
Calculating the sample size required for developing a
clinical prediction model
Clinical prediction models aim to predict outcomes in individuals, to inform diagnosis or prognosis
in healthcare. Hundreds of prediction models are published in the medical literature each year, yet
many are developed using a dataset that is too small for the total number of participants or outcome
events. This leads to inaccurate predictions and consequently incorrect healthcare decisions for
some individuals. In this article, the authors provide guidance on how to calculate the sample size
required to develop a clinical prediction model.
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Summary points
Patients and healthcare professionals require clinical prediction models
to accurately guide healthcare decisions
Larger sample sizes lead to the development of more robust models
Data should be of sufficient quality and representative of the target
population and settings of application
It is better to use all available data for model development (ie, avoid data
splitting), with resampling methods (such as bootstrapping) used for
internal validation
When developing prediction models for binary or time-to-event outcomes,
a well known rule of thumb for the required sample size is to ensure at
least 10 events for each predictor parameter
The actual required sample size is, however, context specific and depends
not only on the number of events relative to the number of candidate
predictor parameters but also on the total number of participants, the
outcome proportion (incidence) in the study population, and the expected
predictive performance of the model
We propose to use such information to tailor sample size requirements
to the specific setting of interest, with the aim of minimising the potential
for model overfitting while targeting precise estimates of key parameters
Our proposal can be implemented in a four step procedure and is
applicable for continuous, binary, or time-to-event outcomes
The pmsampsize package in Stata or R allows researchers to implement
the procedure

Clinical prediction models are needed to inform diagnosis and
prognosis in healthcare.1-3 Well known examples include the
Wells score,4 5 QRISK,6 7 and the Nottingham prognostic index.8 9

Such models allow health professionals to predict an individual’s
outcome value, or to predict an individual’s risk of an outcome
being present (diagnostic prediction model) or developed in the
future (prognostic prediction model). Most prediction models
are developed using a regression model, such as linear regression
for continuous outcomes (eg, pain score), logistic regression
for binary outcomes (eg, presence or absence of pre-eclampsia),
or proportional hazards regression models for time-to-event
data (eg, recurrence of venous thromboembolism).10 An equation
is then produced that can be used to predict an individual’s
outcome value or outcome risk conditional on his or her values
of multiple predictors, which might include basic characteristics
such as age, weight, family history, and comorbidities; biological
measurements such as blood pressure and biomarkers; and
imaging or other test results. Supplementary material S1 shows
examples of regression equations.
Developing a prediction model requires a development dataset,
which contains data from a sample of individuals from the target
population, containing their observed predictor values (available
at the intended moment of prediction11) and observed outcome.
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The sample size of the development dataset must be large
enough to develop a prediction model equation that is reliable
when applied to new individuals in the target population. What
constitutes an adequately large sample size for model
development is, however, unclear,12 with various blanket “rules
of thumb” proposed and debated.13-17 This has created confusion
about how to perform sample size calculations for studies aiming
to develop a prediction model.
In this article we provide practical guidance for calculating the
sample size required for the development of clinical prediction
models, which builds on our recent methodology papers.13-16 18

We suggest that current minimum sample size rules of thumb
are too simplistic and outline a more scientific approach that
tailors sample size requirements to the specific setting of interest.
We illustrate our proposal for continuous, binary, and
time-to-event outcomes and conclude with some extensions.
Moving beyond the 10 events per variable
rule of thumb
In a development dataset, the effective sample size for a
continuous outcome is determined by the total number of study
participants. For binary outcomes, the effective sample size is
often considered about equal to the minimum of the number of
events (those with the outcome) and non-events (those without
the outcome); time-to-event outcomes are often considered
roughly equal to the total number of events.10 When developing
prediction models for binary or time-to-event outcomes, an
established rule of thumb for the required sample size is to
ensure at least 10 events for each predictor parameter (ie, each
β term in the regression equation) being considered for inclusion
in the prediction model equation.19-21 This is widely referred to
as needing at least 10 events per variable (10 EPV). The word
“variable” is, however, misleading as some predictors actually
require multiple β terms in the model equation—for example,
two β terms are needed for a categorical predictor with three
categories (eg, tumour grades I, II, and III), and two or more β
terms are needed to model any non-linear effects of a continuous
predictor, such as age or blood pressure. The inclusion of
interactions between two or more predictors also increases the
number of model parameters. Hence, as prediction models
usually have more parameters than actual predictors, it is
preferable to refer to events per candidate predictor parameter
(EPP). The word candidate is important, as the amount of model
overfitting is dictated by the total number of predictor
parameters considered, not just those included in the final model
equation.
The rule of at least 10 EPP has been widely advocated perhaps
as a result of its simplicity, and it is regularly used to justify
sample sizes within published articles, grant applications, and
protocols for new model development studies, including by
ourselves previously. The most prominent work advocating the
rule came from simulation studies conducted in the 1990s,19-21

although this work actually focused more on the bias and
precision of predictor effect estimates than on the accuracy of
risk predictions from a developed model. The adequacy of the
10 EPP rule has often been debated. Although the rule provides
a useful starting point, counter suggestions include either
lowering the EPP to below 10 or increasing it to 15, 20, or even
50.10 22-26 These inconsistent recommendations reflect that the
required EPP is actually context specific and depends not only
on the number of events relative to the number of candidate
predictor parameters but also on the total number of participants,
the outcome proportion (incidence) in the study population, and
the expected predictive performance of the model.13-17 This
finding is unsurprising as sample size considerations for other

study designs, such as randomised trials of interventions, are
all context dependent and tailored to the setting and research
question. Rules of thumb have also been advocated in the
continuous outcome setting, such as two participants per
predictor,27 but these share the same concerns as for 10 EPP.16

Sample size calculation to ensure precise
predictions and minimise overfitting
Recent work by van Smeden et al13 14 and Riley et al15 16 describe
how to calculate the required sample size for prediction model
development, conditional on the user specifying the overall
outcome risk or mean outcome value in the target population,
the number of candidate predictor parameters, and the
anticipated model performance in terms of overall model fit
(R2). These authors’ approaches can be implemented in a four
step procedure. Each step leads to a sample size calculation,
and ultimately the largest sample size identified is the one
required. We describe these four steps, and, to aid general
readers, provide the more technical details of each step in the
figures.

Step 1: What sample size will produce a
precise estimate of the overall outcome risk
or mean outcome value?
Fundamentally, the sample size must allow the prediction
model’s intercept to be precisely estimated, to ensure that the
developed model can accurately predict the mean outcome value
(for continuous outcomes) or overall outcome proportion (for
binary or time-to-event outcomes). A simple way to do this is
to calculate the sample size needed to precisely estimate (within
a small margin of error) the intercept in a model when no
predictors are included (the null model).15Figure 1 shows the
calculation for binary and time-to-event outcomes, and we
generally recommend aiming for a margin of error of ≤0.05 in
the overall outcome proportion estimate. For example, with a
binary outcome that occurs in half of individuals, a sample size
of at least 385 people is needed to target a confidence interval
of 0.45 to 0.55 for the overall outcome proportion, and thus an
error of at most 0.05 around the true value of 0.5. To achieve
the same margin of error with outcome proportions of 0.1 and
0.2, at least 139 and 246 participants, respectively, are required.
For time-to-event outcomes, a key time point needs to be
identified, along with the anticipated outcome event rate. For
example, with an anticipated event rate of 10 per 100 person
years of the entire follow-up, the sample size must include a
total of 2366 person years of follow-up to ensure an expected
margin of error of ≤0.05 in the estimate of a 10 year outcome
probability of 0.63, such that the expected confidence interval
is 0.58 to 0.68.
For continuous outcomes, the anticipated mean and variance of
outcome values must be prespecified, alongside the anticipated
percentage of variation explained by the prediction model (see
supplementary material S2 for details).16

Step 2: What sample size will produce
predicted values that have a small mean error
across all individuals?
In addition to predicting the average outcome value precisely
(see step 1), the sample size for model development should also
aim for precise predictions across the spectrum of predicted
values. For binary outcomes, van Smeden et al use simulation
across a wide range of scenarios to evaluate how the error of
predicted outcome probabilities from a developed model
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depends on various characteristics of the development dataset
sampled from a target population.14 They found that the number
of candidate predictor parameters, total sample size, and
outcome proportion were the three main drivers of a model’s
mean predictive accuracy. This led to a sample size formula
(fig 2) to help ensure that new prediction models will, on
average, have a small prediction error in the estimated outcome
probabilities in the target population (as measured by the mean
absolute prediction error, MAPE). The calculation requires the
number of candidate predictor parameters and the anticipated
outcome proportion in the target population to be prespecified.
For example, with 10 candidate predictor parameters and an
outcome proportion of 0.3, a sample size of at least 461
participants and 13.8 EPP is required to target a mean absolute
error of 0.05 between observed and true outcome probabilities
(see fig 2 for calculation). The calculation is available as an
interactive tool (https://mvansmeden.shinyapps.io/BeyondEPV/
) and applicable to situations with 30 or fewer candidate
predictors. Ongoing work aims to extend to larger numbers of
candidate predictors and also to time-to-event outcomes.
For continuous outcomes, accurate predictions across the
spectrum of predicted values require the standard deviation of
the residuals to be precisely estimated.10 16 Supplementary
material S3 shows that to target a less than 10% multiplicative
error in the estimated residual standard deviation, the required
sample size is simply 234+P, where P is the number of predictor
parameters considered.

Step 3: What sample size will produce a small
required shrinkage of predictor effects?
Our third recommended step is to identify the sample size
required to minimise the problem of overfitting.28 Overfitting
is when a developed model’s predictions are more extreme than
they ought to be for individuals in a new dataset from the same
target population. For example, an overfitted prediction model
for a binary outcome will give a predicted outcome probability
too close to 1 for individuals with a higher than the average
outcome probability and too close to 0 for individuals with a
lower than the average outcome probability. Overfitting notably
occurs when the sample size is too small. In particular, when
the number of candidate predictor parameters is large relative
to the number of participants in total (for continuous outcomes)
or to the number of participants with the outcome event (for
binary or time-to-event outcomes). A consequence of overfitting
is that a developed model’s apparent predictive performance (as
observed in the development dataset itself) will be optimistic
(ie, too high), and its actual predictive performance in new data
from the same target population will be lower (ie, worse).
Shrinkage (also known as penalisation or regularisation)
methods deal with the problem of overfitting by reducing the
variability in the developed model’s predictions such that
extreme predictions (eg, predicted probabilities close to 0 or 1)
are pulled back toward the overall average.29-34 However, there
is no guarantee that shrinkage will fully overcome the problem
of overfitting when developing a prediction model. This is
because the shrinkage or penalty factors (which dictate the
magnitude of shrinkage required) are also estimated from the
development dataset and, especially when the sample size is
small, are often imprecise and so fail to tackle the magnitude
of overfitting correctly in a particular application.30 Furthermore,
a negative correlation tends to occur between the estimated
shrinkage required and the apparent performance of a model.
If the apparent model performance is excellent simply by chance,
the required shrinkage is typically estimated too low.30 Thus,
ironically, in those situations when overfitting is of most concern

(and thus shrinkage is most urgently needed), the prediction
model developer has insufficient assurance in selecting the
proper amount of shrinkage to cancel the impact of overfitting.
Riley et al therefore suggest identifying the sample size and
number of candidate predictors that correspond to a small
amount of desired shrinkage (≤10%) during model
development.15 16 The sample size calculation (fig 3) requires
the researcher to prespecify the number of candidate predictor
parameters and, for binary or time-to-event outcomes, the
anticipated outcome proportion or rate, respectively, in the target
population. In addition, a (conservative) value for the anticipated
model performance is required, as defined by the Cox-Snell R
squared statistic (R2

cs).
15 35 The anticipated value of R2

cs is
important because it reflects the signal:noise ratio, which has
an impact on the estimation of multiple parameters and the
potential for overfitting. When the signal:noise ratio is
anticipated to be high (eg, R2

cs is close to 1 for a prediction
model with a continuous outcome), true patterns are easier to
detect and so overfitting is less of a concern, such that more
predictor parameters can be estimated. However, when the
signal:noise ratio is low (ie, R2

cs is anticipated to be close to 0),
true patterns are harder to identify and there is more potential
for overfitting, such that fewer predictor parameters can be
estimated reliably.
In the continuous outcome setting, R2

cs is simply the coefficient
of determination R2, which quantifies the proportion of the
variance of outcome values that is explained by the prediction
model and thus is between 0 and 1. For example, when
developing a prediction model for a continuous outcome with
up to 30 predictor parameters and an anticipated R2

cs of 0.7, a
sample size of 206 participants is required to ensure the expected
shrinkage is 10% (see supplementary material S4 for full
calculation). This corresponds to about seven participants for
each predictor parameter considered.
The R2

cs statistic generalises to non-continuous outcomes and
allows sample size calculations to minimise the expected
shrinkage when developing a prediction model for binary and
time-to-event outcomes (fig 3). For example, when developing
a new logistic regression model with up to 20 candidate predictor
parameters and an anticipated R2

cs of at least 0.1, a sample size
of 1698 participants is required to ensure the expected shrinkage
is 10% (see fig 3 for full calculation). If the target setting has
an outcome proportion of 0.3, this corresponds to an EPP of
25.5. The required sample size and EPP are sensitive to the
choice of R2

cs, with lower anticipated values of R2
cs leading to

higher required sample sizes. Therefore, a conservative choice
of R2

cs is recommended (fig 4).
As in sample size calculations for randomised trials evaluating
intervention effects, external evidence and expert opinion are
required to inform the values that need specifying in the sample
size calculator. Figure 4 provides guidance for specifying R2

cs.
Importantly, unlike for continuous outcomes when R2

cs is
bounded between 0 and 1, the R2

cs is bounded between 0 and
max(R2

cs) for binary and time-to-event outcomes. The max(R2
cs)

denotes the maximum possible value of R2
cs, which is dictated

by the overall outcome proportion or rate in the development
dataset and is often much less than 1. Supplementary material
S5 shows the calculation of max(R2

cs). For logistic regression
models with outcome proportions of 0.5, 0.4, 0.3, 0.2, 0.1, 0.05,
and 0.01, the corresponding max(R2

cs) values are 0.75, 0.74,
0.71, 0.63, 0.48, 0.33, and 0.11, respectively. Thus the
anticipated R2

cs might be small, even for a model with potentially
good performance.
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Step 4: What sample size will produce a small
optimism in apparent model fit?
The sample size should also ensure a small difference in the
developed models apparent and optimism adjusted values of
R2

Nagelkerke (ie, R2
cs/max(R2

cs)), as this is a fundamental overall
measure of model fit.10 38 The apparent R2

Nagelkerke value is simply
the model’s observed performance in the same data as used to
develop the model, whereas the optimism adjusted R2

Nagelkerke
value is a more realistic (approximately unbiased) estimate of
the model’s fit in the target population. The sample size
calculations are shown in supplementary material S6 for
continuous outcomes and in figure 5 for binary and time-to-event
outcomes. As before, they require the user to specify the
anticipated R2

cs and the max(R2
cs), as described in figure 4. For

example, when developing a logistic regression model with an
anticipated R2

cs of 0.2, and in a setting with an outcome
proportion of 0.05 (such that the max(R2

cs) is 0.33), 1079
participants are required to ensure the expected optimism in the
apparent R2

Nagelkerke is just 0.05 (see figure 5 for calculation).

Recommendations and software
Box 1 summarises our recommended steps for calculating the
minimum sample size required for prediction model
development. This involves four calculations for binary
outcomes (B1 to B4), three for time-to-event outcomes (T1 to
T3), and four for continuous outcomes (C1 to C4). To implement
the calculations, we have written the pmsampsize package for
Stata and R. The software calculates the sample size needed to
meet all the criteria listed in box 1 (except B2, which is available
at https://mvansmeden.shinyapps.io/BeyondEPV/), conditional
on the user inputting values of required parameters such as the
number of candidate predictors, the anticipated outcome
proportion in the target population, and the anticipated R2

cs. The
calculations are especially helpful when prospective data
collection (eg, new cohort study) are required before model
development; however, they are also relevant when existing
data are available to guide the number of predictors that can be
considered.

Box 1 Recommendations for calculating the sample size
needed when developing a clinical prediction model for
continuous, binary, and time-to-event outcomes

To increase the potential for developing a robust prediction model,
the sample size should be at least large enough to minimise
model overfitting and to target sufficiently precise model
predictions

Binary outcomes
For binary outcomes, ensure the sample size is enough to:
Estimate the overall outcome proportion with sufficient precision
(use equation in figure 1) (B1)
Target a small mean absolute prediction error (use equation in
figure 2, if number of predictor parameters is ≤30) (B2)
Target a shrinkage factor of 0.9 (use equation in figure 3) (B3)
Target small optimism of 0.05 in the apparent R2

Nagelkerke (use
equation in figure 5) (B4)

Time-to-event outcomes
For time-to-event outcomes, ensure the sample size is enough
to:
Estimate the overall outcome proportion with sufficient precision
at one or more key time-points in follow-up (use equation in figure
1) (T1)
Target a shrinkage factor of 0.9 (use equation in figure 3) (T2)
Target small optimism of 0.05 in the apparent R2

Nagelkerke (use
equation in figure 5) (T3)

Continuous outcomes
For continuous outcomes, ensure the sample size is enough to:
Estimate the model intercept precisely (see supplementary
material 1) (C1)
Estimate the model residual variance with sufficient precision
(see supplementary material 2) (C2)
Target a shrinkage factor of 0.9 (use equation in figure 3) (C3)
Target small optimism of 0.05 in the apparent R2

Nagelkerke (use
equation in figure 5) (C4)

These approaches require researchers to specify the anticipated
overall outcome risk or mean outcome value in the target
population, the number of candidate predictor parameters, and
the anticipated model performance in terms of overall model fit
(R2

cs). When the choice of values is uncertain, we generally
recommend being conservative and so taking those values (eg,
smallest R2

cs) that give larger sample sizes
When an existing dataset is already available (such that sample
size is already defined), the calculations can be used to identify
if the sample size is sufficient to estimate the overall outcome
risk or the mean outcome value, and how many predictor
parameters can be considered before overfitting becomes a
concern

Applied examples
We now illustrate the recommendations in box 1 by using three
examples.

Example 1: Binary outcome
North et al developed a model predicting pre-eclampsia in
pregnant women based on clinical predictors measured at 15
weeks’ gestation,43 including vaginal bleeding, age, previous
miscarriage, family history, smoking, and alcohol consumption.
The model included 13 predictor parameters and had a C statistic
of 0.71. Emerging research aims to improve this and other
pre-eclampsia prediction models by including additional
predictors (eg, biomarkers and ultrasound measurements).
As the outcome is binary, the sample size calculation for a new
prediction model needs to examine criteria B1 to B4 in box 1.
This requires us to input the overall proportion of women who
will develop pre-eclampsia (0.05) and the number of candidate
predictor parameters (assumed to be 30 for illustration). For an
outcome proportion of 0.05, the max(R2

cs) value is 0.33 (see
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supplementary material S5). If we assume, conservatively, that
the new model will explain 15% of the variability, the
anticipated R2

cs value is 0.15×0.33=0.05. Now we can check
criteria B1, B3, and B4 by typing in Stata:
pmsampsize, type(b) rsquared(0.05) parameters(30)
prevalence(0.05)
This indicates that at least 5249 women are required,
corresponding to 263 events and an EPP of 8.75. This is driven
by criterion B3, to ensure the expected shrinkage required is
just 10% (to minimise the potential overfitting). To check
criterion B2 in box 1, we can apply the formula in figure 2. This
suggests that 544 women are needed to target a mean absolute
error in predicted probabilities of ≤0.05. This is much lower
than the 5249 women needed to meet criterion B3.
If recruiting 5249 women is impractical (eg, because of time,
cost, or practical constraints for data collection), the sample size
required can be reduced by identifying a smaller number of
candidate predictors (eg, based on existing evidence from
systematic reviews44). For example, with 20 rather than 30
candidate predictors, the required sample size to meet all four
criteria is at least 3500 women and 175 events (still 8.75 EPP).

Example 2: Time-to-event outcome
Many prognostic models are available for the risk of a recurrent
venous thromboembolism (VTE) after cessation of treatment
for a first VTE.45 For example, the model of Ensor et al included
predictors of age, sex, site of first clot, D-dimer level, and the
lag time from cessation of treatment until measurement of
D-dimer (often around 30 days).46 The model’s C statistic was
0.69 and the adjusted R2

cs was 0.051 (corresponding to 8% of
the total variation). Emerging research aims to extend such
models by including additional predictors.
The sample size required for a new model must at least meet
criteria T1 to T3.15 This requires us to input a key time point for
prediction of VTE recurrence risk (eg, two years), alongside
the number of candidate predictor parameters (n=30), the
anticipated mean follow-up (2.07 years), and outcome event
rate (0.065, or 65 VTE recurrences for every 1000 person years
of follow-up), and the conservative value of R2

cs (0.051), with
all chosen values based on Ensor et al.46 Now criteria T1 to T3
can be checked, for example by typing in Stata:
pmsampsize, type(s) rsquared(0.051) parameters(30) rate(0.065)
timepoint(2) meanfup(2.07)
This indicates that at least 5143 participants are required,
corresponding to 692 events and an EPP of 23.1. This is
considerably more than 10 EPP, and is driven by a desired
shrinkage factor (criterion T2) of only 10% to minimise
overfitting based on just 8% of variation explained by the model.
If the number of candidate predictor parameters is lowered to
20, the required sample size is reduced to 3429 (still an EPP of
23.1).

Example 3: Continuous outcome
Hudda et al developed a prediction model for fat free mass in
children and adolescents aged 4 to 15 years, including 10
predictor parameters based on height, weight, age, sex, and
ethnicity.47 The model is needed to provide an estimate of an
individual’s current fat mass (=weight minus predicted fat free
mass). On external validation, the model had an R2

cs of 0.90.
Let us assume that the model will need updating (eg, in 10 years
owing to changes in the population behaviour and environment),
and that an additional 10 predictor parameters (and thus a total
of 20 parameters) will need to be considered in the model
development.

The sample size for a model development dataset must at least
meet the four criteria of C1 to C4 in box 1. This requires us to
specify the anticipated R2

cs (0.90), number of candidate predictor
parameters (n=20), and mean (26.7 kg) and standard deviation
(8.7 kg) of fat free mass in the target population (taken from
Hudda et al47). For example, in Stata, after installation of
pmsampsize (type: ssc install pmsampsize), we can type:
pmsampsize, type(c) rsquared(0.9) parameters(20)
intercept(26.7) sd(8.7)
This returns that at least 254 participants are required, and so
12.7 participants for each predictor parameter. The sample size
of 254 is driven by the number needed to precisely estimate the
model standard deviation (criterion C3), as only 68 participants
are needed to minimise overfitting (criteria C1 and C2).

Extensions and further topics
Ensuring accurate predictions in key
subgroups
Alongside the criteria outlined in box 1, a more stringent task
is to ensure model predictions are accurate in key subgroups
defined by particular values or categories of included
predictors.48 One way to tackle this is to ensure predictor effects
in the model equation are precisely estimated, at least for key
subgroups of interest.15 16 For binary and time-to-event outcomes,
the precision of a predictor’s effect depends on its magnitude,
the variance of the predictor’s values, the predictor’s correlation
with other predictors in the model, the sample size, and the
outcome proportion or rate in the study.49-51 For continuous
outcomes, it depends on the sample size, the residual variance,
the correlation of the predictor with other included predictors,
and the variance of the predictor’s values.48 52-55 Note that for
important categorical predictors large sample sizes might be
needed to avoid separation issues (ie, where no events or
non-events occur in some categories),13 and potential bias from
sparse events.56

Sample size considerations when using an
existing dataset
Our proposed sample size calculations (ie, based on the criteria
in box 1) are still useful in situations when an existing dataset
is already available, with a specific number of participants and
predictors. Firstly, the calculations might identify that the dataset
is too small (for example, if the overall outcome risk cannot be
estimated precisely) and so the collection of further data is
required.57 58 Secondly, the calculations might help identify how
many predictors can be considered before overfitting becomes
a concern. The shrinkage estimate obtained from fitting the full
model (including all predictors) can be used to gauge whether
the number of predictors could be reduced through data
reduction techniques such as principal components analysis.10

This process should be done blind to the estimated predictor
effects in the full model, as otherwise decisions about predictor
inclusion will be influenced by a “quick look” at the results
(which increases the overfitting).

Sample size requirements when using
variable selection
Further research on sample size requirements with variable
selection is required, especially for the use of more modern
penalisation methods such as the lasso (least absolute shrinkage
and selection operator) or elastic net.33 59 Such methods allow
shrinkage and variable selection to operate simultaneously, and
they even allow the consideration of more predictor parameters
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than number of participants or outcome events (ie, in high
dimensional settings). However, there is no guarantee such
models solve the problem of overfitting in the dataset at hand.
As mentioned, they require penalty and shrinkage factors to be
estimated using the development dataset, and such estimates
will often be hugely imprecise. Also, the subset of included
predictors might be highly unstable60-63; that is, if the prediction
model development was repeated on a different sample of the
same size, a different subset of predictors might be selected and
important predictors missed (especially if sample size is small).
In healthcare the final set of predictors is a crucial consideration,
owing to their cost, time, burden (eg, blood test, invasiveness),
and measurement requirements.

Larger sample sizes might be needed when
using machine learning approaches to
develop risk prediction models
An alternative to regression based prediction models are those
based on machine learning methods, such as random forests and
neural networks (of which “deep learning” methods are a special
case).64 When the focus is on individualised outcome risk
prediction, it has been shown that extremely large datasets might
be needed for machine learning techniques. For binary outcomes,
machine learning techniques could need more than 10 times as
many events for each predictor to achieve a small amount of
overfitting compared with classic modelling techniques such
as logistic regression, and might show instability and a high
optimism even with more than 200 EPP.26 A major cause of this
problem is that the number of predictor (“feature”) parameters
considered by machine learning approaches will usually far
exceed that for regression, even when the same set of predictors
is considered, particularly because they routinely examine
multiple interaction terms and categorise continuous predictors.
Therefore, machine learning methods are not immune to sample
size requirements, and actually might need truly “big data” to
ensure their developed models have small overfitting, and for
their potential advantages (eg, dealing with highly non-linear
relations and complex interactions) to reach fruition. The size
of most medical research datasets is better suited to using
regression (including penalisation and shrinkage approaches),65

especially as regression also leads to a transparent model
equation that facilitates implementation, validation, and
graphical displays.

Sample size for model updating
When an existing prediction model is updated, the existing
model equation is revised using a new dataset. The required
sample size for this dataset depends on how the model is to be
updated and whether additional predictors are to be included.
In our worked examples, we assumed that all parameters in the
existing model will be re-estimated using the model updating
dataset. In that situation, the researcher can still follow the
guidance in box 1 for calculating the required sample size, with
the total predictor parameters the same as in the original model
plus those new parameters required for any additional predictors.
Sometimes, however, only a subset of the existing model’s
parameters is to be updated.66 67 In particular, to deal with
calibration-in-the-large, researchers might only want to revise
the model intercept (or baseline survival), while constraining
the other parameter estimates to be the same as those in the
existing model. In this case the required sample size only needs
to be large enough to estimate the mean outcome value or
outcome risk precisely (ie, to meet criteria C1, B1, or T1 in box
1). Even if researchers also want to update the existing predictor

effects, they might decide to constrain their updated values to
be equal to the original values multiplied by a constant. Then,
the sample size only needs to be large enough to estimate one
predictor parameter (ie, the constant) for the existing predictors,
plus any new parameters the researchers decide to add. Such
model updating techniques therefore reduce the sample size
needed (to meet the criteria in box 1) compared with when every
predictor parameter is re-estimated without constraint.

Conclusion
Patients and healthcare professionals require clinical prediction
models to accurately guide healthcare decisions.1 Larger sample
sizes lead to more robust models being developed, and our
guidance in box 1 outlines how to calculate the minimum sample
size required. Clearly, the more data for model development
the better; so if larger sample sizes are achievable than our
guidance suggests, use it! Of course, any data collected should
be of sufficient quality and representative of the target
population and settings of application.68 69

After data collection, careful model building is required using
appropriate methods.1 3 10 In particular, we do not recommend
data splitting (eg, into model training and testing samples), as
this is inefficient and it is better to use all the data for model
development, with resampling methods (such as bootstrapping)
used for internal validation.70 71 Sometimes external information
might be used to supplement the development dataset further.72-74

Lastly, sample size requirements when externally validating an
existing prediction model require a different approach, as
discussed elsewhere.75-78
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Figures

Fig 1 Calculation of sample size required for precise estimation of the overall outcome probability in the target population
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Fig 2 Sample size required to help ensure a developed prediction model of a binary outcome will have a small mean
absolute error in predicted probabilities when applied in other targeted individuals

Fig 3 How to calculate the sample size needed to target a small magnitude of required shrinkage of predictor effects (to
minimise potential model overfitting) for binary or time-to-event outcomes
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Fig 4 How to decide on the model’s anticipated R2
cs in advance of data collection
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Fig 5 How to calculate the sample size needed to target a small optimism in model fit (to minimise potential model overfitting)
for binary and time-to-event outcomes
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