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Abstract. We address and formalise the task of sequence-to-sequence
(seq2seq) cross-modal retrieval. Given a sequence of text passages as
query, the goal is to retrieve a sequence of images that best describes
and aligns with the query. This new task extends the traditional cross-
modal retrieval, where each image-text pair is treated independently ig-
noring broader context. We propose a novel variational recurrent seq2seq
(VRSS) retrieval model for this seq2seq task. Unlike most cross-modal
methods, we generate an image vector corresponding to the latent topic
obtained from combining the text semantics and context. This synthetic
image embedding point associated with every text embedding point can
then be employed for either image generation or image retrieval as de-
sired. We evaluate the model for the application of stepwise illustration of
recipes, where a sequence of relevant images are retrieved to best match
the steps described in the text. To this end, we build and release a new
Stepwise Recipe dataset for research purposes, containing 10K recipes
(sequences of image-text pairs) having a total of 67K image-text pairs.
To our knowledge, it is the first publicly available dataset to offer rich
semantic descriptions in a focused category such as food or recipes. Our
model is shown to outperform several competitive and relevant baselines
in the experiments. We also provide qualitative analysis of how semanti-
cally meaningful the results produced by our model are through human
evaluation and comparison with relevant existing methods.

Keywords: semantics · multimodal datasets · sequence retrieval

1 Introduction

There is growing interest in cross-modal analytics and search in multimodal
data repositories. A fundamental problem is to associate images with some cor-
responding descriptive text. Such associations often rely on semantic understand-
ing, beyond traditional similarity search or image labelling, to provide human-
like visual understanding of the text and reflect abstract ideas in the image.

Cross-modal retrieval systems must return outputs of one modality from a
data repository, while a different modality is used as the input query. The multi-
modal repository usually consists of paired objects from two modalities, but may
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Fig. 1. Stepwise Recipe illustration example showing a few text recipe instruction
steps alongside one full sequence of recipe images. Note that retrieval of an accurate
illustration of Step 4, for example, depends on previously acquired context information.

be labelled or unlabelled. Classical approaches to compare data across modalities
include canonical correlation analysis [12], partial least squares regression [28],
and their numerous variants. More recently, various deep learning models have
been developed to learn shared embedding spaces from paired image-text data,
either unsupervised, or supervised using image class labels. The deep models
popularly used include deep belief networks [23], correspondence autoencoders
[9], deep metric learning [13], and convolutional neural networks (CNNs) [33].
With all these models it is expected that by learning from pairwise aligned
data, the common representation space will capture semantic similarities across
modalities.

Most such systems, however, do not consider sequences of related data in the
query or result. In traditional image retrieval using text queries, for example,
each image-text pair is considered in isolation ignoring any broader ‘context’.
A context-aware image-from-text retrieval model must look at pairwise asso-
ciations and also consider sequential relationships. Such sequence-to-sequence
(seq2seq) cross-modal retrieval is possible when contextual information and se-
mantic meaning are both encoded and used to inform the retrieval step.

For stepwise recipe illustration, an effective retrieval system must identify
and align a set of relevant images corresponding to each step of a given text
sequence of recipe instructions. More generally, for the task of automatic story
picturing, a series of suitable images must be chosen to illustrate the events and
abstract concepts found in a sequential text taken from a story. An example of
the instruction steps and illustrations of a recipe taken from our new Stepwise
Recipe dataset is shown in Figure 1.
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In this paper, we present a variational recurrent learning model to enable
seq2seq retrieval, called Variational Recurrent Sequence-to-Sequence (VRSS)
model. VRSS produces a joint representation of the image-text repository, where
the semantic associations are grounded in context by making use of the sequen-
tial nature of the data. Stepwise query results are then obtained by searching this
representation space. More concretely, we incorporate the global context infor-
mation encoded in the entire text sequence (through the attention mechanism)
into a variational autoencoder (VAE) at each time step, which converts the in-
put text into an image representation in the image embedding space. To capture
the semantics of the images retrieved so far (in a story/recipe), we assume the
prior of the distribution of the topic given the text input follows the distribution
conditional on the latent topic from the previous time step. By doing so, our
model can naturally capture sequential semantic structure.

Our main contributions can be summarised below:

– We formalise the task of sequence-to-sequence (seq2seq) retrieval for stepwise
illustration of text.

– We propose a new variational recurrent seq2seq (VRSS) retrieval model for
seq2seq retrieval, which employs temporally-dependent latent variables to
capture the sequential semantic structure of text-image sequences.

– We release a new Stepwise Recipe dataset (10K recipes, 67K total image-
text pairs) for research purposes, and show that VRSS outperforms several
cross-modal retrieval alternatives on this dataset, using various performance
metrics.

2 Related Work

Our work is related to: cross-modal retrieval, story picturing, variational recur-
rent neural networks, and cooking recipe datasets.

Cross-modal Retrieval. A number of pairwise-based methods over the years
have attempted to address the cross-modal retrieval problem in different ways,
such as metric learning [26] and deep neural networks [32]. For instance, an
alignment model [16] was devised that learns inter-modal correspondences using
MS-COCO [19] and Flickr-30k [25] datasets. Other work [18] proposed unifying
joint image-text embedding models with multimodal neural language models,
using an encoder-decoder pipeline. A later method [8] used hard negatives to
improve their ranking loss function, which yielded significant gains in retrieval
performance. Such systems focus only on isolated image retrieval when given a
text query, and do not address the seq2seq retrieval problem that we study here.

In a slight variation [2], the goal was to retrieve an image-text multimodal
unit when given a text query. For this, they proposed a gated neural architecture
to create an embedding space from the query texts and query images along with
the multimodal units that form the retrieval results set, and then performed
semantic matching in this space. The training minimized structured hinge loss,
and there was no sequential nature to the data used.
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Story Picturing. An early story picturing system [15] retrieved landscape and
art images to illustrate ten short stories based on key terms in the stories and
image descriptions as well as a similarity linking of images. The idea was pursued
further with a system [11] for helping people with limited literacy to read, which
split a sentence into three categories and then retrieved a set of explanatory
pictorial icons for each category.

To our knowledge, an application [17] that ranks and retrieves image se-
quences based on longer text paragraphs as queries was the first to extend the
pairwise image-text relationship to matching image sequences with longer para-
graphs. They employed a structural ranking support vector machine with latent
variables and used a custom-built Disneyland dataset, consisting of blog posts
with associated images as the parallel corpus from which to learn joint embed-
dings. We follow a similar approach, creating our parallel corpus from sequential
stepwise cooking recipes rather than unstructured blog posts, and design an
entirely new seq2seq model to learn our embeddings.

The Visual Storytelling Dataset (VIST) [14] was built with a motivation sim-
ilar to our own, but for generating text descriptions of image sequences rather
than the other way around. Relying on human annotators to generate captions,
VIST contains sequential image-text pairs with a focus on abstract visual con-
cepts, temporal event relations, and storytelling. In our work, we produce a
similar sequenced dataset in a simple, automated manner.

A recent joint sequence-to-sequence model [20] learned a common image-text
semantic space and generated paragraphs to describe photo streams. This bidi-
rectional attention recurrent neural network was evaluated on both the above
datasets. Despite being unsuitable for our inverse problem, VIST has also been
used for retrieving images when given text, in work related to ours. In an ap-
proach called Coherent Neural Story Illustration (CNSI), an encoder-decoder
network [27] was built to first encode sentences using a hierarchical two-level
sentence-story gated recurrent unit (GRU), and then sequentially decode into a
corresponding sequence of illustrative images. A previously proposed coherence
model [24] was used to explicitly model co-references between sentences.

Variational Recurrent Neural Networks. Our model is partly inspired by
the variational recurrent neural network (VRNN) [6], which introduces latent
random variables into the hidden state of an RNN by combining it with a vari-
ational autoencoder (VAE). They showed that using high level latent random
variables, VRNN can model the variability observed in structured sequential
data such as natural speech and handwriting. VRNN has recently been applied
to other sequential modelling tasks such as machine translation [31].

Our proposed VRSS model introduces temporally-dependent latent variables
to capture the sequential semantic structure of text/image sequences. Different
from existing approaches, we take into account the global context information
encoded in the entire query sequence. We use VAE for cross-modal generation by
converting the text into a representation in the image embedding space instead
of using it to reconstruct the text input. Finally, we use the max-margin hinge
loss to enforce similarity between text and paired image representations.
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Cooking Recipe Datasets. The first attempt at automatic classification of
food images was the Food-101 dataset [3] having 101K images across 101 cate-
gories. Since then, the new Recipe1M dataset [29] gained wide attention, which
paired each recipe with several images to build a collection of 13M food images
for 1M recipes. Recent work [4] proposed a cross-modal retrieval model that
aligns Recipe1M images and recipes in a shared representation space. As this
dataset does not offer any sequential data for stepwise illustration, this asso-
ciation is between images of the final dish and the corresponding entire recipe
text. Our Stepwise Recipe dataset, by comparison, provides an image for each
instruction step, resulting in a sequence of image-text pairs for each recipe.

In [5] they release a dataset of sequenced image-text pairs in the cooking
domain, with focus on text generation conditioned on images. RecipeQA [34]
is another popular dataset, used for multimodal comprehension and reasoning,
with 36K questions about the 20K recipes and illustrative images for each step
of the recipes. Recent work [1] used it to analyse image-text coherence rela-
tions, thereby producing a human-annotated corpus with coherence labels to
characterise different inferential relationships. The RecipeQA dataset reveals as-
sociations between image-text pairs much like our Stepwise Recipe dataset, and
we therefore utilise it to augment our own dataset.

3 Stepwise Recipe Dataset Construction

We construct the Stepwise Recipe dataset, composed of illustrated, step-by-
step recipes from three websites3. Recipes were automatically web-scraped and
cleaned of HTML tags. The information about data and scripts will be made
available on GitHub4. The construction of such an image-text parallel corpus has
several challenges as highlighted in previous work [17]. The text is often unstruc-
tured, without information about the canonical association between image-text
pairs. Each image is semantically associated with some portion of the text in
the same recipe, and we assume that the images chosen by the author to aug-
ment the text are semantically meaningful. We thus perform text segmentation
to divide the recipe text and associate segments with a single image each.

We perform text-based filtering [30] to ensure text quality: 1) descriptions
should have a high unique word ratio covering various part-of-speech tags, there-
fore descriptions with high noun ratio are discarded; 2) descriptions with high
repetition of tokens are discarded; and 3) some predefined boiler-plate prefix-
suffix sequences are removed. Our constructed dataset consists of about 2K
recipes with 44K associated images.

Furthermore, we augment our parallel corpus using similarly filtered RecipeQA
data [34], which contains images for each step of the recipes in addition to visual
question answering data. The final dataset contains over 10K recipes in total
and 67K images.

3 simplyrecipes.com, visualrecipes.com, olgasflavorfactory.com
4 https://github.com/vishwerine/StepRecipe

simplyrecipes.com
visualrecipes.com
olgasflavorfactory.com
https://github.com/vishwerine/StepRecipe
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4 Variational Recurrent Seq2seq (VRSS) Retrieval Model

The seq2seq retrieval task is formalised as follows: given a sequence of text
passages, x = {x1, x2, ..., xT }, retrieve a sequence of images i = {i1, i2, ..., iT }
(from a data repository) which best describes the semantic meanings of the text

passages, i.e., p(i|x) =
∏T
t=1 p(it|x, i<t). The training set (e.g., recipes or stories)

is S = {S1, S2, · · ·SN}, where each Sn consists of a sequence of images and their
associated text. Each such sequence Sn = {(xn1 , in1 ), (xn2 , i

n
2 ), · · · , (xn|Sn|, i

n
|Sn|)}

is paired element-wise where each text sequence xn = {xn1 , xn2 , ..., xnT } and each
image sequence in = {in1 , in2 , ..., inT }.

Fig. 2. Variational Recurrent Sequence-to-Sequence (VRSS) model architecture.

We address the seq2seq retrieval problem by considering three aspects: 1)
encoding the contextual information of text passages; 2) capturing the seman-
tics of the images retrieved (in a story/recipe); and 3) learning the relatedness
between each text passage and its corresponding image.

It is natural to use RNNs to encode a sequence of text passages. Here, we
encode a text sequence using a bi-directional GRU (bi-GRU). Given a text pas-
sage, we use the attention mechanism to capture the contextual information of
the whole recipe. We map the text embedding into a latent topic zt by using
a VAE. In order to capture the semantics of the images retrieved so far (in a
story/recipe), we assume the prior of the distribution of the topic given the
text input follows a distribution conditional on the latent topic zt−1 from the
previous step. We decode the corresponding image vector it conditional on the
latent topic, to learn the relatedness between text and image with a multi-layer
perceptron and obtain a synthetic image embedding point generated from its
associated text embedding point. Our proposed Variational Recurrent Seq2seq
(VRSS) model is illustrated in Figure 2.
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Below, we describe each of the main components of the VRSS model.
Text Encoder. We use a bi-GRU to learn the hidden representations of the
text passage (e.g. one recipe instruction) in the forward and backward directions.
The two learned hidden states are then concatenated to form the text segment

representation {xt = [
−→
hT ,
←−
hT ]}. To encode a sequence of such text passages (e.g.

one recipe), a hierarchical bi-GRU is used which first encodes each text segment
and subsequently combines them.
Image Encoder. To generate the vector representation of an image, we use the
pre-trained modified ResNet50 CNN [22]. In experiments, this model produced a
well distributed feature space when trained on the limited domain, namely food
related images. This was verified using t-SNE visualisations [21], which showed
less clustering in the generated embedding space as compared to embeddings
obtained from models pre-trained on ImageNet [7].
Incorporating Context. To capture global context, we feed the bi-GRU en-
codings into a top level bi-GRU. Assuming the hidden state output of each text
passage xl in the global context is hcl , we use an attention mechanism to cap-
ture its similarity with the hidden state output of the tth text passage ht as
αl = softmax(hTt Whcl ). The context vector is encoded as the combination of L

text passages weighted by the attentions as ct =
∑L
l=1 αlh

c
l . This ensures that

any given text passage is influenced more by others that are semantically similar.
Latent Topic Modeling. At the tth step text xt of the text sequence, the bi-
GRU output ht is combined with the context ct and fed into a VAE to generate
the latent topic zt. Two prior networks fµθ and fΣθ define the prior distribution
of zt conditional on the previous zt−1. We also define two inference networks fµφ
and fΣφ which are functions of ht, ct, and zt−1:

pθ(zt|z<t,x<t) = N (zt|fµθ (zt−1), fΣθ (zt−1)) (1)

qφ(zt|z<t,x≤t) = N (zt|fµφ(zt−1, ht, ct), fΣφ(zt−1, ht, ct)) (2)

Unlike the typical VAE setup where the text input xt is reconstructed by
generation networks, here we generate the corresponding image vector it. To
generate the image vector conditional on zt, the generation networks are defined
which are also conditional on zt−1:

pϕ(it|z≤t,x≤t) = N (it|fµϕ(zt−1, zt), fΣϕ(zt−1, zt)) (3)

The generation loss for image it is then:

Lrecons.(it) = Eq(z≤T |x≤T ) log p(it|z≤t,x<t)
−KL(q(zt|x≤t, z<t)‖p(zt|x<t, z<t)) (4)

Image Retrieval. We enable the search process by a timestep-wise hinge loss
to model p(it|x, zt, i<t). The latent semantic variable zt is used to predict the
image at the given timestep t, with a hinge loss max-margin objective:

LHL(it) =
∑
j

max(0, α− s(it, ît) + s(ij , ît)) (5)



8 V. Batra et al.

where α is the margin parameter, it is the image vector generated by the model,
ît is the vector representation of the gold-standard image at time step t, ij is
the negative images, and s(·) denotes the similarity measurement function. In
our experiments, we use the cosine distance function.
Overall Objective Function. The overall objective function is the total of the
image reconstruction loss and the image retrieval hinge loss summing over all
the time steps for the whole image sequence, with β as the weighting factor:

Loverall =

T∑
t=1

Lrecons.(it) + βLHL(it) (6)

Parameter Configuration. As the initial parameter setting of the VRSS archi-
tecture, we use bi-GRU with the hidden dimension of 500 and set the dimension
of latent topics to 500. We also introduce a dropout layer in the RNNs with
probability of 0.3. Each word in the text is represented in the 500 dimensional
embedding space. The image encoder projects images to a 2, 048 dimensional
feature space. For training the objective function, we use AdaDelta optimisation
function, with a learning rate of 1.0. The values of hyperparameters α and β
were set to be 0.2 and 1.7 respectively.

5 Experimental Setup

We create a train-test split of 60k/6k image-text pairs and 9k/1k recipes in the
Stepwise Recipe dataset. The split is done author-wise to ensure style consis-
tency, but having overlapping authors in train and test splits.

5.1 Models for Comparison

– LDA. We re-implement the topic modelling based approach [10] to jointly
generate words in text and visual words in image assuming each image-text
pair share the same set of topics.

– Visual Semantic Embeddings (VSE++). Following [8], we implement
a deep neural network approach which maps the text representations and
image vectors into the same semantic embedding space.

– Coherence Neural Story Illustration (CNSI). We use the encoder-
decoder CNSI model proposed in [27], with coherence capturing the co-
reference relations among sentences, to retrieve a sequence of images illus-
trating a passage of text.

– VRSS-VAE. This follows the same encoder-decoder architecture of our
VRSS model, using two bi-GRU architectures as encoders and decoders with
the same learning objective, but without latent variables. Therefore, it is
treated as an ablation study of our VRSS model without the VAE module.

– VRSS-globalCon. This is a variant of our VRSS model without the incor-
poration of the global context.

In all the neural models evaluated here, the image representation are extracted
using the ResNet50 model [22] pre-trained on food-related images.
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5.2 Evaluation methods

Recall@k indicates that the retrieved image was among the top k best matches
out of the set of candidate images. We also define Story Recall@k, which considers
the retrieved image as correct if it is from the same data sequence. Further, we
provide Visual Saliency Recall@k values. We implement Visual Saliency Recall
following [27] and train a VGG-19 network to classify the images of the story test
set, with visual features from [22] for initialization. We also report Visual Fea-
ture Similarity using the average cosine similarity between gold-standard image
and retrieved image, considering image features generated by [22].

Previous work [27] highlights that existing quantitative retrieval metrics may
be too harsh for a task of this description. Therefore, it is imperative that we
use human evaluators to judge how appropriate and coherent the retrieved illus-
tration sequences are. For our human evaluation, we pick a random sample (164
recipes, 1564 image-text pairs) from the test set (1K recipes, 6K image-text
pairs). We present each evaluator with a sequence of recipe instruction steps
that make up one complete recipe. Alongside each text segment, they are given
three possible illustrations that depict that step, which are randomly shuffled
images of the gold-standard, the non-context model, and the proposed VRSS
model. The evaluator is asked to select all image options that may be appro-
priate illustrations for the corresponding text segment. A total of 5.1K ratings
are obtained from 12 evaluators, ensuring that every sample receives at least 2
ratings.

6 Results and Discussion

6.1 Automatic Evaluation

Table 1. Text illustration performance using Recall@k (R@k) and Story Recall@k
(StR@k) and Visual Saliency Recall@k (V SR@k) on the Stepwise Recipe dataset.
The best result in each column is highlighted in bold.

Recall@k Story Recall@k Visual Saliency Recall@k

Models R@1 R@5 R@10 StR@1 VSR@1 VSR@5 VSR@10

Non-Context Models

LDA 1.4 3.4 8.9 4.1 3.2 6.7 12.5
VSE++ 7.7 18.6 24.6 21.3 8.1 23.1 26.6

Context Models

CNSI 3.6 8.9 13.7 18.4 16.6 31.8 39.8
VRSS-VAE 6.4 19.7 23.1 18.1 11.3 29.2 33.2
VRSS-GlobalCon. 5.2 19.9 26.5 21.1 15.1 28.9 32.7
VRSS 8.2 21.3 29.8 24.4 18.4 33.4 45.1
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Table 1 reports the retrieval performance of different methods using Recall@k
and Story Recall@k metrics. LDA gives the worst results, which shows that using
a generative model for capturing the semantic topics from both text and image
does not work well in the seq2seq retrieval task. By mapping both text and image
into the same embedding space, VSE++ outperforms LDA. Our VRSS model
without the VAE component (VRSS-VAE) gives similar performance compared
to the non-context model VSE++ despite considering the contextual informa-
tion. VRSS without the incorporation of global context (VRSS-GlobalCon.) per-
forms similarly as VRSS-VAE. CNSI gives worse results compared to both VRSS
variants in Recall@k and Story Recall@1. Our new VRSS model, which maps each
hidden state of the RNN into a latent topic and also further incorporates global
context information, gives the best results across all metrics. This indicates the
importance of representing semantics encoded in both text and images in a more
abstract manner and the benefit of incorporating global context.

Recall@k and Story Recall@k metrics only measure the degree of exact matches
of the retrieved images with regards to the gold-standard images. This might not
be appropriate for our text illustration task since a given text segment could be
illustrated by multiple images expressing similar semantics. Example image re-
trieval results are shown in Figure 3 where both the gold-standard and the VRSS
retrieved images are displayed for some recipe instructions. It can be observed
that although VRSS failed to retrieve the gold-standard images in these ex-
amples, its output images are still appropriate illustrations of the corresponding
texts. For this reason, we also report the evaluation results using more semantics-
based and feature-based metric, Visual Saliency Recall@k.

It can be observed from Table 1 that VRSS performs significantly better than
baselines on Visual Saliency Recall@k. These recall scores indicate that VRSS is
able to retrieve images that are described by text segments that are semantically
related to the query text, even if the images themselves do not match the gold-
standard image. We also calculate the Visual Feature Similarity which measures
the average cosine similarity between the gold-standard image and the retrieved
image in the feature space. For VRSS, this is 0.51 and for VSE++ it is 0.37,
and for CNSI it is 0.45 This confirms that VRSS retrieves illustrations that are
visually similar to the gold-standard image.

6.2 Human Evaluation

For the human evaluation, we count the number of votes received for the gold-
standard images, the VRSS model output images, and the VSE++ (non-context
based) model output images. We only count a vote if there is majority consensus
among the evaluators. Hence, in Table 2, the ‘# Votes’ column indicates the
number that constitutes a majority among voters.

In Table 2, we see the preference results obtained from human evaluation
of the retrieved recipe illustrations. Considering majority agreement as 2 votes,
gold-standard was never preferred in isolation. Rather, in 61% of the cases,
both the gold-standard image and the image retrieved using VRSS were deemed
to be appropriate illustrations for the given text query. In 18% of the cases,
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Table 2. Human Evaluation results. The cell values indicate the number of images
output by the corresponding model(s) that receive x number of votes (x ∈ {2, 3, 4, 5})
as majority.

# Votes 2 3 4 5

Gold-standard only 0 442 171 47
Gold-standard and VRSS 255 41 0 0
Gold-standard and VSE++ 88 9 0 0
Gold-standard, VRSS and VSE++ 75 0 0 0

gold-standard as well as the retrieved images from both models were considered
appropriate. In the remaining 21% of the cases, the VRSS output was not judged
as being appropriate. Taking 3 votes as the majority, gold-standard alone was
picked in 88% of the cases, and picked in combination with the VRSS output
in 8% of the remaining cases, with a negligible number of cases for the other
combinations. Where the majority consensus is above 4 votes, evaluators chose
gold-standard alone in every case. Therefore, VRSS outperforms other models
particularly in ambiguous cases where the text is likely to contain an indirect
description of the image. The VRSS output is about 3 times more likely to be
selected compared to the VSE++ output. Over 60% of the time, at least 2 human
evaluators believe that the VRSS output is as appropriate as the gold-standard
image. These results indicate that the context based VRSS model significantly
outperforms the non-context based model.

Figure 3 shows examples where the VRSS output was preferred by human
evaluators. It also highlights cases where metrics other than recall are beneficial

Fig. 3. Illustrative comparison of non-context (VSE++) and context models (VRSS)-
VRSS result preferred by human evaluators.
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such as semantically related entities and paired images having Visual Feature Sim-
ilarity. The last text segment implicitly refers to the previous, with this retrieved
image counted favourably when using the context-aware Story Recall metric. We
also perform a qualitative error analysis, and find that the attention mechanism
sometimes misdirects the image retrieval (Figure 4 and Figure 5).

Fig. 4. Illustrative comparison of non-context (VSE++) and context models (VRSS)-
VSE++(R) result preferred by human evaluators.

Fig. 5. Illustrative comparison of non-context (VSE++) and context models (VRSS)-
Neither VRSS nor VSE++(R) result preferred by human evaluators.

7 Conclusion

We presented VRSS model that given a sequence of text passages, identifies a
sequence of images best describing the semantic content of text. We introduced
the Stepwise Recipe dataset to facilitate further research on this problem. Our
results on the Stepwise Recipe dataset show that VRSS significantly outperforms
competitive baselines in terms of both automatic and human evaluations.
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