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ABSTRACT 

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the survival 

motor neuron (SMN) gene. While there are currently two approved gene-based therapies for 

SMA, availability, high cost, and differences in patient response indicate that alternative 

treatment options are needed. Optimal therapeutic strategies will likely be a combination of 

SMN-dependent and -independent treatments aimed at alleviating symptoms in the central 

nervous system and peripheral muscles. Krüppel-like factor 15 (KLF15) is a transcription factor 

that regulates key metabolic and ergogenic pathways in muscle. We have recently reported 

significant downregulation of Klf15 in muscle of pre-symptomatic SMA mice. Importantly, 

perinatal upregulation of Klf15 via transgenic and pharmacological methods resulted in 

improved disease phenotypes in SMA mice, including weight and survival. In the current study, 

we designed an adeno-associated virus serotype 8 (AAV8) vector to overexpress a codon-

optimised Klf15 cDNA under the muscle-specific Spc5-12 promoter (AAV8-Klf15). 

Administration of AAV8-Klf15 to severe Taiwanese Smn-/-;SMN2 or intermediate Smn2B/- SMA 

mice significantly increased Klf15 expression in muscle. We also observed significant activity 

of the AAV8-Klf15 vector in liver and heart.  AAV8-mediated Klf15 overexpression moderately 

improved survival in the Smn2B/- model but not in the Taiwanese mice. An inability to 

specifically induce Klf15 expression at physiological levels in a time- and tissue-dependent 

manner may have contributed to this limited efficacy. Thus, our work demonstrates that an 

AAV8-Spc5-12 vector induces high gene expression as early as P2 in several tissues including 

muscle, heart and liver, but highlights the challenges of achieving meaningful vector-mediated 

transgene expression of Klf15.  
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INTRODUCTION 

Spinal muscular atrophy (SMA) is a devastating childhood neuromuscular disease that leads 

to early death in the most severe cases 1,2. As an autosomal recessive disease, SMA is caused 

by loss of the survival motor neuron 1 (SMN1) gene due to either mutations or deletions 3. 

While a total deficiency in the SMN protein is embryonic lethal 4, humans have a duplicated 

copy of SMN1, termed SMN2 3, which allows for survival in the absence of the former. 

However, SMN2 contains a key C to T transition in exon 7 that leads to its excision in 

approximately 90% of the transcripts produced, generating a non-functional SMN7 protein 

that is rapidly degraded 5,6. Importantly, the 10% of fully functional full length SMN protein 

produced from SMN2 is sufficient to allow survival, albeit not sufficient to prevent 

neuromuscular degeneration 7. 

The first genetic therapy for SMA, nusinersen/Spinraza™, was approved in December 2016 

by the Food and Drug Administration (FDA) and in June 2017 by the European Medicines 

Agency 8. This antisense oligonucleotide is delivered directly to the central nervous system 

(CNS) via a lumbar puncture and is aimed at promoting SMN2 exon 7 inclusion 9. Zolgensma® 

is a single, systemic of delivery of SMN1 via an adeno-associated virus serotype 9 (AAV9) 

gene therapy that received FDA approval in May 2019 10. Additional SMN-enhancing 

pharmacological compounds are also in the pipeline and anticipated to be approved for patient 

use in the near future 11. While the benefits of these SMN-dependent drugs are undeniably 

remarkable, it is appreciated that they unfortunately do not represent a cure and will have to 

be supported by additional non-CNS and -SMN therapeutic interventions to provide optimal 

care to all SMA patients 12–15. 

Skeletal muscle with reduced levels of SMN displays both cell-autonomous and non-

autonomous defects 16,17 and is therefore an important therapeutic target for SMA. We have 

recently demonstrated the dysregulated expression of the transcription factor Krüppel-like 

factor 15 (Klf15) in skeletal muscle of SMA mice during disease progression 18. KLF15 is 

crucial in the regulation of skeletal muscle metabolism and ergogenic properties 19–22. 
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Specifically, we observed a significant downregulation of Klf15 expression in pre-symptomatic 

SMA mice and found that its neonatal upregulation via pharmacological (prednisolone) or 

transgenic (muscle-specific Klf15-overexpression) interventions significantly improved several 

disease phenotypes in SMA mice 18. However, prednisolone has pleiotropic activities and 

constitutive embryonic overexpression of Klf15 in skeletal muscle of SMA may have resulted 

in compensatory mechanisms 23. In this study, we thus set out to overexpress Klf15 in skeletal 

muscle of neonatal SMA mice via a self-complementary adeno-associated virus serotype 2/8 

and the Spc5-12 promoter. While this strategy led to substantial Klf15 expression in skeletal 

muscle of SMA mice and control littermates, there were no associated significant 

improvements in disease phenotypes. Nevertheless, AAV8-Klf15 injections resulted in 

pronounced expression as early as post-natal day 2 in several tissues including muscle, liver 

and heart, highlighting the potential of this specific viral construct for efficient perinatal delivery.  
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MATERIALS AND METHODS 

Animals 

Wild-type (WT) FVB/N mice were used for initial expression screening. The Taiwanese Smn-

/-;SMN2 (FVB/N background, FVB.Cg-Smn1tm1HungTg(SMN2)2Hung/J, RRID: J:59313) 24 

and the Smn2B/- 25 mice (generously provided by Dr Lyndsay M Murray, University of 

Edinburgh) were housed in individual ventilated cages (fed ad libitum, 12 hr light: 12 hr dark 

cycle) at the Biomedical Sciences Unit, University of Oxford, according to procedures 

authorized by the UK Home Office (Animal Scientific Procedures Act 1986). The viral 

constructs were diluted in sterile 0.9% saline and administered at the indicated dose at 

postnatal day (P) 0 by a facial vein intravenous injection 26. Litters were randomly assigned to 

treatment at birth. For survival studies, animals were weighed daily and culled at indicated 

time points or upon reaching their defined humane endpoint as set out by the Home Office 

Project Licence. For the Smn2B/- mice, weaned mice were given daily wet chow at the bottom 

of the cage to ensure proper access to food. Sample sizes were determined based on similar 

studies with SMA mice. 

 

Sc-AAV2/8-Spc5-12 constructs 

The generation of the self-complementary adeno-associated virus serotype 2/8 (scAAV2/8) 

vectors and quality control were performed by Atlantic Gene Therapies (Nantes, France). The 

synthetic Spc5-12 promoter 27 was used to drive the expression of eGFP or a codon-optimised 

Klf15 sequence: 

agcgcttcaccacaggctcggccaggccagcatggttgatcatctgctgcctgtggacgagacattcagcagccctaagtgttct

gtgggctacctgggcgacagactggcctctagacagccttaccacatgctgccctctccaatcagcgaggacgactccgatgtgt

ctagcccttgtagctgtgcctctcctgacagccaggccttctgtagctgttactctgctggacctggacctgaggctcagggctctatc

ctggatttcctgctgagcagagctacactcggctctggcggaggatctggcggaatcggagattcttctggccctgtgacatgggg

ctcttggagaagggctagcgtgcccgtgaaagaggaacacttctgcttccctgagttcctgagcggcgacaccgatgacgtgtcc
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agacctttccagcctacactggaagagatcgaagagttcctcgaagagaacatggaagccgaagtgaaagaagcccctgag

aacggctcccgcgacctggaaacatgttctcagctgtctgccggctctcacagaagccatctgcaccctgaaagcgccggcag

agagagatgtacacctcctccaggtggaacatctggcggcggagcacaatctgctggcgaaggacctgctcatgatggacctg

tgcctgtgctgctgcaaatccagcctgtggctgtgaagcaagaggctggaacaggaccagcttctcctggacaggctcctgaatc

tgtgaaggtggcccagctgctggtcaacatccagggacaaacattcgccctgctgcctcaggtggtgcccagcagtaatctgaa

cctgcctagcaagttcgtgcggatcgctcctgtgccaatcgctgctaagcctatcggatctggctctcttggtcctggaccagctgga

ctgctcgtgggacagaagttccctaagaaccctgccgccgagctgctgaagatgcacaagtgtacattccccggctgctccaag

atgtataccaagtcctctcacctgaaggcccacctgagaaggcataccggcgagaagcctttcgcttgcacatggcctggatgtg

gctggcggttcagcagatctgatgagctgagcaggcaccgcagatctcacagcggagtgaagccataccagtgtcctgtgtgc

gagaagaagttcgccagaagcgaccacctgtccaagcacatcaaggtgcacagattccctagaagcagcagagccgtgcgg

gccatcaattgactgcagaagctt. 

 

C2C12 cell line 

C2C12 myoblast cells 28 were maintained in growth media consisting of Dulbecco’s Modified 

Eagle’s Media (DMEM) supplemented with 10% fetal bovine serum and 1% 

Penicillin/Streptomycin (all Life Technologies). For AAV transduction experiments, growth 

media was changed to differentiation media consisting of DMEM, 2% horse serum, and 1% 

Penicillin/Streptomycin (all Life Technologies). Cells were allowed to differentiate for 3 days, 

after which they were transduced with a MOI of 1E105. Cells were harvested 3 days post-

transduction for molecular analyses (flow cytometry or qPCR, as described below). 

 

qPCR 

Quadriceps muscles, liver, and heart were harvested at the indicated time points during 

disease progression and immediately flash frozen. RNA was extracted with the RNeasy 

MiniKit (Qiagen). For C2C12 cells, the media was removed and cells were washed with PBS 

before being directly lysed as per instructions within the RNeasy MiniKit (Qiagen). Reverse 
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transcription was performed using the High-Capacity cDNA Reverse Transcription Kit 

(ThermoFisher Scientific). qPCR was performed using SYBR green Mastermix (ThermoFisher 

Scientific) and primers for the codon-optimised Klf15 sequence (Forward: 

AGGACCTGCTCATGATGGAC; Reverse: TGTTTGTCCCTGGATGTTGA). RNA polymerase 

II polypeptide J (PolJ), was used as a validated stably expressed housekeeping gene 29 

(Forward: ACCACACTCTGGGGAACATC; Reverse: CTCGCTGATGAGGTCTGTGA). All 

primers were ordered from Integrated DNA Technologies. 

 

Viral quantification 

In order to establish virus penetration into the tissue, TaqMan (ThermoFisher Scientific) 

qPCRs were performed using two primer-probe sets (Integrated DNA Technologies) specific 

to the AAV8 capsid (1: Forward: GCTCTTCAACATCCAGGTCAA; Reverse: 

TGGTACTCCGAGTCCGTAAA; Probe: TGGTACTCCGAGTCCGTAAA; and 2: Forward: 

GACCACCTTCAACCAGTCAA; Reverse: CTGCAGCTCCCATTCAATTTC; Probe: 

TTCATCACGCAATACAGCACCGGA). The results of the two primer-probe sets were each 

efficiency-adjusted and normalized to PolJ (Forward: GTGGTCTTCTTTGTTGATGGTG; 

Reverse: TTCGAGTCGTTCTTGCTCTTC; Probe: AAGCAGGCGTTGGGAACCTTAGT). The 

two primer-probe sets yielded similar results (data not shown) and only data with primer set 2 

are shown. No significant difference was detected between Smn+/-;SMN2 and Smn-/-;SMN2 

mice for any of the tissues (data not shown) and mice from both genotypes were therefore 

pooled. No amplification could be seen in untreated samples (data not shown). 

 

Flow cytometry 

Differentiated C2C12 cells 3 days post-transduction (AAV8-GFP, MOI of 1E105)  and 

untreated cells were trypsinized and washed in fluorescence-activated cell sorting (FACS) 

buffer (phosphate buffered saline (PBS) supplemented with 2% bovine serum albumin (BSA) 
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and 0.05% sodium azide). Cells were pelleted by centrifugation at 300 x g for 5 minutes. The 

final cell pellet was resuspended in 200  of FACS buffer and the cell suspension was further 

diluted 1:2 in FACS buffer before detection in the Cytek DxP8 flow cytometer (Cytek® 

Biosciences). Cell viability was tested by adding 1 µl Sytox Red (Thermofisher) to the final cell 

suspension for 5 minutes at RT. The gating strategy included gating around the Sytox Red 

(RedFL1 channel) negative population following FCS/FCSW doublet exclusion. The remaining 

population was assessed for a GFP-shift by recording in the BluFL1 channel. A total of 10,000 

cells was recorded for each sample replicate. Data was analysed using Flowjo 10 software 

(TreeStar Inc.). 

 

Immunocytochemistry and immunohistochemistry 

C2C12 cells transduced with the eGFP-expressing AAV vector were imaged live with a DM 

IRB microscope (Leica). 

Quadriceps muscles were harvested at the indicated time points during disease progression, 

fixed in 4% paraformaldehyde, cryopreserved in 30% sucrose, and cryosectioned at a 

thickness of 12 M. The sections were immunostained with chicken anti-GFP antibody 

(1:3000, Abcam, ab13970) and detected with Alexa-488-conjugated anti-chicken secondary 

antibody (1:5000, Life technologies, A-11039). Images were taken with an Olympus Fluoview 

FV1000 confocal microscope and processed with Fiji 30. 

 

Statistics 

All statistical analyses were performed using GraphPad Prism version 8.1.1 software. Exact 

sample sizes as well as description of sample collection, number of times the experiments 

were replicated and statistical measures and methods can be found in the figure legends. 

When appropriate, a Student’s unpaired two-tailed t test or a two-way ANOVA followed by an 

uncorrected Fisher's LSD multiple comparison test was used. Outliers were identified via the 
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Grubbs' test and subsequently removed. Instances of outlier removal are detailed in the 

relevant figure legends. For the Kaplan-Meier survival analysis, a log-rank test was used. 



10 

 

RESULTS 

Muscle-specific Klf15 expression with a scAAV2/8-Spc5-12 viral vector 

To specifically induce Klf15 expression in skeletal muscle, we utilized a self-complementary 

adeno associated virus serotype 2/8 driven by the synthetic muscle-specific promoter Spc5-

12 27 (scAAV2/8-Spc5-12-Klf15, henceforth termed AAV8-Klf15). This combination of AAV and 

promoter has previously successfully been used for gene delivery to muscles for treatment of 

the muscle disorder Duchenne muscular dystrophy (DMD) 31. A control scAAV2/8-Spc5-12-

GFP construct was also generated (henceforth termed AAV8-GFP). 

We first examined the transduction ability of the AAV8-GFP construct in differentiated C2C12 

myoblasts 28. The cells were transduced with AAV8-GFP (multiplicity of infection (MOI) 1E105) 

for 3 days and assessed for GFP expression compared to untreated cells. Both flow cytometry 

and live imaging analyses confirm the abundant presence of GFP in AAV8-transduced cells 

(FIG. 1A, 1B). Differentiated C2C12s transduced with AAV8-Klf15 (MOI 1E105) demonstrate 

a significant increased expression of Klf15 mRNA compared to untreated cells (FIG. 1C). 

To determine if our constructs would also be active at early time points in muscle of neonatal 

mice, we administered AAV8-GFP (1E11 vg/pup) to P0 wild type (WT) pups via a facial vein 

intravenous injection 26. Quadriceps muscles were harvested from injected and non-injected 

WT littermates at P2 and P7. P2 represents the pre-symptomatic age at which we have 

observed a significant downregulation of Klf15 in the Taiwanese Smn-/-;SMN2 SMA mice 18,24 

while P7 is considered a late symptomatic time point. qPCR analysis shows a significant 

upregulation of GFP expression at both P2 and P7, albeit variable between animals, with 

increased levels at the later time point (FIG. 1D). Immunohistochemistry of P2 and P7 

quadriceps also reveals a time-dependent increased expression of GFP in AAV8-treated 

animals compared to untreated littermates (FIG. 1E). Combined, our experiments in C2C12s 

and WT mice demonstrate the ability of our viral vectors to induce Klf15 and GFP expression 

in differentiated skeletal muscle. 
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Neonatal administration of AAV8-Klf15 to severe SMA mice does not improve weight or 

survival 

We next wanted to determine if increasing early postnatal Klf15 expression in the Smn-/-;SMN2 

SMA mice would influence disease progression. However, administration of 1E11 vg/pup of 

AAV8-Klf15 to P0 Smn-/-;SMN2 mice and Smn+/-;SMN2 control littermates was in fact toxic 

(spontaneous death without any impact on weight) to both genotypes (data not shown). Seeing 

as this dose was not harmful with AAV8-GFP, the adverse effects are most likely due to the 

supraphysiological levels of Klf15. We therefore reduced the AAV8-GFP and AAV8-Klf15 dose 

to 2E10 vg/pup for subsequent administrations, which still allowed for an age-dependent 

increased expression of GFP (FIG. 2A) and Klf15 (FIG. 2B), albeit with some variability 

between animals, in quadriceps of P2 and P7 Smn+/-;SMN2 and Smn-/-;SMN2 mice. 

In terms of effects on disease progression, we found that AAV8-Klf15-treated Smn-/-;SMN2 

mice survived longer than untreated Smn-/-;SMN2 (FIG. 2C). However, AAV8-GFP-treated 

Smn-/-;SMN2 mice also display a moderately improved lifespan (FIG. 2C), suggesting that the 

AAV construct itself has some beneficial physiological impact. Interestingly, we also observed 

that Smn-/-;SMN2 mice that received the AAV8-GFP weighed slightly more than AAV8-Klf15-

treated and untreated Smn-/-;SMN2 (FIG. 2D). 

We found no significant differences between the survival of untreated, AAV8-GFP-treated and 

AAV8-Klf15-treated Smn+/-;SMN2 mice (FIG. 2E), although a small number of spontaneous 

deaths occurred in all cohorts. Similar to what we observed in the Smn-/-;SMN2 mice, AAV8-

GFP-treated Smn+/-;SMN2 mice weighed slightly more than untreated and AAV8-Klf15-treated 

Smn+/-;SMN2 mice during the P0–P21 pre-weaning phase (FIG. 2F). However, this increased 

weight was not maintained post-weaning (FIG. 2G). We did observe a small but significant 

increase in weight of AAV8-Klf15-treated Smn+/-;SMN2 mice at 6 months of age. Thus, 

administering a perinatal injection of AAV8-Klf15 at a dose of 2E10 vg/pup significantly 

increases Klf15 expression in skeletal muscle without having overt adverse or beneficial 

effects on survival. Of note, a smaller AAV8-Klf15 dose of 1E10 vg/pup was also assessed 



12 

 

but did not display significant survival benefits compared to the 2E10 vg/pup dose 

(Supplementary FIG. 1).  

 

Neonatal administration of AAV8-Klf15 to intermediate SMA mice slightly improves 

survival 

Due to the severe and rapid disease progression in the Smn-/-;SMN2 mice, they respond less 

favorably to non-SMN treatment strategies compared to the milder intermediate Smn2B/- 

mouse model 18,25,32,33. We therefore proceeded to evaluate the effect of AAV8-Klf15 in Smn2B/- 

mice and Smn2B/+ control littermates, following the same dosing regimen as in the severe SMA 

mice. Similar to what was observed in the Smn-/-;SMN2 mice, AAV8-GFP-treated Smn2B/- mice 

also demonstrated a small but significant increase in survival compared to untreated Smn2B/- 

mice (FIG. 3A). Interestingly, AAV8-Klf15-treated Smn2B/- mice had a significantly increased 

lifespan compared to both untreated and AAV8-GFP-treated Smn2B/- mice (FIG. 3A). While 

AAV8-Klf15 did not influence the weight of Smn2B/- mice compared to untreated and AAV8-

GFP-treated animals during the nursing period (up to P21), post-weaned mice demonstrate a 

growth-dependent gain in weight (FIG. 3B). However, that weight gain did not ultimately 

prevent an early death. Interestingly, AAV8-GFP-treated Smn2B/- mice were significantly 

heavier than untreated and AAV8-Klf15-treated Smn2B/- mice (FIG. 3B) between P13–21, 

again similar to what we found in the Smn-/-;SMN2 mice. We did not observe any effects of 

AAV8-GFP or AAV8-Klf15 on the weights of pre-weaned Smn2B/- mice compared to untreated 

animals (FIG. 3C). Thus, the AAV8-Klf15 was slightly more beneficial in the intermediate 

Smn2B/- SMA mouse model than the severe Taiwanese Smn-/-;SMN2 mice, overall. 

 

The AAV8-Spc5-12 construct also induces expression in heart and liver 

While the synthetic Spc5-12 promoter has been used for its enhanced activity in skeletal 

muscle 27,31, we wanted to determine if our AAV8 delivery system also induced expression in 
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heart and liver, tissues in which Klf15 also plays key roles 34,35. We indeed observed significant 

increased expression of GFP and Klf15 mRNA in the livers of both P2 and P7 AAV8-GFP- 

(FIG. 4A) and AAV8-Klf15-treated (FIG. 4C) Smn+/-;SMN2 and Smn-/-;SMN2 mice compared 

to untreated animals. This increase was approximately 15 times (GFP) and 10 times (Klf15) 

higher than in skeletal muscle for both time points. Similarly, we find a significant upregulation 

of GFP and Klf15 mRNA in the hearts of AAV9-GFP- (FIG. 4C) and AAV8-Klf15-treated (FIG. 

4D) P2 and P7 Smn+/-;SMN2 and Smn-/-;SMN2 mice compared to untreated animals. 

Surprisingly, the increase in heart was approximately 40 times (GFP) and 50 times (Klf15) 

higher at P2 while it was approximately 70 times (GFP) and 10 times (Klf15) higher at P7 

compared to skeletal muscle at those respective time points. Furthermore, qPCR analysis of 

AAV8 content in respective tissues, using capsid-specific primers, indeed demonstrates 

increased AAV8 presence in heart and liver compared to muscle, particularly at P2 

(Supplementary FIG. 2). Of note, there was some variability between animals within the same 

experimental group. Therefore, our results demonstrate that the activity of the AAV8-Spc5-12 

vector is not exclusive to skeletal muscle and in fact, appears to display a greater tropism for 

non-skeletal muscle tissues when administered intravenously in newborn animals. 
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DISCUSSION 

We have recently demonstrated that Klf15 expression is significantly downregulated in muscle 

of pre-symptomatic SMA mice and that upregulating Klf15 expression via genetic (transgenic 

muscle-specific expression) or pharmacological (prednisolone) approaches results in 

improved disease phenotypes 18. Here, we evaluated the impact of specifically upregulating 

Klf15 in skeletal muscle in perinatal mice by driving its expression via an AAV8-Spc5-12 

vector. We find that while neonatal administration of the AAV8-Klf15 construct leads to 

significant increased levels of Klf15 in muscle, this has no overt effect on survival or weight 

gain in the severe Taiwanese SMA mice while we observe a small improvement in the lifespan 

of the intermediate Smn2B/- mice. 

The lack of significant impact of AAV8-Klf15 in severe SMA mice may be due to several 

compounding factors. While the levels of Klf15 expression achieved with AAV8-Klf15 are 

similar to the levels observed in transgenic SMA mice overexpressing muscle-specific Klf15 

at P2 (~ 5–10 fold greater than control littermates), the amounts measured in P7 AAV8-Klf15-

treated animals are significantly greater than the transgenic mice (~ 65–740 fold greater and 

~ 30 fold greater, respectively, compared to control littermates) (FIG. 2) 18. As Klf15 can display 

both atrophy-inducing 36 and ergogenic 19 properties in skeletal muscle in a dose-dependent 

manner 37, it is quite possible that the supraphysiological levels achieved with AAV8-Klf15 

favor muscle wasting over growth. We also note significantly more variability in Klf15 levels in 

animals injected with the AAV8 construct compared to the transgenic mice (FIG. 2) 18, which 

are most likely due to differential injection efficiencies and/or vector spread and could influence 

physiological outcomes. 

We have previously shown that administration of prednisolone to SMA mice also increases 

Klf15 levels in skeletal muscle of P2 pre-symptomatic animals (~ 6 fold greater than untreated 

controls) 18. However, this effect on Klf15 induction ceased at P7, specifically in SMA mice 18, 

suggesting that prednisolone-dependent benefits in symptomatic SMA mice may be due to 

KLF15-independent effects and/or that prednisolone-dependent Klf15 increase in P7 animals 
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may be limited by compensatory inhibitory mechanisms due to already significantly increased 

Klf15 levels in symptomatic SMA mice compared to controls 18. It is therefore possible that an 

optimal strategy would be to conditionally increase Klf15 expression in pre-symptomatic 

stages only, which is not easily achieved as the kinetics of AAV-mediated overexpression 

require several days for efficient transgene activity. To achieve optimal expression at early 

pre-symptomatic post-natal stages may therefore require pre-natal delivery. 

While our AAV8 construct was designed to overexpress Klf15 specifically in skeletal muscle, 

our analysis of heart and liver demonstrate significantly higher activity in these tissues (FIG. 4 

and Supplementary FIG. 2). Tropism of the AAV8 construct and the Spc5-12 promoter, alone 

and in combination, has indeed previously been reported in both the heart and liver of adult 

mice 31,38. Our data supports that this is also the case in neonatal mice. KLF15 has well 

described roles in heart and liver 34,35, suggesting that its increased expression via our AAV8 

construct, most likely also impacts the function of these tissues. SMA mice display several 

heart and liver pathologies 39,40, suggesting that aberrant KLF15 levels may have non-intended 

organ-specific adverse effects, which most likely explain the spontaneous deaths observed in 

our mice treated with the high vector dose. Furthermore, we have previously reported 

increased levels of Klf15 in the liver and heart of symptomatic mice 18, which most likely reflect 

a pathological response. However, as only one preparation of AAV8-Klf15 was used 

throughout this study, its toxicity may have been due to batch-specific impurities 41. However, 

seeing as the toxicity of AAV8-Klf15 was dose-dependent in both compromised SMA mice 

and healthy littermates and not observed in parallel experiments with AAV8-GFP, it is most 

likely that the adverse effects were directly linked to the supraphysiological levels of Klf15 in 

several key metabolic tissues such as muscle, heart and liver. Thus, the dose-dependent 

effects of AAV8-Spc5-12-mediated Klf15 upregulation are probably due to a complex interplay 

between tissue- and age-dependent beneficial and adverse signaling pathways that should 

be considered and evaluated in future investigations.  
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Surprisingly, the AAV8-GFP construct also demonstrated some non-negligible effects on 

disease phenotypes of SMA mice (FIG. 3). While we cannot be certain as to why that is, we 

speculate that it may be related to possible effects on the immune system, similarly to previous 

reports for AAV8 vectors 42,43. Seeing as SMA mice have an altered immune response 44,45 

and that inflammation can display both protective and adverse systemic properties 46, including 

the CNS 47 and muscle 48, it is possible that an activated immune response results in acute 

and/or intermittent benefits in AAV8-treated SMA animals. 

In summary, the limited impact of AAV8-Klf15 administration in SMA mice might be explained 

by several experimental conditions that most likely reduced our ability to increase Klf15 

specifically in skeletal muscle at physiological levels and with the optimal timing, without 

influencing the function of other tissues and systems. In the experimental paradigms tested 

here, the positive, albeit small, effect on survival and weight was restricted to the milder 

Smn2B/- SMA mouse model. Future investigations will require endeavors to further optimize a 

muscle-specific construct by either reconfiguring the AAV/promoter combination and/or 

inhibiting its expression in non-skeletal muscle tissues.  
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FIGURE LEGENDS 

FIG. 1. Muscle-enhanced expression with the scAAV2/8-Spc5-12-Klf15 and-GFP (AAV8-

Klf15 and AAV8-GFP) viral vectors. A. Mean GFP fluorescence intensity (arbitrary units) 

determined by flow cytometry analysis in differentiated C2C12s, untreated or transduced with 

AAV8-GFP (MOI 1E105) for 3 days. Data are scatter plot and mean  SEM, n = 3 wells per 

experimental group, unpaired t test, ****p<0.0001. B. Representative images (phase contrast 

and GFP fluorescent signal) of differentiated C2C12 cells 3 days post-transduction with AAV8-

GFP (MOI 1E105). C. qPCR analysis of Klf15 mRNA expression in differentiated C2C12s 3 

days post-transduction with AAV8-Klf15 (MOI 1E105) compared to untreated cells. Data are 

shown as scatter plot and mean  SEM, n = 3 wells per experimental group, unpaired t test, 

****p<0.0001. D. qPCR analysis of GFP mRNA expression in quadriceps muscles of post-

natal day (P) 2 and P7 wild type (WT) animals that received a facial intravenous injection of 

AAV8-GFP (1E11 vg/pup) at P0 compared to untreated WT mice. Data are scatter plot and 

mean  SEM, n = 4–5 animals per experimental group, unpaired t test, *p = 0.028 (P2), **p = 

0.0076 (P7). E. Representative images of cross-sections (P2) and longitudinal sections (P7) 

of quadriceps immunostained for GFP from P2 and P7 untreated WT animals and WT mice 

that received a facial intravenous injection of AAV8-GFP (1E11 vg/pup) at P0. 

 

FIG. 2. Perinatal administration of AAV8-Klf15 does not improve weight or survival of 

Smn-/-;SMN2 SMA mice. Post-natal day (P) 0 Smn-/-;SMN2 SMA mice and control littermates 

were either untreated or received a single facial vein intravenous injection of AAV8-GFP or 

AAV8-Klf15 (2E10 vg/pup). A. qPCR analysis of GFP mRNA expression in quadriceps of P2 

and P7 untreated and AAV8-GFP-treated Smn+/-;SMN2 and Smn-/-;SMN2 mice. Data are 

scatter plot and mean  SEM, n = 2–6 animals per experimental group, two-way ANOVA, 

**p<0.01, ***p<0.001. B. qPCR analysis of Klf15 mRNA expression in quadriceps of P2 and 

P7 untreated and AAV8-Klf15-treated Smn+/-;SMN2 and Smn-/-;SMN2 mice. Data are scatter 

plot and mean  SEM, n = 4–9 animals per experimental group, two-way ANOVA, *p<0.05, 



23 

 

***p<0.001, ****p<0.0001. One outlier identified by the Grubbs’ test was removed from the P7 

Smn-/-;SMN2 group C. Survival curves of untreated (n = 16), AAV8-GFP-treated (n = 9) and 

AAV8-Klf15-treated (n = 7) Smn-/-;SMN2 mice. Data are Kaplan-Meier survival curves, log-

rank Mantel-Cox test, ns = not significant, **p = 0.0034 (untreated vs AAV8-GFP), **p = 0.0048 

(untreated vs AAV8-Klf15). D. Daily weights of untreated (n = 16), AAV8-GFP-treated (n = 9) 

and AAV8-Klf15-treated (n = 7) Smn-/-;SMN2 mice. Data are mean  SEM, two-way ANOVA, 

*/^p<0.05, **/^^p<0.01, ***p<0.001, ****p<0.0001. E. Survival curves of untreated (n = 12), 

AAV8-GFP-treated (n = 7) and AAV8-Klf15-treated (n = 13) Smn+/-;SMN2 mice. Data are 

Kaplan-Meier survival curves, log-rank Mantel-Cox test, ns = not significant. F. Daily weights 

of untreated (n = 11), AAV8-GFP-treated (n = 8) and AAV8-Klf15-treated (n = 12) Smn+/-;SMN2 

mice. Data are mean  SEM, two-way ANOVA, */^/#p<0.05, **/^^p<0.01, ***/^^^p<0.001, 

^^^^p<0.0001. G. Monthly weights of untreated (n = 11), AAV8-GFP-treated (n = 7) and AAV8-

Klf15-treated (n = 13) Smn+/-;SMN2 mice. Data are mean  SEM, two-way ANOVA, *p<0.05.  

 

FIG. 3. Perinatal administration of AAV8-Klf15 slightly increases survival in Smn2B/- SMA 

mice. Post-natal day (P) 0 Smn2B/- SMA mice and control littermates were either untreated or 

received a single facial vein intravenous injection of AAV8-GFP or AAV8-Klf15 (2E10 vg/pup). 

A. Survival curves of untreated (n = 15), AAV8-GFP-treated (n = 18) and AAV8-Klf15-treated 

(n = 11) Smn2B/- mice. Data are Kaplan-Meier survival curves, log-rank Mantel-Cox test, **p = 

0.0021 (untreated vs AAV8-GFP), ****p<0.0001 (untreated vs AAV8-Klf15), ***p = 0.0008 

(AAV8-GFP vs AAV8-Klf15). B. Daily weights of untreated (n = 18), AAV8-GFP-treated (n = 

18) and AAV8-Klf15-treated (n = 11) Smn2B/- mice. Data are mean  SEM, two-way ANOVA, 

*/^/#p<0.05, **/^^p<0.01, ^^^p<0.001, ^^^^p<0.0001. C. Daily weights of untreated (n = 11), 

AAV8-GFP-treated (n = 9) and AAV8-Klf15-treated (n = 16) Smn2B/+ mice. Data are mean  

SEM, two-way ANOVA, ns = not significant. 
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FIG. 4. Perinatal administration of the AAV8-Spc5-12 construct induces high expression 

in liver and heart.  Post-natal day (P) 0 Smn-/-;SMN2 SMA mice and control littermates were 

either untreated or received a single facial vein intravenous injection of AAV8-GFP or AAV8-

Klf15 (2E10 vg/pup). A-B. qPCR analysis of GFP (A) and Klf15 (B) mRNA expression in 

quadriceps muscles of P2 and P7 untreated and AAV8-treated Smn+/-;SMN2 and Smn-/-;SMN2 

mice. Data are scatter plot and mean  SEM, n = 2–6 animals per experimental group, two-

way ANOVA, **p<0.01, ***p<0.001, ****p<0.0001. One outlier identified by the Grubbs’ test 

was removed from the P7 liver AAV8-Klf15 Smn-/-;SMN2 group. C-D. qPCR analysis of GFP 

(C) and Klf15 (D) mRNA expression in heart of P2 and P7 untreated and AAV8-treated Smn+/-

;SMN2 and Smn-/-;SMN2 mice. Data are scatter plot and mean  SEM, n = 2–8 animals per 

experimental group, two-way ANOVA, **p<0.01, **p<0.01, ***p<0.001 ****p<0.0001. One 

outlier identified by the Grubbs’ test was removed from the P2 heart untreated Smn-/-;SMN2 

group.  
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