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A11 the uterlil In this thesis Is devoted to ««chine scheduling 

prob1e«s. It Is presented In eight chapters.

The first three chapters are Introductory in which we give 

various aspects of problem for«u1at1on, and we discuss the well-known 

methods of solution for machine scheduling problems.

The next four chapters contain original research, unless 

otherwise acknowledged, on various machine scheduling problem.

In chapter four we use branch and bound techniques to solve a 

one «achine problem with release dates to minimize the weighted 

number of late Jobs.

In chapter five machine sequencing to minimize total cost (not 

assumed to be a non-decreasing function of completion time) Is 

considered. A dynamic programming formulation and relaxation of the 

problem Is presented. Then we use branch and bound techniques to 

solve this problem, because the number of states required by this 

formulation Is large.

In chapter six we provide a computational comparison of six 

algorithms which are used to solve the single machine sequencing to 

minimize the total weighted tardiness. Two algorithms use dynamic 

programming and four algorithms use branch and bound.

Chapter seven Is devoted to use of branch and bound techniques 

to solve the two-machine flow shop problem to minimize the maximum 

completion time, when each Job Is processed first on machine A, is 

then transported to machine B, and lastly Is processed on machine B.

Finally, chapter eight contains our conclusion together with 

some suggestions for future research.





3.4.1 The bounding procedure

3.4.2 The branching procedure

3.4.3 Search strategy

3.4.4 Other features

3.5 Dynanlc prograiMing leethod

3.6 Heuristic methods

Q W n a  FOUK ; SCHCPUlim J0>s WITH RELEASE OATES OW ft SIWCLE 

MMHIME TO HIMIHIZE THE WtlSHTED MJ M E K  OF U T E  J0I5

4.1 Introduction

4.2 Problem reduction and heuristic method

4.3 Lower bounds

4.3.1 Moore lower bound

4.3.2 Modified Moore lower bound

4.3.3 Kise lower bound

4.3.4 Linear prograialng lower bound

4.4 Lower bounds for the weighted problem

4.4.1 Modified Moore lower bound

4.4.2 Linear programing bound

4.5 Branch and bound algorithm

4.6 Computational experience with the branch and bound 

algorithms

4.6.1 Test problems

4.6.2 Computational results

4.7 Concluding remarks



O W T E K  FIVE : DYWHIC P t O W A W I M C  STATE-SPACE HELAXATIOH FOK

SINGLE NACHINE SCHEDULING

5.1 Introduction 57

5.2 Fisher bound 59

5.3 Dynamic programing state-space relaxation 63

5.3.1 Dynamic programing formulation 63

5.3.2 Derivation of the lower bound 64

5.3.3 Constraints on successive Jobs 68

5.3.4 The use of Job penalties to Improve the lower bound 71

S.3.5 The use of state-space modifiers to improve the lower bound 74

5.4 Implementation of the lower bounds 78

5.5 Computational experience with the lower bound 80

5.6 Branch and bound algorithm 85

5.7 Computational experience with the branch and bound

algorithms 86

5.8 Concluding remarks 89

CHAPTEt SIX : A CC WW TA TI OW L COHPAKISOW OF A l M t l T H M  FOK THE 

S1H6LE MACHINE TOTAL WEIMTED TARDINESS SCHEDUllW  PAOBLEH

6.1 Introduction

6.2 Doalnancc rules

6.3 General precedence constrained dynaalc programing 

algorithms

6.3.1 The dynamic programming approach

6.3.2 The Schrage-Baker algorithm



6.3.3 Lawler’s algorlthn

6.4 lower bounds by reducing the total weighted tardiness

6.4.1 Reduction to a linear function

6.4.2 Reduction to an exponential function

6.4.3 An algorlthw to solve (Pnn)

6.5 A lower bound from Lagrangean relaxation

6.6 A lower bound fro« dynamic prograanlng state-space 

relaxation

6.7 Branch and bound algorlth« 111

6.8 Conputatlonal experience 114

6.9 Concluding remarks 119

O U H F l  s n n  : t h e t w -m c h i h e  f l o h s h o p p r m l e h  h i t h

TMNSPOETATIOH TIHE OETHEEH THE HACHIHES

7.1 Introduction 120

7.2 Heuristic method 122

7.2.1 So«e basic results 122

7.2.2 Description of heuristic method 124

7.2.3 Worst-case analysis 125

7.3 Single and two-machine bounds 129

7.3.1 Single-machine bounds 129

7.3.2 Two-machine bounds 130

7.4 Lagrangean relaxation 133

7.5 Dynamic prograaalng dominance 136

7.6 The algorithms 139





CHAPTER OWE

1.1 Background

A scheduling problei arises Mhenever we want to make a dally 

routine for any planned work. The analysis and study of such 

problens, particularly with respect to their optimality for various 

objectives and constraints, constitutes an exciting field known as 

scheduling theory. The terminology of scheduling theory arose In the 

processing and manufacturing Industries. Thus we shall be talking 

about jobs and machines even though In some cases the objects 

referred to bear little relation to either Jobs or machines. A basic 

problem In scheduling theory Is the machine scheduling problem. This 

occurs whenever jobs, each of which consists of a given sequence of 

operations, have to be scheduled on one or more machines during a 

given period of time, such that a given objective function Is 

minimized.

Recently, machine scheduling problems have received much 

attention. Two directions have always been very Important In the 

Investigation of the problem, namely:

(I) The search for algorithms that determine the optima! sequence

efficiently, preferably In polynomial time.

(II) The investigation of the computational complexity.

The first theoretical development in scheduling was made by 

Johnson [43], followed closely by results of Jackson [42] and Smith 

[91]. A natural way to attack machine scheduling problems Is to 

formulate them as mathematical programming models. Apart from Hagner



[94], other simple Integer progreming formulations of scheduling 

problems are given by Bowman [9], Dantzig [16], Manne [62]. Both 

Conway et al. [14] and Baker [3] discuss Integer programming 

formulations of scheduling problems. Rinnooy Kan [82] gives the most 

recent survey of such approaches, and also mentions some work of 

Nepomiastchy in which non*1inear programming is used to obtain an 

approximate solution to general Job shop problems.

The next important development was when branch and bound 

methods were applied to scheduling problems. They were first used by 

Ignall and Schräge [41], Lomnicki [61], Brown and Lomnicki [10] and 

McMahon and Burton [65].

Dynamic programming has also been proved to be a good approach 

for the solution of scheduling problem. In 1962 Held and Karp [38] 

followed the lead of Bellman, and applied dynamic programming to 

scheduling problems. Their method applies only to single machine 

problems.

Classifying scheduling problems according to their algorithmic 

complexity was first reported in [15] and [46]. If a problem is 

NP-hard then it is unlikely that it can be solved by an algorithm 

whose running time is bounded by a polynomial function of problem 

size [26]. In such cases two different approaches suggest themselves. 

The first method is to solve the problem to optimality using dynamic 

programming or branch and bound but this may require a time consuming 

search through the set of feasible solutions. The alternative 

approach is to use fast heuristic methods (methods that do not 

guarantee optimality) to find approximate solutions.



1.2 Contribution of this rtstirch

All the M t e r U I  In this thesis Is devoted to Mchlne 

scheduling problems. It Is presented In eight chapters.

In chapter two various aspects of problem formulation,

Including notation, representation, optimality criteria, 

classification and computational complexity 1$ given. In chapter 

three we discuss the well* known methods of solution for machine 

scheduling problems. We list In detail some of these methods, e.g. 

branch and bound and dynamic programming, because these two methods 

are amongst the most widely used methods of approach to solving 

scheduling problems, and because they are used throughout this 

thesis.

The next four chapters contain original research, unless 

otherwise acknowledged, on various machine scheduling problem. In 

each of these chapters new branch and bound algorithms are proposed 

and extensive computational testing Is reported.

Chapter four demonstrates the properties and performance of the 

branch and bound technique on a single machine problem : single 

machine sequencing with release dates to minimize the number of late 

Jobs and to minimize the weighted number of late Jobs. Heuristics, 

dominance rules, and computational experience will also be Included.

In chapter five machine sequencing to minimize total cost (not 

assuming that the cost Is a non-decreasing function of completion 

time) 1s considered. A dynamic programming formulation and a 

relaxation by mapping the state-space onto a smaller state-space Is 

presented. A heuristic and computational experience will also be 

Included.

In chapter six single machine sequencing to minimize the total



weighted tardiness Is studied. We provide a computational comparison 

of six algorithms. Two algorithms use dynamic programming and four 

algorithms use branch and bound. In both dynamic programming and 

branch and bound algorithms, dominance rules are used.

Chapter seven Is devoted to demonstrating the performance of 

branch and bound algorithms on a two-machine problem: the two-machine 

flow :hop problem to minimize the maximum completion time, when each 

job Is processed first on machine A, then transported to machine B, 

and lastly is processed on machine B. A heuristic, dominance rules, 

and computational results will also be Included.

Finally, chapter eight evaluates the contributions of this 

thesis. A discussion on the success of branch and bound algorithms 

for solving scheduling problems and some suggestions for future 

research are also given.



SCHEDULIN6 PROBLEM FORHULATION

2.1 Introduction

In this chapter we deal with various aspects of problem 

fonwlatlon. In Section 2.2 we discuss problem representation and 

Introduce notation to designate several concepts Involving jobs, 

operations and machines, and several conditions such as restrictive 

assumptions on the jobs and machines are examined. In Section 2.3 we 

mention optimality criteria that have been used In previous research. 

Various job, machine and scheduling characteristics, are reflected by 

the classification with format «/0/t . are given In Section 2.4 . The 

theory of computational complexity 1s discussed In Section 2.5 .

2.2 Assumptions (Restrictions)

We shall Introduce a number of basic definitions which explain 

the structure of scheduling problems. Here, we list assumptions for 

machines, jobs and other aspects of our problem.

CHAPTEK TW

2.2.1 Assumption about machines 

HI The number of machines Is known and fixed.

M2 A11 machines are available at the same instant and are 

Independent of each other.

H3 All machines remain available during an unlimited period of 

time.

H4 Each machine can be In one of three states : waiting for the 

next job, operating on a Job or having finished Its last



job.

M5 A11 Machines ere equally important.

H6 Breakdown or repair of any machine does not occur during the 

planning period.

M7 Any machine can process any Job assigned to It.

H6 Each machine can process at most one job at the same time.

This assumption Is sometimes relaxed to obtain a lower bound 

on the objective function.

N9 There Is only one of each type of machine (no machine 

group).

2.2.2 Assumotion about Jobs

J1 The number of jobs Is known and fixed.

02 All jobs are available at the same time and are Independent. 

However we shall face some situations (see for example 

chapter 4} where each job 1 has a non-negative integer

processing. Further situations arise (see chapter 6) 

when jobs are not independent, I.e., precedence 

constraints among jobs exist. These precedence 

constraints on the jobs can be represented by a directed 

graph (digraph) G ■ (V,E) where V denotes the set of 

vertices and E the set of edges. The vertices of G 

represent the jobs and the edges join the vertices. Job 

1 must be processed before job j on each machine If there 

exists a directed path from vertex 1 to vertex j In G [34]. 

Each job be in one of three states : waiting for the next 

machine, being operated on by a machine, or having passed



Its U s t  machine.

J4 Each job has the same degree of Importance. In many cases 

this assumption Is dropped (see chapters 4,5 and 6) and 

to each Job 1 Is associated a non-negative Integer 

related to the 1n4>ortance of that job.

J5 Each job Is processed by a11 the machines assigned to It.

J6 Each job can be processed by only one machine at the same

time.

J7 Any operation which has started Is not Interrupted by other 

operations and Is continued to Its completion. This 

assumption Is sometimes relaxed, I.e., job splitting 

(preemption) Is allowed.

2.2.3 Other Assurotlon

* Each processing time Is known and fixed. If not mentioned 

othervdse, set-up times, and transportation times of jobs 

between machines are assumed to be negllgable.

* Any release date Is known and fixed.

* All other quantities needed to define a particular problem 

are known and fixed, e.g. transportation times of the jobs 

between the machines (see chapter 7).

2.3 Performance Measures (Objectives)

Before we can define performance measures In precise 

mathematical terms, we need some definitions and notation. Let n 

denote the number of Jobs. Also, we define for each job j

(j-l,....n):



a release date at which Job J becoiae available for processing.

Pj^ a processing tine of Its v "  operation, 1«l,...,nj, where nj 

Is the nunber of operations on Job J, (If Mj -I for all J, we

shall write Pj Instead of Pj^).

dj a due date of Job J, that Is the tine by which Ideally we 

would like to have conpleted Job J.

Wj the weight of Job J (relative Inportance).

fj a non-decreasing real cost function, neasurlng the cost fj(t) 

Incurred if Job J is completed at time t.

In general rj, pj^, dj and Wj are given Integer constants. Given 

a schedule, we can compute for each Job J (J*l,...,n):

the completion time of Job j

the lateness of Job J .
'j-'j ■

the tardiness of Job J . Tj»max ( Lj , 0 }

the earllness of Job J . Ej-max { - ,0 ]

the unit penalty of Job J ,, Uj-0 If Cj< dj , 1

otherwise.

Here we note that there Is a classification of

measures Into those that are regular and those that are not. A 

regular measure f Is simply one that Is non-decreasing In the 

completion times. Thus, a regular measure f Is a function of











02*trtt : Prtctdtnc« rtUtlon b«tMeen the jobs, such that the 

essocleted precedence graph 6 « 1th vertices 

takes the for« of a tree, 1.«., G has 

outdegree or Indegree at «ost one for all vertices.

^2”^ i «lobs are Independent.

(3) 03 c { p ĵ-1 , p ,j < p* , ♦ 1

03-Plj-l : Each operation has unit processing time.

03>Plj( p : Upper bound on all processing times.

03># : The processing times are arbitrary non-negative 

Integers.

(4) { 3^ , r^ , ♦ )

: Jobs have deadlines.

0^«r^ : Jobs have release dates.

0^-r^,3  ̂ : Jobs have release dates and deadlines 

0^-4 : Jobs are continuously available.

(5) P5 = i Pi < Pj — *■  «1 > "j . ♦ )

- 13 -





IS Motioned In section 2.3.

2.S Theory of Coeputetlonel Cowolexltv

In this section we recell the basic concepts of theory of 

computational complexity. Since the computation t i M  needed to solve 

a scheduling problem Is very important, recent developments In the 

theory of computational complexity as applied to machine scheduling 

problems have aroused the Interest of many researchers. The 

techniques of Cook [15] and Karp [46} have been applied extensively 

In this area, to locate the bordllne between P the class of problems 

for which a polynomial bounded, good or efficient algorithm exists, 

and NP-cofflplete, the class of problems for which the existence of 

such algorithm Is very unlikely [34].

The class NP Is very extensive, and It Is clear that PCNP. 

Further Insight Into the relation between P and NP Is obtained by 

Introducing the following concepts:

(1) A problem t 1$ reduced to problem a (x a t )  If, for

any Instance (particular case of a problem) of t , an Instance 

of t can be constructed In polynomial bounded time such that 

solving the Instance of x will solve the Instance of x 

as well. The problem x and x are equivalent If x a x and 

t a x .  When X a X and X t P, this Implies that x c P. 

Conversely, If x a x and x ^ P, then x ^ P.

(2) The time complexity function f(I) of an algorithm gives the 

maximum number of operations that would be required to solve 

an Instance I. An algorithm has a polynomial t i M  complexity

- 15 •



If U s  tine complexity function f(I) Is 0(P(I)) for some 

polynomial P(I). Otherwise It has exponential time complexity

[26].

(3) A decision or recognition problem Is a problem whose solution 

Is either yes or no. In order to deal with the complexity of a 

combinatorial (scheduling) minimization problem, we 

transform It Into the problem of determining the existence of 

a solution with value at most equal to y, for some threshold 

y [26].

(4) A decision problem x Is called HP-complete If t c HP and 

t « X for every x c HP. Thus the HP-complete 

problems form a subclass of HP. This subclass Is formed from 

the hardest problems In HP. Hence, If one finds a polynomial 

time algorithm for any HP-complete problem, then all the 

problems In HP can be solved In polynomial time. This means 

that P-HP. Although this Is still an open problem, the 

equality of P and HP Is considered to be highly unlikely.

It has been shown, that many scheduling problem are 

HP-cofflplete. Hence, for the present, there Is no alternative 

method of solution for these problems than Implicit 

enumeration algorithms.

Actually, KP-completeness concept Is applied to recognition 

problems. Thus, whenever a scheduling problem Is HP-complete, 

this refers to the recognition problem associated with It. 

Hence a polynomial algorithm exists either for both problems 

or for neither, but not for one alone.





HETHOOS OF SOUfflONS

Introduction

In this chapter we discuss the well-known methods that have been 

used to solve machine scheduling problems. The optimal solution of a 

scheduling problem Is to find a processing order of Jobs on each 

machine so that some measure of performance achieves Its optimal 

value. Since a machine scheduling problem Is a combinatorial 

optimization problem, the objective in this kind of  problem is to 

find an optima! schedule from a finite number of feasible schedules. 

To find one with the smallest value of the performance measure, we 

could search through all the possibilities, comparing all the 

schedules. This search of a finite set of schedules must eventually 

end, and the smallest value (optimal solution) 1$ found. In this case 

of one machine non-preemptive scheduling problems, there exist n! 

possible processing orders of the Jobs. Hence for the corresponding 

m-mach1nes problem, there are (nl)* possible processing orders. This 

number, (nl)*, Is very large even for relatively small values of n 

and m. In practice, because of the cw stn ints o f the problem many of 

these schedules may be Infeasible. However, searching for an optimal 

schedule among all feasible schedules using complete enumeration Is 

still not suitable.

The best known methods of solution for machine scheduling 

problems (82] are as follows.



3.2 CoMplete Enuaeritlon

EnuMratlon aethods g«n«rite schedules one by one, searching for 

an optlnal solution. These Methods list a11 possible schedules and 

then ellMlnate the non-optlaal schedules iron the list, leaving those 

which are optimal. Nevertheless, elimination procedures can sometimes 

be used to see If the non*opt1ma11ty of one schedule Implies the 

non-opt1ma11ty of others not yet generated. Thus, the methods may not 

search the complete set of feasible solutions. Clearly, searching for 

an optimal schedule among all possible schedules using complete 

enumeration Is not suitable even for problems of small size.

3.3 Combinatorial Analysis

Combinatorial analysis may lead to very efficient algorithms 

that produce an optimal schedule In predictable number of steps, with 

this number Increasing at most polynomlally In the size of the 

problem. These methods examine the effect of a minor change In a 

particular sequence on the value of that sequence. As an example we 

use the adjacent job Interchange argument for 1//C w^C^ problem. 

Suppose we have a sequence Vj - oljo and consider ^ 2  • ojlo 

resulted from Wj by Interchanging Job 1 and J. All the completion 

times are the same In tj and *2 except for Jobs 1 and J. If T Is the 

completion time of 0, we obtain

(,J1o ) - cj.i (oijo )

-l<j(TtPj) ♦ w,(T+Pj+p,) - w,(Ttp,) - »j(Ttp,tPj)



Hence sequence 1 before J If (3.1) Is not negative, I.e., If

“iPj * Y i  * °

3.4 Branch and Bound Method

We give In this section a general fraatework of a branch and 

bound method. Branch and bound methods are enumeration techniques 

which provide an approach to combinatorial optimization that applies 

to large d a s s  of problems. They were developed and first used by 

Eastman [19] for the travelling salesman problem and by Land and Do1g 

[49] for Integer programming. These methods were first applied to 

scheduling problems by Lomnicki [61] and Ignall and Schräge [41]. The 

branch and bound method 1s probably the solution technique most 

widely used In scheduling. This method Is a typical example of the 

Implicit enumeration approach, which can find an optimal solution by 

systematically examining subsets of feasible solution. The procedure 

is usually described by means of search tree with nodes that 

correspond to these subsets. To minimize an objective function f, for 

a particular scheduling problem, the branch and bound method 

successively partitions subsets using a branching procedure and 

computes bounds using a lower bounding procedure and by these 

procedures excludes the subsets which are found not to Include any 

optimal solution: this eventually leads to at least one optima! 

solution.

A lower bound LB on the value of each solution In a subset is 

calculated. Define a node to be active If the associated lower bound



with this node Is the snellest lower bound. If the lower bound 

calculated for a particular subset Is greater than or equal to the 

upper bound UB, this subset Is ignored since any subset with value 

less than UB can exist only In the remaining subsets. (This upper 

bound UB Is usually defined as the minimum of the values of all 

feasible solutions currently found. On the other hand, I.e., If no 

feasible solution Is known, UB Is Initially taken to be infinity 

until the first feasible solution Is found.) These remaining subsets 

(If any) have to be considered one at a time. One of these subsets Is 

chosen, according to some search strategy, from which to branch. When 

the branching ends at a complete sequence of the Jobs, this sequence 

Is evaluated and If Its value Is less than the current upper bound 

UB, this UB Is reset to take that value.

The procedure Is repeated until all nodes (subsets) have been 

considered (I.e.»lower bounds of all nodes in the scheduling tree are 

greater than or equal to the UB); a feasible solution with this UB Is 

an optimal solution.

Hence the branch and bound method Is determined by the following 

three procedures.

3.4.1 The bounding procedure

The bounding procedure Indicates how to calculate a lower bound 

on the optimal solution of a given problem. Clearly the effectiveness 

of the bound is usually the most important factor, since It 

determines the efficiency of the complete algorithm. The well-known 

methods of obtaining lower bounds for machine scheduling problems 

(for details see Hariri [34] and Beloudah [7]) are as follows.





(5) At every stage a Job Is sequenced either before or after 

another Job. A heuristic can be used to determine this pair of 

Jobs, (see Hariri [34]).

3.4.3 Search strategy

The search strategy describes the method of choosing a node of 

the search tree to explore. There are three commonly used methods to 

choose this node.



(1) to reduce storage requirement on the computer,

(2) to reduce computation time by the avoidance of calculation for 

the dominated nodes and their successors.

3.5 Dynamic Proqraiinq Hethod

Dynamic programming (DP) Is applicable to many optimization 

problems, and Its computer storage requirements are often severe. The 

OP procedure applies to any problem which can be broken down Into a 

sequence of nested problems, the solution of one being derived In a 

straightforward fashion from that of the preceding problem [26].

Hence the optimal solution Is derived by recursive equations 

describing the optimal criterion function at any step In termsof 

previous ones. Held and Karp [38] followed Bellman’s Ideas and 

applied OP to machine scheduling problems. DP has also been proved to 

be good approach for the solution of scheduling problems. The OP Is 

better than the complete enumeration methods. For example, If n-10, 

(for a particular single machine problem), we may have to examine 

101-3,628,800 possible sequences. On the other hand. If we use OP, we 

have only to consider n(2"‘^)-5120 calculations In order to select 

the best sequence [6]. Below we give an example to Illustrate the DP 

approach for the case 1/ /C fj, that Is to minimize the total cost 

Cjfj(Cj). This recursive equation was suggested by Held and Karp [38] 

and then by Lawler [50].

Let S C  { }-N be an arbitrary subset of jobs. Also define

f*(S) be the minimum total cost Incurred by scheduling the jobs of S 

In the period P^l- The objective Is to find f (N) by solving

the recursion equations



f  (S)Hi1n,^3 ( f  (S-(D) + 1»̂ )) (3.2)

that are Initialized by f (^)-O. Solving recursion equations (3.2) Is 

equivalent to find the shortest path In a state-space graph [37).

3.6 Heuristic Hethods

One approach to deal with the apparent difficulty of nany 

scheduling probleas Is to devise co«putat1ona11y efficient algorithms 

that find schedules which are, for most problem Instances, near 

optimal. This can be achieved by a heuristic method. Horeover, even 

If a branch and bound Is adopted, the first step In such a method Is 

usually the application of a heuristic, since It Is well-known that 

computation can be reduced by using a heuristic method to find a good 

solution to act as an upper bound.

One method of studying the effectiveness of a heuristic method 
*

Is to examine Its worst-case behaviour. Let f denote the optimal 

solution to a given problem, and f^ denote the near optimal value 

obtained by using a certain heuristic H. If, whatever the problem 

data, f^ < p f* -f ( for specified constants p and «, where s Is as 

small as possible, then p Is called the worst-case performance ratio 

of heuristic H. This method serves to establish the maximum relative 

deviation between the optimal and near optimal solutions [76]. First 

results on the worst-case performance of heuristics were due to 

Graham [31,32]. Also, Garey, Graham and Johnson [27] give a review of 

the worst-case performance of scheduling heuristics.

- 25 -



SCHE0UL1W6 JO»S WITH RELEASE DATES OW A S1N6LE HACHIHE 

TO HIHIHIZE THE WEI6HTED NUM8ER OF LATE JOBS

4.1 Introduction

The problem may be stated as follows. Consider the set of Jobs 

N-{ ) and one machine. The machine cannot process more than

one Job at a time. For each Job 1, let r^, p^, d^ and w^ denote the 

release date, processing time, due date and weight respectively. For 

a given processing order of the Jobs the (earliest) completion time 

and the variable U^, where U^-0 1f < d^ Indicating Job 1 Is 

early and U^-1 If > d^ Indicating Job 1 Is late, for Job 1 (1 c N) 

can be computed. The objective Is to find a processing order of the 

Jobs that minimizes the weighted number of late Jobs c He 

denote this problem by 1/r^/c w^U^. Note that once a Job 1 Is late 

(U^ > 1) It does not matter how late It Is.

The problem 1/r^/E w^U^ Is clearly equivalent to that of finding 

and scheduling a subset of Jobs B & N  such that all the Jobs In B can 

be completed on time (I.e., U^«0 for all 1 c Qandthe total weight I n B  is 

maximum. The 1/r^/CU^ problem has been shown to be NP-hard [58]. If 

this 1/r^/cU^ problem Is generalized to allow arbitrary weight w^ for 

each Job 1, then obviously the resulting weighted number of late Jobs 

problem 1/r^/E w^U^ Is NP-hard.

Several special cases yield polynomial algorithms. The 1/ /E 

problem can be solved In 0(n log n) steps by using Moore’s algorithm 

[71]: let 0 ■ (o(l),...,o(n) ) be the sequence obtained by ordering 

the Jobs In non-decreasing order of their due dates. In this sequence



If th«r« exists a Job o(1) (with 1 as small as possible) that Is 

completed after Its due date, then one of the Jobs sequenced In the 

first 1 positions and with largest processing time Is selected to be 

late and removed from o. The procedure continues until all Jobs of o 

are completed by their due dates.

The weighted version of this problem, 1/ /C w^U^, Is shown to be 

NP'hard (46], but It can be solved In pseudo-polynomlal time 0(n max 

{ d^ }} by the dynamic programming algorithm of Lawler and Hoore 

[57]. However, If Job weights are agreeable. I.e., there Is a 

renumbering of the Jobs so that

Pj < P2 < ... < pj, , and

w, > w. > ... > w. ,I c n

then the resulting problem can be solved In 0(n log n) steps using 

Lawler’s algorithm [51].

The 1/r^/C problem can be solved If there are agreeable due 

dates. I.e., there Is a renumbering of the Jobs so that 

rj < r^ «... < r̂  ̂ , and 

dj < d^ 'd, < d, < ... < d.

In O(n^) steps by Kise et a1. [47], and In 0(n log n) steps by Lawler 

[55].

If preemption Is permitted, then 1/r^, pmtn/c w^U^ problem Is 

not NP-hard, since an O(n^) dynamic programming algorithm Is 

presented by Lawler [55].

In Section 4.2 of this chapter problem reduction conditions and 

a heuristic method are described. For the case of unit weights.
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various lower bounding scheaes that can be used In branch and bound 

algorlthns are derived In Section 4.3. A lower bound for the general 

case of this problei 1/r^/C w^U^ Is given In Section 4.4. Dominance 

rules and a description of our branch and bound algorlthas Is 

contained In Section 4.5. Section 4.6 reports on computational 

experience with these branch and bound algorithms. Some concluding 

remarks are given In SKtIon 4.7.

4.Z h ’oblem Reduction and Heuristic Hethod

In the case of our problem 1/r^/c w^U^, there exist nl possible 

orders of the Jobs. He first try to reduce the size of the problem by 

finding a Job which precedes or succeeds a11 other Jobs In an optimal 

schedule. Such a job Is removed and hence the number of possibilities 

Is reduced, If one of the following conditions Is satisfied.

(1) If r^ + p^ > d^ for any 1 c N, then Job 1 Is late and 

discarded.

(2) If Job J c N - { 1 ), then Job 1

Is early and discarded.

(3) If we have two Jobs 1 and J which cannot both be early; I.e., 

ri 4’ Pi ♦ pj > dj and Pj  ̂ ôch that p̂  > pj, 

ŵ  < Wf and d, - p, < dj - pj, then Job 1 Is late and

The first condition Is clear. The second condition Implies that 

the earliest completion time of Job 1 Is less than or equal to the



Mlnlnun release dates of job j» where J » 1; hence fixing job 1 In 

the first position does not alter the optleal sequence. For the third 

condition, jobs 1 and j can not both be early. If job 1 were early 

and job j were late, then Interchanging so that Job j starts at the 

tine job 1 previously started and job 1 Is late gives a schedule at 

least as good as the original one. Thus, job 1 Is selected to be late 

and removed from the set N.

When no further progress can be made with this reduction 

conditions we use the following heuristic. Henceforth we assume N has 

been modified to reflect any problem reduction which has taken place.

First we describe the heuristic for the case of unit weights. In 

the procedure below o denotes a partial sequence of h early jobs the 

last of which Is completed at time T and L denotes the set of late 

Jobs, also UB >111 Is the number of late jobs. N Is the set of jobs 

which remain to be either scheduled early In o or Included In L. The 

counter m prevents the procedure repeating an Identical execution of 

Step(3).

Step (1) : Set o equal to the empty partial sequence, L - i, UB-0, 

h-0, m-0, T-m1n^^jj { r^ }, and N-{ 1.... n).

Step (21 : If UB -f h - n go to Step (7). Otherwise set m«0, If r^ 

> T for all 1 c N set T-m1n^^^ { r^ }. Among those jobs 1 with r^ < 

T (1 c N), choose a job j with the smallest due date (If there Is a 

tie, choose the one with smallest processing time.)

Step (3) : If job j early In the partial sequence oj ( I.e., max{ 

Tj, T ) f Pj < dj), go to Step(4). Otherwise set h-h+1, o(h)-j and 

N-N*(j), discard a job (say 1) from partial sequence o such that
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the current tine (completion time) for the resulting sequence is 

nininun, delete i from o, set h-h-1, reset T <s the completion time 

of the lest Job of o, set L«L U { 1 ), UB-|L| and go to Step(2).

Step (4) : If N • { J } - 4, set h-h+1, o(h)«J and go to Step(7). 

Choose Job k. where k e N - { J }, with smallest due date (if there 

is a tie, choose k with largest processing time). If max ( ^

Pj } f Pk > dk go to Step($). Otherwise, set h-h+1, set o(h)>J, N-N 

-U). T-T + pj, and go to Step(2).

Step (5) : n-m + 1. If m«l, set J-k, set T-maxir|^,T), go to 

Step(3). If m-2 go to Step(6).

Step (6) : Set o(h * l)-k, o(h * 2)-J, set h-h 2 and set 

N-K-{J,k). Discard a Job (say l) from the partial sequence o such 

that the current time for the resulting sequence is minimum, delete i 

from 0, set h-h-1, reset T as the completion time of the last Job of 

0. set L-L U { 1 }, UB-ILI, and go to Step(2).

Step (7) : Stop.

Example 4.1. Consider the number of late Jobs problem with six Jobs. 

Table 4.1. Data for the example

i 1 2 3 4 5

4 8 2 3 6

"I 3 5 3 7 4

iL .
10 13 9 12 16

The values obtained when heuristic H is applied to this example 

are given in Table 4.2. In the first iteration Step(2) chooses j-6 as 

the Job with the smallest due date which is available at time t-1.



The procedure passes through Step(3) and then chooses k«3 In Step(4). 

Since J and k can both be sequenced early, Step(4) Includes Job 6 In 

0. A sillier pattern Is also observed In the second Iteration with 

J-3 and k-1 which yields o- (6,3). In the third Iteration the values 

J-1 and k-4 are selected In Step(2) and Step(4). In this case Job J 

Is early and Job k Is late In the partial sequence ojk. Step(5) 

resets J-4. On executing Step{3) again, Job J Is late In the partial 

sequence oj. Step(3) selects 1-4 to leave o-(6,3) and L-(4}. The 

fourth Iteration selects J-1 and k-2 In Step(2) and Step(4). In this 

Iteration also Job J Is early and Job k Is late In the partial 

sequence oJk. Step(S) resets J-2. On executing Step(3) again Job J Is 

early In the partial sequence oJ. Step(4) selects k-1 which shows 

that Job k Is late In the partial sequence ojk. On Incrementing m In 

Step(S) we get r-2, now the procedure passes to Step(6). Hence It 

chooses 1-2 to leave o-(6,3,l) and L-(2,4}. The fifth and final 

Iteration chooses J-S and sets o-(6,3,l,5) In Step(4). Thus, we 

obtain UB-2.

Table 4.2.

Iteration N h 0 L UB T J k 1 n

1 a . 2,3.4.5) 1 (6) 4 0 4 6 3 0

2 (1.2,4.5) 2 (6,3) 4 0 7 3 1 0

3 (1,2.5) 2 (6,3) (41 1 7 1 4 4 1

4

4 (5) 3 (6,3,1) (2,4) 2 10 1 2 2 2

2 1

5 4 4 (6,3,1,S) (2,4) 2 14 5 - ■ 0



In heuristic H the Job J, selected in Step(2), has the sMilest 

due date amongst those available whereas Job k, selected in Step(4) 

may have a smaller due date than Job J. Job k is sometimes used, 

where appropriate, to be scheduled next in o rather than Job J . It 

is easily verified that by the choice of t in Steps(3) and (6) the 

resulting partial sequence o contains all early Jobs.

For the case of arbitrary weights, Step(3) and $tep(6) are 

modified, and in this case If there Is a late Job, then the main part 

of the new heuristic is a method for selecting one or two Jobs with 

minimum weights of the Jobs in oj in Step(3) or ojk in Step(6) to be 

late and removing it from the sequence such that the completion time 

T is minimum.

4.3 Lower Bounds

In this section, we derive four lower bounds for the number of 

late Jobs. These bounds are each obtained by using a relaxation on 

the release date r^ of the original problem, and then applying 

Moore’s algorithm to the relaxed subproblem.

4.3.1 Moore lower bound

To construct a lower bound L6^(N), we use a common release date 
* * 

r { r^ ). We relax release dates to r^«r for each Job i to

give a 1/ /Z problem having due date d^«d^ • r for each Job 1 (1

c N). This relaxed problem is solved by Moore's algorithm [71]: Jobs

are first sequenced in non-decreasing order of d^ (i c N). Assume the

resulting sequence is (l,...,n). If there is no late Job, then this

sequence is optimal; otherwise find the first late Job say k, and

then one of the Jobs sequenced in the first k positions and with
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largest processing tiie is selected to be late and removed from the 

set N. The procedure Is repeated until all the remaining jobs are 

completed by their due dates. Hence the lower bound L6^(N) Is equal 

to the number of late Jobs In the relaxed problem. The computation of 

the lower bound LB|^(N) requires 0(n log n) steps. From our Initial 

computational experience we have seen that this bound Is weak, and we 

modify It as described In the following sections.

4.3.2 Modified Hoore lower bound

In this section a subproblem of the original problem Is selected 

and Moore’s algorithm Is used for each subproblem to compute a lower 

bound. Suppose that some of the unscheduled Jobs are Ignored to leave 

the set of Jobs N , where N Q  N, and let P(N ) denote this 

subproblem. Then L6|^(N ) Is computed for the remaining unscheduled 

Jobs In N . For a suitable choice of N , It will be the case that 

LB^(N ) > A suitable set N will contain Jobs 1 having large

release date r^. The following method Is used to find N .

Sequence the Jobs In non-decreasing order of r^ (1 e N). Assume 

that the resulting sequence Is (o(l),...,a(n)). The set N Is 

obtained from the set N by successively choosing a common release 

date r * . The search for the set N starts with release date of the 

first Job as a coninon release date (I.e., r common

release date, we choose -( o(l),...,o(n) }, and use the method of 

section 4.3.1 to find LBj^(Nj) for the subproblem P{Nj). Then set

choose N2>( o(2),...,o(n)}, use the same method above to

find for the subproblem PiN^) and continue up to r

This means we find the sets N^- { o(v),...,o(n) } and compute the

lower bounds L8j^{N^) for each subproblem P(N^), v»l,...,n-l. Hence N



Is the set of Jobs that gives the maxlmuia of LB^(N ), I.e.,

LB^{N ]-max {LB^(Nj),...,LB^(N^,j) }. Clearly, the coMputatton of the 

' 2
lower bound LB^(N ) requires 0(n log n) steps. It Is clear that this 

lower bound ) dowlnates the lower bound LB|^(N) which Is equal

to LB„(Nj).

4.3.3 Kise lower bound

Now we shall construct the third lower bound LB|̂  by adjusting 

the release dates and due dates to satisfy the agreeablllty condition 

(If r^ < Tj, then d^ < dj for each 1,J c N). To relax the original 

proble«, we either decrease the release date or Increase the due date 

for soate Job 1 (1 c N), such that the condition of agreeabillty Is 

satisfied. Nore precisely, If an ordering o*(o(l),...,o(n)) of the 

Jobs Is selected, release dates and due dates are reset using

.... n) ‘ ’•«(j) > f"' ....."•

.... 1) ' “o U )  > f'"' '■>....."•

SO that after resetting

■■od) ‘ •••«'•»(n)

We call 0 an aoreeablllty sequence.

An obvious nethod, which is a relaxation In the release date 

only, Is to find the smallest release date r^ (1 c N) and set all the



release dates rj-r^ for J t where ( J c N: dj < d^ }.

Sequence the Jobs of In non-decreasing order of due dates to fill 

the first unoccupied positions of the agreeablUty sequence. Set 

and repeat the procedure above until N Is empty.

Suppose the agreeabHlty sequence Is o«(o(l),...»o(n)). In this 

sequence if there exists a Job o(k) (where k Is as small as possible) 

that Is completed after Its due date, then one of these Jobs 

sequenced In the first k positions Is late. Otherwise all the 

remaining Jobs are completed within their due dates. To select the 

late Job, let B>{ o(k) } and let C(B) be the completion

time for the Jobs of 6 when sequenced In agreeablllty order. Let o(t) 

be the late Job that Is selected to be removed from the set B, chosen 

such that the completion time of Jobs B • (o(l)} Is minimal, I.e., If 

Job o(i) satisfies

C(B ■ { 0(1) )) < C(B - ( 0(1) )), 0(1) c B,

then o(l) Is selected to be late. This Job o(l) Is found applying a 

procedure of Kise [47]. The lower bound LB|̂  Is the sum of these late 
2

Jobs. It can be obtained In 0(n ) steps, once the agreeablllty 

sequence 1$ known. However, since our procedure for relaxing release 

dates and finding the agreeablllty sequence requires 0(n log n)
2

steps, the lower bound LB|̂  Is computed In 0(n ) steps.

It Is also possible to devise a method of constructing an 

agreeablllty sequence for which an at*:empt 1$ made to ensure that the 

reduction In release dates and the Increase In due dates Is as small 

as possible. However, Initial experiments Indicate that the Increase 

In the lower bound over that obtained with the procedure described





X, -f ... Xb > 1.1 4 (4.2)

In Hoore's tigorithii one of the Jobs sequenced In the first 

positions and with largest processing tine (say job j p  Is selected 

to be late and renoved fron the subset Ny. The procedure continues 

until all the renalning Jobs are completed by their due dates. If k^ 

is a second late Job found by Hoore's algorithm In the computation of 

the lower bound LB^(Ny), I.e.»

Pj ♦ . . .  * P | ^ t ... + pj^>

where Jj Is the first selected late Job. Then two of these first k^ 

Jobs must be late which gives the constraint

... ♦ Xu ♦ ... ♦ Xu > 2. 
kj kg

(4.3)

We use the same method above to find any other constraints for this 

subset Ny (V-l,...,n-l). Hence for each subset Ny given In section

4.3.2 either there Is no constraint (I.e., there Is no late Job) or 

there Is at least one constraint. The objective Is to find the 

minimum number of late Jobs satisfying the constraints that are 

obtained by applying Noore’s algorithm to each subset N^,...,N|^,^.

Consider the following linear programming problem.

subject to

(LP^) Ax > b ,



where e Is < column vector of ones, x >(x^, x^) Is the vector

of vtrlsbies defined bjr (4.1) but with the zero-one restrictions 

relaxed (and replaced by - x > - e and x > 0) and Ax » b are all 

constrained of the form (4.2), (4.3), etc obtained from P(N|), ..., 

P(Nn^|). Let m denote the number of constraints contained In Ax > b.

Even with the zero-one restrictions on the variables, problem 

(IP|̂ ) Is not guaranteed to provide a feasible solution to our 

original scheduling problem. Nevertheless, since all constraints Ax > 

b are valid for the original problem, It Is a relaxation. Therefore, 

the solution of problem (IPp) provides a lower bound.

Instead of solving this primal problem optimally to obtain the 

lower bound L6|̂ p, we consider the dual problem. Any feasible solution 

of the primal has a value greater than or equal to the value of any 

feasible solution of the dual. Hence to obtain a lower bound L6|̂ p, a 

heuristic method Is used to find a feasible solution to the following 

dual problem:

Nax b ^  - e^z

subject to

»here y^-(yj..... y j  and z^-(Zj, .... z„).

The following heuristic Is used to solve the dual problem above. 

We Initially start with the feasible solution y-0 and z«0. Then set 

y^-1, where 1 Is selected so that b^-maxj ( bj ). This gives a 

feasible solution for which the lower bound Is b^y^. It Is clear that



this feasible solution with value Is equal to the lower bound 

LB^(N ) given In section 4.3.2.

To derive the general step of the heuristic, consider the l 

constraint of A^y - z 4 e and assume It Is of the form

th

*11 .. + >4 + ••• . - Z, < 1 (4.4)

If then Increasing the value of y^ from 0 to 1 leaves the

solution feasible with respect to this constraint. Consider now the 

alternative case a^^>l. (Recall that by the construction of the 

Inequalities each element of A Is zero or one). If (4.4) is satisfied 

as a strict Inequality then Increasing y^ from 0 to 1 leaves the 

solution feasible with respect to (4.4). Lastly If a^ -1 and (4.4) 1s 

satisfied as an equality, then to maintain feasibility with respect 

to (4.4) when y^ Is Increased from 0 to 1, It Is necessary to 

Increase z^ by 1 and hence decrease the objective function by 1. 

Therefore the contribution that would be obtained by setting y^-1, 

where previously y^«0, to the lower bound Is calculated as follows.

- |( t: .{j yj -

The contribution 1$ added to the objective function If It Is 

greater than zero. These contributions are computed for each 1 (1-1, 

...,■) and whenever a positive contribution Is found y, z and the 

lower bound are updated accordingly. The computation of the lower

the linear programming bound LB|̂ p obtained using this heuristic 

method for solving the dual problem.





Nin 

subject to

*1

(Primal)

1 1 1 0 0 0 0 
0 1 1 1 1 1 1  

0 0 0 0 1 1 1 
0 0 0 0 0 1 1

The dual problem for this linear programming problem Is

(Dual)

Max

subject to

1 0 0 0 ^1
1

1 0 h »

1 0 0 h 1

0 0 0 h - U < 1

0 1 0 H H 1

0 1 1 / 4 H
1

0 1 1

> 0 1-1, .4.

Z, > 0 1-1. ,7.



A feasible solution to this duel problee is obtained by using the 

above heuristic.

Initially, yj-y2»y3*y4-0. Since in this case, all coefficients 

of y^ in the dual objective are equal to 1 , ive arbitrarily start with 

i-1. The current lower bound is now equal to 1. Since the

value y^'O is retained. However, V^«l, so we set y^«l to give a 

current lower bound equal to 2. At this stage the lower bound cannot 

be improved further because V4— 1. Hence the lower bound LB|^p-2 is 

obtained, which is better than the value LB|^(N )■! obtained by using 

the modified Noore bound. Our bound LB|^p>2 is exact because an 

optimal sequence is (1,3,4,5,7,2,6) and the number of late Jobs is 2.

We note that the second and third constraints of the primal are 

redundant. Such constraints could be removed without causing any 

reduction in value of the lower bound.

4.4 lower Bounds for the Weighted Problem

In this section we derive two lower bounds for the weighted 

number of late Jobs problem 1/r^/ These bounds are each

derived by using the same techniques of the lower bounds of l/r^/E^^^ 

problem, given in section 4.3.2 and section 4.3.4.

4.4.1 Hodified Hoore lower bound

To construct a lower bound LBW^(N ) for the weighted number of 

late Jobs, we use the same techniques as for the modified Moore bound 

LBpf(N ) given in section 4.3.2. Since N be the set of Jobs that 

gives maximum number of late Jobs in the relaxed problem, sequence 

the Jobs of N in non-decreasing order of w^. Assume that the 

resulting sequence is (l,...,n ), and the number of late Jobs is k,



I.t., k-L8^(N ). Hence a lower bound LBW^(N ) Is given by the k 

smallest weights of Jobs of N , i.e., by

LBW^(n ' )  -  c f . ,  w ,.

The computation of the lower bound LBW^(N ) requires 0(n log n) 

steps.

4.4.2 Linear programming bound

To construct this bound, we apply the procedure of linear 

programming bound given in section 4.3.4. The objective of the 

problem is to find the minimum weighted number of late Jobs (i.e., 

min w^x^}. More precisely, let the variable x^ (i e N) be 

defined by (4.1). Clearly the constraints Ax > b that are valid in 

section 4.3.4 are also valid for our weighted problem. Therefore, a 

valid relaxation is given by the linear programming problem.

(Primal)

where w *(W|,...,w^) is the weighted vector. A, b and x are defined 

in section 4.3.4.

To obtain a lower bound LBWj^p, a heuristic method is used to 

find a feasible solution to the following dual problem:





Although It may be possible to perform further adjustments to 

the values of y and z, It Is felt that the extra computation Is 

unlikely to be worthwhile. The computation of the lower bound L6W| p̂ 

requires O(n^) steps.

The following exai^le Illustrates the modified Moore bound 

LBW^(N ) and the linear programming bound LBW| p̂

Example 4.3. Consider the weighted nmid>er of late Jobs problem with 

nine Jobs.

Table 4.4. Data for the example

1 1 2 3 4 5 6 7 8 9

■•l
4 8 9 2 8 10 S 5 3

"I 3 4 2 10 8 8 5 3 10

“1 10 4 7 7 3 7 9 6 7

"l 24 22 20 35 22 29 22 22 34

Applying the results of modified Moore bound 16W^(N ) and the 

procedure of the linear programming bound LBW|^p yields the following.



r Subset (Ny) Constraints

2 Nj-(1.2,3,4,S,6.7,8,9}

X3+X2+X5+X7+X8

Xj+X2+Xj+Xy+Xg+X|

> 1

,+Xg+Xg > 2

X3-fX2-«-Xg't’X^‘fXg-«'X.l+Xg+Xg+x^ > 3

3 N2-(1.2,3,S,6,7,8,9} X 3 « 2 « 5 * x , « 3 » 1

X^'fX^’t^XgtX '̂fXg+X.I+Xj+X, » 2

4 N3-{1,2,3.5.6,7,8) Xg+X^tXg'fX^ > 1

5 N^-(2.3,5,6,7,8) X^-fX^I-Xg^̂ X̂ > 1

5 Ng-{2.3,5,6,8} Xg+Xg.Xj.XgtXj > 1

8 H5-{2,3,5,6) Xg<̂ X2'«‘Xg-fXg > 1

8 N,-{3,5,6) no constraints

9 Hg-(3,6) no constraints

It is clear fro« Table 4.5 that N «Nj and lc»LBĵ (N )-3. The three 

Jobs, chosen from N , with the smallest weights are 2, 5 and 8 hence

LBHj,(N')-W2+W5+Wg-13.

Note that it Is sufficient to compute constraints only for each

not performing calculations for sets Ng and N^.

Note that from Table 4.5, If the redundant constraints are



reaoved then we 9et the following linear prograiMing problem

Min lOx^ * 4x^ * 7Xj * 7x^ + 3x^ ♦ 7x^ * 9Xj -f 6Xg *  7Xg 

subject to

X, +  X , + X ,  +  X. + X,^ T Aj f Xg ♦ X7 ♦ Xg + Xg 

+ Xt ♦ X4 ♦ X, ♦ X- + x-

The dual problem for this linear programnilng problem 1$

Max 3y j  + 2y ^  + ^3 ♦ >4 * c’ . j  2^ 

subject to

’1 1 0 0 * ' 1' ’10"

1 1 1 1 ' 2 4

1 1 1 1 "3 7

1 0  0 0 "4 7

1 1 1 1 h - *5
< 3

1 1 0  1 h ^6 7

1 1 1 0 9

1 1 0  0 ^8
6

1 1 0  0 7



A feasible solution to this dual problen Is now obtained by 

applying the above heuristic. In this case, the coefficient of In 

the dual objective Is 3, which Is the auxl ma coefficient of y^.

Hence set y3*y4”^- Since G^-0, G^-G^*Gg*Gg-Gg«13, G^«9,

and 6^-S, hence the lower bound L8W^p-13. An optiwal sequence Is 

(1,7,3,6,6,4, 9,S,2) for this example, and the weighted number of 

late Jobs Is 14.

4.S Branch and Bound Algorithm

We now give a description of our branch and bound algorithm and 

Its Implementation. Heuristic H given In section 4.2 Is applied at 

the top of the search tree to yield an upper bound on the cost of an 

optimal schedule.

Our algorithm uses a forward sequencing branching rule for which 

nodes at level l of the search tree correspond to Initial partial 

sequences In which early Jobs are sequenced In the first 1 positions.

Dominance Rules

If It can be shown that an optimal solution can always be 

generated without branching from a particular node of the search 

tree, then that node Is dominated and can be eliminated. Dominance 

rules usually specify whether a node can be eliminated before Its 

lower bound Is calculated. Clearly, dominance rules are particularly 

useful when a node can be eliminated which has a lower bound that Is 

less than the optimum solution [35].

The first result Is based on an Idea of Villarreal and Bulfin

[93].



Theore« (4.11. If < tj, < pj, > Wj and > dj for 1, J * N, 

then if Job J Is early, then Job 1 Is early, and If Job 1 Is late, 

then Job J late.

Proof. For any schedule In which Job 1 Is late and Job J 1s early, by 

Interchanging these two Jobs a new schedule Is produced for which the 

weighted number of late Jobs Is not Increased. Q

and

By repeated application of Theorem (4.1), define 

B(J)-i1 : 1 e N, r^ < r^, p^ < pj, w^ > Wj and d^ » dj)

A(J)-{1: 1 t H, J E B(i)}.

Then the set of Jobs B(J) must be early If Job J Is early, and A(J)

Is the set of Jobs must be late If Job J Is late. These sets are used 

In branch and bound algorithm to fix certain Jobs.

Let 0 be an Initial partial sequence of Jobs, let S be the set 

of Jobs not sequenced In o and let C(o} denote the completion time of 

the last Job of o.

The following results show when any of the Immediate successors 

of the node corresponding to an Initial partial sequence o are 

dominated. The earliest start time of an unsequenced Job 1 Is max

(C(o), r^l.

The next of our dominance theorems Is based on a result of 

Dessouky and Deogun [18] for the problem 1/r^/c C^. It states that 

the machine should not be kept Idle throughout a time Interval within 

which another Job can be completely processed.

Theorem (4.2). If there exists 1 e S such that the earliest 

completion time Is



C^(o1) ■ M X  (C(o),r^) + and C^(oi) < for any i, J c

S, then oj is dominated.

Proof. Any complete sequence beginning with the Initial partial 

sequence oJ can be modified by removing job 1 from Its original 

position and Inserting It directly before job j. This will not 

increase the weighted number of late jobs. □

Our final result Is a consequence of dynamic programming. If the 

final two jobs of a partial sequence can be Interchanged without 

Increasing the time at which the machine become available to process 

the next unsequenced job, then this partial sequence is dominated. We 

assume that o-0|h, whenever o Is not empty.

Theorem (4.31. For J e S, If we have two Initial partial sequences of 

early jobs Ojjh and OjhJ such that C(Ojjh) < C(o^hj), then Ojhj Is

Note that If In Theorem (4.3), C(ojjh)-C(0|hj) then either Ojhj or 

o^jh (but not both) Is discarded.

For the case that r^< C(o) for each job 1 c S, then the 1/r^/cU^ 

problem Is solved by Hoore’s algorithm, and 1/r^/E w^U^ problem Is 

solved by the algorithm of Lawler and Hoore [57].

For all nodes that remain after we apply the dominance theorems, 

we can use the procedure described In the previous section to compute 

a lower bound. If the lower bound for any node Is greater than or 

equal to the current upper bound already computed, then this node Is 

discarded. The lower bounding method described earlier is applied to



the unsequenced Jobs S with release date reset using r|-nax(r^,C(o)) 

for each Job i c S.

Finally, the search strategy used in our branch and bound 

algorithm is the newest active node search.

4.6 Computational Experience with the Branch and Bound Algorithms

4.6.1 Test problems

The branch and bound algorithms were tested on the number of 

late Jobs problems with 20,30,...,200 jobs as well as on the weighted 

number of late Jobs problems with 10,20,30 Jobs, that were generated 

as follows. For Job i (1e M), an integer processing time is 

generated from the uniform distribution [1,100]. Problem ‘hardness’ 

is likely to depend on release dates r^ and due date d^ (i c N). Let 

^"^icN s®l«ct a value of R from the set { 0.2,0.5,0.8,1.1 };

an integer release date r^ 1$ generated for each Job i, from the 

uniform distribution [0,RT], where R controls the range of the 

distribution. An integer due date d^ is generated from the uniform 

distribution [DT.ET] for each Job i, were D and I  are selected from 

the sets { 0.3,0.6,0.9 } and { D+0.3,D+0.6,0+0.9} respectively . For 

the l/r^/Ew^U^ problem an integer weight w^ is generated from the 

uniform distribution [1,10] for each Job i.

For every value of n, five 1/r^/CU^ problems and five 1/r^/Cw^U^ 

problems are generated for each of the 36 sets of values of R, 0 and 

E, yielding 180 problems of each type for each value of n.



4.6.2 CowDuUtional results

The algorithms of sections 4.3 and 4.4 were coded In FORTRAN IV 

and run on CDC 7600 computer. Whenever a problem remained unsolved 

within the time limit of 60 seconds, computation was abandoned for 

that problem. Comparative computational results for the algorithms 

of section 4.3 for n-20,30,40,50 are given In Table 4.6. This Table 

gives the average computation time In seconds or a lower bound on the 

average computation time when there are unsolved problems and lists 

the number of unsolved problems as well as number of problems solved 

that requires over 1000 nodes.

We start by discussing the results obtained using our lower 

bounds given In section 4.3. For all the bounds, the problems with 

small R are easiest, because for small R the release date become 

unimportant once a few Jobs have been sequenced. A further analysis 

of the results Indicates that the values of D and E do not 

significantly affect problem hardness.

Table 4.6. Comparison of branch and bound algorithms

Hoore Modified Moore Kise Linear

ACT NS Nil ACT NS NU ACT NS NU ACT NS NU

20 0.01 0 0 0.01 0 0 0.01 0 0 0.01 0 0

30 0.02 0 0.02 1 0 0.02 2 0 0.02 1 0

40 0.18 0 0.06 0 0 0.17 1 0 0.08 0 0

50 1.04 0 3 0.43 0 1 1.05 0 3 0.46 0 1

ACT: average computation time or a lower bound on average 

computation time with unsolved problems contributing 60



seconds.

NS : number of problems solved thet require over 1000 nodes. 

NU : number of unsolved problems.

From our Initial computational experience with the lower bounds, 

and by the results of Table 4.6 we observe that Noore lower bound 

LB|^(N) and Kise lower bound L6|̂ are rather weak and are clearly 

Inferior to the other bounds LB^(N } and Thus the computational 

results for bounds LB^(N) and LB|̂  are abandoned. We now discuss the 

merits of algorithms LB^(N ) and LB|̂ p. It is clear that the bound 

LB|^P Is greater than or equal to the bound LB|^(N ). However, In 

practice, the bound LBĵ p takes slightly more time to compute and 

gives Identical search trees to those generated by LB^(N } for our 

test problems. Hence we adopted the modified Hoore algorithm as the 

best algorithm for further Investigation.

Table 4.7 gives the average computation time In seconds or a 

lower bound on the average computation time when there are unsolved 

problems, lists the number of unsolved problems and shows the numbers 

of solved problems that require not more than 100 nodes, that require 

over 100 and not more than 1000 nodes and that require over 1000 

nodes, for algorithm IB|^(N ).

We first observe from Table 4.7 that for all values of n,less 

than 9% of problems are unsolved. Also, 90% of the problems are 

solved with no more than 100 nodes. The algorithm Is dearly very 

effective when n < 80 with very few unsolved problems.



T>bl« 4.7. Average conputatlon t i M S  for l/r^/C problea 

Hodified Hoore Alooritha

n ACT NSl N$2 NS3 NU

60 0.69 164 12 3 1

70 0.70 165 6 9 0

80 2.03 165 2 11 2

90 2.22 166 4 6 4

100 3.52 166 1 5 8

n o 3.83 167 0 7 6

120 5.45 162 1 4 13

130 4.32 167 0 1 12

140 4.29 166 1 2 11

150 4.60 167 0 0 13

160 4.81 166 1 0 13

170 5.82 164 0 0 16

180 6.16 163 0 1 16

190 5.85 164 0 1 15

200 5.85 165 0 0 15

ACT: average coaputation time or a lower bound on average 

computation time with unsolved problems contributing 60 

seconds.

NSl: number of problems solved that require not more than 

100 nodes.

NS2: number of problems solved that require over 100 nodes and not 

more than 1000 nodes.

NS3: number of problems solved that require over 1000 nodes.



NU : nunber of unsolved probleas.

We now concéntrete on the problem 1/r^/Cw^U^. Results coaperln^ 

the lower bounds LBW^(N } end LBWj^p of section 4.4 ere given In Teb1e 

4.8. As In Teble 4.7, everege cooputetlon tiaes end detells of 

numbers of nodes required ere given.

From our Initlel coaputetlonel experience with the lower 

bounds, end by the results of Teble 4.8 we observe thet the bounds 

ere rether week. We elso, observe thet the bound LBW|^p eppeers to be 

slightly better then the bound LBW|^(N ) for the problems tested. Eech 

elgorlthm eppeers cepeble of solving problems with up to 20 Jobs 

setisfectorlly.

Teble 4.8. Averege computetlon times for l/r^/Df^U^ problem

n Algorithm ACT NSl NS2 NS3 NU

10 LBWj,(n ') 0.01 180 0 0 0

LBWip 0.01 180 0 0 0

20 LBW^(n ') 6.02 151 7 6 16

■■“ Lr 5.73 153 6 6 15

30 LBW^(N') 10.18 143 5 2 30

i w ,p 9.53 144 6 2 28

ACT: everege computetlon time or e lower bound on averege 

computetlon time with unsolved problems contributing 60 

seconds.

NSl: number of problems solved thet require not more then 

100 nodes.



NS2: nuaber of probleas solved that require over 100 nodes and not 

■ore than 1000 nodes.

NS3: nuMber of probleas solved that require over 1000 nodes.

NU : nuaber of unsolved probleas.

4.7 Concluding Reaarks

For the l/r^/CU^ problem the branch and bound algorithm using 

■odified Noore bound Is the most efficient and Is able to solve 

probleas with up to 200 Jobs. All other algorlthas are satisfactory 

for solving problems of size up to 50 Jobs

For the problem 1/r^/C w^U^, a sharper lower bound Is needed to 

cut down the size of the search tree when the nuaber of Jobs exceeds 

10. One way to Improve the results might be to try a different method 

of finding a feasible solution for the dual problem.

The computational results (for both probleas) Indicate that the 

problems with small range of release dates are easiest, because for 

small R the release dates become unimportant once a few Jobs have 

been sequenced. Also, the computational results (for both problems) 

show that the performance of the dominance rules was remarkably good.



DYHAHIC PR06RAHH1N6 STATE-SPACl RELAXATION 

FOR S1H6LE HACHIKE SCHEDUL1N6

5.1 Introduction

The problem considered In this chapter of scheduling Jobs on a 

single machine to minimize total cost Is stated as follows. Each Job 

of the set N - {l,...,n} Is to be processed without Interruption on a 

single machine that can handle only one Job at a time. Job 1 (1 c N) 

becomes available for processing at time zero, requires an Integer 

processing time p^ and Incurs a cost g^(t) If It Is completed at time 

t. Machine Idle time is not permitted, I.e., all Jobs are processed

during the Interval [0,T], where T ■ C,IcN ►'r
The objective Is to

find a processing order of the Jobs with associated completion times 

C| (1 e N) that minimizes the total cost

When, for each Job 1 (1 c N), g^ Is a non-decreasing function, 

filnnooy Kan et al.[63] derive dominance rules that restrict the 

search for an optimal solution. Such rules can be used In dynamic 

programming algorithms (Schräge and Baker [86] and Lawler [S3]) or In 

branch and bound algorithms (RInnooy Kan et al. [83] and Fisher 

[24]). Computational results for the total tardiness problem In

Indicate that Fisher’s branch and bound algorithm Is superior to that 

of RInnooy Kan et al. For the total weighted tardiness problem In 

which g^(t) ■ w^max[t - d^, 0), where w^ Is the weight for job 1 , the 

special-purpose branch and bound algorithm of Potts and Van 

Wassenhove [80] that exploits the plecewlse-llnearlty of g^ In Its



lower bounding rule appears to be the most efficient algorithm.

It is not assumed that g^ (1 t H) is non-decreasing in this 

chapter. Thus, the dominance rules of Rinnooy Kan et a), cannot be 

used to generate precedence relations between Jobs. Consequently, 

the dynamic programming algorithms of Schräge and Baker > Lawler 

require excessive core storage when there are twenty or more jobs.

Of those currently available, Fisher’s branch and bound algorithm 

appears to be the only one that may be capable of solving problems of 

medium size.

In this chapter we investigate the use of the dynamic 

programing state-space relaxation technique for obtaining lower 

bounds as an alternative to the approach employed by Fisher. To 

obtain a lower bound, Fisher performs a Lagrangean relaxation of the 

capacity constraint that the machine can process only one job at a 

time during each of the T ■ p^ unit time intervals for which the 

machine is required to be busy. The multipliers are obtained using 

the subgradient optimization technique [39]. The dynamic programing 

state-space relaxation method is developed by Christofides et al.[13] 

for various routing problems. In this method, a relaxed problem is 

obtained from a dynamic programing formulation by mapping the 

original state-space onto a smaller state-space and performing the 

recursion on this smaller state-space. Methods for improving this 

lower bound through the use of penalties and through the use of 

state-space modifiers are described.

Computational results to compare the performance of the Fisher 

and the dynamic programing state-space relaxation lower bounds are 

obtained with the total holding-tardiness cost problem for which g^

(i c N) is defined as follows. Job i (i c N) has a due date dj when



It should Ideally t>e shipped to the custoner; If It coapleted before 

time a holding cost h^ per unit time is incurred while the Job 

waits for shipment at time d^, whereas if it is completed after time 

d^ a tardiness cost of w^ per unit time is incurred as a penalty for 

late shipment. Thus, for this problem the cost of completing Job 1 

at time t is

g^(t) > h^max{d^ • t, 0) w^max(t • d^, 0}.

When ■ 0 for a11 Jobs i (1 c N), this total holding-tardiness cost 

problem becomes a total weighted tardiness problem.

Section S.2 gives a lower bound derived by using Fisher's 

technique. In Section 5.3 the dynamic programming state-space 

relaxation bound and its modifications are derived. Section 5.4 gives 

the implementation of the lower bounds. Computational experience with 

the lower bounds is given in Section 5.5. Section 5.6 describes the 

branch and bound algorithms. A discussion of our computational 

experience with the branch and bound algorithms Is given in Section

5.7. Section 5.8 gives a conclusion and some remarks.

5.2 Fisher Bound

The procedure used in this section to compute a lower bound is 

based on Lagrangean relaxation and uses Fisher’s formulation of the 

problem.

Now consider the Lagrangean relaxation of the problem. Let 

^"^icN ^i’ ^1 completion time of Job i (i c N).

Also, n ^  (i t N; t-l,...,T) is a zero-one variable defined by





subject to (S.2) end (5.3).

In the Legrengeen, X«(Xp Xj) Is e vector of multipliers 

corresponding to (S.4). It Is well known from the theory of 

Legrengeen relexetlon (Fisher [25]) for eny choice of multipliers, 

L(X) provides e lower bound. If X Is given, then using (5.3) the cost 

in the Legrengeen problem of scheduling Job 1 1n the Intervel [C^ • 

P^.C^] Is

9,(C,) * H (5.5)

Thus the Legrengeen problem Is ee sH y solved by considering eech Job 

Independently of the others to give e lower bound L(X). This requires 

O(nT) time.

We edopt the subgredlent optlmlzetlon method thet Is used by 

Fisher [24] es e sulteble Iteretive method to find the velue of x 

which meximizes L(X), i.e., to find x* for which L(X*)-meXj^ (L(x)l. 

Initlelly, multipliers X^^^-0, where x|®^-0 (t-l,...,T), ere used. 

Thereefter, et the completion of iteretlon k-1 of the method for 

which X^*'**^ Is the vector of multipliers, the velue L(X^*''^^) 1s 

obtained. Let ^  number of Jobs are scheduled

in the Intervel [t-l,t]. The updated multipliers x[^^ are computed 

using

x ( M  . ,
\  \  +

where Is the step length et iteration k*l end UB Is an upper

bound on the total cost thet may be obtained by applying a heuristic

- L(X<'‘'‘))) (!!*''■'• - 1)

■-J.1 '"J D *





2 3 4 5 6

cost 4+11.5 2+15 0+18.5 1+24 2+14

The ■IniRUM cost of IS.5 occurs when C2*2 . Ftnelly, for Job 3 \ 

obtain the costs

3 4 5 6

cost 16+20 8+25 0+32.5 9+24

The Minimum cost of 32.5 occurs when C^-S. Since the number of Jobs 

scheduled In the Interval [t-l,t], (t«l,...,6) Is one, the sequence

(2,3,1) Is an optimal sequence with a cost of 10.

5.3 Dynamic Programming State-Space Relaxation

In this section we give a dynamic programming formulation of our 

single machine problem and the state-space relaxation method Is then 

used to obtain lower bounds that can be embedded In branch and bound 

algorithms. Techniques for Improving this lower bound through the use 

of penalties and through the use of state-space modifiers are 

discussed. An example Is used to illustrate the above techniques.

5.3.1 Dynamic programming formulation

The dynamic programming formulation of Held and Karp [38] Is

given next. Let S C N  be an arbitrary subset of Jobs. Also, define

f (S) as the minimum total cost when the Jobs of S are sequenced In

the first |$| positions In the sequence. The objective Is to find 
*
f (N) by solving the recursion equations



f  (S) - (S -ii)) + g^(Cj^5 Pj)) (5.6)

th«t are Initialized by setting f (6) • 0. Solving recursion

equations (S.6) Is equivalent to finding the shortest path In a 
*

state-space graph G In which vertices correspond to subsets S and In 

which arcs correspond to a decision whereby the transition to a new 

state frot a previous state Is achieved by the scheduling of a job. 

The length of the arc directed fro« vertex S • (1) to vertex S (IcS)

Clear!), there are 2'' vertices In the graph G . Since the

number of vertices rapidly Increases as n Increases, the space 
*

required for the storage of values f (S) exceeds available core 

storage unless n Is snail. Instead of applying recursion (5.6) 

directly to solve the problem, we propose to derive from (5.6) a 

lower bounding scheme that can be used In a branch and bound 

algorithm. These lower bounds are obtained by performing the 

recursion on a suitably relaxed state-space containing fewer states 

than In the original formulation.

5.3.2 Derivation of the lower bound

Suppose that the original state-space Is relaxed by mapping 

states representing subsets of jobs onto states representing the 

total processing time of jobs In the subset, I.e., a state S Is 

mapped onto a state p^. (We assume that T • p^ < 2" to 

ensure that there are fewer states In the relaxed problem than In the 

original problem: If T > 2” It Is more efficient to solve the 

original problem.) The relaxed problem Is solved by computing fQ(T) 

from the recursion equations



f()(t) ■ - P,) ♦ 9,(t)l (5.7)

th«t arc Initialized by setting f^(t) • • for t < 0 and fgCO) • 0.

The state-space graph 6^ for recursion (5.7) has vertices 0, 1, ...,T 

and, for each Job 1 (1 t N), has an arc directed fro« vertex t • p^ 

to vertex t for t ■ p^,...,! of length g^(t) that corresponds to the 

scheduling of Job 1 In the Interval [t-p^,t]. We nay regard fQ(t) 

as the Mlnlwin cost of scheduling Jobs In the tine Interval [0,t].

The co«putat1on of f^(T) requires O(nT) tine.

Note that our napping Is particularly convenient since In both 

the original and relaxed fomulatlons the cost of scheduling Job 1 Is 

easily deduced fron the state variable: for the original fomulatlon 

the cost of scheduling Job 1 after all other Jobs of S is Pj)

and In the relaxed fomulatlon the cost of scheduling Job 1 to be 

completed at tine t Is g^(t). A napping that does not associate 

total processing tines with their corresponding sets does not appear 

to yield a recursion that can be used for conputing lower bounds.

We show next that the solution of the relaxed problem provides a 

lower bound on the solution of the original problem.

Theorem (5.1). If f*(N) Is obtained from (5.6) and if f^iT) Is 

obtained fro« (5.7), then f|j(T) ( f*(N).

Proof. Let o - (o(l),...,o(n)) be an optimal sequence. Thus, a 
*

shortest path In the state-space graph 8 successively passes through 

vertices Sq ,Sj ,...,Sjj, where ■ (o(l),...,o(1)). The length of an 

arc from S^_j to Is Pj)- relaxed state-space

graph Gq , there exists a path that successively passes through



vertices 0, p
"(1)’ "o(l) •'o(n) , 1 .t„ « r t l c s  Cj,s^ pj,

**J’ ■**’ ^jcSn *̂** length of an arc froai vertex + 

••• ♦ " o d - D  >’o(l) ♦ ••• ♦ S  '' ’o i D f P o d )  *

••• * "ofl)) ■ M l ) “ ĴcSi ''j*-
Therefore, there 1$ a path In Gq with the same length as the shortest 

*
path In G . Consequently, the shortest path In the relaxed graph G^ 

Is no longer than the shortest path In the original graph G*. □

In recursion (S.6), the ilnlnlzatlon Is over a11 Jobs 1 of S.

However, In (5.7) the state variables provide no Inforaiatlon as to

which Jobs are scheduled to give the value f^ii) and, consequently,

the ■Inlnlzatlon Is over all Jobs 1 of N. In contrast to the 
*

state-space graph G therefore, some paths In the relaxed graph G^ do 

not correspond to schedules In which each Job Is sequenced once. The 

decisions that generate the value fQ(T) from recursion (5.7) form a

‘sequence* (o(l).....o(s)) in which some Jobs may appear more than

once while others do not appear. For this reason the bound fQ(T) Is 

rather weak.

Following an example to Illustrate the computation of f*(N) and 

fQ(T), the next sections concentrate on methods to Improve our lower 

bound by attempting to force every Job to appear exactly once In the 

‘sequence* generated by the shortest path In the state-space graph 

for the relaxed problem.

Example 5.2. Consider again the total holding-tardiness cost problem 

with 3 Jobs having data as follows.



Th« sUt«-sptce graph G 1$ shown In Figure S .l. The vertices of the

graph are the subsets of (1»2,3) and the costs of each decision are 

written against the arcs of the graph. The solution of equations 

(5.6) are M U ) )  - 2, M ( 2 ) )  - 4, M { 3 } )  - 16, M U , 21) - 4, 

f*(U,3}) - 10, f*({2,31) - 4 and f*(U,2,3)) - 10. Thus, the 

shortest path In G Is of length 10. Backtracing shows that this 

shortest path passes successively through the vertices 9, (2), {2,3} 

and {1,2,3} and generates the optimal sequence (2,3,1).



The state-space graph Gq Is shown In Figure 5.2. The vertices

Fig. 5.2. The state-space graph 6q . 

of the graph are the times 0, 1, 2, 3, 4, 5 and 6 at which Jobs may 

be completed. This graph has an arc from vertex t • p^ to vertex t 

(t - 1,...,6) for each Job 1 with p^ < t that corresponds to 

scheduling Job 1 In the Interval It-p^,t]. Recursion (5.7) yields 

fo(l) • Z. fQii) - 3. fo(3) - 3. f(j(4) - 3, fp(5) - 3 and fQ(6) - 5. 

Thus, the shortest path In the relaxed graph G^ Is of length 5. 

Backtracing shows that this shortest path passes successively through 

the vertices 0, 1, 2, 4 and 6 and generates the ‘sequence’ (1,1,2,2) 

In which Jobs 1 and 2 appear twice and Job 3 does not appear.

5.3.3 Constraints on successive Jobs

In this section the first method of improving the lower bound Is 

presented. We aim to modify recursion (5.7) so that no path exists 

In the corresponding state-space graph that generates a ‘sequence’ 

(o(l),...,o(s)) with o(1-l) ■ o(1) for any 1 (1 - 2,...,s). Thus,



‘sequences’ In which the same Job appears In adjacent positions are 

avoided.

Let us define fj(t,J) (J c N; t - as the ■Inl mM cost

of scheduling Jobs In the Interval [0,t] where Job J Is scheduled In 

the Interval [t-pj,t] and where the same Job 1$ not scheduled In 

adjacent Intervals. For this formulation the problem Is to find 

mlOj^l^ {f^(T.J)} from the recursion equations

fj(t,J) - - Pj . D  + 9j(t)) (5.8)

that are Initialized b> setting, for each J (J c N), f^(t,J) - * for 

t < 0 and f|(0,J) • 0. The following observation shows that 

recursion (S.8) can be performed without storing each of the values 

us define e(t,*) to be the Job for which f|(t,e(t,*)) ■ 

m1nj^„{fj{t.J)). Also, let fj(t,*) - fj(t,e(t,*)) and f|(t.*») ■ 

"^"jcN-{e(t regard fj(t,*) as the smallest and

as the second smallest of the values f|{t,J) (J c N); e(t,*) 

Is the job for which fj(t,e(t,*)) - fj(t,*). From the previously 

computed values fj(t - Pj,*). e{t • Pj,*) and fj(t - Pj."). can 

find fj(t.J) (J c N) using

f,(t.J)

fl(t - Pj,*) + g j( t )  If J / e ( t  - Py*)

fl(t ■ Pj .**) + gj(t) If J -  e{t - Pj,*)

from which fj(t,*), e(t,*) and fj(t,**) are found. Clearly, the 

computation of fj(T,*) requires O(nT) time. Implemented In this way, 

the computation and storage required to find fj(T,*) are little more



than that required to find fQ(T) fro« recursion (S.7).

Let be the state-space graph for recursion (5.8). He 

establish next that f|(T,*) Is a valid lower bound. This Is followed 

by an example to demonstrate Its co«putat1on.

Theore« (5.2). If f*(N) Is obtained from (5.6) and If fj(T,*) Is 

obtained fro« (5.8), then fj(T,*) ( f*(N).

Proof. Let o ■ (o(l),...,o(n)) be an optimal sequence which provides 
*

a shortest path In G that successively passes through vertices 

Sq ,Sj ,...,S^, where - (o(l),...,o(1)}. In Gj, a path exists that

passes successively through vertices (0,0), (Pgfijioil)}......

^^o(l)^*‘**^o(n)*°^''^^' arguments presented In the proof

of Theorem (5.1), both of these paths have the same length which 

Implies the required result. □

Example 5.3. Applying recursion (5.8) to the example of the previous 

section yields the following values.

2 • 1

- 4 • 4 2 •

3 4 4 16 1 4

4 6 10 6 1 10

14 5 4 3 5

6 10 8 13 e 2 10



Thus, a lower bound f^(6,*} > 6 Is obtained. Backtracing shows that 

the corresponding 'sequence’ Is (1 ,2 ,1 ,2).

It Is also possible to derive a recursion with the property that 

each path in the corresponding state-space graph generates a 

‘sequence’ (o(l),...,o(s)) for which o(i-2), o(i-l) and o(1) (1 - 

3,...,s) are three distinct Jobs. However, it is uncertain whether 

the improveflient to the lower bound compensates for the extra 

computation required to incorporate these extra constraints.

5.3.4 The use of Job penalties to improve the lower bound

We define a penalty as an additional cost that is incurred 

when Job i (1 c N) is scheduled. Thus, the total cost of scheduling 

Job i to be completed at time t is g^(t) + x^. The introduction of 

penalties yields an equivalent problem since the cost of every 

schedule is increased by x^, i.e., the length of every path in

the state-space graph G 1$ Increased by c.icN However, for a

relaxed state-space graph, different paths are increased in length by 

different amounts when penalties are introduced and, consequently, 

the shortest path may change. Ideally, penalties would be chosen to 

force a shortest path in the relaxed state-space graph to define a 

feasible sequence. These penalties are analogous to the multipliers 

used in Lagrangean relaxation for integer programming. In this 

latter case, the aim is to find suitable values of the multipliers 

that generate a solution in which the relaxed constraints are 

satisfied.

Precise details of how penalties are used are given now. If x - 

(X|,...,Xj^) is a given vector of penalties, then the original problem



Is solved by computing f (N;X) • from the recursion equations

f*(S;X) - m 1n^^5{f*(S-{i);X) + Pj) ♦ x,} (5.9)

that are Initialized by setting f*(9;X) • 0. As Is the case above, 

the original state-space Is relaxed by mapping states S onto their 

total processing times to give a relaxed problem that Is solved by 

computing f2(T;X) - x^ from the recursion equations

f2(t:x) - mln^j^ifjit - p,;X) + g,(t) + x^) (5.10)

that are Initialized by setting f2(t;X)«» for t < 0 and f2(0;X)«0.

Let 6*(X) and G2(^) ^  state-space graphs for recursions 

(5.9) and (5.10). A proof that f2(T;X) - x^ Is a valid lower 

bound is given next. An example demonstrating the use of penalties 

follows.

Theorem (5.3). If f (N) Is obtained from (5.6), If f (N;x) Is 

obtained from (5.9) and If f2(T;X) Is obtained from (5.10), then

f2(T;X) - *  f*(N;X) - X, - f*(N).

Proof. We demonstrate first that f*(N;X) - ^
* *

from the different arc lengths, the state-space graphs G and G (x) 

for recursions (5.6) and (5.9) are Identical. Let o - 

(o(l),...,o(n)) be a sequence that defines the path P^ that passes 

successively through vertices Sg,S|,...,S|^, where - 

{o(l),...,o(1)}, In G* and G*(x). In 6 It has length L^ •



" j)  ® ( ' )  '* " «  ■:UM(9o(i)(>:jcSi l>j) ♦

^o(i)^ " **o ^ 1eN lengths differ by the constant

^leN ^1* ^0 * ®*'®'"̂ *st path In G* If and only If Is a

shortest path In G*(X). This proves that f*(N;X)-E^^j^ x^ - f*(M).

Now suppose that o Is an optimal sequence so that P^ Is a 

shortest path In G*(X) having length X^. Applying the

arguments used In the proof of Theorem (5.1), we deduce there is a 

path of length x^ in G2(X). This shows that ’̂l

< f*(N;X) - X^. 0

Example 5.4. Consider again the example presented previously.

Suppose that the vector of penalties X • (2, 2, -4) Is chosen. The 

state-space graph G2(x) Is Identical to the graph of Figure 5.2 

except that the arc from vertex t - p^ to vertex t (t ■ for

each Job 1 with p^ < t, Is longer by x^. Recursion (5.10) yields 

f^iUX) - 4, f2 (Z:X) - 6. f2(3;X) - 8, f^(4;X) - 8. f2(5;X) - 2 and 

f2(8;X) - 10. Thus, the lower bound of f2(6;X) - X^ - 10 Is 

obtained. Backtracing shows that the shortest path passes 

successively through the vertices 0, 2, 5 and 6 to give a feasible 

sequence (2,3,1). When a feasible sequence Is obtained, It Is 

necessarily optimal.

The example above shows that It Is possible to obtain a tight 

lower bound from recursion (5.10) provided that the penalties are 

chosen appropriately. We propose the subgradient optimisation method 

as a suitable Iterative method to find X* for which f2(T;X*) • 

maXj^tf2(T;X)J. Initially, penalties X^®\ where xj®^ - 0 (1 c N), 

are used. Thereafter, at the completion of Iteration k-1 of the
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(k-1) Is the vector of penalties, the valuemethod for which \ 

f.(T;x^^*^^) Is obtained and the corresponding 'sequence’ Is found by

backtracing. Let n.'I be the number of times that Job 1 (1 c N)

occurs In this 'sequence*. The updated penalties 

computed using

(k) (1 e N) are

. x(k-l) .
- C,

where h(k-1) Is the step length at Iteration k • 1 and UB Is an upper

bound on the total cost that may be obtained by applying a heuristic 

method. In our Implementation, we use an initial step length h^^^ •

2 and thereafter halve the step length when the lower bound falls to 

give an overall Improvement during five successive Iterations. Also, 

we use the greedy heuristic to obtain UB. This heuristic 

successively schedules a Job with the smallest cost in the first 

unfilled position In the sequence until all Jobs are scheduled.

S.3.S The use of state*space modifiers to improve the lower bound 

In this section, we derive an alternative relaxed problem to 

that given by recursion (5.7) by employing a different mapping of the 

states S of recursion (5.6). We define the non-negative integer q^ 

as the state-space modifier for Job 1 (1 c N). Also, let q^-

A relaxed problem is now obtained from recursion (5.6) by mapping the 

original states S onto the states (C^^^ ^i’̂ icS ^1^* relaxed 

problem Is solved by computing fj(T,Q) from the recursion equations

- P,.q ■ q,) * 9,(t)) (5.11)



that ara Initialized by fj(t,q)*« for t < 0 or q < 0, and f^(0,0)>0. 

The computation of f3(T,Q) requires 0(nT(l * Q)) time.

The modifiers q^ (1 c N) play a similar role to the penalties 

(1 c N) of the previous section. Both are used with the aim of 

forcing the shortest path In the relaxed state-space graph to define 

a feasible sequence. For example, If for some J (J e N) we have q^ • 

1 and q^ ■ 0 for 1 c N where 1 / j, then all paths In the state-space 

graph for recursion (B.ll) define ‘sequences’ In which Job J appears 

exactly once. On the other hand, If q^ • 1 for all 1 (1 c N), each 

path In the state-space graph for recursion (B.H) defines a 

‘sequence’ containing exactly n Jobs.

Let be the state-space graph for recursion (5.11). We 

establish next that f^(T,Q) Is a valid lower bound. An example 

demonstrating the use of modifiers Is then given.

Theorem 5.4. If f*(N) Is obtained from (5.6) and If f3(T,Q) Is 

obtained from (5.11), then f3(T,Q) < f*(N).

Proof. Let o - (o(l),...,o(n)) be an optimal sequence which provides 

a shortest path 1n G that successively passes through vertices 

5q >Sj i . . where • (o(l),...,o(1)}. In G3 a path exists that 

passes successively through vertices (0,0), (Pg(i)>^o(i})> >**>

♦‘loinil- »'■9u"«"ts presented in■‘’o(n)'9o(l) '*o(n)

the proof of Theorem (5.1), both of these paths have the same length 

which Implies the required result. Q

Example 5.5. Consider again the example presented previously. 

Suppose that the modifiers q| - 0, q^ ■ 1 and <13 ■ 0 are chosen.
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(k-l) . ♦ J) . - l)(q('‘-‘) t 2 »  (5.12)

Is found and tha Modifiers are updated using 

qj''"'* for t t M iod 1 t J: 

q j ''" '*  + 1 for 1 - J.

(5.13)

One advantage of using (S.12) and (5.13) to update modifiers is that 

It yields ■ k. Since the computation required at iteration k Is

0(nT(l + these relatively small values are desirable.

An alternative formula to (5.12) could be used to find Job J. 

However, initial experiments with (5.12) produced satisfactory 

results. In our second approach, as an alternative to (5.12) and 

(5.13), modifiers are updated using

qj''* - «»x(qj'‘'') t h('‘‘'*(nj'‘'') - 1), 0) for t c N, (5.14)

( k )  .

where h(k-1) is the integer step length at iteration k - 1. In our

implementation, we use the step lengths h^***^^ ■ 1 for k •

1,...,10,16,... and ■ 2 for k - 11,...,15, which produced good

results in initial experiments. This second method of updating 

modifiers resembles the subgradient optimization technique that is 

used to update penalties. It has the disadvantage that tends to 

be larger than in the first method although, possibly, the modifiers 

more quickly approach their optima! values than if (5.12) and (5.13) 

are used.



Obviously It Is possible to ipply «11 three of the lower bound 

Inprovement Methods described «bove, I.e., to «void the s«me Job 

«ppe«r1ng In «dj«cent positions, to use pen«1t1es (1 c N) «nd to 

use st«te*sp«ce Modifiers (1 c N). Applying these Methods, the 

lower bound Is obt«1ned by finding Mln^^n(f(T,Q,J;X)}

5.4 .lD lti>nU t1on of th t Lowtr Bounds

jcM"

where Q > q^, froM the recursion equ«t1ons

f(t,q,jtx) - * ^J^

th«t «re 1n1t1«11zed by setting, for e«ch J (J c N), f(t,q,J;X) ■ • 

for t < 0 or q < 0, «nd f(0,0,J;x) > 0. This lower bound is coMputed 

In 0(nT(l + Q}) tiMe.

Inste«d of storing f(t,q,J;X) for e«ch J (J c N), only the 

smallest value f(t,q,*;X), the Job e(t,q,*;X) which yields the 

smallest value and the second smallest value f(t,q,**;x) are stored. 

It Is also convenient to store the Job e{t,q,**;X) which yields the 

second smallest value. If, additionally, the signs of e(t,q,*;x) and 

e(t,q,**;x) are used to Indicate whether f(t,q,*;X) and f(t,q,**;X) 

respectively are computed, for some 1 (1 c N), from f(t - p^.q *

performed using only the values e(t,q,*;X) and e(t,q,**;x) (t ■

1,...,T; q - 0,...,Q). Since backtracing Is necessary in the 

Iterative schemes for updating penalties and modifiers to find the 

number of times each Job appears In the current 'sequence’, we store 

the 2T(1 + Q) values of e(t,q,*;X) and e(t,q,**iX).

The storage requirements for the function values f(t,q,*;X) and 

f(t,q,**;X) are discussed now. Let ^ *



values f(t,q,J;x) for t - and j c N are computed

from the values f(t ,q ,*;X) and f(t ,q ,**;X) for t • 0,...,T and

I Q.g“ “in: .,q. Thus, at any stage it Is necessary to store at

To suimarlze, state-space modifiers should be chosen so that Q 

and are small enough to allow the 2T(1 * Q) values of e(t,q,*;X) 

and e{t,q,**;x) (t - 1,...,T; q • 0,...,(]) and 2(1 + T)(l + 

function values to be stored.

To find suitable values of the penalties and modifiers, we can 

either first apply the Iterative method for finding the penalties 

using q^ - 0 (1 c N) and then perform Iterations to update the 

modifiers or perform the modifier Iterations before the penalty 

Iterations. If the former approach Is adopted, the computational 

requirement Is O(nT) time per penalty Iteration. If the latter 

approach Is adopted In which the modifier Iterations are performed 

first, a computational requirement of 0(nT(l * Q)) time per penalty 

Iteration results. Since, In either case, the computational 

requirements for the modifier Iterations are comparable, the method 

of performing the penalty Iterations first Is computationally much 

faster and therefore we adopt this approach.

Let 8(X,q) ■ f(T,Q,*;X) - X^ denote the lower bound 

obtained from recursion (5.15) when first the penalties and then the 

modifiers are obtained using an Iterative method. When the modifiers 

are updated from (5.12) and (5.13), the corresponding bound Is 

denoted by 8(X,q>)< whereas when the modifiers are updated from 

(5.14) the corresponding bound Is denoted by 8(x,q>)> When no 

penalty Iterations are performed, I.e., when x^ • 0 (1 c N), the 

bound Is denoted by B(-,q>) or B(-,q<)> when no modifier Iterations



«re perforaed, 1.«., when - 0 (1 c N), the bound Is denoted by 

B(X,-) «nd when no pen«Uy or modifier Iterations are performed, the 

bound Is denoted by

S.S Computational Experience with the Lower Bounds

The lower bounds were tested on 20-Job total holding-tardiness 

cost problems that were generated as follows. For each Job 1 (1 t 

N), an Integer processing tine p^, an Integer unit holding ccst h^ 

and an Integer unit tardiness penalty w^ were generated from the 

uniform distribution [1,10]. Problem ‘hardness’ Is likely to depend 

on parameters RDO and LF called the relative range of due dates and 

the average lateness factor. Having computed T, selected a value of 

U)D from the set {0.2, 0.4, 0.6, 0.8, 1.0) and selected a value of LF 

from the set {0.2, 0.4), an Integer due date d^ from the uniform 

distribution (T(l - LF - RDO/2), T(1 - LF + RDD/2)] was generated for 

each Job 1 (1 c N). Note that by the symmetry of the total 

holding-tardiness cost problem, problems with average lateness 

factors LF and 1 • LF are likely to be of similar difficulty. Hence 

problems with LF ■ 0.6 and LF - 0.8 were not generated. One problem 

was generated for each of the 10 pairs of values of ROD and LF.

Fisher's lower bound and the various lower bounds based on the 

dynamic programming state-space relaxation method were computed for 

each of the 10 problems. In all cases, a sufficiently large number 

of multiplier and penalty Iterations was performed to obtain a lower 

bound that Is close to the best possible for that particular method, 

although the number of modifier Iterations was restricted because 

each such Iteration Is computationally expensive. More precisely, 

for Fisher’s bound and for each bound that us«s penalties, 100



Iterations were performed to find suitable values of the multipliers 

and penalties. For each bound that uses modifiers, 10 Iterations 

were performed to find suitable values for them.

Results comparing the various lower bounds are given In Table

5.1. The first column numbers the problems while the second column 

gives the corresponding parameters ROD and LF. The value of an 

optimal solution, found using the branch and bound algorithm to be 

described later. Is given In the third column. The remaining columns 

give values of the various lower bounds. Cases for which a problem 

Is solved by the lower bounding procedure, I.e., when backtracing 

generates a feasible sequence, are marked.

Table 5.2 Is designed to show the Increase of the Fisher,

B(x,-}, B(x,q>) and B(X,q<) lower bounds as the number of subgradient 

optimization Iterations for multipliers and penalties Increases and 

also to relate the computation time required to compute a bound to 

Its value relative to the optimum. After 0, 20, 50 and 100 

multiplier or penalty Iterations and, where appropriate, after a 

subsequent 10 modifier Iterations the average relative value, I.e., 

the average percentage of the optimum achieved, and the average 

computation time required In seconds using the FORTRAN V compiler on 

a CDC 7600 are listed for each bound. We note that for zero penalty 

Iterations the bounds B(x,-), B(X,q>) and B(x,q<) reduce to B(-,-)i 

B(*,q*) and B(*,q<) respectively.

We first observe that the lower bound B(-,-) only achieves on 

average 46.43% of the optimum. Even though It Is quickly computed, 

such a weak lower bound Is clearly unable to effectively restrict the 

search In a branch and bound algorithm. Next we discuss the relative 

mer s of the bound B(x,-). Since In all cases after 50 penalty



Ntmber ROO.LF Optlnun Fisher B(X,') B(-.q>) B(X,q>) B(X,q>)

Table S .l. Coeiparlson of values of lower bounds

1 0.2,0.2 2406 2377 1143 2402 2009 2146 2402 2402

2 0.2.0.4 1441 1403 536 1419 ion 1193 1424 1419

3 0.4.0.2 1218 1213 468 1218 988 1159 1218 1218

4 0.4.0.4 406 372 288 391 329 350 393 394

5 0.6.0.2 1054 1034 303 1046 583 692 1049 1046

6 0.6.0.4 905 899 605 905* 796 832 905* 905*

7 0.8,0.2 1976 1966 575 1976* 1079 1181 1976* 1976*

8 0.8,0.4 546 521 338 534 437 471 536 536

9 1.0,0.2 2143 2115 417 2133 859 1094 2140 2137

10 1.0,0.4 349 343 224 349* 312 322 349* 349*

Indicates that the problem Is solved by the lower bounding procedure.



Iterations It gives a bound that Is at least as large as 6(>,q') and 

B(-.q*) and since It Is auch faster to compute than these bounds that 

use modifiers, we conclude that penalties are more effective than 

modifiers In Improving the lower bound. It is also apparent that for 

a given number of multiplier of penalty iterations 8(x,-) provides a 

tighter lower bound than the method of Fisher. Table 5.2 shows that 

8(X,*) Increases with the number of Iterations much faster than 

Fisher's bound Increases which Is a major advantage when used In a 

branch and bound algorithm where the number of Iterations performed 

at each node Is limited. The advantage of 8(x,*) is further 

demonstrated by noting that after 20 Iterations It gives, on average, 

a superior bound to that obtained by Fisher’s method after 50 

Iterations and It requires much less computation time. Similar 

comments apply to the performance of 8(X,-) after 50 iterations 

compared to Fisher's bound after 100 iterations. These results 

Indicate that 8(X,*) Is very likely to yield a superior branch and 

bound algorithm to one that employs Fisher's bound.

Comparing B(X,-) after 100 Iterations with the value of the 

optimum shows that It Is a strong lower bound and is exact for 4 of 

the problems. However, B(X,q>) and B(x,q>) provide, at some 

computational expense, a slight Improvement over B(x,>) for 5 and 3 

of the other problems respectively. There are surprising figures in 

Table 5.2 for B(x,q>) and B(x,q<) which show that average computation 

times may decrease when the number of penalty iterations Increases. 

This anomaly Is explained by the observation that an Increase In the 

number of penalty Iterations may either enable an optimal solution to 

be generated In which case no time consuming modifier Iterations are 

performed, or the 'sequence' corresponding to the bound 6{x,*) Is



Table S.2. Relative performance and computation time of lower bounds

__ _______________________Fisher B{x,-) 8(x.q>) B(x,q»)

0 Iterations

SO Iterations

100 Iterations

ARV 2.54 46.43 72.32 80.03

ACT 0.02 0.03 1.46 5.51

ARV 77.48 94.07 95.06 96.12

ACT 0.24 0.26 1.23 4.21

ARV 92.78 98.10 98.77 98.93

ACT 0.60 0.63 1.52 3.79

ARV 97.67 99.12 99.30 99.25

ACT 1.19 1.14 1.70 3.48

ARV: average relative value of bound, I.e., the average percentage of the 

optlinuni achieved by the bound.

ACT: average computation time In seconds to compute bound.



closer to a feasible solution In which case for B(x,q>) the modifiers 

are snaller and consequently modifier Iterations require less 

computation time.

Bearing In mind the inapplicability of the dominance rules of 

Rinnooy Kan et a1., unless a strong lower bound is used In a branch 

and bound algorithm, large search trees will be generated. Since 

6(x,'), 6(x,q>) and B(x,q<) appear to be the strongest lower bounds, 

their performance In a branch and bound algorithm Is Investigated.

5.6 Branch and Bound Algorithm

Ue now give the main features of our branch and bound 

algorithms. Prior to their application, the greedy heuristic Is used 

to generate an upper bound on the cost of an optimal schedule. Also, 

at the root node of the search tree an initial lower bound on the 

cost of an optimal schedule Is obtained from B(X,q‘) by first 

performing 100 penalty Iterations and then performing 30 modifier 

Iterations.

The algorithms use a forward sequencing branching rule for which 

nodes at level i of the search tree correspond to Initial partial 

sequences In which jobs are sequenced In the first i positions. An 

adjacent job Interchange rule Is applied at each node of the search 

tree, except those at the first level In which only one Job is 

sequenced. In an attempt to eliminate nodes through the dominance 

theorem of dynamic proqraiing. At the current node, the adjacent 

job interchange rule compares the cost of the last two jobs of the 

initial partial sequence with the corresponding cost when the two 

jobs are Interchanged: if the former cost is larger, then the current 

node Is eliminated, while If both costs are the same, some convention



Is used to decide whether the current node should be discirded.

Potts and Van Uassenhove [80] obtain excellent coaputatlonal results 

for the total weighted tardiness proble« with this rule.

For nodes that are not ellilnated by the adjacent Job 

Interchange rule, a lower bound B(x,q>) or B(x,q*) Is

coiputed. When 6(x,-) is used the multipliers are updated from their 

values at the parent node using 10 penalty Iterations. When B(x,q>) 

or B(x,q<) Is used the multipliers are first updated from their 

values at the parent node using 5 penalty Iterations (with modifiers 

set to zero) and then 2 modifier Iterations are performed. A newest 

active node search Is then used to select a node from which to 

branch.

Since all other features are Identical, the three branch and 

bound algorithms are represented by the lower bounds B(x,-)i B(x,q>) 

and B(x,q<) that they use.

5.7 Computational Experience with the Branch and Bound Algorithms

The branch and bound algorithms were tested on total holding- 

tardiness cost problems with 10, IS, 20 and 25 Jobs. The 20-Job 

problems are those used In Tables 5.1 and 5.2 to compare the lower 

bounds and the problems with 10, 15 and 25 Jobs were generated 

similarly. The algorithms B(X,-), B(X,q>) and B{x,q<) were coded In 

FORTRAN V and run on a CDC 7600 computer. Whenever a problem could 

not be solved within the time limit of 100 seconds, computation was 

abandoned for that problem. Average computation times In seconds 

and average numbers of nodes (or lower bounds on the averages when 

there are unsolved problems) are given In Table 5.3.

There Is no strong Indication from the results of Table S.3 that



T*ble S.3 Coopirison of branch and bound algorithms

Algorithm B(X,-) Algorithm B{x,q') Algorithm B(X,q*)

n ACT ANN ACT ANN ACT ANN

10 0.11 0 0.11 0 0.11 0

15 3.88 26 3.84 22 4.11 16

20 15.16 86 14.62 97 15.40 60

25 51.25* 187*
**

49.64
**

204
**

53.57
**

126

average computation time In seconds, 

average numbers of nodes In the search tree, 

a lower bound on the average because of one unsolved problem, 

a lower bound on the average because of two unsolved problems.



one alQorltha Is superior to the others. Algorltha B(K,*) hes the 

edventege that there Is only one unsolved 2S-Job problea coapared 

with two unsolved problems for the other algorlthas. On the other 

hand, average coaputatlon tines are slightly snaller for algorltha 

B(x,q>). Coaparing average nuabers of nodes for algorltha B(X,q*) 

with those for the other algorlthas, It appears that the lower 

bounding scheae B(X,q*) provides the tightest lower bounds. However, 

average coaputatlon tiaes show that it Is also coaputatlonally the 

aost expensive scheae. Although on the evidence of the results of 

Table 5.3 we have a slight preference for algorltha 6(x,*), varying 

the nuaber of penalty and aodifler Iterations perforaed at each node 

of the search tree could lead us to a different conclusion.

Each algorltha appears capable of solving probleas with up to 25 

Jobs satisfactorily. The application of the Initial lower bound 

B(x,q>) at the top of the search tree solves 10, 6, 4 and 2 of the 10 

probleas with 10, IS, 20 and 25 Jobs respectively without requiring 

branching. This Initial lower bound is within 1% of the optlaua for 

all but 7 of the 40 probleas and has a aaxiaua deviation froa the 

optlaua of 3.2t. In spite of the tightness of the Initial lower 

bound, experiments with 30*Job problems showed that the majority 

could not be solved within the 100 second time Halt. Further 

experimentation with numbers of penalty and modifier Iterations to be 

performed at each node of the search tree and the use of a more 

effective heuristic is likely to yield slightly more efficient 

algorithms. Nevertheless, it would be unlikely for such an Improved 

algorithm to be capable of solving problems with more than 30 Jobs 

without requiring excessive computation time.

The influence of the parameters ROD and LF on problem hardness



deserves mention. There Is some evidence problems with smaller due 

date range ROD tend to be harder than those with larger ROD. Also, 

problems with LF • 0.2 seem, on average, to be slightly harder than 

those with IF > 0.4. However, a larger sample of test problems Is 

needed to draw any firm conclusions.

S.8 Concluding Remarks

The dynamic programming state-space relaxation method maps the 

states of a dynamic programming formulation of the problem onto a 

smaller set of states and performs the recursion on this smaller 

state-space. This smaller state-space provides only some of the 

Information that Is required to perform the recursion to obtain an 

optimal solution. The Information loss may result either in 

Infeasible solutions being generated as In the case of our single 

machine scheduling problem, or (for minimization problems) In the 

minimum costs evaluated for each state being a lower bound Instead of 

an exact value. In the former case, penalties and state-space 

modifiers can be used in an attempt to enforce feasibility and 

thereby Improve the lower bound. In the latter case the use of 

state-space modifiers may possibly Increase the lower bounds for each 

state towards their exact value and consequently increase the overall 

lower bound.

For the problem of scheduling jobs on a single machine to 

minimize total cost, dynamic programming Is the best solution method 

for small sized problems. For medium sized problems dynamic 

programming algorithms fall because of their storage requirements.

For such problems branch and bound algorithms that employ lower 

bounds obtained from the dynamic programming state-space relaxation



Rtethod provide e satisfactory solution Mthod when processing times 

are small. Their success Is attributed to the ability of the penalty 

and state-space modifier Iterations to strengthen the lower bounds. 

These lower bounds appear to be superior to those of Fisher that are 

derived by performing a Lagrangean relaxation of machine capacity 

constraints. Unfortunately, the lower bounds obtained by the dynamic 

programming state-space relaxation method are computationally too 

time consuming (they require pseudopolynomlal time) to be used in a 

branch and bound algorithm that will satisfactorily solve large sized 

problems. Therefore the currently available lower bounds tend to be 

either rather weak or computationally expensive to compute; hence 

they do not perform Ideally In branch and bound algorithms. It seem 

that there Is no obvious bounding technique which would provide 

sharper bound than ours for solving problem with n > 2S.

The bound 6(\,q^) and B(X,q^) are valid lower bounds for

1/ /Cm^T^ problem which is a special case of our problem. We 

Investigate the application of the dynamic programming state-space 

relaxation method to the total weighted tardiness problem In chapter 

6 .
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A COHPUTATIOHAL COHPARISOW OF AL60RITWS FOR THE S1N6LE MACHINE 

TOTAL HEI6HTED TARDINESS SCHEDULING PROBLEH

6.1. Introduction

The single machine total weighted tardiness problem may be 

stated as follows. Each of n Jobs (numbered l,...,n) Is to be 

processed without interruption on a single machine that can handle 

only one Job at a time. Job 1 (1 - l,...,n) becomes available for 

processing at time zero, requires an integer processing time p^, and 

has a positive weight w^ and a due date d^. For a given processing 

order of the Jobs the (earliest) completion time and the tardiness 

T^ - max{C^ • d^, 0} of Job 1 (1 - l,...,n) can be computed. The 

objective Is to find a processing order of the Jobs that minimizes 

the total weighted tardiness w^T^.

Emmons [22] derives several dominance rules that restrict the 

search for an optimal solution to the total weighted tardiness 

problem. These rules are used in both dynamic prograBwIng and branch 

and bound algorithms. The dynamic use of Elmaghraby’s Lemma [21), 

which is a special case of one of Emmons’ rules, also reduces the 

number of solutions that need to be generated. Computational 

experience with the dynamic programming algorithm of Schräge and 

Baker [86] Indicates that it Is able to solve problems with 20 Jobs 

without requiring excessive core storage. Lawler [53] proposes an 

alternative dynamic programming algorithm with smaller core storage 

requirements than the Schrage-Baker algorithm. However, for the 

total weighted tardiness problem no computational experience with



Lawler’s algorithm Is reported In the literature. Of the branch and 

bound algorithms, those of Fisher [24] and Potts and Van Wassenhove 

[80] appear to be the most efficient. Although no computational 

experience with Fisher’s algorithm applied to the total weighted 

tardiness problem Is reported In the literature, results for the 

total tardiness problem (In which all weights are equal) Indicate 

that It Is an effective approach for problems with small processing 

times. The Potts-Van Uassenhove algorithm solves total weighted 

tardiness problems with 30 Jobs without generating very large search 

trees.

This chapter provides a computational comparison of the 

Schrage-Baker and Lawler dynamic programming algorithms, and of the 

fisher and Potts-Van Wassenhove branch and bound algorithms. These 

results are compared with those obtained from branch and bound 

algorithms that employ two new lower bounding schemes. The first of 

these new lower bounds Is obtained from a total weighted exponential 

function of completion times problem and the second Is derived using 

the dynamic programming state-space relaxation method.

In Section 6.2, Emmons’ dominance rules are described. Section 

6.3 gives a general description of the dynamic programming approach 

for solving the problem and provides details of the Schrage-Baker and 

Lawler algorithms (which has been done In collaboration with Potts 

and Van Wassenhove [80]). The various lower bounding schemes that 

can be used In branch and bound algorithms are described next.

Section 6.4 describes the Potts-Van Wassenhove approach In which a 

lower bound Is obtained from a total weighted completion time 

problem. A similar method of approach Is also used In this section 

to derive a new lower bound from a total weighted exponential



function of completion times problem. Section 6.S describes Fisher’s 

lower bound that 1$ based on Lagrangean relaxation and Section 6.6 

derives a new lower bound that uses the dynamic prograimlng 

state-space relaxation method. A description of our branch and bound 

algorithms Is contained In Section 6.7 and Section 6.8 reports on 

computational experience with the dynamic progratnmlng and branch and 

bound algorithms. Some concluding remarks are given In Section 6.9.

To summarize, this chapter discusses six algorithms for the 

total weighted tardiness problem and provides extensive computational 

results. Two algorithms (Schräge and Baker, and Lawler) use dynamic 

programming and four algorithms use branch and bound. Of the latter, 

two algorithms (Potts and Van Wassenhove [80], and the one which 

employs the new weighted exponential function of completion times 

bound) are based on a quickly computed but possibly rather weak lower 

bound. These branch and bound algorithms rely heavily on dominance 

rules to restrict the size of the search tree. The other two branch 

and bound algorithms (Fisher and the one which employs the new 

dynamic programming state-space relaxation bound) Invest a 

substantial amount of computation time at each node of the search 

tree In an attempt to obtain a tight lower bound and thereby generate 

only small search trees.

6.2 Dominance Rules

Emmons’ dominance rules are described In this section. They 

play a major role In the algorithms that are described later. Emmons 

[22] developed three rules In which relationships between Job 

variables are explored for the one machine total tardiness problem.

8y exploring these relationships, the problem size can be reduced



considerably In nost cases. Using these rules, It Is sonetliaes 

possible to assign the first few and the last few Jobs of an optimal 

sequence. The basic advantage of Envnons’ approach is Its ability to 

reduce the number of solutions that need to be considered. This is 

why most recent researchers used his rules to construct as many 

precedence relationships as possible between the Jobs, and then 

employed an Implicit enumeration technique to sequence the remaining 

Jobs. Suppose that the rules have already been applied to yield, for 

each Job h, a set 6^ and a set of Jobs which precede and succeed 

Job h In at least one optimal sequence. Let N denote the set of all 

Jobs.

Theorem (6.11 (Dominance Theorem) . There exists an optimal 

sequence In which Job 1 Is sequenced before Job J If one of the 

following conditions Is satisfied.

(>) p, < Pj, Wj > »J and d, < «ax{dj, p̂  + Pj);

(b) w, > »J. d, « dj and dj » p̂  ■ Pj:

('> “j > StN-A, l>h-

Elmaghraby’s Lemma [21] follows from condition (c): if a Job J with 

dj > P|̂  Is found, then there exists an optimal sequence In which

this Job is sequenced last. In such a case Job J is removed from the 

problem.

Whenever Jobs 1 and J are found satisfying the conditions of the 

Dominance Theorem, an arc (i,J) is added to a precedence graph 6p 

together with any other arcs (h,k) that are Implied by transitivity.



We refer to h es e predecessor of k end to k is e successor of h. 

The procedure Is repeited until no further ires c m  be idded to 6p.

At this stige, iny Job which Is i successor of i11 renilning Jobs Is 

removed from the problem. Simllirly, iny Job 1 which Is i 

predecessor of i11 retnilning Jobs Is removed from the problem end the 

due dites of remilning Jobs ire reduced by p^. In miny ippllcitlons, 

Including those thit follow In the next section, It Is convenient to 

regird Gp is representing precedence constriints on the Jobs thit 

must be satisfied.

Consider the trinsitive reduction of Gp which Is obtilned by 

removing all arcs of Gp that are Implied by transitivity. For each 

arc (1,J) of the transitive reduction of Gp, 1 Is an immediate 

predecessor of J and J Is an Immediate successor of 1.

Using Gp, the earliest completion time Pĵ  + Pj and
I *

the latest completion time Pj, of Job 1 (1 - l,...,n)

are computed.

6.3 General Precedence Constrained Dynamic Prograwinq Algorithms

6.3.1. The dynamic programming approach

Both Schräge and Baker, and Lawler use the same dynamic 

programming recursion equations which are as follows. Let f(R,J) be 

the minimum total weighted tardiness when the Jobs of the set R - {J) 

are sequenced In the first |R| - 1 positions followed by Job J In 

position |R|. Then we may define f(R,*) - "'OjeR If(RtJ)) *s the 

minimum total weighted tardiness when the Jobs of R are sequenced in 

the first |R| positions. For this formulation, the objective Is to 

find f(N,*) (recall N - (l,...,n)) using the recursion equations



f(R,J) - »tljtB.fj) Pk - Pj. 0)) (6 . 1)

that are Initialized by setting - 0 (J > l,...,n). Clearly,

recursion (6.1) may be written In the equivalent, more usual form. In 

which the objective Is to find f(N,*} from the recursion equations

f(R,*) - (f(R - ij}.*) + P)( ■ dj. Oil i6‘2)

that are Initialized by setting f{0,*) - 0. Equations (6.2) define a 

fonvard recursion as an Initial partial sequence corresponds to each 

pair R and f(R,*). A backward recursion 1$ derived as follows. Let 

f (R,*) be the minimum total weighted tardiness when the Jobs of the 

set ft are sequenced 1n the final |ft| positions. We can regard ft as 

the complement of the set R which occurs In (6.2), I.e., ft > N * R. 

Then the problem Is to find f (N,*) from the recursion equations

i>k ♦ Pj' ■ “j'- p »

(6.3)

that are Initialized by setting f (0,*) - 0.

As mentioned In the previous section, the graph Gp, obtained by 

applying Emmons’ dominance rules, Is assumed to define precedence 

constraints on the Jobs. As a consequence, equations (6.2) and (6.3) 

are modified as follows. Firstly, only feasible sets R and ft are 

considered In (6.2) and (6.3) respectively, I.e., sets R for which 

all predecessors of Jobs of R are contained In R and sets ft for which 

all successors of Jobs of ft are contained In ft. Clearly, there Is a 

one to one correspondence between the feasible sets R for (6.2) and



the feasible sets R > N • R for (6.3). Secondly, the nininizatlon In 

(6.2) Is restricted to Jobs J such that R - (J) Is a feasible set, 

I.e., only Jobs J which have no successors In R are considered. 

Similarly, the minimization In (6.3) Is restricted to Jobs J which 

have no predecessors In ft.

In addition to Emmons’ rules, Elmaghraby’s Lemma may be applied 

at each stage of the dynamic programming recursion to Improve 

efficiency. Consider a set R for which J c R with dj » p^ 

exists. If the Jobs of R are sequenced In the Initial positions, 

then, from the Lemma, there exists an optima! ordering of these Jobs 

in which Job J is sequenced last. In such a case, recursion (6.2) 

reduces to f(R,*) ■ f(R * (J),*) which Involves no minimization and 

thus reduces computation. Suppose that ft > N • R, where again J e R 

with dj > pjj exists. If there exists an optimal schedule 1n 

which the Jobs of ft are sequenced In the final positions, then, from 

the Lemma, there exists an optimal schedule In which the Jobs of ft U 

(J) are sequenced In the final positions. Thus, sets ft U (k) (k i  J) 

may be regarded as Infeasible thereby reducing the total number of 

feasible sets and, consequently, storage requirements.

The dynamic programming algorithms differ mainly In the order In 

which the feasible sets R (or ft) are generated and the way In which 

the values f(R,*) (or f (ft,*)) are stored. The two following 

algorithms are compared.

6.3.2. The Schraqe-Baker algorithm

In the Schrage-Baker dynamic programming algorithm the feasible 

sets R are generated 1n lexicographic order , I.e., 1n Increasing 

order of 2^’^. Also, an Integer label Is assigned to each Job



(the label given to a Job Is chosen so that it exceeds by one the sum 

of labels already assigned to Jobs that are neither Its predecessors 

nor its successors) so that each feasible set is given an address 

which Is equal to the sum of labels of Jobs In that set. The value 

f(R,*) Is stored In a location corresponding to the address for the 

set R. It Is often the case that there are addresses for which there 

Is no feasible set In which case storage space Is wasted. The 

storage space required by the algorithm Is equal to the sum of all 

labels and 1$ known before any of the recursion equations are solved. 

Also, since all the values f(R,*) are stored, once all recursion 

equations have been solved, a simple backtracing procedure allows the 

optimal sequence to be found. (Kao and Queyranne [46] give an 

alternative Implementation In which the storage space Is used 

cyclically to give a storage requirement which Is equal to the 

maximum label: backup storage Is used to find the optimal sequence.) 

In our Implementation, If the sum of labels does not exceed 48000 

then the problem Is solved; otherwise computation Is abandoned for 

that problem.

6.3.3 Lawler’s algorithm

The algorithm described here Is a variant of the dynamic 

programming algorithm of Lawler which Is designed so that core 

storage requirements are kept to a minimum. Further to this aim, a 

backward recursion Is used which allows Elmaghraby’s Lemma to be 

applied dynamically thereby reducing the number of feasible sets that 

need to be considered. The feasible sets R are generated In 

cardinality order . More precisely, when all feasible sets ft of 

cardinality r have been generated, all feasible sets of cardinality



r-t-1 are of the form ft U {k} where k ^ ft and where all successors of k 

are in ft. Each set is represented by its incidence vector, where the

incidence vector for set ft is defined as c
ieft '

-n-1
If the incidence

vectors for the sets of successors of each Job k are stored, the 

tests of whether k e ft and whether a11 successors of k are in ft can 

be performed in constant time. (In FORTRAN, this is achieved by 

performing a logical AND statement on the logical variables obtained 

from the incidence vectors through an EQUIVALENCE statement.) During 

the generation of feasible sets of cardinality f + 1 from a list of 

feasible sets ft of cardinality f that are stored in increasing order 

of incidence vectors, if dj > so"* J e N - ft, then

Elmaghraby’s Lemma eliminates sets ft U (k), where k / J. The 

generation process starts by forming the list of feasible sets of the 

form ft U {1} together with the corresponding total weighted tardiness 

values f (ft,*) + Wj maxic^^i^^ p^ - d^, 0}. The next step is to find 

feasible sets of the form ft U (2) and compute their total weighted 

tardiness values. This list is merged with the list of feasible sets 

ft U {!}: when duplicate sets (i.e., sets with the same incidence 

vector) are found during the merge, only the entry with the smaller 

total weighted tardiness value is retained. Note that the list of 

feasible sets of the form ft U (2) does not need to be constructed 

explicitly since forward pointers to the appropriate entries in the 

list of feasible sets of cardinality f allow the necessary 

information to be accessed. Feasible sets of the form ft U {3},..., ft 

U {n} are successively created and merged to give a complete list of 

feasible sets of cardinality f * 1 stored in Increasing order of 

incidence vectors. At this stage, the list of sets of cardinality r 

is discarded and the process of generating sets of cardinality r *  Z



conwences.

In our imp1e«entat1on, one word of storage Is used for each 

Incidence vector. The total weighted tardiness value occupies a 

second word and the processing tiMe p^ occupies a third word.

The forward pointers used In the generation phase are also stored In 

the third word together with the processing tine In the f o m  of a 

string. The storage space required by the algorlthn needs to be 

sufficient to store a11 sets of cardinality r and a11 sets of 

cardinality f *  1 sinultaneously (r • l,...,n-l). In our 

Inplenentatlon, If during the course of applying the algorlthn It 

becones apparent that the number of sets of cardinality r plus the 

number of sets of cardinality f 1 (r - l,...,n-l) exceeds 16000» 

then computation Is abandoned for that problem. It Is a disadvantage 

of the algorlthn that the storage requirements of a particular 

problem car;iot be predicted before any recursion equations are 

solved. Another disadvantage Is that It Is not simple to find the

unless, as Is the case in our Implementation, backup storage Is used.



- d^, 0} » U^MX{C^ • d^, 0) » u^(C^ ■ d^),VI
''r “i^'i

(Uj,...,U|i) be a vector of linear weights 

(I.e., weights for the linear functions > d^ (1 • l,...,n)). Then 

a lower bound Is given by the linear function

LBlin(u) - "InicĴ j u,(Ĉ  - d̂ )J < i«1n{cJ_j wj l̂.

This shows that the solution of a total weighted completion time 

problem provides a lower bound on the total weighted tardiness 

problem. Given u, the weighted completion time problem Is solved by 

Smith’s shortest weighted processing time rule [91] In which Jobs are 

sequenced In non-Increasing order of u^/p^. The best possible such 

lower bound Is given by

”*^0<u<w **̂ '̂** ^ fo obtain this best

possible bound, the subgradient optimization method [25,28] could be 

used to find u. However, since It Is computationally expensive to 

apply, we prefer to use the following non-iterative heuristic method 

of Potts and Van Uassenhove [60] to determine u.

Suppose that a heuristic method is first applied to obtain a 
u

sequence and Job completion times (1 ■ l,...,n). Suppose also 

that the Jobs are renumbered so that the heuristic sequence Is 

(l,...,n). Then the vector of linear weights u Is chosen to maximize 

IBl i^(u ) subject to the condition that the heuristic sequence Is an 

optimal solution of the total weighted completion time problem, I.e., 

u Is a solution of the linear programming problem (P|̂ ||̂ ) defined by



maxinUe L8j ĵ| (̂u) • u (̂c!  ̂ • d^)

{P^IN^ subject to u^/p^ > “i+i/Pi+i " l,...,n-l)

0 < (1 - l,...,n).

An algorithm which solves problem (Pl p )̂ In linear time Is described 

later. First, however, we derive our new lower bound by reducing the 

weighted tardiness to an exponential function rather than the linear 

function used In this section.

6.4.2. Reduction to an exponential function

Our new lower bound Is derived as follows. It Is assumed that P 

' ^j-l ^ *̂ 1  ̂ “ l.....n). (If P < d^, then job 1 Is

sequenced last by Elmaghraby’s Lemma and discarded.) For any 

positive o(, we aim to find a non-negative weight v^ for job 1 (1 -

l,...,n) that satisfies

w,T, . w,uax{C, - d,, 0) > - 1). (6.4)

Clearly, (6.4) holds »hen C, < d,. When d, < C, < P, then (6.4) also 

holds provided that

V, « w,(P - d,)/(e“l'’''‘i> - 1). (6.5)

Let V • (v,,...,v ) be a vector of exponential weights (I.e., weights ' 1  n'
for the exponential functions e“ ^^1 **1̂  - 1 (1 - l,...,n)). Then, If 

K Is chosen, a lower bound Is given by the exponential function

LBjjp(v) - »inicJ.j v,(e“('̂ )'‘‘l> - 1)) « miniEl.j w,T,).



This shows that the solution of a total weighted exponential function 

of conpletlon tines problem provides a lower bound on the total 

weighted tardiness problem. When a and v are known, the total 

weighted exponential completion time problem Is solved by Rothkopf’s 

rule [64] In which Jobs are sequenced In non-increasing order of 

v,/(e“ ‘l(l -

For the reasons Indicated In the Section 6.4.1, we propose a 

non- Iterative method to determine v rather than subgradient 

optimization. As before, suppose that a heuristic method Is first 

applied to obtain a sequence (l,...,n) (where the Jobs are suitably 

renumbered) and Job completion times c!̂  (1 ■ l,...,n). Then the 

vector of exponential weights v Is chosen to maximize 

subject to the condition that the heuristic sequence 1$ an optimal 

solution of the total weighted exponential function of completion 

times problem, I.e., v Is a solution of the linear programming 

problem (P^xp^ defined by

maximize LB^xP^^^ ” ĉj.l - 1)

subject to

(Pfxp) v,/(e“ 'l(l - > v,^j/(e“^Ul(l

(1-1.... n-1)

0 < V, < »,(P - d,)/(e“l'’ ‘'l> - 1)

(1-1..... n).

We describe next an algorithm that solves the linear programming 

problems (Pl j |̂ ) Section 6.4.1 and (P^xp) linear time.



6.4.3. An ilqorith» to $olv>

We first observe that probleiis (P|̂ |p|) and ^  written

In the general f o m

naxlalze LB(z) - a^z^ 

(P) subject to b,z, >

0 < Zi ( C4

(1-l,...,n-l) (6.6)

(1-1.....n), (6.7)

where a^ (1 - l,...,n) 1s a constant and b^ and c^ (1 - l,....n) are 

non*negat1ve constants. When a^ • c!J - d^, b^ ■ 1/p^ and c^ • w^ (1 -

l,...,n) problea (P) reduces to problem (Pli^)- Similarly, when a^ - 

. 1 , b, . l/(«“ ‘l(l - e'*'’()) ind c, - v(,(P -

• 1) (1 - 1.... n) problem (P) reduces to problem (P^^p^*

We observe that for any Jobs h and 1 (h,1 • l,...,n) where h < 

if constraints (6.6) and (6.7) yield

•>1̂  ‘ V h « Vh- I*-®»

let us define

' i - " * " h c l l.... 1) •Vh>/'>1 <* ■ '.... ")•

In view of (6.8) adding the constraints

0 < Zi < Ci (1 ■ l,...,n) (6.9)

to problem (P) does not alter Its solution. Since < c^ (1 -

l,...,n), these new constraints Imply the original constraints (6.7)



which may therefore be dropped.

An elgorlthM to solve problem (P) 1$ now presented. It Is e 

generalization of the algorithm derived by Potts and Van Wassenhove 

[80] for problem The proof of optimality follows that given

by Potts and Van Wassenhove for (P^|^)(see Appendix). In the 

algorithm the variable 0 indicates whether Z|̂  Is set to Its lower 

bound value given by (6.6) or Its upper bound value given by (6.9) 

and the variable L6 provides the lower bound.

Algorithm IP

Step 1 . Set D - 0, LB - 0 and k - 1.

Step 2 . Set 0 - 0 -f a|̂ /b|̂ . If D < 0, go to Step 4.

Step 3 . Set LB - LB -f and set 0 - 0 .

Step 4 . If k - n, stop. Otherwise set k - k+1 and go to Step 2.

Clearly, Algorithm LP solves problem (P) In 0(n) time.

required to sequence the Jobs. In our Implementation a heuristic 

method, which Is applied at the top of the branch and bound search 

tree, provides the sequence Initially. Thereafter, the sequence 

which currently corresponds to the best solution found by the branch 

and bound algorithm Is used to generate the lower bounds L6|^p^ or

'■®EXP-

The best value of the non-negative a In (P^yp) Is found by using 

golden section search over the Interval [0,1]. If the Initial 

Interval Is [0,1], the two points are placed at I-(i and 0, (I.e., at 

approximately 0.382 and 0.618). However, when the Interval Is 

reduced, one of the old points will then be In the correct position
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with respect to the new Interval. With golden section search, there

Is a constant reduction of the Interval at every step such that the

length of the Interval converges linearly to zero [29]. In our

Implementation, 20 iterations of golden section search are performed 
*

to find a ‘good’ value a at the top of the search tree. A heuristic

method Is used to find a value « to be used within the search tree

since It is computationally too expensive to apply the golden section

search at each node of the search tree. Based on the results of

numerous tests with various rules to determine a, the following 
* * * 

heuristic Is adopted. For « < 0.0001 set ei > lOOOo and for « >

0.0001 set ei - 6«*/(5RDD i TF • 1) If SRDD -t- TF > 1.5 and « - 12«* If

5RDD + TF < 1.5, where ROD - {d^} - mln^^^

Is the relative range of due dates and TF - 1 -

d^/(nc"_l P{) the average tardiness factor.

6.5 A Lower Bound from Laqrangean Relaxation

In this section Fisher’s lower bound Is described, it Is 

obtained by performing a Lagrangean relaxation of the machine 

capacity constraints which restrict the machine to processing only 

one Job at a time. In this approach a multiplier Is associated with 

each of the P - p^ unit time Intervals during which the machine 

Is required to be busy.

The problem may be formulated using the zero-one variables n^^ 

(1 - l,...,n; t ■ 1,...,P) where



1 i f  the machine processes Job i in the time interval [ t - l , t ] ;

Recalling the notation in section 6.2 the problem may be stated as 

minimize w^max(C^ - d^, 0}

E {cj.... c^) (1-1...,.,n) (6.10)

i^^-l for t-C^-p^+l,...,C^ (1-1......n) (6.11)

*it“® for t-l,...,C^-p^,C^+l,.. .,P (i-1... (6.12)

-"■1 "it“* (t-i... .,p) (6.13)

î + pj < Cj for each arc (i,J) of Gp. (6.14)

To obtain a lower bound some of constraints (6.14) are relaxed 

and a Lagrangean relaxation of constraints (6.13) is performed. More 

precisely, let Gp be a subgraph of the graph Gp obtained by deleting 

arcs from Gp until each job has at most one immediate successor in 

the resulting graph. Arcs are deleted so that longest paths in the 

network are retained. It is assumed that Gp is connected: if not a 

dummy Job n+1 with a large due date is added to generate arcs (i.n-fl) 

for i - l,...,n that ensure that Gp is connected. Constraints (6.14) 

are replaced by

+ Pj < Cj for each arc (i,J) of Gp. (6.15)

The lower bound is obtained by performing a Lagrangean relaxation of 

constraints (6.13). Applying (6.11) and (6.12), the resulting bound 

is given by



■ .iricj.i («,MX{C, ■ d,, 0) ♦ Hj) - cf.,

subjtct to (6.10) and (6.15),

where \i • (|ij,...,»ip) Is a vector of multipliers corresponding to 

constraints (6.13). He discuss next the problem of solving this 

Lagrangean problem for a given p to obtain the lower bound.

Let be the set of Immediate predecessors of Job 1 (1 >

1.... n) In graph 6p. Assume that the Jobs are renumbered so that 1

< J for each arc (1,J) of Gp. The Lagrangean problem Is solved by a 

dynamic programming recursion defined on F^(t) which represents the 

minimum total cost of scheduling Job 1 and Its predecessors to be 

completed not later than time t, where the contributions to the total 

cost for each Job are Its weighted tardiness and a multiplier for 

each time period in which It Is scheduled. The following properties 

of Gp are used to find the lower bound LB^p(p).

(a) The graph Gp Is connected,

(b) Job n has all other Jobs as Its predecessors,

(c) each Job 1, where U  n, has exactly one Immediate successor,

(d) the Jobs are renumbered so that 1 < J for each arc (1,J) c Gp. 

This lower bound Is given by

LBl, (m) ■  F„(P) - cf.,

where F (P) Is found from the recursion equations

f^(t)•

• for t«0,...,C^-l

■1n(F,(t-l), F,^(t-p^) +

- d,, 0) ♦ for t-cj....

F,(ci) for t-C^+l,...,P

To find the Job completion times (1 • l,...,n) which correspond to 

the value F (P) that Is generated, the following backtracing



procedure Is perfomed. Usln^ the properties of Gp and the Job 

renuaberlng, Job n has no successors while all other Jobs have 

exactly one Imaedlate successor. Select C* as large as possible

‘' U r • (1 ■ l,...,n-l), Is chosen as large as

possible subject to ' Pj* where J Is the Imedlate successor

of 1, and F^(C*) < F^(C*-I).

The subgradient optimization method Is used to find values of 

the multipliers For each Iteration of this method the

Lagrangean problem Is solved In 0(nP) time. In our Implementation of 

this bound In a branch and bound algorithm, 100 subgradient 

optimization Iterations are performed at the root node of the search 

tree whereas at other nodes the multipliers are updated from their 

values at the parent node by performing 10 iterations.

6.6 A Lower Bound froei Dynamic Programming State-Space Relaxation

Following the techniques outlined 1n section 5.3 one can show 

that a lower bound can be obtained by mapping states representing 

feasible sets of Jobs (In recursion equations (6.1)) on to states 

representing the total processing time of Jobs In the set, (I.e., a 

state R Is mapped on to a state p^). Hence In the resulting 

relaxed problem the objective 

using the recursion equations

f,(t.j)-.

• for t»l,..

H.maxlt - di, 0) for t ■

(6.16)
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that are Initialized by settin9 f|(t,J) • • for t < 0 and f|(0,J) • 0 

(J • l,...,n). Recursion (6.16) is derived In a siiHar way to 

recursion (S.8) of the previous chapter. However, In this case we 

consider only those schedules for which Cj < Cj ( Cj (JcN), where Cj 

and Cj are obtained fro« Enaons’ rules, In an attempt to strengthen 

the bound.

We present here the method of Improving our lower bound as 

developed In section S.3.4. Assuming that the penalties are present, 

the lower bound Is obtained by finding *

^IcN ^1* Improved recursion equations

f(t,j;M- min .{j)K(t ■ Pj,1:x) ■IcN

Wjmax{t - dj, 0) + \jl for t ■ Cj,...,Cj

that are Initialized by setting f(t,J;X)> • for t < 0 and f(0,J;x)- 0 

(j - l,...,n). Recursion (6.17) is analogous to recursion (S.IS) when 

all modifiers are zero. This lower bound is computed In 0(nP) time. 

Initially all penalties are set to zero and thereafter they are 

updated by using an Iterative method given in section 5.3.4.

It Is worth mentioning here that we did not use the state-space 

modifiers given in section 5.3.5, because that we observed from 

our Initial computational experience that the computationally 

expense of Including the state-space modifiers q^ in recursion 

equations (6.17) Is not justified.

The subgradient optimization method Is used to find values of

the penalties X|.... x̂  ̂ (see section 5.3.4). For each iteration of

this method the dynamic programming recursion equations are solved in 

0(nP) time. The lower bound Is Implemented In a branch and

(6.17)



bound algorithiR In a slilUr way to L6̂ |̂ : at the root node 100 

subgradient optimization Iterations are performed whereas the 

penalties are updated from their values at the parent node by 

performing 10 Iterations at other nodes of the search tree.

6.7. Branch and Bound Algorithms

This section describes a branch and bound algorithm which may 

employ any of the lower bounding schemes described above. The 

general framework for our algorithm follows that of Potts and Van 

Uassenhove [80].

Initially, the precedence graph Gp Is constructed from Emmons* 

dominance rules as described In Section 6.2. Also at the root node 

of the search tree two heuristic methods are used to schedule the 

Jobs. The better of the two heuristic sequences Is used to provide 

an Initial upper bound. The first heuristic method selects a Job 

with no successors In Gp to be sequenced In the last unfilled 

position In the sequence: when there Is a choice, one Is chosen for 

which Its weighted tardiness when sequenced In this last position Is 

as small as possible. The selected Job Is deleted and the process Is 

repeated until all Jobs are scheduled. The second heuristic Is a 

straightforward generalization to the case of weighted tardiness of 

the method of Wllkerson and Irwin [95].

The generalized version of the Uilkerson and Irwin heuristic 

method Involves two partial sequences, o and w for scheduled and 

unscheduled Jobs respectively. Let the Jobs of v be sequenced in EOD 

(earliest due date) order. Using the partial ordering o, let w^T^(o) 

Is the weighted tardiness of Job 1 of o. The statement of the method 

will now be given.



Gtntrallzed WHkerson and Irwin Heuristic

s u p  1. Choose v>{«(l),,,.,i(n)) where < ... ( d^^^j and 

0 Is the empty partial sequence.

Step 2 . Let 1 and J the first two jobs In w.

Step_3. If w^T^{o1j) + WjTj(olJ) > WjTj(ojl) + w,T^(oJ1). 

then set 1-J go to Step 4. Otherwise add Job 1 to 

the end of o, remove 1 from v and set 1-J. If Job 1 

Is the only Job In w sequence Job 1 last In a and 

stop. If there exist more than one Job In w, 

let J be the second Job In t and repeat Step 3.

Step 4 . If 0 Is empty, sequence Job 1 first In o, and go to 

Step 2. Let k be the last Job In o and let o be 

the partial sequence obtained by removing Job k from a.

If k1) + w^T^(o k1) > w^T^(o Ik) + "|jT|j(o Ik),

go to Step 5. Otherwise, add Job 1 to the end of o, 

remove Job 1 from t and go to Step 2.

Step 5 . Remove k from o, return It to w In EDO order and go 

to Step 4.

The branch and bound algorithms use a backward sequencing

branching rule which generates a search tree for which nodes at level

1 correspond to final partial sequences in which Jobs are sequenced

In the last l positions. A newest active node search selects a
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node fro« which to brench.

A branch of the search tree in which a Job Is added to a final 

partial sequence Is discarded unless all successors of that Job In Gp 

appear In the final partial sequence. Further nodes are ellnlnated 

using Elnaghraby’s Lenna: If In any subproblem It Is possible to 

sequence a Job last so that It has zero tardiness, then a single node 

Is added to the search tree which sequences that Job last In the 

subproble«. A further atte«pt Is made to eliminate nodes using two 

tests which are based on the dominance theore« of dynamic 

programming. The first of these tests uses an adjacent Job 

Interchange to compare the sum of weighted tardiness for the two 

Jobs most recently added to the final partial sequence with the 

corresponding sum when these two Jobs are Interchanged In position;

If the former sum Is larger than the latter, then the current node Is 

eliminated, while If both sums are the same, some convention 1$ used 

to decide whether the current node should be discarded. The second 

test uses the Job labelling procedure of Schräge and Baker to 

construct an address for each subset of Jobs that can form a final 

partial sequence of Jobs which Is consistent with the precedence 

graph Gp. Storage space limits us to the comparison of only those 

final partial sequences with an address of L or less: In our 

Implementation the value of L depends on the lower bounding scheme 

adopted, although In all cases 25000 < L < 34000. Using the 

labelling scheme, we can easily check whether such a final partial 

sequence can be compared with one that has been previously generated 

and, If so, whether the current node Is dominated. When It Is not 

dominated, the total weighted tardiness of Jobs of the current 

partial sequence Is stored, replacing any previously stored quantity



1n that address.

For all nodes that renaln after the do«1nance tests are applied.

Me coMpute one of the lower bounds ^^EXP* “LR ' ®SSR* If

the lower bound for any node is greater than or equal to the smallest 

of the previously generated upper bounds, then that node Is 

discarded.

6.8. Computational Experience

The algorlthes were tested on problems with 20, 30, 40 and 60 

Jobs that were generated as follows. For each Job 1, an Integer 

processing time p^ and an Integer weight w^ were generated from the 

uniform distribution {1,10]. Problem ‘hardness’ Is likely to depend 

on parameters RDO and TF called the relative range of due dates and 

the average tardiness factor. Having computed P ■ p^ and 

selected a value of RIX) and TF from the set {0.2, 0.4, 0.6, 0.8,

1.0], an Integer due date d^ from the uniform distribution [P(l • TF 

- RDD/2), P(1 - TF -I- ROD/2)] was generated for each Job 1. Three 

problems were generated for each of the 25 pairs of values of ROD and 

TF, yielding 75 problems for each value of n. Note that these 

problems are generated in the same way as those of Potts and Van 

Wassenhove [80] except that In the latter case Integer processing 

times are generated from the uniform distribution [1,100]. Our 

method yields smaller processing times with the result that the 

branch and bound algorithms that use the lower bounds L8^p and 

which require pseudopolynomlal time are favoured by these test 

problems. Also, these problems with a small number of distinct 

processing times tend to be easier because the conditions of Emmons’ 

dominance rules are easier to fulfil.



The dynamic progreiMing elgorlthns of Schräge and Baker, and 

Lawler, denoted by 0PS6 and DPLAW respectively, and the branch and 

bound algorUhns B6LIN, B6EXP, B6LR and BBSSR which use the linear, 

exponential, Lagrangean relaxation and dynaalc prograanlng 

state-space relaxation lower bounds respectively, were coded In 

FORTRAN V and run on a CDC 7600 coaputer. For the four branch and 

bound algorlthns, whenever a problem was not solved within a time 

limit of 60 seconds, computation was abandoned for that problem.

Also, due to the storage limits of the two dynamic programming 

algorithms, problems are unsolved If the sum of labels for algorithm 

DPSB exceeds 16000 and If the number of feasible sets with 

cardinalities differing by at most one for algorithm DPLAW exceeds 

48000. Algorithms B6LR and BBSSR were not tested on the problems 

with 40 and SO Jobs because of the discouraging results obtained for 

n - 30.

Results comparing the performances of the algorithms are given 

In Tables 6.1 and 6.2. For each value of n, Table 6.1 lists the 

median computation time In seconds required by each algorithm to 

solve the test problems and also, when any exist, gives the number of 

unsolved problems. For algorithm OPSB when n > 40 and n - SO and for 

algorithm DPLAU when n - SO, however, because over half of the 

problems are unsolved the median cannot be computed. Table 6.2 lists 

the median sum of labels for Algorithm DPSB, the median numbers of 

feasible sets generated for algorithm DPLAW (excluding the entry for 

n • so where the median cannot be computed) and the median numbers of 

nodes In the search tree for the branch and bound algorithms.

Before giving an overall comparison, It Is appropriate to 

discuss the algorithms In pairs. The dynamic prograumlng algorithms



T « b U  6.1

Median conputatlon time In seconds and nunbers of unsolved problens

n DPSB DPLAW BBIIN BBEXP BBLR BBSSR

20 0.03 0.06 0.03 0.05 2.48 1.65

30 0.15:12 0.47: 2 0.14 0.24 6.91: 2 7.96: 3

40 - :43 4.75:25 0.67: 4 1.28: 3

SO - :45 - :39 2.03:16 5.05:19 - -

able 6.2

Median SUMS of labels for DPSB, Median nuMbers of feasible sets for

OPLAW and Median nuMbers of nodes for the branch and bound algorlthMs

n DPSB OPLAW BBLIN BBEXP BBLR BBSSR

20 504 434 91 104 53 28

30 7820 3799 319 456 135 112

40 73253 33873 1162 1781 -

50 422340 • 2717 4128 - ■



are coapared first, followed by the branch and bound algorlthas BBLIN 

and BBEXP which use quickly coaputed lower bounds. Lastly, 

algorlthas BBLR and BBSSR that use tighter lower bounds which require 

pseudopolynoalal tiae are discussed.

We first observe froa Table 6.1 that although algorltha OPLAW 1$ 

able to solve several probleas that are unsolved when algorltha OPSB 

1$ applied, coaputatlon tiaes are generally larger than those for 

algorltha OPSB. These results are In accordance with those obtained 

by Potts and Van Wassenhove [81] for the total tardiness problea but 

at variance with those given by Kao and Queyranne for the asstably 

line balancing problea where Lawler’s algorltha Is found to require 

less coaputatlon tiae than the Schrage-Baker algorltha. It would be 

aisleading to suggest froa our results that one of these algorlthas 

Is clearly superior to the other since algorltha OPSB Is fast and 

easy to code whereas algorltha DPLAW Is able to solve larger probleas 

using the saae aaount of core storage.

Tables 6.1 and 6.2 Indicate that algorltha BBLIN Is superior to 

algorltha BBEXP. However, the results for n - 40 show that there Is 

one less unsolved problea for BBEXP. so our new exponential bound 

does have soae aerlts. At the root node of the search tree where the 

golden section search Is used to find « , the bound LB^^^p Is 

soaetlaes substantially better than LB|^j^ for probleas with saall TF 

(TF < 0.6) and tends to be only slightly worse for probleas with 

large TF (TF > 0.8). Unfortunately, the bounds are not tight enough 

to Justify the use of the golden section search at each node of the 

search tree. In spite of much Initial experlaentatlon with various 

heuristic aethods to coapute values of « within the search tree, we 

are unable to find a aethod which yields saaller search trees than



those genereted by elgorlth« BBLIN.

We next observe fro« Table 6.1 that algorlth« B6LR appears to be 

slightly better than algorlth« BBSSR for the proble«s tested,^ even 

though the «edian nunbers of nodes In the search tree are larger. 

However, in both cases co«putation ti«es are large. Results of 

Abdul'Razaq and Potts {1] for the proble« in which Jobs have costs 

for earliness as well as for tardiness, where there are no do«inance 

rules analogous to those of Eanons, show that algorith« BBSSR is 

superior. The «ost likely explanation of the difference is that the 

lower bound LB|̂ |̂  uses some of the constraints of Gp whereas LB^^p 

relaxes all such constraints after the earliest and latest co«pletion 

ti«es are coi^>uted. Initial experi«ents with a modified version of 

LB$sp which retains some of the precedence constraints of Gp, 

indicate that the improvement to the lower bound is insufficient to 

compensate for its extra computational requirements.

Lastly, we give an overall comparison of the algorithms. 

Algorithm BBLIN is the most efficient and is able to effKtively 

solve problems with up to 40 Jobs. Ignoring BBLIN, our new algorithm 

BBEXP is the most effective. The dynamic programming algorithms 

require too much core storage to compare favourably with these branch 

and bound algorithms although computation times are small for 

algorithm OPSB. The tighter lower bounds employed in algorithms B8LR 

and BBSSR successfully limit the size of search trees but by an 

insufficient amount to Justify their heavy computational 

requirements. For all algorithms, unsolved problems tend to lie in 

those classes which have traditionally been considered the hardest.



6.9. Concluding Remarks

In this chapter we discuss and conpare existing and new 

algorlthais for the single aiachlne total weighted tardiness proble«. 

The branch and bound algorltha of Potts and Van Uassenhove [80] 

(66LIN) which obtains a lower bound fro« a linear function of 

completion times problem Is the most efficient and Is able to solve 

problems with up to 40 Jobs. A new but s1«11ar algorithm (BBEXP) 

which replaces the linear function with an exponential function also 

yields reasonable results. For the other branch and bound algorithms 

which use Lagrangean relaxation of machine capacity constraints 

(BBIR) and dynamic programming state-space relaxation (BBSSR), the 

computational requirements of the lower bounds are too time consuming 

to yield a competitive algorithm. Results for the Schrage-Baker 

algorithm (DPSB) show that dynamic programming algorithms can yield 

small computation times, although for larger problems dynulc 

programming Is limited by computer core storage requirements, even 

when special attempts are made to minimize storage (DPLAU).

To solve larger problems, a tighter lower bound than that 

obtained from a linear function of completion times Is needed. 

Ideally, It would require polynomial time, although a non-iterative 

pseudopolynomlal scheme would not be ruled out. Unfortunately, there 

Is no obvious way to approach the derivation of lower bounds having 

these desired characteristics.



THE T W «m CH IN E FLOW SHOP WQBLEH WITH TRANSPORTATIOW TIME 

BETWEEN THE MACHINES

7.1 Introduction

The problee nay be sU t e d  as follows. Consider n Jobs (numbered 

and two machines (labelled A and B). Neither of the machines 

can process more than one Job at a time. Each Job is processed first 

on machine A, then Is transported to machine B, and lastly Is 

processed on machine 6. For each Job 1, a^ and b^ denote the 

processing times on machines A and B respectively and denotes the 

transportation time. The objective Is to find a schedule that 

minimizes the maximum completion time on machine B. Denote this 

problem by F2

When each transportation time Is zero, Johnson [43] shows that 

there exists an optima! schedule In which the processing orders on 

the two machines are Identical. He also shows that the problem can be 

solved In 0(n log n) steps by sequencing Jobs 1 with a^ < b^ first In 

non-decreasing order of a^ followed by the remaining Jobs 1 (with a^

> b^) sequenced In non-increasing order of b^.

This result of Johnson has been extended to the two machine flow 

shop problems with arbitrary time lags (Mitten [68]). Mitten defines

the start lag h^ > 0 of Job 1 (1>1.... n) as the minimum time

Interval between starting Job 1 on machine A, and starting It on 

machine 6. Similarly the stop lag h^ > 0 of Job 1 Is the minimum time 

Interval between completing Job 1 on machine A and completing It on 

machine B. Assuming the same processing order on each machine, this



generalized problea Is solved as follows. Defining h^- nax(h^- a^, 

h^- b^) and applying Johnson's algorithm to the processing times 

(a^-fh^, b^-fh^) w i n  produce an optimal schedule. Johnson [44] has 

discussed the same problem presenting another proof of optimality.

It Is Interesting to examine some variations of the problem with 

zero transportation times. When there are precedence constraints on 

the jobs (I.e., If Job 1 has precedence over Job J, then for each 

machine Job J can not be processed on that machine before Job 1 has 

been processed on that machine) Kurlsu [48] presents an algorithm for 

the case of parallel chain precedence constraints and Sidney [90] 

generalizes this algorithm to solve problems with serles-paralle! 

precedence constraints. For the case of general precedence 

constraints, Honma [70] shows that the problem Is NP- hard. Hariri 

and Potts [36] derive a lower bound based on Lagrangean relaxation 

and use It In branch and bound algorithms based on three different 

branching rules.

An extension of Johnson's algorithm to the two*mach1ne flow shop 

scheduling problem with setup times, In which the processing orders 

on the two machines are identical. Is given by Yoshida and Hitomi 

[96]. Also their result and Mitten's result are extended by Szwarc 

[92] to the case In which each Job has a setup time, a processing 

time and removal time. (If Job 1 is sequenced immediately before Job 

J on one of the machines, then after Job 1 Is completed on that 

machine a removal time for Job 1 followed by a setup time for job J 

are required before Job j can start its processing. For the first 

operation on a machine only a setup time is needed and for the final 

operation only a removal time Is needed.)

When there Is a non-negative release date r^ for each job 1,



Lenstra et a1. {60] have shown that the problem Is NP-hard, and 

branch and bound algorithm for the problem proposed by Grabowskl 

{30). Three heuristic methods are presented by Potts {77] of which 

two have a worst-case performance ratio of 2, while the third one is 

modified to give an improved worst-case performance ratio of 5/3.

For the case of transportation times, Lenstra {56] claims that 

the problem is NP-hard, which indicates that the existence of a 

polynomial bounded algorithm to solve the problem is unlikely and an 

enumerativo approach is required.

In this chapter, a branch and bound algorithm is used. Some 

basic results, a heuristic method and its worst-case analysis are 

given in Section 7.2, Section 7.3 contains a description of our 

branching rule together with a derivation of single and two-machine 

lower bounds. An alternative lower bound based on Lagrangean 

relaxation is given in Section 7.4. The use of dynamic programming 

dominance for this problem is discussed in Section 7.5. The 

algorithms for solving this problem are given in Section 7.6. 

Computational experience is presented in Section 7.7. Concluding 

remarks are given in Section 7.8.

7.2 Heuristic Method

7.2.1 Some basic results
2

In the case of our problem there exist (n!)

possible orderings of the jobs on machines A and 6. The following 

Lemma reduces the number of possible schedules that have to be 

considered to nl only. Let C^ be the completion time of Job i on 

machine A.



Lemma (7.1). If o Is an optimal sequence on machine A, then an 

optimal sequence o on machine B Is obtained by ordering the jobs 

according to non-decreasing arrival times.

Proof. Let for every 1 c o, Is the arrival time at machine

B. Then the sequence o on machine B which Is obtained by ordering 

the Jobs according to non-decreasing r^ Is an optimal sequence as 

required. □

For a special case of the two-machine flow shop scheduling 

problem with transportation times, an optimal sequence minimizing the 

maximum completion time is given by the following result.

every 1, J, then there exists an optimal schedule in which the two 

processing orders are Identical. Furthermore the common processing 

order Is obtained from the optimal processing order for the 

problem having processing times (a^-ft^,b^-fl^).

Proof. Assume that we have a sequence on machine A such that Job 1 Is 

sequenced before Job J. We want to show that Job 1 precedes Job j on 

machine B. (i.e., we want to show that the arrival time of Job 1 on 

machine B Is less than or equal to the arrival time for Job J.) If

and Cj are the completion times of job 1 and Job j respectively, then

A
and i



C^+l^ < cJ+ij+lj since Ij V U .

Hence < Cj+lj is required. Johnson [43] shows that by 

considering the processing tines A,

problen, an optlnal sequence Is obtained. □

Theoren (7.1) shows that Johnson's rule guarantees an optlnal 

solution for the case < ij^lj for every 1,j. If the processing 

tines a^ and b^ are Interchanged (1>l,...,n), then an equivalent 

Inverse problen results.

Corollary (7.1). If In an problen we have < b^+lj for

every 1,J, then there exists an optlnal schedule In which the two 

processing orders are Identical. Furthemore the coiMon processing 

order Is obtained fron the optlnal processing order for the 

problen having processing tines (a^4i^,b^*i^).

Proof. We prove this corollary by applying theoren (7.1) to the 

Inverse problen. □

We shall use Theoren (7.1) and corollary (7.1) later In deriving 

a lower bound. They also Indicate an ordering of the Jobs In the 

heuristic nethod of the next section.

7.2.2 Description of heuristic nethod

It is well-known that the conputatlon can be reduced by using a 

heuristic to act as un upper bound on the naxinun conpletlon tine 

prior to the application of a branch and bound algorlthn.



An obvious heuristic 1$ to order the Jobs by applying Johnson’s 

algorlthn to the processing tines and use this

processing order on each machine. We denote this heuristic by J.

With the help of Lewiia (7.1), and Theorem (7.1) which are 

given above we can Improve heuristic J as follows. The procedure 

starts by applying Johnson’s algorithm to the processing times 

(a^+l^.b^il^) to obtain a processing order for machine A. If we use 

Lemma (7.1) above we obtain a sequence on machine 6 by ordering the 

Jobs according to non-decreasing arrival times. If Theorem (7.1) 

above Is not satisfied, this means that the schedule obtained Is not 

optimal In general. Then, we may possibly decrease the maximum 

completion time by considering the Inverse problem: the 

sequence obtained for the (original) machine 6 Is reversed and used 

as a sequence for the first machine In the Inverse problem. A 

sequence for the second machine In the Inverse problem (machine A for 

the original problem) Is obtained by Lemma (7.1). Now we can repeat 

the same technique on machine A, continuing until the maximum 

completion does not decrease from one Iteration to the next. Note 

that the sequence of values obtained by this procedure Is 

necessarily non-increasing. Denote this heuristic by H.

7.2.3 Worst-case analysis 
*

Suppose that denotes the minimum value of the maximum

(C^ ) max ' max'

when the Jobs are sequenced using heuristic J (heuristic H).





Tabu 7.1. Data for example 7.1

1 1 .. n/2 n/2 +1 ... n n+1

a, k ... k k+c .. k+e e

•l « •.. 0 0 .. 0 (n+l)k

b^ k+c ... k+t k .. k c

timal sequence on machine A Is (n4-l,l,...,n)

•(n+l)k as c— ► 0. The sequence which Is obtained by Johnson’s 

algorithm Is (l,...,n/2,n+l,n/2+l,...,n) with C^^jj-(2n+l)k as t— ►

0. Hence ^  arbitrary close to 2 as

required. Q

We also observe, that if heuristic J Is applied to the Inverse 

of the problem 1r example 7.1, then can be arbitrarily

close to 2. Thus. In terms of worst-case performance there Is no 

advantage In applying heuristic J to the original problem and Its 

Inverse and taking the better solution.

Example 7.2. We show that, for arbitrary n the bound 2 is the best 

possible. Consider the n-Job problem specified by the data In table 

7.2.



Clearly (n,l,...,n-l) Is an optinal sequence on machine A, with 

^max ^ ^  heuristic J Is applied, the sequence

(1.... n) w H h  Cjljj, -(2n-l)k is c— > 0. Hence -2-1/11 iHilch

can be arbitrary close to 2.

The example shows that when the sequence (l,...,n) is used on 

machine A, a non-decreasing order of arrival sequence on machine B Is 

also (l,...,n). Thus, In terms of worst-case performance, there is no 

advantage In applying heuristic J to obtain an ordering on machine A 

and then using Lemma (7.1) to obtain an ordering on machine B.

For the heuristic H In which a sequence of schedules Is

case we suspect the bound Is not the best possible. The following 

example provides the largest value of that we found.

Example 7.3. The 3-Job problem specified by the data In table 7.3.

Table 7.3. Data for example 7.3.

1 1 2  3

‘'I

Johnson’s algorithm gives the sequence (1,2,3) on machine A and 

Lemma (7.1) gives the sequence (1,2,3) on machine B yield a maximum 

completion time of 6. If we use the heuristic H (I.e., sequence

(3,2,1) for reverse problem), then we obtain the same schedule . An 

optimal schedule Is (3,1,2) on machine A, (1,3,2) on machine B which 

5l,es c;„-5.

- 128



7.3 Sii>q1t >f»d Two-Hichint Bouods

We use a forward branching rule In which each node of the search 

tree corresponds to an Initial partial sequence of Jobs. Each new 

branch that 1s added represents the addition of another Job to the 

corresponding Initial partial sequence.

In this section, we shall be Interested In deriving a lower 

bound on the Maxlauie completion time. Let S be the set of unsequenced 

Jobs, 0 be an initial partial sequence of Jobs, the last of which Is 

completed on machine A at tine C^(o).

7.3.1 Single-machine bounds

To construct a lower bound LB^ on machine A, we relax the 

capacity constraints on machine B (i.e., machine B can process more 

than one Job at a tine). A 1//L problem results having due dates

«1 -(i^4^b^). If q^ -i^-fb^, this problem Is solved by the EDD rule: 

Jobs are sequenced In non»Increasing order of q^ (1c S). Calculate 

completion times for this sequence, and for Jobs In o, the lower 

bound LB^ Is given by

LBj(- M X ,  (Cj ♦ q,)

Now we shall construct the second single-nachine bound L6g on 

machine B. If we relax the capacity constraints on machine A, (I.e., 

machine A can process more than one Job at a time) for Jobs of S, 

then the problem is equivalent to For a job 1 in o then r^

is straightforwardly written as otherwise r^-C^(o)-fa^4^i|.

To obtain a lower bound on the maximum completion time, sequence the 

Jobs In non-decreasing order of r^. Assuming that the Jobs are 

renumbered so that the resulting sequence Is (l,...,n), we compute



C| •r, fb| t *nd

q  -max {q.j, r^) ♦ , 1-2.... n.

7.3.2 Two-iachine bounds

If the transportation tines correspond to the conditions of 

Theoren (7.1) (or corollary (7.1)), then the problen Is solved. 

However, if they do not, sone of then can be reduced in value until 

the conditions are satisfied at which stage a lower bound 1$ 

obtained. To satisfy the conditions of Theoren (7.1) (or corollary

(7.1)), let e-nin^^^ (a^H^), g«nax (e,f).

Reduce the value of to g (i.e., for each Job i with >g, set 

t^-g). Let U^>9)> *nd apply Johnson’s algorithn to the

relaxed problen with processing tines (a^-fl^.b^-fi^) to obtain

»iv-

For the special case when 0 is enpty, we shall show later that this 

bound LB($) is greater than or equal to the single nachine bound LBg, 

Suppose that sone of the unscheduled Jobs are ignored and 

LBj(S ) is conputed for the renaining unscheduled Jobs in $ . For a 

suitable choice of S , it nay be the case that LBj(S ) > LBj(S). A 

suitable set S will contain Jobs 1 having relatively large 1^. The 

following heuristic is used to find S .

Let us first define a block as a period of continuous



utilization of the Machine 6 (when we calculated LBg In section 

7.3.1} such that the last Job In the block coapletes Its processing 

at a time t, which Is less than the ready time of the first Job In 

the new block. Assume we obtain the blocks S^,... and let S be 

the set of Jobs In block S^. Instead of Immediate computing L6^(S ), 

we Investigate the possibility of computing LBj(S ) where S 3  S .

The set S Is obtained from $ by successively Introducing Job J when 

the conditions below are satisfied. The search for such Jobs starts 

with block j proceeding from the last Job to the first Job In this 

block. The blocks respectively are searched In a similar

way. The Job J Is Introduced to give $ -S U (J} If It appears 

likely that LBj(S ) > LBj(S ). Firstly, by Introducing Job J Into the 

set S an additional contribution to the lower bound of a^ or bj will 

result. However, the reduction In the transportation times need to 

satisfy the condition of Theorem (7.1) (or corollary (7.1)) may be 

large after Job J 1$ Introduced. Let l«-max^^^' (l^), e >m1n^^^' 

(a^+t^l, f -mln^jj' (b^+i^l, g -max (e ,f }, e -min (e , »j+tj). 

f -min (f «bj-fij), and g -max (e , f }. Then when the set S Is used 

the maximum reduction In transportation time Is given by max 

U**9 tO}* The corresponding reduction to the transportation time 

when the set S Is used 1$ given by max (i*-g ,0). Thus, If the 

difference between these reductions Is less than min the set

S should be used In preference to S . Thus, a Job J Is Introduced If

max (l«*g ’ 0} • max (1 ,̂ *g , 0) < min (aj, bj}.

If this condition Is satisfied, then we reset S -S and attempt to 

augment S further. If the test Is not satisfied for any Job J, a







subjtct to (7.1).

In this Lagrangean proble« there Is no constraint Involving both
o

and C^. Thus, the Lagrangean problem becomes

L(V)^1n {cj,, V,C* ♦ Cj,, - ♦ cj., X,(l, + b,)

L(X)-m1n {e J^j X^CJ) ♦ min

*  "̂ i-i * '’t>

subject to (7.1).

Next we discuss how the Lagrangean problem Is solved when X Is 

given. The first term 1n the Lagrangean function Is minimized by 

applying Smith's rule [91] (sequencing the Jobs In non>1ncreas1ng 

order of x^/a^). To minimize the second term - c"_| x^ C®), we 

observe that C® < for all 1. Therefore, c!|_j • x^ C® Is 

minimized, also by applying Smith's rule: the Jobs are sequenced In 

non-increasing order of *x^/b^ (1>t>, In non-decreasing order of

x^/b^) and scheduled (with no Idle time between Jobs) so that the

B B
last Job Is sequenced to be completed at time where Is yet 

to be determined. Let (o(l),...,o(n)) denote the sequence determined 

by Thus, for our schedule

_n » rb r® \ r® 
‘'max ■ *-1-l ^ri ■ W  * ^o(n)‘'max

^ ( n - l ) * W  ■ '’o(n)> ^ ( l ) ( ‘'»ax ■ '’o(n) ■ ••• ■ *’o(2)l

which can be written as
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‘m-1 ' i- i

wh«r« V 1$ non-negative constant. If n"^j > 1, then - c"^j

B B
x^C|) can be aade arbitrary s m II by increasing Consequently,

we use mltlpliers which satisfy the condition < 1. Thus

^^■ax ‘ ^1-1 ^l^i^ winiiized by setting to be as snail as 

possible, subject to the constraint that Job o(l) can not have a 

negative start time. However an improved lower bound is obtained by 

using the improved constraint > T, where T«LBg (given in section 

7.3.1). Then Is minimized by scheduling the Jobs

in the interval [T • b^, T]. The third term in the Lagrangean

function is constant. The value of the multipliers X>(Xj,...,x^) can 

be found using the subgradient optimization technique. The general 

framework for our subgradient optimization follows that of section 

5.3.4. Initially, multipliers X^®^, where X^®|«l/n for each i, are 

used. Thereafter, at the completion of iteration k-1 of the method 

for which is the vector of multipliers, the value L(x^*^'^^) of

,-cf * 1, * b, - cj,

The updated nultlpllers (1-1,...,n) are coae>uted

.(k-l) (UB - L(X'(k-1)

■ .̂1 (f]'“ ' ' ) '

is the step length at Iteration k-1 (initial step length-here hC“ »

h^^)> 2) and U6 is an upper bound, given in section 7.2. If x^ < 0 

(i*l,...,n), we set x^-0 and scale the multipliers (i.e., x^ •



7.5. Dynialc Progrwii>g Doaininf

Oomlriinct rules usually specify whether a node can be 

ellilnated before Its lower bound Is calculated. Clearly, dominance 

rules are particularly useful when a node can be eliminated which has 

a lower bound that Is less than the optimal solution.

Prior to applying the branching rule at the second level of the 

search tree or below, the dynamic programming dominance theorem Is 

applied In which an Initial partial sequence o containing r (> 2) 

Jobs, and the Initial partial sequence v obtained by Interchanging 

the last two Jobs of o are compared.

Let C^(o) the completion time of Job 1 of the partial sequence 

0 on machine A, and h^ • -t- Is the arrival time at machine B for

each Job 1 of o. Let T - C^(o) * ^ 1^ (where S Is the

set of unsequenced Jobs) be the minimum time at which an unsequenced 

Job 1c S Is ready to start processing on machine 6. Suppose the Jobs 

of 0 and t are sequenced according to their arrival times h^, such 

that the resulting sequences are o >{o (1),..., o (r)) and 

f «(v (l),...,v (r)). Let C^(o) the completion time of Job 1 on 

machine B.

We are Interested In Idle time on machine 6 which occurs after

time T. For Instance Job o (1) (1-1.... r-1) for which C'0 ( 1) > T,

contributes an Idle time max (1)’ ® ^

> T the Idle time number for o, l^(t). Is the total time that machine 

B Is Idle, during the Interval [T,t], when job o (1) (1-1,...,r) Is

scheduled to be completed on machine B at time C' 

number I^(t) for v 1s defined similarly.

0 (1)
. The Idle time



Th co rw 7.4. i do«tnates o, 1f I^(t) < I^(t) for t > T.

Proof. We show that the Maxlatuia coapletlon tine resulting fro« the 

sequence tT on «achine A Is not greater than the «axinu« co«p1et1on 

t1«e resulting fro« the sequence or on «achine A. Choose Job k from t 

so that Its arrival time on «achine B Is as s«a11 as possible. 

Consider the ordering, on «achine B, obtained by sequencing the Jobs 

In non-decreasing order of the arrival times resulting from the 

sequence or. In this ordering, the Jobs of o are sequenced according 

to 0 . Suppose that Job k Is scheduled to be processed In so«e 

Interval [tj, t|-fb|̂ ], where, by the definition of T, tj > T.

For the sequence i t on «achine A, consider the partial schedule 

In which each Job 1 of t has co«p1et1on time Insert Job k Into

this schedule so that k Is processed during the Interval [t2it2-̂ b|̂ ] 

where t2 Is chosen as small as possible so that t2 > t| and so that 

the machine Is Idle at time t2 or a Job Is completed at time t2 

(l.e., t2 Is the first point in time, at or after time t^, when the 

machine Is not processing a Job). Consider the Idle time numbers for 

these new partial schedules resulting from Inserting k on machine B. 

For the schedule based on o the Idle time numbers are given by I^(t)> 

I (t) for t < t,, and

Ig(t) - max il^(t) ■ b^, Ip(tj)} for t > t.
r

For the schedule based on v the idle time numbers are given by 

l|j(t)- I^(t) for t < t2 * and
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Table 7.4. Data for exaiaple 7.4

1 1 2 3 4 5 6 7

•i * 3 4 7 6 2 5

30 5 12 10 10 5 6

b, 4 8 3 5 1 2 1

Let 0 -(1,2,3,4), w -(1.2.4,3). $ M5.6.7). T

I^}«15-f7«22. Sequence the Jobs according to their arrival tines h^ 

on Machine B, hence 0 «(2,3,4,1), w -(2,4,3,1).

1

9

17

20

23

31

35

"1
9

17

21

26

27

30

He see that I,(t)-0 for t-22,23, I^(t)-1 for t-24, I^(t)-2 for

t-25.....30, Ig(t)-3 for t-31,...,35 and I^(t)-t-35 for t > 36.

SlBllarly I^(t)-0 for t-22,...,26, I^(t)-1 for t-27,...,30, I,(t)-2

for t-31.....35 and I^(t)-t-35 for t > 36. Clearly, I^(t) * I^(t) for

t > T.

Thus, the conditions of Theoren (7.4) are satisfied. 

Consequently o Is dominated.

7.6 The Algorithms

In this section we shall give a complete description of the two 

algorithms which are used to solve this problem. The general form of 

these algorithms consists of the heuristic method, dynamic 

programming dominance, the single and two-machine bounds, or the



single and Lagrangean relaxation bound. As Is often the case In flow 

shop scheduling, If a^ > b^, the Inverse problen Is solved

Instead of the original proble«.

7.6.1 AlgorlthwHl

Algorlthn(l) starts by applying the heuristic method given In 

section 7.2 to obtain a sequence, which gives us the completion time 

of each Job In this sequence. The value of the completion time of the 

last Job In this sequence forms an Initial upper bound UB on We 

also compute at the top of the search tree the set of Jobs S given 

In section 7.3.2.

The branch and bound procedure Is then started. For each node 

the dynamic programming dominance (Theorem (7.4)) Is used (at the 

second level of the search tree or below). The lower bounding 

procedure Is then applied (assuming that the node Is not eliminated) 

as follows. First we find LBg given In section 7.3.1, and LBj(S ) 

given In section 7.3.2. Having found 16 • max (LBg,L6|(S )}, for each 

Immediate successor of the node from which we are branching, the 

minimum lower bound Is then found. If It Is not less than the current 

upper bound, this node Is eliminated. Otherwise It Is selected for 

our next branching.

The branch and bound procedure continues In a similar way. 

Whenever a complete sequence Is obtained, this sequence Is evaluated 

and the upper bound Is altered If the new value Is less than the old 

one.
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7.6.2. AlqorlthwtZl
A1gor1tha(2) Is tht sane as al9or1th«(l) apart fro« the lower 

bounds used. At the top of the search tree, we compare LB|($ ) with 

L(X), where \ 1$ obtained by performing 100 subgradient opt1m1/*:at1on 

Iterations, and select the better bound. If LBj(S ) Is better we use 

the lower bound of algorlthm(l) above henceforth. Otherwise, L(x) 

given In section 7.4 Is used henceforth where x 1$ found using a 

heuristic described below.

When L(X) is used, we construct two values of X from the 

multipliers x^ used at the parent node and select the one which gives
1 ft j

the better lower bound. Our first value Is x • x . To construct X , 

the second value of X, assume that Job j is the last sequenced job.

We set Xj - 0 and Xj - 5̂  ̂ for 1-l,...,n; 1 t j. The lower

bound used Is LB-max{ L(x^), L(x^)} and we store X^ or x^ according 

to which gives the better bound.

7.7. Computational Experience

It Is well-known that the number of Jobs and any correlation 

between the two processing times for each Job are likely to affect 

the efficiency of a branch and bound algorithm. Problems with 10, 

15,20,26, and 30 Jobs are generated as follows. For each value of n, 

uncorrelated problems with Integers processing times a^ and b^ 

(1>l,...,n) were generated from the uniform distribution [1,100], and 

correlated problems with Integers processing times a^ and 

(1«l,...,n) were generated from the uniform distribution [I + 20e^,

20 4- 20e^] for e^ randomly selected from [1,2,3,4,5). This method of 

processing time generation follows that given In [36]. The 

transportation times for the uncorrelated and correlated problems



were generated froa the unifona distribution [1, R] for R selected 

froM {100,250,SOO, 1000,1500,2000,2500,3000}. For each value of n we 

have 5 uncorrelated problens, and 5 correlated problems for each 

value of R. This yields 40 uncorrelated, and 40 correlated problems 

for each value of n.

The two algorlthas given In section 7.6 were coded In FORTRAN 

IV and run on a CDC 7600 computer. Whenever a problem was not solved 

within the time limit of 60 seconds, computation was abandoned for 

that problem. The algorithms were not tested on the problems with 25 

and 30 Jobs having correlated processing time because of the 

discouraging results obtained for n- 20. Computational results for 

the uncorrelated and correlated problems are given In Tables 7.5 and

7.6 respectively.

For each algorithm, Tables 7.5 and 7.6 show average computation 

times, number of unsolved problems and the numbers of solved problems 

that require not more than 250 nodes, that require over 250 and not 

more than 1000 nodes and that require over 1000 nodes.

The results given In Tables 7.5 and 7.6 for problems with 

unCorrelated and correlated processing times Indicate the weakness of 

the lower bounds. The large number of unsolved problems for fairly 

small n (n-15 and n-20) shows that Introducing transportation times 

into a flow shop greatly Increases the problem difficulty. An 

analysis of unsolved problems Indicates that those with small and 

large R are relatively easy whereas those with R«500,1000, 1500, and 

2000 are the hardest.

The other factors that are likely to affect the efficiency of a 

branch and bound algorithm are the dynamic programming dominance 

(Theorem (7.4)}. We also tested the algorithms but with the dynamic



progruNlng doii1n«nce onitted. The results show a substantial 

increase in the nunber of nodes when the doainance check is not used, 

although average computation times are comparable. These results are 

not very surprising since it is computationally time consuming to 

test the conditions for dynamic prograiming dominance.

The results given in Tables 7.5 and 7.6 for problems with 

uncorrelated and correlated processing times are different. These 

correlated problems are clearly very much harder than the 

uncorrelated problems.

There is no evidence from our results that one algorithm is 

clearly superior to the other. Overall, algorithm(l) performs 

slightly better than algorithm{2) but differences in performance are 

very small.

Table 7.5. Computational results for problems with uncorrelated 

processing time

N ACT NPSl NPS2 NPS3 NU ACT NPSl NPS2 NPS3 NU

10 0.17 26 9 5 0 0.20 26 9 5 0

15 13.32 22 1 9 8 13.39 22 1 9 8

20 26.68 12 3 8 17 26.79 12 3 8 17

25 30.95 13 2 6 19 31.93 13 2 6 19

30 40.64 11 0 2 27 40.66 11 0 2 27



U b l »  7.6. Computational results for problem with correlated 

processing time

Algorlthm(l)

N ACT NPSl NPS2 NPS3 NU ACT NPSl NPS2 NPS3 NU

10 4.83 16 2 22 0 5.77 16 2 22 0

15 38.76 6 2 6 24 40.45 8 2 5 25

20 55.03 1 0 3 36 56.05 1 0 3 36

Variables at Tables 7.5 and 7.6

ACT : Average completion time In seconds for the 40 problems 

(Included the 60 seconds for the unsolved problems)

NPSl: Number of problems solved that require not more than 250 

nodes.

NPS2: Number of problems solved that require over 250 nodes and not 

more than 1000 nodes.

NPS3: Number of problems solved that require over 1000 nodes.

NU : Number of unsolved problems.

7.6. Concluding Remarks

Both of our algorithms are satisfactory for solving small sized 

problems, and their results for our test problems are nearly the 

same. However, a sharper lower bound Is needed to cut down the size 

of the search tree when the number of Jobs exceeds 10. The 

computational results Indicate that, for both algorithms, problems 

with small and large range of transportation times having up to 30 

jobs can usually be solved quite rapidly, although excessive 

computation times will occasionally arise.



Originally we Included LB^ as a lower bound, together with LBg 

and LBj(S ). but the computational results showed that exclusion of 

LB^ did not affect overall the lower bound. In addition, further 

iMprovements in the lower bound have been obtained through the use of 

the set S to modify the lower bound LB|(S^). Horeover the Lagrangean 

relaxation was used In an attempt to Improve the algorithms. In spite 

of all of the Improvements, unfortunately the lower bound still 

remains weak.

The computational results for this problem have also shown the 

Importance of dynamic programming dominance within a branch and bound 

scheme even If this only Involves the two most recently added Jobs.

Lower bound for the m-mach1ne general flow shop problem can be 

obtained by relaxing the capacity constraints on all except two 

machines. The lower bound for the resulting two-machine subproblems 

Is obtained using the procedure of section 7.4. The difficulty of the 

F2/li/Cmay problem, that we found supports the view that the general 

flow shop Is extremely hard to solve.



CHArtR EIGHT

COHCLUSIONS *W) RDWUCS

In this thesis, we have tried to present some Interesting 

results for selected Machine scheduling problems. We have looked at 

the following problems. Firstly, the 1/r^/Cw^U^ problem appeared to 

have a structure which would lead to fairly efficient algorithm. 

Furthermore, no algorithm for this problem has previously appeared In 

the literature. Secondly, we have looked at the 1/ /C(h^E^ ♦ **i^i) 

problem, because it Is interesting to discover whether objectives 

that are not non-decreasing functions of completion times are 

substantially harder than those which are non-decreasing. Our results 

Indicate that problems with non-decreasing objective functions are 

slightly easier. Thirdly, we looked at the 1/ /Cw^T^ problem because 

of Its practical Importance and the challenging nature of the 

problem, which has a long history. Lastly, we looked at the 

F2/l^/C^^ problem, because this problem Is a subproblem of the 

general flow shop problem and the genera! flow shop Is special case 

of the general Job shop. Hence good lower bounds for our problem 

could be used for the general flow shop problem. On the other hand If 

F2/l^/C^jj problem Is difficult. It confirms that the general flow 

shop and Job shop are very difficult.

We have discussed and compared existing and new branch and bound 

algorithms for these problems. The efficiency of these algorithms 

depends on the lower bounds, which are obtained by using the 

following techniques: relaxation of constraints: Lagrangean 

relaxation of constraints: dynamic programming state-space
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rtUxatlon; relaxation of objective and linear programilng theory.

Our results for 1/ proble« show that the non-iterative

heuristic Method Is coMputatlonally aore effective than the 

subgradient optlnlzatlon method for deriving lower bound. Also, our 

results for the C(h^E^ * w^T^) problem show that branch and bound 

algorithms that employ lower bounds obtained from the dynamic 

programming state-space relaxation method provide satisfactory 

results. It seems likely that this Idea of computing lower bounds by 

using dynamic programming state-space relaxation could be effectively 

applied to other machine scheduling problems such as problem of 

minimizing total weighted tardiness In a two-machine flow shop. In 

view of the lack of any algorithm In this area, this approach seems 

an Interesting topic for future research. Lastly, our results for the 

l/r^/Cw^U^ problem show that lower bound can be obtained by applying 

a heuristic to the dual of a linear programming relaxation of the 

problem. Again, this method could benefit from further development. 

Also, dominance rules are very Important In restricting the search 

tree particularly If the lower bound used Is not strong. Clearly, new 

dominance rules and sharper lower bounds are needed to cut down the 

size of the search tree If large problems are to be solved.

It Is Interesting to discuss the success of the algorithms 

presented In the previous chapters relative to branch and bound 

algorltluis for other NP-hard scheduling problems. For selected 

problems, Table 8.1 below shows the size of problem that can be 

solved In a reasonable amount of computation time.



Table 8.1

Range of n Problem Reference

Chapter four

n < 20 Chapter seven

Potts [75]

1/ /D.,T, Chapter six

20 < n ( SO 1/ /C(h,E,«,T,) Chapter five

l/r,/Di,C, Hariri and Potts [35]

l/r,/CU, Chapter four

50 < n < 100 1/ /CT, Potts and Van

Uassenhove [81]

1/Prec/CWjC, Potts [74]

n > 100 l/ r , / L ^ earlier [11]

1/ /D.,U, Potts and Van

Wassenhove [79]

We observe from Table 8.1 that algorithms for 1/r^/CU^ problem are 

fairly successful although, In contrast, the 1/r^/Df^U^ problem 

appears very difficult. The 1/ and 1/ /C(h^E^ + w^T^) problems

appear challenging although they are easier than the problems 

appearing In the first three lines of Table 8.1. It Is noticeable 

that there are very few NP-hard scheduling problems which can be 

routinely solved for more than 100 Jobs.

In conclusion, branch and bound algorithms are moderately 

successful in solving many scheduling problems. The main reason for





In this appendix, the proof of optimality for algorithm IP to 

problem (P) Is given:

Let be the Indices for which Step(3) of algorithm LP

Is executed. Let K>(kp...,k^} be the set of Indices which Is used to 

define the solution of problem (P) using the following result:

Theorem. Problem (P) Is solved by setting for 1»l,...,n 

where

1 ^ K , 1< n (1)

*
Z , . c , 1 t K (2 )

*
If n ^ K (3 )

Proof. Consider any optimal solution z^-z^ for 1-1,....n to problem

(P), z^ are chosen so that Is as small as possible.

He first prove that l>^z*-b^^jzJ^j for 1-l,...,kj-l. Suppose that 
* *

bjZj *  for J-l,...,k|*l, choose J Is as small as possible
* * * * * 

such that bjZj t Let + where tt >

0, we have

■̂ "-1 *('t

«M.l (• i/ l’ i ^¡.i) *  * f  < •
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