𝑡) Instantaneous rate of experiencing event k at 

time t, if no event k previously 

 

1.4.3 Risk sets for cause-specific and subdistribution hazard functions 

A key difference between the cause-specific and subdistribution hazard functions 

is the set of participants who remain in the initial state just before the time point of 

interest, referred to as the risk set. The risk set changes over time as participants 

experience events or are censored. A graphical representation of the risk sets for the 

two competing risks approaches is given in Figure 1.9. 

In this example, the risk sets are assessed just before the time of an event of 

interest. The risk set for the cause-specific hazard includes the participants who have 

not experienced either the event of interest or competing events, and those who 

experience the competing events are removed (censored). Whereas, the risk set for 

the subdistribution hazard includes those who have yet to experience the event of 

interest, and those who experience the competing event remain in the risk set until the 

end of the study. 
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Figure 1.9: Cause-specific and subdistribution risk sets 
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At the beginning of the study, the risk set contains all 9 participants. 
Over time participants may experience the event of interest (depicted by a red diamond) or 
the competing event (depicted by a green square). 
Those participants that experience a competing event are excluded from the cause-
specific risk set, but remain in the subdistribution risk set. 
Participants that have left the risk set are faded out. 
The risk sets above represent those at risk just before the time of an event of interest 
(𝐭 →). 
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The interpretation of the competing risks hazard measures can be difficult. 

Similarly, the risk sets associated with the competing risks approaches are challenging 

to interpret. Consider the example of disease recurrence following breast cancer 

surgery, again with death as a competing event. When estimating the cause-specific 

hazard, participants who die transition out of the initial state into the competing state 

(Figure 1.7), and are thus removed from the risk set. Unlike standard time-to-event 

analysis, independent censoring is not assumed, as those who die from other causes 

do not have the same risk of disease recurrence as those who are alive and remain in 

the initial state/risk set. When estimating the subdistribution hazard, participants who 

die remain in the initial state/risk set (Figure 1.8). It is impossible for participants that 

died to subsequently experience disease recurrence, yet being in the risk set implies 

that they are still at risk. Though this seems counterintuitive, we can consider those 

who have experienced the competing event as “cured” from the event of interest. 

These participants act as placeholders (Koller et al., 2012) by remaining in the initial 

state with no chance of experiencing disease recurrence, thus preventing all 

participants from transitioning out of the initial state. 

1.4.4 Theoretical relationships between key functions 

Similar to standard time-to-event analysis, the hazard, survival, and cumulative 

incidence functions are related in the competing risks setting. These relationships are 

now described in detail. 

1.4.4.1 Relationships with the all-cause survival function. 

As established previously, the all-cause survival, cumulative incidence, and 

hazard functions are equivalent to the functions derived in the standard setting of time-

to-event analysis (if all events are combined into a single state). Thus, the relationships 

which hold in standard time-to-event analysis remain. 
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By definition, the all-cause hazard function may be written as the sum of all K 

cause-specific hazard functions: 

h(t) = lim
δ→0

P(t ≤ T ≤ t + δ|T ≥ t)

δ
  

         = lim
δ→0

∑ P(t ≤ T ≤ t + δ, event = k|T ≥ t)K
k=1

δ
= ∑ hk(t)K

k=1  Equation 1.22 

As such, the all-cause survival function may be written as; 

𝑆(𝑡) = 𝑒𝑥𝑝 (− ∫ ℎ(𝑢) 𝑑𝑢
𝑡

0
) = 𝑒𝑥𝑝 (− ∫ ∑ ℎ𝑘(𝑢)𝐾

𝑘=1  𝑑𝑢
𝑡

0
) Equation 1.23 

Estimates of all K cause-specific hazard functions are required to obtain an estimate of 

the all-cause survival, and thus the all-cause cumulative incidence functions. These 

functions are key to estimating the absolute risk of the events occurring, the primary 

interest of prognostic model research. 

1.4.4.2 Relationships with the cause-specific cumulative incidence function. 

The cause-specific cumulative incidence function represents the risk of 

experiencing the event of interest over time, and is the key function needed to derive 

a prognostic model. This function Fk(t), depends on two values at any time t; the 

probability that the participant remains free from any event until just before time t, and 

the instantaneous probability that event k occurs at time t given that no event occurred 

before that time. The first probability is the all-cause survival function S(t), and the 

second probability is the cause-specific hazard function hk(t). Thus, the cause-specific 

cumulative incidence function can be written: 

Fk(t) =  P(T ≤ t, event = k) = ∫ S(u) × hk(u)
t

0
du Equation 1.24 

Inputting Equation 1.23 for the all-cause survivor function gives; 

Fk(t) =  ∫  hk(u) exp(− ∫ ∑ hj(v)K
j=1  dv

u

0
)

t

0
du Equation 1.25 
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Estimates of all K cause-specific hazard functions are required to estimate the all-

cause survival function, to then allow for the estimation of the cause-specific 

cumulative incidence function. A consequence of this property is that the one-to-one 

relationship between the rate (cause-specific hazard) and the risk (cause-specific 

cumulative incidence) of the event of interest is lost; the cumulative incidence of the 

event of interest depends on the rate of all possible events. Hence, these hazards 

cannot be interpreted in the same way as those estimated using the standard time-to-

event analyses, as they do not directly correspond with the “real world” risk of the event 

of interest. 

To avoid the added complication of the loss of the relationship between the 

cause-specific hazard and the cause-specific cumulative incidence function, Fine and 

Gray (Fine and Gray, 1999) introduced the subdistribution hazard function λk(t). The 

subdistribution hazard function for event k is equal to the rate of change of the cause-

specific cumulative incidence function; derived by differentiating the natural log of the 

cause-specific cumulative incidence function: 

λk(t) = −
d

dt
 ln[1 − Fk(t)] Equation 1.26 

The subdistribution hazard function preserves a one-to-one relationship with the 

cause-specific cumulative incidence function: 

Fk(t) =  1 − exp (− ∫ λk(u) du
t

0
) Equation 1.27 

Estimation of the cause-specific cumulative incidence function only requires an 

estimate of the subdistribution hazard for the event of interest. Hence, it is more 

straightforward to estimate the cause-specific cumulative incidence function using the 

subdistribution hazard. 
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The relationships between the cause-specific and subdistribution hazard 

functions and the cause-specific cumulative incidence function with two events (the 

event of interest and the competing event) are depicted in Figure 1.10. 

Figure 1.10: Relationships between cause-specific and subdistribution hazard 
functions and cause-specific cumulative incidence function 

 
 

From the figure, both the straightforward relationship between the subdistribution 

function, and the more complex relationship between the cause-specific hazard 

function, and the cause-specific cumulative incidence function are apparent. 

1.4.5 Competing risks regression 

The statistical advantages of flexible parametric models over semi-parametric 

approaches (Snell, 2015) were outlined in Section 1.3.4. Recall, Royston-Parmar 

flexible parametric models (introduced in Section 1.3.4) estimate a smooth baseline 

hazard function using restricted cubic splines alongside estimates of regression 

coefficients, on the log cumulative hazard scale (Royston and Parmar, 2002). These 

methods have been adapted to incorporate competing events using both the cause-

specific (Hinchliffe and Lambert, 2013b) and subdistribution hazards (Lambert et al., 
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2017) approaches. The two approaches are discussed below. Again, for simplicity 

each participant is at risk of experiencing K = 2 mutually exclusive events, the event of 

interest k = 1, and a competing event k = 2. For regression purposes, we include a 

vector of prognostic factors 𝐗k,i = (xk,1, xk,2, … )
T, for each cause k and each individual i. 

The model parameters can be estimated using standard maximum likelihood 

techniques. 

1.4.5.1 Cause-specific hazards approach 

The flexible parametric modelling approach using cause-specific hazards to 

estimate cause-specific cumulative incidence functions (Hinchliffe and Lambert, 

2013b), models on the log cumulative cause-specific hazards scale. Assuming 

proportional hazards, the log cumulative cause-specific hazard function for event k with 

a vector of prognostic factors 𝐗k,i can be written as: 

ln[Hk(t|𝐗k,i)] = Spline{ln[t]|𝛄k, 𝐍k} + 𝛃k
T𝐗k,i Equation 1.28 

Where Spline{ln[t]|𝛄k, 𝐍k} represents a restricted cubic spline function (as given in 

Equation 1.14) with a vector of knot locations 𝚴k modelling the log cumulative baseline 

cause-specific hazard function for event k. The resulting vector of regression 

coefficients 𝛃k, which corresponds to the vector of prognostic factors 𝐗k,i, are estimated 

using maximum partial likelihood techniques (Hinchliffe and Lambert, 2013b). The 

regression coefficients can be interpreted as log cause-specific hazard ratios under 

the proportional hazards assumption, and thus describe the (adjusted) effect of each 

prognostic factor on the risk of the event of interest when competing events cannot 

occur.  

The cause-specific hazard function is obtained by differentiating the cumulative 

cause-specific hazard function with respect to time, and thus involves the derivatives 

of the restricted cubic spline functions: 
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hk(t|𝐗k,i) =
d 

dt
exp(Spline{ln[t]|𝛄k, 𝐍k} + 𝛃k

T𝐗k,i) Equation 1.29 

Estimation of each cause-specific hazard function can be obtained by fitting 

separate models for each of the K events, while censoring all other events. 

Alternatively, it is possible to simultaneously estimate all K cause-specific hazard 

functions using a multi-state data format. Though the two approaches give the same 

results, simultaneous estimation is considered more flexible. It allows for shared 

coefficient estimates and baseline hazard functions across events, and allows for 

convenient testing and comparison of coefficient estimates across event types (Lunn 

and McNeil, 1995). 

To model all K cause-specific hazard functions simultaneously, the dataset to 

which the model is applied must be expanded to mimic the K different datasets used if 

the analyses were performed separately. This is best illustrated using an example. 

When investigating the risk of disease recurrence following breast cancer surgery, 

death is a competing event, as such there are K = 2 mutually exclusive events. The 

original data may look like that depicted in Figure 1.11a, with participant 1 experiencing 

disease recurrence at 3.1 years, participant 2 dying at 4.1 years, and participant 3 

being censored at 5.9 years. To simultaneously analyse all events, the dataset is 

expanded to the multi-state data, depicted in Figure 1.11b. Now each participant 

has K = 2 rows, one for each of the mutually exclusive events. Participant 1 

experiences disease recurrence at 3.1 years (row 1), but is censored at 3.1 years for 

death (row 2). Participant 2 is censored for disease recurrence at 4.1 years (row 3), 

but dies at 4.1 years (row 4). Finally, participant 3 is censored at 5.9 years for both of 

the events (rows 5 and 6). 
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Figure 1.11: Original and multi-state datasets for competing risks analysis 

a) Original data (wide format) 

ID Age Time Disease Recurrence Death 
1 34 3.1 1 0 
2 56 4.1 0 1 
3 42 5.9 0 0 
… … … … … 

 

b) Multi-state data (long format) 

Row ID Age Time Event Status Row 
1 1 34 3.1 Disease Recurrence 1 1 
2 1 34 3.1 Death 0 2 
3 2 56 4.1 Disease Recurrence 0 3 
4 2 56 4.1 Death 1 4 
5 3 42 5.9 Disease Recurrence 0 5 
6 3 42 5.9 Death 0 6 
 … … … … …  

 
 

 

In prognostic model research, the key measure of interest is the cause-specific 

cumulative incidence function, as this returns individual estimates of absolute risk 

predictions. As discussed previously, estimating the cause-specific cumulative 

incidence function using the cause-specific approach requires estimates of all K cause-

specific hazard functions. To estimate for the cause-specific cumulative incidence 

function for event k with a vector of prognostic factors 𝐗k,i recall Equation 1.25: 

Fk̂(t|𝐗k,i) =  ∫  hk̂(u|𝐗k,i) exp(− ∫ ∑ hĵ(v|𝐗j,i)
K
j=1  dv

u

0
)

t

0
du Equation 1.30 

The integral in the above equation cannot be solved analytically, thus additional 

methods, such as numerical integration (Hinchliffe and Lambert, 2013b) or the 

simulation approach (Fiocco et al., 2008, Crowther and Lambert, 2017), are required. 

Briefly, the simulation approach simulates a large sample of participants, and 

calculates a transition probability matrix using Nelson-Aalen estimators of the 

cumulative cause-specific hazard function Hk(t). The simulated participants iterate 

through the transition probability matrix until they all either experience an event or are 

censored (at a specified maximum follow-up time). Cause-specific cumulative 
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incidence function estimates for event k given a prognostic factor vector 𝐗k,i are 

calculated as the proportion of simulated participants with the same vector of 

prognostic factor values that experience event k. The cause-specific flexible parametric 

model can be fitted to all causes simultaneously using the expanded multi-state 

dataset (Crowther and Lambert, 2017). An example of a published model developed 

using the cause-specific approach is provided in Box 1.4. 

1.4.5.2 Subdistribution hazards approach 

The flexible parametric modelling approach using subdistribution hazards to 

estimate cause-specific cumulative incidence functions (Lambert et al., 2017), models 

on the log cumulative subdistribution hazards scale. The cumulative subdistribution 

hazard function is defined as Λk(t) = ∫ λk(u)du
t

0
 for continuous time distributions. 

Assuming proportional subdistribution hazardsi, the log cumulative subdistribution 

hazard function for event k with a vector of prognostic factors 𝐗k,i is written: 

ln[Λk(t|𝐗k,i)] = Spline{ln[t]|𝛄k, 𝐍k} + 𝛃k
T𝐗k,i Equation 1.31 

In this case the restricted cubic spline function is modelled on the log cumulative 

baseline subdistribution hazard scale for event k. The resulting vector of regression 

coefficients 𝛃k, which corresponds to the vector of prognostic factors 𝐗k,i, are estimated 

by maximising the weighted partial likelihood function (Lambert et al., 2017). The 

regression coefficients can be interpreted as log subdistribution hazard ratios under 

the proportional subdistribution hazards assumption. Thus, describe the effect of each 

prognostic factor on the risk of the event of interest, adjusted for the occurrence of 

competing events. 

                                                      
i Note if the proportional cause-specific hazards assumption holds then the subdistribution hazards 
cannot be proportional over time (Beyersmann et al., 2009, Grambauer et al., 2010) 
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Box 1.4: Example of a model developed using cause-specific approach 

The time to death or discharge in neonatal care was examined in a recent study 
(Hinchliffe et al., 2013) using flexible parametric modelling and the cause-specific 
approach. The model was developed using retrospective data from 2,723 babies born 
at 24-28 weeks gestational age, admitted to neonatal care. Flexible parametric methods 
were used to analyse death and discharge alive as competing events. 
 
Gestational age (weeks), sex, and birthweight (centiles) were found to significantly 
effect the time to death or discharge. Cause-specific hazard ratios were not reported. 
 
The cause-specific cumulative incidence for death and discarge alive for female babies 
admitted to neonatal care are provided below for different gestational ages (top to 
bottom) and birthweights (left to right). 
 

 
Absolute probabilities for death (black) and discharge (grey) for female babies 

admitted to neonatal care, by gestational age and birthweight centile. 

(Hinchliffe et al., 2013)i 

 

                                                      
i Reproduced from “Modelling time to death or discharge in neonatal care: an application of competing 
risks” Hinchliffe et al., 426-433, 27, 2013, with permission from John Wiley and Sons. 
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Estimation of the subdistribution hazard function for the event of interest k = 1 can 

be performed without needing to model the competing events. This is achieved by 

utilising the subdistribution risk set, in which participants who experience competing 

events remain in the risk set but are unable to experience the event of interest (Figure 

1.9). If proportional subdistribution hazards are not biologically plausible, alternative 

link functions may be used (e.g. a logit link gives a proportional odds model) (Lambert 

et al., 2017), or time dependent effects can be modelled by incorporating interactions 

between the prognostic factors and the restricted cubic spline function (Hinchliffe and 

Lambert, 2013b). 

The cause-specific cumulative incidence is of key interest in prognostic model 

research. This can be estimated using the subdistribution approach by incorporating 

the subdistribution hazard function (above) into Equation 1.27: 

Fk̂(t|𝐗k,i) =  1 − exp{−exp(Spline{ln[t]|𝛄k, 𝐍k} + 𝛃k
T𝐗k,i)} Equation 1.32 

While it is not necessary to model any event other than the event of interest, it is 

possible to fit the subdistribution flexible parametric model to each cause, either 

separately or simultaneously (Lambert et al., 2017). An example of a published 

prognostic model developed using the subdistribution approach is provided in Box 1.5. 
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Box 1.5: Example of a prognostic model developed using the subdistribution 
approach 

The time to cancer-specific mortality, with other causes death as a competing event, in 
patients with head and neck squamous cell carcinoma was examined in a recent study 
(Shen et al., 2015) using flexible parametric modelling and the subdistribution 
apparoach. The model was developed using a cohort of 23,494 patients with head and 
neck squarmous cell carcinoma. 
 
The following prognostic factors were investigated for each cause: age (years), race 
(white, black, other), marital status (unmarried, married), radiotherapy (none, 
yes),.tumour size (mm), grade, T and N classifications, and site (lip, oral cavity, salivary 
gland, oropharynx, hypopharynx, larynx, other). 
 
Cause-specific cumulative incidences were estimated seperately for each cause. 
Nomograms for predicting 5 and 10 year probabilities of each cause of death are below: 
 

 
Nomogram for predicting 5 and 10 year probability of cancer-specific death. 

(Shen et al., 2015)i 

 

 
Nomogram for predicting 5 and 10 year probability of other causes death. 

(Shen et al., 2015) 

                                                      
iAdapted by permission from Springer Nature: Annals of Surgical Oncology “Cancer-Specific Mortality 
and Competing Mortality in Patients with Head and Neck Squamous Cell Carcinoma: A Competing Risk 
Analysis”, Shen et al., (2015) 
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1.4.5.3 Differences between cause-specific and subdistribution approaches 

A summary of the key differences between the cause-specific and subdistribution 

modelling approaches is provided in Table 1.2. 

Table 1.2: Differences between cause-specific and subdistribution modelling 
approaches 

 Cause-specific approach Subdistribution approach 

Model 
assumptions 

Proportional cause-specific 
hazards hk(t). 

Proportional subdistribution 
hazards λk(t). 

Risk sets 

The same as standard time to 
event analysis: contains 
participants who have not 
experienced either the event of 
interest or any competing event. 
Participants who experience 
competing events are censored. 

Differs from standard time-to-event 
analysis: contains participants who 
have not experienced the event of 
interest. 
Participants who experience 
competing events remain in the risk 
set, and are “cured” from the event 
of interest. 

Interpretation 
of hazard 
(prognostic 
factor 
associations) 

The cause-specific hazard 
measures the direct association of 
prognostic factors on the event of 
interest, assuming the competing 
events cannot occur (i.e ignoring 
the indirect effects of the 
competing events). 

The subdistribution hazard 
measures the association of the 
prognostic factors on the “real 
world” risk of the event of interest, 
incorporating the indirect effects of 
the competing event. 

Link to 
cumulative 
incidence 
(absolute 
risks) 

There is no 1:1 relationship 
between the cause-specific hazard 
and the cumulative incidence 
function. 
Estimation of ALL cause-specific 
hazard functions is required to 
obtain absolute risk estimates. 

There is a 1:1 relationship between 
the subdistribution hazard and the 
cumulative incidence function. 
Need only estimate the 
subdistribution hazard function for 
the event of interest to obtain 
absolute risk estimates. 

When should 
the approach 
be used? 

Prognostic factor research Prognostic model research 

Main 
advantage 

Measures direct associations so 
aids understanding of eitiological 
questions. 

Straightforward link to cumulative 
incidence function, so makes it 
easier to model just the event of 
interest. 
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1.5 Prognostic model development 

This thesis applies the described time-to-event analysis methods to develop 

prognostic models in the competing risks setting. Now that the framework for standard 

and competing risks time-to-event analysis have been described, it is important to 

provide a general overview of other key issues that arise when developing prognostic 

models. Statistical considerations which are generally advocated during the 

development of prognostic models include: evaluating data quality; manipulation and 

selection of candidate prognostic factors; testing model assumptions; and managing 

overfitting and optimism (internal validation) (Moons et al., 2012b, Royston et al., 2009, 

Steyerberg, 2008, Steyerberg et al., 2013). An overview of each of these is now given. 

1.5.1 Evaluating data quality  

The quality of the data is evaluated to ensure the data is fit for purpose with 

minimal measurement error (Royston et al. 2009), to enhance the reliability of the 

prognostic model (Steyerberg et al., 2013). Data should ideally come from a 

prospective cohort study with standardised measurement of the outcome and 

candidate prognostic factors (Moons et al., 2012b). 

Missing values are common in prognostic model research (Moons et al., 2012b), 

and numerous statistical techniques exist to manage these. Complete case analysis 

excludes any participant with missing information, resulting in a loss of statistical power 

and often invalid parameter estimates (Royston et al., 2009, Moons et al., 2012b), thus 

is only advised when few observations (say <5%) are missing (Harrell, 2015). 

Imputation methods utilise multivariable models containing both dependent and 

independent variables to impute plausible values to replace missing information, these 

are typically more efficient than complete case analysis (White and Royston, 2009). 

Multiple imputation methods repeat imputations a number of times to produce multiple 

completed datasets (Harrell, 2015), which incorporates the uncertainty from the 
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imputed values into the results. Each imputed dataset is analysed using standard 

methods, and analysis results are combined using Rubin’s rules (Rubin, 2004); Those 

applicable to prognostic model research (Marshall et al., 2009) are outlined in Table 

1.3. Multiple imputation using chained equations (Buuren and Oudshoorn, 2000) 

utilises iterative applications of regression imputation to recover missing values under 

a missing at random assumption. 

Table 1.3: Rubin's rules for combining estimates from multiply imputed data 

Parameter of Interest Equation for combining estimate 

Regression coefficient  𝛽 𝛽 =
1

𝑀
∑ �̂�𝑖

𝑀

𝑖=1

 

Estimated within imputation variance 𝑈 𝑈 =
1

𝑀
∑ 𝑈𝑖

𝑀

𝑖=1

 

Between imputation variance 𝐵 𝐵 =
1

𝑀 − 1
∑(�̂�𝑖 − 𝛽)

2
𝑀

𝑖=1

 

Total variance 𝑇 𝑇 =  𝑈 + (1 +
1

𝑀
) 𝐵 

Wald test statistic 𝑊 𝑊 =
𝛽

2

𝑇
 

Degrees of Freedom 𝑣 𝑣 = (𝑀 − 1) (1 +
𝑈

(1 +
1
𝑀) 𝐵

)

2

 

P-value 𝑝 
𝑝 =  𝐹

1,𝑣
(𝑊) 

F-Distribution test. 

The above rules, known as Rubin’s rules (Rubin, 2004), are given for combining estimates 
in 𝑀 > 1 imputed datasets. Where �̂�𝑖 represents the estimated regression coefficient in 
the 𝑖𝑡ℎ imputed dataset, and 𝑈𝑖 represents its variance. 
The application of these rules specifically for prognostic model research is discussed 
further in (Marshall et al., 2009). 

 

It is advised when imputing missing information with a time-to-event outcome that 

outcome information (a binary variable indicating whether the event occurred and an 

estimate of the cumulative hazard function) is incorporated into the chained equations 

(White and Royston, 2009). When competing events are present the chained 



 

44 

equations should include a categorical event indicatori, and Nelson-Aalen estimators 

for each of the K cumulative cause-specific hazard functions over time (Bartlett and 

Taylor, 2016). Logically, when using the cause-specific approach information on all K 

events are incorporated into the chained equations, as all K events are modelled to 

estimate the cause-specific cumulative incidence function. As the subdistribution 

approach only requires the event of interest to be modelled, the chained equations 

need only include a binary event indicator for the event of interest, and Nelson-Aalen 

estimate of the cumulative subdistribution hazard function for the event of interest. 

1.5.2 Manipulation and selection of candidate prognostic factors 

The term “candidate prognostic factor” refers to any prognostic factor which is 

considered during the development of the prognostic model (Moons et al., 2012b). 

Existing prognostic factors with known predictive ability, evidenced by prognostic factor 

research, are usually considered as candidates in prognostic model development 

(Royston et al., 2009). Manipulation of candidate prognostic factors may be required 

to aid statistical modelling. For instance, new prognostic factors can be created through 

the combination of existing ones, such as BMI created from height and weight. 

Categories within ordered categorical prognostic factors that contain small numbers of 

participants may be collapsed to give more stable results (Steyerberg 2008). 

Continuous prognostic factors may require manipulation if not thought to have a linear 

relationship with the outcome. Transformation of the prognostic factor (for example 

using fractional polynomial functions) is preferred over categorisation, as more 

predictive information is retained (Moons et al., 2012b)(Royston et al. 2009). For 

prognostic models with time-to-event outcomes, centering of continuous prognostic 

factors helps to ensure a meaningful baseline hazard function (Royston and Altman, 

2013) aiding interpretation of relative risks. The reference category in categorical 

                                                      
i A categorical variable which indicates which event occurred during the study period; equal to 0 for no 
event (censored), 1 for the event of interest, 2,…,K for all other competing events. 
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factors should also be selected with care (Steyerberg, 2008) to ensure a representative 

baseline to which relative risk comparisons are made (the importance of which is 

highlighted in Box 1.4). 

Often more candidate prognostic factors are available than can sensibly be used 

in a prognostic model (Royston et al., 2009), and selection methods are required to 

reduce the quantity. Parsimonious models, which reach a suitable level of prediction 

but contain fewer prognostic factors, are preferred. Strongly correlated prognostic 

factors can be removed from models, as they contribute little independent information 

and explain the same variation (Harrell, 2015, Royston et al., 2009). Numerous 

selection methods are used in practice (Heinze et al., 2018), however there is no 

consensus on which is the “best” approach (Royston et al., 2009). Fitting the full model 

(i.e. including all candidate prognostic factors) avoids selection bias, reduces the 

potential for overfitting, and leads to reliable confidence intervals, though perhaps at 

the expense of an unnecessarily complex model (Royston et al., 2009). Automated 

selection algorithms are commonly applied to reduce the number of candidate 

prognostic factors included in the final multivariable model, of those available the 

backward selection method is recommended (Collins et al., 2015, Moons et al., 2015). 

Backwards elimination is one such algorithm, in which initially a full model is fitted. An 

iterative process, in which the least statistically significant prognostic factor is 

eliminated and the model is re-fitted, is repeated until all remaining prognostic factors 

are significant at a pre-specified significance level. Alternative approaches which 

combine variable selection with adjustment for overfitting, such as the LASSO, LARS 

and elastic net methods, may be useful for variable selection, but are not considered 

in this thesis. 

When competing events are present, the selection of prognostic factors may also 

depend on the analysis approach. Firstly, all K events are modelled for the cause-

specific approach; hence it is possible for each of the cause-specific hazard model to 
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contain different combinations of prognostic factors. Secondly, the differences in the 

subdistribution and cause-specific hazards could result in different sets of prognostic 

factors being selected for the final model, depending on the approach taken. 

To ensure clinical credibility, prognostic models should include clinically important 

prognostic factors (i.e. those considered to be prognostic by clinicians) regardless of 

statistical significance (Wyatt and Altman, 1995). Additionally, prognostic factors 

representing treatments or therapies should ideally be included in the final prognostic 

models, to circumvent poor prognostic performance if applied to future patients not 

receiving those treatments (Groenwold et al., 2016). 

1.5.3 Testing model assumptions 

General assumptions made in multivariable regression modelling equations 

include linearity and additivity. Linearity refers to the assumption that the effect of a 

single unit increase in a continuous prognostic factor on the log cumulative hazard 

function is constant. If this assumption is not appropriate, non-linear relationships may 

be incorporated by transforming the prognostic factors using fractional polynomial 

functions or splines (Harrell, 2015). Additivity refers to the assumption that the effects 

of one prognostic factor are independent of another. If this assumption is not 

appropriate, interaction terms between prognostic factors can be incorporated into the 

model (Steyerberg 2008). Additionally, prognostic models with time-to-event outcomes 

assume both proportional hazards and non-informative censoring. 

1.5.4 Managing overfitting and optimism  

Statistical overfitting is present when a model is too complex for the amount of 

information in the data (Harrell, 2015), such that the model is too closely adapted to 

the data in which it was developed and regression coefficients are overestimated 

(Royston et al., 2009). Optimism in prognostic models is less likely if developed using 

a sufficient sample size in which few candidate prognostic factors are tested relative 
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to the number of events (Riley et al., 2019b, Royston et al., 2009, Steyerberg et al., 

2013). In particular, it is often recommended that there should be at least ten events 

per candidate prognostic factor (Peduzzi et al., 1995, Peduzzi et al., 1996). Optimism 

is identified through internal validation techniques, discussed below, and can be 

adjusted for using shrinkage methods for a more robust model for the intended 

population (Steyerberg, 2008).  

1.6 Validation of prognostic models 

In prognostic model research, the term validation refers to the statistical process 

for evaluating the predictive performance of a developed prognostic model (Altman 

and Royston, 2000). It is widely accepted that a prognostic model should not be used 

in clinical practice without evidence that it performs a useful role (Moons et al., 2009a), 

i.e. has good validation performance. The reproducibility of the prognostic model and 

potential optimism in model performance estimates are evaluated in the same sample 

of participants used to develop the model, known as internal validation. Whereas, the 

robustness and generalisability (also called transportability) of the model are evaluated 

in an independent sample of plausibly related participants, known as external 

validation (Steyerberg, 2008, Royston and Altman, 2013). Internal validation is 

recommended as a pre-requisite for prediction model development, particularly in the 

case of limited data (Collins et al., 2015). Validation statistics are utilised to evaluate 

the predictive performance of the model by assessing prediction accuracy (calibration) 

and ability to reliably distinguish between those who do and do not experience an event 

(discrimination) in practice. Methods for the validation of prognostic models with time-

to-event outcomes are “not particularly well worked out in the literature” (Royston and 

Altman, 2013) due to the additional challenge of incorporating time and censoring 

information into the model evaluation. Often, prognostic models are validated for 

predictions at a certain time point rather than over the entire prediction horizon. 
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1.6.1 Internal validation  

Internal validation studies utilise all, or subsets of, the participants in which the 

prognostic model was developed to evaluate model reproducibility and optimism. The 

apparent performance of a prognostic model can be evaluated using the exact sample 

of participants from which the model was derived (Steyerberg, 2008). However, as 

model parameters have been optimised to fit this exact sample, the apparent predictive 

performance measures are likely to be optimistic; internal validation is used to assess 

the likely optimism in the model performance and to correct for the resulting overfitting 

of the model (Royston & Altman 2013). This is commonly achieved by splitting the 

sample of participants into development and validation sets (Altman et al., 2009). 

Random splits are generally not advised, as the randomness leads to homogeneity 

between the sets resulting in optimistic results (Altman et al., 2009). Non-random 

splitting may be preferable as it allows for non-random variation between the datasets 

(Collins et al., 2015), however splitting also leads to a loss of power during model 

development (Moons et al., 2012b). Resampling techniques, such as cross-validation 

and bootstrapping, evaluate the predictive performance of a model after development 

(Collins et al., 2015), allowing the model to be developed using the full participant 

sample (Altman et al., 2009). 

Bootstrapping mimics the study sampling process by drawing, with replacement, 

from the sample of participants in the study to create a new sample containing the 

same number of participants as the original. It is useful for validating the modelling 

process used to develop the original prognostic model, as the modelling process is 

repeated in each bootstrap sample. For internal validation, a bootstrap sample is drawn 

and a model is developed using the same modelling process as used to develop the 

original model. The predictive performance of this model is assessed in the bootstrap 

sample (bootstrap apparent performance) and the original sample (test performance). 

The difference of the bootstrap apparent and test performance measures indicates the 
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optimism from the original model (Moons et al. 2012). This process is repeated using 

a number of bootstrap samples and an average optimism estimate for each 

performance measure is calculated. The predictive performance of the original model 

can be adjusted for overfitting and optimism by subtracting the average optimism 

estimates from the original model’s apparent performance measures (Moons et al., 

2012b). Additionally the original model may be adjusted for optimism by multiplying the 

estimated regression coefficients (for the predictors) by a uniform shrinkage factor, 

equivalent to the mean optimism adjusted calibration slope, to produce an optimism 

adjusted model (Moons et al., 2012b, Steyerberg, 2008). Following optimism 

adjustment, the baseline hazard function should be re-estimated for prognostic models 

with time-to-event outcomes, to retain overall calibration. 

1.6.2 External validation 

While internal validation can highlight possible fragilities such as overfitting and 

optimisation, internal data do not provide the heterogeneity expected during external 

applications of the model, for this external validation is required (Royston, 2010). 

External validation refers to the evaluation of the predictive performance of a model in 

an independent sample of plausibly related participants, and is essential to assess the 

model’s clinical value (Altman et al., 2009, Collins et al., 2016). External validation may 

be used to demonstrate the appropriateness of application of a prognostic model 

across different clinical settings, populations, and subgroups of interest, or can 

alternatively identify where model updating and recalibration strategies are required to 

improve predictive performance (Riley et al., 2016, Altman et al., 2009). Though an 

external validation study should be independent, it should also include the same set of 

prognostic factors, comparably defined outcomes with similar follow-up times, and the 

same baseline health state as the development study (Royston, 2010). External 

validation is often a more rigorous assessment of predictive performance, especially 
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in terms of generalisability, compared to internal validation, and often worse predictive 

performance is observed than in the original model development study. 

1.6.3 Validation statistics 

Various statistics are used to quantify the predictive performance of prognostic 

models. Key validation statistics for prognostic model research assess how accurately 

the model predicts the observed risk of participants (calibration) and how well the 

model distinguished between those who do and do not experience the event of interest 

(discrimination) (Steyerberg, 2008). Other measures of predictive performance exist; 

however, a comprehensive review of these methods is beyond the scope of this thesis. 

Instead only those which are relevant to, and thus utilised in, this thesis are discussed 

below. 

1.6.3.1 Measures of calibration 

Calibration reflects the prediction accuracy of the model (Royston and Altman, 

2013), it measures how accurately the expected risks from a prognostic model predict 

the observed risks of the participants. Calibration of prognostic models with time-to-

event outcomes is only possible if the models contain an estimate of the baseline 

survival function, as this is required to calculate participants’ absolute risks (Royston 

and Altman, 2013). For time-to-event outcomes the expected and observed risks of 

the event of interest are evaluated both over time and within specified time periods 

(Moons et al., 2012b). Calibration statistics which can be utilised for models with time-

to-event outcomes include: overall calibration; the expected/observed ratio (at 

particular time-points); and the calibration slope. 

Overall calibration (also known as calibration-in-the-large) compares the 

expected probability of events predicted by the prognostic model to the observed 

probability of events in the study, over the study time period. As censoring is likely to 

be present in prognostic model studies with time-to-event outcomes, estimates of 
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expected and observed risks should account for censoring. The expected risk is 

represented by the predicted cumulative incidence curve from the fitted model, and the 

observed risk is represented by the 1– Kaplan-Meier curve of the study participants’ 

cumulative risk. Overall calibration is assessed by overlaying the curves on the same 

plot (Royston and Altman, 2013), if the curves are similar the model is “well calibrated”. 

This can be assessed for the sample as a whole (calibration-in-the-large) or for risk 

groups, created by grouping participants with similar predicted risks, to assess 

calibration at different levels of risk. Often risk groups are created by splitting at deciles 

of predicted probabilities (Steyerberg, 2008), however it is recommended that risk 

groups contain a minimum of 50 participants for stable Kaplan-Meier estimation 

(Harrell, 2015). The expected/observed ratio (E/O) assesses overall calibration at 

specified time points. Again E/O may be reported for the entire validation sample or 

over risk groups. The ratio of the expected and observed probabilities of an event 

should be close to one for a well calibrated model. 

Calibration plots graphically depict the expected and observed probabilities of an 

event occurring prior to a specified time point for risk groups (Altman et al., 2009), as 

depicted in Box 1.6. The slope of a fitted line in a calibration plot is referred to as the 

calibration slope (Steyerberg, 2008). When assessing prognostic models with time-to-

event outcomes the calibration slope can be assessed as an average slope over time 

by estimating the regression coefficient of a model containing the linear predictor from 

the prognostic model as the only variable (Royston and Altman, 2013). A well 

calibrated model produces a calibration slope estimate close to one and E/O close to 

one at most time-points. Methods of recalibration may be utilised to improve prognostic 

models with poor calibration to improve model fit (Royston, 2010). 

When competing events are present, observed risks are calculated using 

cumulative incidence estimates (rather than survival estimates), as these account for 

censoring and the competing events (Wolbers et al., 2009). 



 

52 

Box 1.6: Example of a calibration plot 

 
Calibration plot from the external validation of a prognostic model for 30 day risk 
of mortality following stroke developed using Cox regression (Counsell et al., 
2002)i. 
Deciles of predicted probability were used to form groups in calibration plot.  
The diagonal dashed line represents perfect calibration and the vertical lines represent 
95% confidence intervals for observed risk in each group.  

 

1.6.3.2 Measures of discrimination 

Discrimination refers to the extent to which predicted risk estimates distinguish 

between different patient prognoses (Royston and Altman, 2013). For prognostic 

models with time-to-event outcomes, discrimination not only distinguishes between 

those who do and do not go on to experience the event, but also should distinguish 

between the times at which the events occur. Groups of participants with higher 

predicted risks should have higher event rates and experience events sooner than 

those with lower predicted risks (Royston and Altman, 2013). Discrimination statistics 

                                                      
i Adapted by permission from Wolters Kluwer Health, Inc. “Predicting Outcome After Acute and Subacute 
Stroke”, Counsell et al., Stroke. 2002; 33:1041-1047 
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utilised for models with time-to-event outcomes include Harrell’s C-index (Harrell et al., 

1982), and Royston and Sauerbrei’s D-statistic and RD
2  (Royston and Sauerbrei, 2004). 

Harrell’s C-index (Harrell et al., 1982) is the probability that, of two randomly 

chosen participants, the one with the highest expected risk will experience the event 

first. Not all pairs of participants are evaluable; if neither of the participants experience 

the event during study follow-up it is not possible determine which will experience the 

event first. Similarly, if a participant is censored before the other experiences the event, 

it is not possible to determine the order of the pairing. Thus, Harrell’s C-index is known 

to be biased in instances with heavy censoring, (Royston and Altman, 2013). 

Royston and Sauerbrei’s D-statistic is a measure of prognostic separation 

(Royston and Sauerbrei, 2004). This can be interpreted as the log hazard ratio 

comparing two equal-sized groups, created by splitting the sample using the median 

value of the estimated linear predictor from the prognostic model (Riley et al., 2016). 

This is achieved by utilising the linear predictor from the prognostic model to calculate 

each individual’s linear predictor value. These values are ordered, and corresponding 

standard normal order statistics (rankits) are calculated, and then scaled by a factor κ =

√8
π⁄ . The scaled rankits are then regressed on the outcome, the resulting estimated 

regression coefficient is the D-statistic (Royston and Sauerbrei, 2004). Higher values 

of the D-statistic represent more separation, thus greater discrimination. Once 

calculated the D-statistic can be incorporated into a generalisation of the multiple 

correlation coefficient RD
2 , representing the proportion of explained variation on the log 

relative hazard scale (Royston and Altman, 2013) as follows: 

 𝑹𝑫
𝟐 =

𝑫𝟐

𝜿𝟐⁄

𝝈𝟐 + 𝑫
𝟐

𝜿𝟐⁄
,     𝝈𝟐 =

𝝅𝟐

𝟔
   Equation 1.33 

 

1.7 Aims and overview of the thesis  
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The aim of this thesis is to improve understanding of the influence of competing 

risks issues in prognostic model research. In particular, this thesis aims to; 

1. Investigate the presence of competing events in prognostic model research 

studies, specifically in systematic reviews and development studies. 

2. Develop, externally validate, and compare prognostic models for the risks of 

antenatal adverse events in pre-eclampsia pregnancies which do and do not 

appropriately account for the competing risk of delivery. 

3. Evaluate the impact of not correctly accounting for competing events on prognostic 

performance measures, 

4. Use simulation studies to examine the credibility of a proposed rule of thumb for 

deciding when competing risks should be accounted for. 

This thesis is comprised of eight chapters. The first aim is addressed in Chapters 

2 & 3, where evaluations of published prediction model literature investigate the 

presence, reporting, and management of competing events. The second aim is 

addressed in Chapters 4 to 6, in which semi-parametric and flexible parametric 

regression methods are utilised to develop, and then externally validate, prognostic 

models for patients with pre-eclampsia. The third and fourth aims are addressed in 

Chapter 7, in which multiple simulation studies are utilised to investigate the effect of 

not appropriately accounting for competing events when evaluating prognostic model 

performance measures. The thesis ends with a discussion of key findings, here 

limitations within the thesis and plans for further research are detailed. An outline of 

the chapters is given below. 

In Chapter 2, the presence and reporting of competing events, and potential for 

competing risks bias, in systematic reviews of prediction model studies are 

investigated. The potential for competing risks bias in the included studies is examined 

through assessment of the outcome of interest, characteristics of study populations, 
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and the prediction time spans of included models. The reporting of competing events 

and use of quality assessment tools within the systematic reviews are also 

investigated. 

Chapter 3 reviews the presence, reporting, and management of competing events in 

prediction model development studies that are likely to be affected by competing 

events. Again, the potential for competing risks bias is examined through assessment 

of the outcome of interest, characteristics of study populations, and prediction time 

spans of the included models. The reporting and management of competing events is 

inspected by determining whether statistical regression methods are applied to 

appropriately account for the competing events, and whether participants who 

experienced competing events are censored or excluded from the studies. 

In Chapter 4, both Cox proportional hazards and Royston-Parmar flexible parametric 

modelling methods are applied to develop and internally validate prognostic models 

which predict the risk of antenatal adverse events in pregnancies with early-onset pre-

eclampsia. Multiple imputation methods are implemented to manage missing data, 

fractional polynomial associations between the prognostic factors and outcome are 

investigated, and model selection methods are applied to determine inclusion of 

prognostic factors. The models are internally validated using bootstrap methods, 

uniform shrinkage is applied to correct for optimism, and the optimism adjusted models 

are compared in terms of prognostic factor associations, baseline hazard estimates, 

and individual prediction estimates. 

In Chapter 5 both cause-specific and subdistribution approaches are applied to 

develop and internally validate flexible parametric prognostic models to predict the risk 

of antenatal adverse events in pregnancies with early-onset pre-eclampsia, 

incorporating delivery of the baby as a competing event. Multiple imputation methods 

are implemented, fractional polynomial associations are investigated, and model 
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selection methods are applied. The models are internally validated using bootstrap 

methods, and uniform shrinkage is applied to correct the subdistribution model for 

optimism. The models are compared in terms of prognostic factor associations, 

baseline hazard estimates, and individual prediction estimates. 

In Chapter 6 the flexible parametric prognostic model developed in Chapter 4, and the 

flexible parametric subdistribution model developed in Chapter 5, are externally 

validated using an independent dataset of early-onset pre-eclampsia pregnancies. The 

resulting models, and their measures of prognostic ability, are compared. 

Chapter 7 describes the design and results of a simulation study to assess the effects 

of competing events on measures of prognostic performance. The level of 

miscalibration introduced when assessing overall calibration and not appropriately 

accounting for competing events is investigated for different proportions of the event 

of interest and the competing event. The chapter concludes with recommendations 

regarding which circumstances competing risks methodology significantly alters 

measures of prognostic ability, and thus should be applied, in prognostic model 

research. 

Finally, Chapter 8 concludes the thesis with a summary and discussion of key findings 

and recommendations regarding when and how competing risks should be accounted 

for in prognostic model research. The limitations of the research are discussed, and 

recommendations for future research are provided. 
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2 AN EMPIRICAL EVALUATION OF THE PRESENCE AND 

REPORTING OF COMPETING EVENTS IN SYSTEMATIC 

REVIEWS OF PREDICTION MODEL STUDIES 

2.1 Introduction  

In order for a prediction model to be useful, the model’s estimates of an 

individual’s risk of experiencing a particular outcome in the future need to be as 

accurate as possible. If competing events are present but not correctly accounted for, 

the estimated risk predictions provided by the model may not accurately reflect the 

individual’s real-world risk. The inflation in absolute risk estimates resulting from not 

accounting for competing events is referred to as “competing risks bias” (Schatzkin 

and Slud, 1989, Schumacher et al., 2016, Walraven and McAlister, 2016). 

The presence of competing risks bias in prediction model research could result 

in biased information being used to inform treatment decisions. A study comparing 

prediction models developed using standard time-to-event methods with a model 

developed using competing risks methods found an additional 10% of women were 

classified as high risk for developing coronary heart disease when the competing 

events were not correctly accounted for (Wolbers et al., 2009). Logically, the amount 

of bias in absolute risk estimates is associated with the number of observed competing 

events, more events lead to greater bias. Walraven and McAlister developed an 

(unpublished) model to assess relative bias in Kaplan-Meier based risk estimates 

compared to the “true” (competing risks adjusted) values (Walraven and McAlister, 

2016). The model was applied to 16 studies and estimated the median relative increase 

in absolute risk estimates due to competing risks bias, which was 5.7% (range: 1.2% 

to 65.8%) (Walraven and McAlister, 2016). 
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Furthermore, systematic reviews of prediction model studies are increasing, and 

are being used to synthesise the evidence from primary studies and guide the quality 

of evidence to support existing prediction models (Debray et al., 2017). Such reviews 

need to consider whether competing events are present and appropriately managed 

within the primary studies, to enable a thorough assessment of the quality and risk of 

bias in the primary studies (Wolff et al., 2019). To the author’s knowledge, there has 

been no previous evaluation of the handling of competing events specifically within 

systematic reviews of prediction models. 

2.1.1 Aims 

The aim of this chapter is to empirically investigate the presence and reporting of 

competing events, and competing risks bias, in published systematic reviews of 

prediction model studies. Therefore, this evaluation of systematic reviews will 

investigate: 

• Whether systematic reviews of prediction model studies contain prediction models 

with high potential for competing risks bias; and 

• Whether these biases are reported in the systematic review articles and/or 

acknowledged during quality assessment of the included prediction model studies. 
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2.2 Methods: Evaluation of systematic reviews 

2.2.1 Strategy for searching and selecting relevant systematic review articles 

To identify systematic review articles of prediction model studies, an extensive 

search strategy (Ingui and Rogers, 2001), which includes a broad range of relevant 

search terms and is shown to have a high level of sensitivity (98.2%), was applied. The 

search strategy was refined by specifying the article title must include either the term 

“systematic review” or “meta-analysis”, as suggested in the PRISMAi statement (Moher 

et al., 2009). This adaptation was unlikely to significantly affect the sensitivity of the 

search strategy; a recent review found 94% (239/255) of non-Cochraneii systematic 

review articles include one of these terms in their title (Page et al., 2016). 

The MEDLINE database (through Pubmed) was used to search for articles 

published after the 1st January 2015 to the search date (3rd April 2017) and was 

restricted to human studies. Based on testing searches, it was anticipated that this 

date range would result in approximately 30 systematic review articles being identified. 

After discussion with the research team, 30 articles was considered sufficient to 

provide an overview of the evaluation of competing risks bias within the current 

literature on systematic reviews of prediction model studies. The detailed search 

strategy for the evaluation is listed in Table 2.1. 

                                                      
i The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement is an 
evidence-based minimum set of outcomes for reporting systematic reviews and meat-analyses. 
ii A Cochrane Review is a systematic review of research in health care and health policy that is published 
in the Cochrane Database of Systematic Reviews. 
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Table 2.1: Search strategy for identifying systematic reviews of prediction model 
studies 

Database: MEDLINE (Pubmed) on 03 April 2017. 

(1) Validat*[Title] OR Predict*[Title] OR Rule*[Title] 
(2) Predict*[Title]  
(3) Outcome*[Title] OR Risk*[Title] OR Model*[Title] 
(4) (2) AND (3) 
(5) History[Title] OR Variable*[Title] OR Criteria[Title] OR Scor*[Title] OR 

Characteristic*[Title] OR Finding*[Title] OR Factor*[Title]  
(6) Predict*[Title] OR Model*[Title] OR Decision*[Title] OR Identif*[Title] OR 

Prognos*[Title] 
(7) (5) AND (6) 
(8) Decision*[Title]  
(9) Model*[Title] OR Clinical*[Title] OR Logistic Models[MeSH:noexp, Title] 
(10) (8) AND (9) 
(11) Prognostic[Title]  
(12) History[Title] OR Variable*[Title] OR Criteria[Title] OR Scor*[Title] OR 

Characteristic*[Title] OR Finding*[Title] OR Factor*[Title] OR Model*[Title] 
(13) (11) AND (12) 
(14) (1) OR (4) OR (7) OR (10) OR (13) 
(15) systematic review[Title] OR meta-analysis[Title] 
(16) (14) AND (15) 

Limitations: published between 01 January 2015 and 03 April 2017; Humans 

 

This evaluation focused on systematic review articles which describe the 

development of prediction models for health-related outcomes. The following definition 

was selected to describe a prediction model: “a multivariable (containing two or more 

variables) statistical model developed to predict an individual’s risk of a future outcome 

over a period of time from a given disease or health state”, adapted from (Collins et al., 

2015). This definition allows the inclusion of models which make predictions in healthy 

individuals from the general population, as well as in clinical populations and those in 

specified health states, as competing events and competing risks bias can potentially 

affect these populations too. Diagnostic models, which are used to identify a patient’s 

current disease or health state, are excluded from this definition as competing events 

are unlikely to prevent outcomes, as these are already present or not. Thus, systematic 

review articles were only considered suitable for inclusion in the evaluation if they met 

the following criteria: 
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1. described a systematic review and/or meta-analysis study; and 

2. assessed and/or synthesised two or more primary studies developing prediction 

models. 

These criteria led to the exclusion of systematic review articles that include prediction 

model research articles which: 

1. only identify individual prognostic factors rather than multivariable prediction 

models; or 

2. only validate existing prediction models and do not develop new models; or 

3. only assess diagnostic models and not prediction models. 

Systematic reviews which included a mixture of prediction model development articles 

alongside prognostic factor, validation, or diagnostic research articles were thus 

included in the evaluation. 

The selection of systematic review articles for this evaluation was determined 

through a screening of titles and abstracts, followed by (if necessary) an assessment 

of the full text. Articles that did not meet the above criteria were removed throughout 

this process, and reasons for exclusion were recorded. All articles were examined by 

the first reviewer (LT), and 5% of the articles were additionally independently examined 

by a second reviewer (KS or DvdW). Disagreements concerning the inclusion of 

individual articles were addressed via discussions between the reviewers (LT, KS, and 

DvdW). 

2.2.2 Data extraction 

Information from the included systematic review articles was extracted by the first 

reviewer (LT) using a data extraction form (Appendix I). A second reviewer (KS) 

independently extracted information from 20% of the included systematic review 

articles. Any discrepancies between the data extracted by the two reviewers were 
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resolved by discussion between the reviewers (LT and KS). Information was extracted 

in connection to four key items, as outlined below: 

2.2.2.1 Item 1: What were the characteristics of each systematic review? 

This item aimed to summarise the characteristics of each included systematic 

review. The date restrictions (start and end dates) reported in each systematic review’s 

search strategy were recorded. If no start date was reported within the search strategy 

it was assumed that all research articles published before the end date were included, 

i.e. the start date was recorded as the inception of the database(s) searched within the 

review. Information was recorded regarding whether each systematic review aimed to 

identify prediction model articles which developed models to predict a specific 

outcome(s) (such as stroke or mortality), or which developed models in populations in 

a specific health state (such as those in hospital), or indeed both. Finally, both the 

number of prediction model articles included in each systematic review and the 

reported number of prediction models was recorded. Some systematic reviews 

identified prognostic factor, validation, and diagnostic research articles as well as 

development articles. Additionally, some identified articles which developed multiple 

prediction models; thus the number of prediction model articles and reported number 

of models in each systematic review may not be equal. 

2.2.2.2 Item 2: What is the potential for competing risks bias affecting each 

systematic review? 

The reported characteristics of each prognostic model developed within each 

prognostic model study included in each systematic review were assessed using a 

combination of criteria. These criteria, utilised in published articles addressing 

competing risks bias (Koller et al., 2012, Schumacher et al., 2016, Walraven and 

McAlister, 2016), were considered to assess the risk of competing risks bias within 

each systematic review (further details are provided in the Discussion). The three 
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criteria are outlined below, followed by a description of the process used to assess the 

risk of competing risks bias within each systematic review. 

Criterion for competing risks bias 1: The prediction model investigates 

outcomes other than all-cause mortality 

It is generally accepted that outcomes such as all-cause mortality, and composite 

outcomes which contain all-cause mortality including progression-free survival, are not 

at risk of competing events (Koller et al., 2012, Schumacher et al., 2016, Walraven and 

McAlister, 2016), as nothing can prevent these outcomes from occurring. However, 

death is often considered to be a competing event to a number of other outcomes, 

including: non-fatal disease-specific outcomes (such as antenatal adverse events in 

pre-eclampsia); and cause-specific death (such as death from cancer), as death from 

any other cause prevent these outcomes from occurring. The reported primary 

outcome(s) of interest of each prediction model identified within each systematic 

review were recorded. Systematic reviews were considered to meet this criterion if they 

included prognostic models which predicted outcomes other than all-cause mortality. 

Criterion for competing risks bias 2: The baseline population contains frail 

and/or elderly populations 

It is also generally accepted that frail and elderly populations have an increased 

risk of experiencing competing events (Koller et al., 2012). Disease and health states 

indicating increased morbidity, chronic diseases, and severe or critical illnesses (such 

as populations with cardiovascular disease, in intensive care, or receiving cancer 

therapies) were reasoned to indicate frail populations; as these populations have a 

greater likelihood of experiencing competing events (such as death) (Koller et al., 

2012). Elderly populations are considered susceptible to competing risks bias due to 

increased disease accumulation and frailty (Koller et al., 2012), thus the populations 

have a greater likelihood of experiencing competing events. The reported initial 
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disease or health state and descriptions of the age of the population which the 

prediction models identified within each systematic review were developed in were 

recorded. Systematic reviews were considered to meet this criterion if they contained 

prediction models developed in elderly or frail populations. 

Criterion for competing risk bias 3: The prediction horizon is sufficiently long 

to enable competing events to occur 

A prediction horizon is the time for which an individual’s risk is assessed; for 

example a model which predicts the ten year risk of coronary heart disease (Wolbers 

et al., 2009) has a ten year prediction horizon. A longer prediction horizon enables a 

greater number of competing events to occur. A summary of the prediction horizons of 

the prediction models identified within each systematic review were recorded. Where 

this information was not reported, a summary of follow-up time was recorded as an 

alternative. Systematic reviews which included prediction models with prediction 

horizons of a year or greater were considered to meet this criterion. The cut off at one 

year was a pragmatic decision for the purpose of the thesis, ideally clinical expertise 

should be sought to determine a sensible cut-point for this assessment based on the 

studies health state and outcome of interest. 

Overall assessment of the potential for competing risks bias within each 

systematic review 

The above criteria were evaluated in turn within each systematic review; the 

process is summarised in Figure 2.1. 
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Figure 2.1: Classification system for assessing the potential for competing risks 
bias 

 
 

Systematic reviews which only identified prediction models with all-cause 

mortality (or composites containing all-cause mortality) outcomes were not considered 

susceptible to competing risks bias and were thus classified as no potential for 

competing risks bias. Those systematic reviews which identified prediction models with 

other outcomes (Criterion 1) were evaluated further. Systematic reviews which only 

identified prediction models developed in young and healthy populations were 

considered to have a small chance of competing risks bias, and were thus classified 

as low potential for competing risks bias. Those systematic reviews which identified 

prediction models developed in frail and/or elderly populations (containing participants 
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over 60 years of agei, Criterion 2) were evaluated further. Finally, systematic reviews 

which only identified prediction models with prediction horizons less than one year 

(considered to be sufficiently short to reduce the likelihood of the occurrence of 

competing events) were classified as moderate potential for competing risks bias; 

Whereas those systematic reviews which identified prediction models with prediction 

horizons one year or greater (Criterion 3) were classified as high potential for 

competing risks bias. 

Systematic reviews classified as high potential are likely to contain a large 

proportion of prediction model studies with competing events. Whereas those 

classified as no potential are unlikely to contain any prediction model studies with 

competing events. However, a prediction model study with competing events is not 

necessarily susceptible to competing risks bias. If the prediction model study 

appropriately accounts for the competing events, for example through the use of 

competing risks regression (as outlined in Chapter 1), the results of the study will not 

be biased. However, it is suspected by the reviewers that the appropriate methods are 

scarcely applied in prediction model research, thus the presence of competing events 

is likely to be a strong indicator for the presence of competing risks bias. 

2.2.2.3 Item 3: Were competing events addressed in the systematic review 

article? 

This item aimed to summarise whether any of the included systematic review 

articles directly addressed issues related to competing risks bias. To do this, a search 

of key terms related to competing events (listed in Table 2.2) was conducted in each 

systematic review using the Adobe Acrobat Reader DC Find function. Where key terms 

were identified within the systematic review article, the associated text surrounding the 

term was extracted and reported. Additionally, as competing risks bias is connected to 

                                                      
i 60 is acknowledged as an artificial cut-off point for “elderly” used by the World Health Organisation 
ORGANIZATION, W. H. 1994. Health care for the elderly: a manual for primary health care workers. 
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overestimation of Kaplan-Meier estimates, each systematic review was examined for 

reference to, and/or depiction of, Kaplan-Meier curves. 

Table 2.2: Key terms related to competing events 

Key terms 

competing risk(s); competing event(s); competing cause(s); competing bias; cause 
specific; cause-specific; subdistribution; sub-distribution; cumulative incidence;  

Fine & Gray; Fine and Gray; 

 

2.2.2.4 Item 4: Was competing risks part of the quality assessment performed 

within the systematic review? 

Information was extracted regarding whether each systematic review reported 

performing a quality assessment of the included prognostic model studies. If done, the 

name of the quality assessment tool implemented to perform the assessment was 

recorded. Each quality assessment tool identified was obtained (where possible) and 

examined to determine whether it explicitly mentioned competing risks and the 

potential for competing risk bias. 

2.2.3 Analysis methods 

A narrative synthesis of the information extracted from the systematic review 

articles was conducted, the preliminary synthesis consisted of tabulation and textual 

descriptions of the extracted information. 
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2.3 Results: Evaluation of systematic reviews 

2.3.1 Search and selection of relevant systematic reviews 

A flow diagram depicting the selection process for this evaluation is given in 

Figure 2.2. 

Figure 2.2: Flow diagram of systematic review article selection process for this 
evaluation 

 
 

The initial PubMed search identified 535 articles for consideration. Titles and 

abstracts were screened to identify potentially relevant articles, leading to 480 

irrelevant articles being excluded. Full text manuscripts were retrieved for the 
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remaining 55 articles; of these 24 did not meet the review selection criteria and were 

consequently excluded. The main reasons for exclusion at this stage were systematic 

reviews which: only assessed diagnostic models; only assessed model validation 

studies; and only assessed prognostic factor studies. The remaining 31 systematic 

reviews met the evaluation inclusion criteria and were thus considered suitable for the 

evaluation. Additional reviewers (KS and DvdW) each checked ten randomly selected 

articles, from the initial 535 identified, against the review inclusion criteria. No 

discrepancies were identified between reviewer decisions; thus the 31 systematic 

review articles formed the final set for this evaluation. The findings about items 1 to 4 

are now summarised for these 31 articles. 

2.3.2 Item 1: What were the characteristics of each systematic review? 

The characteristics of the 31 included systematic reviews of prediction model 

studies are summarised in Appendix II. The majority of the systematic reviews (22, 

71.0%) aimed to identify prediction models developed in a specified population, and 

which predict a pre-specified outcome. Two (6.5%) of the systematic reviews specified 

only the prediction model outcomes, specifically lung cancer (Gray et al., 2016) and 

predicting future dementia diagnosis (Tang et al., 2015). Seven (22.6%) systematic 

reviews specified only the population in which the prediction models were developed, 

and not the outcomes predicted by the models. The remaining three articles provided 

very broad definitions for outcomes predicted by the models, including 

“behavioural/psychiatric problems” (Linsell et al., 2016), “adverse outcomes” 

(O'Caoimh et al., 2015), and “late effects” (Salz et al., 2015). All reviews included an 

evaluation of multiple prediction models, with a median of 16 prediction models per 

review (range 3 to 363) identified from a median of 20 published articles per review 

(range 3 to 125). One systematic review (Tang et al., 2015) failed to report the number 

of models included in the review. It was common for the systematic reviews to identify 
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more prediction models than model development articles (13, 41.9%), due to primary 

studies presenting multiple prediction models. 

2.3.3 Item 2: What is the potential for competing risks bias affecting each 

systematic review? 

The risk of competing risks bias within each systematic review was assessed by 

scrutinizing the reported characteristics of the prediction model development studies 

included within each review. Information pertaining to three criteria (prediction model 

outcomes, baseline populations, and prediction horizons) were extracted from each 

systematic review article, these are reported in Table 2.3. Each of the criteria were 

assessed separately prior to being combined to determine an overall potential for 

competing risks bias. The results are provided below. 

Criterion for competing risk bias 1: The prediction model investigates 

outcomes other than all-cause mortality 

Data which summarise the outcomes of the prediction models identified within 

each systematic review is displayed in Table 2.3. The 31 systematic reviews identified 

prediction models with a variety of outcomes, including morbidity (Lim et al., 2015, 

Marufu et al., 2015, Salz et al., 2015), acute kidney injury (Caragata et al., 2016, Wilson 

et al., 2016), asthma (Luo et al., 2015, Smit et al., 2015), and venous thromboembolism 

(Ensor et al., 2016, Mahajerin et al., 2015). Of the 31 systematic reviews, eight (25.8%) 

reported the inclusion of prediction models with all-cause mortality outcomes, yet only 

three (9.7%) (Kohn et al., 2015, Oliver et al., 2015, Warnell et al., 2015) included only 

all-cause mortality outcomes. Hence 28 (90.3%) systematic reviews contained 

prediction models which investigated outcomes other than all-cause mortality and met 

this criterion. 
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Table 2.3: The risk of competing risks bias within each systematic review: based on characteristics of the prediction model 
development studies contained within each systematic review. 

Systematic 

review 

reference 

Criterion for competing risk bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk bias 3: 

Prediction horizons 

Outcomes of the prediction models 

identified in the review+ 

Do all 

outcomes 

contain all-

cause 

mortality? 

Disease and health 

states of prediction 

model populations 

Population age 

at baseline 

Prediction horizon of 

models identified in 

the review 

(Ayerbe et al., 
2016) 

Coronary artery disease, myocardial 
infarction, angina, coronary insufficiency, 
unstable angina, cardiac death, arrhythmia, 
revascularisation 

No Chest pain  
(recent onset) Not Reported Range Discharge to  

4 years 

(Brunelli and 
Prefumo, 
2015) 

Pre-eclampsia No First trimester 
pregnancy Not Reported Not Reported 

(Caragata et 
al., 2016)  

Acute kidney injury  No Liver transplantation Not Reported Range <48 hours to 
<10 days 

(Damen et al., 
2016) 

Cardiovascular Disease, with coronary 
heart disease, with stroke, myocardial 
infarction, and atrial fibrillation, all-cause 
mortality 

No General population Range 
30 to 
74 
years 

Range 2 to 45 years 

(Echouffo-
Tcheugui et 
al., 2015)  

Incident heart failure No General population Range 
18 to 
99 
years 

Range* 2.9 to 14 
years 

(Ensor et al., 
2016)  

Recurrent venous thromboembolism No 
Cessation of treatment 
venous 
thromboembolism 

Mean 
range 
 
Median 
range 
 

52.3 to 
53.6 
years 
54 to 
63 
years 

Range  3 months to 5 
years 
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Systematic 

review 

reference 

Criterion for competing risk bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk bias 3: 

Prediction horizons 

Outcomes of the prediction models 

identified in the review+ 

Do all 

outcomes 

contain all-

cause 

mortality? 

Disease and health 

states of prediction 

model populations 

Population age 

at baseline 

Prediction horizon of 

models identified in 

the review 

(Gray et al., 
2016)  

Lung cancer, death from lung cancer, 
survival, lung cancer incidence No General population Range 

20 to 
80 
years 

Range 1 to 10 years 

(Haskins et 
al., 2015)  

Functional outcomes, work related 
outcomes, pain intensity, recovery, 
symptom persistence, need for surgical 
intervention 

No Low Back Pain Mean 
range 

26 to 
56 
years 

Range  48 hours to  
2 years 

(Hilkens et 
al., 2016) 

Intracranial haemorrhage or major 
bleeding, major bleeding, intracerebral 
bleeding, gastrointestinal bleeding 

No Patients on antiplatelet 
therapy 

Mean 
range  

63 to 
69 
years 

Range 2 to 5 years 

(Kohn et al., 
2015) 

Early all-cause mortality Yes Acute pulmonary 
embolism 

Mean 
range 

56 to 
71 
years 

Max 90 days 

(Lim et al., 
2015) 

Overall morbidity, all-cause, liver failure 
mortality, overall morbidity and mortality, 
bile leakage, infection, mortality and 
hospital stay, liver failure, infection and 
organ dysfunction, overall morbidity, ascites 

No Patients undergoing 
liver resection Not Reported Max 90 days 

(Linsell et al., 
2016) 

Neurodevelopment outcomes, general 
behavioural problems, any psychiatric 
disorders, autism spectrum disorders, 
attention deficit/hyperactivity disorder 

No Very preterm or very 
low birth weight infants Max 32 

weeks Min  18 months 

(Luo et al., 
2015) 

Asthma development, multi-trigger 
wheezing, persistent wheezing, receiving 
treatment, diagnosis 

No Children  Range 0 to 14 
years Range  1 to 19 years 
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Systematic 

review 

reference 

Criterion for competing risk bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk bias 3: 

Prediction horizons 

Outcomes of the prediction models 

identified in the review+ 

Do all 

outcomes 

contain all-

cause 

mortality? 

Disease and health 

states of prediction 

model populations 

Population age 

at baseline 

Prediction horizon of 

models identified in 

the review 

(Mahajerin et 
al., 2015) 

Hospital-associated venous 
thromboembolism 

No Pediatric hospital 
patients  Max 21 

years Not Reported 

(Mao et al., 
2015) 

Stroke No Coronary artery bypass 
grafting  

Mean 
range 
 
Median 
range 
 

62 to 
69 
years 
64.7 to 
65.3 
years 

Range  1 to 30 days 

(Marques et 
al., 2015) 

Osteoporotic fracture, hip fracture, major 
osteoporotic fracture, osteoporotic or 
fragility fracture, clinical vertebral fracture, 
mortality 

No General population Range 
40 to 
100 
years 

Range  1 to 10 years 

(Marufu et al., 
2015) 

Mortality, morbidity, mobility No Hip fracture operation Not Reported Range  
In hospital to 
more than 1 
year 

(Meyer et al., 
2015) 

Functional outcomes, Barthel Index or 
Functional Independence Measure. No 

Patients receiving post-
stroke inpatient 
rehabilitation 

Not Reported Max Hospital 
discharge 

(O'Caoimh et 
al., 2015) 

Hospitalisation, functional-decline, 
institutionalisation, death No Community-dwelling 

older adults 
Mean 
range 

64.2 to 
84.6 
years 

Range  4.5 months to 
9 years 

(Oliver et al., 
2015) 

Mortality Yes Emergency laparotomy Not Reported Max 30 days 

(Quinlivan et 
al., 2016) 

Repeat self-harm and attempted suicide, 
self-harm, self-poisoning No 

Presenting with self-
harm or attempted 
suicide 

Not Reported Range  3 months to 3 
years 
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Systematic 

review 

reference 

Criterion for competing risk bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk bias 3: 

Prediction horizons 

Outcomes of the prediction models 

identified in the review+ 

Do all 

outcomes 

contain all-

cause 

mortality? 

Disease and health 

states of prediction 

model populations 

Population age 

at baseline 

Prediction horizon of 

models identified in 

the review 

(Salz et al., 
2015) 

Erectile dysfunction, urinary incontinence, 
arm lymphoedema, psychological morbidity, 
cardiomyopathy or heart failure, cardiac 
event, swallowing dysfunction, breast 
cancer, thyroid cancer. 

No Completing treatment 
for cancer Not Reported Range  6 months to  

30 years 

(Silver et al., 
2015) 

Contrast induced nephropathy No 
Undergoing procedure 
using iodinated 
radiocontrast 

Not Reported Range  2 to 7 days 

(Silverberg et 
al., 2015) 

Post-concussion symptom reporting, 
functional outcome, quality of life, 
neuropsychological outcomes 

No Mild traumatic brain 
injury  Range 5 to 80 

years Range  3 to 18 
months 

(Smit et al., 
2015) 

Asthma No Children with asthma-
like symptoms  Range 0 to 5 

years Range  1 to 11 years 

(Tang et al., 
2015) 

Dementia, Alzheimer’s disease No 

Varied, inlcuding 
general population, 
elderly, and with 
diabetes 

Range 
40 to 
99 
years 

Range  1.5 to 17 
years 

(Usher-Smith 
et al., 2016) 

Primary colorectal cancer, advanced 
colorectal neoplasia including dysplasia, 
advanced colorectal neoplasia, colon 
cancer (distal and proximal), rectal cancer 

No General population Mean 
range 

36.4 to 
67.5 
years 

Range* 10 to 20 years 

(Walsh et al., 
2016) 

Falls, multiple or injurious falls No Stroke Mean 
range 

62.0 to 
76.4 
years 

Range* Discharge to 
12 months 

(Warnell et 
al., 2015) 

Perioperative mortality Yes Oesophagectomy for 
cancer in adults Not Reported Range 0 to 90 days 
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Systematic 

review 

reference 

Criterion for competing risk bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk bias 3: 

Prediction horizons 

Outcomes of the prediction models 

identified in the review+ 

Do all 

outcomes 

contain all-

cause 

mortality? 

Disease and health 

states of prediction 

model populations 

Population age 

at baseline 

Prediction horizon of 

models identified in 

the review 

(Williams et 
al., 2016) 

Colorectal cancer, with advanced 
adenoma, with pre-malignant adenomas, 
with other cancers 

No Symptomatic of 
colorectal cancer 

Range 
 

18 to 
89 
years 

Max 2 years 

(Wilson et al., 
2016) 

Acute kidney injury No Major non-cardiac 
surgery Not Reported Range 1 week to 30 

days 

+Text in bold represents the outcome of interest specified by the review. 
* Follow-up measures reported instead of prediction horizon as prediction horizon not reported in the review. 
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Criterion for competing risk bias 2: The baseline population contains frail 

and/or elderly populations 

Data which summarise the baseline populations of the prediction models 

identified within each systematic review is displayed in Table 2.3. The 31 systematic 

reviews included prediction models developed in a variety of populations. Seven 

(22.6%) systematic reviews include prediction models developed in populations which 

have undergone a surgical intervention (Caragata et al., 2016, Lim et al., 2015, Mao 

et al., 2015, Wilson et al., 2016, Marufu et al., 2015, Oliver et al., 2015, Warnell et al., 

2015); six (19.4%) investigate prediction models developed in the general population 

(Damen et al., 2016, Echouffo-Tcheugui et al., 2015, Gray et al., 2016, Marques et al., 

2015, Tang et al., 2015, Usher-Smith et al., 2016); and four (12.9%) include prediction 

models developed in children (Linsell et al., 2016, Luo et al., 2015, Mahajerin et al., 

2015, Smit et al., 2015). Twelve systematic reviews (38.7%) did not contain information 

regarding the baseline age of the study populations in which the prediction models 

were developed. However, of the 19 systematic reviews which did report baseline age 

information, the majority (15, 78.9%) included persons over 60 years of age. Those not 

including persons over 60 were the four articles investigating outcomes in children. All 

but two (6.5%) of the systematic reviews (Luo et al., 2015, Smit et al., 2015) included 

prediction models with baseline populations containing frail and/or elderly populations 

and thus met this criterion. 

Criterion for competing risk bias 3: The prediction horizon is sufficiently long 

to enable competing events to occur 

Data which summarise the prediction horizons of the models identified within 

each systematic review is displayed in Table 2.3. Where information pertaining to the 

prediction horizons of the models was not reported, a summary of follow-up time was 

recorded as an alternative. The systematic reviews included prediction models with 

varying prediction horizons. Five (16.1%) failed to report prediction horizon information; 
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Information on the prediction model follow-up time was used as a proxy measure in 

three (9.7%) instances (Echouffo-Tcheugui et al., 2015, Usher-Smith et al., 2016, 

Walsh et al., 2016). Prediction models with prediction horizons of one year or greater 

were observed in 20 (64.5%) of the systematic reviews, hence met this criterion. 

Further, nine (29.0%) systematic reviews included prediction models with horizons 

which were ten years or longer. The greatest reported prediction horizon was 45 years 

(Damen et al., 2016). 

Overall assessment of the potential for competing risks bias within each 

systematic review 

Based on the three criteria for competing risks bias, an overview of the final 

assessment of the potential for competing risks bias is provided in Table 2.4. Of the 31 

systematic reviews, three (9.7%) only included prediction models with all-cause 

mortality outcomes (Criterion 1 not present). It is unlikely that competing events would 

be present in the prediction model development studies, and thus would be unlikely to 

cause bias in the conclusions of the systematic review. Therefore, these three 

systematic reviews were classified as having no potential for competing risks bias. Two 

(6.5%) of the systematic reviews included prediction models with outcomes other than 

all-cause mortality (Criterion 1 present), but which were developed in young and 

healthy populations (Criterion 2 not present). As competing events (such as death) 

occur less frequently in young, healthy populations, the potential for bias in the 

conclusions of the systematic review are small. These two systematic reviews were 

classified as having low potential for competing risks bias. Seven (22.6%) of the 

systematic reviews included prediction models with outcomes other than all-cause 

mortality (Criterion 1 present), which were developed in elderly or frail populations 

(Criterion 2 present), but with prediction time horizons less than 1 year (Criterion 3 not 

present). As shorter prediction horizons restrict large numbers of competing events 

from occurring, the potential for bias in the conclusions of the systematic review was 
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considered moderate. These seven systematic reviews were classified as having 

intermediate potential for competing risks bias. Finally, the majority (19, 61.3%) of the 

systematic review articles met all three criteria, and were thus classified as high 

potential for competing risks bias. All of the systematic reviews which included 

prediction models developed in the general population (Damen et al., 2016, Echouffo-

Tcheugui et al., 2015, Gray et al., 2016, Marques et al., 2015, Tang et al., 2015, Usher-

Smith et al., 2016) were categorised as high potential for competing risks bias. 

The 19 systematic reviews classified as high potential for competing risks bias 

are expected to contain prediction model studies in which competing events were likely 

to be present. Those nine systematic reviews classified as either low or intermediate 

may also contain prediction model studies with competing events, though the chances 

are reduced. This suggests that competing events are a major issue to consider in 

systematic reviews of prediction model research, as 26 out of 31 systematic reviews 

were classified moderate to high potential for competing risk bias being an issue. The 

presence of competing events is likely to cause bias in the conclusions made by the 

systematic reviews, if not acknowledged or appropriately accounted for. Hence, 

guidance is needed to prompt those undertaking systematic reviews to examine 

competing risks and biases within the prediction model studies included in the review. 
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Table 2.4: An assessment of the potential for competing risk bias in each systematic review 

Systematic 

review 

reference 

Criterion for competing risk 

bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons Overall 

potential for 

competing 

risks bias 

Outcomes 

other than all-

cause 

mortality? 

Justification 

Frail or elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 year? 

Justification 

(Kohn et al., 
2015) 

No 
Only all-cause 
mortality 
outcomes. 

    None 

(Oliver et al., 
2015) 

No 
Only all-cause 
mortality 
outcomes. 

    None 

(Warnell et 
al., 2015) 

No 
Only all-cause 
mortality 
outcomes. 

    None 

(Luo et al., 
2015) 

Yes Includes other 
outcomes. No 

Children in general 
population have low risk 
of frailty. 

  Low 

(Smit et al., 
2015) 

Yes Includes other 
outcomes. No 

Children in general 
population have low risk 
of frailty 

  Low 

(Caragata et 
al., 2016) 

Yes Includes other 
outcomes. Yes Transplantation indicative 

of critical illness. No 
Short prediction 
horizon makes 
competing events 
unlikely. 

Moderate 

(Lim et al., 
2015) 

Yes Includes other 
outcomes. Yes Liver rescetion indicative 

of frail population. No 
Short prediction 
horizon makes 
competing events 
unlikely. 

Moderate 
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Systematic 

review 

reference 

Criterion for competing risk 

bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons Overall 

potential for 

competing 

risks bias 

Outcomes 

other than all-

cause 

mortality? 

Justification 

Frail or elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 year? 

Justification 

(Mao et al., 
2015) 

Yes Includes other 
outcomes. Yes 

Coronary artery bypass 
grafting indicative of frail 
population. 

No 
Short prediction 
horizon makes 
competing events 
unlikely. 

Moderate 

(Meyer et al., 
2015) 

Yes Includes other 
outcomes. Yes Stroke indicative of frail 

population. No 
Short prediction 
horizon makes 
competing events 
unlikely. 

Moderate 

(Silver et al., 
2015) 

Yes Includes other 
outcomes. Yes 

Investigations using 
iodinated radiocontrast 
indicative of frail 
populations. 

No 
Short prediction 
horizon makes 
competing events 
unlikely. 

Moderate 

(Brunelli and 
Prefumo, 
2015) 

Yes Includes other 
outcomes. Yes 

First trimester 
pregnancies indicative of 
frail populations. 

Not reported 
Insufficient 
information to 
assess prediction 
horizon. 

Moderate 

(Mahajerin et 
al., 2015) 

Yes Includes other 
outcomes. Yes 

Patients in pediactric 
hospital indicative of frail 
population. 

Not reported 
Insufficient 
information to 
assess prediction 
horizon. 

Moderate 

(Ayerbe et 
al., 2016) 

Yes Includes other 
outcomes. Yes Chect pain indicative of 

frail population. Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 
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Systematic 

review 

reference 

Criterion for competing risk 

bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons Overall 

potential for 

competing 

risks bias 

Outcomes 

other than all-

cause 

mortality? 

Justification 

Frail or elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 year? 

Justification 

(Damen et al., 
2016) 

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Echouffo-
Tcheugui et 
al., 2015) 

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Ensor et al., 
2016) 

Yes Includes other 
outcomes. Yes 

Venous 
thromboembolism 
indicative of frail 
population. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Gray et al., 
2016)  

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Haskins et 
al., 2015)  

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Hilkens et 
al., 2016) 

Yes Includes other 
outcomes. Yes 

Antiplatelet therapy 
indicative of frail 
population. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 
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Systematic 

review 

reference 

Criterion for competing risk 

bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons Overall 

potential for 

competing 

risks bias 

Outcomes 

other than all-

cause 

mortality? 

Justification 

Frail or elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 year? 

Justification 

(Linsell et al., 
2016) 

Yes Includes other 
outcomes. Yes 

Very preterm & low birth 
weight infants indicative 
of frail population. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Marques et 
al., 2015) 

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Marufu et al., 
2015) 

Yes Includes other 
outcomes. Yes 

Hip fractures indicative of 
elderly populations with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(O'Caoimh et 
al., 2015) 

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Quinlivan et 
al., 2016) 

Yes Includes other 
outcomes. Yes 

Self-harm & suicide 
indicative of frail 
population. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Salz et al., 
2015) 

Yes Includes other 
outcomes. Yes Cancer indicative of frail 

population. Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 
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Systematic 

review 

reference 

Criterion for competing risk 

bias 1: Prediction model 

outcomes 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons Overall 

potential for 

competing 

risks bias 

Outcomes 

other than all-

cause 

mortality? 

Justification 

Frail or elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 year? 

Justification 

(Silverberg et 
al., 2015) 

Yes Includes other 
outcomes. Yes 

Traumatic brain injury 
indicative of frail 
population. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Tang et al., 
2015) 

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Usher-Smith 
et al., 2016) 

Yes Includes other 
outcomes. Yes 

Population includes 
elderly participants with 
increased frailty. 

Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Walsh et al., 
2016) 

Yes Includes other 
outcomes. Yes Stroke indicative of frail 

population. Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Williams et 
al., 2016) 

Yes Includes other 
outcomes. Yes Cancer indicative of frail 

population. Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 

(Wilson et al., 
2016) 

Yes Includes other 
outcomes. Yes Major surgery indicative 

of frail population. Yes 
Prediction horizon 
sufficiently long for 
competing events 
to occur. 

High 
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2.3.4 Item 3: Were competing events reported in the systematic review article? 

Despite the large potential for competing risks bias in most of the systematic 

review articles, only a few directly addressed issues related to competing events and 

their associated biases. Two (6.5%) of the included systematic review articles 

specifically mentioned the terms “competing risk” or “competing event” and both were 

considered to have high potential for competing risks bias. The first considered the 

presence of competing events (specifically deaths), and concluded the proportion of 

events “was likely to be very small… and therefore the model predictions would not 

change importantly if a competing risks model had been used” (Ensor et al., 2016). 

The other included a prediction model developed using competing risks regression 

methods (Damen et al., 2016). However, the term “competing risks” only appeared in 

an online supplementary table, and not in the published article. A single (3.2%) 

systematic review article included other key terms associated with competing events; 

the term “cumulative incidence” was used throughout the article to refer to the 

proportions of the prediction model study populations that had asthma (Smit et al., 

2015), and was thus not used in a competing risks context. Finally, three (9.7%) 

systematic reviews included or discussed Kaplan-Meier curves to display risk groups 

as a method for assessing model calibration (Ensor et al., 2016, Salz et al., 2015, 

Walsh et al., 2016). All three were considered to have high potential for competing 

risks bias, and so Kaplan-Meier curves are potentially misleading. 

2.3.5 Item 4: Was competing risks part of the quality assessment performed 

within the systematic review? 

The majority (29, 93.5%) of the systematic reviews reported performing a quality 

assessment of the included prediction model studies. A range of quality assessment 

tools were reported, details are given in Table 2.5. 
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Table 2.5: Quality assessment tools from systematic review articles 

Systematic review reference Quality Assessment Tool 

Ayerbe et al., 2016 QUADAS (Whiting et al., 2003) 

Brunelli and Prefumo, 2015 
Collins criteria (Collins et al., 2011, Collins et 
al., 2013) 

Caragata et al., 2016 None reported 
Damen et al., 2016 CHARMS (Moons et al., 2014) 
Echouffo-Tcheugui et al., 2015 Authors own 
Ensor et al., 2016 PROBAST (Wolff et al., 2019) 
Gray et al., 2016 Authors own 
Haskins et al., 2015 QUIPS (Hayden et al., 2013) & Authors own 
Hilkens et al., 2016 CHARMS (Moons et al., 2014) 
Kohn et al., 2015 QUADAS-2 (Whiting et al., 2011) 
Lim et al., 2015 QUIPS (Hayden et al., 2013) 
Linsell et al., 2016 QUIPS (Hayden et al., 2013) 
Luo et al., 2015 CASP (2017) 
Mahajerin et al., 2015 None reported 
Mao et al., 2015 Authors own 
Marques et al., 2015 QUADAS (Whiting et al., 2003) 
Marufu et al., 2015 Altman framework (Altman, 2001) 
Meyer et al., 2015 QUIPS (Hayden et al., 2013) 
O'Caoimh et al., 2015 QUIPS (Hayden et al., 2013) 
Oliver et al., 2015 Altman framework (Altman, 2001) 

Quinlivan et al., 2016 
QUADAS (Whiting et al., 2003) & STARD 
(Bossuyt et al., 2003) 

Salz et al., 2015 Authors own 
Silver et al., 2015 QUIPS (Hayden et al., 2013) 
Silverberg et al., 2015 Authors own 
Smit et al., 2015 CHARMS (Moons et al., 2014) 
Tang et al., 2015 Newcastle-Ottowa scale (GA Wells, 2014) 
Usher-Smith et al., 2016 TRIPOD (Collins et al., 2015) 
Walsh et al., 2016 McGinn criteria (McGinn et al., 2000) 
Warnell et al., 2015 QUIPS (Hayden et al., 2013) 
Williams et al., 2016 CASP (2017) 
Wilson et al., 2016 TRIPOD (Collins et al., 2015) 

 

The most commonly used tool for assessment of the prediction model 

development studies was the Quality in Prognosis Studies (QUIPS) tool (Hayden et 

al., 2013), which was reportedly utilised in seven (22.6%) of the systematic reviews. 

This was followed by the Quality Assessment of Diagnostic Accuracy Studies 

(QUADAS) tool (Whiting et al., 2003, Whiting et al., 2011), used in four (12.9%) of the 

systematic reviews. A number of authors (6, 19.4%) developed their own tools or 

criteria for quality assessment, whereas four others (12.9%) replicated or amended 

tools employed in similar reviews (Altman, 2001, Collins et al., 2011, Collins et al., 
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2013, McGinn et al., 2000). Two (6.5%) systematic review articles did not report 

performing a quality assessment of the included prediction model studies. 

Each of the listed quality assessment tools was examined to determine whether 

the assessment of competing events was directly advised. The PROBAST tool (Wolff 

et al., 2019), explicitly mentions competing risks in the context of the analysis of 

complexities in the data. None of the other tools explicitly refer to competing events 

and the associated biases. This may be because the other tools are not specific to 

prediction model research, and rather focus on prognostic factor research (QUIPS) 

and diagnostic tests (QUADAS). The PROBAST tool was rarely used in the systematic 

review articles identified as it was only formally released in 2019. 
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2.4 Discussion 

In this chapter, an evaluation of the presence and reporting of competing events 

in 31 systematic reviews of prediction model studies was conducted. A classification 

system for the risk of competing risks bias was developed and applied to each 

systematic review. The key findings and conclusions of this evaluation are summarised 

in Box 2.1 and discussed below. 

Box 2.1: Key findings 

1. Competing events are often present in the prediction models contained within 
systematic reviews of prediction model studies. 

2. Systematic reviews of prediction model studies rarely report the presence or 
assessment of competing risks. 

3. A wide variety of quality assessment tools are utilised in systematic reviews of 
prediction models studies, few consider competing risks. 

 

2.4.1 Key findings 

The key findings of this evaluation are presented and discussed in more detail 

below: 

2.4.1.1 Competing events are often present in the prediction models contained 

within systematic reviews of prediction model studies. 

Of the 31 systematic reviews evaluated, 90.3% were found to include prediction 

models with outcomes other than all-cause mortality, making them susceptible to 

competing events. Further, 61.3% were classified as having high potential for 

competing risks bias, when the prediction model outcome, baseline population, and 

prediction horizon were considered. This suggests that competing events are 

commonly present in prediction model development studies, and competing risks bias 

will often be a potential concern for systematic reviews of these studies. Consequently, 

the competing events should be acknowledged and examined in systematic reviews 

of prediction model studies. 
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2.4.1.2 Systematic reviews of prediction model studies rarely report the 

presence or assessment of competing risks. 

Despite the high potential for competing events in prediction model studies, few 

systematic reviews reported or assessed issues related to competing risks in the 

published articles. Only two (6.5%) of the systematic review articles evaluated directly 

reported on competing risks. If the statistical methods used to develop prediction 

models are not appropriate for the complexities of the data, the estimated predictive 

performance of the model may be biased (Moons et al., 2015). Not reporting the 

presence of competing risks could result in biases in the conclusions made by the 

systematic reviews. 

2.4.1.3 A wide variety of quality assessment tools are utilised in systematic 

reviews of prediction models studies, but few consider competing risks 

This evaluation identified a number of quality assessment tools currently being 

used to assess prediction model studies in systematic reviews. The array and 

inconsistency of quality assessment tools used by the included systematic reviews 

highlights the absence of agreed quality criteria for assessing the risk of bias in 

prognostic modelling studies. However, the Prediction study Risk Of Bias Assessment 

Tool (PROBAST) has recently been developed to address this issue. This was the only 

quality assessment tool used by the systematic reviews which explicitly referred to 

competing events. The tool directly refers to competing risks when considering the risk 

of bias in the analysis of the prediction mode study: “Were complexities in the data 

(e.g., censoring, competing risks, sampling of control participants) accounted for 

appropriately?” (Wolff et al., 2019). This tool was released in 2019, and so it hopefully 

will help to improve the assessment of competing risks bias in future systematic 

reviews of prediction model studies. 

2.4.2 Limitations and further research 
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To the author’s knowledge, this is the largest evaluation of competing events in 

systematic reviews of prediction model studies. The evaluation highlights the high 

presence of competing events in prediction model research, motivating the need to 

consider competing events in systematic reviews which aim to evaluate such studies. 

Nevertheless, the evaluation does not encompass all systematic reviews of prediction 

model studies. The systematic reviews which were not considered, due to not meeting 

inclusion criteria, may differ to those evaluated. For example, inclusion of studies 

containing the terms “systematic review” or “meta-analysis” in the article title is likely 

to identify systematic review conforming to the PRISMA reporting guidelines. However, 

reviews which follow reporting guidelines may be of better quality, or at least report on 

more key items, than those which do not. 

The classification system used to assess the potential for competing risk bias was 

developed by combining criteria from articles which similarly aimed to assess the 

presence of competing risks bias in other settings (Austin and Fine, 2017, Koller et al., 

2012, Schumacher et al., 2016, Walraven and McAlister, 2016). Criteria thought to be 

applicable to prediction model studies, and likely to be reported in the systematic 

review articles, were selected. Criteria discussed in the articles but not included in the 

classification system include: the reporting of Kaplan-Meier estimates and assessing 

the number and proportion of competing events. These were not included as criteria in 

the classification system as it was thought these would not typically be reported in 

systematic review articles. The tool was developed to pragmatically determine whether 

competing events were likely to be present in the included prediction model studies, 

as it was considered beyond the scope of the thesis to obtain individual study data for 

all included studies to determine whether competing events were truly present. Further, 

the presence of competing events in a prediction model study does not necessarily 

imply that the study contains competing risks bias. If a study identifies the competing 

events and appropriately accounts for these, for example, through competing risks 
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regression analysis, then no such bias will be observed. It is suspected by the author 

that appropriate methods are rarely utilised in prediction model research, and thus the 

presence of competing events is likely to be indicative of competing risks bias. Thus 

further research to determine whether competing events were indeed present, and 

investigating the management of these competing events, is required. 

The following chapter describes a review which investigates the presence, 

reporting, and management of competing events in prediction model studies classified 

as high potential for competing risks bias, i.e. the most susceptible to competing risks 

bias. 
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3 A REVIEW INTO THE PRESENCE, REPORTING AND 

MANAGEMENT OF COMPETING EVENTS IN 

PREDICTION MODEL DEVELOPMENT STUDIES 

3.1 Introduction 

The previous chapter established that competing events and their associated 

biases are often a potential concern in systematic reviews of prediction model studies; 

yet these are rarely considered. To emphasise why the issue of competing risks bias 

should be addressed in future systematic reviews, it is necessary to further investigate 

the magnitude of competing events and their biases at the primary study (rather than 

systematic review) level, i.e. within prediction model development studies. Therefore, 

this chapter provides a detailed assessment of the presence, reporting, and 

management of competing events in prediction model development studies. 

3.1.1 Aims 

The aim of this chapter is to review how prediction model development studies 

handle competing events in clinical settings where competing events are a likely issue. 

Specifically, this review will: 

• Investigate the potential for competing risks bias in each individual prediction 

model developed within the prediction model studies. 

• Explore how competing events are managed within prediction model development 

studies. 

• Determine whether competing events, and their associated biases, are reported in 

the published prediction model study articles. 

3.2 Methods: Review of prediction model development studies 
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3.2.1 Strategy for searching and selecting relevant prediction model study 

articles 

This review focused on published prediction model study articles which describe 

the development of prediction models in clinical settings where competing events are 

a likely issue. The prediction model development studies were identified from a subset 

of systematic review articles identified in Chapter 2. Initially, the systematic reviews 

examined in Chapter 2 were screened to ascertain which were likely to contain 

prediction models affected by competing events. Consequently, only those 19 

systematic reviews categorised with a high potential for competing risk bias were 

considered. An additional list of diseases and population characteristics, suggested to 

identify populations which are susceptible to competing events (Koller et al., 2012), 

presented in Table 3.1, was applied to further reduce the subset of systematic reviews. 

Table 3.1: List of diseases and populations susceptible to competing events 

Diseases and population characteristics 

Atrial fibrillation; cardiac failure; coronary heart disease; stroke; aneurysm; prostate cancer; 
colorectal cancer; breast cancer; chronic leukaemia; cancer screening; critical care; 
transplant; chronic obstructive pulmonary disease; elderly patients (aged 65+ years). 

 

The full-text articles of all prediction model studies examined within the selected 

systematic reviews were obtained. Prediction model studies were only considered 

suitable for inclusion to this review if they met the following criteria: 

1. Described the development of a prediction model; and 

2. Applied time-to-event analysis methods to develop the prediction model; and 

3. Had a clinical setting which reflects at least one of the disease and population 

characteristics listed in Table 3.1. 
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These criteria led to the exclusion of prediction model studies which: 

1. Only identified individual prognostic factors without combining to develop a 

prediction model; or 

2. Only validated existing prediction models without developing new models; or 

3. Only developed diagnostic, and not prediction, models; or 

4. Only used analysis methods other than time-to-event regression, to develop 

prediction models; or 

5. Had a clinical setting not considered to be susceptible to competing events. 

Conference abstracts were excluded as they contained insufficient detail of the 

prediction model study for meaningful review. 

3.2.2 Data extraction 

Relevant information from the included prediction model studies was extracted 

from the published articles and compiled by the first reviewer (LT) using a data 

extraction form (Appendix III). A second reviewer (KS) independently extracted 

information from a third of the included prediction model studies. Any discrepancies 

between the data extracted by the two reviewers were resolved by discussion between 

the reviewers (LT and KS). Information was extracted and then narratively summarised 

in regards to four key items, as outlined below: 

3.2.2.1 Item 1: What were the characteristics of each prediction model study? 

Information regarding the number of individual prediction models developed 

within each prediction model study was recorded, as well as the source of the study 

data (e.g. randomised trial, cohort, or nested case-control) and the total number of 

participants included in the study. 

3.2.2.2 Item 2: What is the potential for competing risks bias affecting each 

individual prediction model? 
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The reported characteristics of each individual prediction model developed within 

each prognostic model study were examined using the same criteria and classification 

system as developed in Chapter 2. This classification system evaluates the prediction 

model outcome, baseline population, and prediction horizon in turn and combines the 

results using the process summarised in Figure 2.1. Again, where specific prediction 

horizons were not reported, the maximum reported follow-up time was recorded as an 

alternative. 

A list of potential competing events likely to prevent the prediction model outcome 

from occurring was compiled for each prediction model study. Mortality was considered 

a potential competing event for all individual prediction models predicting outcomes 

other than all-cause mortality. Potential competing events were additionally determined 

through examination of the published prediction model study articles for the mention 

of any events likely to prevent the prediction model events. Further, potential 

competing events listed for individual prediction models with similar outcomes were 

compared and added to. 

3.2.2.3 Item 3: Were competing events reported in the published prediction 

model study articles? 

The reporting of competing events was examined for the individual prediction 

models considered to have potential for competing risks bias (classified as low, 

moderate, or high in Item 2). Information was extracted on the following: 
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1. The number of prediction model events; 

2. The number of reported competing events; 

3. The proportion of all reported events which were competing events; 

4. The presence of key terms related to competing events (as listed in Table 2.2); 

5. Whether Kaplan-Meier curves are presented or discussed; 

6. The number of prognostic factors included in the final prediction models; and 

7. Any prognostic factors considered to be associated with the competing events. 

It has been demonstrated that the level of competing risks bias is strongly 

associated with the proportion of all observed outcomes that are competing events 

(Berry et al., 2010, Schumacher et al., 2016, van Walraven and Hawken, 2016, 

Wolkewitz et al., 2014). Thus this information was extracted. A search of key terms 

related to competing events (Table 2.2) was conducted using the Adobe Acrobat 

Reader DC Find function. References to, and depictions of, Kaplan-Meier curves were 

investigated, as these estimates of absolute risk over time are known to be inflated 

when competing events are present. Finally, the number of prognostic factors included 

in the final models, as well as whether these are likely to be associated with competing 

events, were considered. It has been demonstrated that associations between 

predictors (such as prognostic factors) and outcomes can change importantly when 

competing events are appropriately accounted for (Berry et al., 2010, Dignam et al., 

2012, Schatzkin and Slud, 1989, Wolkewitz et al., 2014). Appropriately accounting for 

competing events can alter the magnitude, and in some cases the direction, of the 

estimated association, particularly when the predictors are strongly associated with the 

competing event (Berry et al., 2010, Schatzkin and Slud, 1989). Prognostic factors 

shown to be associated with mortality (anticipated to be a common potential competing 

event) include age and numerous comorbidities; defined in this instance as chronic 

diseases or disorders listed in the Charlson comorbidity index (Charlson et al., 1987), 

listed in Table 3.2. 
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Table 3.2: Comorbidities listed in the Charlson comorbidity index 

Conditions included in Charlson comorbidity index 

Myocaridal infarct, Congestive heart failure, peripheral vascular disease, cerebrovascular 
disease, dementia, chronic pulmonary disease, connective tissue disorder, ulcer disease, 
mild liver disease, diabetes, hemiplegia, moderate or severe renal disease, diabetes with 
end organ damage, any tumour, leukemia, lymphoma, modersate or severe liver disease, 

matastatic solid tumor, AIDS. 
 

3.2.2.4 Item 4: How were competing events managed in each prediction model 

study? 

Information regarding how competing events were managed within each 

prediction model study was examined. Specifically: 

1. Whether statistical regression methods which appropriately account for competing 

events, were employed to develop the individual prediction models; 

2. Whether participants who experienced competing events were excluded from the 

study; 

3. Whether participants who experienced competing events were censored at the 

point of experiencing the competing events; 

4. whether participants who experienced competing events were managed in any 

other way; 

5. Whether the study also included the validation of the individual prediction models; 

and 

6. How competing events were managed during the validation process. 

3.2.3 Analysis methods 

For this review, a narrative synthesis of the information extracted from the 

prediction model studies was conducted. The preliminary synthesis consisted of 

tabulation and textual descriptions of the extracted information. 
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3.3 Results: Review of prediction model development studies 

3.3.1 Search and selection of relevant prediction model studies and individual 

prediction models 

A flow diagram depicting the selection process for prediction model development 

studies included in this review is provided in Figure 3.1. 

Figure 3.1: Flow diagram of prediction model study article selection process for 
this review 
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The initial selection criteria identified six systematic reviews with high potential 

for competing risks bias and with population characteristics that were susceptible to 

competing events. Further information on reasons to include/exclude these systematic 

reviews is provided in Appendix IV. The six included systematic reviews contained 107 

prediction model studies which developed a total of 88 individual prediction models. All 

107 published prediction model study articles were screened, and 15 (14.0%) were 

identified as eligible for this review base on the five criteria listed in Section 3.2.1. 

Further information on reasons to include/exclude these prediction model studies is 

provided in Appendix VI. A summary of the 15 included prediction model articles that 

were identified from the 6 included systematic reviews is provided in Table 3.3. The 

extracted information for items 1 to 4 are now summarised for the 15 models. 

Table 3.3: Prediction model development articles included in this review 

Systematic review 

reference 

Total number 

of prediction 

model studies 

Total number 

of individual 

prediction 

models 

Prediction model studies 

included in this review 

(Ayerbe et al., 2016) 12 13 (Sekhri et al., 2008) 

(Hilkens et al., 2016) 5 5 (Ariesen et al., 2006)  
(Cuschieri et al., 2014) 

(O'Caoimh et al., 2015) 46 23 (Carey et al., 2008) 
(Schonberg et al., 2009)  

(Salz et al., 2015) 14 14 

(Bevilacqua et al., 2012) 
(Briganti et al., 2010) 
(Ezaz et al., 2014) 
(Kovalchik et al., 2012) 
(Mathieu et al., 2014) 
(Romond et al., 2012) 
(Travis et al., 2005) 

(Walsh et al., 2016) 12 18 (Nakagawa et al., 2008) 
(Nyberg and Gustafson, 1997) 

(Williams et al., 2016) 18 15 (Hippisley-Cox and Coupland, 
2012) 

 

3.3.2 Item 1: What were the characteristics of each prediction model study? 

The characteristics of the 15 included prediction model studies are summarised 

in Appendix VI. In brief, the majority of the prediction model studies (9, 60.0%) develop 

one individual prediction model; only two studies (13.3%) developed two models, and 
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four studies (26.7%) developed three models. Most prediction model studies (11, 

73.3%) used cohort study data to develop the prediction models. Two (13.3%) 

prediction model studies used data from nested case-control studies to develop 

prediction models, one (6.7%) study used only randomised controlled trial (RCT) data, 

and another (6.7%) used a combination of cohort and RCT data. The total number of 

participants included in the prediction model studies ranged from 135 to 3,587,653 

participants. A number of prediction model studies used bootstrap resampling for 

model validation (Ariesen et al., 2006, Bevilacqua et al., 2012, Briganti et al., 2010, 

Cuschieri et al., 2014, Romond et al., 2012). Others opted to split the study participants 

into development and validation cohorts (Carey et al., 2008, Ezaz et al., 2014, 

Hippisley-Cox and Coupland, 2012, Schonberg et al., 2009), while one (Kovalchik et 

al., 2012) sought out additional participants to externally validate the prediction models. 

3.3.3 Item 2: What is the potential for competing risks bias affecting each 

individual prediction model? 

The potential for competing risks bias was assessed for each of the 25 individual 

prediction models identified in the 15 prediction model studies. Information relating to 

three criteria (prediction model outcome, baseline population, and prediction horizon) 

were extracted for each individual prediction model and are presented in Table 3.4. 

Each of the criteria were assessed independently prior to being combined to determine 

the overall potential for competing risks bias. The results are summarised below. 
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Table 3.4: The potential for competing risk bias in included individual prediction models developed in the prediction model studies 

Prediction 

model study 

reference 

Model 

Criterion for competing risk bias 1: 

Prediction model outcome 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk 

bias 3: Prediction 

horizons 

Outcomes of the 

prediction models 

Does outcome 

contain all-

cause 

mortality? 

Disease and health 

state of prediction 

model population 

Population age 

at baseline 

Prediction horizon 

of prediction 

model 

(Sekhri et al., 
2008) 

Resting ECG 
model 

Death due to coronary 
heart disease or non-fatal 
acute coronary syndrome 

No Suspected angina 

Mean 55 (SD 
13) years 

6 years 
Summary 
exercise ECG 
model 

Mean 55 (SD 
13) years 

Detailed 
exersize ECG 
model 

Mean 54 (SD 
11) years 

(Ariesen et al., 2006) 
Intracerebral 
haemorrhage No 

Patients with ischaemic 
stroke or transient 
ischemic attack 

Mean 64 (SD 
10) years* Up to 5 years¥ 

(Cuschieri et al., 2014) 
Acute gastrointestinal (GI) 
bleeding 

No 
Patients with myocardial 
infarction & prescribed 
clopidogrel 

GI bleed:Mean 
66.2 (SD 10.4) 

years 
No GI bleed: 

Mean 62.4 (SD 
9.9) years 

Up to 8 years¥ 

(Carey et al., 2008) All-cause mortality Yes 
Community living frail 
elderly people with long-
term care needs 

Mean 79 (SD 9) 
years Up to 6 years¥ 
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Prediction 

model study 

reference 

Model 

Criterion for competing risk bias 1: 

Prediction model outcome 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk 

bias 3: Prediction 

horizons 

Outcomes of the 

prediction models 

Does outcome 

contain all-

cause 

mortality? 

Disease and health 

state of prediction 

model population 

Population age 

at baseline 

Prediction horizon 

of prediction 

model 

(Schonberg et al., 2009) 5-year mortality Yes Community dwelling 
adults aged 65 and older 

65-69: 26.6% 
70-74: 26.6% 
75-79: 21.9% 
80-84: 14.6% 
85+: 10.4% 

5 years 

(Bevilacqua et 
al., 2012) 

Preoperative 
model 

Lymphedema No 
Axillary lymph node 
dissection in breast 
cancer 

≤55 years:  
582 (55.2%) 
>55 years:  

472 (44.8%) 

5 years Within 6 months 
model 
6 months or 
later model 

(Briganti et al., 2010) Erectile function recovery No 
Prostate cancer treated 
with bilateral nerve 
sparing prostsectomy 

Mean: 61.9 
years 

Median: 62 
years 

3 years 

(Ezaz et al., 2014) 
Heart failure and 
cardiomyopathy No 

Patients receiving 
adjuvant trastuzumab 
therapy for early-stage 
breast cancer 

Mean 73.6 (SD 
5.3) years 3 years 
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Prediction 

model study 

reference 

Model 

Criterion for competing risk bias 1: 

Prediction model outcome 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk 

bias 3: Prediction 

horizons 

Outcomes of the 

prediction models 

Does outcome 

contain all-

cause 

mortality? 

Disease and health 

state of prediction 

model population 

Population age 

at baseline 

Prediction horizon 

of prediction 

model 

(Kovalchik et 
al., 2012) 

Self reported 
risk factor 
model 

Second primary thyroid 
cancer No Survivors of childhood 

cancers 

<5 years: 41% 
5-9 years: 22% 

10-14 years: 
20% 

15+ years: 18% 

20 years 
Medical record 
abstraction 
model 
All available 
information 
model 

(Mathieu et al., 
2014) 

Urinary toxicity 
model 

Global urinary toxicity 
grade ≥2 No 

Prostate cancer 
radiotherapy 

Mean: 68 years 
Range: 45 to 83 

years 
5 years Urinary 

frequency 
model 

Urinary frequency grade 
≥2 

No 

Dsuria model Dysuria grade ≥2 No 

(Romond et al., 2012) 
Severe congestive heart 
failure or cardiac death No Patients with node-

positive breast cancer Mean 49 years 5 year 

(Travis et al., 
2005) 

Without 
counselling 
model Breast cancer No Young women treated 

for Hodgkin’s lymphoma 

Mean: 22 years 
Median: 22 

years 
30 years 

With counselling 
model 

(Nakagawa et al., 2008) Falls No 
Stroke inpatients in 
convalescent 
rehabilitation wards 

Mean 69.7 (SD 
12.1) years 180 days¥ 
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Prediction 

model study 

reference 

Model 

Criterion for competing risk bias 1: 

Prediction model outcome 

Criterion for competing risk bias 2: 

Baseline populations 

Criterion for 

competing risk 

bias 3: Prediction 

horizons 

Outcomes of the 

prediction models 

Does outcome 

contain all-

cause 

mortality? 

Disease and health 

state of prediction 

model population 

Population age 

at baseline 

Prediction horizon 

of prediction 

model 

(Nyberg and Gustafson, 1997) Falls No Patients in stroke 
rehabilitation 

Mean 74.8 (SD 
8.9) years 56 days¥ 

(Hippisley-Cox 
and Coupland, 
2012) 

Female model 
Colorectal cancer No 

Women with suspected 
colorectal cancer Mean 50.1 (SD 

15.0) years 2 years 
Male model Men with suspected 

colorectal cancer 
*Information gained from appendix or supplementary material. 
¥Follow-up measure given as prediction horizon not directly reported in article. 
ECG = Electrocardiogram 
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Criterion for competing risk bias 1: The prediction model investigates 

outcomes other than all-cause mortality 

As mentioned, it is fundamental to consider prediction model outcomes when 

assessing for the risk of competing risks bias. Individual prediction models which 

predict the risk of all-cause mortality are unlikely to contain competing events, as few 

events can prevent the occurrence of death. Information on outcomes predicted by the 

individual prediction models is displayed in Table 3.4. All-cause mortality was the 

outcome for two (8.0%) individual prediction models, developed in two prediction 

model studies (Carey et al., 2008, Schonberg et al., 2009). The remaining 23 (92.0%) 

individual prediction models, developed in 13 prediction model studies, predicted 

outcomes other than all-cause mortality, hence met this criterion. 

Criterion for competing risk bias 2: The baseline population contains frail 

and/or elderly populations 

The susceptibility of the prediction model study populations is important when 

assessing the risk of competing risks bias. Competing events are more likely to be 

present in individual prediction models developed in elderly and frail populations, thus 

the models have an increased risk of competing risks bias. Summary information of 

the baseline populations used to develop each individual prediction model is displayed 

in Table 3.4. All of the individual prediction models were either developed in frail 

populations, such as those with or surviving cancer (16, 64.0% models from 8, 53.3% 

prediction model studies), or were developed in populations which included persons 

over 60 years of age (20, 80% models from 13, 86.7% prediction model studies). Thus, 

all included prediction models met this criterion. 

Criterion for competing risk bias 3: The prediction horizon is sufficiently long 

to enable competing events to occur 
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Assessing the duration of the prediction horizon can help to determine the risk of 

competing risks bias, as a longer prediction horizon enables a greater number of 

competing events to occur. Thus individual prediction models with long prediction 

horizons have an increased risk of competing risks bias. Information summarizing the 

prediction horizons of the individual prediction models is provided in Table 3.4. Two 

(8.0%) individual prediction models, developed in two (13.3%) prediction model 

studies, had prediction horizons shorter than a year; these models made predictions 

at 56 and 180 days (Nakagawa et al., 2008, Nyberg and Gustafson, 1997). The 

remaining individual prediction models (23, 92.0% models developed in 13, 86.7% 

prediction model studies) had prediction horizons over 1 year, thus met this criteria. 

Five (20%) of the individual prediction models, developed in two (13.3%) prediction 

model studies, made predictions after 20 and 30 years (Kovalchik et al., 2012, Travis 

et al., 2005). 

Overall assessment of the potential for competing risks bias within each 

individual prediction model 

The three criteria, discussed in detail above, were examined and an assessment 

of the potential for competing risks bias in each individual prediction model was 

performed. An overview of the final classification of the individual prediction models is 

presented in Table 3.5.Only two (8.0%) of the individual prediction model studies 

predicted all-cause mortality outcomes (Criterion 1 not present) (Carey et al., 2008, 

Schonberg et al., 2009). As it is unlikely that competing events would prevent the 

occurrence of all-cause mortality, these individual prediction models were categorised 

as no potential for competing risks bias. The remaining 23 (92.0%) individual prediction 

models predicted outcomes other than all-cause mortality (Criterion 1 present), and 

were developed in populations that were considered to be frail and elderly (Criterion 2 

present). Two (8.0%) of these individual prediction models, from two (13.3%) prediction 

model studies (Nakagawa et al., 2008, Nyberg and Gustafson, 1997), had prediction 
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horizons which were less than 1 year (Criterion 3 not present). These prediction 

horizons were considered to be sufficiently short to reduce the likelihood of competing 

events, and thus these prediction models were categorised as moderate potential for 

competing risk bias. Finally, the majority (21, 84.0% models from 11, 73.3% prediction 

model studies) of the individual prediction models met all three criteria, and were 

classified as high potential for competing risks bias. 

The 21 (84.0%) individual prediction models classified as high potential for 

competing risks bias are likely to have been developed in the presence of competing 

events. Thus, in the sample evaluated, a large majority were susceptible to competing 

risks bias affecting their prediction model development. 

Potential competing events for each prediction model study 

A list of potential competing events likely to prevent the prediction model 

outcomes from occurring is provided in Appendix VII. In brief, potential competing 

events were identified for all but two (13.3%) of the prediction model studies; as these 

only contained individual prediction models which predicted all-cause mortality (Carey 

et al., 2008, Schonberg et al., 2009). Mortality was identified as a potential competing 

event for the remaining 13 (86.7%) prediction model studies. Further potential 

competing events included; complete immobility, as immobility significantly alters the 

risk of falling; removal of the thyroid gland, as this eradicates the risk of recurrent 

thyroid cancer; and recurrence of the primary cancer or development of a secondary 

cancer, as these events would meaningfully alter the risk of any future cancer events 

from occurring. 
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Table 3.5: An assessment of the potential for competing risk bias in each individual prediction model 

Prediction 

model study 

reference 

Model 

Criterion for competing 

risk bias 1: Prediction 

model outcomes 

Criterion for competing risk 

bias 2: Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons 
Overall 

potential 

for 

competing 

risks bias 

Outcomes 

other than 

all-cause 

mortality? 

Justification 

Frail or 

elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 

year? 

Justification 

(Carey et al., 2008) No 
All-cause 
mortality 
outcome 

    None 

(Schonberg et al., 2009) No 
All-cause 
mortality 
outcome 

    None 

(Nakagawa et al., 2008) Yes Other outcome Yes Stroke indicative 
of frail population No 

Short prediction 
horizon makes 
competng events 
unlikely 

Moderate 

(Nyberg and Gustafson, 1997) Yes Other outcome Yes Stroke indicative 
of frail population No 

Short prediction 
horizon makes 
competing events 
unlikely 

Moderate 

(Sekhri et al., 
2008) 

Resting ECG 
model 

Yes Other outcome Yes Angina indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

Summary 
exercise ECG 
model 

Yes Other outcome Yes Angina indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

Detailed 
exersize ECG 
model 

Yes Other outcome Yes Angina indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 
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Prediction 

model study 

reference 

Model 

Criterion for competing 

risk bias 1: Prediction 

model outcomes 

Criterion for competing risk 

bias 2: Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons 
Overall 

potential 

for 

competing 

risks bias 

Outcomes 

other than 

all-cause 

mortality? 

Justification 

Frail or 

elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 

year? 

Justification 

(Ariesen et al., 2006) Yes Other outcome Yes Stroke indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Cuschieri et al., 2014) Yes Other outcome Yes 
Myocardial 
infarction 
indicative of frail 
population 

Yes 
Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Bevilacqua et 
al., 2012) 

Preoperative 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

Within 6 
months 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

6 months or 
later model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Briganti et al., 2010) Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 
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Prediction 

model study 

reference 

Model 

Criterion for competing 

risk bias 1: Prediction 

model outcomes 

Criterion for competing risk 

bias 2: Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons 
Overall 

potential 

for 

competing 

risks bias 

Outcomes 

other than 

all-cause 

mortality? 

Justification 

Frail or 

elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 

year? 

Justification 

(Ezaz et al., 2014) Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Kovalchik et 
al., 2012) 

Self reported 
risk factor 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

Medical 
record 
abstraction 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

All available 
information 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Mathieu et al., 
2014) 

Urinary 
toxicity model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

Urinary 
frequency 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 
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Prediction 

model study 

reference 

Model 

Criterion for competing 

risk bias 1: Prediction 

model outcomes 

Criterion for competing risk 

bias 2: Baseline populations 

Criterion for competing risk bias 

3: Prediction horizons 
Overall 

potential 

for 

competing 

risks bias 

Outcomes 

other than 

all-cause 

mortality? 

Justification 

Frail or 

elderly 

baseline 

population? 

Justification 

Prediction 

horizon at 

least 1 

year? 

Justification 

Dsuria model Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Romond et al., 2012) Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Travis et al., 
2005) 

Without 
counselling 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

With 
counselling 
model 

Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

(Hippisley-Cox 
and Coupland, 
2012) 

Feamle model Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 

Male model Yes Other outcome Yes Cancer indicative 
of frail population Yes 

Prediction horizon 
sufficiently long for 
competing events to 
occur 

High 
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3.3.4 Item 3: Were competing events reported in the published prediction 

model study articles? 

Information about the reporting of competing events in the published prediction 

model study articles are reported by individual prediction models in Table 3.6. The 

observed number of prediction model events was reported for all but one of the 

individual prediction models (Carey et al., 2008). However, numbers of observed 

competing events were not reported for the majority of the individual prediction models 

(15, 60.0% models from 11, 73.3% prediction model studies); though competing events 

were not expected to be present for two of these (Carey et al., 2008, Schonberg et al., 

2009). The number of competing events was reported (either partially or fully) for ten 

(40.0%) individual prediction models from four (26.7%) prediction model studies 

(Bevilacqua et al., 2012, Kovalchik et al., 2012, Nyberg and Gustafson, 1997, Sekhri 

et al., 2008). The proportion of the total number of events which were competing events 

was calculated for these individual prediction models; this proportion was found to 

range from 12.5% to 94.0%. The proportion of all observed events which are competing 

has been shown to be positively associated with the amount of competing risk bias 

(van Walraven and Hawken, 2016), thus confirming the importance of appropriately 

accounting for competing events in prediction model studies. 

Kaplan-Meier curves were presented and discussed in 11 (73.3%) prediction 

model studies, which developed 16 (64.0%) individual prediction models. In the 

presence of competing events Kaplan-Meier estimates are known to be inflated, thus 

almost three-quarters of the prediction model studies are likely to have reported 

inflated absolute risk estimates. 
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Table 3.6: Reporting of competing events in published prediction model study articles assessed for each individual prediction model 

Prediction 

model study 

reference 

Model 

Reported number of events 
Key competing 

risks terms 
Prognostic factors 

Prediction 

model 

events 

Competing 

events 

Total 

observed 

events 

Proportion 

competing 

events 

Terms 

used 

Kaplan-

Meier 

curves  

Number 

in final 

model 

Associated with 

mortality 

(Sekhri et al., 
2008) 

Resting ECG 
model 

576 (7%) 

Deaths not 
reported; 
465 (6%) 
PTCA or 
CABG 

1,041 44.7% 

No No 

7 Age, diabetes 

Summary 
exercise ECG 
model 

351 (7%) 

Deaths not 
reported; 
354 (7%) 
PTCA or 
CABG 

705 50.2% 9 Age, diabetes 

Detailed 
exercise ECG 
model 

110 (8%) 

Deaths not 
reported; 
87 (6%) 
PTCA or 
CABG 

197 44.2% 9 Age, diabetes 

(Ariesen et al., 2006) 107 (1%) Deaths not 
reported   No Yes 4 Age 

(Cuschieri et al., 2014) 107 (3%) Deaths not 
reported   No Yes 5 

Age, diabetes, chronic 
liver disease, chronic 
kidney disease 

(Carey et al., 2008) Not reported    No Yes 8 

Age, malignant 
neoplasm, congestive 
heart failure, chronic 
obstructive pulmonary 
disease, renal failure 
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Prediction 

model study 

reference 

Model 

Reported number of events 
Key competing 

risks terms 
Prognostic factors 

Prediction 

model 

events 

Competing 

events 

Total 

observed 

events 

Proportion 

competing 

events 

Terms 

used 

Kaplan-

Meier 

curves  

Number 

in final 

model 

Associated with 

mortality 

(Schonberg et al., 2009) 4,061 (17%)    No Yes 11 
Age, chronic 
obstructive pulmonary 
disease, diabetes, 
cancer 

(Bevilacqua et 
al., 2012) 

Preoperative 
model 

247 (23%) 171 (16%) 
deaths 418 40.9% 

No (1) Yes 

3 Age 

Within 6 
months model 

247 (23%) 171 (16%) 
deaths 418 40.9% 5 Age 

6 months or 
later model 

247 (23%) 171 (16%) 
deaths 418 40.9% 7 Age 

(Briganti et al., 2010) 252 (58%) Deaths not 
reported   No Yes 3 

Age, Charlson 
comorbidity index 
score 

(Ezaz et al., 2014) 155 (19%) Deaths not 
reported   No No 7 

Age, coronary artery 
disease, atrial 
fibrilation, diabetes, 
hypertension, renal 
failure 

(Kovalchik et 
al., 2012) 

Self-reported 
risk factor 
model 

159 (1%) 
2,483 (20%) 
competing 
events(2) 

2,642 94.0% 

Yes No 

5 Age, Hodgkin 
lymphoma 

Medical record 
abstraction 
model 

159 (1%) 
2,483 (20%) 
competing 
events(2) 

2,642 94.0% 7 Age 

All available 
information 
model 

159 (1%) 
2,483 (20%) 
competing 
events(2) 

2,642 94.0% 6  
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Prediction 

model study 

reference 

Model 

Reported number of events 
Key competing 

risks terms 
Prognostic factors 

Prediction 

model 

events 

Competing 

events 

Total 

observed 

events 

Proportion 

competing 

events 

Terms 

used 

Kaplan-

Meier 

curves  

Number 

in final 

model 

Associated with 

mortality 

(Mathieu et 
al., 2014) 

Urinary 
toxicity model 

183 (19%) Deaths not 
reported   

No(1) Yes 

2  

Urinary 
frequency 
model 

92 (10%) Deaths not 
reported   3 Diabetes 

Dysuria model 36 (4%) Deaths not 
reported   2  

(Romond et al., 2012) 37 (4%) Deaths not 
reported   Yes Yes 2 Age 

(Travis et al., 
2005) 

Without 
counselling 
model 

105(3) Deaths not 
reported(4)   

Yes No 

3 Age 

With 
counselling 
model 

105(3) Deaths not 
reported(4)   4 Age 

(Nakagawa et al., 2008) 270 (38%) Deaths not 
reported   No Yes 7 Hasegawa’s dementia 

scale 

(Nyberg and Gustafson, 1997) 49 (36%) 

Deaths not 
reported; 

7(5%) 
immobile 

56 12.5% No Yes 8  

(Hippisley-
Cox and 
Coupland, 
2012) 

Female model 4798 
(<1%)(5) 

Deaths not 
reported   

No Yes 
7 Age 

Male model 
Deaths not 
reported   9 Age 
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Prediction 

model study 

reference 

Model 

Reported number of events 
Key competing 

risks terms 
Prognostic factors 

Prediction 

model 

events 

Competing 

events 

Total 

observed 

events 

Proportion 

competing 

events 

Terms 

used 

Kaplan-

Meier 

curves  

Number 

in final 

model 

Associated with 

mortality 

(1) Cumulative incidence calculated using Kaplan-Meier methods 
(2) Obtained from supplementary table S3, competing events consist of other secondary primary cancer, thyroid removal, or death. 
(3) Nested case-control study so percentage of events not reported as not appropriate. 
(4) Nested case-sontrol study reports hazard rates per 100 000 person-years (population based measures) instead. 
(5) Number of events reported for prediction model study, not stratified by sex as individual models are. 
PTCA = percutaneous transluminal coronary angioplasty; CABG = coronary artery bypass grafting;  
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Key competing risks terms were reported in three (20.0%) prediction model 

studies, which developed four (16.0%) individual prediction models (Kovalchik et al., 

2012, Romond et al., 2012, Travis et al., 2005). Competing risks terms were used when 

reporting potential competing events, as illustrated in Box 3.1, and to describe the 

statistical modelling methods used to develop the individual prediction models, as 

illustrated in Box 3.2. Other instances where competing risks terms were used are cited 

in Appendix VIII. 

Box 3.1: Competing risks terms reporting potential competing events 

“Competing events for [second primary thyroid cancer] were death, self-reported 

complete removal of the thyroid gland, and other second primary cancers…” 

(Kovalchik et al., 2012) 
 

“The competing events were any first event of recurrence, second primary cancers, and 

deaths precluding [cardiac events].” 

(Romond et al., 2012) 
 

“We estimated this future risk, taking into account … competing causes of death.” 

(Travis et al., 2005) 
 

Box 3.2: Competing risks terms describing statistical modelling methods 

“Estimates of absolute risk combined semiparametric estimates of baseline incidences 

and [relative risks] for [second primary thyroid cancer] and competing risks … 

competing event [relative risks] were estimated from the [Childhood Cancer Survivor 

Study] cohort only...Hazard models for … competing event models for [model 1], 

[model 2], and [model 3] followed a Cox proportional hazards model.” 

(Kovalchik et al., 2012) 
 

“The cumulative proportions of [cardiac events] were estimated and compared by using 

the cumulative incidence function ... The Cox cause-specific proportional hazards 

model was used to evaluate the association between time to [congestive heart failure] 

and cardiac risks factors. A parametric regression model on cause specific 

subdistribution hazard was used to build a prediction model for 5-year probability of 

developing [cardiac events] with 95% point-wise CIs, adjusting for significant risk 

factors.” 

(Romond et al., 2012) 
 

“To compute cumulative absolute risks of breast cancer, we used modified 

standardized incidence ratios to relate cohort breast cancer risks to those in the general 

population, enabling application of population-based breast cancer rates, and we 

allowed for competing risks by using population-based mortality rates in female 

[Hodgkin’s lymphoma] survivors.” 

 (Travis et al., 2005) 
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3.3.5 Item 4: How were competing events managed in each prediction model 

study? 

Information about the management of competing events in each of the 15 

prediction model studies is reported in Table 3.7. Statistical methods (such as 

competing risks regression) were applied to appropriately manage competing events 

in six (24.0%) individual prediction models from three (20.0%) prediction model studies 

(Kovalchik et al., 2012, Romond et al., 2012, Travis et al., 2005). Competing risks bias 

should not be present as the competing events have been appropriately managed. 

Competing events were censored during the development of nine (36.0%) individual 

prediction models, from four (26.7%) prognostic model studies (Bevilacqua et al., 2012, 

Hippisley-Cox and Coupland, 2012, Nyberg and Gustafson, 1997, Sekhri et al., 2008), 

and prior to the development of one individual prediction model (Sekhri et al., 2008). 

Competing risks bias is likely to affect these individual prediction models as censoring 

or excluding competing events causes inflated absolute risk estimates. The eight 

(53.3%) remaining prediction model studies, which developed ten (40.0%) individual 

prediction models, did not report on the management of competing events. While two 

of these (Carey et al., 2008, Schonberg et al., 2009) were classified as no potential for 

competing risks bias, the remaining prediction model studies were classified with 

moderate or high potential for competing risks bias, thus it is unlikely that no competing 

events occurred in these studies. For example, one cohort study followed 12,648 

stroke patients, with a mean age of 64, for 5 years (Ariesen et al., 2006); The study 

does not report any deaths (competing events) or how these were managed in the 

study, yet it is unlikely that none occurred. 
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Table 3.7: Management of competing events in each prediction model study 

Prediction model 

study reference 

Potential for 

competing risks 

bias 

Prediction model outcomes 

Competing risks 

statistical methods 

used 

Competing 

events 

censored 

Competing 

events 

excluded 

Validation 

method 

(Sekhri et al., 
2008) 

High 
Death due to coronary heart 
disease or non-fatal acute 
coronary syndrome 

No Yes No Apparent 

(Ariesen et al., 
2006)  

High Intracerebral haemorrhage No No No Internal 

(Cuschieri et al., 
2014) 

High Acute gastrointestinal (GI) 
bleeding No No No Apparent 

(Carey et al., 2008) No All-cause mortality No No No Internal 

(Schonberg et al., 
2009) 

No 5-year mortality No No No Internal 

(Bevilacqua et al., 
2012) 

High Lymphedema No Yes No Internal 

(Briganti et al., 
2010) 

High Erectile function recovery No No No Internal 

(Ezaz et al., 2014) High Heart failure and 
cardiomyopathy No No No Internal 

(Kovalchik et al., 
2012) 

High Second primary thyroid cancer Yes No No External 

(Mathieu et al., 
2014) 

High Urinary toxicity, urinary 
frequency, dysuria No No No Apparent 

(Romond et al., 
2012) 

High Severe congestive heart failure 
or cardiac death Yes No No Internal 

(Travis et al., 
2005) 

High Breast cancer Yes No No None 

(Nakagawa et al., 
2008) 

Moderate Falls No No No Apparent 

(Nyberg and 
Gustafson, 1997) 

Moderate Falls No Yes (deaths) Yes (immobility) Apparent 
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Prediction model 

study reference 

Potential for 

competing risks 

bias 

Prediction model outcomes 

Competing risks 

statistical methods 

used 

Competing 

events 

censored 

Competing 

events 

excluded 

Validation 

method 

(Hippisley-Cox 
and Coupland, 
2012) 

High Colorectal cancer No Yes No Internal 
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The predictive performance of each developed model was evaluated in some way 

for the majority of models (23, 92.0% models from 14, 93.3% prediction model studies). 

Apparent performance measures were reported for nine (36.0%) individual prediction 

models from five (33.3%) prediction model studies; internal validation methods were 

reported for 11 (44.0%) prediction models from eight (53.3%) studies; and external 

validation was reported for three (12.0%) models from one (6.7%) study. None of the 

prediction model studies reported on how competing events were managed during 

model validation. 
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3.4 Discussion 

In this chapter, a review of the presence, reporting, and management of 

competing events in prediction model development studies was conducted. In total, 25 

individual prediction models were evaluated, as identified from 15 prediction model 

studies likely to be affected by competing events. The key findings and conclusions of 

this review are summarised in Box 3.3 and discussed below. 

Box 3.3: Key findings 

1. Mortality is a common competing event for prediction model outcomes. 
2. Prediction model development articles rarely report competing risks, even when 

studies are conducted in clinical settings where competing events are a likely 
issue. 

3. The management of competing events in prediction model development studies 
is inconsistent and often not appropriate. 

 

3.4.1 Key findings 

The key findings of this review are presented and discussed in more detail: 

3.4.1.1 Mortality is a common competing event in prediction models. 

Of the 25 individual prediction models included in this review, only 8.0% predicted 

all-cause mortality, and a further 16.0% predicted cause-specific mortality. Thus 

mortality, either all-cause or other-cause, was considered a competing event for 92.0% 

of the prediction models identified in this review. Further, all of the individual prediction 

models were developed in either frail or elderly populations, and these populations are 

particularly susceptible to the competing risk of death (Berry et al., 2010). More needs 

to be done to highlight the importance of appropriately accounting for mortality as a 

competing event in prediction model studies in elderly or frail populations. 
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3.4.1.2 Prediction model development articles rarely report competing risks, 

even when studies are conducted in clinical settings where competing 

events are a likely issue. 

The included prediction model studies were identified for having high potential for 

competing risks bias and population characteristics that were susceptible to competing 

events. Despite this, competing events were poorly reported in the published prediction 

model articles. Key terms related to competing events were not mentioned in 80% of 

the prediction model study articles (which developed 84.0% of individual prediction 

models). Further, the number of competing events was not reported in 73.3% of the 

prediction model study articles (60.0% of individual prediction models). It is unlikely 

that competing events were not present in the majority of the studies, given the 

selection criteria and potential for competing risks bias. Thus, the lack of reporting of 

competing events may indicate the lack of awareness of competing risks bias as an 

issue in prediction model research. 

3.4.1.3 The management of competing events in prediction model development 

studies is inconsistent and often not appropriate. 

The management of competing events during the development of the prediction 

models was inconsistent; for example, statistical methods to appropriately handle 

competing events were applied in only 20.0% of the prediction model studies (24.0% 

of individual prediction models), whilst competing events were censored in 26.7% of 

the prediction model studies (36.0% of individual prediction models). The management 

of competing events in the validation of prediction models was not discussed in any of 

the articles. Not appropriately managing competing events when they are present can 

lead to bias, inflated absolute risk predictions. Moreover, not accounting for the 

competing events when validating prediction models can lead to bias in predictive 

performance measures. Therefore, competing events need to be handled more 
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appropriately in new prediction model development studies where competing events 

are an issue. 

3.4.2 Limitations and further research 

This work adds to existing reviews and empirical evaluations of whether 

competing risks have been accounted for in medical research. Previous systematic 

reviews investigating competing risk biases have focused on articles containing 

Kaplan-Meier curves (Schumacher et al., 2016, Walraven and McAlister, 2016), 

studies with population susceptible to competing risks (Koller et al., 2012), or published 

randomised controlled trials (Austin and Fine, 2017). This systematic review focuses 

on competing risks bias in prediction model development studies and thus provides a 

novel insight into the presence, reporting, and management of competing events 

during the prediction model development process. The review highlights the high 

presence of death as a competing event in prediction model studies in elderly and frail 

populations. Nevertheless, the review does not encompass all prediction model 

development research. The high presence of competing events is unlikely to be 

generalizable to all prediction model development studies, given the selection of 

articles from of high potential for competing risks bias systematic reviews. However, 

focusing on studies likely to be affected by competing events allowed a concentrated 

investigation into the reporting and management of competing events in model 

development articles where competing events were likely to be present and cause bias 

results if inappropriately accounted for. 

There has been relatively little research about the impact of competing events in 

relation to prediction model research. The way in which competing events may affect 

prediction model outcomes (if not appropriately accounted for) include: erroneous 

estimates of prognostic factor associations, inflated absolute risk predictions, mis-

calibration, and inaccurate risk group allocation. This chapter has highlighted the high 
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proportion of prediction model development studies which do not appropriately account 

for competing events. However, further research is needed to evaluate the impact of 

this bias on the prediction model outcomes (such as absolute risk predictions, and 

measures of calibration and discrimination). In the following chapters the statistical 

methods available to appropriately account for competing events will be discussed and 

applied to develop a prediction model for the risk of antenatal adverse events using 

data from the Prediction of Risks in Early onset Pre-eclampsia (PREP) study 

(Thangaratinam et al., 2017). 
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4 A COMPARISON OF TIME-TO-EVENT PROGNOSTIC 

MODELS DEVELOPED USING COX AND FLEXIBLE 

PARAMETRIC METHODS 

4.1 Introduction 

Before investigating the application and impact of competing risks methods, it is 

helpful to introduce and apply standard time-to-event methods to develop prognostic 

models. Thus, in this chapter two prognostic models are developed using different 

popular time-to-event methods, namely Cox proportional hazards regression (Cox, 

1972a) and Royston-Parmar flexible parametric regression (Royston and Parmar, 

2002). Cox proportional hazards regression is commonly applied to develop prognostic 

models for time-to-event outcomes (Collins et al., 2015, Royston et al., 2009). 

However, due to its semi-parametric form, Cox regression does not estimate the 

baseline hazard function and consequently does not allow for direct estimation of 

absolute risks (the motivation for prognostic model research). Parametric time-to-event 

models directly estimate the baseline hazard function and thus provide estimates of 

absolute risks over time, making them appropriate for use in prognostic model research 

(Snell, 2015). Some parametric models make strong assumptions about the shape of 

the hazard function which are simplistic and unlikely, such as exponential models 

which assume the hazard function is constant over time. Royston-Parmar flexible 

parametric regression estimates the baseline hazard function using restricted cubic 

splines, which are capable of capturing complex hazard functions (Royston and 

Parmar, 2002). In this chapter both the Cox and Royston-Parmar methods will be 

applied to existing study data to develop and internally validate two new prognostic 

models which predict the risk of antenatal adverse events in women diagnosed with 
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early onset pre-eclampsia. The resulting models will be compared to illustrate their 

differences, and the findings will influence the choice of models used in later chapters 

of this thesis, where extensions to competing risks are considered. 

4.1.1 Background: The PREP study 

Pre-eclampsia is a serious disorder in pregnancy, characterised by elevated 

blood pressure and excessive protein in the urine (Sibai, 2003). When this occurs early 

in the pregnancy (before 34 weeks gestation) it can cause serious complications, 

several of which may be life-threatening for both the mother and the unborn baby 

(Sibai, 2003). The varying prognoses of early-onset pre-eclampsia necessitates 

accurate prediction of complications to allow the timely recognition, referral and 

treatment of women with a high-risk of complications (Wilkinson, 2011). 

Prior to this thesis, two multivariable prognostic models were developed in the 

Prediction of Risks in Early onset Pre-eclampsia (PREP) study (Thangaratinam et al., 

2017). This study utilized data from a prospective cohort of 946 women diagnosed with 

confirmed early-onset pre-eclampsia between December 2011 and April 2014 from 53 

maternity units in the UK. These prognostic models provide predictions for individual 

risks of adverse maternal outcomes, including delivery of a preterm infant, for women 

with early-onset pre-eclampsia. One model predicts events prior to discharge, the 

“PREP-L” logistic regression model, the other predicts events at various time points 

prior to 34 weeks gestation, the “PREP-S” Royston-Parmar parametric model. Both 

models were externally validated in the Pre-eclampsia Integrated Estimate of RiSk for 

mothers (PIERS) cohort (von Dadelszen et al., 2009) and the Pre-eclampsia 

Eclampsia Trial Amsterdam (PETRA) cohort (Ganzevoort et al., 2005), comprising of 

a total of 850 women. Further details of the PREP study can be found in 

(Thangaratinam et al., 2017). 
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The inclusion of preterm delivery in the composite outcome predicted by both 

PREP prognostic models was determined through the consensus of an expert panel 

(Thangaratinam et al., 2017). Delivery of the baby is the only known cure for pre-

eclampsia, yet delivery before 34 weeks gestation (preterm delivery) increases the 

baby’s risk of death and neurological disability (Sibai, 2003). Despite this risk, preterm 

delivery is often offered to prevent further maternal complications and is thus indicative 

of patients at considerable risk of adverse maternal outcomes (Thangaratinam et al., 

2017). As preterm delivery is thus a treatment for high risk individuals, not accounting 

for preterm delivery in the models may have introduced bias through the treatment 

paradox. 

Treatment paradox bias occurs when the presence of a strong predictor of an 

adverse event triggers an effective treatment, thereby preventing the occurrence of a 

number of adverse outcomes (Cheong‐See et al., 2016). Had the treatment not been 

given, a subsequent adverse outcome would have been highly likely to occur; thus, 

ignoring the treatment weakens the perceived associations between true predictors 

and the outcome. Hence the expert panel agreed to incorporate preterm delivery into 

the composite outcome. 

Though the use of a composite outcome reduces the risk of treatment paradox 

bias, combining the outcomes presents a number of limitations. Preterm delivery was 

the most frequent outcome, thus prognostic model predictions were found to be heavily 

influenced by the risk of preterm delivery. The composite outcome limits the 

interpretation of associations between prognostic factors and individual outcomes, as 

associations with specific outcomes were not investigated. Finally, as preterm delivery, 

by definition, only occurs prior to 34 weeks gestation, the prediction horizon of the 

PREP-S model was restricted to 34 weeks. Any events which occurred after this time 

were censored, thus the PREP-S model is not able to make predictions over a full 

pregnancy term (40 weeks). 



 

128 

4.1.2 Prediction of antenatal adverse events 

To address some of the limitations of the PREP model composite outcome, an 

alternative outcome, antenatal adverse events, is considered and used throughout this 

thesis. Antenatal adverse events refer to adverse events which occur during 

pregnancy. Following delivery of the baby (be it preterm or otherwise) the participant 

is no longer pregnant, and thus no longer able to experience an antenatal adverse 

event. In this chapter, participants who deliver will be censored at the time of delivery 

(deliveries will be managed differently in later chapters when competing risks models 

are utilised). This definition allows established time-to-event regression methods to be 

applied to develop prognostic models to predict the risks of antenatal adverse events. 

This alternative outcome definition does not invalidate the original PREP models, 

which focus on predicting the global risks of adverse outcomes by discharge or 34 

weeks. In particular, the models developed in this chapter are not directly comparable 

to the original PREP models, but may be used alongside the PREP models to further 

assist in the understanding of the risks to the participants. 

4.1.3 Aims 

Data from the PREP study cohort will be used to develop and internally validate 

two new prognostic models to predict the risks of antenatal adverse events. The first 

will be developed using the Cox proportional hazards method, and the second using 

the Royston-Parmar flexible parametric method. The parameter estimates of the 

prediction models will be compared, as will the resulting model predictions, measures 

of predictive performance, and optimism. 
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4.2 Methods: Developing two prognostic models 

Methods for development and internal validation of the two prognostic models are 

now discussed. 

4.2.1 Outcome definition 

The primary outcome, antenatal adverse events, is a composite outcome made 

up of the events listed in Table 4.1. Patients were considered to be at risk from the 

date of pre-eclampsia diagnosis. The end of follow-up was defined as the time of 

occurrence of the first antenatal adverse event or delivery of the baby. Antenatal 

adverse events by definition exclude postpartum haemorrhages and events which 

occur following delivery, both of which were included in the original PREP models. 

Participants were censored at the time of delivery, if this occurred prior to an antenatal 

adverse event. If both an adverse event and delivery occurred on the same date the 

outcome was recorded as an antenatal adverse event. A total of 75 antenatal adverse 

events were observed during the PREP study follow-up (Table 4.1). 

Table 4.1: Individual components of antenatal adverse events 

Antenatal adverse event Number (%) 

Placental abruption 25 (2.6%) 

Transfusion of blood 23 (2.4%) 

Eclamptic seizure 11 (1.2%) 

Hepatic dysfunction 5 (0.5%) 

Pulmonary oedema 4 (0.4%) 

Intubation 3 (0.3%) 

Acute renal insufficiency 2 (0.2%) 

At least 50% FIO2 for > 1hour 1 (0.1%) 

Glasgow Coma score <13 1 (0.1%) 

Total antenatal adverse events 75 (7.9%) 
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4.2.2 Candidate prognostic factors 

To reduce the risk of overfitting during model development, the number of 

candidate prognostic factors considered for inclusion in the new models was reduced. 

The candidate prognostic factors were restricted to those included within the original 

PREP models that were also available in the PIERS validation studyi. Abnormal pulse 

oximetry was not considered as a candidate prognostic factor due to the rarity of its 

occurrence, as only four cases were observed. The restricted set of candidate 

prognostic factors is listed in Table 4.2. Maternal age and gestational age are 

considered to be clinically important risk factors (Thangaratinam et al., 2017), thus 

were forced into the prognostic models to ensure clinical acceptability. 

Antihypertensive and magnesium sulphate treatment variables were also forcibly 

retained to circumvent suboptimal prognostic performance when applied to patients 

not receiving treatments (Groenwold et al., 2016). 

Table 4.2: Candidate prognostic factors for new prognostic models 

Maternal characteristics: 
Maternal age at diagnosis (years), 
Gestational age at diagnosis (weeks). 
Medical history: 
Count of pre-existing conditions (0, 1, 2 or more) from prespecified list: pre-existing 
hypertension, renal disease, diabetes mellitus, previous history of pre-eclampsia.  
Bedside examination and laboratory tests: 
Systolic blood pressure (mmHg, highest measurement over 6 hrs), 
Platelet count (x 109/L),  
Alanine amino transaminase (IU/l),  
Serum creatinine μmol/L. 
Management at baseline (before or within 1 day of diagnosis): 
Administration of oral and/or parenteral anti-hypertensives, 
Administration of magnesium sulphate. 

 

4.2.3 Descriptive analysis of PREP participants 

The study participants’ follow-up time was investigated, and the median and 

interquartile range reported. These estimates were calculated using the reverse 

Kaplan-Meier estimator (Schemper and Smith, 1996), which is calculated in the same 

                                                      
iTime-to-event information was not collected during the PETRA study, thus only data from the PIERS 
study is suitable for external validation of the prognostic models developed in this thesis. 
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way as the Kaplan-Meier estimate, after the event indicator is reversed so the event of 

interest is censored and the censored observations become events. 

The descriptive analysis of candidate prognostic factors included reporting the 

frequency and percent of participants in each category of the binary and categorical 

candidate prognostic factors. Histograms of the distribution of each continuous 

prognostic factor were inspected to determine which were normally distributed. The 

mean and standard deviation were reported for factors considered to be normal. The 

median and inter-quartile range were reported for those which were not considered 

normal. Finally, correlations between the continuous candidate prognostic factors were 

examined, none were found to be both strongly (Spearman’s rank-order correlation 

coefficient |𝜌| ≥ 0.7) and significantly (𝑝 < 0.05) correlated with each other. 

4.2.4 Missing information and multiple imputation 

The frequency and percent of missing information was reported for each of the 

candidate prognostic factors. A large proportion of participants (829, 87.5%) had 

complete data for all outcome and candidate prognostic factor variables. Multiple 

imputation using chained equations (Buuren and Oudshoorn, 2000) techniques were 

applied to account for the missing information and avoid a loss in study efficiency and 

power. Under a missing at random assumption, a total of 20 imputed datasets were 

created using the mi impute chained package in Stata 12. The chained equations 

included the candidate prognostic factors listed in Table 4.2 (with medical history 

separated into its individual components), as well as outcome information including a 

binary variable indicating whether the participant experienced an antenatal adverse 

event or not, and an estimate of the cumulative hazard function over time (White and 

Royston, 2009). Missing values from continuous prognostic factors were imputed using 

the predictive mean matching method (Little, 1988), and those from binary prognostic 

factors were imputed using augmented logistic regression (White et al., 2010). The 
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imputed values were visually inspected to determine any outliers. Information on 

outcome measures was complete, thus outcomes were not imputed. 

4.2.5 Time-to-event regression models  

Two new prognostic models for predicting the risk of antenatal adverse events in 

women diagnosed with early onset pre-eclampsia were developed using the PREP 

study data and different time-to-event methods. The first using Cox proportional 

hazards regression, the second using Royston-Parmar flexible parametric regression. 

Details of both of these regression methods are provided in Chapter 1. 

Briefly here, Cox proportional hazards regression (Cox, 1972a) was used to 

develop one prognostic model using the stcox estimation command in Stata. This 

method estimates regression coefficients through maximisation of the partial likelihood 

function on the hazards scale, as described in Chapter 1. The Efron method (Efron, 

1977) was implemented to handle tied failure times, in which the tied failures which 

occur just before time t are included into the risk set at time t with a probability equal to 

1/number of tied events. Breslow’s estimate (Equation 1.10) of the baseline cumulative 

hazard was acquired to estimate the baseline survival function (Breslow, 1972), 

allowing the calculation of absolute risk estimates over time. 

The Royston-Parmar flexible parametric model (Royston and Parmar, 2002) was 

used to develop the alternative prognostic model using the stpm2 estimation command 

in Stata. Restricted cubic splines of log-time are utilised to approximate the log 

cumulative baseline hazard function. The model regression coefficients and 

parameters of the spline function are simultaneously estimated through maximum 

likelihood estimation. The number of knots required to capture the shape of the hazard 

function was determined by visual inspection of plots of the baseline hazard function 

for null models (containing no prognostic factors) with varying degrees of freedom 

(between 2 and 6). A spline with M interior knots is estimated with M + 1 degrees of 
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freedom. Knots were positioned at equally spaced centile values of the distribution of 

uncensored failure times. 

Regardless of the regression method used for development, the form of the 

prognostic model equation can be written as the cumulative risk of an event occurring 

prior to time t, as: 

Fi(t) = 1 − S0(t)exp(𝛃T𝐗𝐢) Equation 4.1 

Where the linear predictor 𝛃T𝐗𝐢 is the combination of estimated regression coefficients 

and prognostic factors in the model for the ith participant. 

4.2.6 Fractional polynomial terms in multiply imputed data 

In order to perform variable selection in multiply imputed data, a stacked 

approach (Wood et al., 2008) was utilised. This entails stacking the 𝜇 imputed datasets 

to produce one large dataset, and fitting weighted regression models to obtain model 

parameter estimates and adjusted standard errors. The weights assigned to each 

observation are calculated as follows: 

 wj = (1 − fj) μ⁄  Equation 4.2 

In which fj is the fraction of missing data from the jth prognostic factor. The stacked 

approach has many advantages over the well-established application of Rubin’s rules 

and inferential framework (Rubin, 2004), including being less computationally 

demanding and allowing direct estimation of likelihood ratio test statistics. An additional 

benefit is the extension of the approach to incorporate fractional polynomial terms 

(Morris et al., 2015), which allows investigations of non-linear associations between 

continuous prognostic factors and the outcome. Fractional polynomial functions with 

one dimension (FP1) were investigated for all continuous candidate prognostic factors. 

The best-fitting FP1 function was determined by estimating the best-fitting exponent 
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term �̂�, chosen from the set e ∈ {−2, −1, −0.5,0,0.5,1,2,3}i, using maximum likelihood-ratio 

type tests in the stacked data. Centring was permitted for continuous prognostic factors 

to allow for a more meaningful interpretation of relative risk estimates. 

4.2.7 Multivariable analysis and prognostic factor selection 

For both the Cox and flexible parametric models, a multivariable analysis was 

performed to determine the effects of the prognostic factors on the outcome of 

antenatal adverse events, adjusting for the effect of other included prognostic factors. 

To determine which of the candidate prognostic factors would be included in the final 

multivariable prognostic models, a backwards elimination procedure adapted to 

multiply imputed data and which incorporated fractional polynomial terms (Morris et al., 

2015) was applied using the mfpmi command in Stata. The procedure is described in 

Box 4.1. 

Box 4.1: Backward elimination procedure adapted for multiply imputed data to 
incorporate fractional polynomial terms. 

Using a stacked dataset, begin with a full model containing all candidate prognostic factors 
with all continuous prognostic factors included as linear terms. 
 
(1) Using the stacked approach, perform weighted likelihood-ratio tests on the prognostic 

factors in the model. Order from most to least significant. 
(2) By order of significance, working through each prognostic factor in the model. Run the 

appropriate selection procedure: 
Categorical prognostic factors: 
Test for removal using weighted likelihood-ratio tests. 
If 𝑝 < 0.15 retain in the model, else drop from the modelii. 
Move on to the next significant prognostic factor. 
Continuous prognostic factors: 
(i) Select the best-fitting FP1 function (as described in 4.2.6). 
(ii) Test the model containing the best-fitting FP1 function against the model with 

the linear term using weighted likelihood-ratio tests. 
If 𝑝 < 0.15 retain the FP1 function in the model. 
Else test for removal of the linear term using weighted likelihood-ratio tests. 
If 𝑝 < 0.15 retain in the model, else drop from the modelii. 

(iii) Move on to the next significant prognostic factor. 
(3) Repeat steps 1 and 2 until the model is stable with respect to the retained prognostic 

factors and their fractional polynomial functional forms. 

 

                                                      
i Conventionally the exponent term of 𝑝 = 0 represents a log-transformation 
iiUnless prognostic factor is antihypertensive treatment or treatment with magnesium sulphate, which 
are being forcibly retained in the prognostic models (see 4.2.2). 
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Maternal and gestational age are retained in the models regardless of their statistical 

significance to ensure clinical credibility of the final models in line with the original 

PREP study (Thangaratinam et al., 2017). The treatment variables (antihypertensive 

and magnesium sulphate treatment) are likewise retained to reduce the risk of 

suboptimal prognostic performance (Groenwold et al., 2016). A significance threshold 

of 𝑃 < 0.15 was selected to improve the chances of retaining meaningful prognostic 

factors in the model. The resulting hazard ratios and 95% confidence intervals from 

the multivariable models were compared across the two modelling approaches. 

4.2.8 Baseline cumulative risk estimates 

Estimates of the baseline survival function were calculated using transformations 

of baseline cumulative hazard functions (Equation 1.7), which were obtained by fitting 

regression models with the linear predictor from the multivariable prognostic models 

as an offset term, in each of the imputed datasets separately. Baseline cumulative 

hazard estimates for the Cox proportional hazards model were obtained using the non-

parametric Breslow’s estimate (Breslow, 1972) at given time points (Equation 1.10). 

Baseline log cumulative hazard estimates for the Royston-Parmar flexible parametric 

model were calculated using the spline functions estimated in the multivariable model 

(Royston and Lambert, 2011). 

An individual’s prognostic factor information is combined with the estimated 

regression coefficients to obtain an individual linear predictor value, 𝛃T𝐗𝐢. This is then 

incorporated into the regression equation alongside the estimated baseline survival 

function, S0(t), to obtain individual risk predictions (Equation 4.1). 

4.2.9 Sensitivity analysis 

A sensitivity analysis was performed to investigate the assumptions made during 

model development, namely the proportional hazards assumption and independent 

effects. Both the Cox and Royston-Parmar models, when developed in the way 
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described above, assume the effects of each prognostic factor on the outcome are 

constant over time. This assumption was tested by incorporating interactions between 

the retained prognostic factors and the natural logarithm (ln) of time into the fitted 

multivariable models. Additionally, interactions between retained prognostic factors 

were investigated to test the assumption that the effects of each prognostic factor on 

the outcome were independent. Any statistically significant (p < 0.05) deviations from 

the assumptions were reported. 

4.2.10 Apparent prognostic performance of fitted prognostic models 

The apparent performance of the fitted models was assessed in the development 

data using measures of calibration (overall calibration and calibration slope) and 

discrimination (Harrell’s C-index and R2D), as outlined in Section 1.6.3. The model’s 

predictive performance was evaluated overall and at two days, one week, and four 

weeks. The prognostic performance was assessed in each imputed dataset 

separately, the imputation-specific measures were then pooled using Rubin’s rules 

(Rubin, 2004). 

4.2.11 Internal validation and optimism adjustment 

The optimism in apparent performance of the fitted models was assessed through 

internal validation in 100 bootstrap samples of the original PREP study data. The 

bootstrap validation procedure repeats the modelling process described above in each 

bootstrap sample; the procedure is described in Box 4.2. 
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Box 4.2: Bootstrap procedure for internal validation of fitted prognostic models 
where there is missing data in the development dataset 

(1) Generate a new bootstrap sample containing an equal number of participants as the 
PREP study by sampling with replacement from the PREP study data. 

(2) In the bootstrap sample, develop a prognostic model using the model development 
process, including: 
(i) Application of multiple imputation methods to create 20 imputed datasets. 
(ii) Performing prognostic factor selection using the backwards elimination 

procedure outlined in Box 4.1. 
(iii) Calculation of baseline survival estimates appropriate to the regression method 

being applied. 
(3) For each predictive performance statistic (e.g. c-index, calibration slope), assess the 

average (across imputation datasets) performance of the new models using: 
(i) The bootstrap sample imputation datasets in which the model was developed, 

referred to as the bootstrap apparent performance. 
(ii) The original PREP study imputed datasets, referred to as the test performance. 

(4) For each statistic, calculate the optimism as the difference between the bootstrap 
apparent performance and the test performance. 

(5) Repeat steps 1-4 100 times to obtain an estimate of the average optimism across 
bootstrap samples. 

 

Optimism adjusted prognostic performance measures were calculated by 

subtracting the average optimism from the apparent prognostic performance measures 

estimated for the fitted prognostic models previously (see Section 4.2.10). The fitted 

models were adjusted for optimism by multiplying the fitted regression coefficients by 

the optimism adjusted calibration slope obtained from the bootstrap procedure. Thus, 

the optimism adjusted calibration slope represents a uniform shrinkage factor to 

penalise for overfitting. After shrinkage, and holding the shrunken regression 

coefficients as known, the baseline survival functions were re-estimated to maintain 

overall calibration between expected and observed risks. 

This process led to two final prediction models, one developed using Cox 

regression and one using Royston-Parmar models. The final model’s included 

prognostic factors, internal validation model performance, and final optimism adjusted 

equations were compared. 

  



 

138 

4.3 Results: Comparison of prognostic models 

A total of 947 women with a confirmed diagnosis of pre-eclampsia were followed 

up for a median of 10.1 days (IQR: 3.4 to 25.3). The longest observed follow-up period 

for a participant was 126.6 days, none of the participants were lost to follow-up. 

Antenatal adverse events were observed in 75 (7.9%) women, the remaining 872 

patients were followed until delivery of the baby. Non-parametric estimates of 

cumulative risk of an antenatal adverse event and delivery without an adverse event 

are depicted using 1-Kaplan-Meier curves in Figure 4.1. A large proportion of 

participants delivered soon after pre-eclampsia diagnosis; the median time to delivery 

is 10 days. 

Figure 4.1: Non-parametric Kaplan-Meier estimate of pre-eclampsia events 

 
 

4.3.1 Descriptive analysis of PREP participants 

Results of the descriptive analysis of candidate prognostic factors in PREP study 

participants are given in Table 4.3. The mean maternal age of participants at pre-

eclampsia diagnosis was 30.2 (SD 6.1) years, with a median corresponding gestational 

age of 31.4 weeks (IQR: 28.7 to 32.7). Just under two-thirds of patients did not have 

any historical medical conditions (63.9%) and around one in ten had two or more 
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(10.1%). The majority of participants were receiving magnesium sulphate (79.4%), with 

a minority treated for hypertension (15.2%). 

Table 4.3: Descriptive analysis of candidate prognostic factors 

Prognostic factor 
Summary statistics 

Mean(SD), N(%), Med [IQR] 

Missing  

N (%) 

Maternal age (years) 30.2 (6.1) 2 (0.2%) 

Gestational age at diagnosis (weeks)* 31.4 [28.7 to 32.7] 0 (0%) 

Medical History¥ 

0 594 (63.9%) 

17 (1.8%) 1 242 (26.0%) 

2 or more 94 (10.1%) 

Systolic blood pressure 158.6 (19.2) 5 (0.5%) 

Platelet count 227.1 (77.7) 41 (4.3%) 

Alanine amino transaminase* 17 [13 to 26.5] 75 (7.9%) 

Serum Creatinine 61.8 (17.1) 37 (3.9%) 

Antihypertensive treatment 751 (79.4%) 1 (0.1%) 

Magnesium sulphate treatment 144 (15.2%) 1 (0.1%) 

*Median and inter-quartile range (IQR) presented for non-normally distributed 
factors. 
¥Medical history is a count of the following conditions: chronic hypertension, renal 
disease, diabetes mellitus, and previous pre-eclampsia. 

 

The continuous prognostic factors of maternal age, systolic blood pressure 

(SBP), platelet count, and serum creatinine, appeared to be approximately normally 

distributed, whereas gestational age and alanine transaminase (ALT) were not (Figure 

4.2). No strong and significant correlations were found between any of the candidate 

prognostic factors. 
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Figure 4.2: Distributions of continuous candidate prognostic factors 

  

  

  

 

One in eight women (12.5%) in the study had missing information for at least one 

candidate prognostic factor. The candidate prognostic factors with the greatest amount 

of missing information were the three laboratory tests: ALT (7.9%), platelet count 

(4.3%), and serum creatinine (3.9%). Multiple imputation using chained equations was 

applied to create 20 imputed datasets. Imputed values for each candidate prognostic 

factor were visually inspected and no anomalies were found. 

4.3.2 Flexible parametric restricted cubic splines 
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Null Royston-Parmar models, with between one and five internal knots, were 

fitted to the original PREP study data. The resulting knot locations and, AIC and BIC 

values of the models are listed in Table 4.4.  

Table 4.4: Knot selection for Royston-Parmar flexible parametric model 

Number of internal 
knots 

Degrees of 
freedom 

Knot locations 

(time in days) 
AIC BIC 

1 2 2.7 801.1 815.6 

2 3 0.7, 7.0 802.2 821.6 

3 4 0.4, 2.7, 10.1 802.6 826.9 

4 5 0.1, 1.3, 5.4, 13.3 803.2 832.3 

5 6 0.1, 0.7, 2.7, 7.0, 15.4 803.0 837.0 

 

Surprisingly the model with only one internal knot returned the lowest AIC and 

BIC values (AIC=801.1 and BIC = 815.6), although the differences between AIC and 

BIC values over the varying number of knots were small. A graphical display of the 

spline estimates with between two and four degrees of freedom is depicted in Figure 

4.3. There is little difference in the cumulative hazard function estimates between the 

models. The spline functions were compared to a non-parametric Nelson-Aalen 

cumulative hazard estimate to assess fit. The model with four degrees of freedom 

(three internal knots) appeared to sufficiently capture the shape of the observed 

cumulative hazard function (Figure 4.3) so was considered suitable for the remainder 

of the analysis. 
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Figure 4.3: Cumulative hazard function estimates using restricted cubic splines 
with varying degrees of freedom 

 

 
 

4.3.3 Multivariable analysis and prognostic factor selection process 

The backwards elimination procedure was applied using both regression 

modelling methods. The resulting hazard ratio estimates and 95% confidence intervals 

for both models are reported in Table 4.5.  
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Table 4.5: Multivariable estimates for Cox and Royston-Parmar models 

 Cox proportional hazards model Royston-Parmar flexible parametric model 

 

Transformation of 

prognostic factor 

(X) 

HR (95% CI) 

p-value 

Transformation of 

prognostic factor (X) 

HR (95% CI) 

p-value 

Maternal age (years) X-30.244 0.975 (0.938, 1.013)  
0.192 X-30.244 0.962 (0.936, 1.011)  

0.167 

Gestational age (weeks) X-30.562 1.018 (0.939, 1.104) 
0.665 X-30.562 1.015 (0.938, 1.098)  

0.710 

Medical history¥ 

1 

2 or more 
 

 
0.457 (0.239, 0.871) 
0.658 (0.285, 1.518) 

0.038 
 

0.460 (0.242, 0.875) 
0.634 (0.275, 1.464) 

0.037 

Systolic blood pressure X-158.634 1.015 (1.002, 1.027) 
0.020 X-158.634 1.013 (1.003, 1.028)  

0.018 

Platelet count X-227.532 0.996 (0.992, 0.999) 
0.015 X-227.532 0.996 (0.992, 0.999)  

0.017 

Serum creatinine  X-61.615 1.015 (1.003, 1.026) 
0.012 X-61.615 1.015 (1.003, 1.026)  

0.012 

Antihypertensive treatment  1.291 (0.675, 2.469) 
0.440  1.293 (0.677, 2.469)  

0.436 

Magnesium sulphate treatment  5.567 (3.005, 10.314) 
<0.001  5.538 (2.994, 10.243)  

<0.001 

HR = Hazard Ratio, 95% CI = 95% confidence interval. 
¥Medical history is a count of the following conditions: chronic hypertension, renal disease, diabetes mellitus, and previous pre-eclampsia. 
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The Cox and Royston-Parmar regression methods produce almost identical 

results (Table 4.5). Both models exclude ALT due to a statistically insignificant 

association with the risk of antenatal adverse events, and both models include all other 

continuous candidate prognostic factors as linear terms. Maternal age, gestational age, 

antihypertensive treatment, and magnesium sulphate treatment were forcibly retained 

in both models for clinical acceptability and to account for treatment effects; however 

only magnesium sulphate treatment returned a statistically significant association 𝑝 <

0.001. Participants receiving magnesium sulphate treatment appear to have an 

increased risk of antenatal adverse events (HR 5.567 Cox, 5.538 Royston-Parmar). 

This treatment is given to minimise the risk of eclampsia and prevent pre-term labour, 

thus the association is likely to represent the identification and treatment of high risk 

participants by clinicians. Both models also identified a statistically significant 

association between the risk of antenatal adverse events and previous medical history 

(𝑝 = 0.038 Cox, 𝑝 = 0.037 Royston-Parmar). Surprisingly the risk of antenatal adverse 

events is reduced for patients with pre-existing medical conditions compared to those 

with noneThis finding is in line with existing prognostic models currently used for 

women with pre-eclampsia when predicting maternal adverse events (von Dadelszen 

et al., 2009, Thangaratinam et al., 2017), thus should not affect the face validity of the 

model. 

4.3.4 Baseline cumulative risk and fitted prognostic models 

Baseline cumulative risk estimates from the multivariable prognostic models were 

obtained through transformation of the estimated baseline cumulative hazard function. 

Estimates over time are presented graphically in Figure 4.4, and are provided for a 

number of pre-specified time points in Table 4.6. 
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Figure 4.4: Estimates of baseline cumulative risk from two multivariable 
prognostic models 

 

 

Table 4.6: Estimates of baseline cumulative risk from two multivariable 
prognostic models at given time points  

 2 days 1 week 4 weeks 

Cox proportional hazards model 0.015 0.038 0.116 

Royston-Parmar model 0.016 0.039 0.102 

Difference 0.001 0.001 -0.014 

 

The baseline cumulative risk estimates are calculated using centred values of the 

transformed prognostic factors; thus, this risk relates to a hypothetical participant with 

mean continuous prognostic factor values and 0 categorical prognostic factor values. 

Both the Cox and Royston-Parmar models produce similar baseline survival estimates 

up to three weeks following diagnosis. Differences between the baseline cumulative 

incidence estimates from the models become apparent after three weeks, due to the 

differences in the approaches used by each model to estimate the baseline survival 

functions. The Cox model requires an additional non-parametric analysis to be 

performed to calculate the baseline survival function. This approach results in a 

stepped survival function in which baseline estimates only change at the time of an 

observed event. As few events occurred after three weeks, the baseline survival 
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estimates after this time remain fairly static, resulting in a plateau in estimated baseline 

risk between weeks four and five. The Royston-Parmar model directly models the 

baseline log cumulative hazard using a smooth spline function. 

The fitted prognostic models combine the baseline survival estimates, S0(t), 

depicted in Figure 4.4 with the multivariable regression coefficients, �̂�, from Table 4.5 

using the equation S(t) = S0(t)exp{�̂�𝐗}. The equations for these fitted models (i.e. before 

adjustment for overfitting) are provided in Table 4.7. 

Table 4.7: Equations for fitted prognostic models for antenatal adverse events 

Cox proportional hazards model 
Royston-Parmar flexible parametric 

model 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (�̂�𝑿)  =   
–   0.025 ×  (𝒎𝒂𝒕𝒆𝒓𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.244)  
+  0.018 ×  (𝒈𝒆𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.562) 

– {
0.783,       𝑖𝑓 𝟏 𝒑𝒓𝒆𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏
0.419,       𝑖𝑓 𝟐 𝒐𝒓 𝒎𝒐𝒓𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔      

  

+  0.015 ×  (𝑺𝑩𝑷 − 158.634) 
–   0.004 ×  (𝒑𝒍𝒂𝒕𝒆𝒍𝒆𝒕 𝒄𝒐𝒖𝒏𝒕 − 227.532) 
+  0.015 ×  (𝒔𝒆𝒓𝒖𝒎 𝒄𝒓𝒆𝒂𝒕𝒊𝒏𝒊𝒏𝒆 − 61.615) 
+  0.255 ×  (𝑖𝑓 𝒂𝒏𝒕𝒊𝒉𝒚𝒑𝒆𝒓𝒕𝒆𝒏𝒔𝒊𝒗𝒆)  
+  1.717 ×  (𝑖𝑓 𝑴𝒈𝑺𝑶𝟒 𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕)  

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (�̂�𝑿)  =   
–    0.039 ×  (𝒎𝒂𝒕𝒆𝒓𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.244)  
+  0.015 ×  (𝒈𝒆𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.562) 

– {
0.777,      𝑖𝑓 𝟏 𝒑𝒓𝒆𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏
0.456,      𝑖𝑓 𝟐 𝒐𝒓 𝒎𝒐𝒓𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔      

  

+  0.013 ×  (𝑺𝑩𝑷 − 158.634) 
–   0.004 ×  (𝒑𝒍𝒂𝒕𝒆𝒍𝒆𝒕 𝒄𝒐𝒖𝒏𝒕 − 227.532) 
+  0.015 ×  (𝒔𝒆𝒓𝒖𝒎 𝒄𝒓𝒆𝒂𝒕𝒊𝒏𝒊𝒏𝒆 − 61.615) 
+  0.257 ×  (𝑖𝑓 𝒂𝒏𝒕𝒊𝒉𝒚𝒑𝒆𝒓𝒕𝒆𝒏𝒔𝒊𝒗𝒆)  
+  1.712 ×  (𝑖𝑓 𝑴𝒈𝑺𝑶𝟒 𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕)  

𝑆0(𝑡) = {

0.985, 𝑖𝑓 𝑡 = 2 𝑑𝑎𝑦𝑠  
0.962, 𝑖𝑓 𝑡 = 1 week 
0.884, 𝑖𝑓 𝑡 = 4 weeks

  𝑆0(𝑡) = {

0.984, 𝑖𝑓 𝑡 = 2 𝑑𝑎𝑦𝑠  
0.961, 𝑖𝑓 𝑡 = 1 week 
0.898, 𝑖𝑓 𝑡 = 4 weeks

  

𝑃𝑟(𝐴𝑛𝑡𝑒𝑛𝑎𝑡𝑎𝑙 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 𝑒𝑣𝑒𝑛𝑡) =  1 − 𝑆0(𝑡)𝑒𝑥𝑝(�̂�𝑿) 

 

4.3.5 Sensitivity analysis of fitted models 

A sensitivity analysis was performed to investigate the proportional hazards 

assumption made by both the Cox and Royston-Parmar modelling approaches. 

Interactions between the prognostic factors and the natural log of time were 

incorporated into the fitted models to test this assumption. The results are given in 

Appendix IX; Significant interactions were detected between magnesium sulphate 

treatment and ln(time) in both models (𝑝 = 0.009 Cox, 𝑝 < 0.001 Royston-Parmar), and 

between SBP and ln(time) in the Royston-Parmar model (𝑝 = 0.010). The inclusion of 



 

147 

these non-proportional estimates into the final prognostic model could result in further 

overfitting of the model, due to the small sample size of this study. Additionally, the 

inclusion of significant time interactions is unlikely to affect the prognostic performance 

of the models, as the time points assessed are soon after diagnosis (2 days, 1 week, 

and 4 weeks). Thus, the time interactions were intentionally disregarded from the final 

models. Not incorporating these interactions is unlikely to affect the results of this 

chapter, which focuses on the comparison of the two time-to-event modelling 

approaches. 

4.3.6 Apparent performance of fitted prognostic models 

The apparent performance of the models was assessed in the imputed PREP 

study data. The overall calibration of both prognostic models was assessed at two 

days, one week, and four weeks, the results are displayed in Table 4.8. Both models 

struggle to predict the brisk increase in risk directly after pre-eclampsia diagnosis and 

thus overall calibration at early time points (two days and one week) is suboptimal. 

However, both models appear to calibrate well at later time points. Averaging across 

multiple datasets, the calibration slope for the Cox proportional hazards model was 

found to be 0.994 (95% CI: 0.79 to 1.20), whereas the calibration slope for the flexible 

parametric model was 1.004 (95% CI: 0.80 to 1.21). The multiple imputation methods 

used to develop these models cause slightly imperfect (not equal to 1.0) calibration 

slopes, but they are almost perfect, as expected given the model was developed using 

the same data  
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Table 4.8: Overall calibration of prognostic models at time points 

 
Kaplan-Meier  

observed 

Cox proportional 

hazards model 

Royston-Parmar flexible 

parametric model 

Expected E/O Expected E/O 

2 days 3.6% 1.6% 0.444 1.6% 0.444 

1 week 6.2% 3.8% 0.613 3.9% 0.629 

4 weeks 12.6% 11.6% 0.921 12.3% 0.976 

 

The discrimination of the models was assessed using Harrell’s C-index at two 

days, one week, four weeks, and overall as well as using the R2D measure, obtained 

from the D-statistic; the results are given in Table 4.9. Both models perform similarly 

and show good ability to discriminate between those participants who experienced an 

antenatal adverse event and those who did not. 

Table 4.9: Measures of discrimination 

 

Harrell’s C-index 
Royston and Sauerbrei’s 

D-statistic 

2 

days 

1 

week 

4 

weeks 

Overall  

(95% CI) 
D-statistic R2

D 

Cox model 0.847 0.801 0.784 0.784  
(0.723, 0.845) 1.924 0.469 

Royston-Parmar 
model 

0.849 0.804 0.786 0.786  
(0.726, 0.847) 1.915 0.444 

 

In summary, the apparent prognostic performance of both the models is similar. 

As expected, both are well calibrated and have good discriminative ability when 

assessed using the dataset in which they were developed. 

4.3.7 Internal calibration and optimism adjustment 

The optimism of the prognostic performance of the two prognostic models was 

assessed through internal validation using 100 bootstrap samples. The internal 

validation of the models was assessed using measures of calibration (calibration slope) 



 

149 

and discrimination (Harrell’s C and R2D). The average performance measures from the 

100 bootstrap samples are reported in Table 4.10. 

Table 4.10: Measures of prognostic performance from 100 bootstrap samples 

 

 

Average 

bootstrap 

performance 

Average test 

performance 

Average 

optimism 

Optimism-

adjusted 

performance 

Cox model 

Calibration slope 1.000 0.837 0.163 0.837 

Harrell’s C-index 0.799 0.767 0.031 0.768 

D-statistic 2.044 1.691 0.329 1.715 

R2D Statistic 0.499 0.406 0.089 0.410 

Royston-
Parmar 
model 

Calibration slope 1.000 0.837 0.163 0.837 

Harrell’s C-index 0.801 0.767 0.031 0.770 

D-statistic 2.049 1.702 0.336 1.713 

R2D Statistic 0.501 0.409 0.090 0.411 

 

Again, both of the prognostic models perform similarly in terms of prognostic 

performance and levels of optimism. The average optimism in Harrell’s C statistic was 

found to be 0.031 for both the Cox and Royston-Parmar models, resulting in optimism 

adjusted C-index of 0.799-0.031=0.768 for the Cox model and 0.801-0.031=0.770 for 

the Royston-Parmar model. The average optimism in the R2D measure was found to 

be 0.089 for the Cox model and 0.090 for the Royston-Parmar model, resulting in 

similar optimism adjusted R2D measures of 0.499-0.089=0.410 for the Cox model and 

0.501-0.090=0.411 for the Royston-Parmar model. Even after adjusting for optimism, 

the prognostic measures for discrimination for both models are promising. The average 

optimism in the calibration slope was 0.163 for both the Cox and Royston-Parmar 

models, resulting in uniform shrinkage factors of 1.000-0.163=0.837 for both models. 

4.3.8 Development of final (optimism adjusted) model equations 

The fitted models were adjusted for optimism by multiplying the uniform shrinkage 

factor for each model to all predictor coefficients within the fitted prognostic models. 
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Then. the baseline cumulated hazard functions were re-estimated with the new linear 

predictors to ensure calibration-in-the-large. The regression equations for the final 

optimism adjusted prognostic models are provided in Table 4.11. 

Table 4.11: Final regression equations for optimism adjusted prognostic models 

Cox proportional hazards model 
Royston-Parmar flexible parametric 

model 

𝐿𝑖𝑛𝑎𝑒𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (�̂�𝑿)  =   
–   0.021 ×  (𝒎𝒂𝒕𝒆𝒓𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.244)  
+  0.015 ×  (𝒈𝒆𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.562) 

– {
0.661,       𝑖𝑓 𝟏 𝒑𝒓𝒆𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏
0.347,       𝑖𝑓 𝟐 𝒐𝒓 𝒎𝒐𝒓𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔      

  

+  0.012 ×  (𝑺𝑩𝑷 − 158.634) 
–   0.003 ×  (𝒑𝒍𝒂𝒕𝒆𝒍𝒆𝒕 𝒄𝒐𝒖𝒏𝒕 − 227.532) 
+  0.012 ×  (𝒔𝒆𝒓𝒖𝒎 𝒄𝒓𝒆𝒂𝒕𝒊𝒏𝒊𝒏𝒆 − 61.615) 
+  0.214 ×  (𝑖𝑓 𝒂𝒏𝒕𝒊𝒉𝒚𝒑𝒆𝒓𝒕𝒆𝒏𝒔𝒊𝒗𝒆)  
+  1.437 ×  (𝑖𝑓 𝑴𝒈𝑺𝑶𝟒 𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕)  

𝐿𝑖𝑛𝑎𝑒𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (�̂�𝑿)  =   
–    0.032 ×  (𝒎𝒂𝒕𝒆𝒓𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.244)  
+  0.012 ×  (𝒈𝒆𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.562) 

– {
0.650,      𝑖𝑓 𝟏 𝒑𝒓𝒆𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏
0.381,      𝑖𝑓 𝟐 𝒐𝒓 𝒎𝒐𝒓𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔      

  

+  0.011 ×  (𝑺𝑩𝑷 − 158.634) 
–   0.003 ×  (𝒑𝒍𝒂𝒕𝒆𝒍𝒆𝒕 𝒄𝒐𝒖𝒏𝒕 − 227.532) 
+  0.012 ×  (𝒔𝒆𝒓𝒖𝒎 𝒄𝒓𝒆𝒂𝒕𝒊𝒏𝒊𝒏𝒆 − 61.615) 
+  0.215 ×  (𝑖𝑓 𝒂𝒏𝒕𝒊𝒉𝒚𝒑𝒆𝒓𝒕𝒆𝒏𝒔𝒊𝒗𝒆)  
+  1.433 ×  (𝑖𝑓 𝑴𝒈𝑺𝑶𝟒 𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕)  

𝑆0(𝑡) = {

0.980, 𝑖𝑓 𝑡 = 2 𝑑𝑎𝑦𝑠  
0.956, 𝑖𝑓 𝑡 = 1 week 
0.878, 𝑖𝑓 𝑡 = 4 weeks

  𝑆0(𝑡) = {

0.979, 𝑖𝑓 𝑡 = 2 𝑑𝑎𝑦𝑠  
0.955, 𝑖𝑓 𝑡 = 1 week 
0.893, 𝑖𝑓 𝑡 = 4 weeks

  

𝑃𝑟(𝐴𝑛𝑡𝑒𝑛𝑎𝑡𝑎𝑙 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 𝑒𝑣𝑒𝑛𝑡) =  1 − 𝑆0(𝑡)𝑒𝑥𝑝(�̂�𝑿) 

 

4.3.9 Application of final optimism adjusted models to new individuals 

The above findings show that the two prognostic modelling approaches gave 

similar results at each stage of model development and internal validation. In order to 

compare the predicted risk estimates produced by the final models, a fictitious patient 

(Patient Z) will be used for illustration. Patient Z is 25 years old and was diagnosed 

with pre-eclampsia 33.8 weeks into her pregnancy, she has no pre-existing medical 

conditions and has received treatment with magnesium sulphate. Their baseline test 

results are as follows: SBP= 159, platelet count= 226, ALT= 497, serum creatinine= 

61. Patient Z’s baseline characteristics are displayed in Table 4.12. 

In order to calculate Patient Z’s risk of experiencing an antenatal adverse event, 

the values above were incorporated into the final optimism adjusted prognostic model 

regression equations. The linear predictor equations from the optimism adjusted 
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models for Patient Z are given in Table 4.13. The difference between the linear 

predictor values from the two models for the hypothetical patient is 0.045. 

Table 4.12: Patient Z’s baseline characteristics 

Prognostic factors Patient Z 

Maternal age (MA) 25 

Gestational age (GA) 33.8 

Medical history (MH) 0 

Systolic blood pressure (SBP) 159 

Platelet count (PC) 226 

Serum Creatinine (SC) 61 

Antihypertensive treatment (AH) 0 

Magnesium sulphate treatment (MG) 1 

 

Table 4.13: Linear predictor calculation for Patient Z  

Cox proportional hazards model 
Royston-Parmar flexible parametric 

model 

𝐿𝑃 =   
–    0.021 ×  ((𝑴𝑨 = 𝟐𝟓) − 30.244)  
+  0.015 ×   ((𝑮𝑨 = 𝟑𝟑. 𝟖) − 30.562) 
+   0.012 ×  ((𝑺𝑩𝑷 = 𝟏𝟓𝟗) − 158.634) 
–   0.003 ×  ((𝑷𝑪 = 𝟐𝟐𝟔) − 227.532) 
+  0.012 ×  ((𝑺𝑪 = 𝟔𝟏) − 61.615) 
+  1.437 × (𝑴𝑮 = 𝟏) 
= 1.599  

𝐿𝑃 =   
–    0.032 ×  ((𝑴𝑨 = 𝟐𝟓) − 30.244)  
+  0.012 ×   ((𝑮𝑨 = 𝟑𝟑. 𝟖) − 30.562) 
+   0.011 ×  ((𝑺𝑩𝑷 = 𝟏𝟓𝟗) − 158.634) 
–   0.003 ×  ((𝑷𝑪 = 𝟐𝟐𝟔) − 227.532) 
+  0.012 ×  ((𝑺𝑪 = 𝟔𝟏) − 61.615) 
+  1.433 × (𝑴𝑮 = 𝟏) 
= 1.644  

 

The values from the linear predictor calculations were then combined with the re-

estimated baseline survival estimates to give the predicted cumulative risk of 

experiencing an antenatal adverse event at two days, one week, and four weeks for 

Patient Z. The calculations for predicted risks are shown in Table 4.14.  

The difference between the predicted risk estimates from the two models 

becomes larger as time progresses. A graphical display of Patient Z’s predicted 

cumulative risk of an antenatal event over time is depicted in Figure 4.5. 
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Table 4.14: Predicted cumulative risk of antenatal adverse events for Patient Z 

Cox proportional hazards model 
Royston-Parmar flexible parametric 

model 

𝑅𝑖𝑠𝑘 =  1 − 𝑆0(𝑡)𝑒𝑥𝑝(1.599) 
1 − 0.980exp(1.599) =  9.5%, 𝑏𝑦 2 𝑑𝑎𝑦𝑠 
1 − 0.956exp(1.599) =  20.0%, 𝑏𝑦 1 𝑤𝑒𝑒𝑘 
1 − 0.878exp(1.599) =  47.5%, 𝑏𝑦 4 𝑤𝑒𝑒𝑘𝑠 
1 − 0.868exp(1.599) =  50.4%, 𝑏𝑦 40 𝑑𝑎𝑦𝑠 
1 − 0.847exp(1.599) =  56.0%, 𝑏𝑦 60 𝑑𝑎𝑦𝑠 
1 − 0.847exp(1.599) =  56.0%, 𝑏𝑦 80 𝑑𝑎𝑦𝑠  

𝑅𝑖𝑠𝑘 =  1 − 𝑆0(𝑡)𝑒𝑥𝑝(1.644) 
1 − 0.979exp(1.644) =  10.4%, 𝑏𝑦 2 𝑑𝑎𝑦𝑠 
1 − 0.955exp(1.644) =  21.2%, 𝑏𝑦 1 𝑤𝑒𝑒𝑘 
1 − 0.893exp(1.644) =  44.3%, 𝑏𝑦 4 𝑤𝑒𝑒𝑘𝑠 
1 − 0.870exp(1.644) =  51.4%, 𝑏𝑦 40 𝑑𝑎𝑦𝑠 
1 − 0.840exp(1.644) =  59.4%, 𝑏𝑦 60 𝑑𝑎𝑦𝑠 
1 − 0.816exp(1.644) =  65.1%, 𝑏𝑦 80 𝑑𝑎𝑦𝑠  

 

Figure 4.5: Predicted cumulative risk for Patient Z 

 
 

Both models appear to give quite similar predictions of cumulative risk up to 

around 40 days, however after this time the model predictions diverge slightly. For 

example, at 60 days the predicted risk is 56.0% from the Cox model but 59.4% from 

the Royston-Parmar model. Arguably, the estimates over time produced by the 

Royston-Parmar model provide a more realistic risk profile for a patient compared 

to those produced by the Cox model. It is much more likely that the real world risk 

of an event is smoothly increasing over time, rather than jumping at specific time 

points (when an event is observed in another participant) and remaining stable in 

between these time points. 

4.4 Discussion 
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In this chapter, both Cox and Royston-Parmar regression methods were applied 

to develop two new prognostic models which predict the risk of antenatal adverse 

events in women diagnosed with early-onset pre-eclampsia. The models were 

internally validated and adjusted for optimism; the included prognostic factors, 

predictive performance, and final optimism adjusted equations were compared. The 

aim of this chapter was to demonstrate the standard time-to-event methods to develop 

prognostic models and compare models developed using two popular time-to-event 

approaches. 

Two commonly used time-to-event modelling methods, the Cox proportional 

hazards method (Cox, 1972a) and Royston-Parmar flexible parametric method 

(Royston and Parmar, 2002), were applied to develop prognostic models. Though the 

two modelling methods produced practically identical regression coefficient estimates, 

the difference between the estimation methods for the baseline survival function 

resulted in differences in predicted risks for individual patients over time, especially at 

later time points. The Royston-Parmar flexible parametric modelling approach directly 

estimates a smooth and flexible baseline cumulative hazard function, which can be 

utilised to produce smooth predicted risk estimates for study participants. This is 

advantageous over the Cox model, which requires additional modelling and estimation 

to estimate a non-parametric step function for the baseline cumulative hazard function. 

This stepped function becomes problematic at later time points as the number of 

participants and events decreases and the steps grow in size. At later time points the 

baseline hazard function from the Royston-Parmar approach extrapolates with little 

data, but the smooth function is more realistic. Hence, it is recommended the flexible 

parametric approach be used in prognostic model research and will be the focus of the 

remainder of this thesis. 

4.4.1 Limitations and further research 
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This chapter adds to the work conducted by the PREP study team 

(Thangaratinam et al., 2017) in developing prognostic models which may be used to 

inform pre-eclampsia patients of their risks of adverse events. The alteration of the 

definition of the outcome to antenatal adverse events compliments the prognostic 

models developed by the PREP study team, and both models may be used to give the 

patient a broader picture of their risk of events during pregnancy and their risk of 

preterm delivery. However, changing the outcome does not completely eradicate the 

risk of treatment paradox bias (Cheong‐See et al., 2016), as patients were censored 

at the time of delivery of the baby. Therefore, the risk predictions calculated using the 

prognostic models developed in this chapter should be interpreted as the risk of 

experiencing an antenatal adverse event over time in a hypothetical scenario where 

delivery of the baby (even for treatment) is not possible. 

Other methods have been proposed to reduce the risk of treatment paradox bias 

including: deleting the “trigger” prognostic factor from the model (Schuit et al., 2013), 

standardising treatment across predictor levels, using propensity scores (Cheong‐See 

et al., 2016), and modelling the probability of treatment (Groenwold et al., 2016). 

However, considering the definition of a competing event (an event which prevents or 

alters the risk of the event of interest from occurring (Koller et al., 2012)), a reasonable 

approach might be to model the treatment as a competing risk to the event of interest. 

By incorporating competing risks methodology into the development of prognostic 

models, one would be able to produce “real-world” risk prediction which would account 

for the presence and probability of the treatment happening. In the following chapter, 

the statistical methods to appropriately account for competing events will be utilised to 

develop prediction models for the risk of antenatal adverse events, accounting for the 

competing risk of delivery. Later, in Chapter 6, an additional dataset will be utilised to 

externally validate and compare the standard time-to-event and competing risks 

models developed in this and the following chapter.



 

155 

5 A COMPARISON OF PROGNOSTIC MODELS 

DEVELOPED USING FLEXIBLE PARAMETRIC 

COMPETING RISKS METHODS 

5.1 Introduction  

In this chapter, two prognostic models developed using different flexible 

parametric competing risks approaches (introduced in Section 1.4.5), namely the 

cause-specific (Hinchliffe and Lambert, 2013b) and subdistribution (Lambert et 

al., 2017) approaches are applied to develop two new prognostic models. Data 

from the PREP study (Thangaratinam et al., 2017), introduced in Chapter 4, will 

be used to develop and internally validate the models to predict the risk of 

antenatal adverse events in women diagnosed with early-onset pre-eclampsia, 

accounting for the competing event of delivery. The resulting models will be 

compared to illustrate similarities and differences between the two competing 

risks approaches. 

5.1.1 Prediction of antenatal adverse events with competing events 

The original PREP study (Thangaratinam et al., 2017) developed two 

multivariable prognostic models to predict the risk of adverse maternal outcomes 

in women diagnosed with confirmed early-onset pre-eclampsia. Pre-term delivery 

was included in the composite outcome, which resulted in limitations in the 

interpretation of the model predictions. Some of these limitations were addressed 

through the development of prognostic models which predict the risk of an 

alternative outcome, namely antenatal adverse events (Chapter 4). The models 

developed in Chapter 4 censor participants following delivery of the baby, as 

antenatal adverse events occur during pregnancy and delivery of the baby ends 
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the pregnancy. However, as delivery of the baby prevents antenatal adverse 

events from occurring, it is consequently a competing event and should be 

managed appropriately to avoid competing risks bias. Thus competing risks 

methods should be utilised in the development of prognostic models for antenatal 

adverse events. 

5.1.2 Aims 

This chapter expands on the analysis performed in Chapter 4 to appropriately 

account for the competing event of delivery when developing prognostic models 

for antenatal adverse events in women with early-onset pre-eclampsia. The 

developed models are presented, internally validated, and adjusted for optimism. 

The parameter estimates of the prediction models will be compared, as will the 

resulting model predictions, measures of prognostic ability, and optimism. 
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5.2 Methods: Developing two prognostic models with competing 

events 

Methods for the development and internal validation of the flexible parametric 

competing risks prognostic models are now described. 

5.2.1 Antenatal adverse events with competing risks outcome definition 

The time to an antenatal adverse event in women with pre-eclampsia can be 

considered as a multi-state structure, as depicted in Figure 5.1. Participants enter the 

initial state on the date of a confirmed diagnosis of pre-eclampsia, and remain in this 

state until they experience an event. On the date an event occurs, the patient 

transitions out of the initial state into one of the two final absorbing states. 

Figure 5.1: Competing risks multi-state structure for PREP study 

 

Boxes represent states and arrows represent transitions. 
All participants enter the study at pre-eclampsia diagnosis (the initial state). 
Following an antenatal adverse event event (the event of interest, k=1), participants 
transition into the associated absorbing state (pregnant following adverse event). 
Participants who deliver the baby (the competing event) transition into a different 
absorbing state (no longer pregnant). 

 

The definition of an antenatal adverse event remains unchanged from that 

outlined in Section 4.2.1; a composite outcome comprised of component events listed 

in Table 5.1. However, in this chapter delivery of the baby, which prevents the event 

of interest from occurring, is now considered a competing event (recall deliveries were 

censored in the previous chapter). 
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Table 5.1: Individual components of antenatal adverse events 

 

The primary aim of the prognostic models developed in this chapter is to predict 

the risk of experiencing an antenatal adverse event, which by definition occurs prior to 

delivery. The use of competing risks methods will allow the calculation of this risk while 

appropriately accounting for the presence of the competing event (delivery of the 

baby). Though delivery of the baby can occur after an antenatal adverse event, it is not 

necessary to model this transition when evaluating the risk of antenatal adverse events 

which occur before delivery. Events which occur after delivery, such as a postpartum 

haemorrhage, are again not captured by this structure so are excluded from the 

definition. If both an adverse event and delivery occurred on the same date the 

outcome was recorded as an antenatal adverse event, as it is likely that this adverse 

event would trigger induction of labour as a treatment. 

5.2.2 Candidate prognostic factors 

The restricted set of candidate prognostic factors considered in Chapter 4 (listed 

in Table 5.2) was utilised during the development of the competing risks 

prognostic models. 

Antenatal adverse events 

Placental abruption, transfusion of blood, eclamptic seizure, hepatic dysfunction, 
pulmonary oedema, intubation, acute renal insufficiency, at least 50% FIO2 for > 1hour, 

Glasgow Coma score <13 
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Table 5.2: Candidate prognostic factors for competing risks prognostic models 

Maternal characteristics: 
Maternal age at diagnosis (years), 
Gestational age at diagnosis (weeks). 
Medical history: 
Count of pre-existing conditions (0, 1, 2 or more) from pre-specified list: pre-existing 
hypertension, renal disease, diabetes mellitus, previous history of pre-eclampsia. 

Bedside examination and tests: 
Systolic blood pressure (mmHg, highest measurement over 6 hrs), 
Platelet count (x 109/L), 
Alanine amino transaminase (IU/l), 
Serum creatinine μmol/L. 

Management at baseline (before or within 1 day of diagnosis): 
Administration of oral and/or parenteral anti-hypertensives, 
Administration of magnesium sulphate. 

 

5.2.3 Competing events risk sets and data structures 

The two competing risks approaches require the study data to be re-structured to 

reflect the associated risk set (depicted in Figure 1.9). The cause-specific approach 

required the data to be restructured using the multi-state structure (see Figure 1.11), 

with multiple rows for each participant. The subdistribution approach required those 

participants who experienced a competing event to remain in the risk set (see Figure 

1.9). Thus, the time-to-event for those who delivered was replaced with the time of the 

last observed antenatal adverse event in the entire dataset (t=117 days), at which time 

these participants were censored. 

5.2.4 Non-parametric assessment of competing risks bias 

Competing risks bias was assessed by comparing the non-parametric Kaplan-

Meier curve which censor the competing event of delivery (shown in Figure 4.1) to non-

parametric cumulative incidence curves which appropriately account for competing 

events, estimated using the subdistribution risk set. The difference between these 

curves represents the amount of competing risks bias present when the competing 

events are not appropriately accounted for. 

5.2.5 Multiple imputation with competing events 
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Though complete data were available for a large proportion (829, 87.5%) of the 

PREP cohort, multiple imputation using chained equations (Van Buuren et al., 1999) 

techniques were applied to missing information to avoid a loss of information. Under a 

missing at random assumption, a total of 20 imputed datasets were created from the 

original (not restructured) PREP study data using the mi impute chained package in 

Stata 14. The chained equations included the candidate prognostic factors listed in 

Table 5.2, with medical history separated into its individual components. The 

appropriate outcome information for each competing risk approach (discussed in 

Section 1.5.1) was also incorporated into the chained equations. Missing values from 

continuous prognostic factors were imputed using the predictive mean matching 

method (Little, 1988), and those from binary prognostic factors were imputed using 

augmented logistic regression (White et al., 2010). The imputed datasets were then 

restructured to reflect the competing event risk sets as described in 5.2.3. Imputed 

values were visually inspected to determine any outliers, but none were identified. 

Information on outcome measures, including pre-eclampsia diagnosis date, date of 

event, and event type, were complete and thus were not imputed. 

5.2.6 Flexible parametric competing risks regression models 

Two new flexible parametric prognostic models were developed to predict the risk 

of antenatal adverse events in women diagnosed with early onset pre-eclampsia 

accounting for the competing event of delivery. The first was developed using the 

cause-specific approach; the second was developed using the subdistribution 

approach. Details of the statistical methods of these approaches, provided in more 

detail in Section 1.4.5, are summarised below. 

Briefly, the cause-specific approach (Hinchliffe and Lambert, 2013b) was used to 

develop one flexible parametric competing risks model using the multistate package 

with the stpm2 estimation command in Stata. Restricted cubic splines of log-time are 



 

161 

utilised to approximate the log cumulative baseline cause-specific hazard function. The 

model regression coefficients and spline function parameter estimates are calculated 

simultaneously through maximum partial likelihood techniques. Estimates of both the 

cause-specific hazard function for antenatal adverse events and the cause-specific 

hazard function for delivery are required to obtain an estimate of the cause-specific 

cumulative incidence function (i.e. risk of having an antenatal adverse event over time). 

Plots of estimated cumulative cause-specific hazard functions for null models 

(containing no prognostic factors), with splines of varying degrees of freedom (between 

two and five), were inspected for each event separately to determine the number of 

knots required to capture the shape of the underlying functions. 

The subdistribution approach (Lambert et al., 2017) was used to develop the 

other flexible parametric competing risks model using the stpm2 estimation command 

in Stata. Restricted cubic splines of log-time are utilised to approximate the log 

cumulative baseline subdistribution hazard function. The model regression coefficients 

and spline function parameter estimates are calculated simultaneously through 

maximising the weighted partial likelihood function (Lambert et al., 2017). This 

approach only requires the estimation of the subdistribution hazard function for 

antenatal adverse events to obtain an estimate of the cause-specific cumulative 

incidence function (i.e. risk of having an antenatal adverse event over time). The 

number of knots required to capture the shape of the underlying subdistribution hazard 

function was determined by visual inspection of the plots of the estimated cumulative 

subdistribution hazard function for null models (containing no prognostic factors) with 

splines of varying degrees of freedom (between two and five). 

Fractional polynomial terms were incorporated into the models to investigate non-

linear associations between continuous prognostic factors and the outcome. The 

methods for incorporating these terms are described in Section 4.2.6. 
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5.2.7 Multivariable analysis and prognostic factor selection procedure of 

prognostic models with competing events 

Multivariable analyses, using either the cause-specific or subdistribution 

approaches, were performed to develop two flexible parametric competing risks 

prognostic models. A backwards elimination procedure was applied to determine which 

of the candidate prognostic factors would be included in the final multivariable 

prognostic models. The procedure utilised the multiply imputed data adapted to 

incorporate fractional polynomial terms using the mfpmi Stata package (Morris et al., 

2015). This procedure was additionally adapted to the competing risks approaches as 

follows: 

• The cause-specific approach began with the stacked imputed and restructured 

cause-specific dataset. The full model was developed using a multi-state modelling 

approach which simultaneously models the cause-specific hazards for both the 

event of interest (antenatal adverse events) and the competing event (delivery). 

The full model incorporated the cause-specific associations of all candidate 

prognostic factors with each outcome, with all continuous candidate prognostic 

factors included as linear terms. 

• The subdistribution approach began with the stacked imputed and restructured 

subdistribution dataset. The full model was developed using the subdistribution 

risk set which models the subdistribution hazards for antenatal adverse events 

only. The full model incorporated the subdistribution associations for all candidate 

prognostic factors and the outcome of interest, with all continuous prognostic 

factors included as linear terms. 

The same backwards selection procedure outlined in Box 4.1 was applied to 

determine which candidate prognostic factors would be retained in the final models. 

Both maternal and gestational age were retained in the models regardless of their 
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significance to ensure clinical acceptability of the final models in line with the original 

PREP study (Thangaratinam et al., 2017). The treatment variables (antihypertensive 

and magnesium sulphate treatment) were likewise retained to reduce the risk of 

suboptimal prognostic performance (Groenwold et al., 2016). The multivariable model 

cause-specific or subdistribution hazard ratios, 95% confidence intervals, and 

prognostic factor selection results (including exclusion and transformations of the 

included factors) were compared across the two approaches. 

5.2.8 Baseline cumulative incidence functions 

The risk of experiencing an antenatal adverse event over time for a participant 

with “average” prognostic factor values was estimated using the baseline (all 

prognostic factors centred and set to zero) cause-specific cumulative incidence 

function. Baseline cause-specific cumulative incidence functions for antenatal adverse 

events were calculated using both the cause-specific and subdistribution approaches. 

Both approaches estimate the cumulative baseline cause-specific or subdistribution 

hazards for the event of interest using the restricted cubic spline function of log time 

(Equations 1.28 & 1.31). The cause-specific approach also derives an estimate of the 

cumulative baseline cause-specific hazard for the competing event. These estimates 

are then transformed to return baseline cause-specific cumulative incidence function 

estimates. Median baseline cause-specific cumulative incidence estimates for each 

approach were calculated at two days, one week, and four weeks for patients in the 

PREP study using the flexible parametric competing risks prognostic models. 

5.2.9 Sensitivity analysis 

A sensitivity analysis was performed to investigate the assumptions made during 

model development, namely proportional hazards assumptions and independent 

effects (i.e. no interactions). Both competing risks approaches when developed in the 

way described above, assume proportional cause-specific or subdistribution hazards. 
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That is that the corresponding hazard ratios of the prognostic factors contained within 

the model remain constant over time, which cannot hold for both models 

simultaneously. These assumptions were tested for each of the retained prognostic 

factors in turn by incorporating an interaction between the prognostic factor and time 

into the final multivariable models. Other clinically plausible interactions between the 

retained prognostic factors were also investigated in turn to test the assumption that 

the effects of each prognostic factor on the outcome were independent. Any 

statistically significant (P < 0.05) deviations from the assumptions were reported. 

5.2.10 Comparison of individual absolute risk predictions 

Each participant’s individual risk of experiencing an adverse antenatal event was 

calculated using the cause-specific cumulative incidence function. The cause-specific 

approach requires cause-specific hazard estimates for both outcomes to return 

absolute risk estimates (Equation 1.30). Cause-specific cumulative incidence 

estimates were obtained using the simulation approach (described in Section 1.4.5), 

which combines estimated regression coefficients with a transition probability matrix 

(estimated using the cumulative cause-specific hazard function). The subdistribution 

approach estimates the cause-specific cumulative incidence through the 

transformation of the combined regression coefficient estimates and the log cumulative 

subdistribution hazard estimates (Equation 1.32). The predicted risks of antenatal 

adverse events were calculated for each of the PREP study participants using the 

flexible parametric competing risks prognostic models. The predicted risks for 

participants with missing data were calculated using the median imputed value for each 

prognostic factor for that participant. Median cause-specific cumulative incidence 

estimates, and the distribution of predicted risk in the PREP study participants, were 

calculated at two days, one week, and four weeks, these were compared across the 

two approaches. 
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5.2.11 Apparent prognostic performance of the fitted prognostic models 

Four risk groups were created by splitting the PREP study participants into four 

equal groups using the 25th, 50th, and 75th centiles of the estimated cause-specific 

cumulative incidence estimates at four weeks for each approach. The median 

predicted cause-specific cumulative incidence at two days, one week, and four weeks 

was calculated for each group, estimates were compared between the modelling 

approaches. Average predicted cause-specific cumulative incidence functions for each 

group over time were calculated and compared to non-parametric cumulative 

incidence estimates. 

The apparent performance of the fitted models was assessed in the imputed 

PREP study data using measures of calibration (overall calibration and calibration 

slope) and discrimination (Harrell’s C-index, D-statistic, and R2D), assessed at two 

days, one week, and four weeks. Overall calibration was examined by comparing the 

expected number of events (from the prognostic models) to the observed number of 

events (non-parametric cause-specific cumulative incidence estimates) from the 

aforementioned risk groups at pre-specified time points. Calibration plots, which graph 

the expected vs. observed cause-specific cumulative incidence estimates, were 

utilised to estimate the calibration slope at each of the given time points. The calibration 

slope was estimated by regressing the individual expected risks (obtained from the 

prognostic models) on the individual observed outcomes (obtained from non-

parametric cumulative incidence estimates), with a Lowess smoother. Harrell’s C-index 

(Harrell et al., 1982) was calculated at the pre-specified time points, utilising the 

subdistribution risk set to determine which pairs are concordant. Finally, the D-statistic 

and R2D measures were calculated for the models. All measures were calculated in 

each imputed dataset separately (imputation-specific measures) and were then 

combined using Rubin’s rules. The apparent performance measures for both 

competing risks prognostic models were compared. 
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5.2.12 Internal validation and optimism adjustment: subdistribution approach 

The model developed using the cause-specific approach was not internally 

validated, nor adjusted for optimism. The time consuming24, computationally intensive 

nature of the simulation approach for obtaining individual risk predictions from this 

model, alongside the lack of methods for optimism adjustment, resulted in the decision 

to not proceed further with this particular model. However, the optimism in the apparent 

performance of the subdistribution model was assessed through internal validation 

using 100 bootstrap samples of the original (not restructured) PREP study data, as in 

Chapter 4. The bootstrap validation procedure is outlined in Box 4.2. Optimism 

adjusted prognostic performance measures were calculated by subtracting the 

average optimism from the original apparent performance measures as estimated for 

the fitted model previously (see Section 5.2.11). An optimism adjusted subdistribution 

model was created by multiplying the fitted regression coefficients by the optimism 

adjusted calibration slope (representing a uniform shrinkage factor) obtained from the 

bootstrap procedure. Then, the cumulative baseline subdistribution hazard function 

was re-estimated to maintain overall calibration between observed and predicted risks. 

  

                                                      
24 Fitting the multivariable cause-specific model for death (methods in 5.2.7) took 2 mins 42.8 secs, the 
multivariable cause-specific model for antenatal adverse events took 3 mins 14.7 secs. Obtaining 
individual absolute risk predictions for the PREP study participants after the models were fitted took a 
further 1 hr 17 mins 46.6 seconds. 
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5.3 Results: Comparison of prognostic models for antenatal 

adverse events developed using flexible parametric competing 

risks methods. 

The PREP study (Thangaratinam et al., 2017) data contained 947 women with a 

confirmed diagnosis of pre-eclampsia, of whom 75 (7.9%) experienced an antenatal 

adverse event (i.e. before delivery) and the remaining 872 (92.1%) delivered the baby 

without an antenatal adverse event. 

5.3.1 Non-parametric assessment of competing risks bias 

Non-parametric cumulative incidence estimates for antenatal adverse events, 

which appropriately accounts for competing events, are compared to Kaplan-Meier 

failure estimates over time: these are depicted in Figure 5.2. 

Figure 5.2: Non-parametric cumulative incidence estimates for antenatal adverse 
events after accounting for competing risks, compared to Kaplan-Meier curve 
that ignores competing risks 

 
 

By 100 days, 74 of the 947 women had experienced an antenatal adverse event. As 

there is no censoring in the study (all participants either experience the event of interest 

or the competing event) the cumulative incidence at 100 days is FAAE(t = 100) =
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74
947⁄ = 7.8%. Whereas the Kaplan-Meier estimate for the risk of experiencing an 

antenatal adverse event at 100 days is 14.3%. Those who experience competing 

events are removed from the denominator (risk set) of the Kaplan-Meier estimate but 

retained for the cumulative incidence estimate. Thus Kaplan-Meier risk estimates are 

larger than the cumulative incidence estimates and inflate/overestimate the absolute 

risk of the event of interest in the presence of competing events. 

The difference between the Kaplan-Meier and cumulative incidence estimates 

represents competing risks bias (the difference between ignoring and correctly 

accounting for competing events). The amount of competing risks bias increases over 

study time as more competing events occur, this is displayed in Figure 5.3. At 100 days 

the competing risks bias is 0.065. This may appear small, however when compared to 

the cumulative incidence estimate (0.079 at 100 days) indicates an 83.1% increase in 

the absolute risk estimate. Therefore, ignoring the competing events leads to a risk 

estimate that is nearly double that of the estimated risk when accounting for the 

competing events. 

Figure 5.3: Absolute measure of competing risks bias: difference in non-
parametric estimates of cumulative risk of antenatal adverse events when 
ignoring the competing risks versus when accounting for them 
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5.3.2 Estimation of baseline cumulative hazard functions 

Null models (containing no prognostic factors) were fitted, using spline functions 

with between two and five degrees of freedom, to determine the number of knots 

required to adequately capture the shape of the underlying hazard functions. For the 

subdistribution approach, the cumulative subdistribution hazard function for antenatal 

adverse events was examined. Whereas for the cause-specific approach, the 

cumulative cause-specific hazard functions for both antenatal adverse events and 

delivery were examined separately. The resulting knot locations, Akaikes information 

criterion (AIC), and Bayesian information criterion (BIC) values from the models are 

provided in Table 5.3.  

Table 5.3: Knot selection for Royston-Parmar flexible parametric model 

Approach 
Degrees of 

freedom 

Number of 

knots 

Internal knot locations 

(time in days) 
AIC BIC 

Subdistribution 
appraoch: 
antenatal 
adverse events 

2 1 2.7 886.9 901.4 

3 2 0.7, 7.0 882.0 901.4 

4 3 0.4, 2.7, 10.1 878.2 902.4 

5 4 0.1, 1.3, 5.4, 13.3 878.7 907.8 

Cause-specific 
appraoch: 
antenatal 
adverse events 

2 1 2.7 803.4 818.0 

3 2 0.7, 7.0 804.7 824.1 

4 3 0.4, 2.7, 10.1 805.3 829.6 

5 4 0.1, 1.3, 5.4, 13.3 806.1 835.2 

Cause-specific 
approach: 
delivery 

2 1 9.3 3054.4 3068.9 

3 2 4.5, 17.6 3028.8 3048.2 

4 3 3.3, 9.3, 23.4 3029.2 3053.4 

5 4 2.4, 6.3, 14.0, 29.3 3030.3 3059.4 

 

For the subdistribution approach, the spline with three internal knots (4 d.f.) gives 

the smallest AIC values whereas the splines with one and two internal knots (2 & 3 

d.f.) give the smallest BIC values. For the cause-specific approach, the spline with one 
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internal knot (2 d.f.) gives the lowest AIC and BIC values for antenatal adverse events 

model, and the spline with two internal knots (3 d.f.) gives the lowest AIC and BIC 

values for the delivery model. 

A graphical display of the spline estimates for the cumulative subdistribution and 

cause-specific hazards are depicted in Figure 5.4. Using the subdistribution approach, 

there is little observable difference between the curves with three, four, and five 

degrees of freedom. Therefore the spline with three degrees of freedom (green line) 

was considered suitable for the remainder of the analysis. Using the cause-specific 

approach, there is little observable difference between the spline functions for 

antenatal adverse events, thus two degrees of freedom was considered suitable for 

the spline function in the analysis to follow. No notable differences were found between 

the spline functions for delivery with three, four, and five degrees of freedom, thus three 

degrees of freedom was considered adequate for prognostic model development. The 

selected spline functions were compared to non-parametric Nelson-Aalen type 

cumulative subdistribution and cause-specific hazard estimates (displayed in Figure 

5.5), and appear to adequately fit the underlying hazard functions. 
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Figure 5.4: Comparison of spline functions with varying degrees of freedom for 
the cumulative subdistribution and cause-specific hazard functions 
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Figure 5.5: Comparison of spline functions selected for modelling against non-
parametric Nelson-Aalen type estimates of cumulative hazards 
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5.3.3 Multivariable analysis and prognostic factor selection procedure of 

prognostic models for competing events 

The backwards elimination procedure for multiply imputed data, incorporating 

fractional polynomial terms and adapted for competing risks, was applied using both 

the cause-specific and subdistribution approaches. The resulting cause-specific and 

subdistribution hazard ratio estimates, 95% confidence intervals and p-values are 

reported in Table 5.4. 

Using the cause-specific approach, all of the candidate prognostic factors were 

found to be significantly (p<0.15) associated with delivery (the competing event), thus 

none were excluded from that model. Applying this approach to antenatal adverse 

events (the event of interest) found medical history, systolic blood pressure, platelet 

count, serum creatinine, and magnesium sulphate to be significantly (p<0.15) 

associated with the event. Though the remaining candidate prognostic factors were 

found not to be statistically significant (p<0.15), maternal age, gestational age, and 

antihypertensive treatment were forcibly retained in the model. Thus only alanine 

amino transaminase was excluded from the cause-specific model for antenatal 

adverse events. 

Using the subdistribution approach, only medical history was found to be 

significantly (p<0.15) associated with antenatal adverse events. However, maternal 

age, gestational age, and the two treatment prognostic factors were forcibly retained 

in the model, despite not being statistically significant (p<0.15). The remaining 

prognostic factors were excluded from this model. 

 



 

174 

Table 5.4: Multivariable hazard ratios for included prognostic factors 

 Cause-specific model:  

delivery 

Cause-specific model:  

antenatal adverse events 

Subdistribution model:  

antenatal adverse events 

 Transformation 

of prognostic 

factor (X) 

CSHR  

(95% CI) 

p-value 

Transformation 

of prognostic 

factor (X) 

CSHR  

(95% CI) 

p-value 

Transformation of 

prognostic factor (X) 

SDHR  

(95% CI) 

p-value 

Maternal age 
(years) 

X - 30.245 
0.973 

(0.962, 0.984) 
<0.001 

X - 30.245 
0.975 

(0.938, 1.013) 
0.189 

X - 30.245 
0.993 

(0.955, 1.032) 
0.709 

Gestational age 
(weeks) 

((X/10)-2) – 
0.107 

0.000 
(0.000, 0.000) 

<0.001 

X - 30.562 
1.017 

(0.941, 1.098) 
0.676 

X - 30.562 
0.951 

(0.88, 1.028) 
0.205 

Medical 
history* 

1 
 
2 or 
more 
 

 

0.813 
(0.692, 0.955) 

0.662 
(0.522, 0.84) 

0.001 

 

0.465 
(0.245, 0.882) 

0.636 
(0.275, 1.468) 

0.040 

 

0.536 
(0.284, 1.011) 

0.830 
(0.369, 1.871) 

0.128 

Systolic blood 
pressure 

X – 158.64 
1.018 

(1.014, 1.022) 
<0.001 

X – 158.64 
1.014 

(1.002, 1.027) 
0.023 

 Excluded 

Platelet count X – 227.528 
0.997 

(0.996, 0.998) 
<0.001 

X – 227.528 
0.996 

(0.993, 0.999) 
0.017 

 Excluded 
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 Cause-specific model:  

delivery 

Cause-specific model:  

antenatal adverse events 

Subdistribution model:  

antenatal adverse events 

 Transformation 

of prognostic 

factor (X) 

CSHR  

(95% CI) 

p-value 

Transformation 

of prognostic 

factor (X) 

CSHR  

(95% CI) 

p-value 

Transformation of 

prognostic factor (X) 

SDHR  

(95% CI) 

p-value 

Alanine amino 
transaminase 

Ln(X/1000) 
+3.446 

1.212 
(1.095, 1.342) 

<0.001 

 Excluded  Excluded 

Serum creatinine X – 61.61 
1.013 

(1.009, 1.017) 
<0.001 

X – 61.61 
1.015 

(1.003, 1.026) 
0.011 

 Excluded 

Antihypertensive 
treatment 

 
1.343 

(1.134, 1.592) 
0.001 

 
1.278 

(0.67, 2.439) 
0.457 

 
1.194 

(0.633, 2.252) 
0.653 

Magnesium 
sulphate treatment 

 
3.199 

(2.553, 4.008) 
<0.001 

 
5.294 

(2.891, 9.692) 
<0.001 

 
3.136 

(0.633, 2.252) 
0.584 

CSHR = cause-specific hazard ratio, SDHR = subdistribution hazard ratio, 95% CI = 95% confidence interval. 
*Medical history is a count of the following conditions: chronic hypertension, renal disease, diabetes millitus, and previous pre-eclampsia. 
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Patients with at least one pre-existing medical condition were again found to have 

a lower risk of antenatal adverse events compared to those with no pre-existing 

medical conditions. As previously stated, this finding is consistent with existing 

prognostic models that are currently in use (von Dadelszen et al., 2009, Thangaratinam 

et al., 2017). The reduction in risk was also present in the cause-specific model for 

delivery. A potential explanation for this association may be that patients with additional 

complications were more likely to seek or receive pre-natal care, which is known to 

reduce the risks of complications and early delivery (von Dadelszen et al., 2009). Both 

antihypertensive and magnesium sulphate treatments were found to significantly 

increase the risk of delivery, and magnesium sulphate treatment was again found to 

increase the risk of antenatal events, in the cause-specific models. This is expected, 

as these treatments are given to high risk patients to minimise the risk of eclampsia its 

associated complications. 

The two competing risks approaches are applied to estimate the cause-specific 

cumulative incidence function for antenatal adverse events. However, the model 

selection procedure resulted in a simpler model being selected for the subdistribution 

approach (containing five prognostic factors) and a more complex model for the cause-

specific approach (containing all nine prognostic factors for delivery and eight for 

antenatal adverse events). The subdistribution model is more parsimonious, however 

further investigations are required to assess the prognostic ability of the models. 

5.3.4  Comparison of baseline cumulative incidence functions 

The risk of experiencing an antenatal adverse event over time for a participant 

with average continuous prognostic factor, and zero categorical prognostic factor 

values is estimated as the baseline cause-specific cumulative incidence. Estimates of 

the baseline cumulative incidence function for antenatal adverse events from the 
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subdistribution and cause-specific models are reported in Table 4.6, at given time 

points, and over time in Figure 5.6. 

Table 5.5: Baseline cumulative incidence estimates for antenatal adverse events 
from fitted competing risks prognostic models 

Time 2 days 1 week 4 weeks 

Subdistribution model 0.030 0.044 0.056 

Cause-specific model 0.018 0.034 0.056 

 

The baseline cumulative incidence estimates from each of the competing risks 

approaches indicate the risk of antenatal adverse events increases steeply in the first 

three weeks after pre-eclampsia diagnosis. After this time the absolute risk remains 

stable at around 6%. The subdistribution model predicts a steeper increase in risk in 

the first week after pre-eclampsia diagnosis compared to the cause-specific model. 

However, the difference in absolute risks at this time is 1%, and the predictions made 

by the models tend to agree at later time points (three weeks after diagnosis). 

The cause-specific approach requires estimates from all events to be combined, 

thus incorporates baseline cumulative incidence estimates for delivery (also depicted 

in Figure 5.6). The predicted risk of delivery increases steadily the first five weeks 

following pre-eclampsia diagnosis, on a much larger scale to antenatal adverse events 

(note the y axis). The absolute risk of delivery stabilizes at 94%, as deliveries are more 

common than antenatal adverse events. 
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Figure 5.6: Baseline cumulative incidence functions estimated using 
subdistribution and cause-specific approaches 
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5.3.5 Sensitivity analysis 

A sensitivity analysis was conducted to test the assumptions made during model 

development. The proportional hazards assumption, made by both the cause-specific 

and subdistribution approaches, was tested by incorporating interactions between the 

included prognostic factors and log time, using a linear (one degree of freedom) spline 

function. The results are given in Appendix X; there is evidence that the effect of 

magnesium sulphate treatment was not constant over time in both the subdistribution 

and cause-specific approaches (p<0.001), and thus the proportional hazards 

assumption was violated for all fitted models. Additionally, the proportional cause-

specific hazards assumption was violated for systolic blood pressure (p=0.003) and 

maternal age (p=0.005) for the delivery model. Again, these non-proportional 

estimates were intentionally disregarded due to the small sample size of this study and 

the concern for overfitting. Again the inclusion of significant time interactions was 

thought unlikely to affect the prognostic performance of the models, as the time points 

assessed occur soon after diagnosis (2 days, 1 week, and 4 weeks). In general, the 

assumption of proportional subdistribution hazards does not hold if the assumption of 

proportional cause-specific hazards is true (Beyersmann et al., 2009). The results from 

the subdistribution model may be interpreted as time-averaged effects on the 

cumulative incidence scale, which may affect the interpretation of the model 

predictions. However, not incorporating these interactions is unlikely to affect the 

results of this chapter, which focuses on the comparison of the two competing risks 

modelling approaches. 

5.3.6 Comparison of competing risks prognostic model predictions  

The flexible parametric competing risks prognostic models were applied to the 

PREP study participants to predict a participant’s risk of antenatal adverse events, 

accounting for the presence of competing events. Although these are not the final 

models, comparisons at this stage are presented as the subdistribution hazard will be 
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adjusted for optimism while the cause-specific hazard model will not. To enable 

predictions for the full set of individuals used within model development, any missing 

information was assigned the median imputed value for each missing prognostic factor 

for each participant. The median cause-specific cumulative incidence estimates for 

antenatal adverse events for both modelling approaches are reported in Table 5.6. 

Table 5.6: Median cumulative incidence estimates for antenatal adverse events 

 
2 days 1 week 4weeks 

Subdistribution model 3.2% 4.8% 6.0% 

Cause-specific model 1.9% 3.5% 5.7% 

 

The average predicted risk of experiencing an antenatal adverse event estimated 

using the cause-specific model is lower at all time points compared to those from the 

subdistribution model. However, the differences are small (1.3% at two days and one 

week) and lessen as time progresses (0.3% at four weeks). Distributions of the 

predicted cumulative risk of antenatal adverse events for PREP study participants at 

two days, one week, and four weeks estimated using the two competing risks 

prognostic models are displayed in Figure 5.7. 

Both models produced right-skewed risk prediction distributions, with the majority 

of participants predicted to have a low risk (<10%) of experiencing an antenatal 

adverse event. For both models the distribution of predicted risks shift steadily upwards 

as time progresses. The range of predicted risks estimated using the subdistribution 

model grows over time, with a maximum predicted risk of 15.0% at two days, and 

26.8% at four weeks. Whereas the range of predicted risks estimated using the case-

specific model remains stable, with maximum values of 42.8% and 43.8% at two days 

and four weeks respectively. 
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Figure 5.7: Predicted cumulative incidence of an antenatal adverse events from competing risks prognostic models 
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5.3.7 Apparent prognostic performance of the fitted prognostic models 

The median predicted cumulative risk of experiencing an antenatal adverse event 

at two days, one week, and four weeks for each of the four risk groups are presented 

in Table 5.7. The average predicted risks estimated using the subdistribution model 

are greater than the average risks estimated using the cause-specific model at all time 

points for all but the highest risk group. 

Table 5.7: Median predicted cumulative incidence for risk groups at given time 
points 

 Subdistribution model Cause-specific model 

 2 days 1 week 4weeks 2 days 1 week 4weeks 

<25th centile 1.8% 2.7% 3.4% 0.6% 1.6% 2.9% 

25-50th centile 3.0% 4.4% 5.6% 1.4% 2.7% 4.8% 

50-75th centile 3.4% 5.1% 6.4% 2.4% 4.3% 6.6% 

>75th centile 7.1% 10.5% 13.1% 9.1% 12.4% 12.9% 

 

The average predicted cumulative incidence of antenatal adverse events for the 

four risk groups over time are presented in Figure 5.8 (solid lines) for each model. 

These are compared to observed risks (dashed lines), calculated using the non-

parametric cumulative incidence functions which account for competing events. 

The predicted cumulative risks of both models struggle to capture the steep 

increase in cumulative incidences directly after pre-eclampsia diagnosis. The steep 

increase in risk observed in the highest risk group (>75th centile: red lines) directly 

after pre-eclampsia diagnosis is better captured by the cause-specific model than the 

subdistribution model. The average risk predictions from the subdistribution model 

agree with the observed risks from three weeks following diagnosis for all groups apart 

from the second highest (50-75th centile: yellow line). The average predicted risks from 

the cause-specific model agree with the observed risks up to three weeks following 

diagnosis for all risk groups, and at all times for the lowest risk group (<25th centile: 
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green line). There is little observable difference between the average risk in the middle 

two risk groups (25-50th centile: blue line, 50-75th centile: yellow line) after 40 days, 

though the cause-specific model predicts some difference between the groups. 

Figure 5.8: Predicted cumulative incidence of antenatal adverse events by risk 
groups for competing risks prognostic models 

 

 
The solid lines represent the average predicted cumulative incidence of 
antenatal adverse events for the four risk groups over time. 
The dashed lines represent average observed risks for each risk group, 
calculated using non-parametric cumulative incidence functions which 
account for competing events. 
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The expected and observed risks of antenatal adverse events at two days, one 

week, and four weeks were calculated for the PREP study participants using both 

prognostic models. These measures are compared in Table 5.8. The expected risks 

from the subdistribution model are closer to the observed risks than those of the cause-

specific model at all time points. The overall calibration performance of the 

subdistribution model is good (E/O>0.9) two days and one week after diagnosis, the 

performance decreases for the last time point. The overall calibration performance of 

the cause-specific model improves over time. 

Table 5.8: Apparent overall calibration of competing risks prognostic models  

 Non-parametric 

CIF estimate 

Subdistribution model Cause-specific model 

Expected E/O Expected E/O 

2 days 3.5% 3.2% 0.914 1.9% 0.543 

1 week 5.3% 4.8% 0.906 3.5% 0.660 

4 weeks 7.6% 6.0% 0.789 5.7% 0.750 

 

The apparent calibration slope for the subdistribution model was 1.001i (95% CI: 

0.65, 1.35) in the data in which the model was developed, as expected. Calibration 

plots of expected and observed risks at four weeks for both models are depicted in 

Figure 5.9. The subdistribution model again appears to perform slightly better than the 

cause-specific model. 

A potential explanation for the difference in calibration performance between the 

two models may be due to the requirement of the cause-specific model to estimate 

parameters for both the event of interest and the competing event. This approach may 

thus require a larger sample size to accurately estimate the cumulative incidence 

function for an event, hence resulting in poorer calibration performance. 

 

                                                      
iThe apparent calibration slope was found not to be exactly 1 because of the multiple imputation methods 
used in both model development and validation. 
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Figure 5.9: Calibration plots for expected and observed risks of antenatal adverse events 4 weeks following pre-eclampsia diagnosis 
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Discrimination was assessed using Harrell’s C-index at two days, one week, four 

weeks, and overall, the D-statistic, which measures prognostic separation, and R2D 

(the proportion of explained variation). The resulting measures of discrimination are 

given in Table 5.9. Both models are better able to discriminate between those who 

experience the outcome of interest and those who do not two days after diagnosis than 

four weeks after diagnosis. The cause-specific model produces larger C-index 

measures at all time points. The subdistribution model explains 16.5% of the variation 

between the two prognostic outcomes, whereas the cause-specific model (ranked 

using 4 week predictionsi) explains 15.2% of the variation. 

Table 5.9: Harrell's C-index, D-statistic, and R2
D for discrimination for fitted 

prognostic models (apparent performance) 

 
Harrell’s C-index 

Royston and Sauerbrei’s  

D-statistic 

2 days 1 week 4 weeks Overall D-statistic R2
D 

Subdistribution model 0.824 0.721 0.649 0.652 
(0.59, 0.72) 0.908 0.165 

Cause-specific model 0.836 0.753 0.678 ii 0.868 0.152 

 

In summary, the apparent predictive performance of the competing risks 

prognostic models differ slightly. The subdistribution model is well calibrated and better 

able to predict the observed risks of antenatal adverse events, whereas the cause-

specific model is better able to discriminate between those who will and won’t go on to 

experience an antenatal adverse event. Both model’s ability to discriminate between 

the two competing events lessen as time progresses, as expected. 

5.3.8 Internal validation and shrinkage of subdistribution prognostic model 

                                                      
iThe D-statistic uses the ranked order of the predicted risks of a model to assess prognostic separation. 
However as the cause-specific model does not have a 1:1 relationship between the risk and rate, the 
ranked order of the predictions may change over time. Thus the D-statistic requires ranking to be 
assessed at a specified time-point. 
iiSimilarly, Harrell’s C-index cannot be calculated for the cause-specific model over all time points due 
to loss of 1:1 relationship between hazards and risk. 
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The model developed using the cause-specific approach was not internally 

validated due to the time consuming, computationally intensive nature of the simulation 

approach for obtaining individual risk predictions from this model. The optimism in 

performance of the subdistribution model was assessed using the bootstrap procedure 

outlined in Box 4.2. The bootstrap performance measures reflect the model’s 

performance in the imputed bootstrap data in which it was developed. The test 

performance measures reflect the model’s performance when assessed using the 

original PREP study data. The optimism is calculated as the difference between the 

bootstrap and the test measures. The average model performance measures are 

reported below in Table 5.10. 

Table 5.10: Internal validation measures of prognostic performance for 
subdistribution prognostic model in 100 bootstrap samples 

 Subdistribution model  

 Average bootstrap 

performance 

Average test 

performance 

Average 

optimism 

Optimism-adjusted 

performance 

Calibration 
Slope 

1.000 0.760 0.240 0.760 

Harrell’s C-
index 

0.694 0.647 0.046 0.648 

D Statistic 1.156 0.889 0.281 0.875 

R2D Statistic 0.242 0.159 0.085 0.157 

 

The average optimism in the measures of discrimination, Harrell’s C-index and 

R2D, for the subdistribution model were 0.046 and 0.085 respectively. Subtracting the 

average optimism from the fitted model’s apparent performance (see Table 5.9), 

results in an optimism-adjusted C-index of 0.652-0.046=0.606 and an optimism-

adjusted R2D of 0.165-0.085=0.080. The average optimism observed in the 

subdistribution hazards model calibration slope was 0.240, resulting in a uniform 

shrinkage factor of 1.001-0.240=0.760. 
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To adjust for the overfitting (optimism), the shrinkage factor for the subdistribution 

model (i.e. the optimism-adjusted calibration slope) was applied uniformly to all 

predictor coefficients within the prognostic model, and the baseline cumulative 

incidence function was re-estimated to ensure calibration-in-the-large. The final 

optimism-adjusted regression equation for the subdistribution model is provided in 

Table 5.11, and the updated baseline cumulative incidence function for the optimism-

adjusted model is presented in Figure 5.10. 

Table 5.11: Final regression equation for optimism-adjusted subdistribution 
model 

Optimism-adjusted subdistribution model 

𝐿𝑃 =   
–    0.005 ×  (𝒎𝒂𝒕𝒆𝒓𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.245)  
−  0.038 ×   (𝒈𝒆𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒈𝒆 − 30.562) 

– {
0.474, 𝑖𝑓 𝒐𝒏𝒆 𝒑𝒓𝒆𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏
0.142,         𝑖𝑓 𝒕𝒘𝒐 𝒐𝒓 𝒎𝒐𝒓𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔      

 

+  0.135
×  (𝑖𝑓 𝒂𝒏𝒕𝒊𝒉𝒚𝒑𝒆𝒓𝒕𝒆𝒏𝒔𝒊𝒗𝒆 𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 
+  0.869 × (𝑖𝑓 𝑴𝒈𝑺𝑶𝟒 𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

𝐹𝑘(𝑡|𝟎) = {

0.033, 𝑖𝑓 𝑡 = 2 𝑑𝑎𝑦𝑠
0.049, 𝑖𝑓 𝑡 = 1 𝑤𝑒𝑒𝑘

0.061, 𝑖𝑓 𝑡 = 4 𝑤𝑒𝑒𝑘𝑠
 

𝐹𝑘(𝑡|𝑿𝑘) = 1 − (1 − 𝐹𝑘(𝑡|𝟎))
𝑒𝑥𝑝(𝐿𝑃)

 
𝑃𝑟(𝐴𝑛𝑡𝑒𝑛𝑎𝑡𝑎𝑙 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 𝑒𝑣𝑒𝑛𝑡) =  1 − 𝑆0(𝑡)𝑒𝑥𝑝(�̂�𝑿) 

𝐋𝐏 = Linear predictor 

𝐅𝐤(𝐭|𝟎) = Baseline cause-specific cumulative incidence function 
𝐅𝐤(𝐭|𝐗𝐤) = Cause-sepcific cumulative incidence function 

 

Figure 5.10: Baseline cumulative incidence function estimated using optimism-
adjusted subdistribution model 
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5.4 Discussion 

In this chapter, two approaches for analysing time-to-event data in the presence 

of competing risks were applied and compared. Two flexible parametric competing risk 

models were developed to predict the risk of antenatal adverse events in patients 

diagnosed with pre-eclampsia, accounting for delivery of the baby as a competing 

event. The key findings and conclusions are summarised below. 

5.4.1 Key clinical findings 

The two prognostic models developed in this chapter can be applied to patients 

diagnosed with early-onset pre-eclampsia to predict their future risk of antenatal 

adverse events, in the real-world setting where the baby may be delivered before any 

antenatal adverse events have occurred. These models build on the work of 

Thangaratinam et al who developed models to predict the risk of the composite 

outcome of adverse events or early delivery in early-onset pre-eclampsia patients 

(Thangaratinam et al., 2017). The competing risks analyses applied in this chapter 

facilitates the disentanglement of these two outcomes, thus aiding the understanding 

of a patient’s real world risks of experiencing adverse events prior to spontaneous or 

induced labour. 

Antenatal adverse events were experienced by 7.9% of the participants in the 

PREP study cohort, with a cumulative incidence at 100 days of 7.8%. It is shown that 

when assessing the cumulative incidence of these events, not accounting for delivery 

as a competing event results in a biased estimate nearly twice the size of the true value 

(Figure 5.2). 

5.4.2 Key statistical findings 

Two approaches were utilised to account for competing events during prognostic 

model development, the cause-specific and subdistribution approaches. Both aim to 



 

191 

predict the same function; however, the cause-specific cumulative incidence function 

produced by these methods are noticeably different. A number of statistical 

advantages were identified for using the subdistribution approach over the cause-

specific approach in prognostic model research. 

Firstly, the subdistribution approach estimates the direct effect of the included 

prognostic factors on the real world risk of the event of interest through subdistribution 

hazard functions. Subdistribution hazards adjust for the indirect effects of the 

prognostic factors on the competing events. The cause-specific approach estimates 

the direct effect of the included prognostic factors on the event of interest, while 

ignoring (censoring) the competing event. Cause-specific hazards are thus better 

suited to prognostic factor research than prognostic modelling. 

Secondly, the subdistribution approach retains the one-to-one relationship with 

the cause-specific cumulative incidence function. This aids the interpretation of 

subdistribution hazard ratios as an increasing hazard ratio indicates an increased 

cumulative incidence, which is not always the case with cause-specific hazard ratios. 

The one-to-one relationship also simplifies estimation of the cumulative incidence 

function; the subdistribution approach does not require the estimation of hazard 

functions for all outcomes, whereas the cause-specific approach does. The added 

complexity of the cause-specific model requires more parameters to be estimated for 

the model, resulting in the need for a larger sample size to develop a prognostic model. 

Finally, the subdistribution approach results in a model of a similar form to that of 

the standard time-to-event analysis approach. Obtaining individual predictions from 

these models is simple, as is adapting standard modelling processes (such as 

shrinkage) for competing events, and comparisons between these and standard time-

to event models is intuitive. The complexity of the cause-specific approach means that 

additional measures, such as simulation methods, are require to obtain individual 
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predictions, there is some difficulty in adapting internal validation processes, and 

comparisons with standard time-to-event models is difficult.  

Overall, the subdistribution approach is better suited to prognostic model 

research, it often results in simpler models which are easier to understand, apply, and 

internally validate, compared to the cause-specific approach. 

5.4.3 Strengths and limitations 

In the current literature, relatively few prognostic models have been developed 

using competing risks statistical methods, the majority of which use semi-parametric 

modelling approaches to obtain hazard ratios without the need to estimate the baseline 

hazard functions (Mazzaferro et al., 2018, Scrutinio et al., 2018, Wolbers et al., 2009). 

The Fine and Gray (Fine and Gray, 1999) subdistribution approach features in the 

majority of the published articles, whereas comparison of models developed using this 

approach to a cause-specific model is uncommon (Wolbers et al., 2009). In this 

chapter, flexible parametric competing risks prognostic model were developed using 

the two modelling approaches. This allows for a comparison of the cause-specific 

cumulative incidence estimates, the primary purpose of prognostic model research, 

from both the subdistribution and cause-specific approaches. 

Utilising competing risks statistical methods for the development of prognostic 

models is relatively novel, thus some of the methods required for adequate evaluation 

of prognostic models are yet to be developed. Little guidance is currently available for 

methods of multiple imputation or for the application of some internal validation 

methods, such as shrinkage, in the presence of competing events. Though convenient 

solutions were found to enable the analysis to proceed for the purpose of this thesis, 

additional research on the true effects of the methods employed and any biases 

produced is required to establish if the findings are robust. 

5.4.4 Further work 
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The prognostic models developed in this chapter highlight the importance of 

incorporating the competing risks of delivery when assessing patient risks during 

pregnancy. A comparison of pregnancy models developed using competing risks and 

standard time-to-event methods will further highlight the differences in predicted risks, 

and the need to account for competing events to ensure accuracy of real world 

predictions in prognostic models. An external validation study of the prognostic models 

developed within this thesis for the prediction of antenatal adverse events will enable 

such a comparison. The following chapter will directly compare and externally validate 

the models developed in Chapters 4 and 5. 
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6 EXTERNAL VALIDATION OF PROGNOSTIC MODELS 

DEVELOPED USING STANDARD AND COMPETING 

RISKS METHODS 

6.1 Introduction 

Prognostic models to predict the risk of antenatal adverse events in women 

diagnosed with early-onset pre-eclampsia were developed in previous chapters (4 & 

5). In this chapter, the key models are externally validated. 

In Chapter 4, the two prognostic models developed using standard time-to-event 

(Cox and Royston-Parmar) approaches, which did not appropriately account for the 

competing events, performed similarly during internal validation. However, the 

Royston-Parmar model was developed using a flexible parametric approach which 

enabled the direct estimation of a smooth underlying baseline hazard function. 

Therefore, the optimism adjusted Royston-Parmar model (and not the Cox model) is 

externally validated in this chapter. This model will henceforth be referred to as the 

“PREP-RP” model. 

Similarly, in Chapter 5 two prognostic models were developed using flexible 

parametric competing risks (subdistribution and cause-specific approaches) 

approaches. The subdistribution model performed better than the cause-specific model 

during apparent validation, and a number of other statistical advantages of this model 

were identified. For these reasons, the optimism-adjusted subdistribution model (and 

not the cause-specific model) is externally validated in this chapter. This model will 

henceforth be referred to as the “PREP-SD” model. 

6.1.1 Overview of validation methods for competing risks setting 
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It is recommended to evaluate the performance of a prognostic model using data 

independent from those used to develop the model (Collins et al., 2016), via external 

validation; especially where the generalisability of the model needs to be assessed for 

a wider range of populations or settings. It is also important to account for competing 

events, if present, when validating a time-to-event prognostic model. The assessment 

of model calibration compares absolute risk predictions from the prognostic models to 

estimates of observed risk (Royston and Altman, 2013). If the methods used to 

estimate the observed risk do not appropriately account for the competing events (for 

example, using risk estimates derived via the Kaplan-Meier rather than the actual 

cumulative incidence function) then the resulting model calibration measures will be 

biased (Wolbers et al., 2009). The subdistribution hazard risk set, which retains 

participants in the risk set following the occurrence of a competing event, is used to 

appropriately account for competing events when calculating the cumulative incidence 

function during external validation. 

The PREP-RP model, developed in Chapter 4, was developed using a standard 

time-to-event analysis approach in which deliveries were censored as they occurred. 

However, the model only utilises information from the event of interest (antenatal 

adverse events) and does not incorporate the hazards for the competing event 

(deliveries) and so does not appropriately manage the competing events. Therefore, 

this model is expected to perform poorly during external validation, particularly when 

measuring calibration, as it is likely to overestimate the risk of antenatal adverse events 

in the presence of competing events. Whereas the PREP-SD model, developed in 

Chapter 5, incorporates the risks of the competing event and so is expected to produce 

representative estimates of absolute risks, and thus perform better than the PREP-RP 

model in terms of measures of calibration during external validation. 

6.1.2 External validation dataset 
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Both the PREP-RP and PREP-SD models were developed using data from the 

PREP study (Thangaratinam et al., 2017). The original prognostic models developed 

in this study (“PREP-L” and “PREP-S”) were externally validated using data from the 

Pre-eclampsia Integrated Estimate of RiSk for mothers (PIERS) cohort (von Dadelszen 

et al., 2009). The aim of the PIERS model research programme was to develop an 

evidence based framework to enable clinicians to better define maternal risks 

associated with diagnosis of pre-eclampsia (von Dadelszen et al., 2009). The study 

cohort included 1,259 pregnant women admitted to hospital with pre-eclampsia, 

diagnosed at any time during pregnancy. The study collected baseline participant 

information for similar prognostic factors as examined in the PREP study, as well as 

time-to-event information for comparable adverse event outcomes. 

6.1.3 Aims 

The overall aim of this chapter is to investigate the impact of the management of 

competing events during prognostic model development on measures of predictive 

performance. Data from the PIERS study cohort was used to externally validate the 

PREP-RP and PREP-SD prognostic models. The measures of calibration and 

discrimination reported in this chapter are adapted to appropriately account for 

competing events. Differences between the two model’s predictions and prognostic 

performance are discussed. 
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6.2 Methods: External validation of prognostic models 

Methods for the external validation of the PREP-RP and PREP-SD models using 

data from the PIERS study cohort are now discussed. The following methods are 

structured to adhere to the TRIPOD guidelines (Collins et al., 2015) for reporting 

prediction model development and validation studies. 

6.2.1 External validation study participants 

The PIERS study cohort includes participants who were admitted to hospital 

following a diagnosis of pre-eclampsia, and participants diagnosed with pre-eclampsia 

following delivery of the baby. The PREP study (and thus the PREP-RP and PREP-

SD models) focuses on participants with early-onset pre-eclampsia (diagnosed prior to 

34 weeks gestation) and events which occur after diagnosis. To create a comparable 

external validation dataset, a subset of the PIERS study participants was selected. 

This subset, henceforth be referred to as the “validation set”, contains PIERS cohort 

participants with: 

1. a confirmed diagnosis of pre-eclampsia prior to 34 weeks gestation, and 

2. a diagnosis of pre-eclampsia prior to adverse events or delivery of the baby, and 

3. a known delivery date, and 

4. no missing information for all prognostic factors contained in the PREP-RP and 

PREP-SD models. 

A flow diagram depicting the exclusion of PIERS participants to form the 

validation set is provided in the results. 

6.2.2 Outcome definition 

The definition of antenatal adverse events differs from that outlined in Section 

4.2.1, due to some disparities in the recording of the component events in the PIERS 

study. Although the majority of adverse events investigated in the PREP study were 
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also investigated in the PIERS study, some differences exist. Information on the 

following adverse events were not recorded in the PIERS study: retinal detachment, 

posterior reversible encephalopathy, subcapsular haematoma, postpartum 

haemorrhages, and placental abruptions. As none of the PREP study participants 

experienced a retinal detachment, posterior reversible encephalopathy, or subcapsular 

haematoma as their first event, and as postpartum haemorrhages were excluded from 

the definition of antenatal adverse events (as they occur after delivery of the baby), the 

absence of information on these adverse events is unlikely to impact the validation 

performance of the prognostic models. However, placental abruptions were the most 

commonly observed antenatal adverse events in PREP study participants (1/3 of all 

antenatal adverse events). The absence of information on this adverse event is likely 

to affect the validation performance of the prognostic models in these data. A summary 

of the incidence of antenatal adverse events in the PIERS validation set is reported 

and compared to the PREP study; the sample size is discussed. 

The time to antenatal adverse events in participants with early-onset pre-

eclampsia is defined in Section 5.2.1. Participants are at risk from the date of confirmed 

pre-eclampsia diagnosis, and remain at risk until they experience either an antenatal 

adverse events or delivery the baby. Unlike the PREP study, the PIERS study data 

only included the date (and not the time) of a number of outcomes, so for simplicity this 

analysis only included date information. A random follow-up time (taken from a 

Uniform[0, 0.01] distribution) was generated for participants who experienced an event 

on the same date as pre-eclampsia diagnosis, to retain the participant in the analysis. 

If both an antenatal adverse event and delivery of the baby occurred on the same day, 

the outcome was recorded as an antenatal adverse event (i.e. assuming the adverse 

event occurred just before delivery). This assumption was previously used in the PREP 

dataset, and reflects “real world” clinical practice in which an adverse event prompts 

induction of labour. 
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6.2.3 Descriptive analysis of external validation (PIERS) participants 

The average follow-up time (calculated using the reverse Kaplan-Meier estimator 

(Schemper and Smith, 1996)) and non-parametric cumulative incidence estimates of 

pre-eclampsia events for the validation participants are reported and compared to the 

model development population. 

A descriptive analysis of prognostic factors included in the PREP-RP and PREP-

SD models in the validation set was performed. The distribution of each continuous 

prognostic factor was investigated; the mean and standard deviation are reported for 

prognostic factors which were normally distributed, whereas the median and 

interquartile range are reported for those with skewed distributions. The frequency and 

percent of participants in each category of binary and categorical prognostic factors 

are also reported. The resulting prognostic factor summaries are compared to those 

from the model development data to investigate the relatedness of the populations 

(Debray et al., 2015). 

Due to the small number of participants missing prognostic factor and outcome 

information, multiple imputation methods were not considered necessary. Thus, a 

complete case analysis was performed in this validation study. 

6.2.4 Deriving predicted risks of antenatal adverse events 

Individual linear predictor and cumulative risk estimates were obtained using the 

equations reported in Table 4.11 (PREP-RP model) and Table 5.11 (PREP-SD model). 

For each model, linear predictor estimates for each participant in the validation set 

were obtained by applying the optimism adjusted regression coefficients and 

prognostic factor transformations to the participant data. The distributions of the linear 

predictor estimates in the validation set for the PREP-RP and PREP-SD models are 

compared to linear predictor distributions in the model development population 

(Royston and Altman, 2013). For each model, individual estimates of the cumulative 
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risk of experiencing an antenatal adverse event two days, one week, and four weeks 

after early-onset pre-eclampsia diagnosis were estimated for each participant in the 

validation set. Individual risk estimates from the PREP-RP and PREP-SD models were 

compared at the given time points, as were the distributions of the predicted risks from 

each model for participants in the validation set. 

6.2.5 External validation of prognostic models 

The predictive performance of the PREP-RP and PREP-SD models was 

assessed in the validation set using measures of calibration and discrimination. For 

each model, four risk groups were created by splitting the validation set into equal sized 

groups using the 25th, 50th, and 75th centiles of the model’s cumulative risk 

predictions at four weeksi. Overall calibration was examined by comparing the 

expected event risk (calculated using cumulative risk estimates from PREP-RP and 

PREP-SD models) to the observed event risk (estimated using non-parametric 

cumulative incidence function for the validation set). Calibration was assessed for each 

model at two days, one week, and four weeks following pre-eclampsia diagnosis using 

the validation set as a whole, and for each of the aforementioned risk groups. For each 

model, the average predicted risk in each risk group over time is presented alongside 

non-parametric cumulative incidence curves, enabling a comparison of the expected 

and observed risk over time. 

For each model, the distribution of predicted risk for participants who had 

experienced an antenatal adverse event (event of interest) by four weeks was 

compared to the distribution of predicted risk for participants who had delivered a baby 

(competing event) by four weeks. The discriminative ability of the PREP-RP and 

PREP-SD models was assessed using Harrell’s C-index (Harrell et al., 1982), the D-

statistic, and R2D. The C-index was calculated as an overall measure and at two days, 

                                                      
iThese risk groups created for each of the PREP-RP and PREP-SD models are likely to contain different 
sets of individuals. 
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one week, and four weeks, and the D-statistic and R2D was calculated and compared 

for both the PREP-RP and PREP-SD models. 

6.3 Results: External validation of prognostic models 

The results of the external validation of the PREP-RP and PREP-SD models 

using data from the PIERS study cohort are now discussed. 

6.3.1 External validation study participants 

The original PIERS study cohort includes 2,023 participants. A subset of the 

PIERS cohort were retained for this external validation study by applying four inclusion 

criteria (outlined in 6.2.1). A flow diagram depicting the selection of PIERS participants 

for the validation set is depicted in Figure 6.1. 

Figure 6.1: Flow diagram of selection of PIERS participants for validation set 

 
 

The validation set consists of 637 women with an early-onset pre-eclampsia 

diagnosis. A large proportion (1,369, 67.7%) of the PIERS study participants were 

excluded from the validation set as they were diagnosed with pre-eclampsia after 34 

weeks gestation (i.e. not early-onset pre-eclampsia diagnoses). These participants are 
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expected to have fewer serious complications than those diagnosed before 34 weeks 

gestation (Sibai, 2003). As both the PREP-RP and PREP-SD models were developed 

in populations with early-onset pre-eclampsia, not excluding these participants is likely 

to adversely affect the validation performance of the models. Few participants were 

excluded for diagnosis after an adverse event or delivery (5, 0.2%) and for missing 

outcome or prognostic factor information (12, 0.6%).  

6.3.2 Outcome definition 

Disparities in the recording of the component events in the PIERS study results 

in a modified definition of antenatal adverse events in this validation study. Similar to 

the PREP study, none of the participants were lost to follow up, and all either 

experienced an antenatal adverse event (79 women, 12.4%), or delivered the baby 

without an adverse event. The incidence of first antenatal adverse events observed in 

the development (PREP) and validation set (PIERS) are reported in Table 6.1. 

Table 6.1: Incidence of components of antenatal adverse events in development 
(PREP) and validation (PIERS) cohorts 

First antenatal adverse event 
PIERS cohort, 

Number (%) 

PREP cohort, 

% 

Pulmonary oedema 37 (5.8%) 0.4% 

Transfusion of blood 19 (3.0%) 2.4% 

At least 50% FIO2 for > 1hour 12 (2.0%) 0.1% 

Acute renal insufficiency 4 (0.6%) 0.2% 

Eclamptic seizure 3 (0.5%) 1.2% 

Hepatic dysfunction 3 (0.5%) 0.5% 

Positive inotrope support 1 (0.2%) 0 

Total antenatal adverse events 79 (12.4%) 7.9% 
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A similar percentage of participants in both cohorts required a blood transfusion 

(3.0% in PIERS vs 2.4% in PREP) and experienced hepatic dysfunction (0.5% in both 

cohorts) as their first adverse event. A greater percentage of participants experienced 

a pulmonary oedema as a first adverse event in the PIERS cohort (5.8%) compared to 

the PREP cohort (0.4%), though the number of observed events is small. The overall 

proportion of all antenatal adverse events was greater in the PIERS cohort (12.4%) 

than the PREP cohort (7.9%). Although ideally an external validation sample requires 

a minimum of 100 events and 100 non-events for unbiased and precise estimation of 

predictive performance measures (Collins et al., 2016, Vergouwe et al., 2005), only 79 

events are observed in this validation set. Regardless, this is the only cohort available 

to validate the two models without the need for a new cohort study which would take a 

number of years to conduct. 

The participants in the validation set were followed up for a median of 7 days 

(IQR: 3 to 18), with the longest observed follow-up period equal to 114 days. The 

average follow-up is slightly shorter than that observed in the PREP study (median of 

10.1 days). Non-parametric cumulative incidence estimates for the time to antenatal 

adverse events and delivery without an adverse event are depicted in Figure 6.2. A 

greater proportion of antenatal adverse events (red lines) were observed in the PIERS 

study (solid lines) than the PREP study (dashed lines). 
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Figure 6.2: Non-parametric cumulative incidence estimates of pre-eclampsia 
outcomes, accounting for competing risks, in development (PREP) and 
validation (PIERS) cohorts 

 

 

6.3.3 Descriptive analysis of validation set 

Results from the descriptive analysis of the prognostic factors included in the 

PREP-RP and PREP-SD models in both the development (PREP) and validation 

(PIERS) set are given in Table 6.2. The mean maternal age of participants at pre-

eclampsia diagnosis is 31.2 years, with a median corresponding gestational age of 

31.0 weeks (IQR: 28.4 to 32.9), similar to the PREP study participants. Just under half 

of participants did not have any historical medical conditions (44.4%), implying more 

PIERS study participants had at least one pre-existing medical condition (55.6%) in 

comparison to the PREP study (36.1%). The majority of participants were receiving 

antihypertensive treatment (87.0%) and just over half were receiving magnesium 

sulphate treatment (51.0%), more than observed in the PREP study participants 

(79.4% and 15.2% respectively). 
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Table 6.2: Descriptive analysis of prognostic factors in development (PREP) and 
validation (PIERS) cohorts 

Prognostic Factor 

PIERS 

Summary Statistics 

Mean(SD), N(%), Med 

[IQR] 

PREP  

Summary Statistics 

Mean(SD), N(%), Med 

[IQR] 

Maternal age (years) 31.2 (6.2) 30.2 (6.1) 
Gestational age at diagnosis 
(weeks)* 

31.0 [28.4 to 32.9] 31.4 [28.7 to 32.7] 

Medical 
History¥ 

0 283 (44.4%) 594 (63.9%) 

1 251 (39.4%) 242 (26.0%) 

2 or more 103 (16.2%) 94 (10.1%) 

Systolic blood pressure 168.3 (20.5) 158.6 (19.2) 

Platelet count 205.0 (75.6) 227.1 (77.7) 
Alanine amino 
transaminase* 

25 [15 o 43] 17 [13 to 26.5] 

Serum Creatinine 69.2 (20.4) 61.8 (17.1) 

Antihypertensive treatment 554 (87.0%) 751 (79.4%) 
Magnesium sulphate 
treatment 

325 (51.0%) 144 (15.2%) 

*Median and inter-quartile range (IQR) presented for non-normally distributed 
factors. 
¥Medical history is a count of the following conditions: chronic hypertension, renal 
disease, diabetes mellitus, and previous pre-eclampsia. 

 

The difference in the number of patients with pre-existing medical conditions 

implies poorer health in the validation population, as demonstrated by higher SBP, ALT 

and serum creatinine measurements. In the developed models, patients with at least 

one pre-existing medical condition had reduce risks of antenatal adverse events, thus 

the poorer health of the population may explain the reduced incidence of the event of 

interest. The validation population also received more antihypertensive and 

magnesium sulphate treatments than the development population. This may be due to 

patients having poorer health, or could be an indicator of different care strategies for 

pre-eclampsia in Canada (validation study) and the UK (development study). In the 

developed models, patients receiving treatments had significantly increased risks of 

antenatal adverse events. The reduced incidence of antenatal adverse events in the 

validation study suggests the difference in proportion of patients treated may be due 

to different care pathways. 
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6.3.4 Deriving predicted risks of antenatal adverse events 

The distributions of the individual linear predictor estimates for the PREP-RP and 

PREP-SD models in the development and validation set are provided in Figure 6.3. 

The range of linear predictor estimates for both the PREP-RP and PREP-SD models 

are similar across the development and validation sets. The shape of the distributions 

differs between studies; in particular, a greater proportion of the linear predictor 

estimates in the validation set are positive values, which may reflect the increase in 

risk of antenatal adverse events observed in the PIERS study (12.4%) in comparison 

to the PREP study (7.9%). Additionally, the linear predictor distributions observed in 

the validation set are more uniform than those observed in the development set, which 

clearly peak at estimates around zero. 

Figure 6.3: Distribution of individual linear predictor estimates from PREP 
prognostic models for PIERS validation cohort participants 

 
 

The PREP-RP and PREP-SD model equations were applied to the validation set 

to predict individual cumulative risks of experiencing an antenatal adverse event by 
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two days, one week, and four weeks after pre-eclampsia diagnosis. The model 

predictions for each participant at each time point, and the distributions of the 

cumulative risks, are depicted in Figure 6.4. The range of individual risks estimated 

using the PREP-RP model, which censors deliveries, was larger than the PREP-SD 

model, which treats deliveries as competing events, for all time points. This is a result 

of the inflated absolute risk estimates produced by the PREP-RP model due to 

inappropriate management of competing events. The model predicts the hypothetical 

risk of experiencing an antenatal adverse event in participants who do not deliver 

without an adverse event. Whereas the PREP-SD model predicts “real-world” risks for 

all pre-eclampsia participants which account for the competing event. Thus, there is 

little observed agreement between individual risk estimates from the PREP-RP and 

PREP-SD models. 
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Figure 6.4: Comparison of individual cumulative risks from PREP-RP and PREP-SD models in validation set participants 
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6.3.5 External validation of prognostic models 

The expected proportion of antenatal adverse events in the validation set by two 

days, one week, and four weeks after diagnosis was calculated using predicted 

cumulative risk estimates from each prognostic model. These expected outcome 

incidences were compared with the observed incidences of antenatal adverse events, 

accounting for the competing event of delivery, to provide a measure of overall 

calibration. The results are provided in Table 6.3. The overall expected risk of antenatal 

adverse events from the PREP-RP model exceeds the observed risk at later time 

points, as the model does not appropriately account for the competing events. 

Whereas the expected risks from the PREP-SD model underestimate the observed 

risks at these time points, which may be due to the differences in baseline risks of 

antenatal events (Figure 6.2). 

Table 6.3: Overall calibration of prognostic models externally validated at 
specified time points 

 
Observed risk 

(O) 

PREP-RP model PREP-SD model 

Expected 

risk (E)* 
E/O 

Expected 

risk (E)* 
E/O 

2 days 5.7% 5.6% 0.98 4.8% 0.84 

1 week 9.4% 11.7% 1.24 7.1% 0.76 

4 weeks 11.3% 26.3% 2.33 8.9% 0.79 

*Expected risk calculated as median predicted risk for PIERS study participants 
derrived from prognostic model at time point 

 

Overall calibration was also assessed in four risk groups, created by splitting the 

validation set into equal sized groups using the 25th, 50th, and 75th centiles of each 

model’s predicted cumulative risk at four weeks. The expected proportion of antenatal 

adverse event at two days, one week, and four weeks for each risk group are given in 

Table 6.4. The risk groups for the PREP-RP and PREP-SD model contain different 

sets of participants. In general, the predicted risks from the PREP-RP model are 

greater than those predicted by the PREP-SD model, with the exception of the low risk 
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groups at early time points, reflecting the difference in management of competing 

events between the models. For the two highest risks group (50-75th centile and >75th 

centile) the risk predictions at four weeks from the PREP-RP model are over three 

times those predicted by the PREP-SD model. By this time, the majority of the 

competing events (delivery without antenatal adverse events) have occurred (see 

Figure 6.2) resulting in larger levels of competing risks bias. 

Table 6.4: Expected proportion of antenatal adverse events by risk groups 

 PREP-RP model PREP-SD model 

 2 days 1 week 4weeks 2 days 1 week 4weeks 

<25th centile 1.3% 2.8% 6.7% 2.4% 3.6% 4.4% 

25-50th centile 3.5% 7.4% 17.2% 3.6% 5.4% 6.7% 

50-75th centile 8.0% 16.6% 35.9% 5.7% 8.4% 10.4% 

>75th centile 15.2% 30.1% 58.5% 8.8% 12.8% 15.8% 

 

The predicted and observed risks of antenatal adverse events for the risk groups 

over time are depicted in Figure 6.5. The PREP-RP model appears to perform well at 

early time points, when fewer competing events have occurred. However, at later time 

points the model greatly overestimates the risks for all four risk groups. At time t = 100 

the predicted risk (solid line) for the highest risk group (red line) is 84.4% in comparison 

to an observed risk (dashed lines) of 22.0%, a severe level of competing risks bias. 

There is little distinction between the observed risk in the lowest two (<25th centile: 

green line, 25-50th centile: blue line) risk groups. The PREP-SD model produces risk 

predictions that better reflect the observed incidence, though it tends to underestimate 

the observed risk, particularly in the highest (>75th centile: red line) risk group (this is 

because the baseline risk is higher in PIERS than in PREP, as shown in Figure 6.2). 

There is little distinction between the observed risk in the middle (25-50th centile: blue 

line, 50-75th centile: yellow line) risk groups generated using the PREP-SD model. 
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Figure 6.5: Expected and observed risk of antenatal adverse events by risk group 
in PIERS validation set 

 

 
  



 

212 

The distribution of the predicted risks at four weeks were compared between 

participants who had experienced an antenatal adverse event and those who had 

delivered by four weeks. These distributions are depicted in Figure 6.6. For both 

prognostic models the distributions overlap, but some separation is observed in 

median risk estimates. As the absolute risk estimates from the PREP-SD model are 

smaller than those of the PREP-RP model, the separation between predictions for the 

events appears to be less prominent than that observed in the PREP-RP predictions. 

Figure 6.6: Box and whisker plot of distribution of predicted risks four weeks 
following diagnosis in participants who experienced an event by four weeks 

 
 

The discriminative ability of both prognostic models was assessed, the results 

are provided in Table 4.9. For both models, Harrell’s C-index measures are greater at 

earlier time points. The PREP-RP model appears to have an advantage over the 

PREP-SD model in terms of discriminative performance. While overall Harrell’s C-

index measures were similar, 0.65 for PREP-RP and 0.63 for PREP-SD, the PREP-

RP model returns much higher C-index when assessed at two days. The proportion of 



 

213 

explained variation, represented by the R2D measures, is 12.4% for the PREP-RP 

model and 11.2% for the PREP-SD model, again very similar. 

Table 6.5: Measures of discrimination for prognostic models in validation set 

  PREP-RP model PREP-SD model 

Harrell’s C-index 

2 days 
0.759 

(0.67, 0.85) 
0.656 

(0.57, 0.74) 

1 week 
0.704 

(0.64, 0.77) 
0.658 

(0.59, 0.72) 

4weeks 
0.683 

(0.62, 0.74) 
0.649 

(0.59, 0.71) 

Overall 
0.646 

(0.58, 0.71) 
0.626 

(0.57, 0.69) 

D-statistic 

D 0.771 0.726 

R2D 0.124 0.112 
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6.4 Discussion 

In this chapter two prognostic models, which predict the risk of antenatal adverse 

events in women diagnosed with early-onset pre-eclampsia, were externally validated 

in data from an independent study. The PREP-RP and PREP-SD models were 

developed earlier in this thesis using different approaches; one using a standard time-

to-event approach which ignores the competing event of delivery, the other using a 

subdistribution approach which appropriately accounts for deliveries. The overall aim 

of this chapter is to investigate the impact of the management of competing events 

during prognostic model development on measures of predictive performance. The key 

findings and conclusions of this external validation study are summarised below. 

6.4.1 Key findings 

Measures of calibration were used to quantify the accuracy of absolute risk 

predictions from the prognostic models. The PREP-RP model is well calibrated for 

earlier time-points, this may be may be due to fewer competing events occurring 

directly after diagnosis (see Figure 6.2). The model is also able to capture the steep 

increase in risk of antenatal adverse events that occurs directly after pre-eclampsia 

diagnosis (see Figure 6.5). However, the model overestimates the risk of antenatal 

adverse events at later time-points, after more competing events have occurred (see 

Table 6.3). Whereas the PREP-SD model underestimates the risk of antenatal adverse 

events in the validation set at all time points (see Table 6.3); this is more apparent in 

higher risk groups (see Figure 6.5). The expected risk of antenatal adverse events in 

the validation set predicted by the PREP-SD model better reflects the observed 

incidence, which account for competing risks, than those predicted by the PREP-RP 

model (see Figure 6.5). The difference in absolute predicted risks from each model is 

due to differences in the management of competing events during model development. 

The PREP-RP model censors competing events as they occur, and fails to account for 
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the competing event (delivery) when estimating absolute risks, thus produces inflated 

absolute risk predictions (competing risks bias). Whereas the PREP-SD model 

appropriately incorporates the competing risks (delivery) when estimating absolute 

risks, thus produces more representative absolute risk predictions. The 

underestimation of absolute risks in this study may be due to disparities in the 

incidence of antenatal adverse events between the development (PREP) and 

validation (PIERS) studies (see Table 6.1). Model updating and recalibration strategies 

could be applied to improve both models’ predictive performance (Altman et al., 2009, 

Riley et al., 2016), for example by recalibrating the intercept term in the baseline 

hazard. 

Measures of discrimination were used to quantify how well the models distinguish 

between those who experience each event, and the time to the event of interest. When 

assessed in the validation set, the PREP-RP model produced higher C-index and D-

statistic measures than the PREP-SD model (see Table 6.5). It is possible that the 

wider range of absolute risk predictions from the PREP-RP model (see Figure 6.4) give 

the model an advantage when considering measures of discrimination. Regardless, 

the discriminative ability of a model does not indicate that a model is suitable for use 

in clinical practice, particularly when measures of calibration are poor, and the impact 

of competing risks bias is large, as observed at later time points for the PREP-RP 

model. 

6.4.2 Recommendations 

This external validation study highlights the impact of the management of 

competing events during prognostic model development on measures of predictive 

performance. The PREP-RP model, which censors competing events as they occur, 

performs well at earlier time points where fewer competing events have occurred. The 

model is able to discriminate between those who experience antenatal adverse events 



 

216 

and those who do not, particularly at the earlier time points (such as 2 days after pre-

eclampsia diagnosis). This model may be preferred for assessing the immediate or 

short-term risks of antenatal adverse events following early-onset pre-eclampsia 

diagnosis. The PREP-SD model, which appropriately accounts for competing events, 

was expected to produce absolute risk estimates that better reflect the observed risks, 

particularly at later time points after more competing events had occurred. The model 

consistently underestimated the absolute risk of antenatal adverse events. However, 

it is suspected the underestimation is due to disparities in the incidence and recording 

of the event of interest, rather than attributable to the statistical methods. This model 

may be preferred for assessing the risks of antenatal adverse events at later time 

points (such as 1 week after pre-eclampsia diagnosis). However, model updating and 

re-calibration methods would be advised if using the model in settings other than those 

in which it was developed. 

The external validation exercise also shows the importance of accounting for 

competing risks during the validation itself; here, the predictive performance measures 

were derived after accounting for the competing event of delivery. In general, it is 

recommended that competing risks be appropriately accounted for during both the 

development and validation of prognostic models by utilising appropriate statistical 

methods. 

However, the impact of competing risks on absolute risk predictions, and thus 

predictive performance, is associated with the number of observed competing events. 

If the incidence of observed competing events is small in comparison to the event of 

interest, the impact on the model’s predictive performance will likewise be small. The 

incidence of delivery in the validation set is lower at earlier time points, when assessed 

at two days the PREP-RP model outperformed the PREP-SD model in terms of 

calibration and discrimination. The amount of competing risks bias in the PREP-RP 

model predictions grows as time progresses and a greater number of competing 
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events are observed (see Figure 6.5). Thus, it may not always be necessary or 

impactful to account for competing events during the development and validation of 

prognostic models. 

6.4.3 Limitations and further research 

As previously discussed, ideally a minimum of 100 events are required for an 

external validation study (Collins et al., 2016, Vergouwe et al., 2005). Hence the 

external validation study in this chapter may be slightly underpowered for unbiased 

and precise estimation of predictive performance measures, as only 79 events are 

observed. However, the PIERS cohort was the only one available to validate the 

models without the need to conduct a lengthy cohort study, which would be considered 

out of scope for this thesis. 

Disparities in the incidence and recording of antenatal adverse events between 

the development (PREP) and validation (PIERS) studies may have contributed to the 

difference in predictive performance in this study. A greater proportion of antenatal 

adverse events were observed in the validation set (see Figure 6.2), however the 

PREP-SD model consistently underestimated the observed risks (see Table 6.3). 

Abruptions, the most common antenatal adverse event observed in 25 PREP study 

participants (representing 2.6% of all PREP participants and 33.3% of all observed 

antenatal adverse events), were not recorded in the PIERS study participants. Thus, 

participants in the validation set who experienced abruptions may have been 

misclassified as experiencing a delivery without an adverse event in the external 

validation analysis. Additionally, as abruptions were the most common antenatal 

adverse event in the development study, the relationships between the prognostic 

factors included in both models and the risk of adverse events reflect the risks of these 

events. Similarly, differences in the incidence of antenatal adverse events in each 

study are also likely to affect the predictive performance of the models. Despite these 
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discrepancies, the PREP-SD model performs well in the validation set, suggesting the 

impact of the discrepancies is small. Again, the PIERS cohort was the only one 

available to validate the models, and a new cohort study, which would take years to 

conduct, was considered out of scope for this thesis. 

In practice, the prognostic models assessed in this external validation study could 

be utilised alongside clinical expertise to prompt clinical action. For example, in pre-

eclampsia high risk patients may be kept in hospital for observation, and delivery of 

the pre-term baby may be induced in those considered at risk of maternal death 

(Wilkinson, 2011). Though out of scope for this thesis, further research into the 

performance of these models could utilise net benefit approaches and decision curves 

to compare the impact of each model’s risk prediction at different time points on clinical 

actions (Vickers et al., 2015). 

Finally, the impact of accounting for competing events in prognostic model 

development and validation is associated with the incidence of competing events. If 

the incidence of competing events is low, for example due to short prediction horizon, 

the impact of not accounting for competing risks is small, and there is little need to 

account for the competing events. Conversely when the incidence of competing events 

is high, the impact is large, and it is imperative that competing events are appropriately 

accounted for. The two models validated in this chapter explore a single competing 

risk scenario, with a relatively rare event of interest and a relatively common competing 

event. However, little is known about the impact of the management of competing 

events on measures of predictive performance under different competing risk 

scenarios. Current guidance suggests it may only be necessary to account for 

competing events “when the proportion of subjects experiencing a competing risk is 

equal or greater to the proportion of subjects experiencing the primary outcome” (Berry 

et al., 2010). This guidance is often considered as a “rule-of-thumb” for helping 

researchers decide when competing risks models are needed. The next chapter of this 
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thesis investigates the impact of accounting for competing events in relation to this 

rule-of-thumb for a number of competing risks scenarios. 
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7 WHEN ARE COMPETING RISKS STATISTICAL 

METHODS NEEDED IN PROGNOSTIC MODEL 

RESEARCH? 

7.1 Introduction 

The impact of competing risks statistical methods, during the development of 

prognostic models for early-onset pre-eclampsia, on measures of predictive 

performance was examined in the previous chapter. The external validation study 

identified a substantial difference in predictive performance between the prognostic 

models developed with and without competing risks statistical methods, when 

evaluated using a competing risks framework. The difference in predictive performance 

between the models increased over time, as more competing events occurred. This 

indicates an association between the impact of the statistical methods and the 

incidence of both the event of interest and the competing event. 

7.1.1 The rule-of-thumb 

The scenario studied throughout this thesis (early-onset pre-eclampsia) 

examines a rare event of interest (antenatal adverse events) and a common competing 

event (deliveries). This combination is not usually observed in prognostic model 

research, and the recommendation to always account for competing events, made in 

earlier chapters, may not be generalizable to all prognostic model scenarios. Indeed, 

in some circumstances where the incidence of the competing event is low, the effect 

of not appropriately accounting for competing events may be small and unimportant. It 

is suggested that it may only be necessary to use the more complex competing risks 

statistical methods “when the proportion of subjects experiencing a competing risk is 

equal or greater to the proportion of subjects experiencing the primary outcome, or 
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when follow-up exceeds 5-years.” (Berry et al., 2010). This guidance is often 

considered a “rule-of-thumb” for helping researchers decide when competing risks 

statistical methods are required, but has received little evaluation. 

7.1.2 Simulation studies 

Simulation studies are used to assess statistical analysis methods in relation to 

a known truth (Burton et al., 2006, Morris et al., 2019). Previous simulation studies 

which compare standard and competing risks time-to-event analyses have focused on 

assessing differences between cause-specific and subdistribution hazard ratios and 

regression coefficient estimates (Beyersmann et al., 2009, Dignam et al., 2012, 

Grambauer et al., 2010, Latouche et al., 2007, Leoce, 2016). However, these 

measures are not of primary interest in prognostic model research, where the focus is 

the model’s prognostic performance (assessed using measures of calibration and 

discrimination). For prognostic model research, simulation studies which investigate 

bias in measures of calibration and discrimination would be more applicable. The 

calibration of a prognostic model represents the prediction accuracy of the model; how 

well absolute risk predictions estimated using the model reflect the observed risk in 

that population on average. Not appropriately accounting for competing events when 

they are present may lead to inflated absolute risk estimates (competing risks bias), 

when considering “real-world” risks of an event. The bias is measured as the difference 

between a non-parametric Kaplan-Meier estimate of the absolute risk of the event of 

interest and the cumulative incidence at that time. The amount of bias is likely to be 

affected by the same factors found to cause differences between cause-specific and 

subdistribution hazard estimates, including those described in the rule-of-thumb (i.e. 

incidence of the event of interest and competing event). Therefore, this chapter will 

investigate whether the rule-of-thumb is appropriate for avoiding substantial bias in 

measures of calibration when developing prognostic models. Investigations into the 
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effects of competing risks bias on measures of discrimination are not considered in this 

thesis. 

7.1.3 Aims 

The overall aim of this chapter is to investigate bias in measures of calibration, 

specifically bias in cumulative incidence estimates, from prognostic models developed 

using standard time-to-event methods in the presence of competing events; and hence 

provide guidance on when competing risks statistical methods are required in 

prognostic model research. 

A simulation study was conducted to assess bias in estimates of the cumulative 

incidence function across a range of scenarios, in which both the proportion of 

participants that experience the event of interest and the proportion of participants that 

experience the competing event are varied. The cumulative incidence function is 

estimated for a prognostic model developed using standard time-to-event methods. 

Bias in the cumulative incidence function is calculated as the deviation of these 

estimates from the “real world” risks, which appropriately account for the competing 

events. The resulting bias measurements are inspected against the rule-of-thumb to 

determine whether the rule is appropriate for avoiding substantial bias. 

Recommendations on the use of competing risks statistical methods for prognostic 

model research are then provided. 
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7.2 Methods: Simulating competing risks and evaluating bias 

The methods for simulating competing risks data, the simulation scenarios 

examined in this study, and the simulation procedure are now discussed. 

7.2.1 Simulating competing risks data 

Methods for generating survival times for time-to-event analyses are summarised 

by Bender et al. (Bender et al., 2005). These methods were extended by Beyersmann 

(Beyersmann et al., 2009) to simulate competing risks data using cause-specific 

hazards and a multi-state framework. Beyersmann ascertains the stochastic behaviour 

of the competing risks process is completely determined through the cause-specific 

hazards (Beyersmann et al., 2009). Utilising this, cause-specific hazard 

functions ℎ𝑘(𝑡|𝑿) are first specified, and then survival times are simulated using the all-

cause hazard function h(t|𝐗): 

h(t|𝐗) = ∑ hk(t|𝐗)K
k=1  Equation 7.1 

A multinomial distribution is then used to decide which of the competing events 

occurred at each event time T. The probability of an individual experiencing event k 

given the individual fails at time T is: 

P(event = k|T ∈ dt, T ≥ t) =
hk(T|𝐗)

∑ hk(T|𝐗)K
k=1

⁄  Equation 7.2 

In which dt is the infinitesimal interval [t, t + dt). The above is equal to the cause-specific 

hazard at time T divided by the all-cause hazard at time T, or rather the contribution of 

the cause-specific hazard as a proportion of the total hazard at time T. 

The data for this study are simulated using the survsim statistical package 

(Crowther and Lambert, 2013) in Stata 14, which was developed to simulate complex 

time-to-event data. 

7.2.2 Simulation scenarios 
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All scenarios to investigate the impact of competing events on predictive 

performance in this simulation study assess the risk of an event of interest in the 

presence of a single competing event (i.e. K = 2). For simplicity, the cause-specific 

hazard functions for both the event of interest and the competing event are assumed 

to remain constant over time (i.e. the time-to-event is exponentially distributed). 

It is advised that simulated data should resemble a real study in order for the 

results to be generalizable and have credibility (Burton et al., 2006). A recent study 

which developed a competing risks prognostic model for coronary risk prediction 

(Wolbers et al., 2009) is used as a motivating example, and provides parameter values 

to define the “base scenario” in this simulation study. Wolbers et al. predict the ten-

year risk of coronary heart disease (CHD) in 4,144 women, 465 (11.2%) of which 

experienced a CHD event (event of interest) and 1,263 (30.5%) experienced a non-

CHD death (competing event) during follow-up (10 years). 

To assess the rule of thumb proposed by Berry (Berry et al., 2010), the proportion 

of participants who experience each event is required (i.e. cause-specific cumulative 

incidences, 𝐹𝑘(𝑡)). The rule-of-thumb advises the use of competing risk statistical 

methods to account for competing events when the proportion of competing events is 

at least that of the event of interest. Thus, a constant scaling factor γ > 0 is introduced 

to determine the relationship between the proportion of participants who experience 

the event of interest: 

γF1(t) = F2(t),   0 < {F1(t) + F2(t)} ≤ 1 Equation 7.3 

Competing risk statistical methods should be used when γ ≥ 1. 

For the base scenario of this simulation study, the cumulative incidence for the 

event of interest  F1(10), is 0.112 and the cumulative incidence for the competing 

event  F2(10), is 0.335 resulting in a scaling factor γ = 0.335
0.112⁄ = 2.72. The proportion 
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of participants who experience competing events is 2.72 times the proportion who 

experience the event of interest. In this instance, the rule-of-thumb would advise the 

use of competing risks statistical methods to account for the competing events. 

Within this simulation study, a range of plausible scenarios are investigated with 

varying event of interest and competing event incidences. The event of interest 

incidences were selected to reflect a range from rare events ( F1(10) = 0.05) to more 

common events ( F1(10) = 0.50), with values of γ ranging from 0.25 to 2.72 (observed 

by (Wolbers et al., 2009). The scenarios are specified in detail in Table 7.2. 

Previous simulation studies which compare standard and competing risks time-

to-event analyses (Beyersmann et al., 2009, Dignam et al., 2012, Grambauer et al., 

2010, Latouche et al., 2007, Leoce, 2016) found that uninformative censoring did not 

introduce bias or significantly alter study findings. Thus, censoring was not introduced 

during simulation study follow-up. However, a maximum follow-up time of t = 10 was 

enforced and any individual who had not experienced either event was censored at 

that time. 

7.2.3 The simulation process 

In order to investigate bias in measures of calibration for each scenario listed 

above, the following simulation process outlined in Table 7.1 was applied. 

Table 7.1: The simulation process for evaluating overall calibration bias 

Step 1 Select one of the scenarios from Table 7.2. 

Step 2 
Determine the cause-specific hazards for the event of interest and the 
competing event, using Equation 7.4. 

Step 3 
Simulate a single study containing 4,144 participants using the survsim 
command in Stata. 

Step 4 Calculate the naïve cumulative incidence and difference in cumulative risk. 

Step 5 Repeat steps 3 & 4 x500 times. 

Step 6 Evaluate cumulative incicdence bias. 
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The simulation process is discussed in more detail below. 

7.2.3.1 Step 1) Define the scenario 

Define the proportion of participants that experience the event of interest by time 

10, F1(10), and the scaling factor for the relative proportion of competing events, γ (i.e. 

select one of the scenarios from Table 7.2). 

7.2.3.2 Step 2) Determine cause-specific hazards 

In order to simulate competing risks time-to-event data using an exponential model, 

the constant cause-specific hazards for both the event of interest and competing event 

are required. Given the proportion of participants who experience the event of 

interest F1(t), and the scaling factor γ, and utilising exponential models with constant 

hazards; h1(t) = α1 for the event of interest, and h2(t) = α2 for the competing event; it is 

possible to determine the constant cause-specific hazard term for both the event of 

interest and the competing event: 

F1(t) = ∫ α1exp{−(α1 + α2)s}
t

0

ds 

=  α1 [
exp{−(α1 + α2)t}

−(α1 + α2)
]

0

t

 

= α1 [
exp{−(α1 + α2)t}

−(α1 + α2)
−

1

−(α1 + α2)
] 

F1(t) =
α1

α1+α2
[1 − exp{−(α1 + α2)t}] Equation 7.4 

The derivation of this equation is provided in Appendix X. 

For example, in the base scenario the cumulative incidence for the event of 

interest  F1(10) = 11.2% and the scaling factor γ = 2.72, the corresponding cause-

specific hazards are calculated as follows: 

α1 = −
ln[1−

1+2.72

2.72
×0.305]

(1+2.72)10
= 0.01451, and α2 = 2.72 × 0.01451 = 0.03947 
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7.2.3.3 Step 3) Generate time-to-event data for a single study 

Generate a single study containing 4,144 participants (the sample size in 

(Wolbers et al., 2009)), with time-to-event and event indicator variables simulated with 

exponential distributions for both the event of interest and competing event. Specify 

the cause-specific hazards as calculated in Step 2 and restrict follow-up time to a 

maximum of t = 10. Study data are simulated using the survsim command in Stata. 

7.2.3.4 Step 4) Calculate naïve cumulative incidence and difference in 

cumulative risk 

Using the simulated study data, calculate the non-parametric Kaplan-Meier 

estimate of the cumulative incidence, naïve to the occurrence of competing events, 

at t = 10. Determine the difference in cumulative risk as the difference between the 

Kaplan-Meier estimate at t = 10 and the specified cumulative incidence F1(10), based 

on the true model. 

7.2.3.5 Step 5) Repeat simulations  

Repeat steps three and four 500 times to obtain the distribution of bias in 

estimates of the cumulative risk for the specified scenario. 

7.2.3.6 Step 6) Evaluate cumulative incidence bias 

Summarise the distribution of bias in estimates of the cumulative risk across the 

500 simulations by calculating summary statistics for absolute measures (mean, SD) 

and measures relative to the expected cumulative incidence F1(10) as specified in Step 

1 (mean percentage). 

An example of the Stata code used to simulate the data and evaluate cumulative 

incidence bias is provided in Appendix XIII. 

The results for each scenario will be considered alongside the rule-of-thumb to 

scrutinise whether the rule is appropriate for avoiding substantial cumulative incidence 
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bias in prognostic model studies. Differences in estimates of the cumulative incidence 

function are shown graphically by plotting Kaplan-Meier estimates of cumulative risk, 

naïve to the occurrence of competing events, and the non-parametric cumulative 

incidence estimates, which account for the competing events, for the first 30 simulated 

studies for each scenario. 
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7.3 Results: Simulating competing risks and evaluating bias. 

The results of the simulation study to investigate bias in measures of calibration, 

from prognostic models developed using standard time-to-event methods in the 

presence of competing events, are now discussed. 

7.3.1 Determining cause-specific hazards 

For each scenario, the constant cause-specific hazard for both the event of 

interest and the competing event were calculated using Equation 7.4. The resulting 

hazards are reported in Table 7.2. 

7.3.2 Evaluating overall calibration bias 

For the first 30 simulated studies in each scenario, Kaplan-Meier estimates of the 

cumulative incidence of the event of interest, naïve to the occurrence of competing 

events, are depicted alongside non-parametric cumulative incidence estimates, which 

account for competing events. The resulting graphs are depicted in Figure 7.1, Figure 

7.2, Figure 7.3, and Figure 7.4. The difference between the Kaplan-Meier (blue lines) 

and cumulative incidence (red lines) estimates reflects the impact of not accounting for 

competing events when estimating absolute risks for the event of interest. 

Separation between the non-parametric estimates becomes more apparent as 

the event of interest incidence F1(t) and relative proportion of competing 

events γ increase, i.e. a greater number of competing events are observed. In 

scenarios where there is little observable separation between the non-parametric 

estimates (i.e. scenarios A1-A8, B1-B6, and C1-C4), applying standard time-to-event 

analysis methods will give similar cumulative risk estimates to an analysis using 

competing risks analysis methods. Whereas, substantial differences are likely to be 

observed in cumulative risk estimates resulting from those scenarios with notable 

separation (i.e. scenarios B7-B8, C5-C6, and D1-D4). 
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Table 7.2: Constant cause-specific hazards for event of interest and competing 
event for scenarios investigated in this simulation study 

Scenario 

Incidences 
Scaling 

factor 

𝜸 

Cause-specific hazards 

Event of 

interest 

𝑭𝟏(𝟏𝟎) 

Competing 

event 

𝑭𝟐(𝟏𝟎) 

Event of 

interest 

𝜶𝟏 

Competing 

event 

𝜶𝟐 

A1 

5.0% 

1.25% 0.25 0.00516 0.00129 

A2 2.5% 0.50 0.00520 0.00260 

A3 3.75% 0.75 0.00523 0.00392 

A4 4.5% 0.90 0.00525 0.00473 

A5 5.0% 1.00 0.00527 0.00527 

A6 7.5% 1.50 0.00534 0.00801 

A7 10.0% 2.00 0.00542 0.01083 

A8 13.6% 2.72 0.00553 0.01505 

B1 

11.2% 

2.8% 0.25 0.01207 0.00302 

B2 5.6% 0.50 0.01226 0.00613 

B3 8.4% 0.75 0.01247 0.00935 

B4 12.4% 0.90 0.01259 0.01133 

B5 11.2% 1.00 0.01268 0.01268 

B6 16.8% 1.50 0.01314 0.01971 

B7 22.4% 2.00 0.01365 0.02730 
B8: 
Base Scenario 

30.5% 2.72 0.01449 0.03946 

C1 

20.0% 

5.0% 0.25 0.02301 0.00575 

C2 10.0% 0.50 0.02378 0.01189 

C3 15.0% 0.75 0.02462 0.01846 

C4 18.0% 0.90 0.02516 0.02264 

C5 20.0% 1.0 0.02554 0.02554 

C6 30.0% 1.5 0.02773 0.04159 

C7 40.0% 2.0 0.03054 0.06109 

C8 54.4% 2.72 0.03663 0.09963 

D1 

50.0%* 

12.5% 0.25 0.07847 0.01962 

D2 25.0% 0.50 0.09242 0.04621 

D3 37.5% 0.75 0.11883 0.08912 

D4 45.0% 0.90 0.15767 0.14190 

*It is impossible for the sum of the proportion of events of interest (𝑭𝟏(𝟏𝟎)) and 

competing events (𝑭𝟐(𝟏𝟎)) to exceed 100%, thus Scenario D (𝑭𝟏(𝟏𝟎) = 𝟓𝟎%) is limited 

to instances where 𝜸 ≤ 𝟏.  
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Figure 7.1: Difference in non-parametric estimates of cumulative incidence when ignoring (Kaplan-Meier – blue lines) and accounting 
for (cumulative incidence – red lines) competing events in simulation scenarios with 5% event of interest incidence. 

 
Blue lines represent Kaplan-Meier estimates which censor the competing events. 
Red lines represent cumulative incidnce function estimates which appropriately account for the competing events. 
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Figure 7.2: Difference in non-parametric estimates of cumulative incidence when ignoring (Kaplan-Meier – blue lines) and accounting 
for (cumulative incidence – red lines) competing events in simulation scenarios with 10% event of interest incidence. 

 
Blue lines represent Kaplan-Meier estimates which censor the competing events. 
Red lines represent cumulative incidnce function estimates which appropriately account for the competing events. 
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Figure 7.3: Difference in non-parametric estimates of cumulative incidence when ignoring (Kaplan-Meier – blue lines) and accounting 
for (cumulative incidence – red lines) competing events in simulation scenarios with 20% event of interest incidence. 

 
Blue lines represent Kaplan-Meier estimates which censor the competing events. 
Red lines represent cumulative incidnce function estimates which appropriately account for the competing events. 
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Figure 7.4: Difference in non-parametric estimates of cumulative incidence when ignoring (Kaplan-Meier – blue lines) and accounting 
for (cumulative incidence – red lines) competing events in simulation scenarios with 50% event of interest incidence. 

 
Blue lines represent Kaplan-Meier estimates which censor the competing events. 
Red lines represent cumulative incidnce function estimates which appropriately account for the competing events. 
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Summary measures for cumulative risk bias in each simulation scenario are 

provided in Table 7.3. It is again evident that both measures of absolute and 

percentage bias escalate as the event of interest incidence F1(t) and relative 

proportion of competing events γ increase. 

7.3.3 Evaluation of the rule-of-thumb 

The rule-of-thumb (Berry et al., 2010) advises competing risk analysis methods 

need only be applied when the incidence of the competing event is at least as large as 

the event of interest, i.e. when γ ≥ 1 (scenarios A5-A8, B5-B8, and C5-C8). Thus, 

advises the use of standard time-to-event analysis methods for scenarios where the 

incidence of the competing event is less than the event of interest (i.e. scenarios A1-

A4, B1-B4, C1-C4, and D1-D4). 

The above advice seems to be appropriate for avoiding substantial bias in a 

number of the simulation scenarios investigated. Nonetheless, the advice seems less 

appropriate for scenarios with relatively rare (5%) or common (50%) incidences for the 

event of interest. In scenarios A5-A6, the rule would advise the use of the more 

complex methods to account for the competing events. However, the bias in 

cumulative incidence estimates resulting from the application of standard time-to-event 

methods in these scenarios is small (ranging from 0.001 to 0.004) and potentially 

unimportant. Conversely, in scenarios D1-D4 the rule suggests competing risk analysis 

methods need not be applied to account for the competing events. However, the bias 

in cumulative incidence estimates in these scenarios is large (ranging from 0.043 to 

0.294) and likely to be important. 

  



 

236 

Table 7.3: Summary of cumulative risk bias in simulation study scenarios 

Scenario 

Incidence 

of event 

of interest 

𝑭𝟏(𝟏𝟎) 

Scaling 

factor 

𝜸 

Kaplan-Meier 

estimate 𝑭�̂�(𝟏𝟎) 

Mean (SD) 

Absolute 

bias 

𝑭�̂� − 𝑭𝟏 

Mean (SD) 

Percentage 

bias 

(𝑭�̂� − 𝑭𝟏)
𝑭𝟏

⁄  

Mean 

A1 

5.0% 

0.25 0.051 (0.003) 0.001 (0.003) 1.02% 
A2 0.50 0.051 (0.003) 0.001 (0.003) 1.37% 
A3 0.75 0.051 (0.003) 0.001 (0.003) 2.17% 
A4 0.90 0.051 (0.003) 0.001 (0.003) 2.40% 
A5 1.00 0.051 (0.003) 0.001 (0.003) 2.47% 
A6 1.50 0.052 (0.004) 0.002 (0.004) 3.80% 
A7 2.00 0.053 (0.004) 0.003 (0.004) 5.71% 
A8 2.72 0.054 (0.004) 0.004 (0.004) 7.51% 

B1 

11.2% 

0.25 0.113 (0.005) 0.001 (0.005) 1.21% 
B2 0.50 0.116 (0.005) 0.004 (0.005) 3.19% 
B3 0.75 0.117 (0.005) 0.005 (0.005) 4.09% 
B4 0.90 0.118 (0.005) 0.006 (0.005) 5.36% 
B5 1.00 0.119 (0.005) 0.007 (0.005) 6.51% 
B6 1.50 0.124 (0.006) 0.012 (0.006) 10.48% 
B7 2.00 0.128 (0.006) 0.016 (0.006) 13.98% 
B8: 
Base Scenario 

2.72 0.135 (0.006) 0.023 (0.006) 20.32% 

C1 

20.0% 

0.25 0.206 (0.006) 0.006 (0.006) 2.81% 
C2 0.50 0.212 (0.007) 0.012 (0.007) 5.91% 
C3 0.75 0.219 (0.007) 0.019 (0.007) 9.47% 
C4 0.90 0.223 (0.007) 0.023 (0.007) 11.48% 
C5 1.0 0.226 (0.007) 0.026 (0.007) 12.81% 
C6 1.5 0.242 (0.007) 0.042 (0.007) 21.00% 
C7 2.0 0.263 (0.008) 0.063 (0.008) 31.63% 
C8 2.72 0.307 (0.009) 0.107 (0.009) 53.57% 

D1 

50.0%* 

0.25 0.543 (0.008) 0.043 (0.008) 8.69% 
D2 0.50 0.603 (0.008) 0.103 (0.008) 20.63% 
D3 0.75 0.695 (0.01) 0.195 (0.01) 39.03% 
D4 0.90 0.794 (0.01) 0.294 (0.01) 58.77% 

*It is impossible for the sum of the proportion of events of interest (𝑭𝟏(𝟏𝟎)) and 

competing events (𝑭𝟐(𝟏𝟎)) to exceed 100%, thus Scenario D (𝑭𝟏(𝟏𝟎) = 𝟓𝟎%) is limited 

to instances where 𝜸 ≤ 𝟏. 
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7.4 Extension to assess overall calibration bias over all possible 

values of γ 

The results from the above simulation study provoked further investigation into 

the levels of cumulative risk bias resulting from applying standard time-to-event 

analysis methods in the presence of competing risks. 

7.4.1 The simulation process 

This second simulation study process followed many of the same steps as the 

one previously, with the following alterations: 

7.4.1.1 Step 1) New scenarios 

Scenarios with event of interest incidences, F1(10), equal to 5%, 10%, 20%, 30%, 

40%, 50%, 60%, 70%, 80%, and 90% were investigated. For each event of interest 

incidence, cumulative risk bias was assessed for all possible values of γ, divided into 

200 equally spaced intervalsi. 

7.4.1.2 Step 3) Study size 

The number of participants simulated in each scenario was increased to 

1,000,000 to reduce the variance in bias estimates due to sample size. 

7.4.1.3 Step 5) No repetitions 

Following investigations of the increased study sample size in Step 3, the study 

team felt it unnecessary to repeatedly simulate the scenarios due to the small amount 

of variance in the simulation estimates. 

7.4.2 Results 

                                                      
i As γF1(t) = F2(t),   0 < {F1(t) + F2(t)} ≤ 1, (Equation 7.4) it follows 0 < γ ≤

1

F1(10)
− 1. 
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Absolute bias in cumulative incidence estimates for each scenario, over all 

possible values of γ are displayed in Figure 7.5. Again, the amount of cumulative risk 

bias increased as the incidence of the event of interest and the relative proportion of 

competing events increased. This is due to the increase in the incidence of the 

competing event (a graph depicting bias related to competing event incidence is 

reported in Appendix XIV). The amount of absolute bias is restricted; in a scenario with 

an event of interest incidence of 80%, the absolute bias cannot be more than 100%-

80%=20%. To observe 0.1 bias in the cumulative incidence estimate when the event 

of interest incidence is 90%, the competing event incidence need only be γF1(10) =

0.11 × 0.9 = 9.9%. Whereas, to observe the same bias with an event of interest 

incidence of 5%, the competing event incidence needs to be γF1(10) = 18.2 × 0.05 =

91%. Still, an absolute bias of 0.1 is more substantial when the expected event of 

interest incidence is 0.05 compared to when it is 0.90. In prognostic model research, 

this level of bias would result in predicted absolute risks for the event of interest 

estimated as 0.15, a threefold increase on observed risks. In prognostic model 

research, measures of percentage bias may be considered more intuitive. Bias in 

overall calibration, relative to the event of interest incidence, for all possible values of 𝛾 

are displayed in Figure 7.6 (a graph depicting bias related to competing event 

incidence is reported in Appendix XIV). 
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Figure 7.5: Absolute bias in cumulative incidence estimates for all possible values of 𝜸 with 𝑭𝟏(𝟏𝟎) from 5% to 90% 

 



 

240 

Figure 7.6: Percentage bias in cumulative incidence estimates for all possible values of 𝜸 with 𝑭𝟏(𝟏𝟎) from 5% to 90% 
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7.4.3 Evaluation of the rule-of-thumb 

The rule-of-thumb (Berry et al., 2010) considers the incidence of the event of 

interest and the competing event, and suggests actions based on γ ≥ 1. This would 

advise the use of standard time-to-event analysis methods for scenarios on the left-

hand side of Figure 7.5 and Figure 7.6, and advise competing risks analysis methods 

for scenarios on the right-hand side of the graphs. It is evident that this rule could result 

in substantial cumulative risk bias if applied in some circumstances; Such as when 

event of interest incidence is high (e.g. 60%) and the proportion of participants not 

expected to experience either event is low (e.g. competing event incidence is 30%, 

resulting in only 10% not experiencing either event). 
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7.5 Discussion 

The simulation studies performed in this chapter assess the bias in measures of 

overall calibration when standard time-to-event analysis methods are applied to 

scenarios with competing events. A number of factors, including the incidence of the 

event of interest and the incidence of the competing event, were varied in scenarios 

within the simulations to investigate associations with bias in cumulative incidence 

estimates. A rule-of-thumb was examined to determine whether it is appropriate to 

apply in prognostic model research to avoid substantial calibration bias. The key 

findings and conclusions of these simulation studies are summarised below. 

7.5.1 Key findings and recommendations 

Bias in cumulative incidence estimates was found to be strongly associated with 

the incidence of both the event of interest and the competing event. The two simulation 

studies conducted in this chapter found systematic differences in calibration of risk 

predictions when estimated using standard time-to-event analysis methods rather than 

competing risk modelling. The bias in cumulative incicdence estimates, which 

overestimates the absolute risk of the event of interest, increases as the event of 

interest incidence and the relative proportion of competing events increase. Statistical 

methods which appropriately account for the competing events can be applied to avoid 

this bias. However the added complexity of the analyses, interpretation, and 

communication of the hazard and cumulative incidence functions (which have 

prompted a number of tutorials including: (Allignol et al., 2011, Andersen et al., 2012, 

Dignam et al., 2012, Wolbers et al., 2009)) may be off-putting for researchers. 

Current guidance on when the more complex competing risks methods should be 

applied (Berry et al., 2010), was found not to be appropriate for avoiding substantial 

cumulative risk bias. The rule advised against the use of competing risks methods 

when the competing event was not as prevalent as the event of interest. This advice 
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results in high levels of bias in cumulative incidence estimates in scenarios with large 

event of interest incidences, such as in scenarios D1-D4. The rule also suggests using 

competing risks methods when the competing event is at least as prevalent as the 

event of interest. This advice made negligible differences to estimates of calibration in 

scenarios with a small event of interest incidence, such as in scenarios A5-A8. The 

existing rule was thus found to be incompatible with avoiding biases in estimates of 

cumulative risk. The primary purpose of prognostic model research is the accurate 

prediction of the absolute risks of the event of interest, thus large biases in measures 

of calibration are unacceptable. 

Though bias was observed in all of the scenarios investigated in the initial 

simulation study (Table 7.3), some researchers may determine the amount of bias to 

be clinically negligible and thus choose to apply standard time-to-event analysis 

methods. For example, when the observed event of interest incidence is 11.2% 

(scenarios B1-B8), a cumulative risk estimate equal to 11.9% (a 6.5% percentage 

increase due to bias, scenario B5) may be sufficiently adequate, to avoid using the 

more complex competing risks methods. However, a cumulative risk estimate equal to 

13.5% (a 20.3% increase due to bias, scenario 8) may be unsatisfactory, thus the more 

complex analyses are justified. 

A suggested update to the existing rule could utilise these thresholds for 

acceptable levels of percentage bias. Competing risks methods should be applied 

when the expected value of percentage bias exceeds a determined threshold ε, and 

need not be applied if the expected bias is less than the threshold. Table 7.4 displays 

the maximum competing event incidence to prompt the use of competing risks 

methods for event of interest incidences of 5, 20, 50, and 80%, if a threshold of ε = 0.10 

is accepted. This allows the cumulative incidence estimate to be up to 1.10 times the 

expected value. 
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Table 7.4: Limits for updated rule for competing risks methods with ε=0.1 

Incidences 
Absolute bias 

𝜺 × 𝑭𝟏(𝟏𝟎) 

Scaling factor 

𝜸 
Event of interest 

𝑭𝟏(𝟏𝟎) 

Event of interest 

𝑭𝟐(𝟏𝟎) 

5% 17% 0.5% 3.40 
20% 16% 2.0% 0.80 
50% 14% 5.0% 0.28 
80% 11% 8.0% 0.135 

 

For example, when the incidence of the event of interest is 5% the 

recommendation would be to apply competing risks methods if the bias in absolute risk 

predictions exceeds 0.5% (10% of 5%). This occurs when the expected competing 

event incidence is at least 17% (3.4 times greater). However, when the incidence of 

the event of interest is 50% the new rule advises applying competing risks methodology 

once bias in absolute risk predictions exceeds 5%, which occurs when the competing 

event incidence exceeds 14% (0.28 times greater). The guidance takes into account 

differences in absolute risk predictions from standard and competing risks statistical 

approaches, and can be used as a guide by researchers wanting to develop accurate 

prognostic models in the presence of competing events. 

7.5.2 Limitations and further research 

All simulation studies within this chapter were developed with constant cause-

specific hazard functions through use of the exponential time-to-event model. This 

assumption was considered sufficient for these initial investigations into the effects of 

competing events on measures of prognostic model calibration. Furthermore, solving 

the integral to obtain the cumulative hazard function is straightforward when the hazard 

function is constant; even after combining multiple cause-specific hazards to obtain the 

all-cause hazard (Equation 7.4). Additionally, inverting the cumulative hazard function 

to allow simulation of survival times is also straightforward when an exponential model 

is used. However, the assumption of constant hazards is often considered not to be 

biologically plausible in medical research, where often at least one turning point in the 

hazard is observed over time (Crowther and Lambert, 2013). Their article discusses 
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methods to obtain the cumulative hazard function when the integral is analytically 

intractable (numerical integration techniques). As well as methods to solve the 

equation to generate survival times when the cumulative hazard function is not 

invertible (iterative root finding methods). Thus, extensions to this research include 

incorporating more complex hazard functions, through flexible parametric modelling of 

the underlying hazard functions, to increase the biological plausibility of the models 

and check the recommendations are consistent with the current findings. Other 

potential extensions to this work include the incorporation of time-dependent 

prognostic factor associations and prognostic factors which vary over time. 

The included simulation studies utilise non-parametric estimates of the 

cumulative risk of the event of interest. However, prognostic models apply regression 

modelling techniques to incorporate associations between multiple prognostic factors 

and the event of interest (Steyerberg et al., 2013). A recent literature review of 

competing risks simulation studies (Leoce, 2016) identified studies which investigated 

varying strengths of associations between a single binary exposure variable and both 

the event of interest and a single competing event using a range of scenarios (Dignam 

et al., 2012, Grambauer et al., 2010, Latouche et al., 2007). The studies found the 

difference between the regression coefficient estimates to be negligible when the 

exposure is only associated with the event of interest and not the competing event. 

However, when the exposure is associated with an increase in the risk of event of 

interest but a reduction in the risk of the competing event, attenuated standard time-

to-event analysis regression coefficient estimates were observed. The focus of these 

previously published studies was to compare cause-specific and subdistribution 

regression coefficient estimates. However, little is known regarding how these 

differences, caused by varying associations between a prognostic factor and the 

competing event, affect prognostic model calibration. Thus, further research is needed 
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to investigate the effect of varying associations between prognostic factors and the 

competing event on prognostic model calibration. 
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8 DISCUSSION 

This chapter concludes the thesis with a general discussion of the research 

presented in previous chapters. Limitations of the research are presented alongside 

suggestions of future work in the area. 

8.1 Thesis Overview 

Prognostic model research is important as it aids understanding of the risks of 

future health outcomes in individuals. Communicating these risks enables clinicians to 

help their patients understand the likely course of their disease or condition, enhancing 

the process of informed decision making (Steyerberg et al., 2013). The time to a given 

health outcome can be of interest in prognostic model research, and thus time-to-event 

regression methods are often utilised to develop prognostic models. It is often the case 

that competing events prevent or alter the risk of the event of interest from occurring. 

If not appropriately accounted for, the presence of these competing events can result 

in inflated absolute risk estimates, affecting the predictive accuracy of a prognostic 

model. Though the statistical methods which account for competing risks theory has 

existed since 1760 (Bernoulli, 1760), there is increasing evidence that the methods are 

not being utilised (Austin and Fine, 2017, Koller et al., 2012, Schumacher et al., 2016, 

Walraven and McAlister, 2016), and there is relatively little empirical research which 

investigates the presence and impact of competing events in prognostic model 

research. 

The overall aim of previous chapters was to improve understanding of the 

influence of competing risks issues in prognostic model research. In particular, early 

chapters (Chapters 2 and 3) investigated the presence, reporting, and management of 

competing events in existing prognostic model research, focusing on systematic 
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reviews and development articles. In the middle section of this thesis (Chapters 4 to 

6), flexible parametric prognostic models for the risks of antenatal adverse events in 

pre-eclampsia patients were developed and externally validated using standard and 

competing risks statistical methods. In the penultimate chapter (Chapter 7), the impact 

of competing risks on prognostic performance measures were evaluated in a 

competing risks simulation study. A short summary of the chapters contained in this 

thesis is provided below: 

8.1.1 Chapter 2: An empirical evaluation of the presence and reporting of 

competing events in systematic reviews of prediction model studies. 

The aim of this chapter was to empirically investigate the presence and reporting 

of competing events in published systematic reviews of prediction model development 

studies. The empirical review identified 31 systematic review articles, published 

between January 2015 and April 2017, which were assessed on the potential for 

competing risks bias and acknowledgement of competing events. The key findings was 

that the majority (61.3%) of the systematic review articles in the review were classified 

as being “high risk” of competing risks bias, but very few (6.5%) reported the presence 

of competing events. 

8.1.2 Chapter 3: A review into the presence, reporting, and management of 

competing events in prediction model development studies. 

Given the majority of systematic reviews were considered to be “high risk” in 

Chapter 2, further research was needed on the management of competing events in 

prognostic model development studies. Therefore, this chapter aimed to review how 

prediction model development studies actually handle competing events. The review 

identified 15 prediction model development studies, producing 25 prediction models in 

clinical settings where competing events are a likely issue. These prediction models 

were assessed for the potential for competing risks bias and the management of 
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competing events. Though the majority (84.0%) of the prediction models were 

classified as “high risk” of competing risks bias, relatively few (24.0%) utilised statistical 

methods to appropriately manage the competing events, emphasising that important 

competing events are often ignored in practice. 

8.1.3 Chapter 4: A comparison of time-to-event prognostic models developed 

using Cox and flexible parametric methods. 

To illustrate the application of survival analysis methods without accounting for 

competing events, this chapter developed two prognostic models to predict the risk of 

antenatal adverse events in women diagnosed with early-onset pre-eclampsia. The 

aim was to compare prognostic modelling using Cox proportional hazards regression 

(Cox, 1972a) and Royston-Parmar flexible parametric regression (Royston and 

Parmar, 2002). Both models produced almost identical regression coefficient estimates 

for included predictors. However, the Royston-Parmar model was recommended for 

use in prognostic model research due to the direct estimation of a flexible and smooth 

baseline survival function, which allows risk predictions for new individuals, unlike the 

Cox model which does not estimate the baseline function and so requires non-

parametric estimates of the baseline hazard to be incorporated. 

8.1.4 Chapter 5: A comparison of prognostic models developed using flexible 

parametric competing risks methods. 

To illustrate the application of survival analysis methods that account for 

competing risks, this chapter developed two prognostic models which predict the risk 

of antenatal adverse events in women diagnosed with early-onset pre-eclampsia, while 

accounting for the competing event of delivery using either cause-specific (Hinchliffe 

and Lambert, 2013b) or subdistribution (Lambert et al., 2017) approaches within a 

flexible parametric framework. Both models performed similarly when assessed for 

predictive performance, however the subdistribution approach resulted in a more 
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parsimonious model which could be internally validated and adjusted for overfitting, 

and thus represented important advantages over the cause-specific approach. 

8.1.5 Chapter 6: External validation of prognostic models developed using 

standard and competing risks methods. 

In this chapter, the Royston-Parmar (PREP-RP) model developed in Chapter 4 

and the subdistribution (PREP-SD) model developed in Chapter 5 were externally 

validated using measures adapted to appropriately account for competing events. The 

PREP-RP model, which ignored competing events, performed well at early time points 

in terms of both calibration and discrimination. However, the calibration of the model 

was poorer at later time points as the model substantially overestimated the absolute 

risk of antenatal adverse events. In contrast, the PREP-SD model, which accounted 

for competing events, consistently underestimated the absolute risks of antenatal 

adverse events. Nevertheless, the model produced risk predictions that better reflect 

the observed risk of antenatal adverse events at later time-points. 

8.1.6 Chapter 7: When are competing risk statistical methods needed in 

prognostic model research? A simulation study. 

Following the findings of the previous chapters, this study used a simulation study 

to identify how competing risks bias in measures of calibration is affected by the 

incidence of both the event of interest and competing events. Multiple scenarios were 

investigated with a range of incidences for the main event of interest and the competing 

event. Measures of absolute and percentage cumulative risk bias were found to grow 

as the incidence of the event of interest and the relative proportion of competing events 

increase. An existing rule-of-thumb, which advises competing events need only be 

accounted for if the competing event occur at least as often as the event of interest 

(Berry et al., 2010), was found not to be appropriate for avoiding substantial calibration 

bias. 
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8.2 Key findings and recommendations 

The findings of the research conducted in this thesis are summarised in the 

discussion section of each chapter. Four key findings of the thesis are presented in 

Box 8.1 and are discussed in more detail below: 

Box 8.1: Key findings from this thesis 

1. Competing events are often present but rarely reported or appropriately 
managed in prognostic model research. 

2. Flexible parametric subdistribution models are recommended to account for 
competing risks in prognostic model research. 

3. Competing risks bias increases with increased incidence of the event of interest 
and the competing event. 

4. Researchers should not use the current rule of thumb for deciding when to use 
competing risks methods rather than standard survival analysis methods. 

 

8.2.1 Competing events are often present but rarely reported or appropriately 

managed in prognostic model research. 

A consistent finding of the reviews conducted in Chapters 2 & 3 is that in 

prognostic model research, the presence of competing events is high. In the evaluation 

of systematic reviews, 90.3% were found to include prediction models with outcomes 

other than all-cause mortality, and 61.3% were classified as high potential for 

competing risks bias. In the review of prediction model development studies, mortality 

was a competing event for 92.0% of the prognostic models, and 73.3% of the prediction 

model studies were classified as high potential for competing risks bias. These findings 

are similar to those observed in other systematic reviews; competing risks were found 

to be present in 78% of reports of randomised controlled trials (Austin and Fine, 2017), 

74% of articles published in high impact medical journals (Koller et al., 2012), and 46% 

of articles which reported Kaplan-Meier curves (Walraven and McAlister, 2016). 

Though the presence of competing events was found to be high, the reporting of 

competing events was low. In the evaluation of systematic reviews, only 6.5% directly 
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reported the competing events. In the review of prediction model development studies, 

key terms related to competing events were reported in 20% of the study articles, and 

the incidence of the competing events was only reported in 26.7% of the study articles. 

Again these findings appear to be in line with the findings of other systematic reviews; 

competing risks were discussed as a possible issue in only 18% of articles published 

in high impact medical journals (Koller et al., 2012), and 34.8% of articles deemed to 

be susceptible to competing risks bias cited the number of competing events that 

occurred during the study (Walraven and McAlister, 2016). 

When competing events are ignored, this may cause bias in a developed model’s 

absolute risk predictions for the main event of interest. The review of prediction model 

development studies found that competing events are often not appropriately 

managed, with only 20% of studies using appropriate methods. Again this reflects the 

findings of other systematic reviews, with 20% of articles published in high impact 

journal using appropriate methods (Koller et al., 2012), and 16% of reports of 

randomised controlled trials (Austin and Fine, 2017). 

To the author’s knowledge, these are the first reviews that investigate the 

presence, reporting, and management of competing risks and its associated bias in 

prediction model research. These reviews aid the understanding of the high presence 

but rare reporting and appropriate management of competing events; indeed, the 

findings suggest that a large proportion of prediction model research is susceptible to 

competing risks bias. However, it has been shown in the later chapters of this thesis 

(e.g. Chapters 6 and 7) that being susceptible to bias does not always result in biased 

measures of prognostic performance. The calibration of a prognostic model that 

predicts an event of interest with low incidence, is developed in the presence of a 

completing event with a relatively low incidence (compared to the event of interest), or 

that has a short prediction horizon (resulting in a low occurrence of competing events), 

is likely to be unaffected by competing risks bias. Additionally, findings from the thesis 
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suggest the discriminative performance of prognostic models may be hindered by 

applying competing risks statistical methods (see Table 6.5), though further 

investigation in a wider range of scenarios is required for a better understanding of this 

finding. It is argued that the application of competing risks statistical methods to 

manage competing events whenever they are present would reduce any risk for 

competing risks bias. However, the requirement for use of competing risks statistical 

methods in prognostic model research has been shown to depend on the amount of 

bias expected in measures of prognostic performance, which is influenced by the 

incidence of both the event of interest and the competing event. The use of these 

methods may also be influenced by a researcher’s decision to use more familiar 

(standard) time-to-event methods over the more complicated competing risks 

methods, in order to aid the user’s interpretation and understanding of the final 

prognostic model. Current guidance aimed, at improving the quality of prognostic 

models (such as the TRIPOD statement), should be updated to specifically mention 

competing events and encourage researchers to consider the potential for competing 

risks bias in their prognostic model studies. 

The tool developed within these chapters (Figure 2.1) to assess the risk of 

competing risks bias could be used either when planning the development of, or when 

assessing, prediction model studies. If a study is considered to be at high risk of 

competing risks bias, researchers must use competing risks statistical methods to 

appropriately manage the competing events. These competing events should also be 

better reported; for example, competing risk specific information could be incorporated 

into updates and extensions of the TRIPOD reporting guidelines to ensure researchers 

consider and report the presence and proportion of competing events in their studies. 

Currently the TRIPOD guidance does not mention competing events specifically. It is 

encouraging that the recent PROBAST (risk of bias assessment tool for prediction 

model studies) guidance has a specific item on competing risks (“Were complexities in 
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the data (e.g., censoring, competing risks, sampling of control participants) accounted 

for appropriately?”) 

8.2.2 Flexible parametric subdistribution models are recommended to 

incorporate competing risks in prognostic model research 

The benefits of using flexible parametric models, as opposed to parametric or 

semi-parametric models, are outlined in Chapter 4. The key benefits of using this 

approach specifically to develop prognostic models are: 

1. The direct estimation of a smooth underlying baseline hazard function, and 

2. The derivation of absolute risk predictions for individual patients. 

The benefits of this approach have been discussed in depth in current literature 

(Royston and Lambert, 2011), including articles which discuss benefits specifically in 

terms of prognostic model research (Snell, 2015). Most notably, Professor Sir David 

Cox, developer of the Cox model, in an interview with Nancy Reid has stated “I would 

normally want to tackle a problem parametrically… I’m not keen on nonparametric 

formulations” and “if you want to do things like predict the outcome for a particular 

patient, it’s much more convenient to do that parametrically” (Reid, 1994). 

Similarly, the benefits of applying the subdistribution, rather than the cause-

specific, approach for modelling competing events are discussed in Chapter 5. The 

key benefits of this approach for developing prognostic models are: 

1. Retaining the one-to-one association between the hazard and risk functions, which 

aids the interpretation of prognostic factors on real world risks, 

2. Returning a parsimonious and simpler model, than the cause-specific approach, 

as only the event of interest needs to be modelled, and 

3. The ease of applying standard prognostic model research methods for internal 

validation, shrinkage, and model updating. 
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The cause-specific and subdistribution approaches are often compared in the 

literature (Dignam et al., 2012, Hinchliffe, 2013, Koller et al., 2012, Lau et al., 2009, 

Putter et al., 2007, Varadhan et al., 2010, Wolkewitz et al., 2014) with some articles 

again focusing specifically on their use in prognostic model research (Leoce, 2016, 

Wolbers et al., 2009). It is commonly suggested the two approaches be utilised side-

by-side to aid understanding of both the direct and indirect effects of the prognostic 

factors on the event of interest and competing events (Dignam et al., 2012, Lau et al., 

2009, Varadhan et al., 2010, Wolkewitz et al., 2014). However, in prognostic model 

research these effects are of little importance; instead the key outcome is the accurate 

estimation of absolute risk predictions. Some authors discuss the convenience of the 

subdistribution approach, which directly regresses on the cause-specific cumulative 

incidence function, for answering prognostic modelling research questions (Dignam et 

al., 2012, Koller et al., 2012). 

Given the findings of Chapters 4 & 5, a key recommendation from this thesis is 

the use of flexible parametric subdistribution models for the development of prognostic 

models in the presence of competing events. The combination of the two approaches 

results in the development of parsimonious prognostic models which directly estimate 

smooth underlying baseline subdistribution hazards that can be modelled without the 

need to model associations with the competing events. 

8.2.3 Competing risks bias increases with increased incidence of the event of 

interest and the competing event. 

The simulation study performed in Chapter 7 demonstrated the strong 

association between the amount of competing risks bias in measures of calibration and 

the incidence of both the event of interest and the competing event. Higher levels of 

competing risks bias were observed in simulation scenarios with lower event of interest 

incidence and higher competing event incidence (see Figure 7.5). These associations 
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are similar to those observed by Walraven and team, who found competing risks bias 

could be determined using the “biased Kaplan-Meier risk estimates and the proportion 

of all outcomes that were competing events” (van Walraven and Hawken, 2016). A rule 

of thumb, which advises when the more complex competing risks methods should be 

applied (Berry et al., 2010), was evaluated in Chapter 7. This rule was found to be 

insufficient in avoiding substantial bias in cumulative incidence estimates in prediction 

model studies. An alternative recommendation to evaluate the need for the more 

complex analysis using a threshold for acceptable percentage bias was proposed. For 

example, if 10% was considered an acceptable level of percentage bias, then with an 

event of interest incidence of 5% competing risks should be accounted for if the 

competing event incidence is at least 17% (Table 7.4). However, to avoid any bias the 

best approach is to apply competing risks methods whenever competing risks were 

suspected. 

While not appropriately accounting for competing events has been shown to 

cause bias absolute risk predictions, and thus affects measures of calibration, the 

inappropriate management of competing events does not appear to have much of an 

effect of the discriminative performance of the models. In Chapter 6, two models 

developed to predict the risk of antenatal adverse events in women with early-onset 

pre-eclampsia were externally validated. Differences between the model’s calibration 

performance grew as time progressed and more competing events were observed 

(Figure 6.5), however little difference was observed between the models discriminative 

performance measures (Table 6.5). 

8.3 Discussion points 

Many advances in prognostic model and competing risks research have been 

made throughout the duration of this thesis, while some challenges still remain. These 

are now summarised. 
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8.3.1 Current prognostic model research literature 

There is a growing interest in prognostic model research, evidenced by the 

increasing number of scientific articles published on the topic each year (Collins et al., 

2015). Many articles investigate the challenges related to the methodology and 

reporting of prognostic model research (Groenwold et al., 2016, Moons et al., 2009a, 

Royston and Altman, 2013, Royston et al., 2009, Steyerberg et al., 2013), with some 

focusing specifically on the presence of competing events (Leoce, 2016, Wolbers et 

al., 2009). A number of tools have been developed in an attempt to improve the quality 

of prognostic model research; including the TRIPODi statement, developed to “improve 

the transparency of the reporting of a prediction models study” (Collins et al., 2015); 

and the PROBASTii tool, developed to “aid the assessment of the risk of bias and 

applicability of prediction modelling studies in a systematic review” (Wolff et al., 2019). 

Additionally, in 2017 a new journal, titled “Diagnostic and Prognostic Research”, was 

created to “ensure that the results of all well-conducted diagnostic and prognostic 

research are published, regardless of their outcome” (Moons et al., 2017). 

A number of systematic reviews highlight the proliferation of prognostic models 

developed for the same health state to predict similar outcomes, for example 363 

prediction models were identified for cardiovascular disease (Damen et al., 2016), 91 

for improving the quality of liver resection (Lim et al., 2015), and 63 were identified for 

functional outcomes post-stroke (Meyer et al., 2015). The large number of available 

prognostic models could be another barrier which perturbs clinicians from using 

models to inform clinical decisions (Wessler et al., 2017, Wyatt and Altman, 1995). 

Further, the development of new prognostic models for the same health states and 

outcomes as existing models is inefficient, as information captured in previous studies 

and models is lost (Moons et al., 2012a). Methods for updating and recalibrating 

                                                      
i Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis. 
ii Prediction modelling Risk Of Bias ASsessment Tool. 
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existing models are recommended over the continual development of new prognostic 

models (Moons et al., 2012a, Royston, 2010). It has been shown that simple 

recalibration methods are often sufficient to improve the predictive performance of 

existing prognostic models in new populations or settings (Janssen et al., 2008). 

Prognostic models are developed to predict the risk of a future outcome from the 

intended moment of use (Moons et al., 2015), typically a primary consultation or 

diagnosis. However, there are many reasons why a patient’s risk could change over 

time; a patient’s biomarker measurements may change as the disease progresses, 

patients may actively alter their behaviour to reduce their risk, and advances in medical 

treatments could improve risks. Research into the statistical methods to incorporate 

the change of individual risks over time into prognostic models is advancing. Dynamic 

prediction models retain prognostic accuracy by “evolving over time in response to 

observed changes” (Jenkins et al., 2018). Models are updated, either at discrete time-

points as populations, treatments, and clinical practices change, or continually over 

time. Landmark prediction models allow predictions to be made from different time 

points, for example at diagnosis, then again three years after diagnosis (Lambie et al., 

2019). Landmark models update expected risk predictions over time, allowing 

clinicians and patients to reassess risks at different time points. Finally, joint modelling 

methods can be applied to prognostic models to allow repeated prognostic factor 

measurements to be incorporated into the risk predictions (Proust-Lima and Taylor, 

2009). This can aid prediction when a prognostic factor measurement is highly variable 

within individuals (such as blood pressure), or when risk is associated with the 

trajectory (pattern over time) of the prognostic factor. 

The prognostic model literature supports the investigation of a single specific outcome 

(Steyerberg et al., 2013). However, in clinical practice multiple outcomes may be of 

interest. The multistate framework was introduced for standard time-to-event and 

competing risks analysis in Chapter 1. This framework can be extended to incorporate 
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numerous events of interest as well as intermediate events, such as recovery or 

adverse events, as depicted in Figure 8.1. Multi-state prognostic models allow the 

prediction of multiple outcomes of interest and help describe the patients transitions 

between different health states (Javanmardi et al., 2018), providing a broader view of 

future disease progression. 

Figure 8.1: Complex multi-state model for prognosis following bone marrow 
transplantation in leukaemia patients 

 
mstate R package (de Wreede et al.), published in Journal of Statistical Software, is 

licensed under CC BY 3.0 
 

8.3.2 Current competing risks literature 

It has been shown that competing events are rarely utilised in prognostic model 

research. There are increasing efforts to make competing risks methods more 

accessible to researchers. A number of user friendly statistical software packages have 

been developed in Stata to enable competing risks analysis, including the stpm2 

function (Lambert and Royston, 2009), an extension stpm2cif (Hinchliffe and Lambert, 

2013a), and the multistate function (Crowther and Lambert, 2019). Multiple online tools 

have been developed for use as teaching tools and to aid understanding of key 

methodological concepts, including an interactive graph which demonstrates the link 

between cause-specific hazards and the cumulative incidence function (Lambert) and 

an interactive cancer survival prediction tool (Mozumder). Earlier tutorials on 

http://www.core.ac.uk/download/pdf/6340208.pdf
http://www.jstatsoft.org/
https://creativecommons.org/licenses/by/3.0/
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competing risks analysis focused on applications in cancer progression (Fine and 

Gray, 1999, Hinchliffe, 2013, Pintilie, 2007). However, recently there has been an 

increase in discussions of the use of these methods for other health states, including 

coronary heart disease (Wolbers et al., 2009), nephrology (Noordzij et al., 2013), and 

pneumonia (Wolkewitz et al., 2014). All of the aforementioned resources aim to 

increase the accessibility of competing risks methods to researchers, in an attempt to 

increase the use of the methods in practice. 

The more popular Fine and Gray model (Fine and Gray, 1999) is not discussed 

in detail during this thesis, as the focus is on the use of flexible parametric competing 

risks approaches. In brief, the Fine and Gray model is a semi-parametric model on the 

subdistribution hazards scale. As such, the model does not directly estimate the 

underlying cumulative baseline subdistribution hazard function and does not provide 

absolute risk predictions. However, the model may be useful in prognostic model 

research for identifying associations between prognostic factors and the real-world risk 

of the event of interest, accounting for the competing event. 

The statistical methods which allow for adaptive prognostic model predictions, 

discussed previously, are also being extended to incorporate competing events. The 

landmark model approach has been extended to allow dynamic prediction of 

competing risks while incorporating time-dependant covariates (Nicolaie et al., 2013), 

allowing prediction to be made at specified timepoints after initial diagnosis. Advances 

to joint modelling methods have been made to model multiple longitudinal 

measurements with competing risks time-to-event outcomes (Andrinopoulou et al., 

2017), producing dynamically updated absolute risk predictions. 

8.4 Limitations and further research 

Some limitations of the work contained within this thesis are outlined below, 

alongside suggestions of further research that will address these limitations. 
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Neither of the reviews conducted in Chapters 2 and 3 encompass the entirety of 

the prediction model research literature. These reviews were performed to provide a 

snapshot of the literature in order to assess the presence, management, and reporting 

of competing events in prediction model research. As such, many systematic reviews 

of prediction model development studies, and prediction model development study 

articles are not considered. To the authors knowledge, these are the largest reviews 

to assess competing risks bias in prediction model literature that have been conducted. 

The finding of high competing risk incidence from the evaluation of systematic reviews 

of prediction model development studies (Chapter 2) is likely to be generalisable, as 

most of the included systematic reviews searched for articles from database inception 

and prediction model outcomes are unlikely to have changed over time. The prediction 

model development studies identified for inclusion in the review conducted in Chapter 

3 were purposefully selected from clinical settings where competing events are likely 

to be an issue. The finding of high incidence of competing events in these articles is 

thus likely to be inflated compared to the incidence in all prediction model research. 

Further research could extend both of the reviews conducted in this thesis to 

incorporate all prediction model literature, including articles published since the review 

was conducted (April 2017). This would allow for a better understanding of the 

presence of competing risks in all prognostic model research, and could perhaps 

identify whether there were trends in the presence, reporting, and management of 

competing events over different health states, or indeed over time. 

The presence of competing risks bias in the studies included in Chapters 2 & 3 

was not known, and thus was evaluated using a risk tool which assessed three criteria 

(Figure 2.1). It was considered out of the scope of the thesis to obtain individual 

participant data from each study to thoroughly assess the presence of competing 

events. The risk tool simply combines factors which were thought to be applicable to 

competing risks bias in prediction model studies, and which were likely to be reported. 
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However, this tool has not been evaluated. Further research could go on to evaluate 

the risk tool in prediction model studies to identify how accurate it is at identifying the 

presence of competing events. If found to be accurate, the tool could be utilised to 

inform the study design and statistical methods used in future prediction model 

development studies. 

The prognostic models developed for predicting outcomes in early-onset pre-

eclampsia patients (Chapters 4 & 5) were potentially underpowered. The PREP study 

was designed and powered to predict the risk of maternal complication, including 

delivery before 34 weeks, of which there were 633 events (Thangaratinam et al., 2017). 

In this thesis, the alternative outcome of antenatal adverse events was investigated, 

either ignoring or incorporating delivery as a competing event, of which there were only 

75 events. This was a pragmatic use of available data, and was considered a sufficient 

sample size to indicate differences in semi-parametric and flexible parametric, and 

standard time-to-event and competing risks, approaches. Furthermore, the small 

number of antenatal adverse events restricted the analysis to the composite outcome; 

there were too few events to examine individual components separately. The adverse 

events differ in severity and would be managed differently, thus the evaluation of each 

type of adverse event would be more clinically meaningful but would require a much 

larger study. External validation in other settings could be explored to determine the 

generalisability of the competing risks model. Finally, the adverse events which 

occurred following delivery of the baby were not considered during this thesis, as the 

focus was on competing events. Further research into early-onset pre-eclampsia 

prognosis would include conducting a larger study, powered to reduce the potential for 

overfitting, and thus to develop a more robust prognostic model for adverse events. If 

the sample size were sufficiently large, this study could investigate the risks for each 

different type of adverse event separately, or indeed could use multi-state modelling 

methods to develop a prognostic model for transitions between antenatal adverse 
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events, delivery, and postnatal adverse events. Such a model would be beneficial to 

clinicians and patients and would facilitate informed treatment decision making for 

women diagnosed with early-onset pre-eclampsia. 

There is currently little research into methods for validation or recalibration of 

prognostic models developed using competing risks methods. Recent research has 

focused on developing calibration curves for competing risks models (Gerds et al., 

2014) and adapting concordance for competing events (Wolbers et al., 2014). Further 

methodological research into measures of calibration and discrimination, adapted for 

the presence of competing events is required. Additionally, standard prognostic model 

updating and recalibration methods are not easily transferable to cause-specific 

competing risks models, and further methodological research is required. 

The simulation studies conducted in Chapter 7 utilise simple constant hazard 

functions (exponential models), which are usually not considered to be biologically 

plausible in medical research (Crowther and Lambert, 2013). The studies also focused 

on parametric absolute risk estimates, and failed to incorporate prognostic factor 

associations. To reflect prognostic model research the simulations should have 

incorporated the effects of prognostic factor associations with both the event of interest 

and the competing event, and assessed absolute risk predictions from flexible 

parametric regression equations against expected risks. Further simulation studies 

which incorporate more complex and realistic hazard functions, modelled using flexible 

parametric modelling of the underlying hazard functions, are planned for future 

research. This future research will also investigate the impact of incorporating 

prognostic factor associations with the event of interest and the competing event, and 

evaluate bias in both measures of calibration and discrimination. This research will 

provide a greater understanding of the impact of event of interest and competing event 

incidences, and associations between prognostic factors and the event of interest or 

competing event, on the biases caused by mismanaging competing events. 
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8.5 Final conclusions 

This thesis has evaluated the use of statistical methods for developing and 

validating competing risks prognostic models for use in clinical practice, including an 

applied example in early-onset pre-eclampsia prognosis. It provides new empirical 

evidence that competing events are often ignored in prognostic model research, 

including development studies and systematic reviews. It also highlights the potential 

for large bias in risk predictions when ignoring competing risks methods. While 

methods for developing competing risks prognostic models are advanced and widely 

accessible, further methodological research is required to ensure models can be 

properly validated and updated. 
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9 APPENDIX I 

Data Extraction Sheet: 

Evaluation of Systematic Reviews of Prediction Model Studies 

Version 3.0 

Item 1: What were the characteristics of each systematic review? 

Title of systematic 
review article:  

Endnote reference:  

Date restrictions 
reported in search 
strategy: 

Start date:  End date:  

Primary aim of 
systematic review*:  

Aims to identify prediction models for a specific outcome? 
 ☐ YES ☐ NO ☐ UNCLEAR 

Aims to identify prediction models in a specific population? 
 ☐ YES ☐ NO ☐ UNCLEAR 

Number of prediction 
models (& studies) 
identified by 
systematic review¥ 

 

*The primary aim is taken from systematic review abstract. 
¥Some systematic reviews may identify a study article which describes the development of 
multiple prediction models, additionally some articles may identify both development and 
validation articles, thus the number of models and studies may not be equal. 
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Item 2: What is the potential for competing risks bias affecting each 
systematic review? 

Criterion 1: The prediction model investigates outcomes other than all-cause 
mortality 

Outcomes of the 
prediction models 
identified by the 
review 

All-cause mortality or composite ☐ 

Single (not ACM / PFS) ☐ 

 

Criterion 2: The baseline population contains frail and/or elderly populations 

Disease and health 
states of prediction 
model populations 

 

Population age at 
baseline 

Measures: Results: 

  

Criterion 3: The prediction horizon is sufficiently long to enable competing events 
to occur 

Prediction horizon of 
prediction models 
identified by the 
review* 

Measures: Results: 

  

Assessing the potential for competing risks bias within each systematic review 

Criterion 1: The review contains prediction models with 
outcomes other than all-cause mortality. 
If no select None, if yes proceed to Criterion 2: 

None ☐ 

Criterion 2: The review contains prediction models 
developed in elderly or frail populations. 
If no select Low, if yes proceed to Criterion 3: 

Low ☐ 

Criterion 3: The review contains prediction models 
which predict outcomes after 1 year or more? 
If no select Moderate, if yes select High. 

Moderate ☐ 

High ☐ 

*If specific prediction time horizon not reported, report measure of follow-up times 
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Item 3: Were competing events reported in the systematic review article? 

Term “competing risk(s)” or “competing event(s)” used? ☐ YES ☐ NO 

If yes copy text: 

 

Other competing risks terms used in the article? ☐ YES ☐ NO 
Such as:  
competing cause(s); competing bias; cause-specific; subdistribution; cumulative 
incidence; Fine and Gray; 

If yes copy text: 

 

Kaplan-Meier estimates or curves presented or discussed? ☐ YES ☐ NO 

If yes copy text: 

 

 

Item 4: Was competing risks part of the quality assessment performed within 
the systematic review? 

Quality assessment performed? ☐ YES ☐ NO 

Tool used:  
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10 APPENDIX II 

Table 10.1: Characteristics of systematic reviews included in evaluation of systematic reviews of prediction model studies (Chapter 
2) 

Systematic 

review 

reference 

Publication title 
Search dates 

of the review 

Primary 

outcome(s) 

specified in the 

review? 

Primary 

population 

specified in the 

review? 

No. of models 

(primary study 

articles) in each 

review 

(Ayerbe et al., 
2016) 

Clinical assessment of patients with chest pain; a 
systematic review of predictive tools 

Inception to  
July 2015 Yes Yes 13 (12) 

(Brunelli and 
Prefumo, 
2015) 

Quality of first trimester risk prediction models for pre-
eclampsia: a systematic review 

Inception to  
July 2013 Yes Yes 38 (24) 

(Caragata et 
al., 2016)  

Acute kidney injury following liver transplantation: a 
systematic review of published predictive models 

Inception to  
May 2015 Yes Yes 7 (7) 

(Damen et al., 
2016) 

Prediction models for cardiovascular disease risk in the 
general population: systematic review 

Inception to  
June 2013 Yes Yes 363 (125) 

(Echouffo-
Tcheugui et 
al., 2015)  

Population risk prediction models for incident heart 
failure: a systematic review 

January 1990 
to August 2014 Yes Yes 28 (13) 

(Ensor et al., 
2016)  

Prediction of risk of recurrence of venous 
thromboembolism following treatment for a first 
unprovoked venous thromboembolism: systematic 
review, prognostic model and clinical decision rule, and 
economic evaluation 

Inception to  
June 2014 Yes Yes 3(3) 

(Gray et al., 
2016)  

Risk Prediction Models for Lung Cancer: A Systematic 
Review 

 1985 to  
July 2014 Yes No 16 (25) 

(Haskins et al., 
2015)  

Validation and impact analysis of prognostic clinical 
prediction rules for low back pain is needed: a 
systematic review 

Inception to  
July 2013 No Yes 30 (35) 
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Systematic 

review 

reference 

Publication title 
Search dates 

of the review 

Primary 

outcome(s) 

specified in the 

review? 

Primary 

population 

specified in the 

review? 

No. of models 

(primary study 

articles) in each 

review 

(Hilkens et al., 
2016) 

Prediction models for intracranial hemorrhage or major 
bleeding in patients on antiplatelet therapy: a 
systematic review and external validation study 

Inception to 
December 
2014 

Yes Yes 5 (5) 

(Kohn et al., 
2015) 

Prognostic Accuracy of Clinical Prediction Rules for 
Early Post-Pulmonary Embolism All-Cause Mortality: A 
Bivariate Meta-analysis 

January 2000 
to March 2014 Yes Yes 11 (40) 

(Lim et al., 
2015) 

Improving the quality of liver resection: a systematic 
review and critical analysis of the available prognostic 
models 

May 1999 to 
March 2012 No Yes 91 (91) 

(Linsell et al., 
2016) 

Prognostic Factors for Behavioral Problems and 
Psychiatric Disorders in Children Born Very Preterm or 
Very Low Birth Weight: A Systematic Review 

January 1990 
to June 2014 No Yes 30 (15) 

(Luo et al., 
2015) 

A systematic review of predictive models for asthma 
development in children 

Inception to  
June 2015 Yes Yes 30 (32) 

(Mahajerin et 
al., 2015) 

Hospital-associated venous thromboembolism in 
pediatrics: a systematic review and meta-analysis of 
risk factors and risk-assessment models 

Inception to  
May 2014 Yes Yes 3 (60) 

(Mao et al., 
2015) 

Predictors associated with stroke after coronary artery 
bypass grafting: A systematic review 

January 1990 
to September 
2014 

Yes Yes 14 (14) 

(Marques et 
al., 2015) 

The accuracy of osteoporotic fracture risk prediction 
tools: a systematic review and meta-analysis 

2003 to 
September 
2014 

Yes Yes 13 (45) 

(Marufu et al., 
2015) 

Risk scoring models for predicting perioperative 
morbidity and mortality in people with fragility hip 
fractures: Qualitative systematic review 

1966 to  
April 2015 Yes Yes 25 (29) 

(Meyer et al., 
2015) 

A systematic review of studies reporting multivariable 
models to predict functional outcomes after post-stroke 
inpatient rehabilitation 

Inception to  
January 2013 Yes Yes 63 (27) 
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Systematic 

review 

reference 

Publication title 
Search dates 

of the review 

Primary 

outcome(s) 

specified in the 

review? 

Primary 

population 

specified in the 

review? 

No. of models 

(primary study 

articles) in each 

review 

(O'Caoimh et 
al., 2015) 

Risk prediction in the community: A systematic review 
of case-finding instruments that predict adverse 
healthcare outcomes in community-dwelling older 
adults 

1965 to  
November 
2014 

No Yes 23 (46) 

(Oliver et al., 
2015) 

Risk assessment tools validated for patients 
undergoing emergency laparotomy: a systematic 
review 

1980 to  
November 
2014 

No Yes 25 (20) 

(Quinlivan et 
al., 2016) 

Which are the most useful scales for predicting repeat 
self-harm? A systematic review evaluating risk scales 
using measures of diagnostic accuracy 

Inception to  
February 2015 Yes Yes 11 (8) 

(Salz et al., 
2015) 

Are we ready to predict late effects? A systematic 
review of clinically useful prediction models 

Inception to  
April 2014 No Yes 16 (14) 

(Silver et al., 
2015) 

Risk prediction models for contrast induced 
nephropathy: systematic review 

Inception to 
March 2015 Yes Yes 12 (16) 

(Silverberg et 
al., 2015) 

Systematic review of multivariable prognostic models 
for mild traumatic brain injury 

1970 to 
June 2013 No Yes 49 (26) 

(Smit et al., 
2015) 

Childhood asthma prediction models: a systematic 
review 

Inception to  
June 2014 Yes Yes 12 (12) 

(Tang et al., 
2015) 

Current Developments in Dementia Risk Prediction 
Modelling: An Updated Systematic Review 

January 2009 
to  
March 2014 

Yes No Unclear* (21) 

(Usher-Smith 
et al., 2016) 

Risk Prediction Models for Colorectal Cancer: A 
Systematic Review 

January 2000 
to  
March 2014 

Yes Yes 52 (40) 

(Walsh et al., 
2016) 

Systematic review of risk prediction models for falls 
after stroke. 

Inception to  
June 2015 Yes Yes 18 (12) 

(Warnell et al., 
2015) 

Predicting perioperative mortality after 
oesophagectomy: a systematic review of performance 
and methods of multivariate models 

1990 to 2012 Yes Yes 11 (20) 



 

272 

Systematic 

review 

reference 

Publication title 
Search dates 

of the review 

Primary 

outcome(s) 

specified in the 

review? 

Primary 

population 

specified in the 

review? 

No. of models 

(primary study 

articles) in each 

review 

(Williams et 
al., 2016) 

Risk prediction models for colorectal cancer in people 
with symptoms: a systematic review 

January 2000 
to  
March 2014 

Yes Yes 15 (18) 

(Wilson et al., 
2016) 

Risk prediction models for acute kidney injury following 
major noncardiac surgery: systematic review 

Inception to  
June 2014 Yes Yes 7 (6) 

*Multiple models listed multiple times with different cut points for assessment 
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11 APPENDIX III 

Data Extraction Sheet:  

Review of Prediction Model Development Studies 

Version 3.0 

Item 1: What were the characteristics of each prediction model development 
study? 

Title of prediction 
model study:  

Endnote reference:  

Systematic review 
reference:  

Number of individual 
prediction models 
developed in 
prediction model 
study: 

 

Source of study data: 

Cohort ☐ RCT ☐ 

Case-control ☐ Other (list below) ☐ 

 

Number of 
participants*: 

Development  

Validation  

Total  

*if multiple models are reported in the article then report the greatest number of eligible 
participants 
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Item 2: What is the potential for competing risks bias affecting each 
prediction model? 

Criterion 1: The prediction model investigates outcomes other than all-cause 
mortality 

Outcomes of the 
prediction model 

All-cause mortality or composite ☐ 

Single (not ACM / PFS) ☐ 

 

Criterion 2: The baseline population contains frail and/or elderly populations 

Disease and health 
states of prediction 
model population 

 

Population age at 
baseline 

Measures: Results: 

  

Criterion 3: The prediction horizon is sufficiently long to enable competing events 
to occur 

Prediction horizon of 
prediction model * 

Measures: Results: 

  

Assessing the potential for competing risks bias within each prediction model 

Criterion 1: The prediction model investigates outcomes 
other than all-cause mortality. 
If no select None, if yes proceed to Criterion 2: 

None ☐ 

Criterion 2: The prediction model was developed in 
elderly or frail populations. 
If no select Low, if yes proceed to Criterion 3: 

Low ☐ 

Criterion 3: The prediction models predict outcomes 
after 1 year or more? 
If no select Moderate, if yes select High. 

Moderate ☐ 

High ☐ 

Potential competing events 

Potential competing 
events likely to prevent the 
prediction model outcome 
from occurring: 

 

*If specific prediction horizon not reported, report measure of follow-up time 
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Item 3: Were competing events reported in the published prediction model 

study articles? 

Reported number (%) 
of events: 

Prediction model events: Competing events: 

Total observed events: Proportion competing events: 

Term “competing risk(s)” or “competing event(s)” used? ☐ YES ☐ NO 

If yes copy text: 

 

Other competing risks terms used in the article? ☐ YES ☐ NO 
Such as:  
competing cause(s); competing bias; cause-specific; subdistribution; cumulative incidence; 
Fine and Gray; 

If yes copy text: 

 

Kaplan-Meier estimates or curves presented or discussed? ☐ YES ☐ NO 

Number of prognostic 
factors in final 
prediction models: 

 

Prognostic factors 
associated with 
competing events: 

Age ☐ Comorbidities ☐ 
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Item 4: How were competing events managed in each prediction model 

study? 

Competing risks statistical methodology used? ☐ YES ☐ NO 

Competing events censored? ☐ YES ☐ NO 

Competing events excluded? ☐ YES ☐ NO 

How was the model 
validated? 

None ☐ Apparent validation ☐ 

Internal validation ☐ External validation ☐ 

How were competing 
events managed?   
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12 APPENDIX IV 

Table 12.1: Reasons for inclusion/exclusion of systematic reviews (from chapter 
2) likely to contain models affected by competing events 

Systematic 

review 

reference 

Potential 

for 

competing 

risks bias 

Baseline 

populations 

Corresponding 

characteristic 

(Koller et al., 2012) 

Include/exclude 

and reason 

(Kohn et al., 
2015) 

None Acute pulmonary 
embolism  Exclude 

No potential 
(Oliver et 
al., 2015) 

None Emergency 
laparotomy  Exclude 

No potential 

(Warnell et 
al., 2015) 

None 
Oesophagectomy 

for cancer in 
adults 

 Exclude 
No potential 

(Luo et al., 
2015) 

Low Children  Exclude 
Low potential 

(Smit et al., 
2015) 

Low 
Children with 
asthma-like 
symptoms 

 Exclude 
Low potential 

(Caragata et 
al., 2016) 

Moderate Liver 
transplantation Transplant 

Exclude 
Moderate 
potential 

(Lim et al., 
2015) 

Moderate 
Patients 

undergoing liver 
resection 

 
Exclude 

Moderate 
potential 

(Mao et al., 
2015) 

Moderate Coronary artery 
bypass grafting 

Coronary heart 
disease 

Exclude 
Moderate 
potential 

(Meyer et 
al., 2015) 

Moderate 

Patients receiving 
post-stroke 

inpatient 
rehabillitation 

Stroke 
Exclude 

Moderate 
potential 

(Silver et al., 
2015) 

Moderate 

Undergoing 
procedure using 

iodinated 
radiocontrast 

 
Exclude 

Moderate 
potential 

(Brunelli 
and 
Prefumo, 
2015) 

Moderate First trimester 
pregnancy  

Exclude 
Moderate 
potential 

(Mahajerin 
et al., 2015) 

Moderate Pediactric hospital 
patients  

Exclude 
Moderate 
potential 

(Ayerbe et 
al., 2016) 

High Recent onset 
chest pain Cardiac failure Include 

(Damen et 
al., 2016) 

High General 
population  Exclude 

Not susceptible 



 

278 

Systematic 

review 

reference 

Potential 

for 

competing 

risks bias 

Baseline 

populations 

Corresponding 

characteristic 

(Koller et al., 2012) 

Include/exclude 

and reason 

(Echouffo-
Tcheugui et 
al., 2015) 

High General 
population  Exclude 

Not susceptible 

(Ensor et 
al., 2016) 

High 
Cessation of 

treatment venous 
thrombembolism 

 Exclude 
Not susceptible 

(Gray et al., 
2016)  

High General 
population  Exclude 

Not susceptible 
(Haskins et 
al., 2015)  

High Low back pain  Exclude 
Not susceptible 

(Hilkens et 
al., 2016) 

High 
Patients on 
antiplatelet 

therapy 
Cardiac failure Include 

(Linsell et 
al., 2016) 

High 
Very preterm or 
very low birth 
weight infants 

 Exclude 
Not susceptible 

(Marques et 
al., 2015) 

High General 
population  Exclude 

Not susceptible 
(Marufu et 
al., 2015) 

High Hip fracture 
operation  Exclude 

Not susceptible 

(O'Caoimh 
et al., 2015) 

High 
Community-

dwelling older 
adults 

Elderly patients Include 

(Quinlivan 
et al., 2016) 

High 
Presenting with 

self-harm or 
attempted suicide 

 Exclude 
Not susceptible 

(Salz et al., 
2015) 

High 
Completing 

treatment for 
cancer 

Prostate cancer, 
colorectal cancer, 

breast cancer 
Include 

(Silverberg 
et al., 2015) 

High Mild traumatic 
brain injury  Exclude 

Not susceptible 

(Tang et al., 
2015) 

High 

Varied, including 
general 

population, 
elderly, and with 

diabetes 

 Exclude 
Not susceptible 

(Usher-
Smith et al., 
2016) 

High General 
population  Exclude 

Not susceptible 

(Walsh et 
al., 2016) 

High Stroke Stroke Include 

(Williams et 
al., 2016) 

High Symptomatic of 
colorectal cancer Colorectal cancer Include 

(Wilson et 
al., 2016) 

High Major non-cardiac 
surgery  Exclude 

Not susceptible 
 

 



 

279 

13 APPENDIX V 

Full list of published prediction model study articles identified from six systematic review articles, including reasons for inclusion/exclusion. 

Systematic review  Articles Include/Exclude Reason 

(Ayerbe et al., 2016) 

Bassan 2004 Exclude Neural tree – machine learning 

Bjork 2006 Exclude Logistic regression 

Bosner 2010 Exclude Logistic regression 

Gencer 2010 Exclude Logistic regression 

Genders 2012 Exclude Logistic regression 

Goodacre 2002 Exclude Logistic regression 

Gruseels 1995 Exclude Logistic regression 

Pryor 1993 Exclude Model validation study 

Sanchez 2007 Exclude Logistic regression 

Sekhri 2008 Include Cox regression 

Sox 1990 Exclude Logistic regression 

Tierney 1985 Exclude Logistic regression 

(Hilkens et al., 2016) 
Ariesen 2006 Include Cox regression 

Barra 2013 Exclude Risk score: derrivation of weights not through regression methods 
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Systematic review  Articles Include/Exclude Reason 

Cuschieri 2014 Include Cox regression 

Ducrocq 2010 Exclude Logistic regression 

Geraghty 2012 Exclude Conference abstract – insufficient information 

(O'Caoimh et al., 2015)* 

Alessi 2003 Exclude Risk score: derrivation of weights not through regression methods 

Boult 1993 Exclude Logistic regression 

Carey 2004 Exclude Logistic regression 

Carey 2008 Include Cox regression 

Covinsky 2006 Exclude Logistic regression 

Crane 2010 Exclude Logistic regression 

Dalby 1990 Exclude Risk score: derrivation of weights not through regression methods 

Damush 2004 Exclude Logistic regression 

Fitzgerald 2015 Exclude Conference abstract – insufficient information 

Freedman 1996 Exclude Logistic regression 

Han 2012 Exclude Logistic regression 

Herbert 1996 Exclude Logistic regression 

Kerse 2008 Exclude Risk score: derrivation of weights not through regression methods 

Lee 2006 Exclude Logistic regression 

Lyon 2007 Excluded Logistic regression 

Mazzaglia 2007 Exclude Logistic regression 

Reuben 2002 Exclude Logistic regression 
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Systematic review  Articles Include/Exclude Reason 

Roos 1988 Exclude Logistic regression 

Saliba 2001 Exclude Logistic regression 

Schoenberg 2009 Include Cox regression 

Shelton 2000 Exclude Logistic regression 

St John 2014 Exclude Risk score: derrivation of weights not through regression methods 

Suijker 2014 Exclude Logistic regression 

(Salz et al., 2015)  

Alemozaffar 2011 Exclude Logistic regression 

Bevilacqua 2012 Include Cox regression 

Briganti 2010 Include Cox regression 

Chipman 2014 Exclude Generalized estimating equations 

Eastham 2008 Exclude Generalized estimating equations 

Ezaz 2014 Include Cox regression 

Gallina 2008 Exclude Conference abstract – insufficient information 

Ganz 1993 Exclude Logistic regression 

Kilminster 2011 Exclude Logistic regression 

Kovalchik 2013 Include Cox regression 

Langendijk 2009 Exclude Logistic regression 

Mathieu 2013 Include Cox regression 

Romond 2012 Include Parametric and Cox regression 
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Systematic review  Articles Include/Exclude Reason 

Travis 2005 Include Time-to-event methods 

(Walsh et al., 2016) 

Ashburn 2008 Exclude Logistic regression 

Baetens 2011 Exclude Logistic regression 

Chen 2015 Exclude Poisson regression 

Kerse 2008 Exclude Logistic regression 

Mackintosh 2006 Exclude Logistic regression 

Nakagawa 2008 Include Cox regression 

Nyberg 1997 Include Cox regression 

Olsson 2005 Exclude Conference abstract – insufficient information 

Rabadi 2008 Exclude Logistic regression 

Rapport 1993 Exclude Risk score: derrivation of weights not through regression methods 

Sze 2001 Exclude Logistic regression 

Tilson 2012 Exclude Classification and regression tree – Machine learning 

(Williams et al., 2016)  

Adelstein 2010 Exclude Logistic regression 

Adelstein 2011 Exclude Logistic regression 

Ballal 2010 Exclude Model validation study 

Collins 2012 Exclude Model validation study 

Fijten 1995 Exclude Logistic regression 

Hamilton 2005 Exclude Logistic regression 

Hamilton 2009 Exclude Logistic regression 
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Systematic review  Articles Include/Exclude Reason 

Hamilton 2013 Exclude Model validation study 

Hippisley-Cox 2012 Include Cox regression 

Hippisley-Cox 2013 (1) Exclude Logistic regression 

Hippisley-Cox 2013 (2) Exclude Logistic regression 

Hodder 2004 Exclude Model validation study 

Hurst 2007 Exclude Logistic regression 

Lam 2002 Exclude Risk score: derrivation of weights not through regression methods 

Mahadavan 2012 Exclude Logistic regression 

Marshall 2011 Exclude Model validation study 

Rai 2008 Exclude Model validation study 

Selvachandran 2002 Exclude Model validation study 

*O’Caoimh found a further 23 papers eligible for the systematic review; However as the published article focused on the unique instuments, 
and these articles described the external validation of the instruments, it is hard to identify these from the published article and thus they are 
not reported in this table. 
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14 APPENDIX VI 

Table 14.1: Characteristics of prediction model studies included in review of prediction model development studies (Chapter 3) 

Systematic 

review 

reference 

Prediction 

model study 

reference 

Prediction model study article title 

Number of 

individual 

models 

developed(1) 

Source 

of study 

data(2) 

Number of 

participants(3): 

Development 

Validation 

Total 

(Ayerbe et 
al., 2016) 

(Sekhri et al., 
2008) 

Incremental prognostic value of the exercise electrocardiogram in 
the initial assessment of patients with suspected angina: cohort 
study 

3 Cohort 
8,176 
N/A 

8,176 

(Hilkens et 
al., 2016) 

(Ariesen et al., 
2006)  

Predictors of risk of intracerebral haemorrhage in patients with a 
history of TIA or minor ischaemic stroke 1 Cohort 

12,648 
12,648 
12,648 

(Cuschieri et 
al., 2014) 

Risk factors for acute gastrointestinal bleeding following 
myocardial infarction in veteran patients who are prescribed 
clopidogrel 

1 Cohort 
3,218 
3,218 
3,218 

(O'Caoimh et 
al., 2015) 

(Carey et al., 
2008) 

Prediction of Mortality in Community-Living Frail Elderly People 
with Long-Term Care Needs 1 Cohort 

2,232 
1,667 
3,899 

(Schonberg et 
al., 2009) 

Index to Predict 5-Year Mortality of Community-Dwelling Adults 
Aged 65 and Older Using Data from the National Health Interview 
Survey 

1 Cohort 
16,077 
8,038 

24,115 

(Salz et al., 
2015) 

(Bevilacqua et 
al., 2012) 

Nomograms for Predicting the Risk of Arm Lymphedema after 
Axillary Dissection in Breast Cancer 3 Cohort 

1,054 
1,054 
1,054 
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Systematic 

review 

reference 

Prediction 

model study 

reference 

Prediction model study article title 

Number of 

individual 

models 

developed(1) 

Source 

of study 

data(2) 

Number of 

participants(3): 

Development 

Validation 

Total 

(Briganti et al., 
2010) 

Predicting Erectile Function Recovery after Bilateral Nerve 
Sparing Radical Prostatectomy: A Proposal of a Novel 
Preoperative Risk Stratification 

1 Cohort 
435 
435 
435 

(Ezaz et al., 
2014) 

Risk Prediction Model for Heart Failure and Cardiomyopathy 
After Adjuvant Trastuzumab Therapy for Breast Cancer 1 Cohort 

832 
832 

1,664 

(Kovalchik et 
al., 2012) 

Absolute Risk Prediction of Second Primary Thyroid Cancer 
Among 5-Year Survivors of Childhood Cancer 3 

Nested 
case-

control  

12,150 
2,966 

15,116 

(Mathieu et al., 
2014) 

Nomograms to predict late urinary toxicity after prostate cancer 
radiotherapy 3 Cohort & 

RCT 

965 
N/A 
965 

(Romond et al., 
2012) 

Seven-Year Follow-Up Assessment of Cardiac Function in 
NSABP B-31, a Randomized Trial Comparing Doxorubicin and 
Cyclophosphamide Followed by Paclitaxel (ACP) With ACP Plus 
Trastuzumab As Adjuvant Therapy for Patients With Node-
Positive, Human Epidermal Growth Factor Receptor 2–Positive 
Breast Cancer 

1 RCT 
1,690 
1,690 
1,690 

(Travis et al., 
2005) 

Cumulative Absolute Breast Cancer Risk for Young Women 
Treated for Hodgkin Lymphoma 2 

Nested 
case-

control  

370 
92 
462 

(Walsh et al., 
2016) 

(Nakagawa et 
al., 2008) 

Development of an assessment sheet for fall prediction in stroke 
inpatients in convalescent rehabilitation wards in Japan 1 Cohort 

704 
N/A 
704 
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Systematic 

review 

reference 

Prediction 

model study 

reference 

Prediction model study article title 

Number of 

individual 

models 

developed(1) 

Source 

of study 

data(2) 

Number of 

participants(3): 

Development 

Validation 

Total 

(Nyberg and 
Gustafson, 
1997) 

Fall Prediction Index for Patients in Stroke Rehabilitation 1 Cohort 
135 
N/A 
135 

(Williams et 
al., 2016) 

(Hippisley-Cox 
and Coupland, 
2012) 

Identifying patients with suspected colorectal cancer in primary 
care: derivation and validation of an algorithm 2 Cohort 

2,351,052 
1,236,601 
3,587,653 

(1)Number of individual prediction models developed within prediction model study 
(2)Source of model development data 
(3)The number of participants included in prediction model study, including those for model development (top), for validation (middle), and 
total number of participants (bottom). Some participants were used for both model development and validation (internal validation with 
bootstrapping). Where multiple individual prediction models were developed in the same prediction model study, the maximum number of 
participants used to develop or validate a model is reported. 
TIA=Transient ischaemic attack, NSABP=National Surgical Adjuvant Breast and Bowel Project, RCT= Randomised controlled trial 
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15 APPENDIX VII 

Table 15.1: Potential competing events for each prediction model study included in the review of prediction model development 
studies (Chapter 3) 

Prediction model 

study reference 
Prediction model outcomes 

Disease and health state of prediction 

model population 
Potential competing events 

(Sekhri et al., 2008) 
Death due to coronary heart disease or 
non-fatal acute coronary syndrome Suspected angina Other mortality, preventative 

treatments. 

(Ariesen et al., 2006) Intracerebral haemorrhage Patients with ischaemic stroke or transient 
ischemic attack Mortality 

(Cuschieri et al., 2014) Acute gastrointestinal (GI) bleeding 
Patients with myocardial infarction & 
prescribed clopidogrel Mortality 

(Carey et al., 2008) All-cause mortality 
Community living frail elderly people with 
long-term care needs  

(Schonberg et al., 
2009) 

5-year mortality Community dwelling adults aged 65 and 
older  

(Bevilacqua et al., 
2012) 

Lymphedema Axillary lymph node dissection in breast 
cancer 

Mortality, breast cancer 
recurrence, other cancer. 

(Briganti et al., 2010) Erectile function recovery Prostate cancer treated with bilateral nerve 
sparing prostsectomy 

Mortality, prostate cancer 
recurrence, other cancer. 

(Ezaz et al., 2014) Heart failure and cardiomyopathy Patients receiving adjuvant trastuzumab 
therapy for early-stage breast cancer 

Mortality, breast cancer 
recurrence, other cancer. 

(Kovalchik et al., 2012) Second primary thyroid cancer Survivors of childhood cancers Mortality, complete removal of 
thyroid gland, other cancer. 
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Prediction model 

study reference 
Prediction model outcomes 

Disease and health state of prediction 

model population 
Potential competing events 

(Mathieu et al., 2014) Urinary toxicity, urinary frequency, dysuria Prostate cancer radiotherapy Mortality, prostate cancer 
recurrence, other cancer. 

(Romond et al., 2012) 
Severe congestive heart failure or cardiac 
death Patients with node-positive breast cancer Mortality, breast cancer 

recurrence, other cancer. 

(Travis et al., 2005) Breast cancer Young women treated for Hodgkin’s 
lymphoma 

Mortality, Hodgkin’s lymphoma 
recurrence, other cancer. 

(Nakagawa et al., 2008) Falls Stroke inpatients in convalescent 
rehabilitation wards 

Mortality, immobility, hospital 
discharge 

(Nyberg and 
Gustafson, 1997) 

Falls Patients in stroke rehabilitation Mortality, immobility, hospital 
discharge 

(Hippisley-Cox and 
Coupland, 2012) 

Colorectal cancer Patients with suspected colorectal cancer Mortality, other cancer. 
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16 APPENDIX VIII 

Instances in which competing risks terms were used within published prediction model 

study articles. 

(Kovalchik et al., 2012) 

 
Absolute risk is the probability that an individual with a specific risk profile will develop 
disease by a given age in the presence of competing events. 
 
Competing risks. Competing events for [second primary thyroid cancer] were death, 
self-reported complete removal of the thyroid gland, and other second primary cancers, 
which were determined from pathology reports with follow-up to January 1, 2010.  
 
Estimates of absolute risk combined semiparametric estimates of baseline incidences and 
[relative risks] for [second primary thyroid cancer] and competing risk comprising death, 
thyroid removal, or other second primary cancers. 
 
[Relative risks] for [second primary thyroid cancer] were estimated from the pooled cohort 
and case-control studies, but competing event [relative risks] were estimated from the 
[Childhood Cancer Survivor Study] cohort only. 
 
Hazard models for [second primary thyroid cancer] under [model 1] and [model 2] and 
competing event models for [model 1], [model 2], and [model 3] followed a Cox 
proportional hazards model. 
 
An [first primary cancer] diagnosis of Hodgkin lymphoma ([relative risk], 1.7; 95% CI, 1.6 to 
1.9) and any prior diagnosis of a thyroid nodule ([relative risk], 1.7; 95% CI, 1.3 to 2.2) 
were also found to be significant prognostic variables for competing events in the self-
report-only model. 
 
In the competing events model, the presence of treatment variables with large [relative 
risk] —1.6 (95% CI, 1.5 to 1.7) for alkylating agents (yes/no), 2.1 (95% CI, 1.8 to 2.3) for 
radiation (yes/no), and 1.8 (95% CI, 1.6 to 1.9) for radiation to the neck (yes/no)—resulted 
in an attenuation of the [relative risk] associated with thyroid nodules ([relative risk], 1.4; 
95% CI, 1.1 to 1.8). 
 
All treatment-related factors were strongly associated with the competing risk model for 
[model 3]; the risk association for thyroid nodules ([relative risk], 1.5; 95% CI, 1.1 to 1.9) 
was unchanged from [model 2]. 
 

 

  



 

292 

(Romond et al., 2012) 

 
For this purpose, we have developed a prediction model for cumulative incidence of 
cardiac events based on identified pretreatment risk factors. 
 
Patients who crossed over from [Paclitaxel] to [Paclitaxel + Trstuzumab] were censored at 
the time of crossover for the cumulative incidence analysis. 
 
The cumulative proportions of [cardiac events] were estimated and compared by using the 
cumulative incidence function. The competing events were any first event of 
recurrence, second primary cancers, and deaths precluding [cardiac events]. The Cox 
cause-specific proportional hazards model was used to evaluate the association between 
time to [congestive heart failure] and cardiac risks factors. A parametric regression model 
on cause specific subdistribution hazard was used to build a prediction model for 5-
year probability of developing [cardiac events] with 95% point-wise CIs, adjusting for 
significant risk factors. 
 
These five patients were censored at the time of first dose of trastuzumab for the 
cumulative incidence analysis… Among patients assigned to receive [Paclitaxel + 
Trstuzumab], 947 had follow-up information for the cumulative incidence analysis. 
 
On the basis of parametric regression on cause-specific subdistribution hazard, a 
Cardiac Risk Score can be calculated as follows: 
 
The cumulative incidence of [cardiac events] in the control arm 7 years after day 1 of 
cycle 5 was 1.3% (95% CI, 0.5% to 2.1%), and the cumulative incidence among 
trastuzumab-treated evaluable patients was 4.0% (95% CI, 2.8% to 5.2%). 
 
In [National Surgical Adjuvent Breast and Bowel Project protocol B-31], the 7-year 
difference in cumulative incidence of protocol-defined [cardiac events] between the 
experimental and control arms is 2.7% (4.0% v 1.3%, respectively). In the Herceptin 
Adjuvant trial, which required for random assignment an [left venticular ejection fraction] 
55% after completion of all chemotherapy and radiation, the cumulative incidence of 
severe [congestive heart failure] with trastuzumab therapy was only 0.8% at a median 
follow-up of 3.6 years. 
 

 

(Travis et al., 2005) 

 
We estimated this future risk, taking into account age and calendar year of [Hodgkin’s 
lymphoma] diagnosis, [Hodgkin’s lymphoma] treatment information, population breast 
cancer incidence rates, and competing causes of death. 
 
To compute cumulative absolute risks of breast cancer, we used modified standardized 
incidence ratios to relate cohort breast cancer risks to those in the general population, 
enabling application of population-based breast cancer rates, and we allowed for 
competing risks by using population-based mortality rates in female [Hodgkin’s 
lymphoma] survivors. 
 
Estimates of the cumulative incidence of breast cancer after treatment for [Hodgkin’s 
lymphoma] at age 30 years or younger have been sparse, inconsistent, and series 
specific, ranging from 4.2% to 34% at 20 – 25 years of followup. Moreover, most 
estimates have not taken into account the influence of competing causes of mortality, 
which can be substantial among [Hodgkin’s lymphoma] patients, or the effect of 
alkylating agent therapy, which can lower subsequent breast cancer risk. 
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We also took into account age and calendar year of [Hodgkin’s lymphoma] diagnosis, 
age at counselling, baseline breast cancer incidence rates, and competing causes of 
mortality. 
 
Finally, combining information on external relative risks with data on population breast 
cancer incidence rates from the Surveillance, Epidemiology, and End Results Program 
and with [Surveillance, Epidemiology, and End Results] Program data on competing 
causes of death in [Hodgkin’s lymphoma] survivors, we estimated cumulative absolute 
risk of breast cancer, as described in detail below. 
 
Our risk estimates derived from a large international population-based study; 
projections take into account age and calendar year at [Hodgkin’s lymphoma] diagnosis, 
time since treatment, and competing causes of mortality. 
 
Mortality rates for competing risk calculations, stratified by calendar year period and 
age range at [Hodgkin’s lymphoma] diagnosis, were similarly derived from U.S. 
population-based data. 
 
In most studies in which the absolute excess risk of breast cancer among women 
treated for [Hodgkin’s lymphoma] at age 30 years or younger have been presented, 
numbers of case patients are also small (range = 14 – 19 case patients), resulting in 
highly variable estimates, and competing risks are not considered. 
 
Two recent investigations of breast cancer after childhood or adolescent [Hodgkin’s 
lymphoma], however, accounted for competing causes of death. Among girls treated 
with mantle radiotherapy for [Hodgkin’s lymphoma] before age 17 years, the 
cumulative incidence of all invasive breast cancer (27 unilateral case patients plus 12 
patients with contralateral tumors = 39) was 5.6% (95% CI = 2.8 to 8.3) and 16.9% 
(95% CI = 9.4 to 24.5%) at 20 and 30 years of follow-up, respectively. 
 
These risks are calculated by using general population Surveillance, Epidemiology, and 
End Results Program rates for breast cancer and national rates for competing causes 
of mortality. 
 
These values are not corrected for competing causes of mortality and are thus slightly 
larger than comparable estimates of absolute risk in Tables 2 and 3. 
 
The mortality rates from competing risks are assumed to be known with negligible 
random error. 
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17 APPENDIX IX 

A sensitivity analysis was conducted to test the assumptions made in modelling 

the risk of antenatal adverse events. The proportional hazards assumption, made by 

both the Cox and Royston-Parmar models, was tested by incorporating interactions 

between prognostic factors and log-time. The results are given in Table 17.1: 

Table 17.1: Significance (p-values) of interactions of prognostic factors and 
ln(time) in fitted prognostic models 

 Cox proportional 

hazards model 

Royston-Parmar 

flexible parametric model 

Maternal age 0.254 0.294 

Gestational age 0.414 0.777 

Medical history 0.676 0.564 

Systolic blood pressure 0.178 0.010 

Platelet count 0.058 0.181 

Serum creatinine 0.960 0.561 

Antihypertensive treatment 0.828 0.877 

Magnesium sulphate 
treatment 

0.009 <0.001 

 

Significant interactions were detected between magnesium sulphate treatment 

and ln(time) in both models (p-value: 0.009 Cox, <0.001 Royston-Parmar). This 

treatment is given to minimise the risk of eclampsia and prevent preterm labour, its 

effects significantly decrease over time. The interaction between SBP and ln(time) was 

found to be significant in the Royston-Parmar model (p-value 0.010), whereas the 

interaction between platelet count and ln(time) was found to be significant in the Cox 

model (p-value: 0.058). 
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18 APPENDIX X 

A sensitivity analysis was conducted to test the assumptions made during model 

development. The proportional hazards assumption, made by both the cause-specific 

and subdistribution approaches, was tested by incorporating interactions between the 

included prognostic factors and log time, using a linear (one degree of freedom) spline 

function. The results are given in Table 17.1. 

Table 18.1: Significance (p-values) of interactions of prognostic factors and 
ln(time) in fitted prognostic models 

 Cause-specific 

model:  

delivery 

 

Cause-specific 

model:  

antenatal adverse 

events 

Subdistribution 

model:  

antenatal adverse 

events 

Maternal age 
(years) 

0.005 0.298 0.426 

Gestational age 
(weeks) 

0.447 0.488 0.462 

Medical history* 0.642 0.699 0.221 

Systolic blood 
pressure 

0.003 0.177 N/A 

Platelet count 0.101 0.145 N/A 

Alanine amino 
transaminase 

0.511 N/A N/A 

Serum creatinine 0.652 0.838 N/A 

Antihypertensive 
treatment 

0.562 0.809 0.321 

Magnesium 
sulphate treatment 

<0.001 <0.001 <0.001 
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19 APPENDIX XI 

The following describes the process for determining the constant cause-specific 

hazard functions for the simulations study conducted in Chapter 7: 

The cause-specific cumulative incidence function Fk(t) for event k at time t is written in 

terms of the overall survival function F̅(t) and the cause-specific hazard function hk(t): 

Fk(t) = ∫ F̅(s)hk(s)
t

0
ds Equation 19.1 

The overall survival function F̅(t) is written in terms of all cause-specific hazard 

functions, with two competing events K = 2: 

F̅(t) = ∏ exp {− ∫ hk(s)
t

0
ds}2

k=1  Equation 19.2 

Utilising exponential models with constant hazards h1(t) = α1 for the event of interest 

and h2(t) = α2, the overall survival function becomes: 

F̅(t) = exp{−α1t} × exp{−α2t} = exp{−(α1 + α2)t} Equation 19.3 

Incorporating this into the cause-specific cumulative incidence function for the event of 

interest F1(t), gives: 

F1(t) = ∫ α1exp{−(α1 + α2)s}
t

0

ds 

=  α1 [
exp{−(α1 + α2)t}

−(α1 + α2)
]

0

t

 

= α1 [
exp{−(α1 + α2)t}

−(α1 + α2)
−

1

−(α1 + α2)
] 

F1(t) =
α1

α1+α2
[1 − exp{−(α1 + α2)t}] Equation 19.4 

Similarly, the cause-specific cumulative incidence for the competing event, F2(t) is: 

F2(t) =
α2

α1+α2
[1 − exp{−(α1 + α2)t}] Equation 19.5 
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The relationship between the constant cause-specific hazards can be 

represented using the constant scaling factor γ: 

𝛾
𝛼1

𝛼1+𝛼2
[1 − 𝑒𝑥𝑝{−(𝛼1 + 𝛼2)𝑡}] =  

𝛼2

𝛼1+𝛼2
[1 − 𝑒𝑥𝑝{−(𝛼1 + 𝛼2)𝑡}] ∴  𝛾𝛼1 = 𝛼2  

Thus, given the proportion of participants who experience the event of 

interest F1(t), and the scaling factor γ, the constant cause-specific hazard term for both 

the event of interest and the competing event can be determined as follows: 

F1(t) = ∫ α1exp{−(α1 + α2)s}
t

0
ds  

=  α1 [
exp{−(α1+α2)t}

−(α1+α2)
]

0

t
  

= α1 [
exp{−(α1+α2)t}

−(α1+α2)
−

1

−(α1+α2)
]  

F1(t) =
α1

α1+α2
[1 − exp{−(α1 + α2)t}] Equation 19.6 
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20 APPENDIX XII 

Methods for generating survival times for time-to-event analyses are summarised by 

Bender et al. (Bender et al., 2005). Briefly, the hazard function of a proportional 

hazards model, h(t|𝐗), may be expressed as a function of the baseline hazard 

function, h(t|𝟎); a vector of prognostic factors, 𝐗; and corresponding regression 

coefficients, 𝛃; as: 

h(t|𝐗) = h(t|𝟎)exp(𝐗𝛃) Equation 20.1 

The cumulative hazard function, H(t|𝐗), survival function, S(t|𝐗), and cumulative 

distribution function, F(t|𝐗), are expressed as: 

H(t|𝐗) = H(t|𝟎)exp(𝐗𝛃), in which H(t|𝟎) = ∫ h(u|𝟎)du
t

0
 Equation 20.2 

S(t|𝐗) = exp[−H(t|𝐗)] Equation 20.3 

F(t|𝐗) = 1 −  exp[−H(t|𝐗)] Equation 20.4 

Bender et al. (Bender et al., 2005) showed if T is the simulated survival time, then by 

letting:  

F(T|𝐗) = 1 −  exp[−H(T|𝐗)] = u, where u~Uniform(0,1) Equation 20.5 

We can write; 

S(T|𝐗) =  exp[−H(T|𝐗)] = u Equation 20.6 

If h(T|𝟎) > 0 and H(t|𝟎) can be directly inverted, the above equation can be rearranged 

and solved fo T: 

T = H−1(−ln(U)exp(−𝐗𝛃)|𝟎) Equation 20.7 
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21 APPENDIX XIII 

An example of Stata code used to generate data for the base scenario and 

evaluate overall calibration bias. 

****************************************************************** 
* COMPETING RISKS PROGNOSTIC MODELS * 
* SIMULATION STUDY * 
****************************************************************** 
 
*(1)* Generate data and overall calibration bias for 500 studies 
*Base scenarios 5-8: N=4144 participants, Exponential, EOI= 11.2% 
*Gamma = 1.0, 1.5, 2.0, 2.72 
 
*Set working directory 
cd "C:\Users\rpd97\Desktop\Stata Simulations" 
 
*Set seed for reproducibility 
set seed 545245 
 
*Set up loop to run through all base scenarios 
local Scen = 4 
foreach lam in "0.01449 0.03946" "0.01365 0.02730" /// 
    "0.01314 0.01971" "0.01268 0.01268" { 
 local Scen = `Scen' + 1  
 
*Set expected cumulative incidence for time t=10* 
 local CIF = 0.112 
 
*Create a post file to save bias estimates to after each study 
 postfile Scenario`Scen' Sim_No KM_Est Bias /// 
using "Scenario`Scen'", replace 
 
*Loop through 500 studies 
 forvalues i = 1/500 { 
  clear 
*Create 4,144 participants 
  set obs 4144 
 
*Simulate the time and event data 
  survsim Time Event, cr ncr(2) maxtime(10) /// 
   distribution(exponential) lambdas(`lam') 
 
*Survival set the data 
  stset Time, failure(Event==1) 
 
*Obtain Kaplan-Meier estimates* 
  sts gen surv = s   
  sum surv if Event==1 
 
*Calculate Kaplan-Meier and Bias estimates at time t=10 
local KMest = 1 - r(min) 
  local Bias = `KMest' - `CIF' 
 
*Save bias estimates for each study to the post file 
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  post Scenario`Scen' (`i') (`KMest') (`Bias') 
} 
postclose Scenario`Scen' 
} 
 
*(2)* Histograms of distribution of overall calibration bias 
 
*Set up loop to run through all base scenarios 
forvalues i = 5/8 { 
 use "Scenario`i'", clear 
 
*generate histograms for each scenario 
hist Bias, percent lcolor("39 36 73") fcolor("39 36 73") /// 
fintensity(inten50) bin(10) graphregion(color(white))   /// title("Scenario 
`j'") ylabel(0 (5) 25, angle(0))    /// 
xscale(range(-0.03 0.15)) xlabel(-0.03 (0.03) 0.15)    /// yscale(range(0 
25)) scale(1.2) saving("Graph`j'", replace) 
} 
 
*Combine all histograms into one plot 
graph combine "Graph5" "Graph6" "Graph7" "Graph8",   /// 
scale(0.8) graphregion(color(white)) rows(4)  /// 
title("Distribution of overall calibration bias", span)  
 
*(3)* Summary statistics of overall calibration bias 
 
*Create a post file to save bias estimates to after each study 
postfile Calibation_bias Scenario_No KM_mean KM_sd Abs_Bias_m /// 
Abs_Bias_sd Rel_Bias_m Rel_Bias_sd       /// 
using "Calibration_bias", replace 
 
*Set up loop to run through base scenarios 
forvalues k = 5/8 { 
 use " Scenario`k'", clear 
*Summarise Kaplan-Meier failure estimates 
 sum KM_Est 
 local kmmean = r(mean) 
 local kmsd = r(sd) 
 
*Summarise absolute bias estimates 
 sum Bias 
 local absmean = r(mean) 
 local abssd = r(sd) 
 
*Generate and summarise relative bias estimates 
 local CIF = 0.112 
 gen Rel_Bias = Bias / `CIF' 
 sum Rel_Bias 
 local relmean = r(mean) 
 local relsd = r(sd) 
 
*Save bias summary statistics for each study to the post file 
 post Calibation_bias (`k') (`kmmean') (`kmsd') (`absmean')/// 
(`abssd') (`relmean') (`relsd')  
} 
postclose Calibation_bias 
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22 APPENDIX XIV 

Table 22.1: Absolute bias in overall calibration over competing event incidence 
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