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Abstract

Thermo-mechanical models of ductile shear zones have been 
constructed for both viscous and viscoelastic materials. The viscous 
model has been applied to both shear zones and ductile thrusts for 
constant velocity and constant shear stress boundary conditions. For 
the constant velocity boundary condition the viscous shear zone model 
provides an explanation for a number of geological structures. Constant 
velocity shears broaden with time and have a large temperature anomaly. 
The temperatures increase slowly with time but are insufficient for 
melting. The shears can be shown to broaden with increase in ambient 
temperature with depth. A minimum separation distance between pairs of 
shears is required for them to remain discrete. Constant velocity 
viscous shears have a near singularity in the shear stress at time t=o.

The viscoelastic model shows a more realistic initial stress 
evolution; with a zero initial stress. The viscoelastic constant 
velocity model predicts the occurrence of viscoelastic rebounds, under 
certain conditions, in which very large instantaneous shear velocities 
are developed. In viscoelastic rebounds large amounts of stored elastic 
stress are relaxed catastrophically in a localized region by viscous 
deformation. The rapid velocities generate large amounts of shear 
heating and give rise to localized thermal runaway and melting. The 
high temperatures generated rapidly decay to lower levels. With time 
the temperature and stress field solutions of the viscous and visco­
elastic models converge.

For constant stress boundary conditions the viscous and visco­
elastic models are identical except for the initial elastic strains in 
the viscoelastic model. At low values of temperature and stress,very 
small, geologically insignificant strains are developed. Higher temper­
atures and stresses give rise to thermal runaways and melting.

Thermo-mechanical stabilization .using a dislocation creep process 
explains many of the features seen in ductile shear zone*. At lower 
ambient temperatures the models produce high stresses which would be 
limited by brittle failure.
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CHAPTER 1

The Geological Structure of Shear Zones 

11»1' Introduction

In some deformed rocks high strain zones are localized within 

approximately planar zones termed shear zones or shear belts. These 

shear zones vary from fractions of a centimetre to tens of kilometres 

in width. The shear zone is a high strain zone separating two relativ­

ely undeformed regions which have undergone relative motion. The 

displacement across a shear zone is usually of the same order of magni­

tude as the width of the shear zone. The deformation in the high strain 

zone can be brittle shear or more commonly ductile shear, or a combina­

tion of the two.

Ductile shear zones are characterised by rotation of earlier struct­

ures such as gneissose foliation into a direction which is sub-parallel 

to the shear zone. The shear zone fabric can be related to the state of 

finite strain of the shear. The variation of strain across shear zones 

was investigated by Ramsay and Graham (1970). The strain profile across 

a shear zone is often symmetrical, the strain increasing to a maximum in 

the central part of the zone. There may also be some small variation in 

strain profile along the length of the shear zone but this is relatively 

minor. Figure 1.1.1 shows a schematic diagram of a rectangular block 

which has been sheared. The edge of the block shows how the angular 

shear strain varies across the shear zone. Shear zones are regions of 

plane strain deformation. The plane of the shear zone is related to the 

state of stress. The shear plane is parallel to the intermediate princi­

pal stress direction and forms an acute angle with the maximum principal
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Figure 1.1.1. Variation of shear strain through a shear zone 
with heterogeneous strain. The total displacement "d" is 
derived by summation of all small elements 5d. Redrawn after 
Ramsay and Graham 1970.



stress direction. Figure 1.1.2 shows a map of the strains and strain 

profiles for a typical small shear zone.

The role of the ductile shear in rock deformation was recognised 

early in the history of geological science. Although the results of 

ductile shearing are readily observable and measurable in the field, 

little is known about the process itself. Deformation can be controlled 

by variations in strength of the rocks within the shear zone, and syn- 

kinematic metasomatism can also affect the deformation. Little is known, 

however, about the physical conditions under which shear deformation 

takes place. Parameters such as the state of stress and the strain rate 

cannot be deduced from direct observations on the rocks alone. As a 

result mathematical models must be constructed to determine the relation­

ship between the physical conditions and processes involved in ductile 

shearing and the structures produced.

In this thesis mathematical models are presented for ductile shear 

deformation in both viscous and viscoelastic rock materials. Ductile 

shear zones are modelled in an attempt to determine their stress and 

strain histories. The temperature and displacement profiles produced by 

shearing are also studied. The variation in physical and material proper­

ties are investigated and related to observed structures. Both strike- 

slip and thrust shear zones are investigated.

The mathematical and numerical formulations are described in chap­

ters 2 and 3. Shear zone models can be divided into viscous and visco­

elastic types. Viscous models and their applications are studied in 

chapters 4 and 5 and the simple viscous model has been extended in 

chapter 6 to include thrust type shear zones. The viscoelastic models 

are described in chapters 7 and 8 and are compared with viscous models.
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Figure 1.1«2* Map showing the variation in schistosity and 
values of strain computed from the angle between the 
schistosity and the shear zone. The graph shows the 
variation of strain profile along the shear zone. Shear zone 
is in metagabbro, Castell Odair, N.Uist(after Ramsay and 
Graham 1970).



1.2 The structure of ductile shear zones

Although shearing was recognised early in geological research,

detailed study has only come with recent advances in the study of

Pre-Cambrian geology. The majority of the shear zones described to

date are found in Proterozoic rocks, although this may be partly due to

the present levels of erosion. Shear zones of Proterozoic age are

particularly well developed in the north Atlantic region (Sutton and

Watson 1974, Davies and Windley 1976). Some of these shear zones are

very large and form major tectonic structures. Amongst the best descri-
of

bed examples are those^western Greenland (Bak et al. 1975).

Large shear zones generally have a steep dip and may be up to 40 km 

in width. The length of the shear zones can be hundreds of kilometres, 

the largest structures having a length of 2500 km as inferred from aero- 

magnetic evidence (Watson 1973). Broadening of shear zones with depth 

has been inferred on theoretical grounds (Aoki 1973) and interpreted 

from field evidence in the case of Nordre Str^mfjord, western Greenland 

(Bak et al. 1975).

Proterozoic shear belts are broadly contemporaneous with "hairpin" 

bends in the polar wander paths for North America and Africa and may be 

related to major changes in the Proterozoic continental masses (Windley 

1978). Sutton end Watson (1974) suggested that the transcurrent displa­

cements were produced by rotation of a supercontinent. The continental 

plate interiors were not entirely rigid but were undergoing ductile 

strain, along a number of discrete zones.

Evidence exists that some of the Proterozoic shear belts are 

superimposed on earlier lineaments of Archaean origin (Davies 1975).

Some larger shear zones have undergone progressive shearing for long 

periods of time. The Laxford Shear Zone may have been active for a 

duration of more than 100 Myr. commencing around 2800 Myr. During this



time the total displacement has amounted to some 35 km produced by a 

series of distinct movement phases (fig. 1.2.1, Davies, 1978).

The location of shear zones can often be related to initial 

structural weaknesses in rocks (Coward 1973). Detailed study of the 

strain profiles across major shear zones shows that the total strain is 

accommodated on a large number of smaller high strain zones (fig. 1.2.2, 

Grocott and Watterson 1980). In an area where a group of shear zones of 

the same age exist, it is possible in some cases to relate the bulk 

strain of the area to movement on the shear zones. This provides an 

estimate of the amount of the total strain which is accommodated by duc­

tile shear within an area (Park 1981).

Estimates of stress and strains for shear zones are fairly limited. 

The range of shear stress values based on palaeopiezometers is from 20- 

150 MPa (Kohlstedt and Weathers 1980, Scholz 1980). However different 

palaeopiezometers often give different values of stress for the same 

shear zone. Strain profiles are easier to measure than stresses. Strains 

vary widely in value and shape of profile; the profiles being generally 

symmetrical, however exceptions do exist. The sharpness of the peak of 

the strain profile also varies (fig. 1.2.3) but the maximum value of 

strain in any profile does not seem to exceed 10. A summary of shear 

zone parameters is given in Table 1.2.

The interaction of shear heating produced by deformation and 

synkinematic metasomatic activity has been studied by Beach (1976). 

Chemical alteration of the rocks in the Lewisian shear zones generally 

consists of the addition of ^0, K and Na and the loss of Fe, Ca and 

Mg. These reactions are considered to have resulted from the interaction 

between large volumes of water and the rocks of the shear zone along 

which the fluid travelled. Adiabatic transport of water upwards through 

the crust may increase the geothermal gradient within the shear zone.
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Figure 1.2.1. Dextral shear strain profiles from the 
southern margin of the Laxford shear zone7 the graph showing 
progressive shearing. Profile A; shear strain from early 
Scourian; B shear strain from late Scourianj clashed zone 
,Laxfordian shears and; C shear strain determined by 
rotation of Scourie dykes (after Davies 1978).
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Figure 1.2.2. Quantitative strain profile across a boundary 
within the Ikertoq shear belt, western Greenland. The 
ordinate is calibrated using the interlimb fold angle of the 
sheared rocks(after Grocott and Watterson 1980).
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Figure 1.2.3. Example of strain profiles across shear zones 
in the western Superior Province, Canada showing variation 
in shape of the strain profile (after Park 1981).



The water will also lower the melting temperature and apparent 

viscosity of the rock.

Ductile deformation will only occur where the ambient tempera­

tures are sufficiently high. The nature of the transitions between 

brittle and ductile deformation has been studied by Sibson (1977). This 

transition may occur over a fairly wide region in which both brittle and 

ductile processes occur. For example ductile shear fabrics may also 

contain pseudotachylites produced by brittle failure within the transit­

ional region. In quartzo-felspathic crust the transition is estimated 

to occur at the 350°C geotherm which will correspond to a depth of 10- 

15 km depending upon the geothermal gradient.

Shear zones may be thermo-mechanically stabilized. This mechanism 

relies upon the high temperature dependence of the viscosity of rocks. 

The shear heating produced by deformation raises the temperature of the 

shear zone and decreases the apparent viscosity of the rocks. As a 

result any further deformation will be localized in the softer hotter 

shear zone. This mechanism,whereby the shear heating serves to localize 

the deformation,is termed thermo-mechanical and is studied in this 

thesis. Any present day observations of heat flow and strain rates 

are useful in understanding the mechanism.

If modern day analogues of Proterozoic shear zones exist, they

may be represented at the present level of erosion as intracontinental

transform faults (Badham 1976, Grocott 1977). Ductile deformation is

assumed to be occurring beneath present day transform faults. The San

Andreas fault is the best studied example. The strain rate across the
-14 -1San Andreas fault has been measured as 3 x 10 s , but no thermal 

anomaly exists over the zone (Lachenbruch and Sass 1980). The shear 

heating must be too small to produce any measurable change in heat flow 

at the surface. Seismicity on the San Andreas fault (Eaton, Lee and



Pakiser 1970) and on oceanic fracture zones (Reid and MacDonald 1973) 

is limited to the upper 10-15 km of the crust. At these shallow levels 

the deformation is dominated by brittle deformation processes. Frictio­

nal heating may modify the temperature field at these levels.

Models of shear zones must be constrained by these geological 

observations of the nature of processes occurring in the ductile defor­

mation regions.

1.3 The structure of ductile thrusts

The mechanism of overthrust faulting and the role of fluids is 

well understood (Hubbert and Rubey 1959, Hsu 1969). The mechanism 

proposed by Hubbert and Rubey however, can only be applied to gravity 

slide overthrusting in porous rocks. Where large thicknesses of non- 

porous crystalline material are transported by thrusts a different 

mechanism exists. If the slab of crustal material is sufficiently thick 

then an inversion of the geotherm may occur. Frictional heating along 

the thrust plane and, if the temperature is sufficiently high, shear 

heating, may produce a thermal anomaly on the thrust plane and thus 

localize any further shear movement. Thermal stabilization of a ductile 

thrust is dependent upon the maintainance of the inversion of the geo­

therm by shear heating.

Thin-skinned thrust tectonics where decollement occurs along a 

basal weak layer has been investigated by many authors (Elliot 1976, 

Chappie 1978) and is not considered in this thesis. All the models 

presented here are thermo-mechanically stabilized by the geotherm 

inversion.

Oxburgh and Turcotte (1974) showed how the instantaneous over­

thrusting of a slab of rock 15 km thick in the Alps could produce an 

inversion of the geotherm. Calculations of the relaxation of the



inverted geotherm showed a low temperature, high pressure area to exist 

below that thrust, and this was suggested as a source of blueschist 

facies metamorphism.

The simple conduction model of Oxburgh and Turcotte has been 

refined to include the effects of frictional heating along the thrust 

(Graham and England 1976, England 1978). Observations of the inversion 

of metamorphic zonation around overthrust faults were used to constrain 

the degree of shear heating within the model.

A most sophisticated model of thrust faulting proposed by Brewer 

(1981) calculates the shear stress at the level of the thrust and deter­

mines the frictional heating for a given rate of movement. The frictional 

heating is sufficient to generate an inversion of the geotherm for faster 

thrusting rates. Temperatures predicted by the model are sufficiently 

high to enable ductile processes to take place.

No clear trends can be deduced from stress and strain levels for 

thrusts. It appears that a number of mechanisms may operate during the 

development of a single thrust and that different thrusts may develop 

by different processes. Table 1.3 presents a summary of some thrust 

characteristics from the literature.

1.4 Previous models of shear zone deformation

The majority of models of shear deformation to date are not directly 

concerned with vertical crustal shear zones. Viscous deformation pro­

cesses in subduction zones and asthenosphere flow are the best studied.

The earliest model was presented by Turcotte and Oxburgh (1968). 

Their model treated a subduction zone as a viscous shear. A Newtonian 

rheology was assumed and a one-dimensional model of the velocity and 

temperature was constructed. Both the boundary velocity and the shear 

stress were assumed, and the temperature and velocity profiles then cal­



culated. The model related the shear velocity to the maximum tempera­

ture reached within the shear zone, in the form

U = k(CTm)^ o

where U is shear velocity, Tm is the maximum temperature in the shear o
zone and k and C are constants depending upon the material.

The stability of steady state flow in Newtonian materials has 

been especially well studied. For a steady state viscous flow, heat 

flow within the model is balanced by shear heating. For a single dimens­

ion y,

k̂ i +
ay2

T=r~ = 0dy

where k is thermal conductivity, x is shear stress and T is temperature. 

Most solutions of this use rheological properties described by the 

Arrhenius equation, such that,

k^-£ + t"+1(2B/T) exp(-H/RT) = 0
5y2

(see chapter 2 for full discussion).

Yuen and Schubert (1977) and Schubert and Yuen (1978) have used 

this equation to model asthenosphere shear flow. They showed that for 

a given value of stress two possible strain rates existed (fig. 1.4.1). 

The behaviour can be divided into a subcritical branch marked C in the 

diagram and a supercritical branch marked I. At low shear rates (sub- 

critical flow), the rate of shear strain increases monotonically with 

stress, according to the stress exponent, n. The heat produced within 

the slab is negligible. At higher shear rates the shear heating is more
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Figure 1.4.1. Sketch of the steady state solution for shear 
in a Newtonian slab with the Arrhenius factor. H-hot branch? 
I-intermediate or supercritical branch; C-Cold or subcHtical 
branch, (see text for explaination).



significant. The strain rate still increases with stress, although 

thermal softening has an effect. Above a critical rate, heat is 

produced faster than it can be conducted out of the system, the material 

becomes softer and the stress drops as the strain rate is increased 

(section I on the diagram). Yuen and Schubert (1979) have also shown 

the existence of a third or hot branch marked H in the diagram. At high 

shear rates, shear heating causes large temperature rises, and the 

Arrhenius factor then tends towards a limiting value. The thermal 

factor is then almost negligible and stress once again increases with 

strain rate.

The possibility of supercritical flow (Gruntfest 1963) occurring 

within the earth presented the possibility of steady state shears being 

unstable. This instability has been observed experimentally in viscous 

flows (Sukanek and Laurence 1974).

The stability of steady state flows have been studied for both 

infinitesimal and finite perturbations. Infinitesimal perturbations are 

easier to solve mathematically due to the linear nature of the equations 

but finite perturbations may have a larger destabilizing effect. Melosh 

(1976) has previously argued that one dimensional supercritical flows 

are unstable in the presence of infinitesimal perturbations with a 

constant stress boundary condition. Yuen and Schubert (1977) and 

Schubert and Yuen (1978) showed that supercritical flow was stable for 

infinitesimal perturbations under constant velocity conditions.

A two dimensional asthenosphere shear model for a power law 

rheology was presented by Yuen and Schubert (1979). They showed that 

all basic states are stable to infinitesimal perturbations and argued 

that a three dimensional perturbation would decay even faster. Finite 

perturbations if large enough could produce instabilities, especially 

if this perturbation is a stress change. This agrees well with one
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dimensional experimental evidence (Clark et al. 1977). Yuen and 

Schubert also showed the existence of a third or hot branch solution of 

strain rate for a given stress value (fig. 1.4.1).

Shallow return flow in the asthenosphere has been investigated 

using a two dimensional boundary layer solution (Schubert et al. 1978). 

Using a temperature and pressure dependent power law rheology the 

stresses were calculated to be a few tens of bars depending upon the 

amount of shallow return flow. Yuen, Tovish et al. (1978) calculated 

the effects of using local similarity in the previous model and found 

the approximations valid.

Yuen et al. (1978) produced the first model of viscous deformation 

on a vertical shear zone. The heat flow and inertial equations governing 

the system were solved in a one dimensional model with a Newtonian 

rheology. Using a similarity transformation, they produced a model which 

solved the shear stress for a given velocity boundary condition.

The initial velocity profile across the model was assumed to be a 

Heaviside funtion. For a steady state solution they showed like Turcotte 

and Oxburgh (1968) that the maximum temperature in the shear zone was 

dependent upon the velocity of shearing. The shear stress for the model 

was shown to decrease almost linearly with increasing ambient tempera­

ture. Shear stress also decreases with the square root of shearing time.

The model also studies shearing between two half spaces of different 

materials. According to Yuen et al. partial melting under constant velo­

city conditions can only occur within a shear between a hard and a soft 

material. The shear heating produced by the harder material causes the 

softer material to melt.

Fleitout and Froidevaux (1980) extended the model of Yuen et al.

The main difference between the two models is Fleitout and Froidevaux’s 

assumption of constant shear stress across the shear zone at a given
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time (i.e. the inertial terms of the equations are negligible). This 

simplifies the mathematical solution which no longer requires the use 

of a similarity transformation, the velocity profile being given by a 

simple integral equation.

Fleitout and Froidevaux distinguish two types of boundary condit­

ion for the model, a constant shear velocity condition and a constant 

shear stress condition. Their constant velocity solution agrees closely 

with that of Yuen et al. whereas the constant stress condition shows 

the possibility of thermal feedback instabilities melting the rocks.

Lockett and Kusznir (1982) have extended the work of the previous 

authors, expanding the mathematical formulation and showing that the 

Heaviside funtion starting condition is inapplicable. The work described 

in this paper forms part of this thesis (see chapters 2, 4 and 5).

All of the shear zone models published to date have assumed that 

thermo-mechanical processes have softened the rock and localized the 

shearing. Other possible mechanisms do exist. Conditions under which 

shear heating is effective (Poirier et al. 1979, Brun and Cobbold 1980) 

have been reviewed, along with other processes such as strain softening 

and metamorphic reaction, by Poirier (1980). Mechanisms by which shear 

localization could occur include geometric and structural softening, 

strain softening and hardening as well as thermo-mechanical localization.



Table 1.2 Shear Zone Characteristics from the Literature

Shear
Zone

Maximum
metamorphic
grade

Width km Total slip 
km

Shear Stress 
MPa

Strain References

Lanvaux-Angers, 
France

biotite gneiss 
'v-bOOOC

6 100 2.3-6.2 Nicolas et al. 1977

Montague Noire, 
France

sillimanite
migmatite
*650°C

<20 100 Nic.olas et al. 1977

Maydan,
Afghanistan

migmatite
^700°C

8-10 100 -vlO Nicolas et al. 1977

Linquine-Ofqui 
Fault, Chile

Ar-depletion 40 Herve et al. 1979

Alpine Fault, 
New Zealand

amphibolite, Ar 
depletion ^600°C

24 480 100-150 Scholz et al. 1979

Lachlan Fold Belt, 
Australia

mylonitised
granite

60-150(A) Etheridge and Wilkie 1979 
>>

Massif Central, 
France

granodiorite 
7.5 km deep 
300-400°C

50(C) 
25-150(B)

Burg and Laurent 1978

Idaho Springs, 
Colorado

10-15 km deep 
500-600°C

95(A)
90(B)
110(C)

Kohlstedt and Weathers 1980

Ikertoq,
Greenland

granodiorite gneiss 
15-30 km deep 
600-800°C

40 150+ 20-40(A) 
20-40(B) 
50-110(C)

>6 Kohlstedt et al. 1979



Vasterland,
Greenland

15-30 km deep 
600-800°C

10 >6 Bak et al. 1975

Nordre Stromfjord, 
Greenland

15-30 km deep 
600-800°C

15 100+ 6 Bak et al. 1975

Laxford Front, 
Scotland

retrograde 
amphibolite 
600°C 6kbar

10 35+ -V3.5 Davies 1978

Karmoy ophiolite, 
Norway

upper/middle 
greenschist 
450-500°C

0.1 0.7 6-7 Thon 1980

South Harris, 
Scotland

granulite
amphibolite
700°C

2 14 Graham 1980

South Amorican, 
France

greenschist 
>400°C 
<600°C

0.4 Jegouzo 1980

Superior Province, 
Canada

greenschist 
450-600°C 
10 km deep

Park 1981

Palaeopiezometer: (A) dynamically recrystallized
(B) subgrain size
(C) free dislocation density



Table 1.3 Thrust Characteristics from the Literature

Thrust
Zone

Maximum 
metamorphic 

grade
Width of 
thrust 
km

Total
slip
km

Shear
Stress
MPa

Thickness 
of slab 
km

References

Olympus thrust, 
Greece

400°C 6 >15 30-100 Barton and England 1979

Coast Range, 
California

blueschist 
400°C >7kbar

6 Blake et al. 1967

Blue Ridge Thrust, 
N. Carolina

Bryant 1967

Glarus,
Switzerland

400°C 30 1-100 5-6 Schmid 1975 
Schmid et al. 1977 
Briegel and Goetze 1970 
Hsu 1969

Subduction 
zones, western 
Pacific

Heat flow 100-300 Oxburgh and Turcotte 1970 
Turcotte and Schubert 1973 
Jischke 1975

Median tectonic 
line, Japan

sillimanite
>650°C

80 Miyashiro 1961 
Suwa 1961

Main central 
thrust, Himalayas

sillimanite in 
granite >650°C

10 230 20-200 LeFort 1975 
Bird 1978

Unterostalpin, 
eastern Alps

amphibolite 550°C 20 Oxburgh and Turcotte 1974 
Bickle et al. 1975

Franciscan thrusts, 
California

amphibolite 650°C 2 50-100 Williams and Smyth 1973 
Nicolas 1979
Nicolas, and Le Pichon 1980



Table 1.3 continued

Bay of Islands, 
Newfoundland

amphibolite 650°C 0.6

San Gabriel Mts. 
California

myIonite

Arltunga Nappe, 
Australia

mylonite

Moine Thrust, 
Scotland

4-10 km deep. 
<450°C

Woodruffe thrust, 
Australia

mylonite

Lewis thrust, 
Canada

32.5

Muddy thrust, 
Nevada

24

McConnell thrust, 
Canada
Valley and Range, 
Appalachians

50-100 Williams and Smyth 1973 
Nicolas 1979
Nicolas - and Le Pichon 1980

130-190 Twiss 1977

30-130 Twiss 1977

85-110
100-150
200

Weathers et al. 1979

30-130
60-150

Twiss 1977
Etheridge and Wilkie 1979 

1.4 Hubbert and Rubey 1959

7.6 Hubbert and Rubey 1959

Elliott 1976

10-22.5 Chappel 1978
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CHAPTER 2

The Mathematical Formulation of Shear Zone Models

2.1 Introduction

In the simplest form the shear zone model consists of two identical 

half spaces of rock sliding horizontally past one another (fig. 2.1.1). 

The two half spaces are separated by a vertical surface. The mechanism 

where shear heat reduces the viscosity and localizes further deformation 

forms the basis of thermo-mechanical shear zones. The underlying assump­

tion of thermo-mechanical models is the high temperature dependence of 

the apparent viscosity of rocks.

Development of a localized shear zone can only occur where there 

is some initial heterogeneity in the model. A shear heat maxima between
gra.i'>6»vb

the two slabs requires a higher shear velocity^at this point. This is 

usually achieved by using an initial small positive temperature anomaly 

in the centre of the model. The slightly lower viscosity '̂wes rise fco 

a shear heat maximum at the centre. The higher shear heating produces 

a positive temperature anomaly and decreases the viscosity further.

The low viscosities in the centre of the shear zone localize any further 

deformation. In this thesis the deformation is assumed to be controlled 

by a highly temperature dependent non-Newtonian rheology.

To construct a mathematical model consideration must be given to 

the following parameters,

(i) the differential velocity Uq to be applied across the model and 

the width of the model over which it is applied. If a velocity 

boundary condition is not applied then the shear stress t , across 

the model must be specified.

(ii) the mechanical properties of the rocks shearing, such as elasticity 

and apparent viscosity and its temperature dependence.



Temperature T

U0/2

/  Velocity
T u

y axis

Figure 2.1.1. Diagrammatic representation of shear zone 
model showing velocity and temperature profiles<after Yuen 
et al. 1978).
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(iii) the initial temperature profile across the model and the thermal 

properties of the rocks.

The models presented in this thesis include both viscous and 

viscoelastic shear zone models. The fundamental properties of elastic 

continua have been described by many authors (Sokolnikoff 1956, Fung 

1965, Jaeger and Cook 1969).

The elastic strain of a simple Hookean body is given by

eE = k°

where c is stress, and k is the elastic modulus. This deformation takes 

place instantaneously on application of the stress. Viscous deformation 

is however time dependent, the longer the stress is applied the greater 

the deformation. Viscous strain rate is given by

• - c~ns = Sav

where S is a function of viscosity and n is a constant. S is highly 

temperature dependent. Values of n>l result in the deformation being 

non-Newtonian power law creep. This relationship is used in the viscous 

model.

The viscoelastic model combines both a Hookean elasticity and a 

non-Newtonian rheology resulting in a Maxwell body whose strain rate 

is given by

ê = kô + San .

This may be rewritten as

e = kô + a /n

where n is the apparent viscosity.

The apparent viscosity of rock is highly dependent upon the physical 

conditions under which deformation is taking place and depends on



temperature, stress and possibly strain. Stocker and Ashby (1973) 

described 13 different creep processes that occured in rocks under 

differing conditions. The majority of these can be divided into 

diffusion creep and dislocation creep processes.

Diffusion creep processes include mechanisms such as Coble creep 

and Nabarro-Herring creep. The strain rate is controlled by grain 

boundary diffusivity and is given by (Weertman 1970)

i = f (a) Do exp(-'jSr)

where Do is the diffusion coefficient, T is temperature, R is the gas 

constant and Q is the activation energy. The activation energy term 

can be replaced giving an equation of the form

e = f(cr)Do exp(-g Tm/T)

where Tm is the melting temperature and g is a constant (Weertman 1970).

Stocker and Ashby (1973) concluded that dislocation creep was the

dominant deformation mechanism in rocks under lower crust and mantle
kootoer

conditions. Goetze (1978)^has suggested that this is not always the 

case. The general form of a dislocation ¿reep expression is

n
t = xA exp(BTm/T)

where A, B and n are constants.

Dislocation creep is used throughout this thesis and is discussed 

in more detail in section 2.4.



2.2 The viscous model

The simple viscous model consists of two identical half spaces of 

rock sliding past each other (fig. 2.1.1). The temperature field of 

the continuum is given by

where

2dT _ k V T + H’ 
dt PCp

H' O:
du.l
dx.J

T is temperature, a is stress, p is density, Cp is specific heat, k 

is conductivity, u is displacement, t is time and H' represents shear 

heating. The force equilibrium of the continuum is given by

F.l pu. +
da..
dx.J

where F is force.

In the absence of internally derived forces, F^ = 0 and the 

inertial equation for the simple shear zone model then becomes

p§ r  - 5 7  (2-2-1)
where t is shear stress and the corresponding temperature field is 

given by

clT = k a2T ,
5t pCp ¿y2

Equations 2.2.1 and 2.2.2 have been used previously by Yuen et al. 

(1978) and Fleitout and Froidevaux (1980) as the basis for their shear

T 5? /°Cn
(2.2.2)

zone models.
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To solve the two coupled partial differential equations a rheology 

expression is required. The Navier-Stokes equation defines the strain

fates as

(¿S = [g]m

the components being

, .V, = in(cr - a ) x av
r
V

= in(cr - a ) 2 y av

{¿v } xy ’ ri<CTxy^
,.v,
{ez} = in (cj - a ) z av

where cravf=‘1/3(^x + o  + o ) and n is y z
dimension the equation reduces to

=xy t /2n xy

Assuming a dislocation creep process

used (Neugebauer and Breitmayer 1975

3u nT

For one

(2.2.3)

where A, B and n are constants. 

Rewriting equation 2.2.1 as

Su 1, (2.2.4)
at 'p ay

and combining with the rheology equation 2.2.3 the following equation 

can be obtained
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Ôu
5 t p ôy A exp(BTm/T)ôu

dy
n

To solve for temperature, equation 2.2.2 is rewritten as

(2.2.5)

ÔT k 52t ,
PCP ôy2

H' (2.2.6)

where HT represents the viscous shear heating. H' itself can be written 

as

H' ( a exp (BTm/T) 
pCp

X1/—  ) ' n ôu 
èy / òy (2.2.7)

or

n+1_____T__________
pCp A exp(BTm/T) (2 .2 .8)

Simultaneous solution of equations 2.2.5 and 2.2.6 with 2.2.8 provides

a description of the shear deformation.

The temperature anomaly of the shear zone is symmetrical about
a

the centre and the velocity profile is anti-symmetrical. A^result 

only one half space need be considered for modelling.

The boundary conditions applied to the temperature solution are

T(y = oo) = T0

where T is the ambient temperature and o

| ( y - o )  - o

since T is symmetrical about the shear zone. Assuming a constant velocity
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boundary condition then

u(y = o) = 0  

u (y = °°) = U0/2

where Uq is the relative slip velocity of the two adjacent blocks.

Following Yuen et al. (1978) a possible initial velocity distri­

bution may take the form of a Heaviside function (fig. 2.2.1) such that

u(y>0, t = 0) = U /2o (2.2.9)

The above equations were solved by the finite difference technique 

using the Yuen et al. starting boundary conditions.

Very small time iteration increments were required for the numerical 

solution with time increments typically representing 10~2  ̂yr. in length. 

The initial step profile is rapidly smoothed out to give a uniform 

velocity gradient. This requires a total time of about 10~20 yr. In 

such a short time there was no modification of the temperature profile.

If an initial constant gradient velocity profile is used it remains 

unchanged.

From equation 2.2.1 if 3u/dt is small then dt/dy is small tending 

to zero. For any physically significant time span the shear stress t, 

does not vary with y. A constant gradient velocity profile is the 

preferred starting condition and is used throughout this thesis.

This casts doubt on the applicability of the results of Yuen et al.

since they use a Heaviside function starting condition which is invalid. 

They also use a similarity transform in their analytical solution which 

mathematically "blurs" the solution at and near time zero.



1

Figure 2.2.1. Initial velocity profiles for the initiation 
of shearing :(1) the step profile(Heaviside function); (2) a 
constant gradient profile.
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Fleitout and Froidevaux (1980) have presented an analytical solution 

which assumes that Sr/dy = 0. The solution does not use a similarity 

transformation.

Since r is independent of y, equation 2.2.3 can be used to obtain 

a velocity function u' such that

u’(y) 1/ exp(BTm/T)j.dy' (2.2 .10)

For the constant velocity boundary condition u ’ (y = 00̂ 

therefore follows that
U /2. It o

r"" = U /2o I
a

/  [A (2.2.11)

Consequently velocity as a fuuvtion of y is given by

>y

u(y) = U /2 rj o
l/exp(BTm/T).dy’

o r 00

:

(2.2.12)

1/exp(BTm/T).dy*

For a constant shear stress boundary condition

u(y)
ry

= TfL J 1/|a exp(BTm/T)j .dy' (2.2.13)

The model can now be constructed for both constant velocity and 

constant shear stress boundary conditions. Simultaneous solution of 

equations 2.2.12 and 2.2.6 provides the constant velocity model while 

equations 2.2.13 and 2.2.6 give constant shear stress conditions.
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Equations 2.2.12 and 2.2.13 are both formulated for dislocation 

creep. Similar integrals can be derived using diffusion creep express­

ions, only the power of the stress and the constants in the integral 

change.

2.3 The viscoelastic model

The viscoelastic model assumes that the body behaves as a Maxwell 

substance, the strain rate being the sum of both elastic and viscous 

strains. The total strain in the x direction is given by

ex
/ V. V. v/„a - / a - /_ a + eE x  E y E z x (2.3.1)

where a and e are stress and viscous strain in the x direction. E is x x
Youngs modulus and V is Poissons ratio. The total strains in the y and 

z directions are given by similar equations. The creep strain rate is 

given by the Navier-Stokes equation

= [g]{o }

the total creep rate in the x direction is given by

.vex
(2a - a - a )

x y____5_
6n

Referring back to equation 2.2.3 we can see that the apparent viscosity 

is highly dependent upon temperature. Solution of the equations must 

involve the simultaneous solution of shear heating and its inclusion in 

the temperature field equation.

The temperature field is given by

= Ky2T + H' dt



where K is thermal diffusivity and H' is the shear heating. For a 

viscoelastic material the shear heattM is given by

H = (a è x x a e
y y

a è ) z z

where x, y and z are the principal components.

The mechanical structure of the shear zone can be described in 

terms of the force equilibrium equation for a continuum.

F.l U.l +
d a . .

dx.
J

The thermal and mechanical equations can be solved in two ways;

(i) by using an integral equation for the velocity profile in an 

analogous way to equations 2.2.12 and 2.2.13 and solving this 

simultaneously with the temperature field equation or

(ii) using the finite element technique for viscoelastic continuum 

analysis and using the finite element nodes as points for a 

finite difference temperature field solution.

The latter method has been used in this thesis.

For both viscous and viscoelastic models two boundary conditions

can be envisaged,

(i) constant boundary velocity conditions

(ii) constant shear stress conditions.

In both viscous and viscoelastic models the two boundary conditions are

investigated assuming that the viscous creep is a dislocation process.

The effect of using diffusional creep is discussed later in the thesis.



2.4 Apparent viscosity and other material properties

To model shear zone processes it is essential to have a good esti­

mate of the physical properties of the rock. Both mechanical properties 

such as Youngs modulus and apparent viscosity as well as thermal effects 

must be investigated. Clark (1966) has documented physical properties 

for a large number of rock types. For the majority of models the follow­

ing values were used,
11 ~2Young^ modulus 10 Nm

Poissons ratio 0.25

Rock density: dolerite/granodiorite 2.7 gm/cm
. • 3olivine rocks 3 gm/cm

Specific heat capacity 0.27 cal/gm°K 

Any differing values used are specified with the model in question. 

Apparent viscosity and thermal conducitvity show marked variations with 

temperature and require more detailed consideration.

(i) Apparent viscosity

For detailed modelling a flow law is essential. These flow laws 

are often empirical simplifications of the theoretical relationship due 

to the large number of parameters controlling the strain rate and the 

difficulty of their measurement.

Weertman (1970) produced the empirical relationship

ev = Af(t)D exp(- Q/RT) o

where f(x) is a funtion of x and is usually a power law f(x) = tn and 

D is a diffusion constant dependent upon the activation energy and 

temperature. The value of Dq varies slightly with ̂ conditions but these 

variations are small compared with the range of estimates for the other

parameters.



Stocker and Ashby (1973) summarised the processes of steady state 

deformation of crystalline materials. The deformation maps they 

produced divided the stress-temperature field into various regions 

dominated by various creep processes (fig. 2.4.1). Diffusional creep 

processes such as Nabarro-Herring and Coble creep do not produce 

sufficiently high strain rates; dislocation (power law) creep being the 

dominant mechanism in upper mantle deformation (Stocker and Ashby 1973). 

From these maps the temperatures involved in shear zones, >400°C will 

result in dislocation creeps dominating the deformation. Recent work 

by Goetæ (1978) has shown that under high stress conditions lithosphere 

deformation is dominated by Coble creep once dynamic recrystallization 

commences. Goetzeproposes a Dorn law for shear stresses above 2 kbar of 

the form,

ê = 5.7 x 10" exp -128 kcal/mol t .. 2
RT U  85000;

Kohlstedt and Goetze (1974) derived a flow law of the form

e = f(o) exp(- Q/RT)

for dislocation creep and derived constants for dry olivine rock applic­

able over a wide temperature and stress range. The function f(o) is an 

empirical funtion and not simply a power law a11. Neugeton^er and 

Breitmayer (1975) showed that by using power laws of n=3 and n=5, 

depending upon the shear stress, good approximations to dry olivine 

flow data can be obtained. The values are for dry olivine rock in S.T. 

units are (Woodward 1976) using Q = 40.0.

e = 1.6 x 10~15 exp(-40.0 Tm/T)x3: t<1.0 x 108 Nm~2 

e = 1.6 x 10-32 exp(-40.0 Tm/T)i5: x>1.0 x 108 Nm“2



V*=50 m Vmol
2 °Temperature x 10 C

Homologous temperature T/Tm

Figure 2.4.1» Deformation map of olivine predicting the 
stress developed at each temperature as a function of 
strain rate. Redrawn from Stocker and Ashby(1973).
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At low stresses linear diffusional creep may occur. The maximum

stresses for significant diffusional creep is estimated at 
5 -21.5 x 10 Nm (Weertman 1970)
5 —20. 7 x 10 Nm (Stocker and Ashby 1973)

The amount of flow at these stresses is very small compared to 

higher stress regimes.

Woodward (1976) reformulated the equations of Neugebauer and 

Breitmayer to give the following based on Kohlstedt and Goetss'data

n = 2.1 x 1014 exp(40.0 Tm/T)x”2: t < 2.18 x 108 Nm”2 

n = 1.0 x 1031 exp(40.0 Tm/T)t 4: x > 2.18 x 108 Nm 2

Murrell and Chakravarty (1973) produced values for dolerite and 

granodiorite rocks based on the assumption of Andrade creep (e = B.tm , 

where m 0.5, t = time and 6 = f(x,T)). Woodward reformulated these 

values to give

n =1.5 exp(53 Tm/T)x dolerite

q = 6.0 exp(42 Tm/T)x granodiorite

Woodwards formulations for dry olivine, dolerite and granodiorite 

rheologies are used in this thesis. The effects of using a Coble creep 

mechanism under the conditions described by Goetze (1978) are described 

later in this thesis.

(ii) Thermal conductivity

Values of thermal conductivity have been determined for many rock 

types (Clark 1966). The majority of the models presented use a value

of 0.006 cal/cm sec C. In models where the thermal conductivity may

be critical a number of values have been used ranging from 0.004-0.01 

cal/cm^sec °C.



Modification of the value of the thermal conductivity may be 

necessary at higher temperatures to account for radiative heat transfer. 

Clark and Ringwood (1964) presented values of thermal conductivity which 

show an increase at 800°C.

Schatz and Simmons (1972) have determined both the thermal conduct­

ivity and radiative conductivity of dunite rock for various temperatures. 

Using their data an effective conductivity has been determined to incor­

porate both thermal (phonon) and radiative conductivities as below

k = 0.0109 - (4.5 x 10'6.T) cal/cmasec °Ceft.
where T is in °K.

This expression does not show the marked increase in conductivity 

at higher temperatures predicted by earlier workers. More recent 

experimental work by Cull (1975) agrees closely with that of Schatz and 

Simmons. The above expression was used to determine the total conduct­

ivities in some models. Detailed description of its effects are

included with the actual model.



CHAPTER 3

Numerical Techniques Used in Shear Zone Modelling

3.1 Introduction

All the geodynamic models of shear zones presented in this thesis 

assume that the rocks behave as a mechanical continuum. While the funda 

mental properties of an elastic continuum have been studied by a number 

of workers (Sokolnikoff 1956, Fung 1965, Jaeger and Cook 1969) and 

analytical solutions for various simple geometric bodies have been 

produced, all but the most simple geological models involve sharp discon 

tinuities and complex spatial distributions of material properties and 

boundary conditions. The resulting differential equations for the 

continuum are often mathematically intractable or involve so many 

simplifying assumptions as to limit the models value.

To overcome this the continuum may be discretized into a finite 

number of units each having its own properties and the equations solved 

by numerical methods. Using finite difference and finite element tech­

niques elaborate numerical models can be constructed, their size and 

complexity often being limited by the amount of computational power 

available. The models in this thesis have used both finite difference 

and finite element techniques.

3.2 Finite Difference Methods

The finite difference method solves differential equations by 

dividing the region to be analysed into a finite number of discrete 

points. The method replaces the differential equation by a difference 

equation which approximates to the precise mathematical solution. The 

difference equation calculates the derivative of any parameter at a 

point by using the values from adjacent points. The derivative is then



used in the calculation of the new value for the parameter.

Finite difference problems can be formulated either implicitly or 

explicitly. An implicit formulation involves the solution of a set of 

simultaneous equations for unknown quantities, whereas in an explicit 

formulation the quantities at each point are directly calculated at 

small successive increments of time.

An example of an explicit formulation may be applied to the one 

dimensional partial differential equation for the temperature field,

The temperature gradient at a point N is calculated using the 

values at adjacent points N - 1 and N + 1 in the x direction. If the 

difference points are equally spaced a distance 'a', apart then equation

3.2.1 can be replaced by the difference expression (see fig. 3.2.1)

dT _ „ d2T (3.2.1)

where K is thermal difussivity.

+ T,N-l
2

- 2T,N (3.2.2)
a

Replacing the time derivative by a difference expression we get

dT = AT 
5"t At (3.2.3)

For a given time interval At the temperature change at point N

becomes,



x - d i r e c f i o n

^n-1 "̂n ^n+1♦ — «1 ■■ • ■ I . » I —i • ■ «.
^ ^

a

d_T _ K d 2 T 
d f  d x ^

ATn=K A t
T + T - 2T 
n-1 n+1 n

Figure 3.2.1. Finite difference formulation for an explicit 
one dimensional temperature solution.

A .

y

X---- »

• •

Jn+1.

AT = KA t 
n +T + T + T -4 T  ) / a 2 

m n-1 n+1 n •
j

Figure 3.2.2. Finite difference formulation for an explicit 
two dimensional temperature solution.
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The temperature field over the region to be analysed can be deter­

mined by using this equation on each point in turn and then repeating 

the process iteratively for each time step. To maintain the stability 

of this numerical process the length of a time increment must not exceed 

(Carslaw and Jaeger 1959)

At = ia2/ K  .

The solution can easily be extended to two dimensions, 

temperature field differential equation becomes

cTT = „ ¿ T  ¿ T
^  " ax2 ay2

and the difference equation is

(3.2.5)

The

(3.2.6)

ATN = ^  (TN+1 + V l  + TM + T0 - 4V /a (3.2.7)

where TM and TQ are the adjacent temperature values in the y-direction 

(see fig. 3.2.2).

An initial starting condition and boundary conditions must be 

applied to the finite difference solution. The value of temperature at 

each point is set to an initial value T0. A boundary condition is applied 

to the edge of the region to be analysed. To prevent heat flowing out from 

the edge of the model, the end nodes are constrained such that the 

temperature gradient is zero or iWed..

dT
dn = 0

The explicit finite difference formulation is used in this thes 

for solving the temperature field.

rs
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3.3 Finite element methods

The finite element technique is used in this thesis for the deter­

mination of the stress and displacement fields of a viscoelastic 

continuum. The method of finite element analysis of elastic and visco­

elastic continua will be described together with its specific application. 

Matrix notation will be used throughout this section. For a comprehensive 

treatment of finite element techniques the reader is referred to 

Zienkiewicz (1977), from which the following description is derived.

For analysis the two dimensional elastic continua is divided 

into a number of subdomains or "finite elements". The simplest finite 

element is a constant strain triangular element. Each element has its 

own mechanical properties and is linked to the adjacent elements by the 

vertices or "nodes". The element properties can be represented by 

behaviour of the nodes, the nodes being used directly in the finite 

element calculation. The edges of each element must remain coincident 

with those of its neighbours to ensure continuity within the elastic 

continua. Solution of the problem is achieved by calculating the nodal 

forces involved for each individual element and then assembling the 

entire structure to determine the force equilibrium as a whole.

Considering a single element (see fig. 3.3.1) the displacements 

{d} at any point can be defined in terms of the nodal displacements {u}

by a shape function

(3.3.1)

The shape function

where £lj is the identity matrix and

= (a£ + b.x.+ ci)?)/2A .



X ■>

Figure 3.3.1. A plane strain region divided into finite 
elements showing the nodal displacements (u) for one 
element.

1

2

5

T 0 /

3

Figure 3.5.1. Diagrammatic representation of the six 
adjacent finite elements used to calculate the average shear 
heating at node Tq.



A is the area of the element

1 x. y.l l
= \  Jtt 1 X.j "j

1 *k yk

a. =X X.1
r \ yj

b. =l yj -  yk
c. = l \ - X.J •

Strain can be derived

fa} =

du/dx

dv/dy

dv/dy + du/dx

'XX

(3.3.2)

and can also be described in terms of the nodal displacements such that 

{£} = [b] {u } . (3.3.3)

Matrix [b ] is termed the strain shape function and has the form

[B] = JA

b. 0 b. 0 b. 0X J k
0 c. 0 C. 0 cX J k
c. b. C. b. c. bX X J J k k

(3.3.4)

Hence [B ] - (3.3.5)

where [l ] is a strain operator.

The next step is to obtain the internal stresses of the element 

from the nodal displacements. If we assume a linear elastic behaviour 

then we can define the stress as
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{a} = [D] ({£} - {e0}) + {aQ} (3 .3 .6 )

where {£0 } represents any initial strains and {ctq} represents 

initial stress. {£} is the total strain. For conditions of plane strain 

or stress in the z direction the stress tensor {a} becomes

[¿¡is an elasticity matrix which for plane strain in the z direction is

H -
E(l-v)

(1+v)(l-2v)

1 v/(l-v) 0

v/(l-v) 1 0

0 0 (l-2v)/2(l-v)

(3.3.7)

and for plane stress is

H  ■ d(1-v2)

1 v 0

v 1 0

0 0 (l-v)/2
(3.3.8)

where E is Youngs modulus and v = Poissons ratio.

Any external stresses acting on the body are incorporated as an 

equivalent set of nodal forces {F}. The re-sulh^ . nodal be.

distributed around the finite element grid in such a way as to minimise 

their total strain energy. The total internal strain energy of the 

system U, can be described as

U = J i(e}T (a) d(vol) , (3>3



T represents the transpose of matrix {*} .

The total potential energy is given hy

W=-{uj{Rj -  Jjdj {Pj d(vol) - ^{d| jfj d(area) (3.3.10)
where {Ri is the external nodal forces, {p} is the matrix of

body forces and {*1 is the external loading.

The total elastic energy X is given by

X » U +  W (3. 3. II)

To solve the differential equation for the elastic continue, 

it is necessary to minimise the total energy of the system.

The finite element process seeks such a minimum within the 

constraint of an assumed displacement pattern, i.e.

- j p r f 0
By substituting 3-3-4 and 3*3.6 into 3. 3« II the following 

can be obtained

X - t f o f M  0 ]  [B] M  ¿(v/ol) + j [ f t ]  {u| |«5}«!(vol)-j,[8]Tju[[D] Wdtv/ol)

-luflRl -  f W 1 {u! {H d(vol) — luH^j d(area) (3-3-I3)

From 3*3*12 we get on differentiating with respect to juj

J[b][d][&] d(vol) +  | CB] i°»l d(yol) — f[B ] [t>] {e0| d(yol) — jp j 

-  j  M  jP U (v o l) -  i  [N]  i f  1 J^area) — Q ^

By defining a stiffness matrix such that

(3-3.15)



an equation may be derived showing the nature of the nodal displace­

ments.

[ k] ( u )  +{F) + {F}p ♦ {F} t {F}o O
o

where {F}^ = external applied forces

{F}p = body forces

iF>eo " forces due to initial strain

ii
ob

W-' forces due to initial stress .

Force boundary conditions can be applied directly using the

vector {F}^. Displacement boundary conditions can be affected by

multiplication of the element within the [jt] matrix corresponding
12to the node, by a large number (= 10 ) (pers comm., Payne and Irons

to Zienkiewicz, 1963). Simultaneously the corresponding force vector 

is replaced by the prescribed displacement multiplied by the new 

element of the [k] matrix.

Solution of the viscoelastic problem by finite elements is 

accomplished by using the concept of initial strain (Zienkiewicz 1977). 

From equation 3.3.16 we can get

[k]{u } = {R} - {F}

where {R} is the nodal forces and

"{F}eo = |[b]T[d]{£°> d (™l) . (3.3.17)

Creep is then incorporated in the calculation as an initial 

strain. The stress at any time is given by

{a} = [d]({c} - {eo}) (3.3.18)



The viscous creep is calculated using the Navier-Stokes equation.

The components being

= 2h(tf “ <7 )X X av
{eV} = £n(cr ~ a )

y V av
• \J{e } * n ( r )xy xy

W  - h ( a z ~ a ) av (3.3.19)

where a = —  ( a + o + o )  and n is the apparent viscosity, av 3 x y z

For viscoelastic analysis the finite element model must be first

solved for elastic conditions. Propagation through time is achieved

by an iterative finite difference algorithm. The steps of the algorithm

are as follows:-

(i) The first estimate of the creep rate for the time step is 

calculated from the stress values at the end of the previous 

time step.

(ii) The creep rate is integrated over the time step and this is 

added to the creep of the previous time steps.

(iii) The total creep is incorporated in the initial stress vector.

(iv) A solution is obtained for the displacements, strains and 

stresses at the end of the time increment.

(v) The values of stress are used to give a better estimate of the 

average value for the time increment.

(vi) The sequence then repeats until there is no difference in the 

value of stress at the end of the increment.

(vii) The next time increment can then be commenced.
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The maximum time increment for this numerical solution to remain 

stable is

At = 2n/E (3.3.20)

For plain stress in an isotropic material, the total strains, 

eT are given by

T a /E - Va /E + VeX x y x

T - Va /E + a /E + tV
y x y y

T 2(1 + V)x /E + evxy xy xy

where e represents the viscous strains.

For plain strain we have a stress component a^. Also the total strain 

in the z direction is zero,i.e.

= 0 = - Vcr̂ /E - Va^/E + a ^ E  + . (3.3.21)

The viscous creep is non zero and is equal and opposite to the 

elastic strain. As a result the matrix as used in equation 3.3.7 

must be amended for the strains in the z direction. The initial force 

vector is still given by equation 3.3.16, except now

{e0) (3.3.22)
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and the matrix becomes

1 v /f i-v ) V/(L-v) 0

V/(L -^  1 v/(i~v) 0

0 0 0 ^L-2^/2 (1-V)

(3.3.23)

3,4 Solution of the viscous and simple viscoelastic model.

The mathematical formulation of the viscous model has already 

been described. The model can be reduced to a pair of equations to 

be solved simultaneously. For constant shear velocity boundary condit­

ions these are (from Chapter 2),

H  - E(l-V) 
(1+V)(1-2V)

ÔT = Jk_ ¿¿T 
ôt PCP ôy2

and

«(y) Uo/2 l/exp(BTm/T)dy'

l/exp(BTm/T)dy'

(3.4.1)

(3.4.2)

For constant shear stress conditions the temperature field 

expression 3.4.1 must be solved with

u(y) 1/ jAexp(BTm/T)jdy' (3.4.3)



Equation 3.4.1 was solved using an explicit central difference 

finite difference routine. The initial temperature was set at an ambient 

value Tq across the model. To produce shear localization within the 

model a small temperature perturbation A is introduced such that

T(y=0) = T + Ao

The perturbation A is rapidly swamped by the shear heating of the model. 

Various values of A have been tested over a range up to 50°C without 

significantly changing the behaviour of the model. A value of 10°C is 

used throughout the thesis.

A boundary condition must also be applied to the temperature 

solution such that the temperature at the edge of the model remains at 

the initial value.

T(y =«) = Tq

Solution of the velocity profile is achieved by integration of the 

velocity derivative across the width of the model. The velocity deriva­

tive is calculated using a backward difference formula.

The constant boundary velocity condition has been shown to have 

a constant gradient initial velocity profile (see section 2.2). The 

boundary conditions applied to the model are

u(y = o) = 0 

u(y = °°) = Uq /2

The model was tested for various half widths of shear zone to determine 

the effect of the distance of the boundary velocity U0/2 from the shear 

zone centre. The constant velocity model gives a very steep localized 

shear zone and is unaffected by the models width. A half width of
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100 km is used in most models to ensure the temperature boundary condition 

'¡’(y = a>) = T was remote from the shear zone.

Constant shear stress boundary condition models behave differently. 

The velocity profiles produced often have constant gradients. Under 

these conditions the half width of the model becomes important since 

the total differential velocity across the shear zone depends upon the 

width of the model. However as the behaviour of a constant shear stress 

model is fairly uniform across the model, the half width need only be 

sufficient to maintain the temperature boundary condition.

An algorithm for a viscous shear zone model is listed in Appendix

1. The program calculates the optimum time increments for solution and 

is numerically stable even under unrealistic conditions.

A one dimensional viscoelastic model can also be solved in a 

similar way, the viscous equation being replaced by a viscoelastic term. 

The strain rate is given by

n
du = 20H .
dy E xy

Txy (3.4.4)
3y Aexp(BTm/T)

or

(3.4.5)

where f' is a function of elasticity and f" a function of temperature . 

The equation for velocity is

(3.4.6)
o o



Ihe integrals in equation 3.4.6 can be solved by integration of the 

Velocity and stress derivatives (N.J. Kusznir, pers. comm. 1982).

3.5 Solution of viscoelastic models by coupled finite element and 

finite difference techniques.

The viscoelastic model presented in this thesis utilizes a coupled 

finite element and finite difference technique. Velocity and displace­

ment fields are determined using the nodal displacements obtained by 

finite element analysis, while the temperature field is calculated 

by the finite difference method using the finite element nodes.

The viscosity of a given element is calculated using the element 

average temperature. Finite element analysis gives the state of stress, 

strain and strain rate for each element. From this information the 

shear heating energy for each element can be calculated using the 

equation (Jaeger and Cook 1969).

H * (o év + a ev + a è'*) x x  y y z z'

where x, y and z represent the principalised directions.

The temperature field of the model is calculated using a two 

dimensional, central finite difference formulation. As the

finite element nodes are used as points for the temperature field 

calculation it is necessary to map the element average shear heating 

onto the element nodes. In a rectangular grid each node is shared by 

six surrounding elements. The shear heat applied to each node is calcul­

ated as a weighted average of the six adjacent element values (fig. 3.5.1).

The finite difference temperature field solution used the formulation 

described in section 3.2. The time periods necessary for the stability 

of iterations for the finite element and finite difference techniques



are not the same. The model calculates the optimum time step and 

provides for a number of iterations of the finite difference temperature 

solution for each finite element iteration, ensuring the numerical 

process remains stable.

The initial temperature conditions are such that all nodes are 

given an ambient value Tq with the exception of nodes at y = o which 

have an initial positive perturbation above this value. Boundary 

conditions are applied to the model such that all the edges of the 

rectangular grid have zero temperature gradient across them i.e.

g  = 0dn

where n is the direction perpendicular to the edge of the grid. 

However, the edge of the grid where y = w, w being the half width of 

the model, has the boundary condition T = Tq at all values of t 

(fig. 3.5.2).

Mechanical boundary conditions must also be applied to the model. 

For constant boundary velocity conditions the nodes at y = w are 

constrained to move in the x direction at a fixed displacement rate.

The nodes at the centre of the shear zone at y = o are fixed in both 

the x and y directions. The other two edges of the grid have their 

nodes constrained to move in the x direction only. Nodes in the interior 

of the grid are unconstrained.

For constant shear stress conditions the displacement rate 

condition is replaced by a force applied to the edge nodes acting in the 

x direction. The force is applied to all the nodes along the edges of 

the grid that are perpendicular to the direction of shear. The force 

per unit length is calculated for a given stress level, the force is 

then distributed between the edge nodes.



Unlike viscous models the effect of varying the half width of the 

model w and the value of the initial temperature perturbation can have 

significant effects on viscoelastic models. These effects are 

studied later in the thesis.

Appendix 2 contains a set of algorithms for viscoelastic analysis 

of shear zones. The finite difference heat flow and the finite element 

stress analysis have been tested and are included as Appendices 3 and 4.
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CHAPTER 4

Viscous Shear Zone Models

4.1 Introduction

The general viscous model and its mathematical formulation have been 

described in the previous chapters. The models can be divided into two 

types having either constant shear velocity or constant shear stress 

boundary conditions. The behaviour of these two types of boundary 

condition will be described separately for the general case of a dry 

olivine rheology. The behaviour of models with other rheologies will 

be mentioned where appropriate.

4.2 The constant shear velocity model

The constant shear velocity model consists of two identical half 

spaces of rock sliding past each other with a constant slip velocity U 

across the shear zone (see Chapter 2). The initial velocity profile 

for this model is a constant gradient profile from zero velocity at 

the centre of the shear zone to the chosen boundary value at the models 

edge. The initial temperature is uniform across the model except for a 

10°C destabilizing perturbation at the models centre.

After initiation the constant gradient velocity profile rapidly 

changes with time to produce a very narrow, localized shear zone with a 

steep velocity gradient. Figure 4.2.1 shows how the initial constant 

gradient profile persists for the first 2500 yr or so and then rapidly 

changes to a step like profile. This step like profile accommodates 

most of the deformation in a narrow central zone which broadens slowly 

with time. The shear zone is very narrow for the first million years

or so.
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The width of the narrow high velocity gradient shear zone increases 

with time. Figure 4.2.2 shows:the velocity and temperature profiles 

for a shear zone in a dry olivine material at an ambient temperature 

of 600°C and a half velocity of 5 cm yr Temperatures in the centre 

of the shear zone increase with time and the shear heat diffuses out­

wards broadening the thermal anomaly. The velocity profile also shows 

a broadening of the zone of mechanical deformation. At all times the 

width of the thermal anomaly is approximately an order of magnitude 

greater than the zone of mechanical deformation. The temperature in 

the centre of the shear zone is still increasing at a time of 30 Myr 

although the rate of increase is very slow. The temperatures produced 

in the centre of the shear zone are always insufficient for partial 

melting.

The viscosity in the centre of the shear zone drops to a value 
19around 10 Pa.s. As the shear zone develops and widens the deformation 

is accommodated by an increase in the width of the low viscosity zone 

rather than a further decrease in viscosity at the centre of the shear 

zone (fig. 4.2.3). The strain rates associated with constant velocity 

models vary from 10 ^  s  ̂in the centre to 10 ^  s  ̂at the edges.

Higher boundary velocities should result in more shear heating 

being produced. Figure 4.2.4 shows the temperature profiles for various 

half velocities. Faster velocities generate higher central temperatures 

in the shear zone but even 10 cm yr * produces insufficient shear heat 

for melting. Slow shear velocities will produce low strain rates and 

little shear heating. If the velocity is small enough the shear heating 

will be insufficient to maintain a large temperature anomaly. As a 

result no localized shear zone forms and the velocity profile remains 

a constant gradient. Figure 4.2.5 shows the velocity profiles for slow 

shear velocities applied to a model with a half width of 1 km. Half
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Figure 4.2*4. The temperature profiles for various half 
shearing velocities, at 2Myr. To=600°c.
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velocities in the order of 0.02 cm yr produce no significant temper­

ature anomalies and do not develop localized shear zones.

It would at first appear that the width of the model over which 

the boundary velocity is imposed would be important since the steeper 

the initial velocity gradient the higher the initial shear heating. 

However as constant velocity shears form narrow localized zones very 

rapidly, the width of the model has very little effect providing the 

narrow shear zone is within the width of the model. The width of the 

model does have some effect on the temperature profile during the first 

10,000 yr or so after initiation, but it is insufficient to affect the 

subsequent evolution of the shear zone.

For a given width of shear zone there is a shear velocity below

which no localization occurs. From figure 4.2.5 we can see that this

velocity is very slow for a model with a 1 km half width. If the half

width is reduced to 100 metres the critical velocity is very high.

Narrow shear zones lose the shear heat through the sides of the model

very rapidly. Shear velocities of 5 or 10 cm yr  ̂ fail to produce
vietatî

enough shear heat for localization a linear^gradient remaining. Small 

shear zones do not give a localized central zone at reasonable shear 

rates.

The velocity profile of a shear zone is very strongly dependent 

upon the ambient temperature. Lower temperatures produce narrower shear 

zones for any given shear velocity. Figure 4.2.6 shows the velocity and 

temperature profiles for various ambient temperatures for a comparable 

time and half velocity. The velocity profiles show a change from narrow
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intense shear zones for lower ambient temperatures to wider more 

diffuse zones for ambient temperatures in excess of 700°C. The nature 

of the temperature profiles also show a marked dependence on the ambient 

temperature. At lower ambient temperatures, the temperature profiles 

show a high central anomaly. Higher ambient temperatures produce much 

smoother temperature profiles with significant shear heating across the 

total width of the shear zone. Above an ambient temperature of 700°C 

the character of the temperature profile changes from having a large 

central peak at 700°C to a profile with even shear heating across the 

model and no central peak at 800°C. The velocity profiles also change 

at this ambient temperature; the viscous deformation being no longer 

confined to a narrow zone but occurring over a much broader zone. The 

geological significance of this is investigated in the next chapter.

The stresses associated with constant velocity shearing are very 

high soon after initiation but decay rapidly to a kilobar or so in a 

million years (fig. 4.2.7). The higher the boundary velocity the lower 

the value of shear stress. Higher boundary velocities produce more shear 

heating and the stresses can decay faster. Figure 4.2.7 also shows the 

stress curves for various ambient temperatures for a fixed rate of 

shearing. The highest ambient temperature does not necessarily give 

the lowest stresses. The level of stress is governed by the maximum 

temperature reached in the shear zones. Lower ambient temperatures 

produce thermal anomalies with a hot central peak whereas higher ambient 

temperatures produce thermal anomalies with an even temperature rise of 

a few degrees across the entire shear zone (see fig. 4.2.6). The highest 

peak temperature and hence the lowest stress is not necessarily going to 

occur at the highest ambient temperature for a given time and shear 

velocity.



Figure 4.2.7. The variation of stress with time. (Top) for 
various half velocities at an ambient temperature of 600°c 
and, (Bottom) for^arious ambient temperatures for a shear 
rate of 5 cm yr .



Figure 4.2.8. The velocity and temperature profiles for 
various thermal conductivities. t=2Myr., UQ/2=5 cm yr~1, 
T =600°C. Profiles: a=0.01, b=0.006, c=0.004 cal cm2- 
°C.

sec

nC
TO



Characteristic of all the stress profiles is the very high initial 

stress values. These stresses have values of hundreds of kilobars at 

t=0 and represent a near singularity in the shear stress at the 

initiation of shearing.

Variation in the thermal conductivity of the shearing rocks will 

have an effect upon the shear zone evolution. The thermal conductivity 

of rocks ranges from 4.0 x 10  ̂to 1.0 x 10  ̂cal^cm1 sec°C (Clark 1966). 

A value of 6.0 x 10  ̂cal/cm2' sec°C has been used for the dry olivine 

models. Thermal conductivity is very important when considering the 

thermal structure of shear zones. Figure 4.2.8 shows a set of velocity 

and temperature profiles for various conductivities for a given ambient 

temperature and shear rate. Higher thermal conductivities produce wider 

thermal anomalies with lower central temperatures. Variation in thermal 

conductivity also affects the velocity profiles, lower thermal conduct­

ivities produce narrower and hotter shear zones.

Comparison of dry olivine rheology with dolerite and granodiorite 

rheologies shows significant differences. Figure 4.2.9 shows the velocity 

and temperature profiles for all three rheologies. Dolerite and grano­

diorite deform more easily than dry olivine producing smaller temperature 

anomalies and wider, less intense, shear zones for the same ambient 

temperature. Each rock type produces its own peak temperature value. 

Constant velocity shears do not reach temperatures sufficient for 

melting irrespective of the media being sheared.
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4.3 The constant shear stress model

The constant stress model has a shear stress boundary condition. 

The velocity profile across the model is calculated using equation 

2.2.13,

u(y) = t 1 j 1/ exp(BTm/T)J.dy'.

Since stress is constant across the model in both space and time 

any variation in viscosity will be due to variations in temperature.

The half width of the model, W must be wide enough to ensure no edge 

effects from the temperature boundary condition

T(y = W) = Tq •

The velocity at the edge of the model is dependent upon the width of 

the model, with wider models having higher velocities at the edge.

The temporal development of a shear zone with constant stress is 

shown in fig. 4.3.1. The velocity profiles are nearly linear except 

at the very centre of the model. Since the velocity profiles are const 

ant gradient except at the very centre, the width of the model is 

determined by the width necessary for the temperature boundary condit­

ion to remain remote from the centre of the model. The width of the 

model has no other physical significance.

The gradient of the velocity profile gradually increases until a 

steep shear zone rapidly develops. The corresponding temperature 

profiles show an increase in temperature across the shear zone before 

the sudden development of a central peak. This background increase in 

temperature is a result of the constant gradient velocity profiles; 

the constant strain producing an even shear heating across the zone. 

When the steep shear zone develops, the strain becomes high enough to 

produce intense shear heating in the centre of the zone. Temperatures
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in the centre rise and the shear velocity becomes so high that the shear 

heating produces melting. Once this "thermal runaway" (Gruntfest 1963) 

takes place the model loses its physical significance and can no longer 

be used to describe shear zone behaviour.

At low levels of stress and ambient temperature the constant stress
“3 —Imodel will produce low shearing velocities (10 cm yr f»*“ <*.sk«<‘width 

of 100 km. at T0 = ̂ 00°C and x = 2 kbar) which are geologically insig­

nificant. The strains generated even over long periods of geological 

time, will be unobservable in the field.

Ambient temperature once again has a strong effect on the behaviour 

of the shear zone. Figure 4.3.2 shows the variation of velocity and 

temperature profiles with ambient temperature. The velocity profiles 

show a marked increase in gradient above an ambient temperature of 

785°C. Temperature profiles show that the change in velocity gradient 

corresponds to a rapid increase in shear heating and the approach of 

thermal runaway.

The effect of variation in shear stress at a fixed time and 

ambient temperature is shown in fig. 4.3.3. There exists a critical 

value above which an increase in stress results in rapid modification 

<jf the velocity and temperature profiles followed by thermal runaway.

Both the temperature and stress results can be combined to produce 

the temp&rature-stress field for thermal runaway. The value of stress 

^nd temperature required for runaway are time dependent; higher values 

"bringing about runaway in shorter times. Figure 4.3.4 shows the temper­

ature-stress field for runaway within a time of 10^ yr. Figure 4.3.5 is 

&  similar diagram showing the runaway curve for various times and also

I
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various stresses at a fixed time. t=10 yr., TQ=700 C.



Figure 4.3.4. The temperature-stress cur^e for thermal 
runaway initiation at a fixed time of 10°yr.
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includes curves for dolerite and granodiorite rheologies. The dolerite 

and dry olivine rheologies behave similarly but the granodiorite requires 

a much lower level of stress, and temperature to produce thermal runaway.

The discontinuity of shear zone behaviour at the point of thermal 

runaway can be explained in terms of catastrophe theory. Figure 4.3.6 

shows the simplest catastrophe surface (Thom 1975). The state of the 

system is represented by the topological surface. Moving along an axis 

produces a gradual change in the state except at the fold in the surface 

when the system changes catastrophically. Thermal runaway can be rep­

resented by such a catastrophe.

4.4 A comparison of the two models

From the previous two sections it can be seen that the constant 

velocity and constant stress models produce quite different shear zone 

structures. Constant velocity conditions produced localized zones of 

intense shearing which broaden with:time. A corresponding thermal 

anomaly exists,the magnitude of which increases with time, quickly at 

first and then more slowly. The temperature reached by the shear zone 

Is never high enough for melting.

Constant shear stress conditions produce shear zones with an init­

ial uniform strain rate across them. The uniform strain rate produces 

constant shear heat across the model and hence a uniform temperature 

rise across the model. Should sufficiently high temperatures and 

stresses exist,large amounts of shear heating will be generated, which 

jnay develop into thermal feedback instabilities and thermal runaway.

The strain profiles produced by the two models are very different. 

Constant velocity models have a central high strain zone. This high 

Strain zone slowly broadens with time as well as increasing in magnitude. 

Constant stress models produce a perfectly linear strain profile across
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the shear zone, strain being constant at all points. Should thermal 

runaway occur, the strain profile is rapidly modified by the development 

of a central very high strain zone as a prelude to melting of the rock 

material. Figure 4.4.1 shows examples of the strain profiles developed 

by the two models.
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CHAPTER 5

Applications of Viscous Shear Zone Models

5.1 Introduction

In this chapter the implications of the viscous model on shear 

zone structure and behaviour will be discussed and the model extended 

to assess the effects of shear zone interaction and the shearing of 

heterogeneous materials. The majority of this chapter will deal with 

effects observed for constant velocity boundary conditions. Structures 

predicted by the constant shear stress model are generally simpler than 

constant velocity types and are included where appropriate.

5.2 Broadening of shear zones with depth

The behaviour of the constant velocity model was seen in section

4.2 to show a high dependence on ambient temperature. Both velocity 

and temperature profiles show significant changes in shape with change 

in ambient temperature. With increasing temperature the velocity 

profiles become less steep and tend towards a constant gradient, while 

the temperature profiles lose their high central peaks and become much 

wider with smaller central anomalies (see fig. 4.2.6). As the shear 

zone becomes broader and more diffuse with ambient temperature, it will 

also broaden with depth in the crust. Figure 5.2.1 shows how a shear 

zone broadens with ambient temperature. The ambient temperature is 

related to the depth in the crust by the geotherm. The shear zone is 

defined mechanically as being within the surface where U = ±0.95 U Q/2, 

such that 95% of the deformation is accommodated within the shear zone.
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A dry olivine rheology is used in the model. To determine the broaden­

ing with depth we must know the ambient temperature at a given depth.

This can be done for ocean basin, continental shield and basin and 

range lithosphere using published geotherms (Haigh 1973, Herrin 1972, 

Mercier and Carter 1975).

The shear zone shows a gradual widening with depth until the 

ambient temperature increases to over 700°C. At these temperatures the 

shear zone broadens rapidly such that deformation is no longer confined 

to a steep vertical zone but becomes a sub-horizontal low viscosity zone. 

This sub-horizontal shearing is achieved at a depth of about 40 km for 

ocean basin, 60 km for continental shield and 23 km for basin and range 

lithosphere, using a dry olivine rheology.

At higher levels in the crust the viscous deformation model becomes 

invalid and brittle elastic deformation takes place. Seismic activity 

on continental transforms such as the San Andreas fault occurs at depths 

shallower than 10-15 km (Eaton et al. 1970). This corresponds to a 

change from ductile deformation to brittle seismic slip at higher levels 

(Sibson 1977). The broadening with depth produced by the models can also 

be described by the temperature anomaly of the shear zone. The resulting 

profiles being an order of magnitude wider than the velocity profiles.

Better estimates of shear zone broadening with depth can be achieved 

by using differing rheologies. The use of a dolerite rheology and an 

ocean basin geotherm (Haigh 1973) is shown in figure 5.2.2. On the same 

diagram is shown the results of using a granodiorite rheology and both 

continental shield and basin and range geotherms. The results for doler­

ite rheology are similar to those for dry olivine, the shear zone becomes 

horizontal at almost the same temperature but is fairly angular in shape



U0/2=5cm/yr time=2Myr
dolerite

"D
granodiorite <v

Figure 5.2.2. The broadening of shear zones with depth for 
(top) oceanic lithosphere using dolerite rheology and 
(bottom) continental shield and basin and range lithosphere 
using granodiorite rheology.
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changing suddenly from a narrow vertical shear to a sub-horizontal 

shear. The granodiorite model becomes sub-horizontal at a temperature 

of around 550°C. This corresponds to a depth of 37 km in continental 

shield lithosphere and to a depth of 16 km in basin and range lithos­

phere.

Shear zone broadening with depth has been recorded by field workers 

in the Nordre Str^mfjord shear belt, west Greenland. Bak et al. (1975) 

interpreted the shear belt as a gently eastward dipping slab of crustal 

material. The widening of the shear zone to the west is commensurate 

with an increase in metamorphic grade reflecting a deeper crustal level. 

The shear zone broadens from 7 to 15 km wide over an estimated vertical 

distance of 10 km (see fig. 5.2.3). This compares well with the broaden­

ing predicted by the granodiorite rheology over a depth range of 25-35 km 

for continental shield lithosphere» For basin and range lithosphere the 

broadening occurs over a much smaller depth range from 12 to 16 km.

The variation of shear stress with depth can also be investigated 

for constant velocity shear zones. The stress profiles against ambient 

temperature are shown in fig. 5.2.4 for dolerite, granodiorite and dry 

olivine rheologies. Characteristic of all three profiles is the slow 

decrease in shear stress with increasing temperature interupted by a 

sudden sharp peak. Dry olivine and dolerite rheologies produce high 

maximum stresses at temperatures around 700°C. Granodiorite rheology 

produces a lower peak stress at a much lower temperature around 540°C.

The position of the peak stresses corresponds exactly to the point where 

the vertical narrow shear zone becomes a broader sub-horizontal structure. 

The temperature also corresponds to the point where the shear zone no



NORDRE STR0MFJORD SHEAR BELT

Figure 5.2.3. The structure of the Nordre Strj&nfjord shear 
belt, western Greenland (after Bak et al. 1975).
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Figure 5.2.4. The variation of shear stress with ambient 
temperature for (A) dolerite rheology, (B) dry olivine 
rheology, (C) granodiorite rheology, (D) dry olivine using a 
temperature dependent thermal conductivity.



longer produces sharp high amplitude temperature anomalies but begins 

to give broader low amplitude temperature profiles.

The vertical structure of a shear zone with temperature is likely 

to be influenced by the values used for thermal conductivity in the 

model. The model was investigated using the expression derived in 

chapter 2 for the temperature dependence of thermal conductivity in 

dry olivine. The expression used is

k ^  = 0.0109 - (4.5 x 10'6.T) cal/cm sec°K

the effective thermal conductivity value produced includes both thermal 

(phonon) conductivity and the effects df radiative heat transfer. The 

resulting shear zone structure is shown in fig. 5.2.5. The temperature 

dependent thermal conductivity tends to smooth out the transition from 

vertical to sub-horizontal shearing, the shear zone broadening more 

rapidly than the normal case. At mid and lower levels the temperature 

dependent conductivity causes the shear zone to be almost twice as wide. 

The stress profile with depth for a temperature dependent conductivity 

is shown in fig. 5.2.4. The peak stress is much lower and occurs at a 

slightly higher temperature than the plain dry olivine model.

Shear zone broadening with depth does not occur for constant shear 

stress boundary conditions. Referring back to fig. 4.3.2 which shows 

the effect of ambient temperature on a constant stress shear, it is 

apparent that the shear rate increases with temperature and hence depth. 

At temperatures which are insufficient for thermal runaway the velocity 

profile has a constant gradient, making the resulting velocities at the 

shear zone margin dependent upon the width of model. However if the 

stress is invariant with depth any thermal runaway will occur at the
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Figure 5.2.5. The broadening of a shear zone with depth 
using a dry olivine rheology and a temperature dependent 
thermal conductivity.



deepest level of the model first.

5.3 Multiple shear zone models

Shear zone structure is determined by two effects operating 

against one another. Shear heat is developed by the viscous shearing 

which increases the temperature, lowering the viscosity. Thermal 

diffusion works in opposition, removing the shear heat and cooling the 

stabilizing anomaly. Thermo-mechanical shearing is a dynamic equilibrium 

between these two processes. The models considered so far assume a 

constant ambient temperature and that no additional heat sinks or sour­

ces exist. A possible additional heat source could take the form of 

another shear zone. Multiple shear zone models have been investigated 

to determine the conditions under which multiple shears will interact 

or remain as distinct entities.

For a constant shear velocity boundary condition, merging of 

shear zones was investigated using a dry olivine rheology at an ambient 

temperature of 600°C. The boundary velocity was chosen to be 5 cm yr 

Two small perturbations were introduced into the model separated by a 

distance of 10 km. At a time of 1 Myr the two perturbations have 

developed into discrete shear zones each having its own velocity and 

strain profile (fig. 5.3.1). The maximum temperature is, however, 

located centrally between the two perturbations. This central temper­

ature maximum causes the velocity profiles to merge together into a 

single central shear zone. By 3 Myr the strain profile shows a large 

central peak the deformation being accommodated by a single shear zone.

It is important to note that the strain profile peaks do not necessarily 

coincide with the instantaneous maximum shear velocity gradient.



Figure 5.3.1. The velocity, temperature and strain profiles 
showing the convergence of a pair of_^hear zones, initially 
10 km apart, with time. Uq/2=5 cm yr , Tq=600 C.



The overlapping of the two thermal anomalies is the precursor to 

shear zone merging. Since the thermal anomaly of a shear zone decays 

asymptotically to the ambient temperature with distance, then there 

must be a distance at which a pair of shear zones are sufficiently 

distant from each other to remain as distinct entities. Figure 5.3.2 

shows the temperature and velocity profiles for shear pairs separated 

by various distances after a time of 2 Myr. A shear pair with an 

initial separation of 20 km shows the beginning of coalescence at 2 Myr; 

the temperature anomalies overlapping one another. At a distance of 

50 km however the temperature midway between the pair of shears is almost 

the ambient temperature. For dry olivine rheology initial separations 

of around 50 km are required to maintain the shears as discrete entities 

for "fccAs ©f miUioAi of êix'-s.

Since the temperature anomaly of a shear zone broadens with time, 

then the minimum distance separating a pair of shears will also be time 

dependent. Figure 5.3.3 shows the minimum distance separating a pair of 

dry olivine shear zones against time. The distance is the minimum 

separation required to keep the shear zones as a pair, having individual 

velocity and strain profiles. The curves have been presented for a 

range of values of thermal conductivity from 0.004-0.01 cal/cm^ sec°C.

A change in the value of conductivity does not affect the shape of the 

curve. The minimum separation distance increases with time but the rate 

of increase also decreases with time. On the same diagram are shown 

a similar pair of curves for dolerite and granodiorite rheologies both 

using a thermal conductivity value of 0.006 cal/cm^ sec°C. In all cases 

the shape of the curve is similar only the values varying slightly with 

rheology and temperature.
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Figure 5.3.2. The velocity and temperature profiles for
pairs of shear zones with various initial separations.
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Figure 5.3.3. The minimum spacing for a pair of shears to
remain discrete for a given time :(top) dry olivine rheology
for various thermal conductivities T =600°C, u /2=5 cm
and (bottom) dolerite rheology T =6o8°C and grtnodiorite* '
rheology T =500 C* o



The concept of shear zones merging with time can be extended to 

incorporate shear zone merging with horizontal distance. Should a pair 

of non-parallel shear zones initiate close to one another such that at 

their closest point they overlap each others temperature anomaly, then 

they will merge into a single shear. With time the thermal anomalies 

will broader»/ increasing the minimum separation distance for the bifurca­

ted end of the pair to remain discrete. Hence the pair slowly merge, 

the length of the original pair of shears which have merged increasing 

with time. Figure 5.3.4 represents the bifurcation of shears by showing 

the thermal anomalies of shears at various separations drawn along the 

length of the shear zone.

The interference and gradual merging of parallel or sub-parallel 

shear zones is partly controlled, as shown above, by the outward 

diffusion of the temperature anomalies of each shear zone. It has also 

been previously shown that the evolution of temperature and velocity 

profiles for a shear zone is highly dependent upon ambient temperature. 

Figure 5.3.5 shows the temperature profiles of a pair of shear zones 

initially 20 km apart, after 2 Myr for various ambient temepratures.

With increasing ambient temperature the temperature profiles merge into 

a single anomaly. Since shear zone coalescence increases with ambient 

temperature, it is reasonable to assume that shear zones should also 

merge with depth.

At this point a brief discussion of the geological significance 

of shear interaction is appropriate. The model predicts that for any 

set of shear zones of the same age and shear rate there will be a 

minimum separation distance for the shears. Any shears initially closer
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Figure 5.3.4. A schematic diagram of the temperature 
anomalies of a pair of shear zone^merging laterally 
into a single zone. Uq/2=5 cm yr , Tq=600 C, time =2Myr.
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Figure 5»3.5. A schematic diagram of the temperature 
anomalies of a pair of she^r zones merging with depth into a 
single zone. Uq/2=5 cm yr , To=600°C, time =2Myr.
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than the minimum distance are "swept up" by adjacent zones into a 

single structure. Field observations show that groups of shears can 

have a fairly regular spacing within a given province or area. The 

western Superior Province of Canada has a group of roughly parallel 

shear zones which have a fairly constant separation of 25-30 km (Park 

1981). The shears are in a granite-greenstone terrain and the meta- 

morphic conditions suggest ambient temperatures of around 500°C. 

Referring back to fig. 5.3.3, granodiorite rheology at an ambient 

temperature of 500°C and a shear velocity of 5 cm yr  ̂has a minimum 

separation distance of 20 km at 2 Myr. The model appears to give a 

fair estimate of the observed shear zone separation in this case, all 

original shears with closer spacing being "swept up".

A more speculative case is suggested for the spacing of oceanic 

fracture zones. Turcotte (1974) has shown that the average length 

of ridge segment between fracture zones is about 100 km. Turcotte 

suggested a thermal contraction origin for the fracture zones but was 

unable to verify this. If the fracture zones become shear zones 

at depth, then perhaps the minimum spacing between shear zones at 

depth affect the spacing of fracture zones.

Shear zones at shallow depths will be geometrically localized

by brittle fracture faults. This brittle fracture will modify shear
or

zone structure at shallow levels and may inhibit^shear zone merging.

Constant shear stress boundary conditions behave somewhat differ­

ently. A pair of initial perturbations 10 km apart with an ambient 

temperature of 700°C are shown after lO^yr in figure 5.3.6. The pair 

of perturbations divide up the velocity profile into three constant 

gradient sections. The temperature profile shows two slight peaks at
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Figure 5.3.6. The velocity and temperature profiles for a 
pair of shear zones initially 10km apart after a time of 
10 yr for various values of shear stress.



the perturbation points. If the shear stress is sufficiently high to 

produce runaway then both perturbations develop into localized high strain 

areas and their temperature rises to the melting point. Once thermal 

runaway commences in the high strain zones the large amounts of shear 

heat generated rapidly melt the model.

5 . 4 Multiple material shear zone models

Multiple material shear zones were investigated using models which 

include both granodiorite and dolerite rheologies. The model was divided 

into layers of granodiorite and dolerite, the layering being parallel to 

the direction of shearing. Dolerite is more viscous than granodiorite 

for any temperature and stress condition, the viscosity ratio being 

1.49 x loSl. Initial destabilizing temperature perturbations are not 

required in this model since the softer granodiorite layers produce a 

localization of shear.

Constant velocity models were investigated using a dolerite rheol­

ogy model with a soft centre of granodiorite extending 10 km either side 

of the shear zone axis. The development of the temperature and velocity 

profiles with time is shown in fig. 5.4.1.for an ambient temperature of 

600°C and a half shear rate of 5 cm yr At 0.5 Myr the velocity profile 

shows a constant gradient around the centre of the shear zone, the major­

ity of the deformation being accommodated by the granodiorite. The 

temperature profile has a fairly broad peak value extending across most 

of the granodiorite region before decaying away to the edges of the shear 

zone. With time the shearing localizes toward the granodioritic centre 

producing a central temperature peak. Although the level of strain is
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Figure 5.4.1. The velocity ,temperature and strain profiles 
for a dolerite model with a gr^nodiorite centre, for various 
times. T =600°C, U/2=5 cm yr" .



very high the shape of the profile is interesting. Initially the strain 

profile has a flattened peak due to the even velocity gradient across 

the soft centre. With time the temperature anomaly begins to build up 

and the strain profile develops a central peak. The profile also shows 

a slight kink where the granodiorite forms a boundary against the dolerite. 

If a central temperature perturbation is introduced in the model it 

evolves into a normal steep shear zone.

A more elaborate model consists of a layer cake of granodiorite 

and dolerite. The model constructed has a wide central soft zone of 

granodiorite extending 4 km either side of the shear zone axis. The 

rest of the model consists of dolerite except two further layers of 

granodiorite 4 km thick, one each side of the axis,10 km — 14 km away

from the axis. This layer cake was sheared with a half velocity of 5 cm 

yr  ̂at an ambient temperature of 600 C. The results for various times 

are shown in fig. 5.4.2. At 0.5 Myr the velocity profile shows the 

shearing to be localized in the granodiorite layers. The temperature 

profile shows shear heat peaks in the granodiorite region corresponding 

to high strains. With time the wider granodiorite layer in the centre 

of the zone begins to dominate the deformation taking up more of the 

deformation than the adjacent narrower granodiorite layers. At 2 Myr 

almost all of the deformation is being accommodated by the wider central 

granodiorite. It appears that although shearing initially localizes in 

all the weak layers, the widest weak layer takes up more deformation 

and slowly begins to grow at the expense of smaller layers.

Both the soft centre and the layer cake model have a geological 

significance. In both models shearing was localized in the weaker 

material. The wider layer of the layer cake model however, slowly took 

up all the deformation in the model. In field examples one would antici-



Figure 5.4.2. The velocity,temperature and strain profiles ;
for a granodiorite-dolerite layer cake model for various
times. T =600°C, U /2=5 cm yr .o o j



pate that shearing would localize in the weaker material and that 

progressive deformation would result in the weakest part of the shear 

zone developing. Where layers of the same material exist the broadest 

layer is the easiest to shear and hence eventually takes up all the 

shearing.

Multi-material shear zones under constant shear stress conditions 

behave very differently. The velocity profiles consist of a number of 

constant gradient sections. The gradient depending upon the rheology 

of the section in question. When thermal runaways occur, they do so in 

the softer material first. The softer material provides the destabili­

zation but so much shear heating is generated that the entire model 

undergoes runaway. Models involving both granodiorite and dolerite 

rheology were investigated to determine the critical temperature and 

stress conditions for thermal runaway. The values obtained varied 

between those for a pure granodiorite model to those of a

pure dolerite model; the actual values becoming closer to that of a 

specific material as the proportion of that material in the model is 

increased.

The model suggests that the thermal runaway conditions of a multi­

material shear is dependent upon the relative amounts of the constituent 

materials, and their geometrical relationship to one another. The softer 

rheology produces localization of any thermal runaway, but the massive 

shear heating rapidly melts the entire model. This suggests that molten 

material should not coexist within the same shear zone with relatively 

undeformed unmolten rock.



Table 5.1 Summary of the behaviour of the two types of model

Velocity profile 

Temperature profile

Strain and strain 
rates.

Melting of shearing 
material

Temporal variation

Constant shear velocity model Constant shear stress model

Narrow localized shear zone

Central temperature anomaly increasing 
with time.

High strain area in centre of shear 
zone producing a shear heat maxima

Maximum temperatures are insufficient 
for melting.

Shear zones broaden both mechanically 
and thermally. Stress values decay 
with time to low values.

No localized shear zone

Constant temperature increase across 
shear zone.

Constant strain and strain rate across 
shear zone

High stress and temperatures may result 
in thermal runaway with melting of the 
shearing material.

Slow increase in the gradient of linear 
velocity profile. Even increase in tem­
perature across shear zone. Rapid 
increase of gradient and development of 
central shear heat maxima preceeds 
thermal runaway.



CHAPTER 6

Viscous Thrust Zones

6.1 Introduction

All the shear zone models so far, have considered the shear plane 

to be vertical. This chapter will describe the behaviour of a sub­

horizontal shear zone along a thrust type structure. The thrust model 

represents a vertical section through the earth's crust and involves a 

more complicated initial temperature condition than the simple vertical 

shear zone.

Various authors have considered the temperature-depth profiles 

produced by thrusting. Oxburgh and Turcotte (1974) showed how an instant 

aneous thrusting of two slabs on top of each other produced an inversion 

in the geotherm which subsequently decayed by thermal conduction. This 

model was expanded by Graham and England (1976) and England (1978) to 

include frictional heating on the thrust plane which maintained the 

inversion of the geotherm. More recently Brewer (1981) has shown that 

frictional heating can generate a temperature inversion from a normal 

geothermal gradient.

The viscous model presented here assumes that the starting condit­

ion is an initial inverted geotherm. This is assumed to have occurred 

instantaneously allowing no thermal relaxation. To ensure that the 

deformation is a viscous process and not brittle failure the initial 

temperature on the thrust must be at least 400°C, the actual value 

depending upon the lithology of the rocks.



6.2 The general thrust model

The model consists of a slab of uniform thickness which has been 

thrust upon itself causing an inversion of the geotherm (see fig. 6.2.1). 

This assumes that superposition of the two slabs occurs instantaneously 

allowing no time for thermal relaxation. Since the viscous deformation 

is temperature dependent, the part of an homogeneous model having the 

highest temperature will be the region which will undergo the maximum 

shearing. To localize the shear plane we must ensure that the peak 

temperature at the inversion is slightly higher than that at the base 

of the model. The model is designed to investigate how the shearing 

along the initial inversion behaves with time. A constant velocity or 

constant stress condition is applied across the model from the top of 

the upper slab to the base of the lower slab. The temperature at the 

surface has been fixed at 0°C for all times. A temperature boundary 

condition is also applied at the base of the model. A point at a depth 

of 150 km has a fixed temperature of 1200°C. The temperature and 

velocity profiles are allowed to evolve between the surface and the 

base of the lower slab as shearing proceeds.

A one dimensional finite difference solution was used as in the 

vertical shear zone model. There is no difference in the mathematical 

formulation; both constant velocity and constant stress conditions 

can be applied. The initial temperature conditions are shown in figure 

6.2.2.

To obtain an inversion temperature of >400°C we need to superimpose 

two slabs >30 km thick if a continental shield geotherm is used. A 

Basin and Range geotherm enables the slabs to be thinner ^12 km but 

even these thicknesses prevent the model being usefully applied to ocean

basin crustal thrusts.



M

Figure 6.2.1. A diagram of a slab of uniform thickness 
overthrusting itself. The model is a vertical section at 
point M.

= 0 at 0

Figure 6.2.2. The initial temperature conditions of a slab 
of thickness N thrust upon itself. A point 150 km deep is 
fixed at 1200°C.



Both constant shear stress and constant boundary velocity condit­

ions can be applied to the model. Constant velocity conditions are 

applicable to regimes where the overthrusting is driven by plate collis­

ion^ while constant shear stress conditions are more applicable to the 

base of gravity driven nappes.

6.3 The constant velocity thrust model

The constant velocity model has been investigated using a contin­

ental shield and a Basin and Range geotherm. These geotherms represent 

the opposite extremes of thermal province found in continental regions 

and will encompass most possible variations in thrust behaviour due to 

geotherm variations.

The continental shield model assumes that two identical slabs each 

35 km thick and having a granodiorite rheology are instantaneously 

thrust over each other. Using the continental shield geotherm of Herrin 

(1972) the thrust will have an initial temperature of 540°C. A shear 

velocity of 10 cm yr * was applied between the surface and the base of 

the lower slab. The temporal evolution of the model is shown in figure 

6.3.1. At 10^ yr all the shearing is localized on the thrust plane.

The temperature profile has evolved from the initial saw-tooth form 

(shown as a dashed line) to give a shear heating peak at the thrust.

The lower slab heats up slowly by conduction of shear heat from the 

thrust and by conduction through the base of the model. With increasing 

time the shear heating causes the peak temperature on the thrust to 

increase slowly. The shearing remains localized along the thrust plane. 

At 2 Myr the lower slab has heated up considerably. Eventually the 

lower slab will heat up such that the maximum temperatures on the thrust 

are no longer sufficient to keep the shearing localized along the thrust 

plane. The deformation is then accommodated over a much wider zone,no
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Figure 6.3.1. The velocity and temperature profiles at 
various times for a thrust 35 km deep in continental shield 
lithosphere.
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real shear zone existing. At a time of 5 Myr all parts of the lower 

slab have been heated to over 400°C (see fig. 6.3.2).

The lower slab is heated both by shear heating and by conduction 

through the base of the slab. Figure 6.3.2 shows the temperature profiles 

for two differing temperature boundary conditions. The model with a 

point at 150 km depth fixed at 1200°C is compared with a model having 

the base of the lower slab fixed at its initial temperature. The second 

model with the temperature fixed at the base of the lower slab has no 

heat input by conduction from below and is some 20-30°C cooler as a 

result. The heat input into the models through the base of the lower 

slab has a significant effect on the heating up of the model.

Variation in the depth of the thrust has a marked effect on the 

maximum temperatures generated by the thrust at a given time. Figure

6.3.3 shows a plot of the maximum temperature reached versus depth of 

thrusting, for thrusting at 10 cm yr 1 for 1 Myr. The maximum tempera­

ture reached decreases with increasing depth until at a depth of just 

below 32 km it increases again. This increase in maximum temperature 

also corresponds with the temperature maximum occurring slightly shallo­

wer than the mechanical thrust. The temperature peak can be as much as 

1 km shallower than the mechanical thrust.

Shear velocity is very important in the stabilization of the 

shearing along the thrust plane. Slow shear velocities will produce 

insufficient shear heating to maintain a temperature inversion along the 

thrust plane. Figure 6.3.4 shows the velocity and temperature profiles 

for a continental thrust 35 km deep using shear velocities of 5 and 6 cm 

yr"1. The temperature and velocity profiles are shown at a time of 

10^ yr since by then any shearing will have stabilized. A shear velocity
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Figure 6.3.2. The velocity and temperature profiles at 5Myr 
for a thrust 35 km deep in continental shield lithosphere. 
The left hand diagram has the base of the slab fixed at its 
initial temperature to show the effect of heat conduction 
through the base of the model.



time = 1 M yr 

Continental shield geotherm

Figure 6.3*3. A plot of depth of thrust versus the maximum 
temperature reached at a time of 1 Myr for continental 
shield lithosphere.
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Figure 6.3.4. The velocity and temperature profiles for a 
thrust 35 km deep in continental shield^lithosphere at 
10 yr. For a shear velocity of 5 cm yr no shear 
localization occurs.
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of 6 cm yr 1 produces a temperature maximum and a shear localization 

along the thrust plane. A velocity of 5 cm yr_1 fails to produce a 

localization of shearing along the thrust, the initial temperature 

inversion relaxing with time. For a given geotherm a plot of the depth 

of the thrust versus the shear velocity required to maintain thrusting 

can be produced. Figure 6.3.5 shows such a plot for a continental shield 

geotherm. Deeper thrusts require higher shear velocities to maintain 

the thrusting.

The shear stress evolution with time for thrusts is shown in 

figure 6.3.6. Like normal shears the stress values drop rapidly from 

high initial values. For a thrust depth of 30 km the shear stress drops 

to a few kilobars in a million years. Higher shear rates produce more 

shear heating and causes the stress to decay more rapidly. For deeper 

thrusts the stress decays faster.

Zones of thrusting and decollement such as those in the Appalachians 

and Canadian Rockies tend to be shallower than 30-35 km (Brewer et al. 

1981). To model a viscous thrust at depths of 15-20 km a higher geotherm 

must be used to ensure that the temperatures are high enough for dislocat­

ion creep processes. A model of thrusting in areas of high geothermal 

gradient was constructed using the Basin and Range geotherm of Herrin 

(1972). A thrust at a depth of 15 km will then have an inversion tempera­

ture of 500°C. Figure 6.3.7 shows the temperature and velocity profiles 

for a thrust 15 km deep moving at 5 cm yr 1 using a granodiorite rheology.

The behaviour of the thrust is very similar to those modelled using 

a continental shield geotherm. The shear velocity is localized along the 

thrust plane and the shear heat produces a thermal anomaly. The lower 

slab heats up much more rapidly than for the continental shield case, the
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Figure 6.3.5» A plot of the depth of thrust against the 
critical velocity required to maintain the thrust at a time 
of 10 yr in continental shield lithosphere.
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Figure 6«3.6* The temporal evolution of shear stress: (top) 
for a thrust 30 km deep incontinental lithosphere for shear 
rates of 2,5,and10 cm yr and (bottom) a thrust 15 km deep 
in 8asin and Range lithosphere thrusting at 5 cm yr”1.
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thrust^15 km deep in Basin and Range lithosphere moving at 5 
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slab being thinner and more shear heat is produced. After 2 Myr the 

lower slab has heated up and is almost as hot as the maximum temperature 

on the thrust plane. Continued shearing is no longer confined to a 

distinct thrust plane and the deformation is accommodated over a much 

thicker region extending into the lower slab.

The behaviour of shear stress is similar to the continental shield 

geotherm model. Figure 6.3.6 shows the decay of shear stress with time 

for a thrust 15 km deep moving at 5 cm yr l. After a time of 2 Myr the 

shear stress has dropped below 1 kbar. Faster shear rates again produce 

lower stresses.

Generally the Basin and Range geotherm results in the lower slab 

beating up much more rapidly than for less steep geotherms. The thrusts 

do not localize the shearing for as long; the thrust becoming a less 

intense shear zone which progressively thickens downwards into the hot 

lower slab.

A critical shear velocity exists for the stabilization of shearing 

on the thrust plane. Figure 6.3.8 shows the critical velocity required 

to maintain thrusting with a Basin and Range geotherm. For thrust depths 

of greater than 18 km very high shear rates are required to maintain the 

temperature inversion on the thrust. The ambient temperature at these 

levels is so high that shearing occurs over a broad region, no sharp 

temperature peak forming except at high shear rates.

The shear heating produced by thrusting will produce a change in 

the surface heat flow above the thrust. Figure 6.3.9 shows heat flow 

profiles with time for thrusting in continental shield and Basin and 

flange lithosphere. When thrusting commences at levels of ^30 km in 

continental shield lithosphere the surface heat flow increases very 

slowly. After 2 Myr of shearing at 5 cm yr * the heat flow begins to
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Figure 6.3.8. The depth of thrust versus the critical shear 
velocity required to maintain the thrust at a time of 10 yr 
in Basin and Range lithosphere.
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Figure 6.3.9. The temporal evolution of surface he^t flow 
for :(top) a thrust 35 km deep moving at 10 cm yr in 
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deep moving at 5 cm yr in Basin and Range lithosphere.



level off at a peak value which is only 2-3% higher than the initial 

value. With time the lower slab of the model heats up, the thrust zone 

ceases to exist and the geotherm slowly returns to its equilibrium 

value.

For basin and range conditions the surface heat flow increases 

much more rapidly, the value rising from 2.00 to 2.35 H.F.U. within 

2 Myr. Once the lower slab is hot the surface heat flow begins to decay 

to its equilibrium value.

The depth and the rate of thrusting have a small effect on the

surface heat flow. Deeper thrusts produce less surface heat flow and

faster thrusts produce more. The variations in heat flow due to changes
tota-l

in depth and thrust rate are very small when compared to the^heat flow 

due to the initiation of thrusting.

6.4 The constant shear stress thrust model

When constant shear stress conditions are applied to the model the

behaviour is very different. Constant stress conditions are often unable

to localize the thrusting at the junction of the two slabs. Low stress

conditions produce very low shear velocities across the model (e.g.
—2 “*1<10 cm yr for 35 km deep and 5 kbar). This produces very little 

shear heating and the temperature inversion relaxes rapidly. For both 

continental shield and Basin and Range geotherms a critical shear stress 

can be determined for a given thrust depth at which thermal runaway will 

occur. If the stress is high enough the thrust will move rapidly and the 

large amounts of shear heat will produce thermal runaway.

Figures 6.4.1 and 6.4.2 show the critical shear stress required for 

runaway at a given thrust depth for continental shield and Basin and 

Range geotherms respectively. The shallower the depth of the thrust the



sh
ea

r 
st

re
ss

 
kb

ar
Continental shield geotherm 

Runaway at 10  ̂ yr

30 32 3k  36 38 40

Depth of thrust km.

Figure 6.4.1. The critical shear stress required for thermal 
runaway versus depth of thrust at a time of 10 yr for 
continental shield lithosphere.



sh
ea

r 
st

re
ss

 
kb

ar
Basin and

R unaway

Range geotherm 

at 105 yr.

15 16 17 18 19 20
Depth of thrust km.

Figure 6.4.2. The critical shear stress required for thermal 
runaway versus depth of thrust at a time of 10 yr for Basin 
and Range lithosphere.



higher the shear stress required for runaway. This is due to the deeper 

thrusts having a higher ambient temperature. The stress levels required 

for runaway are too high to be realised except for some of the deeper 

thrusts.

6.5 Discussion

The constant shear velocity and constant shear stress thrust 

models produce very different results. Constant velocity models are 

applicable to overthrusts driven by collision plate movements. Constant 

stress conditions are best applied to the base of gravity driven nappes, 

the stress being due to the weight of the nappe.

All the thermo-mechanical thrust models rely upon the shear heat­

ing to maintain an inversion of the geotherm. Constant velocity models 

have a critical boundary velocity necessary for localization of shearing. 

Below this critical velocity the shear heating is insufficient to main­

tain the inversion of the geotherm and no localized thrust exists. With 

time the lower slab heats up both by shear heating from the thrust and 

by conduction through its base. When the lower slab has almost returned 

to its equilibrium temperature, the shear heating on the thrust is 

insufficient to maintain an inversion of the geotherm and the shearing 

ceases to be localized on the thrust plane. If the boundary velocity is 

sufficient to maintain a localized shear zone, it will only do so as 

long as the lower slab is relatively cool. As the lower slab heats up 

with time constant velocity models cease to produce localized shearing 

in all cases.

Deeper thrusts require higher shear velocities to maintain the 

temperature inversion. The deeper the thrust the higher the ambient 

temperature. Higher ambient temperatures produce temperature anomalies 

which are small in amplitude over a wide area, whereas cooler ambient



temperatures produce sharp high amplitude temperature anomalies. At 

high ambient temperatures high rates of thrusting are required to 

produce a sufficient temperature anomaly to maintain the geotherm 

inversion.

Constant shear stress models produce very low strain rates for 

lower stress values. These strain rates are too low to be of any geol­

ogical significance and produce little shear heat, the geotherm inversion 

relaxing rapidly. A critical stress exists for any given depth of thrust 

at which thermal runaway and very high strain rates occur. In the case 

of a thrust 20 km deep in Basin and Range lithosphere, the stress required 

for runaway is in the order of a kilobar. These conditions are possible 

in the crust and thermal runaway may occur on deep thrusts.



CHAPTER 7

Viscoelastic Shear Zone Models

7.1 Introduction

A characteristic of the viscous models described in the previous 

chapters is the localization of a narrow shear zone and the development 

of a large temperature anomaly for constant velocity models. The 

predicted thermal anomalies across the shear zones are too large and 

unrealistically high stresses are associated with the initiation of 

motion. The temperature anomalies generated by the constant velocity 

model, although insufficient for partial melting, would give rise to 

large surface heat flow anomalies over transcurrent or transform faults 

which become shear zones with depth. Studies of the heat flow across 

the San Andreas fault (Lachenbruch and Sass 1980) have shown no measur­

able heat flow anomalies.

Consideration of the mathematical formulation of the viscous model 

suggests that the large temperature anomalies of constant velocity 

models are associated with the onset of motion. The stresses for the 

viscous model show an unrealistic near singularity at time t=o and 

although they decay rapidly to geologically reasonable values, the 

high initial values produce a large initial shear heating. The high 

initial shear heating may generate the large temperature anomaly of the 

viscous models.

The high initial stresses and the associated large temperature 

anomalies are in part a direct result of using a purely viscous 

material formulation. To overcome this a viscoelastic model has been 

constructed which has a more realistic initial stress condition.



The mathematical formulation of the viscoelastic model has been 

described in.section 2.3. The temperature field cliff'e.tCJvbc-l ê uua-tion

1̂ - = KV2T + H’ O t

and the force equilibrium ê u.e-tior\ for a. tr0Kvti«-w-w-r,v

da..
F. = U. + l l dtf.

must be solved simultaneously for a material with viscoelastic proper­

ties. The total strain in the x direction in a Maxwell viscoelastic 

element is given by

V e a - V/,E a - V/E a + eV x y z x

,W  V u r a k : , > '
and similarly for the other directions.

The viscoelastic formulation has been solved by using a coupled 

finite element and finite difference techniques (see section 3.5). Like 

viscous models, two boundary conditions can be applied to viscoelastic

models,

(i) constant velocity boundary conditions

(ii) constant stress boundary conditions.

These two boundary conditions are described in turn. Conditions of 

plane strain are assumed throughout.

7.2 The constant velocity viscoelastic model

A rectangular finite element grid was constructed and is shown in 

figure 7.2.1. Boundary conditions were applied for the constant velocity 

condition (see section 3.5). The velocity profile produced by a visco-
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elastic model, under constant shear velocity conditions and having a 

uniform initial temperature is a constant gradient. The uniform 

behaviour of the slab gives rise to constant shear heating across the 

model, the velocity profile remaining constant with time. To bring 

about localization of the shear zone a small positive temperature 

perturbation was introduced to the centre of the model. This was 

achieved by giving the column of finite elements, along the axis, an 

average temperature of 10°C above the ambient value.

The model was investigated for various boundary velocity and 

ambient temperature conditions. The stress field produced by the model 

shows that at any given time the state of stress across the model is 

constant and is a pure shear. This is consistent with the conclusion 

in chapter 2 that 3t/dy = 0. The stress is also constant along the 

length of the shear zone, allowing the model to be reduced to a one­

dimensional problem.

The evolution of shear stress with time for various ambient 

temperatures is shown in fig. 7.2.2. A dry olivine rheology is used 

and a boundary velocity of 5 cm yr 1 was applied. The model has a 

width of 140 km and a length of 40 km. The viscoelastic stress evolut­

ion differs greatly from that of a viscous model, and shows a major 

change in behaviour depending upon the ambient temperature. The shear 

stress increases almost linearly with time until a peak value is reached 

and then drops to a lower value. For lower ambient temperatures this 

drop in stress is catastrophic occurring virtually instantaneously and 

reducing the stress values to effectively zero. This rapid stress drop 

coincides with extremely high instantaneous shear velocities. The mass­

ive amounts of shear heating produced by this rapid shearing produces 

localized thermal runaway and melts the model along the axis.
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At high values of ambient temperature (>750 C) , the elastic 

energy is relaxed by slow viscous creep, the velocity profiles remain­

ing a constant gradient with time. Small amounts of shear heating
-btm penxtui-i.

are produced, heating up the model and producing a small central^anomaly 

(see fig. 7.2.A). The shear heating produces much smaller temperature 

anomalies than the viscous model.

From the onset of movement the stress increases linearly with 

time as elastic energy is stored in the rock. When the stress reaches 

a maximum, the value depending upon the ambient temperature and shear 

rate, the stored elastic energy is released by viscous deformation.

The elastic energy is relaxed either catastrophically at lower ambient 
temperatures or gradually at higher ambient temperatures.
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The velocity and temperature profiles for an ambient temperature 

of 750°C and shear velocity 5 cm yr  ̂at various times ore shown in 

fig. 7.2.4. The velocity profile remains a constant gradient with 

time, and shows no localization of the shearing. The temperature 

profile shows an even increase across the model with a slight central 

peak. Both the peak and flank temperatures increase slowly with time. 

The model heats up much more slowly than the viscous model, the peak 

temperature is only a few tens of degrees higher than the flank temper­

atures. The rapid drop in temperature at the edge of the model is due 

to the edge of the model being fixed at the initial ambient temperature 

As the temperature variation across the shear zones is relatively small 

the viscosity is fairly constant and the velocity profile remains a 

constant gradient. Localization of shearing does not occur at the 

higher temperatures, and consequently there is no catastrophic stress 

drop.

To bring about localization at these higher ambient temperatures 

a larger initial destabilizing perturbation is required. The effect 

of varying the size of the destabilizing perturbation is shown in fig. 

7.2.5. A destabilizing perturbation of 100°C produces a small local­

ization of the velocity profiles in the centre of the shear zone.

High initial temperature perturbations are conceivable if frictional 

heating is generated by brittle failure before the onset of ductile 

deformation. Localization of the velocity profiles can also be brought 

about by mechanical weaknesses. At high ambient temperatures the local­

ization of any shearing is highly dependent upon the size of any initial 

temperature or mechanical perturbation.
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Figure 7.2.4. The velocity and temperature profiles for various times. 
T = 750°C, U /2 = 5 cm yr--*-, model width = 140 km.
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At lower ambient temperatures the catastrophic stress drop 

coincides with massive instantaneous shear velocities. Figure 7.2.6 

shows the evolution of the velocity and temperature profiles during 

the stress drop and thermal runaway for an ambient temperature of 650°C 

and a shear rate of 5 cm yr The velocity and temperature profiles

are shown for three successive time increments of the finite element 

program, the increment length being 1 second. The first iteration shows 

the constant gradient velocity profile just prior to the catastrophic 

stress drop. The temperature profile shows that some shear heating has 

already occurred due to the previous shearing. The second increment 

shows a marked increase in the temperature and the development of shear 

rates of the order of 10^ cm yr The third iteration shows the 

temperature to have reached melting point in the centre of the model 

and the velocity is now 10̂ " cm yr \

The precise nature of this "viscoelastic rebound" is difficult

to study. The stress decay occurs so rapidly that the finite element

model must require a great deal of computer time. The data shown in

fig. 7.2.6 used a time increment of 1 second, but increments as small 
—8as 10 second have been used. A one dimensional finite difference

solution to the problem has been constructed by N.J. Kusznir to ease

the problem of computation time and give greater time resolution. The

viscoelastic rebound occurs in times of less than 1 second, often as 
-4

rapidly as 10 second, and generates instantaneous shear velocities of 

the order of 10^ cm yr Movement such as this could potentially be 

seismic in nature.

The viscoelastic rebound occurs as a result of the viscous defor­

mation relaxing the stored elastic energy. The rebound will be affected 

by parameters such as shear rate, the width of the model, Young's modulus
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Figure 7.2.6. The velocity and temperature profiles for three successive 
time increments of 1 second duration at the point of viscoelastic rebound. 
T = 650°C, U /2 * 5 cis yr"-'-. t = 14.1 kbar, time = 1.175 Myr, W = 140 km. 
Note logarithmic velocity scale.
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and the apparent viscosity. The narrower the model for a given shear 

rate, the faster the elastic energy is built up. However the narrower 

the model the smaller the.total amount of elastic energy that can be 

stored. The stress evolution curves for a model with a half width of 

100 km is shown in fig. 7.2.7. The data presented in this diagram is a 

combination of results from finite element and a one dimensional finite 

difference solution. The profile for an ambient temperature of 650°C 

shows a second smaller rapid stress drop occurring some 10^ yr after the 

first. After the second stress drop, the stress builds up to a more or 

less steady state. These second stress drops and the build up to a 

steady state is not resolvable by the finite element model due to the 

large number of iterations required.

The maximum peak temperatures reached in a shear zone and its 

variation with time also reflects the rapid stress drops. For an ambient 

temperature of 600°C the maximum temperature only increases by a few 

degrees until the beginning of the stress drop. At this point the 

maximum temperature rises very rapidly until the melting temperature of 

1200°C is reached (fig. 7.2.8). Once the melting temperature is reached 

the shear stress decays rapidly and only small amounts of shear heat are 

then produced. The peak temperature then decays fairly rapidly with time. 

An ambient temperature of 650°C produces two sharp peaks in the maximum 

temperature profile. The second peak is smaller and does not reach the 

melting temperature. At the higher ambient temperature of 700°C only a 

single peak occurs but this does not reach the melting temperature. When 

an ambient temperature of 800°C is studied the maximum temperature increa­

ses slowly with time and does not have a sharp peak. This coincides with 

the absence of viscoelastic rebound at these temperatures. Even though
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sharp peaks occur in the maximum temperature profiles at lower ambient 

temperatures, the maximum temperature increases slowly after the sharp 

peaks have decayed. At this point the maximum temperatures reached are 

very similar to those of the viscous model. Once viscoelastic rebound 

has occurred and the behaviour has become more gentle in variation the 

viscoelastic model begins to resemble the viscous model. Lockett and 

Kusznir (in preparation) have shown that the two models tend to converge 

with time.

The constant velocity viscoelastic model has two contrasting styles 

of behaviour. At higher ambient temperatures, the stress reaches a 

maximum and then decays slowly. Shear heat production is fairly uniform 

across the model and the velocity profile shows no localization of shear­

ing, remaining a constant gradient with time. At lower ambient temperatures 

the stress rises to high values and is released catastrophically and is 

accompanied by viscoelastic rebound. This process may be seismic in 

nature. The occurrence of this viscoelastic rebound produces a possible 

mechanism for deep focus earthquakes. The rebound occurs at high temper­

atures greater than 600°C but probably less than 700°C. Under subduction 

zone conditions, creep deformation at high temperatures such as this 

would relax any stresses in the subducting plate before they could over­

come the high confining pressure to fail by a brittle process (e.g. in 

accordance with a Griffith type failure criterion). The viscoelastic 

rebound phenomena could produce seismic events without brittle failure.

This is discussed in more detail in the next chapter.



7.3 The constant shear stress viscoelastic model

By theoretical considerations alone the viscous and viscoelastic 

constant stress models should be very similar.

The viscoelastic shear velocity can be defined as (section 3.4)

du _ (̂Hl̂ xy + Txy
dy ~ E A exp(BT^/T)

The shear velocity u in the x direction is therefore

■■idudy dy'

xy dy' +
r nTxy
A exp(BT /T) 

m
dy'.

Since at any given time the stress across the shear zone is 

constant

then

So

0

u

y
+ n f 1______  ,

Txy 1 A exp(BTm/T) dy
o

Apart from the initial situation when t = o , the viscoelasticxy
velocity profiles are identical to the viscous solutions. Identical 

velocity profiles will produce identical temperature profiles for the 

two types of model.



The displacements *&" for the two models are different. The

displacement for a viscoelastic material is given by

d = 1 u dt *
o

So t t y

d A exp(BT /T) dy' dt m
o o o

i s
A exp(BTm/T) dy' dt

nT

o o
where t is the initial stress, o

The viscoelastic model shows the same response to variations in 

shear stress and ambient temperature as does the viscous model (see 

section 4.3). The behaviour of the constant stress model is best 

summarised by defining the stress-temperature conditions necessary for 

thermal runaway. Figure 7.3.1 shows a pair of thermal runaway curves 

for both and viscous and viscoelastic models under comparable condit­

ions. The curves are identical showing that the two numerical models 

give good agreement. For constant stress models the viscous formulation 

gives a perfectly adequate representation of shear zone behaviour.
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CHAPTER 8

Discussion and Conclusions

8.1 General review of viscous and viscoelastic models

From the previous chapters it can be seen that the then».»-mechanical 

viscous ductile shear model can be used to describe the evolution of 

ductile shear zones and thrusts within the earth. The viscous model 

can be divided into constant shear velocity and constant shear stress 

types. The behaviour of the two models is very different.

Constant velocity conditions are characterised by narrow intense 

mechanical shear zones which broaden with time. A large temperature 

anomaly exists which is approximately an order of magnitude wider than 

the mechanical deformation zone. The temperature anomaly increases with 

time but never reaches melting temperatures. Both ambient temperature 

and shear rate have a marked effect on the evolution of the shear zone. 

Lower ambient temperatures produce narrower more intense shear zones with 

large temperature anomalies. At higher ambient temperatures the mechan­

ical deformation zone and temperature anomaly become very broad and the 

magnitude of the temperature anomaly becomes much smaller. When ambient 

temperature is related to depth it can be shown that shear zones broaden 

with depth.

The width of the constant velocity viscous model is unimportant in 

most cases providing the boundary temperature conditions are sufficiently 

remote. The width of the model only affects the behaviour for the first 

5000 yrs or so and this is rapidly swamped by later developments. If the 

model is constrained to be very narrow (i.e. tens of meters) very high 

shear rates are required to maintain a thermal anomaly and thermo-mechan­

ical stabilization.



The stress behaviour of the viscous models shows a near singularity 

in the stress at time t=o. The shear stress rapidly decays from the 

unrealistic values to give geologically plausible values after a million 

years or so. This high initial stress is an effect of using a purely 

viscous formulation and must impair the resolution of the model

during the early evolution. The viscoelastic model was developed to 

evaluate the effect of this high initial stress and to overcome the 

associated problems.

The constant stress viscous model shows a much simpler behaviour 

than the constant velocity model. For lower values of" stress and ambient 

temperature very small shear velocities are generated and the initial 

temperature perturbation diffuses through the model. The strain rates 

generated at low temperatures and stresses are geologically insignificant. 

A critical temperature and stress level exists above which thermal feed­

back instability occurs. At these stress levels so much shear heating 

is generated that it cannot diffuse through the model fast enough, and 

the viscosity drops dramatically localizing all further shearing. Once 

this critical level is reached thermal feedback will produce thermal 

runaway and melting of the shearing rock. High ambient temperatures and 

stresses are required for thermal runaway. These stress levels could 

only exist in very limited environments in both space and time.

The majority of the models studied have used a dry olivine rheology. 

Dolerite and granodiorite rheologies behave similarly and differ from 

dry olivine in detail only. If models are constructed using a mixture 

of rock types, the deformation preferentially occurs in the softest 

part of the model.

The viscoelastic model was constructed to evaluate the problems 

associated with the high initial stresses of the ductile model. The 

viscoelastic model may be solved for the same boundary conditions as the



viscous model. For constant shear stress conditions the viscous and 

viscoelastic models are identical except for the initial elastic 

deformation associated with the viscoelastic model. This initial 

elastic deformation is small compared to the viscous deformation and 

very rapidly becomes insignificant. The simpler viscous model gives a 

perfectly good representation of the behaviour of a constant stress 

shear zone.

For constant velocity boundary conditions the viscoelastic model 

differs greatly from the viscous model. At higher ambient temperatures 

the velocity profiles are constant gradient and the temperature anomalies 

are broad and have a small amplitude. This is not too dissimilar to the 

viscous model. At lower ambient temperatures however, the viscoelastic 

model shows the phenomenon of "viscoelastic rebound". The stress evolut­

ion shows a constant increase with time as elastic energy is stored in 

the model. When a critical stress level is reached viscoelastic rebound 

occurs and the stress drops to almost zero virtually instantaneously.

The velocity profile changes from a constant gradient to a very highly 

localized shear zone with extremely large instantaneous velocities.

These very high velocities are associated with rapid shearing and produce 

large amounts of shear heating and bring about thermal runaway and melting 

in the centre of the shear zone. As the stress drops very rapidly the 

shear heating is short lived and the rock very rapidly cools down as the 

model returns to a more even phase of development.

Once the viscoelastic rebound has occurred and the stored elastic 

energy has been released the temperature and stress profiles show a much 

more gentle evolution with time. The values of stress and temperature at 

these times is very similar to those predicted by the viscous model. It 

has been shown by Lockett and Kusznir (in preparation) that the constant 

velocity solutions of the viscous and viscoelastic models converge with



increasing time. The main difference between the two models is the 

high initial stresses of the viscous model compared with the stresses 

of the viscoelastic model. The size of the initial destabilizing 

perturbation is much more important in the viscoelastic model where 

it is not masked by the massive shear heating of the viscous model.

8.2 Viscoelastic rebound as a potential seismic source

The high velocities associated with'Viscoelastic rebound" must be 

considered as being possibly seismic in nature. The stress drop 

associated with "viscoelastic rebound" occurs very rapidly (in fractions 

of a second) and could generate seismic waves. The mathematical formula­

tion of shear zone model as it stands assumes that any inertial terms 

are negligable. This is valid for the normal shear zone behaviour, 

however any detailed study of the viscoelastic rebound will require 

modification of the model to include the inertial term. The normal 

perturbation applied to the finite element model consists of increasing 

the average temperature of the central column of elements. Tests have 

shown that viscoelastic rebound will occur from a single node perturbat­

ion located at any point within the finite element grid. The rebound,

when it occurs, takes place over the entire grid almost simultaneously,
-4(certainly in less than 10 second).

The rebound occurs for relatively high ambient temperatures (greater 

than 600°C). At these high temperatures, stresses are rapidly relaxed 

by viscous deformation before they can accumulate to the sufficiently 

large levels, to bring about brittle failure. "Viscoelastic rebound" 

provides a potential mechanism for seismic events occurring by ductile 

deformation in cases where brittle failure seems implausible owing to 

great depth and confining pressure. Consequently "viscoelastic rebound"



may provide a possible mechanism for deep focus earthquakes.

8.3 Future developments

The viscoelastic model provides an explanation of many of the 

structures seen in ductile shear zones. The viscoelastic model provides 

a better resolution of the short term evolution of shear zones than 

does the viscous model. The viscoelastic model however does have 

shortcomings. At lower ambient temperature ('v 600°C) the model still 

generates high stresses and too much shear heating. Any further 

development must include a failure criterion to limit the development 

of high stresses. Any failure criteria should include an estimate of 

the frictional heating. The model should include the inertial term in 

the calculations as this will be significant when brittle failure or 

viscoelastic rebound occurs.

The thermo-mechanical models discussed in this thesis have all 

used a dislocation creep mechanism. Recent work by Goetze (1978) has 

suggested that a diffusional creep mechanism may be more applicable at 

low ambient temperatures. The high stresses and shear heating at low 

ambient temperatures may be alleviated by a change in the deformation 
mechanism.

These future models can be constructed using either the finite 

element or the finite difference technique. The finite difference 

technique can be used to solve a simple one dimensional model but the 

finite element technique is required where complex material properties 

and geometries are required.
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APPENDIX 1

Finite Difference Viscous Shear Zone Model
The finite difference program is written in Extended 

BASIC and was run on a GEC 4082 series machine at Keele. The 
model dimensions are input in kilometers, temperature in 
degrees centigrade, shear velocity in eras yr and time in 
years. A dry olivine rheology is used in the code listing.

Temperature, velocity and viscosity profiles are 
output by the model. Simple modification allows strain 
profiles to be added. Thermal runaway conditions are 
flagged.

The main internal parameters and physical constants-
are :

Melting temperature

Rock density

Thermal conductivity

Specific heat capacity

Internally the program 
all scaling is done at output, 
a velocity of 1 cm/km.

1200°C
o -3j gm cm

0.006 cal/cm sec ^

0.26 cal/cm ^°C

uses c. g. s. units throughout, 
Thermal runaway is defined as
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VISCOUS SHEAR ZONE MODEL - PROGRAM LISTING

0001 REM SHEAR ZONE MODEL *******************************
0002 FILES #3,'SINK'
0005 DIM Q(1001),T(1001),V(1001)
0006 DIM Z(101) ,E{101)

•0010 PRINT "NUMBER OF SPACE STEPS="
0011 INPUT N
0015 PRINT "MODEL HALF WIDTH="
0016 INPUT L
0018 K5=2
0019 K9=(L/N*1.0E5)'2*0.26*3/0.006/2
0020 K9=K9/K5
0025 PRINT "TIME="
0026 INPUT T6
0027 T6=T6*24*3600*365
0031 J1=5000
0032 PRINT "TEMPERATURE BACKGROUND="
0033 INPUT TO
0034 PRINT "FOR CONSTANT TAU CONDITION TYPE 1, FOR CONST. U0 TYPE 0"
0035 INPUT F
0036 IF F=1 GOTO 41
0037 PRINT "HALF VELOCITY="
0038 INPUT U0
0039 U0=U0/(24*60*60*365)
0040 GOTO 90
0041 PRINT"STRESS VALUE IN KBARS="
0042 INPUT S1
0043 S1=S1* 1•0E9
0090 PRINT "ZERO POINT PERTUBATION“"
0091 INPUT T9
0100 REM INITIALIZE VALUES OF T***********************
0110 FOR 1=0 TO N 
0115 T (I)=T0 
0120 Q(I)=T0 
0122 E(I)=0
0125 NEXT I
0126 T (0)=T(0)+T9
0128 Q (0 )=T(0 )
0129 T5=0
0130 V(0)=0 ‘
0132 IF F=1 GOTO 500
0133 FOR 1=1 TO N
0134 V(I)=U0*(I/N)
0135 NEXT I
0500 FOR P=1 TO J1 
0600 GOSUB 1000 
0700 GOSUB 2000 
0750 NEXT P 
0755 GOTO 762
0760 PRINT "THERMAL RUNAWAY"
0761 PRINT #3,"THERMAL RUNAWAY"
0762 PRINT "TIME IN YEARS=";T5/(24*3600*365)
0763 PRINT #3,"TIME IN YEARS=";T5/(24*3600*365)
0780 PRINT "NUMBER OF ITERATIONS“";P
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0789 PRINT #3 ,"NUMBER OF ITERATIONS=";P
0790 PRINT #3 ,"Y-COORD","TEMP","VELOCITY","VISC"
0800 PRINT "Y-COORD","TEMP","VELOCITY","'VISCOSITY"
0801 FOR 1=0 TO N
0802 PRINT L*I/N,T(I),V(I)*24*3600*365*(S1'5),Z(I)*(S1'(-4)),E(I)
0803 PRINT #3,L*I/N,T(I),V(I)*24*3600*365*(S1'5),Z(I )*(S1'(-4))
0804 NEXT I
0805 PRINT "STRESS=",S1 * 1.0E-9
0806 PRINT #3,"STRESS=",S1 * 1.0E-9 
0900 GOTO 3000
1000 REM VELOCITY INTEGRATION *********************************
1050 A=1.0E36
1051 IO=LOG(1.OE40)
1090 B=40*(273+1200)/(273+T(0))
1091 IF B > 10 THEN B=I0
1092 Z (0)=A*EXP(B)
1100 FOR 1=1 TO N
1151 D=(40*(273+1200)/(273+T(I)))
1156 IF D>10 THEN D=I0 
1168 Z {I)=A*EXP(D )
1171 U1=(1/Z(I)+1/Z(I-1))/2 
1190 V(I)=V(I-1)+U1*L/N*1.0E5 
1200 NEXT I 
1290 IF F=1 GOTO 1350
1300 S1=U0/V(N)
1301 S1=S1'(1/5)
1350 V6=V(N)*24*3600*365*(S1 "5)
1351 IF V6 > 1.0 GOTO 760
1352 RETURN
2000 REM TEMPERATURE ROUTINE********************
2005 K1=10
2006 H1=0
2050 Q2=1/(L/N*1.0E5)'2*0.006/0.26/3
2051 FOR 1=0 TO N-1
2052 IF 1=0 GOTO 2055
2053 Q1=Q(I-1)+Q(I+1)-Q(I)*2
2054 GOTO 2057
2055 Q1=2*Q(1)-2*Q(0)
2057 Q1=Q1*Q2
2100 C1=Z(I)
2101 S2=S1' 6

2102 H=S2/C1/3/0.26/1.0E7/4.2
2105 IF H<1.0E-50 THEN H=1.0E-50
2106 IF H > H1 THEN H1=H
2107 Q 1=Q1+H
2108 T (I)= Q 1 
2110 NEXT I
2112 T1=K1/H1/K5
2113 IF T1 > K9 THEN T1=K9
2124 FOR 1=0 TO N-1
2125 T (I)=Q(I)+T(I)*T1
2126 IF T{I) > 1200 THEN T(I)=1200
2127 Q (I)=T(I)
2128 NEXT I 
2300 T5=T5+T1
2400 FOR 1=0 TO N-1 
2410 El=Z(I)*(Sl'(-4))
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2420 E2=S1/(E1*3)
2425 E2=E2*T1 
2430 E(I)=E(I)+E2 
2435 NEXT I
2440 IF T5 > T6 GOTO 755 
,2500 RETURN
3000 PRINT #3, "NUMBER OF SPACE STEPS=";N
3001 PRINT #3 ,"MODEL HALF WIDTH="?L
3002 PRINT #3,"TIME STEP ="?T6/(24*3600*365)
3003 PRINT #3,"HALF VELOCITY=";U0*24*60*60*365
3005 IF T>0 GOTO 3007
3006 GOTO 3010
3007PRINT #3,"ZERO POINT TEMP. PERT=";T9
3010 IF F=1 GOTO 3012
3011 GOTO 9998
3012 PRINT #3,"CONSTANT TAU CONDITIONS,VALUE IN KBARS="?S1* 1.0E-9
9998 STOP
9999 END



APPENDIX 2

Finite Element Visco-elastic Shear Zone Program

The finite element programs discribed in this appendix have been 
written in CDC Extended FORTRAN 4 and were run on the ICL 1906A/CDC 7600 
Joint System at UMRCC. During the Spring of 1982 the system was being 
upgraded resulting in many minor changes to protocols and compilers.
Some modification may be necessary to run the programs at the time of 
reading.

The plotting program utilises subroutines of the GHOST graphics 
library and may substantial translation for use with another graphics 
system. The bibliography contains the references to the appropriate 
system manuals.

The finite element package is divided into three separate 
programs :

1. PROGRAM LDGRID generates the finite element mesh and 
assigns the elastic and viscous properties to the model.

2. PROGRAM LOADFIN accomplishes a finite element analysis of the 
model generated by LDGRID.

3. PROGRAM PLOT produces line printer and plotter graphics of 
the analysis from LOADFIN.

PROGRAM LDGRID

This program generates a rectangular finite element grid 
consisting of simple triangular elements. Co-ordinates are assigned to 
each node and the material properties of each element determined. The 
grid data is output onto files for transfer to PROGRAM LOADFIN. The most
ignificant variables are s

TS scaler for initial nodal forces

NN number of nodes in y-direction.

NE number of elements in y-direction.

STEP distance between nodes.

NREP number of columns of elements

AB minimum node spacing in cm ^

P Poissons ratio

E elastic modulus

IVISC flag indicating rheological properties 

SO inherent shear strength 

VALMU coefficient of friction



BVEL boundary velocity

All values are in c.g.s. system of units excepting co-ordinates 
which are in kilometres.
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NODES ********************* 
ELEMENTS ******************* 
*************

PROGRAM LDGRID(INFILE,INPUT,OUTPUT,FF6 ,
1 TAPE 5=INFILE,TAPE6=FF6 ,TAPE3=INPUT,TAPE4=0UTPUT)

C* * * * * *PROGRAM GRID - GENERATES F.E. GRID******************* 
DIMENSION X(500),Y(500),NODEL(1000,3),ISTBC(256),
1 E(1000),P(1000),FORST(1000),TEMP(1000),VALMU(500),S0(500),
2 NS(50,3),XS(50),YS(50),IBREF(500),IVISC(500)

c*****TO GENERATE THE LITHOSPHERE GRID***************************** 
c ****** t o GENERATE THE F.E. GRID *****************
C NN=NO. OF COLUMNS OF
C NE=NO. OF COLUMNS OF
C SET FORCE SCALER TS

TS=0.0E9 
NN=2 1 
NE=2 0 
NE2=NE*2 
STEP=4.0 
NREP=10

c****** NUMERATION OF NODES **********************
K=1 
L=2 
N1 = 1 
N2=NN+1 
N3=2 
N4=NN+2 
DO 5 1=1,NE 
NS(K,1)=N1+1-1 
NS(K,2)=N2+I-1 
NS(K,3)=N3+1-1 
NS(L,1)=N2+I-1 
NS(L,2)=N3+I-1 
NS(L,3)=N4+I-1 
K=K+2 
L=L+2

5 CONTINUE
c ***** SET UP NODAL COORDINATES 

DO 10 1=1,16 
XS(I)=0.0 

10 CONTINUE 
IJI=0
DO 20 1=1,6 
YS(I)=IJI

20 IJI=IJI+1 
YS(7)=10.0 
YS(8)=15.0 
YKI=20.0 
DO 21 1=9,21 
YS(I)=YKI

21 YKI=YKI+10.0 
DO 11 1=1,21 
X(I)=XS(I)

11 Y (I)=YS(I )
K=NN 
HIT=STEP 
L=0
DO 1 1=1,NREP 
DO 2 J=1,NN 
K=K+1
X(K)=XS(J)+HIT 
Y(K)=YS(J)
STEP=4.0

***********************

2
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HIT=HIT+STEP 
DO 3 J=1,NE2 
L=L+1
DO 4 M=1,3

4 N0DEL(L,M)=NS(J,M)+(I-1) *NN 
CONTINUE 

1 CONTINUE 
NNOD=K 
NEL=L 
NOST=NN

C ***** LOAD ANY INITIAL NODAL FORCES ********************* 
A=Y(2)-Y(3)
B=Y(NN—1)-Y(NN)
A=A*TS*1•0E5/2•0 
B=B*TS*1•0E5/2.0 
FORST(2*2-1)=A 
FORST(2 *NN—1)=B 
S=A+B 
NN1=NN-1 
DO 991 1=3,NN1 
A=Y(I-1)-Y(I+1)
A=A*TS*1.0E5/2.0 
S=S+A

991 F0RST(2*I-1)=A
C ***** a b = MINIMUM NODE SPACING IN CM-1 ************

AB=1•0E5
C***** INITIALIZE TEMPERATURE BOUNDARY CONDITIONS ********** 

DO 60 1=1,NNOD 
ISTBC(I )=0

60 CONTINUE 
NREP1=NREP+1 
NN=NOST
DO 61 1=1,NREP1 
J=I*NOST 
ISTBC(J )=1

61 CONTINUE
C*****SET UP TEMPERATURE CONDITIONS *******

DO 50 1=1,NNOD 
TEMP(I)=750.0

50 CONTINUE 
NK= 1
NE1=NE+1
DO 51 1=1,NE1
TEMP(NK)=760.0
NKR=NK+1
TEMP(NKR)=7 0 0.0
NK=(NN*I)+1

51 CONTINUE 
NELCOL=(NOST-1)*2 
NREP3=NREP+3
1=1
IJI=0
DO 52 J=1,NREP3 
JI=J-1
DO 52 IJ=1,NOST
IAA=((IJ-1)*2)+(JI*NELCOL)
IBREF(I)=IAA
1= 1+1

52 CONTINUE



1 0

C ****** ASSIGN e l a s t i c c o n s t a n t s »v i s c o s i t i e s e t c . ***********
DO 7001 1=1,NEL
XO=(X(NODEL(I,1))+X(NODEL(I,2))+X(NODEL(I,3)))/3.0 
YO=(Y(NODEL(I,1))+Y(NODEL(I,2))+Y(NODEL(I,3)))/3.0 
P (I)=0.25 
IVISC(I)=1 
E{I)=1.0E11 
SO(I)=3.79E6 
VALMU(I)=0 . 6 6  

7001 CONTINUE
c ***** READ b o u n d a r y v e l o c i t y *******************************

READ(3,106)BVEL
106 FORMAT(10X,F10.3)

ST=4.0E9
D=0.0

c ***** WRITE GRID DATA TO FILES *******************
WRITE(6 ,100) NNOD,NEL,NN,ST,D
WRITE(6 ,101) (I,X(I),Y(I),FORST(2*1-1),FORST(2*1),1=1,NNOD) 
WRITE(6 ,102) (I,(NODEL(I,J),J=1,3),E(I),P(I),
1 IVISC(I),1=1,NEL)
WRITE(6 ,120)(VALMU(I),S0(I),1=1,NEL)

120 FORMAT(E10.4,2X,E10.4)
WRITE(6,103)(I,TEMP(I),1=1,NNOD)
WRITE(6,105) BVEL,AB
WRITE(6 ,110)(ISTBC(I),1=1,NNOD)
WRITE(6,107)(IBREF(I),1=1,NNOD)

107 FORMAT(15)
110 FORMAT(12)
105 FORMAT(2F10.3)
103 FORMAT(I10,E10.3)
100 FORMAT(3I10,E10.3,F10.3)
101 FORMAT(I10,2F10.3,2E10.3)
102 FORMAT(4I10,E10.3,F10.3,I3)

STOP
END



PROGRAM LOADFIN

This program is the finite element analysis of the 
model. A flow diagram of the algorithm is given with the 
program listing. Input variables are :

NNOD number of nodes in grid

NEL number of elements in grid

NOST number of nodes in y-direction

K node number

X(K) y-coordinate of that node 

Y(K) y-coordinate of that node 

FORST(2*K-1) force on node in x-direction 

FORSTC2*K) force on node in y-direction 

N0DEL(K,3) node numbers for element K 

E elemental elastic modulus 

P elemental polssons ratio 

IVTSC viscosity flag for element 

VALMU coefficient of friction of element 

SO inherent shear strength of element 

TEMP temperature at node

ISTBC flag for temperature boundary condition

IBREF flag for node at edge of grid

BVEL boundary velocity

AB minimum node separation

IMF duration of model run

RSM stress scaler

ISTRAIN flag for plane stress or strain

ISP flag for displacement boundary condition

PDIS prescribed displacement

NARR1 must be = WNOD+NOST

NARR2 must be = NEL+((NOST-1)*2)



Output Data
The program calculates and outputs to various 

channels the following data.
1. All input data specifying grid,boundary 

conditions and initial temperature and stress condition.
2. The variation of maximum shear stress with time.
3. The displacement field for the grid.
4* Stress state, viscosity, temperature and shear 

heating for each element.
5. Flags indicating failure of any elements.
6 . The velocity field at the end of the run.



1 08

START

Read in grid and input data

Calculate velocity boundary conditions

Write out all the input data

Set up any initial stress conditions

Calculate matrix bandwidth

Loop over elements

Form element stiffness matrix

—  Put into body stiffness matrix

Loop over time increments

Update time counter

Load in boundary displacements for the iteration

Set incremental creep to zero

Loop within time increments for solution

Add increment initial strain vectors and previous 
initial strain vectors to the force vector



Modify the force vector to accommodate prescribed 
displacements

Solve finite element equation

Loop over elements

Calculate element strains from displacements

Calculate element stresses

Calculate the average stress for the iteration

Calculate the creep for the iteration

Calculate the shear heating for the element

Compute initial strain vector for increment

Exit on convergence

Map elemental shear heat onto nodes 

Loop over time increments

Solve heat flow for the time increment

Calculate new nodal temperatures

Exit when time increments for heat flow match the 
time increment for the finite elements
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Add increment creep to previous creeps

Add initial strain vector to previous initial 
strain vector

Exit after appropriate number of time increments

Calculate principal stresses

Write results

END



The flow diagram shows how the algorithm has been 
constructed for simultaneous finite element stress and 
finite difference heat flow analysis. Using this , the code 
and the following description of the Subroutine furvctions the 
reader should be able to use and modify the programs.

SUBROUTINE CM PRD
Multiplies two matrices to form a third. This 

Subroutine is adapted from an I.B.M. scientific subroutine 
package.

SUBROUTINE GMTRA
Performs the transposition of any matrix. Adapted 

from an I.B.M. package as above.

SUBROUTINE MATSOL
Solves matrix equation by Gaussian elimanation. Taken 

from Harwell Subroutine library(Hooper 1973).

SUBROUTINE MATHEL
Called from Subroutine MATSOL.

SUBROUTINE TIME
Calculates maximum time increment iteration period 

for both visco-elastic and thermal analysis.

SUBROUTINE DMATR
Called from Subroutine SMATR. Calculates element 

elasticity matrix.
SUBROUTINE HEAT

Solves the two dimensional finite difference heat 
flow and shear heating for the grid.

SUBROUTINE FAIL
Calculates rock failure using Coulomb-Navier failure 

criterion.

SUBROUTINE CENTRE
Calculates average value of a parameter at element 

centre from nodal values.

SUBROUTINE BMATR
Called from Subroutine SMATR. Calculates element B

matrix.

SUBROUTINE SMATR
Assembles all matrices for finite element analysis 

and calculates body stiffness matrix.

SUBROUTINE WARMTH
Called from Subroutine HEAT. Calculates heat flow in 

the grid.

SUBROUTINE RHEO
Calculates the viscosity of an element. 

SUBROUTINE AXIAL
Calculates principal stresses from stress data.



SUBROUTINE SHAPE
Called from Subroutine HEAT. Maps the elemental shear 

heating data onto nodes for incorporation into finite 
difference heat flow calculations.



PROGRAM LOADFIN(OUTPUT,INPUT,TAPE3=INPUT,F5,F6,F1,F8,
1 TAPE1=F1,TAPE4=OUTPUT,TAPE5=F5,TAPE6=OUTPUT,TAPE8=F8)
VISCO-ELASTIC F.E. PROGRAM************************************** 

^******m a j n PROGRAM****************************************************
COMMON /K/ AT,BLIB,DELIB,DLIB

c *****d i m e n s i o n STATEMENTS*********************************************
DIMENSION
1 X(256),Y(256),NODEL(450,3),E(450),P(450),
2 NK(100),PRES(100),YFINC(100),TEMP(450),ATEMP(450),
3 LD(100),ISP(100,2),PDIS1(100,2),PDIS(100,2),IBREF(231),
4 FORST(462),FIST(462),ISTBC(256),VALMU(400),S0(400),
5 IFAIL(400),CSTIN(462,4),STIN(462,4),
5 T(36),D(9),B(18),V(6),F(18),H(18),VISCOS(512),
7 W (3),QQ(3),CC(3),STRAY(462,4), IVISC(450),
8 CREEP(4),DISEL(6)»STRESS(4),STRAIN(4),STEL(4),DISP(462)
9 ,DF(9),EF(3),AT(462,132),TRAY(600,4),EDISP(231)
1 ,DLIB(9,600),BLIB(18,600),DELIB(600)
2 ,DFS(50),WD(450),NODELD(256),SHEAT(256),VEL(231)
LEVEL 2,AT,BLIB,DLIB,DELIB
TIMTOT=0.0

C
£*****r EAD xn in p u t d a t a***********************************************
C *****READ NUMBER OF NODES AND ELEMENTS,STRESS SCALER AND OUTPUT MARKER 

READ(5,800) NNOD,NEL,NOST,STMAX,DEV 
NNOD2=NNOD*2

800 FORMAT(3I10,E10.3,F10.3)
DO 850 1=1,NNOD

850 READ(5,801) K,X(K),Y(K),FORST(2*K-1),FORST(2*K)
801 FORMAT(I10,2F10.3,2E10.3)

DO 851 1=1,NEL
851 READ(5,802) K,(NODEL(K,J),J=1,3),E(K),P(K)

1 ,IVISC(K)
802 FORMAT(4110,E10.3,2F10.3,I3)

READ(5,1792)(VALMU(I),SO(I),1=1,NEL)
1792 FORMAT(E10.4,2X,E10.4)

C *****READ in TEMPERATURE DATA*******
DO 2890 1=1,NNOD

2890 READ(5,2891)K,TEMP(K)
2891 FORMAT(I10,E10.3)

c ***** READ IN VELOCITY STRUCTURE * * * * * * * * * * * * * * * * * * *

READ(5,8080)BVEL,AB 
8080 FORMAT(2F10.3)

READ(5,8076)(ISTBC(I),1=1,NNOD)
8076 FORMAT(12)

READ(5,8077)(IBREF(I),1=1,NNOD)
8077 FORMAT(l5)

C*****READ NUMBER OF TIME INCREMENTS AND STEP LENGTH******************* 
READ(3,803) TMF

803 FORMAT(E 10.3)
READ(3,1803) RSM

1804 FORMAT(3110)
1803 FORMAT(F10.3)

C *****READ PLANE STRESS OR STRAIN MARKER************** 
c****** 1 ,PLANE STRESS ,2,PLANE STRAIN ****************

READ(3,1805) ISTRAIN
1805 FORMAT(110)

c ***** READ BOUNDARY CONDITIONS****************************************
READ(5,808) ND 
DO 853 1=1,ND

853 READ(5,809) K,FORST(2*K-1),FORST(2*K)



809 FORMAT(I10,2E10«3)
c *****r EAD SPECIFIED DISPLACEMENTS*************************************

READ(5,808) ND 
808 FORMAT(110)

DO 854 1=1,ND
854 READ(5,807) LD(I),(ISP(I,J),PDIS(I,J),J=1,2)
807 FORMAT(110,2(110,F10.3))

DO 8555 1=1,ND 
DO 8555 J=1,2

8555 PDIS(I,J)=PDIS(I,J )*BVEL 
NARR1=256 
NARR2=450 

Ĉ*****wrxte out input data*********************************************
WRITE(4,150) NNOD,NEL,STMAX,DEV

150 FORMAT(2X,'NUMBER OF NODES =',14,10X,'NUMBER OF ELEMENTS =',I4,
1 5X,E10.3,F4.1)
WRITE(6,199)

199 FORMAT('0')
WRITE(6,98)

98 FORMAT(14X,'NODE',22X,'X-COORDINATE',10X,•Y-COORDINATE',11X,'FORCE 
1-X',3X,'FORCE-Y')
WRITE(6,199)
DO 100 1=1,NNOD

100 WRITE(6,152) I,X(I),Y(I),FORST(2*I-1),FORST(2*I)
152 FORMAT(13X,I5,24X,F10.3,12X,F10.3,10X,2E10.3)

WRITE(6,199)
WRITE(6 ,99)

99 FORMAT(11X,'ELEMENT',30X,'NODE NUMBERS',1 OX,'ELASTICITY',2X,•P- 
1RATIO')
WRITE(6,199)
DO 101 1=1,NEL

101 WRITE(6,154) I,(NODEL(I,J),J=1,3),E(I),P(I)
154 FORMAT(14X,I4,18X,I4,12X,I4,12X,14,D10.3,F6.3)

WRITE(6,199)
WRITE(6,199)
WRITE(6,7501)

7501 FORMAT(17X,'NODE',9X,'TEMPERATURE')
WRITE(6,199)
DO 7502 1=1,NNOD

7502 WRITE(6,7503)1,TEMP(I)
7503 FORMAT(10X,I10,F10.3)

WRITE(6,199)
WRITE(6 , 199)
WRITE(6 , 198)

198 FORMAT(26X,'NODE',15X,'X-FIXED’,12X,'X-STRAIN',15X,'Y-FIXED',12X,• 
1Y-STRAIN')
WRITE(6,199)
DO 105 1=1,ND

105 WRITE(6,169) LD(I),((ISP(I,J),PDIS(I,J)),J=1,2)
169 FORMAT(2OX,110,12X,110,1 OX,F10.3,1 OX,110,1 OX,F10.3) 

c ****** SCALE DIMENSIONS FROM KM TO CM******************************* 
1762 DO 3576 1=1,NNOD

FORST(2*1)=FORST(2*1)*RSM 
FORST(2*I-1)=FORST(2*1-1)*RSM 
X(I)=X(I)*1.0E5 
Y(I)=Y(I)*1.0E5 

3576 CONTINUE
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C * * * * * T 0  CALC THE PARAM NBW********************************************
PT=1.0 
NBW=0
DO 9182 1=1,NEL
KB1=IABS(NODEL(I,1 )-NÔDEL(1,2))
KB2=IABS(NODEL(I,2)-NODEL(I,3))
KB3=IABS(NODEL(I,3)-NODEL(I,1))

9182 NBW=AMAX0(KB1,KB2,KB3,NBW)
NBW=2*NBW+2 
NBW=2*NBW-1 
WRITE(6,199)
WRITE(4,9187) NBW

9187 FORMAT(2X,'MATRIX BANDWIDTH=',110)
<-.***** SET UP ALL THE MATRICES *****************************
C
C

CALL SMATR(NEL,NNOD,E,P,D,B,DLIB,AT,DELIB,
1 BLIB,X,Y,ISTRAIN,NBW,NODEL,NARR1,NARR2)

C
DO 1793 1=1,NEL 

1793 IFAIL(I)=0
VIKMIN=1.0E20

c ***** START ITERATIONS FOR TIME INCREMENTS ***********************
DO 201 IN=1,10000 
VL=1.0E30 
TIMTOT=TIMTOT+TIMY 
TIMC=TIMY*365.25*24.0*3600.0

C****» INTRODUCE PRESCRIBED DISPLACEMENTS****************************** 
DO 30 11=1,ND 
DO 31 J=1,2
PDIS1(II,J )=PDIS(II,J )*TIMTOT 
LIK=ISP(II,J)
IF(LIK.EQ.0) GO TO 31 
I=LD(II)
N=2 *I+J-2
FORST(N)=PDIS1{II,J)*1.0D 24 
LOC=0•5*(NBW+1)
AT(N ,LOC)=1.0D 24 

31 CONTINUE 
30 CONTINUE

*****TO PUT BODY FORCES AND INITIAL STRESS INTO FORCE VECTOR********** 
c*****XO INCORPORATE BODY FORCES******

DO 4 1=1,NEL 
I1=NODEL(I,1)
I2=NODEL(1,2)
I3=NODEL(I,3)
DELTA=Y(I3)*X(I2)
1 -Y(I2)*X(I3)
2 -X(I1)*Y(I3)
•» -*X(I1)*Y(I2)
4 +Y(I1)*X(I3)
5 -Y(I1)*X(I2)
DELTA=ABS(DELTA)
A=DELTA/6 .0
K 1 =2 *I 1
K2=2*I2
K3=2*I3
L1=K1-1
L2=K2-1
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L3=K3-1
FORST(K1)=FORST(K1)+A 
FORST(K2)=FORST(K2)+A 
FORST(K3)=FORST(K3)+A 

4 CONTINUE
c*****SET INCREMENTAL CREEP TO ZERO************************************ 
1624 DO 24 J=1,NNOD2 

FIST(J)=0.0 
DO 24 IJ=1,4 

24 CSTIN(J,IJ)=0.0 
DO 1841 1=1,NNOD 
IJ=(2 *1) — 1 
EDISP(I)=DISP(IJ)

1841 CONTINUE 
C
C*****START SOLUTION ITERATIONS WITHIN TIME STEP***********************
C
C

DO 204 J=1,3 
DIFSTR=0•0

C*****ADD FIST TO FORST TO GIVE FORCE VECTOR*************************** 
DO 205 K=1,NNOD2 

205 DISP(K)=FIST(K)+FORST(K)
C*****TO SET FORCE VECTOR TO ZERO FOR PRESCRIBED DISPLACEMENTS********* 

DO 35 KOD=1,ND 
DO 36 LOD=1,2 
MOD=ISP(KOD,LOD)
IF(MOD.EQ.O) GO TO 36 
NID=LD(KOD)
MID=2*NID+LOD-2 
KID=2*NNOD*(MID-1)+MID 
DISP(MID)=PDIS1(KOD,LOD)*1.0D 24 

36 CONTINUE 
35 CONTINUE

C
c*****TO SOLVE THE EQUATION AT*DISP=DISP***************************** 
c*****CALL SOLUTION SUBROUTINE HARWELL LIBRARY GAUSSIAN ELIMINATION**** 

NUM=NNOD2
CALL MATSOL(AT,DISP,NUM,NNOD2,NBW,PT)
PT=0.0

£*****RESET FIST TO ZERO***********************************************
DO 208 LI=1,NNOD2 

208 FIST(LI)«0.0
C*****WE NOW HAVE DISPLACEMENTS****************************************
c*****TO OBTAIN STRAINS FROM DISPLACEMENTS***************************** 

DO 20 1=1,NEL 
I1=NODEL(I,1)
I2=NODEL(I,2)
I3=N0DEL(I,3)
XD=X(I1)+X(I2)+X(I3)
XD=XD/3.0/1.0E5
ZD=Y(I1)+Y(I2)+Y(I3)
ZD=ZD/3.0/1.0E5 
DO 9403 KK=1,18

9403 B(KK)=BLIB(KK,I)
DO 9404 KK=1,9

9404 D(KK)=DLIB(KK,I)
DELTA=DELIB(I )
J 1=2*11 
K1=J1-1



J2=2*I2
K2=J2-1
J3=2*I3
K3=J3-1
DISEL(1)=DISP(K1)
DISEL(2)=DISP(J1)
DISEL(3)=DISP(K2)
DISEL(4)=DISP(J2)
DISEL(5)=DISP(K3)
DISEL(6)=DISP(J3)

c*****MULT b by disel to give strains in strain*****
N=3
M= 6
L= 1
CALL GMPRD(B,DISEL,STRAIN,N,M,L)

c * * * * * To OBTAIN STRESSES FROM STRAINS********************************** 
c*****XO MULT D BY STRAINS TO GET STRESS ******************************
C***** SUBTRACT INITIAL STRAIN TO GIVE ELASTIC STRAIN****************** 

IF(ISTRAIN.EQ.2) STRAIN(4)=0.0 
DO 1007 IK=1,4

1007 STEL(IK)»STRAIN(IK)-STIN(I,IK)-CSTIN(I,IK)
N=3
M=3
L=1
CALL GMPRD(D,STEL,STRESS,N,M,L)

C***** AMEND STRESS TO ALLOW FOR CREEP********************************* 
ELC=E(I)/((1.0+P(I))*(1.0-2.0*P(I)))
STRESS(1)=STRESS(1)+ELC*P(I)*STEL(4)
STRESS(2)=STRESS(2)+ELC*P(I)*STEL(4)
STRESS(4)=ELC*P(I)*(STEL(1)+STEL(2))+ELC*(1.0-P(I))*STEL(4) 

c***** ADD INITIAL STRESS TO CALC STRESS******************************* 
IF(J#GT.1) GO TO 526

C PUT STRESSES INTO T R A Y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DO 1000 IK=1,4 
1000 TRAY(I,IK)»STRESS(IK)
526 CONTINUE

AS=STRESS(1)-TRAY(1,1)
BS=STRESS(2)-TRAY(1,2)
CS=STRESS(3)-TRAY(1,3)
DS=STRESS(4)-TRAY(1,4)
ZAS=ABS(AS)
ZBS=ABS(BS)
ZCS-ABS(CS)
DIFSTR=AMAX1(ZAS,ZBS,ZCS,DIFSTR)
AS1=AS/2.0 

' BS1=BS/2.0
CS1=CS/2•0 
DS1=DS/2.0 
STRAY(I,1)»STRESS(1)
STRAY(1,2)=STRESS(2)
STRAY(I,3)»STRESS(3)
STRAY(I,4)=STRESS(4)
AS=TRAY(I,1)+AS/2.0 
BS=TRAY(I,2)+BS/2.0 
CS=TRAY(I,3)+CS/2.0 
DS=TRAY(1,4)+DS/2.0

c *****XO OBTAIN VALUE OF CREEP FROM STRESS AND STRAIN****************** 
STRM=(AS+BS+DS)/3.0 
S1=AS-STRM 
S2»BS-STRM
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S3=CS
S4=DS-STRM
CALL AXIAL(AS,BS/CS,DS,AX1,AX2,THETA)
SIG1=AMAX1(AX1,AX2,AX3)
SIG2=AMIN1(AX1,AX2,AX3)
TAU=(SIG1-SIG2)/2.0 
RS=1.0
CALL FAIL(SO,VALMU,NEL,I,IFAIL,SIG1,SIG2)
CALL RHE0(TAU,VIK,TEMP,I,N0DEL,X,Y,IVISC,NARR2,NARR1,VIKMIN)
CREEP(1)=RS*S1*TIMC/(VIK*2.0)
CREEP(2)=RS*S2*TIMC/(VIK*2.0)
CREEP(3)=RS*S3*TIMC/(VIK)
CREEP(4)=RS*S4*TIMC/(VIK*2.0)
VL=AMIN1(VL,VIK)
VISCOS(I)=VIK

c ***** AMEND MATRIX W FOR CREEP****************************************
AW1=ELC*P(I)*CREEP(4)

C *****PUT ELEMENT CREEP INTO CSTIN************************************* 
DO 207 NIL=1,4 

207 CSTIN(I,NIL)=CREEP(NIL)
C * * * * * T 0  INCORPERATE INITIAL CREEP BY EXPRESSING AS INITIAL STRAIN**** 
c *****TO MULTIPLY D BY CREEP******************************************* 

N=3 
M=3 
L=1
CALL GMPRD(D,CREEP,W,N,M,L)
W (1 )=W(1 )+AW 1 
W(2)=W(2)+AW1

c *****TO TRANSPOSE B TO F**********************************************
N=3
M = 6
CALL GMTRA(B,F,N,M)

c *****TO MULTIPLY F BY W***********************************************
N = 6
M=3
L=1
CALL GMPRD(F,W,V,N,M,L)
DO 831 NERG=1 , 6  

831 V{NERG)=V(NERG)*DELTA/2.0
c*****1>0 MAKE FIST*****************************************************

FIST(J1)=FIST(J1)+V(2)
FIST(K1)=FIST(K1)+V(1)
FIST(J2)=FIST(J2)+V(4)
FIST(K2)=FIST(K2)+V(3)
FIST(J3)=FIST(J3)+V(6 )
FIST(K3)=FIST(K3)+V(5)
IF(J.LT.3) GO TO 20

c * * * * *CALCULATE SHEAR HEAT FOR EACH NODE *************
C
0 * * * * »CALCULATE WORK DONE FOR EACH ELEMENT*******************

CALL AXIAL(CREEP(1),CREEP(2),CREEP(3),CREEP(4 ),AAX1,AAX2,THETA) 
AAX3=CREEP(4)
AAX1=AAX1*AX1 
AAX 2=AAX 2 * AX 2 
AAX3=AAX3*AX3 
AAX1=(AAX1+AAX2+AAX3)
WD(I)=AAX1
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C*****CALCULATE NODAL TEMPERATURE RISE FROM ELEMENT VALUES * * * * * * *  
IFfI.LT.NEL) GO TO 20
CALL HEAT(NNOD,NOST,NEL,NODEL,WD,X,Y,SHEAT,IB REF,NARR1,
+ NARR2,ATEMP,TIMC,TEMP,ISTB C,INC RT,THEAT)

C***** THERMAL RUNAWAY TEST * * * * * * * * * * * * * * * * * * * * * * * * *
DO 1090 ILAP=1,NEL

1090 IF(ATEMP(ILAP).EQ.1200.0) GO TO 9898 
20 CONTINUE

*****TO TEST FOR CONVERGENCE*****************************************#
WRITE(4,8520) DIFSTR 

8520 FORMAT(2X,'DIFSTR=',E10.3)
204 CONTINUE 
293 CONTINUE

c***** ADD CSTIN TO STIN***********************************************
DO 28 IJ=1,NEL 
DO 28 IK=1,4
STIN(IJ,IK)=STIN(IJ,IK)+CSTIN(IJ, IK)

28 CONTINUE
£***** a d d FIST TO FORST***********************************************

DO 27 IJ=1,NNOD2 
27 FORST(IJ)=FORST(IJ)+FIST(IJ)

C *****UPDATE TEMPERATURE VALUES ******************************
DO 1101 IJ=1,NNOD 
TEMP(IJ)=ATEMP(IJ)

1101 CONTINUE
CALL TIME(VL,AB,ABC,TMF,TIMTOT,TIMY,IN,VIKMIN,INCRT,THEAT) 
STRMAX=0.0
WRITE(6,1815) TIMY,ABC 

1815 FORMAT(E10.4,2X,E10.4)
DO 4281 1=1,NEL
CALL AXIAL(STRAY(1,1),STRAY(1,2),STRAY(1,3),STRAY(1,4),
1 PR1,PR2,PR3)
PR4=(ABS(PR1)+ABS(PR2))/2.0 
STRMAX=AMAX1(STRMAX,PR4)

4281 CONTINUE
WRITE(6,1673)STRMAX

1673 FORMAT(2X,'MAX SHEAR STRESS=',E10.4)
DO 1910 1=1,NNOD 
IJ=(2*I)-1
VEL(I)=(DISP(IJ)-EDISPfI))/TIMY 

1910 CONTINUE
IF(TIMTOT.GE.TMF) GO TO 1297 

201 CONTINUE
c * * * * *  WRITE RESULTS FOR FINAL STATE ***********************
1297 CONTINUE

GO TO 9889
9898 WRITE(6,9899JTIMTOT
9899 FORMAT(2X,'THERMAL RUNAWAY AT',E10.3)
9889 CONTINUE

WRITE(4,250) IN,J,TIMTOT,TIMY
250 FORMAT(2X,'TIME INCREMENT*',16,2X,'NUMBER OF ITERATIONS*' 14

1 ,5X,'MINIMUM TOTAL YRS.*',E10.3,5X,'LAST ITERATION PERIOD YRS '
2 E10.3)
WRITE(1,1798) NNOD,NEL 

1798 FORMAT (2110)
WRITE(6,199)
WRITE(6,1817)

1817 FORMAT(6X,’N0DE',3X,'DISP(X)',3X,'DISP(Y)’)
WRITE(6,199)



DO 209 I=1,NNOD 
IJ=2*I 
IK=IJ-1
WRITE(6,162)1,DISP(IK),DISP(IJ)

209 WRITE(1,162) I,DISP(IK),DISP(IJ)
162 FORMAT(I10,2E10.3)

WRITE(1,6161) ISTRAIN 
WRITE(1,6161)NOST 

6161 FORMAT(I10)
WRITE(8,1520)TIMTOT,ISTRAIN,MARK,BVEL,NNOD,NEL

1520 FORMAT(E10.4,2(2X,I2),2X,F10.4,2(2X,14))
WRITE(8,1521)(X(I),Y(I),1=1,NNOD)

1521 FORMAT (E12.4,2X,E12.4)
DO 1903 1=1,NEL

1903 WRITE(8,1522)(NODEL(I,J),J=1,3)
1522 FORMAT(3(2X,I4))

WRITE(6,199)
WRITE(6,6176)

6176 FORMAT(30X,'FINITE ELEMENT ANALYSIS VISCO-ELASTIC MODEL')
WRITE(6,199)
IF(ISTRAIN.EQ.1) WRITE(6,1808)

1808 FORMAT{37X,'PLANE STRESS SOLUTION')
IF(ISTRAIN.EQ.2) WRITE(6,1809)

1809 FORMAT(37X,'PLAIN STRAIN SOLUTION')
WRITE(6,199)
IF(MARK.EQ.1)WRITE(6,1810)
IF(MARK.EQ.2)WRITE(6,1811)

1810 FORMAT(3OX,'CONSTANT VELOCITY BOUNDARY CONDITIONS')
1811 FORMAT(3OX,'CONSTANT STRESS BOUNDARY CONDITIONS')

WRITE(6,199)
WRITE(6,1104)

1104 FORMAT(10X,'STRESSES AND VISCOSITY IN CGS, ROTATION IN DEGREES 
1 COORDINATES IN KM')
WRITE(6,199)
WRITE(4,163)

163 FORMAT(3X,'ELEMENT',2X,'X-STRESS',2X,'Y-STRESS',2X,'ROTATION',2X 
1,'Z-STRESS',1X,'X-COORD',1X,'Y-COORD',1X,'VISCOSITY',1X,'TEMPERATU 
2RE',2X,10X,'TAUMAX',6X,'TAUXY')
WRITE(6,199)

C
t o  CALCULATE THE PRINCIPAL STRESSES***************************** 

KAV=1
DO 210 1*1,NEL,KAV 
IP=I+KAV-1
SC1=(STRAY(I,1)+STRAY(IP,1))/2.0
SC2=(STRAY(I,2)+STRAY(IP,2))/2.0
SC3=(STRAY(I,3)+STRAY(IP,3))/2.0
SC4*(STRAY(I,4)+STRAY(IP,4))/2.0
VIK=(VISCOS(I)+VISCOS(IP))/2.0
CALL AXIAL(SC 1,SC2,SC3,SC4,ANZA,ANZB,THETA)
THET=THETA
BXB=X(NODEL(I,1))+X(NODEL(I,2))+X(NODEL(I,3))
BYB=Y(NODEL(I,1))+Y(NODEL(I,2))+Y(NODELfI,3))
BXP=X(NODEL(IP,1))+X(NODEL(IP,2))+X(NODEL(IP,3))
BYP=Y(NODEL(IP,1))+Y(NODEL(IP,2))+Y(NODEL(IP,3))
BXB=(BXB+BXP)/6.0 * 1.OE-5 
BYB=(BYB+BYP)/6.0*1.0E-5



C***** EVALUATE s h e a r s t r e s s e s f o r e l e m e n t s*************
TAUMAX=AMAX1(ANZA,ANZB,SC4)
TAUMIN=AMIN1(ANZA,ANZB,SC4)

TAUMAX=(TAUMAX-TAUMIN)/2 
TAUXY=(ABS(ANZA)+ABS(ANZB))/2 

C****»CALCULATE TEMP AT ELEMENT CENTRE ***********
CALL CENTRE(NODEL,X,Y ,TEMP,BXB,BYB,I,ELTEMP,NARR2,NARR1)
WRITE(4,164) I,ANZA,ANZB,THET,SC4,BXB,BYB,VIK,ELTEMP,WD(I )
1 ,TAUMAX,TAUXY
WRITE(1,164) I,ANZA,ANZB,THET,SC4,BXB,BYB,VIK,ELTEMP,WD(I)
1 ,TAUMAX,TAUXY
WRITE(8,1523) ANZA,ANZB,THET,SC4,BXB,BYB,ELTEMP

1523 FORMAT(4(E10.4,2X),3(2F10.4,2X))
STRAY(I,1)=ANZA
STRAY(1,2)=ANZB 
STRAY(1,3)=THET 

210 CONTINUE
164 FORMAT(I10,4E10.3,2F8.3,E10.3,E10.4,E10.3,2E10.3)

WRITE(6,199)
WRITE(6 , 1784)

1784 FORMAT(2X,'FAILED ELEMENTS')
DO 1785 1=1,NEL

1785 WRITE(6,1786)IFAIL(I)
1786 FORMAT(2X,13)

WRITE(6,1833)
WRITE(1,1842)BVEL

1842 FORMAT(F10.3)
1833 FORMAT(25X,'VELOCITY STRUCTURE')

DO 1832 1=1,NNOD 
WRITE(1,1831) VEL(I)
WRITE(8,1524) VEL(I)

1524 FORMAT(F10.4,2X)
1832 WRITE(6,1831) VEL(I)
1831 FORMAT(10X,E10.4)

STOP
END

C
C
c
c***** SUBROUTINE MATRIX MULTIPLICATION*******************************’

SUBROUTINE GMPRD(A,B,R,N,M,L)
DIMENSION A(1),B(1),R(1)
IR=0
IK=-M
DO 10 K=1,L 

. IK=IK+M 
DO 10 J=1,N 
IR=IR+1 
JI=J-N 
IB=IK 
R(IR)=0 
DO 10 1=1,M 
JI=JI+N 
IB=IB+1

10 R(IR)=R(IR)+A(JI)*B(IB)
RETURN
END



n 
n 
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C***** SUBROUTINE MATRIX TRANSPOSITION********************************
SUBROUTINE GMTRA(A,R,N,M)
DIMENSION A(1),R(1)
IR=0
DO 10 1=1,N 
IJ=I-N 
DO 10 J=1,M 
IJ=IJ+N 
IR=IR+1

10 R(IR)=A(IJ)
RETURN
END

SUBROUTINE MATSOL(A,B,IA,N,NW,PT)
DIMENSION A(IA,1),B(N)
EQUIVALENCE (IP,I,NEX,KIB,NCO),(NR12,NS,J,LBO),
1(AMAXT,TBEST,TEMP)
LEVEL 2,A 
DATA LP/6/
NR=(NW-1)/2
NR1=NR+1
NR2=NR1+NR
NR32=NR2+NR1
IF(PT.EQ.0•)GO TO 99
DO 4 ISET=1,N
NR12=MIN0(NR2+1,N-ISET+NR1+1)
DO 4 JSET=NR12,NR32

4 A(ISET,JSET)=0.0 
DO 22 K=1,N 
IP=K
NS=NR1
BEST=ABS(A(IP,NS))
DO 7 NFT=1,NR 
IPT=K+NFT
IF(IPT.GT.N)GO TO 7 
NT=NR1-NFT 
TBEST=ABS(A(IPT,NT))
IF(BEST.GE.TBEST)GO TO 7
BEST=TBEST
NS=NT
IP=IPT

7 CONTINUE 
IF(K.EQ.1)PT=BEST 
PT=AMIN1(BEST,PT)
IF(BEST.NE.0.)GO TO 5 
WRITE(LP,6)

6 FORMAT(///' ZERO PIVOT FOUND IN MATSOL. ATTEMPT TO SOLVE THE 
SYSTE

1M OF EQUATIONS ABANDONED.'///)
RETURN

5 A(K,NR32)=IP 
IF(IP.EQ.K)GO TO 3 
DO 8 NV=1,NR2 
TEMP=A(K,NR+NV)
A(K,NR+NV)=A(IP,NS+NV-1)

8 A(IP,NS+NV-1)=TEMP



1 23

C ELIMINATION AND COEFF. STORAGE
3 IF(K+NR.LE.N )GO TO 15

NL=N-K
IF(NL)22,22,16

15 NL=NR
16 CONTINUE

CALL MATHEL (A,NL,K,NR,IA)
22 CONTINUE

C NOW B IS PROCESSED
99 DO 17 KB=1,N

NEX= A(KB,NR32)
IF(NEX.EQ.KB)GO TO 20 
TEMP=B(KB)
B(KB)=B(NEX)
B(NEX)=TEMP 

20 DO 17 IB=1,NR
KIB=KB+IB
IF(KIB.GT.N)GO TO 17 
B(KIB)=B(KIB)-B(KB)*A(KB,IB)

17 CONTINUE
C BACK SUBSTITUTE

DO 25 NBACK=1,N 
NCO=N+1-NBACK 
BNCO=B(NCO)
L2=MIN 0{NR2,NBACK)
IF(L2.EQ.1)GO TO 25 
DO 31 LCO=2,L2

31 BNCO=BNCO-B(LCO+NCO-1)*A(NCO,LCO+NR)
25 B(NCO)=BNCO/A(NCO,NR1)

RETURN
END

C
C
C

SUBROUTINE MATHEL(A,NL,K,NR,IA)
DIMENSION A(1)
LEVEL 2,A
NR1=NR+1
NR3=3*NR
J4=K+NR*IA
PIVT=A(J4)
DO 9 IK=1,NL 
I=IK+K
J1=I+(NR-IK)*IA 
TEMP=-A(J1J/PIVT 
A(K+(IK-1)*IA)=-TEMP 
J2=I+(NR3-IK)*IA 
J3 = J4
DO 9 J=J1,J2,IA 
A (J )=A(J )+A(J 3)*TEMP 
J3 = J3 + IA 

9 CONTINUE 
RETURN 
END 

C
c
c

SUBROUTINE TIME(VL,AB,ABC,TMF,TIMTOT,TIMY,IN,VIKMIN,INCRT,THEAT) 
RHO=3.0 
SIGMA=0.26
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COND=0.006
IF(TMF.GT.1.0E5) LONGT=1 
TIMY=(VL/1.0E11)/(3600*365.25*24)
ABC=((AB**2)*RHO*SIGMA/(2*COND))/(3600*365.25*24)
TIMY=AMIN1(TIMY,ABC)
IF(IN.EQ.1) TIMY=10.0 
IF(TIMY.GT.10000.0) TIMY=10000.0 
IF(LONGT.EQ.1) GOTO 2 
GO TO 3

2 IF(TIMTOT.GT.1.0E5)TIMY=0.05*TIMTOT 
VIKMIN=(3600*365.25*24)*1.0E11*TIMY 
INCRT= (TIMY/ABO+0.5
IF(INCRT.LT.1) INCRT=1 
THEAT=TIMY/INCRT 
THEAT=THEAT*(3600*365.25*24)

3 RETURN 
END

C
C
c

SUB ROUTINE DMATR(E,P,D,ISTRAIN,I,NARR2)
DIMENSION E(NARR2),P(NARR2),D(9)
IF(ISTRAIN.EQ.2) GO TO 5

C********* PLANE STRESS MATRIX *****************************
A=E(I)/(1.0-2*P(I))
Q=(1.0-P(I))/2.0
D (1 )=A
D(2)=A*P(I)
D(3)=0.0
D(4)=A*P(I)
D (5)=A 
D(6)=0.0 
D (7)=0.0 
D(8)=0.0 
D(9)=A*Q 
GO TO 10

C********** PLANE STRAIN MATRIX *
5 A=E(I) * (1.0-P(I))/((1.0+P(I))*(1.0-2*P(I)))

Q=P(I)/(1.0 —P (I))
D(1)=A 
D(2)=A*Q 
D( 3 )=0•0 
D(4)=A*Q 
D (5)=A 
D(6)=0.0 
D (7)=0.0 
D(8)=0.0
D (9)=A*(1.0-QJ/2.0 

10 CONTINUE 
RETURN 
END 

C
c
c

SUBROUTINE HEAT(NNOD,NOST,NEL,NODEL,WD,X,Y,SHEAT,IBREF,NARR1,
+ NARR2,ATEMP,TIMC,TEMP,ISTBC,INCRT,THEAT)
DIMENSION NODEL(NARR2,3)/WD(NARR2),X(NARR1),Y(NARR1)/NODELC(400) 

+,IBREF(NNOD),ATEMP(NARR2),TEMP(NARR2),ISTBC(NARR1),SHEAT(NARR2)
CALL SHAPE(NNOD,NOST,NEL,NODEL,WD,X,Y,SHEAT,IBREF,NARR1,NARR2)DO 30 1=1,NNOD
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30 NODELC(I)=0
IF(INCRT.GT.1) GO TO 5 
GO TO 10 

5 TIMC=THEAT
DO 15 IJ=1,NNOD 

15 SHEAT(IJ)=SHEAT(IJ)/INCRT 
DO 20 JI=1,INCRT
CALL WARMTH(X ,Y,NODEL,ATEMP,NODELC,NNOD,NOST,NEL, TIMC,SHEAT,

+ TEMP,ISTBC,NARR1,NARR2)
DO 25 J=1,NNOD 

25 NODELC(J)=0 
20 CONTINUE 

GO TO 35
10 CALL WARMTH(X,Y,NODEL,ATEMP,NODELC,NNOD,NOST,NEL,TIMC,SHEAT,

+ TEMP,ISTBC,NARR1,NARR2)
35 CONTINUE 

RETURN 
END 

C 
C 
C

SUBROUTINE FAIL(SO,VALMU,NEL,I,IFAIL,SIG1,SIG2) 
c ****** COULOMB-NAVIER FAILURE CRITERION *************

DIMENSION SO(tlEL) ,VALMU(NEL) ,IFAIL(NEL)
SUM=SQRT((VALMU(I)*2)+1)
SUM1=(SUM-VALMU(I ))*SIG1 
SUM2=(SUM+VALMU(I))*SIG2 
SVAL=SUM1-SUM2 
FCOND=2*S0(I)
IF(SVAL.GE•FCOND) IFAIL(I)=1 
RETURN 
END 

C
c
c

SUBROUTINE CENTRE(NODEL,X,Y,TEMP,XCENT,YCENT,I,ANS,NARR2,NARR1) 
DIMENSION NODEL(NARR2,3),X(NARR1),Y(NARR1),TEMP(NARR2)
DIS1 = ((X(NODEL(1,1))-XCENT)* *2) + ((Y(NODEL(I,1))-YCENT)**2)
DIS1=SQRT(ABS(DIS1))
DIS2=((X(NODEL(I,2))-XCENT)**2)+((Y(NODEL(I,2))-YCENT)**2) 
DIS2=SQRT(ABS(DIS2))
DIS3=((X(NODEL(1,3))-XCENT)**2)+((Y(NODEL(I,3))-YCENT)**2) 
DIS3-SQRT(ABS(DIS3))
SUM=(1/DIS1)+(1/DIS2)+(1/DIS3)
F1=TEMP(NODEL(I,1))/DI31 
F2=TEMP(NODEL(I,2))/DIS2 
F3=TEMP(NODEL(I,3)J/DIS3 
ANS=(F 1+F 2+F3)/SUM 
RETURN 
END 

C 
C 
C

SUBROUTINE BMATR(NODEL,I,DLIB,BLIB,DELIB,X,Y,
1 D,B,DELTA,NARR1,NARR2)
DIMENSION NODEL(NARR2,3),B(18),CC(3),QQ(3),X(NARR1),Y(NARR1)
1 ,DLIB(9,600),BLIB(18,600),DELIB(600),D(9)
LEVEL 2,DLIB,BLIB,DELIB 
I1=NODEL(I,1)
I2=NODEL(I,2)



I3=N0DEL(I,3)
DELTA=Y(I3)*X(I2)
1 -Y(I2)*X(I3)
2 -X (11) *Y (13 )
3 +X(I1)*Y(I2)
4 +Y(II)*X(13 )
5 -Y(I1)*X(I2)
QQ(1)=(Y(I2)-Y(I3))/DELTA 
CC(1)=(X(I3)-X(I2))/DELTA 
QQ(2)=(Y(I3)-Y(I1))/DELTA 
CC(2)=(X(I1)-X(I3))/DELTA 
QQ(3)=(Y(I1)-Y (12))/DELTA 
CC(3)=(X (I2)-X(I1))/DELTA 
B(1)=QQ(1)
B(2)=0.0 
B(3)=CC(1)
B(4)=0•0 
B(5)=CC(1)
B (6)=QQ(1 )
B(7)=QQ(2)
B(8 )=0.0 
B(9)=CC(2)
B(10)=0.0 
B (11)=CC(2)
B (12)=QQ(2)
B (13)=QQ(3)
B (14 )=0.0 
B(15)=CC(3)
B{16)=0•0 
B(17)=CC(3)
B (18)=QQ(3)
DELTA=ABS(DELTA)
DO 10 K=1,18 

10 BLIB(K,I)=B(K)
DELIB(I)“DELTA 
DO 15 K=1,9 

15 DLIB(K,I)=D(K)
RETURN
END

C
C
c

SUB ROUTINE SMATR(NEL,NNOD,E,P,D,B,DLIB,AT,DELIB,BLIB,X,Y,
1 ISTRAIN,NBW,NODEL,NARR1,NARR2)
DIMENSION E(NARR2),P(NARR2),D(9),B(18),DELIB(600),DLIB(9,600)
1 ,BLIB(18,600),X(NARR1),Y(NARR1),T(36),H(18),F(18)
2 ,AT(462,132),NODEL(NARR2,3)
LEVEL 2, AT,BLIB,DLIB,DELIB 
DATA LP/6 /

c**** FORM ELEMENT STIFFNESS MATRIX ***************************
DO 5 1=1,NEL

c **** SET H AND T TO ZERO ***************************************
DO 10 LIT=1,36

10 T(LIT)=0.0
DO 15 LIT=1,18 

15 H(LIT)=0.0
c**** FORM D MATRIX

CALL DMATR(E,P,D,ISTRAIN,I,NARR2)



C**** FORM b mat rix *********************************************
CALL BMATR(NODEL,I,DLIB,BLIB,DELIB, X, Y ,
1 D,B,DELTA,NARR1,NARR2)
N=3
M=6
CALL GMTRA(B,F,N,M)

c**** B is TRANSPOSED TO F **************************************** 
C**** MULTIPLY D BY B TO GIVE H **********************************

N=3
M=3
L=6
CALL GMPRD(D,B,H,N,M,L)

c**** MULTIPLY F BY H TO GIVE T **********************************
N=6
M=3
L=6
CALL GMPRD(F,H,T,N,M,L)

c**** TO MULTIPLY BY DELTA/2 *********************************
DO 20 NI=1,36 

20 T(NI)=T(NI)*DELTA/2.0
c**** WE NOW HAVE ELEMENT STIFFNESS MATRIX ******************** 
c**** T0 PUT T INTO BODY STIFFNESS MATRIX **********************

K=1
DO 25 MS=1,3 
DO 25 NS=1,2 
DO 25 KS=1,3 
DO 25 LS=1,2 
JX=NODEL(I,MS)
JX=2 *JX-2+NS 
IY=NODEL(I,KS)
IY=2 *1Y-2+LS 
LOC=JX-IY+0•5*(NBW+1)
IF(LOC.LT.I) GO TO 25 
IF(LOC.GT.NBW) GO TO 25 
AT(IY,LOC)=AT(IY,LOC)+T(K)

25 K=K+1 
5 CONTINUE

WRITE(LP,100)
100 FORMAT(2X,'TOTAL STIFFNESS FORMED')

RETURN
END

C
C
C

SUBROUTINE WARMTH(X,Y,NODEL,ATEMP,NODELC,NNOD,NOST,NEL,TIMC,
1 SHEAT,TEMP,ISTBC,NARR1,NARR2)
DIMENSION X(NARR1),Y(NARR1),NODEL(NARR2,3),SHEAT(NARR1),
1 NODELC(NARR2),ATEMP(NARR2) ,TEMP(NARR2),ISTBC(NARR1)
RHO=3.0 
SIGMA=0•25 
COND=0.006 
TMELT=1200.0 
NREP=NNOD/NOST 

• DO 5 1=1,NEL 
DO 10 J=1,3 
NODEN=NODEL(I,J)
IF(NODELC(NODEN).EQ.1) GO TO 10 
T0=TEMP(NODEN)
X0=X(NODEN)
Y0=Y(NODEN)
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IF((NODEN-NOST).LT.1) GO TO 21 
T1=TEMP(NODEN-NOST)
X1=X(NODEN-NOST)

21 IF((NODEN+NOST).GT.NNOD) GO TO 22 
T2=TEMP(NODEN+NOST)
X2=X(NODEN+NOST)

22 IF((NODEN-1).LT.1) GO TO 23 
T3=TEMP(NODEN-1)
Y3=Y(NODEN-1)

23 IF((NODEN+1).GT.NNOD) GO TO 24 
T4=TEMP(NODEN+1)
Y4=Y(NODEN+1)

24 IF(NODEN.LE.NOST) X1=2*X0-X2 
IF(NODEN.LE.NOST) T1=T2 
IF(NODEN.GT.(NNOD-NOST)) X2=2*X0-X1 
IF(NODEN.GT.(NNOD-NOST)) T2=T1 
DO 11 11=1,NREP
IF(NODEN.EQ.((NOST*(II-1))+1)) Y3=2*Y0-Y4 

11 IF(NODEN.EQ.((NOST*(II-1))+1)) T3=T4 
DO 12 IJ=1,NREP
IF(NODEN.EQ.(NOST+IJ)) Y4=2*Y0-Y3 
IF(NODEN.EQ.(NOST*IJ)) T4=T3 

12 CONTINUE
GRADX=((T1—TO)/(X1-X0))-((T0-T2)/(X0-X2))
GRADX=GRADX/((X1-X2J/2)
GRADY=((T3-T0)/(Y3-Y0))-((T0-T4)/(Y0-Y4))
GRADY=GRADY/((Y3-Y4)/2)
GRAD=GRADX+GRADY
FLOW=GRAD*COND*TIMC/(RHO*SIGMA)
ATEMP(NODEN)=TEMP(NODEN)+FLOW+(SHEAT(NODEN)/(RHO*SIGMA*4.2E7)) 
IF(ATEMP(NODEN).GT.TMELT) ATEMP(NODEN)=TMELT 
IF(ISTBC(NODEN).EQ.1) ATEMP(NODEN)=TEMP(NODEN)
NODELC(NODEN)=1 

10 CONTINUE 
5 CONTINUE 

RETURN 
END 

C 
C
c SUBROUTINE RHEO(TAU,VIK,TEMP,I,NODEL,X,Y,IVISC,NARR2,NARR1 

1 ,VIKMIN)
DIMENSION NODEL(NARR2,3),TEMP(NARR2),X(NARR1),Y(NARR1),
1 IVISC(NARR2)
RN=-2.0 

TM=1200.0 
A=2.1E17
XCENT=X(NODEL(I,1))+X(NODEL(1,2))+X(NODEL(1,3))
XCENT=XCENT/3•0
YCENT=Y(NODEL(I,1))+Y(NODEL(I,2))+Y(NODEL(I,3))
YCENT=YCENT/3.0
CALL CENTRE(NODEL,X,Y,TEMP,XCENT,YCENT,I,B,NARR2,NARR1)
IF(IVISC(I).EQ.2) GO TO 10 
IF(IVISC(I).EQ.3) GO TO 20

C
Cc ******* DRY OLIVINE RHEOLOGY *****************

ARG=40.0*(TM+273.00)/(B+273.00)
IF(ARG.GT.200.0) ARG=200.0 
IF(ARG.LT.40.0) ARG=40.0
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VIK=A*EXP(ARG)*TAU**RN 
GO TO 15 

C 
C
C ****** DOLERITE RHEOLOGY ****************

10 RN=-1.5 
TM=1120.0 
A=1.5E3
ARG=53.0*(TM+273.00)/(B+273.00)
IF(ARG.GT.200.0) ARG=200.0 
IF(ARG.LT.53.0) ARG=53.0 
VIK=A*EXP(ARG)*TAU**RN 
GO TO 15 

C 
C
C ****** GRANODIORITE RHEOLOGY *********************

20 RN=-1.5 
TM=1120.0 
A=6.0E3
ARG=42*(TM+273.00)/(B+273.00)
IF(ARG.GT.200.00) ARG=200.0 
IF(ARG.LT.42.0) ARG=42.0 
VIK=A*EXP(ARG)*TAU**RN 

15 IF(VIK.LT.VIKMIN) VIK=VIKMIN 
IF(VIK.GT.1.0E40) VIK=1.0E40 
RETURN 
END 

C 
C
c

SUBROUTINE AXIAL(A,B,C,D,AX1,AX2,THETA)
IF(A.EQ.B) GO TO 5 
THET=2.0*C/(A-B)
GO TO 6

5 THET=0•0
6 THET=ATAN(THET)
THET=THET/2.0 
THET=57.29*THET 
IF(THET.GT.O.O) GO TO 10 
THET=THET+90.0

10 CONTINUE
ALPHA=THET/57.29
AX1■(A*(COS(ALPHA))* *2) +
1 (B*(SIN(ALPHA))**2)+
2 (C*(SIN(2.0 *ALPHA)))
AX2=A+B-AX1
THETA=THET 
RETURN 
END 

C
c
c

SUBROUTINE SHAPE (NNOD,NOST,NEL,NODEL, WD, X, Y, SHEAT, IBREF,NARR1 , 
1 NARR2)
DIMENSION NODELD(256),NODEL(NARR2,3),WD(NARR2),X (NARR1),
1 Y(NARR1),SHEAT(NNOD),IBREF(NNOD)
INTEGER B,B1,B2,A1,A2,A3 
DO 5 ISH=1,NNOD 
NODELD(ISH)=0 

5 CONTINUE
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NREP=NNOD/NOST 
NELCOL1 = (NOST-1 )*2 
DO 20 1=1,NEL 
DO 20 J=1,3 
NODELD1=NODEL(I,J)
IF(NODELD(NODELD1).EQ.1) GO TO 20 
B=IBREF(N0DELD1)
B 1=B-1 
B2=B+1
A 1=B-NELCOL1
A2=A1+1
A3=A2+1
IF(NODELD1.LE.NOST) A2=B 
IF(NODELD1.LE.NOST) A1=B1 
IF(NODELD1.LE.NOST) A3=B2 
IF(NODELD1.GE.((NREP-1)*NOST)) B1=A1 
IF(NODELD1.GE.((NREP-1)*NOST)) B=A2 
IF(NODELD1.GE.((NREP-1)*NOST)) B2=A3 
DO 11 11=1,NREP
IF(NODELD1.EQ.((NOST*(II-1))+1)) A1=A2 
IF(NODELD1.EQ.((NOST*(II-1))+1)) B=B2 
IF(NODELD1.EQ.((NOST*(II—1))+1)) B1=B2 

1 1 CONTINUE
DO 12 IJ=1,NREP 
IF(NODELD1.EQ.(NOST*IJ)) B2=B 
IF(NODELD1.EQ.(NOST*IJ)) A2=A1 
IF(NODELD1.EQ.(NOST*IJ)) A3=A1 

12 CONTINUE
IF(A1•EQ.0) A1=1 
IF(A2.EQ.0) A2=1
BXB1=(X(NODEL(B,1))+X(NODEL(B,2))+X{NODEL(B ,3)))/3.0 
BYB1=(Y(N0DEL(B,1))+Y(NODEL(B,2))+Y(NODEL(B,3)))/3.0 
BXB2=(X(NODEL(B1,1))+X(NODEL(B1,2))+X(NODEL(Bl,3)))/3.0 
BYB2=(Y(N0DEL(B1,1))+Y(NODEL(B1,2))+Y(N0DEL(B1,3)))/3.0 
BXB3=(X{NODEL(B2,1))+X(NODEL(B2,2))+X(NODEL(B2,3)))/3.0 
BYB3=(Y(NODEL(B2,1))+Y(NODEL(B2,2))+Y(NODEL(B2,3)))/3.0 
BXB4=(X(N0DEL(A1,1))+X(NODEL(Al,2))+X(NODEL(A1,3)))/3.0 
BYB4=(Y(N0DEL(A1,1))+Y(NODEL( A1,2 ))+Y(NODEL(A1, 3 )))/3.0 
BXB5=(X(N0DEL(A2,1))+X(NODEL(A2, 2 ))+X(NODEL(A2, 3 ) ))/3.0 
BYB 5=(Y (NODEL(A2,1))+Y(NODEL(A2,2))+Y(NODEL(A2,3)))/3.0 
BXB6=(X(NODEL(A3,1))+X(NODEL(A3,2))+X(NODEL(A3,3)))/3.0 
BYB6=(Y(NODEL(A3,1))+Y(NODEL(A3,2))+Y(NODEL(A3,3)))/3.0 
S1=((X(NODEL(I,J))-BXB1)* * 2 )+((Y(NODEL(I,J))-BYB1)**2) 
S1=SQRT(ABS(S1))
S2=((X(NODEL(I,J))-BXB2)**2)+{(Y(NODEL(I,J))-BYB2)**2) 
S2=SQRT(ABS(S2))
S3=((X(NODEL(I,J))-BXB3)**2)+((Y(NODEL(I,J))-BYB3)**2) 
S3=SQRT(ABS(S3))
S4=((X(NODEL(I,J))-BXB4)**2)+((Y(NODEL(I,J))-BYB4)**2) 
S4=SQRT(ABS(S4))
S5=((X(NODEL(I,J))-BXB5)**2)+((Y (NODEL(I,J))-BYB5)**2) 
S5=SQRT(ABS(S5))

S6=((X(NODEL(I,J))-BXB6 )* * 2 )+((Y (NODEL(I,J))-BYB6)**2) 
S6=SQRT(ABS(S6 ))
SUM=(1/S1+1/S2+1/S3+1/S4+1/S5+1/S6)

TOP1=WD(B)/S1 
T0P2=WD(B1)/S2 
TOP3=WD(B2)/S3 
T0P4=WD(A1)/S4 
TOP5=WD(A2)/S5



TOP6=WD(A3)/S6
SHEAT(NODELD1)={TOP1+TOP2+TOP3+TOP4+TOP5+TOP6)/SUM
NODELD(NODELD1)=1
CONTINUE
RETURN
END



PROGRAM PLOT

This program uses the GHOST graphical output system to 
produce plots of displacement, temperature and the state of 
stress. The data is read in directly from program LDFIN. The 
only other input data required is the limits of the plotting 
field in the x and y directions and scaling factors for the 
size of plot. The output consists of 4 graph frames.

Frame 1
This is the finite element grid.

Frame 2
This shows the state of stress in the model. Both 

principal stress directions and the magnitudes are shown.

Frame 3
This frame shows the nodal displacements for the

grid.

Frame 4
This frame shows the finite element grid with the 

average element temperatures plotted at the element 
centroids.



C FINITE ELEMENT PLOTTING PROGRAM
PROGRAM PLOT(F1,F5,INPUT,TAPE 1=F1,TAPE5=F5,TAPE3=INPUT,
1 OUTPUT,TAPE6=OUTPUT)
DIMENSION
1 X(500),Y(500),NODEL(600,3),STRAY(600,4),YGR(50),H(20)
2 ,TRAY(600,4),DISP(500,2),DINIT(500),A(50,20),XGR(50)
3 ,XC(600),VIK(500),ELTEMP(500),YC(600),VEL(600)

C ***** READ IN MAXIMUM AND MINIMUM PLOT COORDINATES *************** 
READ(3,16) XL,XH,YL,YH 
READ(3,15) STMAX,K,KIK 
R=(XH—XL)/(YH-YL)

c * * * * *  r e a d in d a t a f r o m f i l e s ****************
READ(5,10) NNOD,NEL 
DO 50 1=1,NNOD

50 READ(5,11) X(I),Y(I)
DO 51 1=1,NEL

51 READ(5,12) NODEL(I,1),NODEL(I,2),NODEL(I,3)
READ(1,10)NULL,NUL1
DO 60 1=1,NNOD

60 READ(1,13) DISP(I,1),DISP(I,2)
READ(1,17) ISTRAIN
READ(1,17) NOST 
DO 61 1=1,NEL,K

61 READ(1,14) (STRAY(I,J ),J=1,4),VIK(I),ELTEMP(I)
READ(1,18)BVEL 
READ(1,19)(VEL(I),I=1,NNOD)

10 FORMAT(2110)
11 FORMAT(10X,2F10.3)
12 FORMAT(1 OX,3110)
13 FORMAT(10X,2E10.3)
14 FORMAT(10X,4E10.3,16X,E10.3,E10.3)
15 FORMAT(E10.3,2110)
16 FORMAT(4F10.3)
17 FORMAT(I10)

18 FORMAT(F10.3)
19 FORMAT(10X,E10.4)

SCALER=1•0E10
c*****TO FIND-MAXIMUM DISPLACEMENT**********************************

DISMAX=0.0 
DO 5013 1=1,NNOD 
CMAX=DISP(1,1)
EMAX=DISP(1,2)
CMAX=ABS(CMAX)
EMAX=ABS(EMAX)

5013 DISMAX=AMAX1(DISMAX,CMAX,EMAX)
DISMAX=DISMAX*50.0/(YH-YL)

q ***** set UP FIRST GRAPH FRAME ********************************
CALL PAPER(1)
CALL MAP(XL,XH,YL,YH)
CALL SCALES 
CALL BORDER

C ***** CALCULATE CENTRIOD COORDINATES FOR ELEMENTS **************** 
DO 200 1=1,NEL 
X1=X(NODEL(I,1))
Y1=Y(NODEL(I,1))
X2=X(NODEL(I,2))
Y2=Y(NODEL(I,2))
X3=X(NODEL(I,3))
Y3=Y(NODEL(I,3))
XC(I)=(Xl+X2+X3)/3.0
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YC(I)=(Y1+Y2+Y3)/3.0
C ***** DRAW finite element grid *************************

CALL POSITN(X1,Y1)
CALL JOIN(X2,Y2)
CALL JOIN(X3,Y3)
CALL JOIN(X1, Y1)

200 CONTINUE
C PLOT PRINCIPAL STRESSES OR DEV STRESSES**************************
C ***** TENSILE STRESSES ARE POSITIVE ***************

CALL FRAME 
CALL SCALES 
CALL BORDER 
YH1=YH-1.0 
YL1=YL+1.0
IF(ISTRAIN.EQ.1) CALL PLOTCS(XOR,YH1,22H PLANE STRES& SOLUTION,22) 
IF(ISTRAIN.EQ.2) CALL PLOTCS(XOR,YH1,22H PLANE STRAIN SOLUTION,22) 
XLOC—XL+((XH-XL)/2)
CALL PLOTCS(XLOC,YL1,23H DISTANCE IN KILOMETRES,23)
SCALIN=SCALER/STMAX 
CALL POSITN(XOR,YL1)
CALL JOIN(SCALIN,YL1)
CALL PLOTCS(SCALIN,YL1,17H 1.0E9 DYNES/CM2,17)
CALL CTRMAG(10)
DO 501 1=1,NEL,K 
X1=X(NODEL(I,1))
Y1=Y(NODEL(1,1))
X2=X(NODEL(I,2))
Y2=Y(NODEL(I,2))
X3=X(NODEL(I,3))
Y3=Y(NODEL(I,3))

5017 CONTINUE
AVER=(STRAY(I,1)+STRAY(1,2)+STRAY(1,3))/3.0 
IF (IDEV.EQ.2) AVER=0.0 
XXC=(X1+X2+X 3)/3.0 
YYC=(Yl+Y2+Y3)/3.0 
ST1=STRAY(I,1)-AVER 
ST2=STRAY(1,2)-AVER 
ST4=STRAY(I,4)-AVER 
TA=COS(STRAY(1,3)/5 7.29)*ST1/STMAX 
TB=SIN(STRAY(I,3)/57.29)*ST1/STMAX 
TX=COS(STRAY(1,3)/5 7.29)*ST2/STMAX 
TY=SIN(STRAY(1,3)/5 7.29)*ST2/STMAX 
TA=TA*R 
TY=TY*R 

20 XN1=XXC+TA 
XN2=XXC-TA 
YN1=YYC+TB 
YN2=YYC-TB 
XS1=XXC-TY 
XS2=XXC+TY 
YS1=YYC+TX 
YS2=YYC-TX 
CALL POSITN(XN1,YN1)
CALL JOIN(XN2,YN2)
CALL POSITN(XS1,YS1)
CALL JOIN(XS2,YS2)
TA=ST1
TX=ST2
QUAD=(STRAY(I,3)/90.0)-1.0 
IF(TA.LT.O.O) QUAD=QUAD+2.0
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IF(TA•LT.0.0) GO TO 9331 
CALL CTRORI(QUAD)
CALL PLOTNC(XN1,YN1,54)
QUAD=QUAD+2.0 
CALL CTRORI(QUAD)
CALL PLOTNC(XN2,YN2,54)

9331 CONTINUE 
IF(TX.LT.O.O) GO TO 9332 
QUAD=QUAD-1.0
CALL CTRORI(QUAD)
CALL PLOTNC(XS1,YS1,54)
QUAD=QUAD+2.0 
CALL CTRORI(QUAD)
CALL PLOTNC(XS2,YS2,54)

9332 CONTINUE 
501 CONTINUE

CALL CTRORI(0.0)
C***** plot NODAL DISPLACEMENTS****************************************

CALL FRAME 
CALL SCALES 
CALL BORDER 
CALL CTRMAG(8)
CALL PLOTCS(XOR,YH1,20H NODAL DISPLACEMENTS,20)
CALL PLOTCS(XLOC,YL1,23H DISTANCE IN KILOMETRES,23)
DO 506 1=1,NNOD 
XXC=X(I)
YYC=Y(I)
CALL POINT(XXC,YYC)
XD=XXC+DISP(I,1)/DISMAX*R 
YD=YYC+DISP(1,2)/DISMAX 
CALL JOIN(XD,YD)

506 CONTINUE
PLOT TEMPERATURES ***********************
CALL FRAME 
CALL SCALES 
CALL BORDER
CALL PLOTCS(XOR,YH1,21H ELEMENT TEMPERATURES,21)
CALL PLOTCS(XLOC,YL1,23H DISTANCE IN KILOMETRES,23)
DO 510 1=1,NEL 
X1=X(NODEL(I,1))
Y 1=Y(NODEL(1,1))
X2=X(NODEL(I,2))
Y2=Y(NODEL(I,2))
X3=X(NODEL(I,3))
Y3=Y(NODEL(I,3))
CALL POSITN(X1,Y1)
CALL JOIN (X2,Y2)
CALL JOIN (X3,Y3)
CALL JOIN (X1,Y1)
CALL PLOTNF(XC(I),YC(I),ELTEMP(I),2)

510 CONTINUE
CALL GREND
STOP
END



APPENDIX 3

Test of Finite Difference Heat Flow for Visco-elastic 
Program

The numerical formulation was tested against the 
analytical solution of a heat flow problem in a rectangle 
(Carslaw and Jaeger, 1980). The analytical solution for heat 
flow at the corner of a rectangle having a unit initial 
temperature is given as a map of isothermals. The two 
dimensional finite difference grid was set up such that the 
grid was at an initial temperature of 100 C. Heat was lost 
from corner of the rectangle such that x>0,y>0. The edges of 
the model remote from this corner were constrained such that 
dT/dx =0 and dT/dy =0. The edges losing heat were set at an 
initial temperature of 0 C. The model now represents heat 
loss from a free corner of an infinite rectangle.

The grid was set up to model a rectangular sheet of 
copper metal of size X=4m. and Y=2m. Finite difference point 
spacing represented 2cm. The material properties for copper
used were in c.g.s. units :

Density 8.94

Specific heat 0.0914

Thermal conductivity 0.93

Thermal diffusivity 1.14

The model was run for a period of 0.375 seconds 
represented by 150 iterations of 0.0025 seconds. Isothermals 
are plotted as the ratio of final temperature to initial 
temperature and scaled along the axes by the ratio x/zj{\t) 
where k is the diffusivity and t is time. Figure A3.1 shows 
the isotherms produced by contouring of the difference point 
values using the GHOST graphical system. Comparison of this 
diagram with the published solution shows a good numerical 
solution.
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Figure A3.1 Isotherms for finite difference heat flow test.



APPENDIX 4

Test of Finite Element: Visco—elastic Stress Analysis Program

The numerical formulation was tested against an 
analytical solution for stress transfer from the inside of a 
visco-elastic cylinder to an outside reinforcement (Lee, 
Radok and Woodward 1959).

A finite element grid for a cylinder was set up as 
in figure A4.1. Only one quadrant was used due to axial 
symmetry. Plane strain was assumed throughout and the 
constraint of zero tangential displacement was placed on the 
radial boundaries of the grid. An internal pressure F was 
applied to the inside of the model. The inner materia? was , 
concrete and behaves as a visco-elastic material reinforced 
by a steel sleeve. Dimensions of the model are :

Bore diameter 'a' 2 inches

Concrete sleeve diameter 'b' 4 inches

Thickness of steel jacket 'h' 4/33 inch

These dimensions give a Maxwell relaxation time of 1 
second to the visco-elastic body. This relaxation time is 
equal to 8/3 of the elemental time period, so the iteration 
period used was 3/8 x 0.01 =1/270 second.

Material properties used were :

Visco-elastic Steel

E
510 p.s.i. 73x10 p.s.i.

V 1/3

n 3/8 x105 p.s.i. 6010 p« s* 1«

Figure A4.2 shows the tranference of stress from the 
inside of the cylinder »normalised as 0£/F against the 
distance from the centre of the cylinder, normalised as r/b. 
The solid lines represent the analytical solution for 
various relaxation times T and the dots are the numerical 
solutions showing a good approximation.
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Figure A4.1 Grid for test of visco-elastic finite element 
program.
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Figure A4.2 Visco-elastic finite element solution (dots) 
compared with the analytical solution for an internally 
pressurised cylinder.
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