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Abstract

Objectives The current study aims to determine the effect of physicochemical

descriptor selection on models of polydimethylsiloxane permeation.

Methods A total of 2942 descriptors were calculated for a data set of 77 chemi-

cals. Data were processed to remove redundancy, single values, imbalanced and

highly correlated data, yielding 1363 relevant descriptors. For four independent

test sets, feature selection methods were applied and modelled via a variety of

Machine Learning methods.

Key findings Two sets of molecular descriptors which can provide improved

predictions, compared to existing models, have been identified. Best permeation

predictions were found with Gaussian Process methods. The molecular descrip-

tors describe lipophilicity, partial charge and hydrogen bonding as key determi-

nants of PDMS permeation.

Conclusions This study highlights important considerations in the development

of relevant models and in the construction and use of the data sets used in such

studies, particularly that highly correlated descriptors should be removed from

data sets. Predictive models are improved by the methodology adopted in this

study, notably the systematic evaluation of descriptors, rather than simply using

any and all available descriptors, often based empirically on in vitro experiments.

Such findings also have clear relevance to a number of other fields.

Introduction

Predicting the permeation into and across the skin of

exogenous chemical is of substantial interest for a number

of industries, including pharmaceuticals, cosmetics, pesti-

cides and the handling of industrial chemicals. Determining

skin permeability is therefore an essential component of

understanding the risks associated with exposure of the

skin to exogenous chemicals. In general, in vitro experi-

ments form a significant part of early-stage evaluation of

pharmaceutical formulations or in risk assessment proto-

cols for other topical exposures. While fresh human skin is

the perceived ‘gold standard’ for in vitro testing, its consis-

tent use is constrained by availability, which often means

that certain compromises are commonly adopted,

including the use of previously frozen human skin and tis-

sue from other species; in the latter case, it is generally

accepted that pig skin is the best model for human skin,

with the pig ear being widely used despite differences in the

lateral packing of stratum corneum lipids, compared to

human skin.[1-4]

Given the scientific and logistical constraints discussed

above, artificial membranes have also found widespread use

in early-stage assessment of percutaneous absorption, nota-

bly in the context of formulation optimisation and elucida-

tion of permeation mechanisms. Polydimethylsiloxane

(PDMS, Figure 1) is one of the most widely used mem-

branes in such studies and has been shown to correlate well

with mammalian skin studies[5] but differences in the dis-

tribution of permeation compared to mammalian skin have
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also been found.[6,7] Similarly, Gullick and co-workers

found reasonable correlations between in vitro diffusion

experiments using PDMS membranes and pig skin.[8]

PDMS has also been widely used to investigate mechanisms

of membrane transport. Permeability was generally related

to the physicochemical properties of their penetrants, and

solvents were taken up into the membrane, altering mem-

brane properties and the flux of the permeants.[9-12] ATR-

FTIR spectroscopy has also been used to evaluate diffusion

across a PDMS membrane[13] with a rudimentary struc-

ture–activity relationship for permeability across a PDMS

membrane being developed.[14] It was also reported that

the permeation distribution of a range of chemicals across a

PDMS membrane was Gaussian-normal,[15] in contrast to a

number of studies which reported non-Gaussian (log-nor-

mal) distribution in mammalian skin.[6,9,16-21] This differ-

ence was broadly attributed to the heterogeneity of

biological membranes, including the possibility of multiple

permeation pathways in mammalian skin, which is in con-

trast to the homogeneity of PDMS membranes. PDMS

membranes are therefore pharmaceutically significant and

provide an effective screen in early-stage formulation devel-

opment and in the elucidation of mechanistic information

for the permeation process.

The first major studies quantifying permeability across

a PDMS membrane initially saw the development of

empirical models for permeation across a PDMS mem-

brane which related flux through the membrane to partial

atomic charge, mole fraction solubility and molecular

weight.[22]:

log Jmss ¼ �2:497� 4:339Reþ � 1:531Re�
þ 4:065ðReþ:Rep�Þ þ 0:649 logCS

� 0:00651MW� 0:640imidazoleþ 0:689amine

ð1Þ
n = 103, r2 = 0.966, s = 0.238, F = 386.5; where Jmss is

the maximum steady-state flux (lmol/s per cm2); Σe+ is

the sum of the charge values of hydrogen atoms (with

charge >0.1) and the positive charge of a nitrogen atom

in a nitro group; Σe� is the sum of the absolute charge

values of all other heteroatoms with unshared electron

pairs in the same molecule.

Equation 1 gave better predictions than their previous

model, and they applied it to predict the flux of 171 new

compounds which were not included in their previous

study.[23] This yielded a slightly simplified model which

omitted the imidazole descriptor:

log Jmss ¼ �2:497� 4:339Reþ � 1:531Re�
þ 4:065ðReþ:Re�Þ þ 0:649 logCs

� 0:00651MWþ 0:689amine

ð2Þ

These data[22,23] were re-analysed with the aim of devel-

oping a QSAR model based on readily calculable descrip-

tors, unlike those used in the original studies, with greater

mechanistic insight for the whole data set.[24] This resulted

in a simple QSAR:

log J ¼ �0:561HA�0:671HD� 0:8016v�0:383 ð3Þ
n = 242, r = 0.900, s = 0.464, F = 338; where J is the
steady-state flux (lmol/s per cm2), HA and HD are,
respectively, the number of hydrogen bond acceptor and
donor groups present on a penetrant and 6v is the sixth-
order path molecular connectivity.

This model describes permeability across a PDMS mem-

brane in terms of hydrogen bonding and molecular topol-

ogy. These data[22-24] were also modelled by in an artificial

neural network (ANN) study.[25] They generated a 12-pa-

rameter non-linear QSAR model which, most significantly,

found that log P was not significant, being attributed to the

inability of log P to account for intramolecular interactions.

Similar findings were also reported[26] although these were

based on a very small data set (n = 16). In more recent

years, Gaussian Processes Regression methods (GP, or

GPR) have been shown to outperform QSARs in predicting

the skin permeability of compounds.[27] GPs have recently

been used for the prediction of the permeability of com-

pounds across non-human skin and synthetic poly-

dimethylsiloxane membranes,[28,29] and human skin.[30]

Two of the major problems with developing valid and

useful models of biological functions, such as skin perme-

ability, are the selection of appropriate descriptors (fea-

tures) and the size of the data set. The impact for a small

data set may be more prominent as the solution (the set of

selected descriptors) may change more significantly if one

data point is replaced by another. These issues have been

addressed in recently,[30-32] resulting in the models that are

highly predictive and robust.

It is clear that a number of previous studies in this field

focus on using existing data or collating as much available

data as possible and that the descriptors of interest are often

chosen based on empirical studies. Such approaches limit

the value of models, and while a detailed understanding of

data set size and distribution has been addressed previ-

ously,[32] this study focuses on the selection of objective rel-

evant physicochemical descriptors, employing a Feature
Figure 1 Chemical structure of (poly)dimethylsiloxane (PDMS).
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Selection methodology to do so. Therefore, the two aims of

this work were, firstly, to find a set of highly relevant

molecular descriptors that describe the process of mem-

brane permeation and, secondly, to determine whether fea-

ture selection techniques can yield benefits in the

prediction of chemical transport across PDMS membranes

and to provide a more specific and nuanced understanding

of the mechanistic nature of the permeation process. The

novelty of this work is that this is the first time such

methodology (that is, feature selection on a small data set

with a large number of physicochemical descriptors) has

been applied to a system of pharmaceutical interest and this

clearly has implications for other permeation across other

membranes, notably skin.

Methods

Description of the data set

A human skin data set was not used in this study due to pre-

viously reported inconsistencies in the available data,[33-35]

which it was felt could inhibit the development of new models

based on the approach used in this study. Thus, a PDMS

membrane was considered more appropriate as its use is gen-

erally associated with a greater consistency.[22-24,36] The data

set was collated from the existing scientific literature and is

available as Appendix S2. It consists of 77 unique chemical

compounds. For each compound, the permeability coeffi-

cient, kp(cm/h), across a PDMS membrane was used and

2942 physicochemical descriptors were determined using a

range of software packages (Dragon Professional, Molecular

Operating Environment (MOE), HYdrogen BOnd Thermo-

dynamics (HYBOT) and WinMolconn). While it is more

common to use flux (J) to describe membrane perme-

ation,[22-24] the permeability coefficient, kp, which is effectively

the concentration-corrected flux, is more widely used in the

scientific literature and, notably, in the construction of skin

permeation models. This is because the use of kp allows a

comparison to be made between different chemicals as con-

centration differences are generally accounted for.[36-38]

Data set pre-processing

There are no missing values or inconsistent data in the data

set used in this study. 772 descriptors had only one possible

value and were removed from the data set. A further 194

descriptors were removed as their distributions were highly

imbalanced (i.e., the number of one certain value is greater

than a threshold set in this analysis, i.e. 90% or greater of

the total number of data points). 613 further descriptors

which were highly correlated within the data set (i.e. those

whose correlation coefficients are greater than 0.99) were

removed. The analysis in this study was conducted on a

refined data set of 77 compounds, each with 1363 physico-

chemical descriptors.

Generation of four independent test sets

It has been demonstrated previously that there are no sig-

nificant linear relationships with the target permeability

data for the descriptors used.[37,39] Principal component

analysis (PCA) indicated that no linear relationship was

observed between the permeability coefficient and the com-

pound descriptors combined in the first component, where

40.2% of the variance was due to the first two principal

components, PC1 and PC2. Figure 2 shows a PCA plot of

the original, complete, PDMS data set, indicating that the

first two Eigenvectors capture 40.21% of the total data vari-

ance. In order to observe how the final selected descriptor

set affects the performance of regression models on the test

set, four different test sets were randomly constructed, each

of which includes seven test compounds:

• Set A – seven test compounds were selected from the

boundary of the data cloud shown in the PCA (Figure 3a

for PC1, and Figure 3b for PC2, denoted by crosses, ‘+’
in these figures). These PCA plots further show the rela-

tionship between logKp and the first two principal com-

ponents, indicating that, except for the selected

compound with the largest logKp value and the two

selected compounds with relatively small logKp values,

the remaining four selected compounds, compounds

with different PC projections but very similar logKp val-

ues can be found. This test set is denoted TstA and the

rest of the chemical compounds as TrnA.

• Set B – this test set includes the three smallest and the

four largest logKp values. Figure 3c,d shows projections

of these compounds on a PCA plot for PC1 and PC2,

respectively; this test set is denoted as TstB and the rest of

the chemical compounds as TrnB.

• Set C – seven compounds randomly selected from the

data set. Figure 4a,b shows the projections of these com-

pounds in the PCA plot for PC1 and PC2, respectively.

This test set is denoted as TstC and the remaining chemi-

cal compounds as TrnC.

• Set D – seven compounds selected from the t-sne plot[40] and

for PC1 and P2 is shown in Figure 4c,d, respectively. This is

denoted as TstD and the rest of the chemicals as TrnD.

Constructing random training/validation
sets

To obtain robust results for each training set the data has

been shuffled 10 000 times. Each shuffle sees 60 chemicals

randomly selected as the training set of regression models

and the remaining compounds are used as the validation
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set.[28-32,37,39] Thus, there are 10 000 training subsets and

10 000 validation sets corresponding to each training set.

The validations sets are used for feature selection rather

than hyperparameter tuning. In using such a method,

descriptors selected from different training sets will vary

and those that are consistently selected are of most interest.

The standard deviation is also used to describe the variance

of the outputs.

Methods of analysis

In this study, a range of methods were used. These methods

are outlined below; they have been reported on extensively

previously[30-32,37,39,41-59] and detailed methods are also

included as Appendix S1.

Random Forest Trees (RFTs)

The Random Forests algorithm was coupled with the ran-

dom selection of descriptors and bootstrap aggregation to

the training sets.[52] In this study, an ensemble of decision

trees for regression has been applied via MatLab TreeBag-

ger. The 50 most important descriptors in each ensemble of

decision trees for a given training set were identified. Thus,

either a trained RFT or GP model has been developed using

the most relevant physicochemical descriptors only. While

normally it would not be necessary to have a validation set

for the RFT experiments, we have, in this case, used a vali-

dation set in order to keep our results consistent with the

other tests used in this study.

LASSO

In this study, the LASSO method[54] has been applied, with

a five-fold cross-validation method, in order to remove

redundant descriptors from the data set. To speed up the

processing time the UseParallel mode has been enabled. All

other parameters are set to the default mode in MATLAB.

(Joint) Mutual Information (MI, JMI)

In this study, the MatLab FEAST toolbox (http: www.cs.ma

n.ac.uk/gbrown/fstoolbox) has been used to select descrip-

tors using the JMI criterion by assigning labels to the

responses required by the model. Those responses have

been aligned into 10 categories.

Gaussian Processes

A Gaussian Process (GP) is defined as a collection of ran-

dom variables which, jointly, have a Gaussian distribu-

tion.[57] GPs have also been successfully applied to the field

of predicting percutaneous absorption.[30-32,37] GP meth-

ods have been described in detail previously and are also

discussed in the Appendix S1.

Figure 2 A principal component analysis plot of the original PDMS data set, showing that the first two Eigenvectors capture 40.21% of the total

variance.
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Figure 3 Boundary points in the principal component analysis plot shown for (a) PC1 and (b) PC2 for Test Set A, and with the three smallest

logKp values and four largest logKp values highlighted for (c) PC1 and (d) PC2 for Test Set B.
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Figure 4 Principal component analysis plots for Test Sets C, showing seven compounds randomly selected from the data set for (a) PC1 and (b)

PC2, and for Test Set D showing seven compounds selected from the t-sne plot,[40] for (c) PC1 and (d) PC2.
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Automatic Relevance Determination

To implement automatic relevance determination (ARD)

in a GPR, the characteristic length scale matrix, M, is rede-

fined as a diagonal matrix containing the elements of vector

L ¼ l�2
1 ; . . .; l2D

� �
and l1; . . .lD on the diagonal are the char-

acteristic length scales for each input dimension, determin-

ing how relevant an input is to the task. These

characteristic length scales can be optimised from the data

by Bayesian inference.

Performance measures

The mean squared error (MSE), improvement over Na€ıve

model (ION) and the Pearson correlation coefficient (r, or

CORR) we are all used to evaluate the performance of each

model.[30-32,37,39,59] MSE measures the average squared dif-

ference between model predictions and the corresponding

targets. The ION measures the degree of improvement of

the model performance over the performance of the Na€ıve

predictor, which is normally the mean of the output (e.g.

logKp) in the training set. The ION is thus defined as:

ION ¼ MSENaive �MSE

MSENaive
� 100% ð4Þ

CORR measures the correlation between predictions and

targets. For comparison, a ‘good’ model should have a low

value of MSE and high values of ION and CORR on a given

test data set.

Results and Discussion

In this field, it is important to note that previous studies

are either based on small data sets (e.g. 16 chemicals of lim-

ited structural diversity[26]) or on different experimental

conditions (e.g. an isopropylalcohol solvent system at

30°C[22-24]). Benchmarking is therefore a challenge, and the

decision to focus on a skin permeation QSAR[60] is limited,

but offers a relevance in terms of comparison of PDMS rel-

evance to skin.[39] A consideration of the ION values

between the models and the benchmark suggests a limited

ability of data from PDMS membranes to successfully

model skin, and vice versa, emphasising the limitations of

the PDMS membrane in acting as a substitute for skin.

Table 1 also shows the results of applying GP models.[30,31]

to these data and does so using the same parameters as the

QSAR model in order to provide a comparable benchmark

as well as a full set of 1363 descriptors. While it is usual for

two-thirds of the data set to be used for training and the

remaining one-third for the test in this work, in aiming to

train the model with as many data points as possible and to

repeat this 10 000 times to address concerns of inherent

variance, we aimed for 10% test data, keeping most data in

the training set so the estimates of permeability were as

accurate as possible. We were concerned that if we removed

more data from the training set the predictions would be

significantly impaired, a finding which was apparent in pre-

vious work with similar types of data.[32,61,62]

We have previously used several measures of model qual-

ity, including MSE and ION, rather than just the correlation

coefficient.[28-30,37] This is important because in this study

(e.g. Table 1) it is clear that the QSAR models have the low-

est ION values but reasonably high correlation coefficients,

suggesting a possible systematic error. The GP models have

comparability improved ION values. It is interesting to note

that the MSE and ION results are better than for the QSAR

model but still very poor for the correlation coefficients. This

might reflect the somewhat comparable nature of the linear

QSAR model with the experimental findings that associate

permeation across a PDMS membrane to be predominately

linear – thereby over-estimating permeability particularly at

high lipophilicities. This is not reflected in the GP models

which are more reflective of the non-linear nature of skin

permeability in the context of molecular descriptors such as

log P and molecular weight.[37] It also highlights the limita-

tions of replacement membranes – in this case, PDMS and

mirrors similar outcomes reported previously for a range of

mammalian species.[39]

It should also be noted that the results for the GP models

shown in Table 1 do indicate that ION and MSE values are

significantly better for these models, even if the variance asso-

ciated with each outcome is large when the full set of descrip-

tors is used. This suggests that the full set of descriptors is

responsible for noise and redundancy within the data, high-

lighting the importance of selecting the correct descriptors as

well as the need to rationalise and optimise the descriptors

used for our models in order to produce more accurate esti-

mations of membrane permeability. Further, the ION values

are comparable to those for the correlation coefficient and

provide similar measurements of model quality. This is

important as it allows readers from different disciplines to

frame the outcomes of this study in their own contexts.

Table 2 summarises the results of the first set of

experiments on the PDMS data set. These results indi-

cate that the best overall model is found using the Ran-

dom Forests method, which outperforms other models

for three of the four validation sets – the Mutual Infor-

mation method performs better on validation set D.

This is most likely because the Random Forests method

embeds feature selection methodology in regression. It

was also found that the results of the LASSO method

were not stable and that the mean values of estimations

on two validation sets – A and C – were worse than the

na€ıve predictions. Further, when the GPARD + Full

method is compared to GP it was observed that the use
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of ARD gives much better results. For example, all IONs

of GPARD + Full are greater than 10%, whereas all ION

values in Table 1 are around zero (for the GP method

using the full feature set). This is because, rather than

using an identical length scale over all features and

treating all features equally, GPARD uses a different

Table 1 Results on data sets with two features (MW and log P) using (a) the benchmark QSAR model of Potts and Guy for skin[60]; (b) the Gaus-

sian Process Regression model with two descriptors (MW and log P) and (c) the Gaussian Process Regression model with the full set of descriptors.

Results are the mean value and standard deviation over 10 000 validation sets, which are denoted as ValA, ValB, ValC and ValD, respectively

ValA ValB ValC ValD

QSAR model

MSE 15.98 � 1.61 16.23 � 1.89 16.07 � 2.22 16.31 � 1.70

ION% �627.35 � 507.95 �871.35 � 555.31 �544.81 � 405.01 �683.68 � 527.58

CORR 0.55 � 0.32 0.66 � 0.25 0.57 � 0.29 0.62 � 0.35

Gaussian Process model with two descriptors

MSE 3.13 � 2.32 1.76 � 1.61 3.84 � 2.58 2.64 � 1.78

ION% 6.20 � 62.70 22.36 � 85.27 3.73 � 53.42 9.76 � 45.79

CORR 0.37 � 0.46 0.59 � 0.35 0.34 � 0.41 0.39 � 0.31

Gaussian Process model with full descriptors

MSE 3.25 � 1.83 2.32 � 1.27 3.56 � 2.01 2.95 � 1.73

ION% �0.00 � 0.03 �2.04 � 9.01 �0.02 � 0.10 0.08 � 0.74

CORR 0.12 � 0.43 0.21 � 0.37 0.21 � 0.30 0.36 � 0.13

QSAR is quantitative structure–activity relationship, and the term QSPR (quantitative structure–permeability) relationship is often interchangeably

used in modelling studies of skin permeation; MSE is mean squared error; ION, or ION%, is the improvement over the na€ıve model; CORR, or r, is

the correlation coefficient; MW is molecular weight; log P is the octanol : water partition coefficient. Results highlighted in bold are those which

achieved the best outcome for each test.

Table 2 Summary of the statistical measures for the validation sets used to assess model quality for the PDMS data set. The results are pre-

sented as (a) MSE; (b) ION and (c) the correlation coefficient

ValA ValB ValC ValD

MSE

RFTs + RFTs 2.46 � 2.06 1.49 � 1.50 2.84 � 2.12 1.82 � 1.93

GP + RFTs 2.86 � 1.99 2.22 � 1.43 3.43 � 2.22 1.65 � 1.80

Lasso + Lasso 5.70 � 223.31 1.64 � 1.64 3.85 � 2.50 2.33 � 2.05

GP + Lasso 3.65 � 8.03 2.06 � 1.74 3.90 � 2.84 2.33 � 2.27

GP + MI 2.56 � 2.01 2.51 � 1.33 3.56 � 2.08 1.42 � 1.54

GPARD + Full 2.68 � 1.96 1.98 � 1.64 3.38 � 2.16 2.30 � 1.64

GP + two fs 3.25 � 1.83 2.32 � 1.27 3.56 � 2.01 2.95 � 1.73

ION

RFTs + RFTs 30.17 � 33.50 44.43 � 34.64 30.74 � 31.83 49.18 � 32.27

GP + RFTs 12.09 � 42.79 4.22 � 44.44 12.48 � 39.91 47.32 � 49.23

Lasso + Lasso �60.94 � 4.75 35.85 � 60.29 �2.21 � 62.41 22.51 � 71.99

GP + Lasso �17.89 � 187.64 7.60 � 88.89 �2.86 � 72.57 21.89 � 80.90

GP + MI 26.42 � 38.7 �13.92 � 56.41 6.94 � 36.80 52.32 � 46.38

GPARD + Full 18.22 � 40.83 21.80 � 41.17 13.30 � 41.09 23.09 � 36.14

GP + two fs �0.00 � 0.03 �2.04 � 9.01 �0.02 � 0.10 0.08 � 0.74

Correlation coefficient

RFTs + RFTs 0.57 � 0.27 0.66 � 0.28 0.57 � 0.26 0.68 � 0.27

GP + RFTs 0.46 � 0.26 0.41 � 0.27 0.45 � 0.27 0.71 � 0.25

Lasso + Lasso 0.35 � 0.30 0.66 � 0.29 0.41 � 0.31 0.62 � 0.29

GP + Lasso 0.41 � 0.32 0.58 � 0.28 0.45 � 0.33 0.61 � 0.31

GP + MI 0.56 � 0.25 0.25 � 0.22 0.41 � 0.24 0.75 � 0.22

GPARD + Full 0.47 � 0.29 0.49 � 0.31 0.43 � 0.29 0.53 � 0.23

GP + two fs 0.12 � 0.43 0.21 � 0.37 0.21 � 0.30 0.36 � 0.13

PDMS is polydimethylsiloxane (see Figure 1); RFT is random forest tree; GP is Gaussian Process, often used interchangeably with Gaussian Process

Regression (GPR); LASSO is the least absolute shrinkage and selection operator; MI is mutual information (note that JMI, joint mutual information,

has also been discussed in this study); GPARD is Gaussian Process Regression; GP + two fs is the Gaussian Process model run with two descriptors,

log P and MW, to mimic the descriptors used in common QSAR models of skin permeation; Full refers to studies run with the full data set. Results

highlighted in bold are those which achieved the best outcome for each test.
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length scale for each feature to indicate the importance

of each feature in its predictive ability.

Figure 5a firstly shows that the benchmark QSAR models

perform worst among all the models, which might be

expected based on the above discussion and may reflect

more widely the value of PDMS as an alternative to mam-

malian tissue.[39] Figure 5b shows the mean values of ION,

and it can be seen that there is no improvement if the GP

model is used with the full data set compared to the na€ıve

model. Interestingly, in Figure 5c the corresponding stan-

dard deviation is consistently low over all four validation

sets, suggesting that the full feature data set contains a sub-

stantial amount of noise. Figure 5b also indicates that the

performance of the LASSO models varies across the four

validation sets; they are better than the na€ıve model for two

data sets (A and C) and worse for the other two. RFTs give

better results than the na€ıve model for all four validation

sets. The value obtained using GP with the full feature

selection set is the lowest for all sets of data. The QSAR

models yields relatively good correlation coefficients, which

addresses the issues described above and also previously in

attempting to demonstrate the potential of the PDMS

membrane to represent human skin.[39] Moreover, it

indicates that use of the correlation coefficient alone – as is

often the case in skin permeability studies – may not be a

reliable indicator of model performance and that use

and consideration of a series of statistical measures may

provide more suitable outcomes in terms of describing

model quality.

A small number of descriptors were repeatedly found in

at least 5000 of the repeated experiments. The features

selected using RFTs are shown in Table 3. From this

Figure 5 Overview of the outcome of statistical measures (MSE, ION and correlation coefficient) for the different QSAR and Machine Learning

methods investigated. Results are shown as the mean and standard deviation following 10 000 repetitions of the validation set and presented as

mean and standard deviation; (a) the grouped bar plot of mean values of MSE, with error bars also shown on the plot; (b) the mean values of

ION, with the standard deviations of ION shown in (c) for clarity and (d) the grouped bar plot of mean values of correlation coefficients with error

bars shown on the plot.
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analysis six common features have been identified from all

four training sets, namely: log P(o/w), PEOE_VSA_FPOS,

Q_VSA_FPOS, CHssNH, Sum(Ea)Alpha and Sum(Cad).

Furthermore, between 28 and 39 features have been selected

from each training set using MI. Seven common features

were identified, namely b_IrotR, b_rotR, log P(o/w), Q-

VSA_FPPOS, vsurf_A, Max(Ea)*Max(Ed) and Sum(Ea)/

Alpha. These descriptors are defined in Table 3 but, in gen-

eral, they fall under three main categories in that they

describe lipophilicity, partial charge and hydrogen bonding

as key determinants of PDMS permeation. This is consis-

tent with many previous findings in this field.[59,63,64] but

Table 3 Lists of physicochemical descriptors selected using RFTs method. The descriptors listed are those chosen more than 5000 times

Training

set Feature list Software Definition

TrnA log P(o/w) – The logarithm of the octanol-water partition

Sum(Ea)/Alpha HYBOT Hydrogen bonding descriptor – Ea factor value per unit of molecular volume

CHssNH MolconnZ Molecular connectivity descriptor

PEOE_VSA_FPOS MOE Partial charge descriptors – Fractional positive van der Waals surface area. This is the sum of the vi

such that qi is non-negative divided by the total surface area. The vi are calculated using a connection

table approximation.

SHCsatu MolconnZ E-State of Csp3 bonded to unsaturated C atoms

GGI6 Dragon Topological charge index of order 6

Q_VSA_FPPOS MOE Partial charge descriptors – Fractional negative van der Waals surface area. This is the sum of the vi

such that qi is negative divided by the total surface area. The vi are calculated using a connection

table approximation.

Sum(Cad)/Alpha HYBOT Hydrogen bonding descriptor – Ca*d factor value per unit of molecular volume

ALOGP Dragon Ghose-Crippen octanol-water partition coefficient

TrnB log P(o/w) –

CHssNH MolconnZ Molecular connectivity descriptor

Sum(Cad)/Alpha HYBOT Hydrogen bonding descriptor – Ca*d factor value per unit of molecular volume

BIC2 Dragon Bond Information Content index (neighbourhood symmetry of 2-order)

Sum(Ea)/Alpha HYBOT Hydrogen bonding descriptor – Ea factor value per unit of molecular volume

Q_VSA_FPPOS MOE Partial charge descriptors – Fractional negative van der Waals surface area. This is the sum of the vi

such that qi is negative divided by the total surface area. The vi are calculated using a connection

table approximation.

ALOGP Dragon Ghose-Crippen octanol-water partition coefficient

ALOGP2 Dragon Squared Ghose-Crippen octanol-water partition coefficient, i.e. (logP)2

NHBint2 HYBOT Atom type electrotopological state: Count of E-State descriptors of strength for potential Hydrogen

Bonds of path length 2.

Sum(Ca)/Alpha HYBOT Hydrogen bonding descriptor – Ca factor value per unit of molecular volume

SIC2 Dragon Information indices – Structural Information Content index (neighbourhood symmetry of 2-order)

E_sol MOE Potential energy descriptor – Solvation energy. In the Potential Setup panel, the term enable flag is

ignored, but the term weight is applied.

PEOE_VSA_FPOS MOE Partial charge descriptor – Fractional positive van der Waals surface area. This is the sum of the vi such

that qi is non-negative divided by the total surface area. The vi are calculated using a connection

table approximation.

Sum(Ead)/Alpha HYBOT Hydrogen bonding descriptor – Ea*d factor value per unit of molecular volume

TrnC CHssNH MolconnZ Molecular connectivity descriptor

Sum(Ea)/Alpha HYBOT Hydrogen bonding descriptor – Ea factor value per unit of molecular volume

PEOE_VSA_FPOS MOE Partial charge descriptor – Fractional positive van der Waals surface area. This is the sum of the vi such

that qi is non-negative divided by the total surface area. The vi are calculated using a connection

table approximation.

Q_VSA_FPPOS MOE Partial charge descriptors – Fractional negative van der Waals surface area. This is the sum of the vi

such that qi is negative divided by the total surface area. The vi are calculated using a connection

table approximation.

MATS1m Dragon 2D autocorrelation – Moran autocorrelation of lag 1 weighted by mass

SHCsatu MolconnZ E-State of Csp3 bonded to unsaturated C atoms

GATS1m Dragon 2D autocorrelation – Geary autocorrelation of lag 1 weighted by mass

Sum(Cad)/Alpha HYBOT Hydrogen bonding descriptor – Ca*d factor value per unit of molecular volume

CHssNH MolconnZ Molecular connectivity descriptor
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provides a more specific molecular basis in determining

specific structural features that contribute positively or neg-

atively to skin permeation.

Figure 6 indicates that a number of the significant

descriptors demonstrate a reasonable correlation. In Fig-

ure 7, it can be seen that, using the MI method, b_1rotR

(the fraction of rotatable single bonds) and b_rotR (the

fraction of rotatable bonds) are highly correlated. The

results of four independent test sets with different descrip-

tor inputs, obtained using the RFT and MI methods

(Table 4) predominately suggest that the best results all

come from the selected descriptors (i.e. using either RFTs

or MI) These results suggest that the two best predictive

models are those which are produced using the feature

selection method to generate the most relevant descriptors

for the data set analysed. The consideration of highly corre-

lated descriptors (Table 5) indicates that statistically

improved models are generated when highly correlated

descriptors, for example b_1rotR and b_rotR, are removed

from the model (that is, only one or the other, not both,

are included in the final model). This highlights the need to

consider the underlying statistical nature of the data and

the potential pitfalls of using highly correlated or covariate

descriptors in models simply because the data and particu-

lar descriptors are easily generated or readily avail-

able.[30,32,36] The consideration of highly correlated

descriptors is shown in Table 5, where the results displayed

are obtained from a MI analysis with and without highly

correlated descriptors. The top line of Table 5 shows data

obtained using six common descriptors, which indicates

that this group of descriptors gives slightly better results

over all test sets. This indicates that the 6-descriptor model

outperforms the 8-descriptor model, yielding a significant

improvement on test sets A and D.

The modelling approach in this study is generally

perceived to be of a ‘top-down’ nature, in that it pro-

vides a gross estimate of skin permeability and, like

related QSAR-type methods, offers limited mechanistic

insight into the permeation process.[36] However, the

addition of feature selection methodologies to this

problem domain in order to precisely determine the

molecular descriptors of interest offers an opportunity

to expand this approach to generate more precise infor-

mation about the membrane permeation process. How-

ever, a practical limitation to this approach is the size

of the data set (n = 77). For example many previous

studies, mostly in the 1990s, examined subsets of skin

permeation generated from Flynn’s data set.[33,65-71] In

many cases, these subsets were focused on specific

molecular properties (such as non-electrolytes[71]) or

specific functional groups.[66,67] One perceived issue

with these studies is that they resulted in poor statisti-

cal fits in many cases, which one might relate to the

small size of the data sets used or, for example, the

Table 3 (Continued)

Training

set Feature list Software Definition

TrnD log P(o/w) –

Sum(Ea)/Alpha HYBOT Hydrogen bonding descriptor – Ea factor value per unit of molecular volume

PEOE_VSA_FPOS MOE Partial charge descriptor – Fractional positive van der Waals surface area. This is the sum of the vi such

that qi is non-negative divided by the total surface area. The vi are calculated using a connection

table approximation.

Sum(Cad)/Alpha HYBOT Hydrogen bonding descriptor – Ca*d factor value per unit of molecular volume

Sum(Ca)/Alpha HYBOT Hydrogen bonding descriptor – Ca factor value per unit of molecular volume

Q_VSA_FPPOS MOE Partial charge descriptors – Fractional negative van der Waals surface area. This is the sum of the vi

such that qi is negative divided by the total surface area. The vi are calculated using a connection

table approximation.

SHCsatu MolconnZ E-State of Csp3 bonded to unsaturated C atoms

E_sol MOE Potential energy descriptor – Solvation energy. In the Potential Setup panel, the term enable flag is

ignored, but the term weight is applied.

Lip_acc MOE The number of O and N atoms

GCUT_SLOGP_1 MOE Adjacency and Distance Matrix Descriptors – The GCUT descriptors using atomic contribution to logP

(using the Wildman and Crippen SlogP method) instead of partial charge

ALOGP Dragon Ghose-Crippen octanol-water partition coeff. (logP)

ALOGP2 Dragon Squared Ghose-Crippen octanol-water partition coeff. (logP)2

BLTA96 Dragon Verhaar Algae base-line toxicity from MLOGP (mmol/l)

NHBint2 HYBOT Atom type electrotopological state: Count of E-State descriptors of strength for potential Hydrogen

Bonds of path length 2.

BIC2 Dragon Bond Information Content index (neighbourhood symmetry of 2-order)
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Figure 6 The correlation coefficient matrix plot for common features selected using RFTs, where var1 to var6 denote, respectively, log Po/w,

PEOE_VSA_FPOS, Q_VSA_FPPOS, CHssNH, Sum(Ea)/Alpha and Sum(Cad)Alpha, respectively.

Figure 7 The correlation coefficient matrix plot for common features selected using MI, where var1 to var6 denote, respectively, b_1rotR,

b_rotR, log Po/w, Q_VSA_FPPOS, vsurf_A, Max(Ea)*Max(Ed) and Sum(Ea)/Alpha, respectively.
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absence of methods that can optimise outputs from

small datasets [32]. Thus, while it is possible to specula-

tively identify specific molecular fragments that would

improve permeation models, validation of such models

might be difficult and impractical to develop due to

the size of the data sets involved.

This study raises a novel and highly significant find-

ing in the field of modelling in percutaneous absorp-

tion. Modelling of skin permeation has been shaped

historically by models that used as few as two descrip-

tors and assumptions were subsequently made about

the mechanism of skin permeation that shaped detri-

mentally subsequent developments in this field. It is

known that descriptors such as melting point,

ionisation and hydrogen bonding play a role in skin

permeation. The main point, therefore, of this study

was to propose a methodology that examines as many

descriptors as possible in an unbiased manner and

which then selects the most appropriate descriptors

based on established methods, thus providing a plat-

form for the development of models to predict perme-

ation across, in this case, PDMS membranes. While

such analogies cannot be automatically extended to

fields other than percutaneous absorption, it should be

noted that similar methods have been applied to a

range of biological and environmental endpoints. Thus,

the findings of this study clearly have a wider relevance

beyond percutaneous absorption.

Conclusions

Two sets of molecular descriptors which can provide

improved predictions, compared to the use of either

two descriptors (log P and MW) or a full list of excess

of two thousand descriptors, of permeability across a

PDMS membrane, have been identified (Table 3). Using

the GP method with either of these two sets of descrip-

tors provides significantly better predictions of perme-

ability than using a QSAR model, when compared with

four independent test sets, although the use of such

benchmarks in this study has clear limitations. The gen-

eration of two sets of descriptors echoes previous find-

ings[30] that suggest certain permutations of different

descriptors yield similarly relevant predictive models.

More broadly in the development of reliable, robust

and valid models it is also recommended that highly

correlated descriptors are removed from the data set

when using the GP method. It is also apparent that re-

sampling sub-training sets helps with feature selection

for small data sets, and it is again recommended that

this approach be taken in the development of small

data sets.

The implications of these results for building relevant

predicative models are novel and significant. Models in the

field of percutaneous absorption are based on a small num-

ber of significant descriptors which have been

widely used and often assumed to be relevant based on his-

torical experimental findings. While it has been shown in

this study that some of these descriptors are not relevant,

they are still employed routinely in model development.

This study indicates that this practice should be discontin-

ued and that future predictive models will be improved by

the analysis adopted in this study of the descriptors

employed, rather than simply using any and all available

descriptors or using a smaller set of descriptors whose

choice has been influenced empirically by previously pub-

lished in vitro diffusion studies.

Table 4 Results for MSE, ION and correlation coefficient for the

independent test sets

Test and/or descriptors

used

Test Set

A

Test Set

B

Test Set

C

Test Set

D

MSE

QSAR 19.07 15.64 16.60 14.09

2fs 6.43 16.60 0.52 11.07

Full 7.01 16.11 1.30 10.45

RFTcommon 5.28 14.83 0.23 12.32

MIcommon 4.68 15.36 0.40 8.70

ION

QSAR �150.47 2.89 �0.00 �34.79

2fs 15.55 �3.04 60.43 �5.85

Full �0.00 0.00 0.00 �0.00

RFTcommon 30.70 7.92 82.18 �17.83

MIcommon 38.50 4.62 69.42 16.78

Correlation coefficient

QSAR 0.33 0.61 0.54 0.21

2fs 0.50 0.68 0.80 �0.28

Full NaN 0.32 0.06 �0.48

RFTcommon 0.84 0.57 0.92 �0.18

MIcommon 0.85 0.58 0.83 0.53

NaN indicates that, when using the full set of descriptors, all predic-

tions have a fixed value for this test set, and therefore, the correlation

coefficients cannot be computed; other abbreviations in this table are

as defined in the footnotes of Tables 1 and 2. Results highlighted in

bold are those which achieved the best outcome for each test.

Table 5 Results for ION obtained from RFTs and MI analyses for the

independent test sets with and without highly correlated features

Test and number of

descriptors used

Test

Set A

Test

Set B

Test

Set C

Test Set

D

RFT – 6 descriptors 30.70 7.92 82.18 �17.83

RFT – 7 descriptors 26.42 5.69 76.43 �24.21

MI – 6 descriptors 38.50 4.62 69.42 16.78

MI – 8 descriptors 27.84 1.27 67.64 6.29

Abbreviations in this table are as defined in the footnotes of Tables 1

and 2. Results highlighted in bold are those which achieved the best

outcome for each test.
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