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Abstract  21 

The Hamadan high-grade metapelites in the northwestern part of the Sanandaj–Sirjan zone, Iran, show a 22 

polymetamorphic evolution with relics of a garnet-bearing metamorphic mineral assemblage (M1), a contact 23 

Manuscript Click here to
access/download;Manuscript;Manuscript_Monfaredi.docx

Click here to view linked References

https://www.editorialmanager.com/ijes/download.aspx?id=240608&guid=35f3823a-83b5-435a-b0d2-6a5c63e6c7ce&scheme=1
https://www.editorialmanager.com/ijes/download.aspx?id=240608&guid=35f3823a-83b5-435a-b0d2-6a5c63e6c7ce&scheme=1
https://www.editorialmanager.com/ijes/viewRCResults.aspx?pdf=1&docID=5713&rev=3&fileID=240608&msid=97429417-2c0d-443f-8d2c-eb815ada36d9


2 

 

metamorphic overprint (M2) related to the emplacement of the Middle to Late Jurassic Alvand composite pluton and 24 

a Buchan-type regional metamorphic event (M3) marked by 40Ar/39Ar ages in the 80–70 Ma range that is associated 25 

with penetrative ductile deformation producing a foliation and a thermal overprint onto the M2 assemblages. The 26 

M1 event is exclusively preserved as small garnet grains and mineral inclusions contained therein, incorporated into 27 

M2-stage cordierite porphyroblasts. Distinct metamorphic zones are developed over a region of ~600 km2, which are 28 

partly correlated with distance to the composite pluton: zones (1) cordierite + K-feldspar hornfels, and (2) andalusite 29 

± cordierite hornfels surround the Alvand composite pluton at a distance of up to 5 km. These two zones are clearly 30 

related to M2 metamorphism associated with pluton emplacement. Zones (3) staurolite schist, (4) andalusite schist, 31 

and (5) sillimanite schist are found outside of the contact aureole and are considered to be the result of regional M3 32 

metamorphism in the eastern part distant to the Alvand composite pluton. Conventional thermobarometry shows that 33 

temperatures in the area vary between ~560 to 660 °C for zones 1 and 2 and ~490 to 690 °C for zones 3–5. Phase 34 

equilibria modelling in the MnNCKFMASHT system indicates two distinct isobaric prograde paths at low pressures, 35 

at ~2.7 kbar for zones 1 and 2 and slightly higher pressures of around 3.5 to 5.5 kbar for zones 3 to 5. U–Th–Pb 36 

monazite geochronology revealed overlapping ages of 168 ± 11 Ma and 149 ± 19 Ma in the hornfels (1 and 2) and 37 

schistose (3–5) zones, respectively. These ages are similar to the intrusion age of the Alvand composite pluton 38 

(153.3 ± 2.7 Ma to 166.5 ± 1.8 Ma) and are interpreted to reflect heating due to the emplacement of the composite 39 

pluton (M2 contact metamorphic event). However, 40Ar/39Ar dating of white mica and amphibole yielded plateau 40 

ages ranging from 80 to 69 Ma over the entire transect. The formation of schistosity in zones 3–5 postdates the 41 

intrusion and is thus related to M3 metamorphism. The white mica fabric indicates formation of the foliation during 42 

M3 garnet growth, which is followed by local retrogression of garnet to chlorite during exhumation. Consequently, 43 

the 40Ar/39Ar white mica and amphibole ages likely indicate reheating during M3 to more than ca. 500 ± 25 °C 44 

(argon retention temperature in amphibole). These data establish the occurrence of a Cretaceous, Buchan-style 45 

regional metamorphic event that had not been firmly identified before. Subsequent Late Cretaceous exhumation of 46 

the Hamadan complex with its high-grade metapelites is due to extension along the Tafrijan–Mangavi–Kandelan 47 

fault, which represents a major ductile low-angle normal fault. Metamorphic temperatures coupled with mineral 48 

ages from this and published work suggest a fast stage of cooling with a rate of ~6 °C/Ma during exhumation after 49 

M3 metamorphism.  50 

 51 
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 54 

Introduction 55 

Metamorphic belts generally occur in central sectors of collisional orogenic belts and provide evidence for a number 56 

of superimposed tectonic processes like burial by subduction, subsequent heating and finally exhumation during 57 

collisional orogeny, with interposed subduction- and/or collision-related plutons that may cause additional contact 58 

metamorphic overprints. Therefore, the recognition of distinct metamorphic stages in such metamorphic terrains is 59 

crucial for the interpretation of their geotectonic history. To achieve this aim, combining information about time 60 

(ages and/or duration) to specific rock-forming processes and their physical conditions (e.g. temperature and 61 

pressure) is fundamental (Mottram et al. 2014; Engi et al. 2017). 62 

The Zagros orogen (Iran) is a segment of the Alpine–Himalayan collision zone that resulted from closure of the 63 

Neotethys ocean and comprises an internal belt of collision-related metamorphic rocks (Stöcklin, 1968; Berberian 64 

and King, 1981; Mohajjel and Fergusson, 2014; Shakerardakani et al., 2015; Hassandzadeh and Wernicke, 2016). 65 

Within the Zagros orogen, the Sanandaj–Sirjan zone represents the metamorphic core of the Arabia-Eurasia collision 66 

and contains a record of its magmatic and metamorphic evolution (Hassandzadeh and Wernicke, 2016). Among 67 

debated issues is whether and to which way the metamorphic rocks are related to the collision process, and how the 68 

plate tectonic imprint affected the formation of different metamorphic grades in this belt, especially where low 69 

pressure metamorphism within a contact aureole and Buchan-type metamorphism interfere with each other. 70 

The Sanandaj–Sirjan zone plays a crucial role in deciphering the evolution of the Arabia-Eurasia collision, but its 71 

metamorphic history is still the least investigated aspect (Hassandzadeh and Wernicke, 2016). The Hamadan 72 

metamorphic complex in the northwestern part of the Zagros collision zone is among the volumetrically most 73 

significant exposures of metamorphic rocks, but ages of protoliths and metamorphic events are in dispute. The 74 

Hamadan metamorphic complex exposes Middle to Late Jurassic granite and gabbro intrusions known as the Alvand 75 

composite pluton, dated at 172–153 Ma based on U–Pb zircon and monazite ages (Shahbazi et al. 2010; Mahmoudi 76 
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et al. 2011; Sepahi et al. 2018), and is characterized by associated contact metamorphism. However, in some 77 

distance to the Alvand composite pluton, rocks of the Hamadan metamorphic complex are schistose and even a Late 78 

Jurassic granite gneiss, the Aliabad-e Damaq pluton, is schistose. Previous K–Ar mineral geochronology yielded, 79 

beside a single Early Cretaceous amphibole age, Late Cretaceous to Paleocene white mica and biotite ages for the 80 

metamorphic rocks as well as for the Alvand composite pluton itself (Valizadeh and Cantagrel 1975; Baharifar et al. 81 

2004). The available observations and data do not allow a clear distinction whether the metamorphism in the 82 

Hamadan area is solely related to the emplacement of the plutonic rocks or whether several distinct metamorphic 83 

episodes occurred with distinct ages and pressure-temperature evolutions. These different interpretations imply 84 

either a long-lasting cooling history after intrusion of magmatic rocks or a more complex, polyphase metamorphic 85 

history. 86 

Given the rather speculative metamorphic age assignments, the Hamadan metamorphic complex warrants a more 87 

detailed petrochronological study with the combined application of several petrological and geochronological 88 

methods to unravel superimposed metamorphic events. Consequently, the present study is aimed to clarify the 89 

petrology, P–T conditions and the age(s) of metamorphism in the Hamadan metamorphic complex. Our approach 90 

describes the field relationships, petrography and mineral chemical characteristics of high-grade metapelitic rocks 91 

from the Hamadan complex, as well as P–T results obtained by conventional thermobarometry and equilibrium 92 

assemblage diagrams using the THERIAK/DOMINO software (de Capitani and Brown, 1987; de Capitani and 93 

Petrakakis, 2010). We also present results of chemical U–Th–Pb monazite ages and a comprehensive data set of 94 

laser-probe 40Ar/39Ar muscovite and amphibole ages from different metamorphic zones allowing a better 95 

understanding of the petrochronological evolution of the Hamadan complex for which previously only K–Ar ages 96 

and fission track data existed (Baharifar et al., 2004; François et al., 2014). 97 

In this study, we closely consider the relationships among distinct metamorphic events and the emplacement of 98 

Jurassic subduction-related plutons and develop a model with three stages of metamorphism ranging from pre-99 

pluton emplacement (M1) via Middle/Late Jurassic contact metamorphism (M2) associated with emplacement of the 100 

composite Alvand pluton to a nearly pervasive Late Cretaceous thermal overprint (M3) partly associated with 101 

ductile deformation. The metamorphic stage M3 was not considered before for this region. We offer, therefore, a 102 
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new model for the tectono-metamorphic evolution of the Hamadan complex where metamorphic stages M2 and M3 103 

relate to distinct, separate stages during closure of the Neotethys.  104 

 105 

Geological setting 106 

Formation of the Zagros orogen results from the long-lasting convergence between Eurasia and Gondwana-derived 107 

fragments during closure of the Neotethys Ocean (e.g. Agard et al., 2005; Agard et al., 2011). The Sanandaj–Sirjan 108 

zone is in most parts a polymetamorphic zone within the interior part of the Zagros orogen that contains abundant 109 

Mesozoic calc-alkaline plutons, which caused contact metamorphism of surrounding rocks (e.g., Stöcklin, 1968; 110 

Berberian and King, 1981; Mohajjel et al., 2003; Agard et al., 2005; Agard et al., 2011; Chiu et al., 2013; François et 111 

al., 2014; Shakerardakani et al., 2015; Hassanzadeh and Wernicke, 2016; Sepahi et al., 2018). The distribution of 112 

metamorphic rocks is discontinuous and different metamorphic evolutions have been observed in different areas of 113 

the Sanandaj–Sirjan zone (Berberian et al. 1981; Hassanzadeh and Wernicke, 2016).  114 

Previous work (e.g. Shakerardakani et al., 2015; Hassanzadeh and Wernicke, 2016) interpreted the metamorphic 115 

rocks within the Sanandaj–Sirjan zone to exhibit up to four stages of metamorphic evolution (Berberian et al., 1981) 116 

and therefore representing a polymetamorphic terrain. In the central part of the Sanandaj–Sirjan zone in the area of 117 

Shahrekord W of Esfahan, an early high-pressure metamorphic stage (max. 25 kbar at T = 600 °C; with 40Ar/39Ar 118 

phengite ages of ca. 184 Ma) likely relates to the accretion of a continental basement segment to Central Iran within 119 

the Neotethyan subduction system (Davoudian et al., 2016). Another metamorphic stage is related to contact 120 

metamorphism caused by Middle/Late Cretaceous plutons (Baharifar et al., 2004; Sepahi et al., 2004, 2019; 121 

Mohajjel et al., 2006).  122 

The Hamadan high-grade metamorphic rocks (“lower unit” in the following text) with an extension of ~600 km2 123 

occur mainly southeast- and southward to the Alvand composite pluton, which is one of the largest Jurassic 124 

composite plutons in the Sanandaj–Sirjan zone (Fig. 1). The Hamadan complex contains potentially Triassic and 125 

rare fossil-bearing Jurassic slates (e.g. bivalve Posidonia alpina (Dehghan, 1947)), phyllites and micaschists. The 126 

slates are separated by a major normal fault (Tafrijan–Mangavi–Kandelan fault) from the amphibolite facies 127 
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metamorphic rocks next to the Alvand composite pluton (Fig. 2) as already recognized by Agard et al. (2005). This 128 

unit contains various metapelitic schists, rare amphibolite lenses and some pegmatites. To the east of Hamadan, the 129 

folded very low- to low-grade metamorphic rocks (but not the high-grade metamorphic rocks) are non-conformably 130 

overlain by a Lower Cretaceous succession with a thin basal conglomerate overlain by andesitic lava and spilites, 131 

sandstones with conglomerates, marls and Orbitolina limestones of Aptian–Albian age (ca. 125–100.5 Ma; Cohen et 132 

al., 2013). Further on, we will refer to this structural unit as the “upper unit”. The folded Aptian–Albian succession 133 

(Fig. 2a, b) is folded, cut by an angular unconformity and then overlain by continental Oligocene–Miocene 134 

sedimentary rocks. These structural relationships of low-grade metamorphic rocks and non-conformably overlying 135 

Aptian–Albian strata imply that in the low-grade part metamorphism ceased not later than Early Cretaceous (at ca. 136 

125 Ma). Similar Lower Cretaceous cover successions were reported from several areas of the Sanandaj–Sirjan zone 137 

(Hassanzadeh and Wernicke, 2016 and references therein). 138 

The Alvand pluton is composite consisting of gabbroic rocks, granites, including mylonitized varieties, and 139 

leucocratic granitoids that occupy an area of ~800 km2 (Shahbazi et al., 2010; Figs. 1, 2). A summary of existing age 140 

data from the Alvand composite pluton is compiled in Table 1 and are shown on Fig. 2c. U–Pb zircon dating reveals 141 

that the Alvand composite pluton formed during the Jurassic between 171.1 ± 1.2 and 153.3 ± 2.7 Ma with the main 142 

intrusive phases between 166.5 and 163.9 Ma (Shahbazi et al., 2010; Mahmoudi et al., 2011; Chiu et al., 2013; 143 

Zhang et al., 2018). U–Pb monazite ages of pegmatites give ages between 172.20 ± 0.91 Ma and 162.23 ± 0.77 Ma 144 

(Sepahi et al., 2018). The schistose Aliabad-e Damaq granitic gneiss yields an upper intercept age of 164.2 ± 5.4 Ma 145 

(Shahbazi et al., 2010) and is included within schistose metapelites. Valizadeh and Cantagrel (1975) reported biotite 146 

and muscovite ages ranging from 68 Ma to 104 Ma (Rb–Sr) and 68–89 Ma (K–Ar) from the Alvand composite 147 

pluton indicating that the pluton was affected by a Cretaceous metamorphic event or cooled through ca. 425 °C, the 148 

Ar retention temperature of white mica.  149 

The lower unit of the Hamadan metamorphic complex comprises variably deformed and metamorphosed pelitic, 150 

semipelitic and psammitic metasediments as well as quartzite, amphibolite and hornblende garben schists and some 151 

calc-silicate rocks (Baharifar et al., 2004; Sepahi et al., 2004). Fergusson et al. (2016) dated detrital zircons of an 152 

andalusite-garnet-biotite schist from the Hamadan Phyllite (lower unit) from a locality 35 km southeast of Hamadan 153 

and reported 206Pb/238U ages of 270 ± 12 Ma for the youngest zircons. Consequently, the maximum depositional age 154 
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of the Hamadan Phyllite is Middle Permian, which is consistent with the presence of Triassic and Lower Jurassic 155 

fossils. A summary of existing age data from the Hamadan metamorphic complex is given in Table 1 and shown on 156 

Fig. 2c. In the high grade lower unit of the Hamadan metamorphic complex, the timing of metamorphism is based 157 

on K–Ar dating and gave three ages of 114.6 ± 0.3 Ma and 82.3 ± 2.4 Ma from amphibole in an amphibolite from 158 

the staurolite zone, and 76.7 ± 1.9 Ma from muscovite of an andalusite-kyanite vein (Baharifar et al., 2004). 159 

Baharifar et al. (2004) proposed that the Hamadan complex was influenced by tectono-metamorphic events during 160 

the Jurassic to the mid-Cretaceous and by granitic intrusions in Late Cretaceous time although the Cretaceous 161 

granites were not verified by later studies. However, the subsequent determination of Jurassic (171–153 Ma) 162 

crystallization ages for the Alvand pluton and the large age range of almost 40 million years require a re-assessment 163 

of significance of these ages for the metamorphic evolution. 164 

Andalusite ± cordierite and cordierite + K-feldspar hornfelses are exposed in close proximity to the Alvand 165 

composite pluton, whereas a large region of different, largely medium-grade metamorphic schists is exposed 166 

adjacent to the eastern/south-eastern part of the composite pluton (Sepahi et al. 2004; Agard et al. 2005). Field 167 

observation and textural evidence reveal that the hornfelses close to the Alvand granite grade into rocks with a 168 

schistose fabric further to the east. The flat-lying schistosity is coeval with recrystallization of a garnet + staurolite + 169 

biotite assemblage and refolded by an eastward-dipping crenulation schistosity (Agard et al., 2005). It is associated 170 

with a predominant NNW–SSE trending lineation (Agard et al., 2005), which turns to nearly E–W orientation in the 171 

region, where the schistose Aliabad-e Damaq granitic gneiss is exposed which probably represents a major apophyse 172 

of the Alvand composite pluton. 173 

 174 

Previous P–T estimates 175 

Sepahi et al. (2004) defined two possible clockwise P–T paths that suggest peak metamorphic conditions of up to 176 

650 °C at 4 kbar in the high grade metamorphic lower unit of the Hamadan region. Based on Raman spectroscopy of 177 

graphitic material, Agard et al. (2005) demonstrated temperatures ranging from 387 ± 9 to 567 ± 33 °C. Mohajjel et 178 

al. (2006) proposed two main metamorphic events in alumosilicate-bearing schists accompanied by deformation 179 

episodes based on mineral assemblages and thermobarometry. The results indicate that P–T conditions during the 180 
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second phase of prograde metamorphism reached a maximum of about 630 °C at a pressure of 4 kbar. The first 181 

event presented by Mohajjel et al. (2006) pertains to oblique subduction of the Neotethys oceanic crust in Late 182 

Jurassic to Early Cretaceous times, and the second stage is the Late Cretaceous event synchronous with the main 183 

magmatism that increased the thermal gradient while sillimanite formed. However, no supporting age data for the 184 

proposed Late Cretaceous metamorphic event are available. Sepahi et al. (2009) and Saki et al. (2012) calculated 185 

peak metamorphic conditions of ~650–750 °C and ~2–4 kbar by means of conventional thermobarometry methods 186 

in migmatites occurring adjacent to the Alvand composite pluton. Maximum P–T conditions of 700–750 °C at 5–6 187 

kbars were recently presented for the high-grade metamorphic mafic rocks from the metamorphic aureole around the 188 

pluton (Sepahi et al. 2013). Based on amphibole composition and hornblende-plagioclase thermometry, 189 

thermobarometric calculations of Miri et al. (2016) provided P–T conditions of 492 to 508 °C and 4.3 to 4.9 kbar for 190 

the cores of these minerals and 552 to 573 °C and 5.5 to 5.9 kbar for the outer rims, respectively. Considering the 191 

methodological uncertainties in pressure (± 1.2 kbar) and temperature (±37 °C) determinations, Miri et al. (2016) 192 

inferred an isobaric temperature increase related to thermal perturbation associated with Late Jurassic magmatism. 193 

Recently, Sepahi et al. (2019) described migmatites along the northeastern part of the contact between the Alvand 194 

composite pluton and the Hamadan metamorphic complex. These authors determined P–T conditions of 640–700 °C 195 

and 3–5 kbar for migmatization, which was dated at ca. 170 Ma using the U–Pb zircon technique. These results 196 

point to a causal link between the magmatic activity and the migmatization. A summary of existing P–T estimates 197 

from the Hamadan complex is given in Table 2 and Fig. 2d. 198 

 199 

Petrography 200 

We collected and prepared thin sections of more than one hundred samples from different metamorphic zones within 201 

the Hamadan complex for petrographic studies. The metamorphic units east of the Alvand composite pluton can be 202 

texturally divided into two main zones: (i) an approximately 4 to 5 km wide hornfels zone, extending from the 203 

contact of the pluton with the first appearance of spots of large cordierite to the last occurrence of cordierite in 204 

andalusite-cordierite hornfels; (ii) a schistose zone comprising staurolite-bearing schists. This zone is followed 205 

outward up to about 15 km distance from the contact by rocks with abundant porphyroblasts of andalusite and an 206 
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area marked by sillimanite replacing andalusite. The metapelitic rocks are locally interlayered with minor 207 

amphibolite. Based on the studied samples, we distinguish three stages of metamorphism from textural and 208 

deformational points of view: 209 

(1) Relics of a first metamorphic stage (M1) are preserved as garnet inclusions in cordierite, which occur only within 210 

the hornfels zone. These garnets also include fine-grained feldspar and chlorite of a lower grade metamorphic stage, 211 

which are interpreted as early remnants of the M1 metamorphism (Fig. 3b). 212 

(2) The contact metamorphic (hornfels) zones (M2) are not only characterized by typical porphyroblasts like 213 

cordierite but also contain boudinaged pegmatite dykes surrounded by a weak foliation in the pelitic country rocks 214 

(Fig. 3a, f, g) indicating a gradual transition between the contact metamorphic zones (M2) to schistose zones 215 

dominated by M3 mineral assemblages. 216 

(3) In the east, the schistose zones include also the Aliabad-e Damaq granite gneiss, which has a similar age as the 217 

Alvand composite pluton. The area is characterized by a penetrative foliation and a NNW–SSE to N–S trending 218 

mineral and stretching lineation, which is folded by later deformation stages (Agard et al., 2005; Mohajjel et al., 219 

2006). In the southeast, the stretching lineation is ca. E–W subparallel to the trend of the schistose Aliabad-e Damaq 220 

granite gneiss. 221 

In the following, we use these textural relationships to distinguish between mineral assemblages related to the M1, 222 

M2 and M3 metamorphic stages. Based on a suitable mineralogy, textures and lack of alteration, we examined 223 

several samples from the whole metamorphic area for thermobarometry. A list of selected samples investigated in 224 

detail is presented in Table 3. Four samples were selected for chemical U–Th–Pb monazite dating and twelve 225 

samples from all units of the Hamadan metamorphic complex were selected for 40Ar/39Ar dating of muscovite and 226 

amphibole. Their geographical locations and mineral assemblages are given in Table 3 and Fig. 2a. 227 

All mineral assemblages contain monazite and zircon, and most contain garnet, muscovite, biotite, plagioclase and 228 

quartz. Graphite and ilmenite are present in low amounts in all samples. Chlorite and fine-grained white mica 229 

(“sericite”) are mostly present as secondary retrograde phases. In the following, we describe the zones from the 230 

contact outward. The reactions are discussed in the text according to the numbering scheme in Table 6 and Fig 10. 231 
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Hornfels zones  232 

Cordierite + K-feldspar zone 233 

The cordierite + K-feldspar zone forms only a narrow band close to the Alvand composite pluton (Fig. 2). The 234 

pelitic hornfels samples were taken within <1 km from the Alvand granite and display the mineral assemblage Crd + 235 

Kfs + Bt + Grt + Pl + Qtz (mineral abbreviations are according to Kretz, 1983). Close to the contact, the samples 236 

contain large well-preserved cordierite, rare small garnet and no andalusite or relics thereof. Pegmatite dykes 237 

boudinaged by brittle faults are surrounded by a weakly developed foliation. The rocks develop prominent "spots" 238 

(up to ~2 cm in size; Fig. 3a–c), corresponding to anhedral and roughly ovoid, inclusion-rich cordierite 239 

poikiloblasts, which are set in a fine-grained granoblastic matrix of feldspar, biotite, muscovite, quartz and ilmenite. 240 

The development of K-feldspar that occurs in anhedral, cryptoperthitic grains associated with quartz and the paucity 241 

of muscovite at the highest grade close to the contact may be representative of leucosome development by partial 242 

melting. 243 

The peak metamorphic conditions of 620 ± 40 °C and 2.5 ± 0.5 kbar obtained in sample H101 (for details, see 244 

below) are just below the wet granite solidus, but minor dehydration melting could have occurred by muscovite (Fig. 245 

3d) dehydration and associated release of a hydrous fluid: 246 

Ms + Qtz = Kfs + And + H2O  (reaction #3) 247 

Garnet occurs as euhedral and rarely fractured and cracked crystals, within the matrix and in some cases as 248 

inclusions in cordierite (Fig. 3b). The garnet inclusions are interpreted to be of an early-stage origin (M1), predating 249 

the growth of cordierite, assuming that cordierite growth is due to the heat from the intrusion. The euhedral garnets 250 

from the matrix are in equilibrium with cordierite and thus considered to be part of the hornfels stage (M2). 251 

Andalusite ± cordierite zone 252 

Following the narrow cordierite + K-feldspar zone, a 1–5 km wide And ± Crd zone extends outwards from the 253 

contact with the pluton (Fig. 2). In this zone, metapelitic rocks mainly have a hornfelsic texture, a dark grayish color 254 

(Fig. 3e), and typically contain the assemblage And ± Crd ± Kfs ± Grt ± Ms + Bt + Pl + Qtz. Andalusite generally 255 
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forms well-preserved, idioblastic, inclusion-poor crystals that occur in the matrix (Fig. 3e–g). Cordierite occurs as 256 

ellipsoidal, inclusion-filled anhedral poikiloblasts with biotite and a low amount of muscovite in the matrix. A weak 257 

foliation is observed in some samples (Fig. 3f, g). The zone is also marked by the existence of K-feldspar in some, 258 

but not all rocks. In the outer parts of the andalusite ± cordierite zone, cordierite is gradually replaced by fine-259 

grained aggregates rich in chlorite and quartz while chiastolitic andalusite is present as large cm-sized idiomorphic 260 

blasts with accumulations of graphite/opaque phases as inclusions and along its rectilinear grain edges (Fig. 3g). As 261 

a whole, with increasing proximity to the composite pluton, the proportion of andalusite decreases and cordierite as 262 

well as K-feldspar crystals become larger and more abundant. A possible reaction that involves And as reactant and 263 

is forming Crd + Kfs is:  264 

 Bt + And + Qtz = Crd + Kfs + H2O  (reaction #4) 265 

The garnets are present mostly as euhedral, partly fractured crystals and are considered to belong to the M2 266 

metamorphic assemblage (Fig. 3h). In contrast M1 garnet is only found in the hornfels zone and occurs as relics 267 

enclosed by cordierite. 268 

Schistose zones 269 

Staurolite zone 270 

Further to the east, the staurolite zone follows the hornfels zone (Fig. 2). The dominant mineral assemblage in this 271 

zone contains Grt + St + Bt + Ms + Pl + Qtz. The rocks are predominantly fine-grained, well-foliated schists (Fig. 272 

4a, b), which display a typical S-C shear fabric. 273 

Staurolite displays a pre- to syn-deformational fabric and is seen as euhedral to subhedral porphyroblasts up to ~3 274 

cm length, or as small (~1 mm) blocky crystals generally replaced by chlorite at the rim (Fig. 4c, d). Some rare 275 

staurolite grains seem to exhibit two stages of growth with an earlier growth phase defined by trails of inclusions, 276 

followed by an inclusion-poor rim with ~2 mm thickness (Fig. 4d). The staurolite growth postdates partly the garnet 277 

growth since small idioblastic garnet grains occur as inclusions within them (Fig. 4c). The inclusions in the 278 

staurolite are parallel to foliation and indicate syn-deformative growth (Fig. 4d).  279 
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Garnet is nearly ubiquitous and locally occurs as perfect idiomorphic crystal up to ~6 mm in diameter. Texturally, 280 

garnet mostly has a pre- to syn-deformative origin in all schistose metamorphic zones (Fig. 4e). Garnet grains 281 

contain quartz, graphite and ilmenite inclusions and typically appear euhedral to subhedral in shape, although 282 

corners and edges of crystals show typical retrograde features such as rounding and partial replacement by biotite 283 

and chlorite (Fig. 4e). Biotite, muscovite and chlorite form tiny flakes, in preferred orientation defining the foliation. 284 

Some biotite grains have been replaced by secondary chlorite (Fig. 4e).  285 

Hornblende garbenschist and amphibolite interlayers within metapelites of the staurolite zone mainly contain 286 

acicular and euhedral amphibole, and garnet in a fine-grained matrix of quartz, plagioclase, K-feldspar and the 287 

accessories titanite, epidote and clinozoisite. 288 

Andalusite zone  289 

A large area of metapelitic schists adjacent to the staurolite zone displays the assemblage And ± St + Grt + Bt + Ms 290 

+ Chl + Pl + Qtz (Fig. 2). The andalusite porphyroblasts are up to ~10 cm in length (Fig. 4g) and typically display a 291 

chiastolitic cruciform pattern of inclusions and accumulations of graphite and opaque phases along rectilinear grain 292 

edges (Fig. 4h). Andalusite is slightly altered to fine- to coarse-grained “sericite”, however, generally well-293 

preserved, idioblastic, inclusion-poor crystals are observed, too.  294 

In samples, in which andalusite is present in larger amounts, muscovite reacted with staurolite to form andalusite 295 

according to the following reaction (Fig. 4i, j):  296 

 Ms + St + Qtz = And + Bt + H2O  (reaction #6) 297 

Textural evidence indicates that staurolite growth preceded andalusite growth in some cases, while andalusite is 298 

randomly pre- and syn-deformative. Some staurolite appears as poikiloblasts with sigmoidal inclusion trails 299 

reflecting syn-deformative growth as well (Mohajjel et al., 2006; Fig. 4k).  300 

Garnet frequently occurs as up to ~3 mm large porphyroblasts and few of them occur as euhedral to subhedral 301 

inclusions in andalusite (Fig. 4h) suggesting that garnet predates the growth of andalusite while in other places 302 
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garnet is surrounded by the mica matrix. (Fig. 4l). Some garnets developed poikilitic grains with inclusions of 303 

quartz, graphite and ilmenite (Fig. 4m). 304 

Sillimanite zone 305 

The onset of the sillimanite zone (Fig. 2), is marked by the appearance of fibrolite and rare fine-grained prismatic 306 

sillimanite replacing andalusite. The diagnostic assemblage of this zone is Sil ± And + Grt + Bt + Ms + Qtz + Pl. In 307 

this zone, no signs of coexisting K-feldspar and sillimanite or the development of migmatization is observed. 308 

The sillimanite typically occurs in mats within the matrix and as fine needles intergrown with andalusite or coarse 309 

muscovite (Fig. 4n, o), postdating the growth of andalusite (Agard et al. 2005). Garnet grains are commonly 310 

scattered throughout the assemblage. Locally, sillimanite, staurolite and tourmaline were observed in shear bands in 311 

this zone (Agard et al. 2005). 312 

Schistose granite gneiss of Aliabad-e Damaq 313 

The Jurassic granite gneiss of Aliabad-e Damaq shows a schistose fabric composed of biotite and subordinate white 314 

mica, deformed K-feldspar (mostly microcline) and well recrystallized plagioclase. Quartz shows grain boundary 315 

migration recrystallization (Fig. 4f), which typically forms close to amphibolite facies grade deformation (at ca. 316 

500 °C according to Stipp et al. 2002).  317 

 318 

Analytical techniques 319 

The analytical techniques are described in the Appendix. These include: whole rock geochemical analyses of 320 

metapelitic rocks, mineral chemical compositions determined by scanning electron microscope (EDX and WDX 321 

spectrometer), Th–U–Pb monazite dating by electron microprobe and 40Ar/39Ar dating of amphibole and white mica.  322 

 323 

Mineral chemistry 324 
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For garnet profiles, the largest grains were used since we confirmed they represent cuts through the center of the 325 

garnet grain. Nearly all schist samples contain compositionally zoned garnet with dominantly almandine (62–82 %), 326 

spessartine (2–23 %), minor pyrope (4–15 %) and subordinate grossular (1–10 %) (Table 5; Fig. 5). Only garnet 327 

from the hornfels zone displays a homogeneous compositional zoning pattern indicating growth at constant PT 328 

conditions (Fig. 5a). Garnet compositional profiles of schistose zones generally depict a rising trend in Xalm and a 329 

decrease in Xsps from core-to-rim. Xgrs and Xprp display mostly smoothly varying compositional trends (Fig. 5b-d). 330 

These patterns are interpreted as typical trends for prograde garnet growth in metapelites. 331 

In samples from both the hornfels and schistose zones, the minerals within the matrix show only a small 332 

compositional variation or are chemically homogeneous. Cordierite is characterized by a minor variation in XMg 333 

ranging from 0.43–0.50 (Table 5). Biotite is characterized by AlVI, and Ti contents in the range of 0.27–0.43 and 334 

0.06–0.21 a.p.f.u in the hornfels zones and in the range of 0.38–0.67 and 0.07–0.18 a.p.f.u in the schistose zones, 335 

respectively. XMg of biotite varies between 0.35 and 0.51 in the hornfels zones and 0.38 and 0.55 in the schistose 336 

zones. The F content of biotite is around 0.5 wt. % for nearly all selected samples (Table 5).  337 

Plagioclase in the hornfels zones ranges in composition from almost pure albite Ab91An7Or0 to andesine 338 

Ab69An31Or0 (Table 5). In schistose zone rocks, plagioclase varies from albite Ab87An13Or0 to andesine 339 

Ab56An43Or0. Alkali feldspar is orthoclase Ab10Or89An0 in the hornfels zones (Table 5). The chemical variations 340 

reported here are not related to zoning but differ from sample to sample. 341 

Muscovite has Si-contents ranging from 3.01 to 3.15 a.p.f.u in the hornfels zones, while these contents vary from 342 

3.01 to 3.23 a.p.f.u. in the schistose zones. The K/(K+Na) ratio of muscovite is 0.94 to 0.96 in the hornfels zones 343 

and 0.81 to 0.93 in the schistose zones (Table 5).  344 

Finally, the chemistry of staurolite does not show systematic trends in the variation of XFe (0.77–0.89) and ZnO 345 

contents (up to 0.71 wt. %) (Table 5). Although two generations of staurolite can be distinguished in the staurolite 346 

zone, no significant chemical difference can be found.  347 

 348 

P–T determinations 349 
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P–T conditions of metamorphism were obtained using conventional geothermobarometry as well as equilibrium 350 

assemblage diagrams. 351 

Conventional thermobarometry 352 

For conventional thermobarometry the PET1.1 software (Dachs, 1998, 2004) was used. Appropriate matrix mineral 353 

compositions, which are in equilibrium with each other and occur also in "domains" near garnet, were selected for 354 

calculation of pressure and temperature conditions (Table 3).  355 

Hornfels unit: The Grt-Bt (Holdaway, 2000) and Grt-Crd geothermometers coupled with the GASP (Koziol, 1989) 356 

and Grt-Pl-Ms-Bt (Hoisch, 1990; Wu, 2015) geobarometers were applied for assemblages from the cordierite + K-357 

feldspar and andalusite ± cordierite zones to calculate peak metamorphic temperatures of 620 ± 40 °C and 590 ± 358 

30 °C, respectively (Table 3; Figs. 2d, 6a). In both samples, the pressure remains constant at around ~3.0 ± 1.0 kbar. 359 

The average temperature increases towards the pluton. 360 

Schistose unit: Mineral assemblages belonging to the staurolite zone yield peak P–T conditions of 590 ± 50 °C and 361 

5.5 ± 1.5 kbar based on Grt-Bt (Holdaway, 2000) and Grt-St (Perchuk, 1969) thermometers and the Grt-Pl-Ms-Bt 362 

barometer (Table 3; Figs. 2d, 6b). The Grt-Bt and Grt-St thermometers in combination with the GASP barometer 363 

was applied for assemblages from the andalusite zone, yielding values around 600 ± 15 °C and 5.5 ± 0.7 kbar (Table 364 

3; Figs. 2d, 6b). Finally, the Grt-Bt thermometer and the GASP barometer applied for the sillimanite zone shows 365 

values of 670 ± 20 °C and 5.5 ± 0.5 kbar (Table 3; Figs. 2d, 6b). P–T results appear to exhibit a small decrease in 366 

temperature from cordierite bearing rocks to andalusite bearing rocks in the hornfels unit and a small increase from 367 

staurolite bearing rocks towards the andalusite and sillimanite bearing rocks in schistose zones (Fig. 7). A minor 368 

increase in pressure from the contact outwards is also observed (Fig. 6). 369 

Assemblage stability diagrams  370 

Equilibrium assemblage diagrams were constructed in the chemical system MnO–Na2O–CaO–K2O–FeO–MgO–371 

Al2O3−SiO2−H2O–TiO2 using the THERIAK/DOMINO software package from 03.01.2012 (de Capitani and Brown, 372 

1987; de Capitani and Petrakakis, 2010) in conjunction with the thermodynamic database of Holland and Powell 373 

(1998), updated to dataset 5.5 in 2003 that incorporates the Al2SiO5 triple point of Pattison (1992). Activity models 374 
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used in all calculations are those used in Tinkham and Ghent (2005) with the following exceptions: 1) margarite was 375 

not considered as a component in white mica, and 2) the ternary feldspar model of Holland and Powell (1998), using 376 

a molecular mixing model and asymmetric formalism, was used instead of separate plagioclase and pure orthoclase 377 

or sanidine. Excess H2O was assumed, and a melt phase was not considered in the modelling because only 378 

subsolidus processes are discussed. Although graphite is observed in samples, the assumption of a pure H2O fluid 379 

phase does not result in large discrepancies in the position of phase boundaries (Connolly and Cesare, 1993; Pattison 380 

et al., 2002; Pattison, 2006) and the presence of graphite probably resulted in a mixed C-O-H fluid (Connolly and 381 

Cesare, 1993) during metamorphism.  382 

Calculations were performed with samples containing representative mineral assemblages and bulk rock 383 

compositions of the defined five zones (Table 4). The initial constraints on the peak P–T conditions recorded by 384 

each sample are imposed by the highlighted field within the relevant assemblage stability diagram, which contains 385 

the observed peak mineral assemblage identified in thin sections (Figs. 8, 9). Subsequently, two isobaric prograde 386 

paths are displayed that pass through the mineral-assemblage sequences from hornfels and schistose areas and cross 387 

the reaction boundaries on the equilibrium phase diagram, where minerals are expected to be either found or lost 388 

from the mineral assemblage.  389 

Figure 8 shows calculated assemblage stability diagrams for two metapelitic samples from the andalusite ± 390 

cordierite and the cordierite + K-feldspar zones. Sample H101 from the cordierite + K-feldspar zone was taken 391 

exactly at the contact (Fig. 2a). The observed mineral assemblage Crd + Grt + Bt + Kfs + Pl + Qtz + Ilm defines a 392 

P–T field in the calculations diagram of 570 to 670 °C and <4 kbar. (Fig. 8b). Sample H48 from the andalusite + 393 

cordierite zone is located ~5 km southeast of the contact (Fig. 2a) and comprises the stable mineral assemblage And 394 

+ Grt + Bt + Ms + Qtz + Pl + Ilm. The calculated phase stability field corresponds to lower pressure amphibolite 395 

facies with T = 550 to 630 °C and P = 2.8 to 3.8 kbar (Fig. 8a). Texturally, the garnet inclusion in cordierite belongs 396 

to an early stage of metamorphism (M1) in the hornfels zones. A temperature increase towards the intrusion is 397 

clearly seen in these two samples, consistent with the higher average temperature in the cordierite + K-feldspar zone 398 

derived from conventional geothermobarometry. 399 
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Mineral isograds in hornfelsic rocks can therefore be mapped around the intrusion and range from an outermost 400 

occurrence of And-in up to Crd+Kfs-in and And-out close to the aureole contact. Pattison and Tracy (1991) 401 

subdivided prograde sequences of the most common metapelitic assemblages into several facies series. The hornfels 402 

isobaric path comply with the facies series 1/2a bathograds, that intersect the reactions 1, 2, 3 and 4 (Table 6; Fig. 403 

10).  404 

Sample H44 belongs to the staurolite zone and is located about 6 km east of the contact, just in the central part of the 405 

zone (Fig. 2a). The mineral assemblage St + Grt + Bt + Ms + Qtz + Pl + Ilm is seen within a stability field extending 406 

from 560 to 640 °C and 3.5 to 7.5 kbar in Figure 9a. Sample H30 east of the contact was chosen from the andalusite 407 

zone (Fig. 2a). The calculated equilibrium assemblage diagram shows a P–T range of 540 to 640 °C and 2.5–4.0 408 

kbar for the observed mineral assemblage And + Grt + Bt + Ms + Qtz + Pl + Ilm (Fig. 9b). Staurolite is considered 409 

as a metastable phase. Several common reactions, such as St  Grt + Bt + ALS, or St + Chl  ALS + Bt, involve 410 

staurolite as reactant and produce an aluminosilicate (ALS) polymorph. Pattison and Spear (2018) noted that the 411 

width of zones of coexisting staurolite and andalusite in Buchan-type sequences is much wider than predicted by 412 

equilibrium phase diagrams, which they attributed to disequilibrium processes related to sluggish dissolution of 413 

staurolite and the lack of a thermodynamic driving force for the conversion of staurolite to andalusite. Although the 414 

two samples from the staurolite (H30) and andalusite (H44) zones have different mineral assemblages, calculated 415 

equilibrium temperatures are similar. In sample H44 the assemblage is stable over a wider P range and we conclude 416 

that low P values, similar to H30, are likely. Sample H10 from the sillimanite zone has the largest distance to the 417 

contact (Fig. 2a). The mineral assemblage Sil + Grt + Bt + Ms + Qtz + Pl + Ilm is stable over a wide P–T range of 418 

540 to 770 °C and 3 to 8.5 kbar (Fig. 9c). Since andalusite is present in the sample, we argue that the presence of 419 

sillimanite cannot significantly exceed the And-Sil reaction limiting the pressure to <4 kbar. The resulting T is about 420 

600 to 650 °C 421 

Observed spacing of staurolite, andalusite and sillimanite isograds in the schistose part persuade us to propose an 422 

isobaric P–T path at a pressure less than 1.0 kbar higher than the hornfels bathograd. The schistose isobaric path 423 

intersects reactions 5, 6 and 7 which conform with the facies series 2b/3 bathograd of Pattison and Tracy (1991) 424 

(Table 6; Fig. 10). The onset of the Sil-in and St-out isograd might however place this isobaric path to higher 425 

pressure through the intersection of the following reaction: 426 
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 Ms + St + Qtz = Sil + Bt + H2O  427 

At pressures of 3–4 kbar, the St-out isograd appears at temperatures between 550 and 585 °C (Fig. 10).  428 

 429 

Geochronological results 430 

U–Pb monazite data 431 

Monazites were analysed in four metapelitic samples (see Fig. 2a, c), one from the hornfels units (sample H101 from 432 

the crd + K-fsp zone) and three from the schistose units (sample H54 from the st zone, sample H31 from the and 433 

zone and sample H11 from the sil zone). The monazites have maximum grain sizes of 30 µm and elliptical to 434 

rounded shapes. In all cases, the monazite grains occur in the fine-grained matrix, which is mainly composed of 435 

muscovite, and the grains are in textural equilibrium with the matrix. The small sizes of monazite allowed only 2 or 436 

3 spot analyses in each grain. A large variation of monazite ThO2* from 2–18 wt. % in sample H101 marks an 437 

isochron at 168 ± 11 Ma. The ThO2* values show a broad cluster at around 6 wt. % (Table S1; Fig. 11a). Some 438 

monazite analyses with ThO2* <4 wt. % plot considerably below the isochron. This population matches data from 439 

sample H54, where all monazites poorly define an errorchron of 47 ± 51 Ma, mostly at low ThO2*. The samples 440 

H11 with 162 ± 13 Ma and H31 with 149 ± 19 Ma display a second small monazite populations at around 64–70 Ma 441 

along a poorly defined errorchron with PbO contents, which are just above the detection limit (Fig. 11a, b). The 442 

small population of Late Cretaceous to Paleocene monazites is also obvious in a diagram age vs. Y2O3 (Fig. 11b) 443 

and show a chemically slightly different environment of monazite growth. The younger monazite ages of 64–70 Ma 444 

and 47 ± 51 Ma are similar in age, within error, to our Ar–Ar mineral ages (see below). 445 

There is a compositional trend from the main Middle Jurassic monazite population with 1–3 wt. % Y2O3 toward the 446 

younger population at around 1 wt. % Y2O3. Similar compositional trends from higher to lower ThO2, UO2 and CaO 447 

with decreasing ages are observed (not shown). As both samples from the hornfels units (H11 and H101) and sample 448 

H31 display similar isochrones at R2 values between 0.85 and 0.93, the monazite ages show a broad unimodal 449 

maximum at 160–180 Ma in the summarized histogram view (Fig. 11c). The minor Paleocene population appears 450 
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also in the histogram and in the related averages. This age potentially implies a younger, second, Late Cretaceous to 451 

Paleogene thermal event. 452 

 40Ar/39Ar muscovite data 453 

White mica concentrates from eight samples were prepared to reveal potential age differences between hornfels and 454 

schistose zones (see Fig. 2a, c for sample locations). For measurements, 7–10 grains per sample were used. 455 

Analytical data are shown in Table S2. In the following, we describe the samples from various mineral assemblage 456 

zones in a transect from west to east. Nearly all concentrates yield minor extraneous argon in the first one to three 457 

steps and a plateau for major portions of the remaining steps of the experiment. An overview on significant 458 

properties of all investigated samples is given in Figure 12. 459 

Samples from the hornfels zones (H56 and H101) yield plateau ages of 80.21 ± 0.44 Ma and 76.61 ± 0.42 Ma, 460 

respectively. The inverse isochron age of sample H56 is 81.8 ± 3.7 Ma with an initial 40Ar/36Ar ratio of 326 ± 69. 461 

The inverse isochron age of sample H101 is 73.4 ± 2.6 Ma with an initial 40Ar/36Ar ratio of 435 ± 51 indicating the 462 

presence of some excess argon significantly above the atmospheric 40Ar/36Ar ratio of 295.5. We interpret, therefore, 463 

the plateau age of 76.61 ± 0.42 Ma as geologically significant, which excludes the first two steps with excess argon. 464 

Both samples from the staurolite zone (H58 and H66) yield a weak staircase pattern with ages of 62.28 ± 7.00 Ma 465 

and 60.18 ± 6.93 Ma of the first steps indicating some Argon loss. Sample H58 yields a plateau age of 72.65 ± 0.49 466 

Ma, whereas for sample H66, the plateau age is 69.17 ± 0.83 Ma and the total gas age 71.33 ± 0.41 Ma. The inverse 467 

isochron ages are 73.0 ± 1.3 Ma (H58) and 69.15 ± 0.97 (H66) with initial 40Ar/36Ar ratios of 231 ± 25 and 265 ± 37, 468 

respectively. We consider the plateau ages of 72.65 ± 0.49 Ma (sample H58) and 69.17 ± 0.83 Ma (H66) as 469 

geologically significant, whereas the first step ages indicate a later overprint and Ar loss. 470 

Two samples from the andalusite zone (H32 and H68) give plateau ages of 73.50 ± 0.38 Ma and 73.66 ± 0.45 Ma. 471 

The isochron ages are 72.32 ± 0.94 Ma (H32) and 70.6 ± 3.0 Ma (H68) with initial 40Ar/36Ar ratios of 322 ± 45 and 472 

522 ± 240, respectively, the later potentially including some extraneous argon. Finally, samples H11 and H67 are 473 

from the sillimanite zone. Sample H11 exhibits a plateau age of 70.59 ± 0.24 Ma, H67 a plateau age of 70.84 ± 0.26 474 
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Ma. The inverse isochron ages are 68.6± 3.8 Ma (H11) and 69.7 ± 9.0 Ma (H67) with initial 40Ar/36Ar ratios of 412 475 

± 90 and 436 ± 190, respectively. 476 

In most cases, the inverse isochron ages (including all steps) are close to the plateau ages. Thus, we suggest that the 477 

ages from all four investigated zones are geologically significant and represent the ages of cooling through the argon 478 

retention in white mica, which is at 425 ± 25 °C in regional metamorphic areas (Harrison et al., 2009). In summary, 479 

the two plateau ages of the hornfels zones are significantly older (80.21 and 76.61 Ma), whereas the ages of all 480 

schistose zones are vary between 70.59 and 73.66 Ma within a relatively narrow age range. 481 

40Ar/39Ar amphibole data 482 

We selected four amphibolite samples of the staurolite zone (H61, H114, H119, H120), which are not affected by 483 

retrogression, for 40Ar/39Ar dating. Optically uniform amphibole grains free from macroscopically visible inclusions 484 

were selected for dating. Ca. 10 grains were then finally used for the experiment and because of the relatively low 485 

potassium content, ca. 7–9 steps were measured until fusion. All four samples show U-shaped argon release patterns 486 

(Fig. 13) and exhibit excess argon in the first 2 to 3 steps, followed by ca. three relatively large steps with low 487 

apparent ages and then an increase in 40Ar content in the final steps. The 37ArCa/39ArK ratio is between 5.8 to and 12 488 

meaning relatively low potassium contents in all four amphibole concentrates. These central three steps yield similar 489 

ages between minimum 62.6 ± 2.4 Ma (sample H120) and maximum 72.9 ± 1.1 Ma (sample H61). The total gas 490 

ages (corresponding approx. K–Ar ages) range between 79.0 ± 1.1 Ma and 93.7 ± 1.4 Ma, reflect extraneous argon 491 

incorporated in the sample and are geologically meaningless. Sample H61 also shows the highest K content with a 492 

37ArCa/39ArK ratio between 5.8 and 6.7 and yields a weighted mean age of 73.9 ± 1.1 Ma. We consider this age as 493 

geologically significant and to either reflect the maximum age of the third stage of metamorphism M3 or the age of 494 

cooling through ca. 550 °C. The age is also very close to the age of white mica from nearby samples of the schistose 495 

units. The other three amphibole samples are in full support of this Cretaceous age although the youngest age is 496 

slightly younger than white mica ages from other samples.  497 

 498 

Discussion 499 
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The metamorphic framework of the Hamadan complex presented in this study constrains three stages, M1–M3, in 500 

metapelitic rocks which show a progressive change in mineral assemblages and mineral chemistry. Together with 501 

age dating results and the regional geological framework, the results argue for a reinterpretation of the geological 502 

and tectonic history of this specific part of the Sanandaj–Sirjan zone. We first discuss details of the metamorphic P–503 

T conditions, then the age dating results and finally we propose, based on our results, a new tectonic model for the 504 

Hamadan metamorphic complex. 505 

P–T conditions of the three metamorphic stages 506 

Besides the overall stability field of inferred peak metamorphic assemblages, the P–T conditions can further be 507 

constrained using the chemical composition of minerals. 508 

The mineral assemblage related to M1 metamorphism is constrained exclusively by garnet grains enclosed in 509 

cordierite of M2. The prograde metamorphic evolution of M1 can only be vaguely constrained by feldspar and 510 

chlorite inclusions in garnet. The compositional zoning of M1 garnet in hornfels samples H101 is negligible and 511 

thus no P–T variation from core to rim is envisaged. The measured composition is characterized by a high amount of 512 

Xalm ranging from 0.78–0.81, Xprp of 0.09–0.12 and Xsps = 0.07–0.08 and Xgrs = 0.02–0.03. Using the isopleths of the 513 

grossular and pyrope components, we constrain the P–T conditions of M1 garnet growth to ~575–725 °C and ~3–5.5 514 

kbar. However, the chlorite inclusions in this garnet generation favour P–T conditions closer to the lower range with 515 

~575 °C and ~3–5 kbar, just outside of the chlorite stability field (Fig. 14).   516 

The results of conventional thermobarometry show a systematic increase in temperature toward the contact from 517 

andalusite bearing rocks (zone 2) to cordierite bearing rocks (zone 1) in the hornfels area (M2 metamorphism, Fig. 518 

7). There is no systematic trend in temperatures across the schistose region (zones 3–5, M3 metamorphism) toward 519 

the contact. However, application of the GASP and GBMP barometers indicate slightly lower pressures for the 520 

hornfels zones (Fig. 6). The equilibrium assemblage diagram approach allowed us to further constrain the observed 521 

mineral assemblages to gradients in pressure and temperature within the Hamadan area. Although zones 1–2 and 522 

zones 3–5 display typical low pressure, high temperature mineral assemblages we were able to identify a systematic 523 

difference in pressure and thus propose two different prograde evolutions for hornfels and schistose rocks. 524 

Consequently, we argue that the successive appearance and disappearance of andalusite and cordierite, contact 525 
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metamorphism (M2), is related to increasing temperature toward the Alvand composite pluton at isobaric conditions 526 

of ~2.7 kbar (Fig. 10). Due to the large areal extension and the absence of plutonic rocks in the foliated metamorphic 527 

rocks and irregular distribution of metamorphic field-gradients towards the Alvand composite pluton, contact 528 

metamorphism is excluded to be responsible for the low P mineral assemblages in zones 3–5. We propose a 529 

different, Buchan-style metamorphic event (M3) for the staurolite–andalusite–sillimanite sequence at slightly higher 530 

pressures of 3.5 kbar (Fig. 10). The metamorphic overprint developed together with the deformation along the 531 

eastern side of the composite pluton.  532 

Age of M2 and M3 metamorphism 533 

Although lithological and mineralogical features have been widely described, some controversies persist regarding 534 

the metamorphic age of the Hamadan complex. The Alvand composite pluton formed during Middle Jurassic times, 535 

as established by several U–Pb zircon ages. (Shahbazi et al. 2010; Mahmoudi et al. 2011; Sepahi et al. 2018) 536 

However, for the Hamadan metamorphic complex, both the K–Ar muscovite and amphibole ages from the literature 537 

(Baharifar et al. 2004; Valizadeh and Cantagrel 1975) and the new white mica and amphibole 40Ar/39Ar ages from 538 

this study are much younger, Late Cretaceous, for both the hornfels and schistose zones. Consequently, 539 

crystallization of the plutons pre-dates cooling after the latest peak metamorphic conditions by about 90 million 540 

years. 541 

Valizadeh and Cantagrel (1975) reported biotite and muscovite ages ranging from 68 Ma to 104 Ma (Rb–Sr) and 542 

68–89 Ma (K–Ar) from the Alvand granitoid complex. Given the more recent U–Pb zircon and monazite ages of 543 

153–172 Ma for various lithologies (gabbros, granitoids, pegmatites) of the Alvand pluton (Table 1), this implies 544 

that the Alvand pluton was also affected by a Late Cretaceous metamorphic event, which is much younger than the 545 

Jurassic age of intrusion. This is consistent with the observation that the schistose Aliabad-e Damaq granite gneiss 546 

with an age of 164.2 ± 5.4 Ma belongs to the large Alvand composite pluton and is affected by formation of a 547 

metamorphic foliation postdating the intrusion.  548 

The monazite age of 168 ± 11 Ma from the cordierite + K-feldspar zone (sample H101) taken at the contact is within 549 

error the same as the age of granite intrusion. The monazite age of 149 ± 19 Ma from the andalusite zone (sample 550 

H31) overlaps within error with these ages. Experimental work suggests that closure temperatures for Pb in 551 
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monazite are typically in the range between 900 and 1100 °C, depending on cooling rate and grain size (Cherniak et 552 

al., 2004). Hence, volume diffusion of Pb in monazite is very slow and inefficient (McFarlane and Harrison, 2006) 553 

and unlikely to cause grain-scale resetting under the metamorphic conditions experienced by the Hamadan 554 

metamorphic complex. Therefore, these monazite ages are interpreted to represent the age of the metamorphic event 555 

M2 as they are similar, within error, to the U–Pb zircon intrusion ages of the pluton.  556 

The 40Ar/39Ar white mica ages of the hornfels are between 80.2 and 76.6 Ma, whereas the white mica ages of all 557 

metasedimentary rocks from the schistose zones are within a narrow range between 73.7 and 69.2 Ma (Campanian, 558 

Late Cretaceous). Considering the fading of the schistosity towards the Alvand composite pluton and our new 559 

40Ar/39Ar white mica ages between 80 and 70 Ma and amphibole ages between 73 and 63 Ma, we argue that the M3 560 

metamorphic event is much younger and occurred in the Late Cretaceous. Although imprecise due to the large 561 

uncertainty, the monazite population of 64–70 Ma and 47 ± 51 Ma is similar in age to the Late Cretaceous 562 

amphibole and white mica 40Ar/39Ar ages. These ages are similar to few K–Ar white mica ages reported by 563 

Baharifar et al. (2004), which range between 68.7 ± 1.6 Ma and 76.7 ± 1.9 Ma. Baharifar et al. (2004) also reported 564 

K–Ar amphibole ages of 114.6 ± 4.3 Ma and 82.3 ± 2.4 Ma as well as some K–Ar biotite ages ranging from 67.4 ± 565 

1.7 to 59.4 ± 1.5 Ma. The oldest K–Ar amphibole age of 115 ± 4.3 Ma (Baharifar et al., 2004) is likely to have been 566 

affected by extraneous argon, the presence of which was demonstrated by our argon release patterns, and is thus 567 

considered geologically meaningless. The Late Cretaceous to Paleocene ages of all four amphibole concentrates 568 

from the amphibolites (Fig. 13) argue that M3 exceeded 550 °C according to experimental calibration initially 569 

proposed by Harrison et al. (1981). These new geochronological data establish that a distinct metamorphic event that 570 

reached amphibolite-facies metamorphic conditions affected the Hamadan metamorphic complex in the Late 571 

Cretaceous. Because of the similar, overlapping 40Ar/39Ar amphibole and white mica ages, the age of pervasive 572 

deformation forming white mica during ductile deformation is considered to have been just after peak conditions of 573 

M3. In addition, this Late Cretaceous thermal event affected not only the Hamadan complex but also the seemingly 574 

undeformed Alvand composite pluton. Interestingly, a similar monazite age of 61 ± 8 Ma was reported for the 575 

Soursat complex in the northwestern Sanandaj–Sirjan zone (Jamshidi Badr et al. 2010) implying a larger area 576 

affected by this latest Cretaceous to earliest Paleogene metamorphism.  577 
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These relationships argue for the following interpretation: The latest regional metamorphism (M3) in the Hamadan 578 

complex is younger than metamorphism in the upper unit east of the Tafrijan–Mangavi–Kandelan fault. 579 

Unfortunately, there are no geochronological ages constraining the age of metamorphism in the upper unit, but it is 580 

significantly lower grade. Agard et al. (2005) demonstrated, based on Raman spectroscopy, a temperature difference 581 

of about 100 °C from 387 °C in the upper unit vs. 487 °C in the lower unit across the Tafrijan–Mangavi–Kandelan 582 

fault. These authors found ca. NNW–SSE trending stretching lineation with top to the SSE motion, overprinted by 583 

ESE-directed extensional shear bands. We therefore speculate that the Tafrijan–Mangavi–Kandelan fault represents 584 

a ductile low-angle normal fault, which was active during Late Cretaceous and the cause for the exhumation and 585 

cooling of the Hamadan metamorphic complex. Agard et al. (2005) already noted the special significance of this 586 

fault representing a break in metamorphic conditions. However, future studies should focus on the age of 587 

metamorphism in the upper unit and reveal more details on the kinematic evolution of the Tafrijan–Mangavi–588 

Kandelan fault. 589 

Cooling history of the Hamadan metamorphic complex 590 

Regional cooling after the latest regional metamorphic event (M3) can be inferred from the Ar retention temperature 591 

of metamorphic amphibole (550 ± 25 °C) and muscovite (425 ± 25 °C) which occurred just after peak P–T 592 

conditions. In Figure 15, we compile all thermochronological data from the region including our new Ar–Ar ages 593 

and an apatite (U–Th)/He age (22.1 ± 0.70 Ma: Francois et al., 2014). The cooling path since ca. 80–75 Ma, after the 594 

M3 metamorphic event, reached ca. 6 °C/Ma. The cooling through ca. 60°C, the He retention temperature in apatite, 595 

occurred virtually contemporaneous with deposition of the Oligocene–Miocene succession at top (Fig. 2a, b). Final 596 

cooling through the helium retention temperature in apatite is related to final exhumation and erosional denudation 597 

after final closure of the Neotethyan suture (Agard et al., 2011). 598 

Tectonic implications 599 

The new data on P–T conditions and ages allow to propose a new geodynamic model (Fig. 16), which incorporates 600 

data from the literature (e.g., Agard et al., 2011; Chiu et al., 2013; Shakerardakani et al., 2015; Hassanzadeh and 601 

Wernicke, 2016) and also the M3 metamorphic event defined in this study. The short-lived Middle Jurassic pulse of 602 

intrusions including the Alvand composite pluton, which was emplaced between 171.1 ± 1.2 and 153.3 ± 2.7 Ma, is 603 
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the result of Neotethyan subduction (e.g., Shahbazi et al. 2010; Mahmoudi et al. 2011; Sepahi et al. 2018; Fig. 16a). 604 

This is the stage of contact metamorphism (M2). Production of calc-alkaline magmas ceased during Late Jurassic 605 

and only few Early Cretaceous magmatic rocks formed. We argue that the formation of the schistosity in the 606 

Hamadan Phyllite directly pertains to M3 and is the result of ductile deformation, which is related to the initial 607 

exhumation of the Hamadan metamorphic complex. This interpretation explains why the schistose zonation fades 608 

westwards to the Alvand composite pluton. The most straightforward interpretation is to relate foliation formation to 609 

the Tafrijan–Mangavi–Kandelan fault and slow exhumation of the Hamadan metamorphic complex could be 610 

explained by Late Cretaceous cooling and exhumation. This would need a major Late Cretaceous event of extension 611 

within the Sanandaj–Sirjan zone potentially triggered by southwestward retreat of the subduction zone during 612 

rollback and steepening of the Neotethyan ocean (Fig. 16b). Such an event is well known and resulted in the opening 613 

of back-arc basins, e.g., Late Cretaceous Nain-Baft back-arc basin (e.g., Agard et al., 2011 and Hassanzadeh and 614 

Wernicke, 2016 and references therein). Our new data argue that the main stage of regional metamorphism, M3, in 615 

this sector of the Sanandaj–Sirjan zone is of Late Cretaceous age and is related with ductile low-angle normal 616 

faulting and extension during opening of mentioned back-arc basins. 617 
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Whole-rock analyses were performed by using a Bruker Pioneer S4 X-ray fluorescence spectrometer at the Institute 629 

of Earth Sciences, Karl-Franzens-University Graz. One gram of sample powder and seven grams of Li2B4O7 flux 630 

were fused to a glass bead for XRF measurement. About 80 international reference rock powders were used for 631 

standardization, the reproducibility is better than 1% for major elements and better than 5% for trace elements. 632 

Detection limits are for most elements 20 ppm. The whole rock chemistry of samples is shown in Table 4.  633 

Mineral composition 634 

Mineral compositions were determined at the NAWI Graz Geocenter - Institute of Earth Sciences, Karl-Franzens-635 

University Graz with a JEOL 6310 electron scanning microscope equipped with a LINK ISIS energy dispersive 636 

spectrometer (EDS) and a MICROSPEC wavelength dispersive system (WDS). The emission current is operated 637 

with 15-kV acceleration voltage and 6-nA beam current. The Phi-Rho-Z procedure was used for matrix correction. 638 

Natural mineral standards were used for calibration: adular (Si, K and Al, EDS) garnet (Mg and Fe EDS), titanite (Ti 639 

and Ca, EDS) on, Mn and Cl (EDS) on rhodonite and atacamite, respectively. Na and F were analyzed by WDS 640 

using albite and synthetic F-phlogopite standards. Si, Al, Mg, and Fe were standardized on garnet in the case when 641 

garnet is analyzed.  642 

Electron microprobe (EMP) monazite dating 643 

EMP dating was performed at Institute of Mineralogy, Technical University Freiberg, Germany and follows the 644 

procedure of Schulz (2017). EMP–Th–U–Pb dating is based on the observation that common Pb in monazite 645 

(LREE, Th) PO4 is negligible when compared to radiogenic Pb resulting from the decay of Th and U (Montel et al., 646 

1996). Electron microprobe analysis of the bulk Th, U and Pb concentrations in monazite, at a constant 238U/235U 647 

ratio, allows for the calculation of a chemical model age (CHIME) with a considerable error (Suzuki et al., 1994; 648 

Montel et al., 1996; Suzuki and Kato, 2008; Spear et al., 2009). The Mα1 lines of Th and Pb and the Mβ1 lines for U 649 

of a PET crystal were selected for monazite analysis. Analytical errors of 2 at 20 kV acceleration voltage, 100 nA 650 

beam current, 5 µm beam diameter and counting times of 320 s (Pb), 80 s (U) and 40 s (Th) on peak have been 651 

considered for the calculation of ages. For Pb, the error ranges typically from 0.016–0.024 wt. % for the given dwell 652 

time, based on measurement on a reference monazite (“Madmon”; Schulz and Schüssler, 2013). Detection limits 653 

(1σ) calculated from counting rates for elements with low concentrations in monazite are in element %: Si 0.004; Ca 654 
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0.005; Y 0.020; Pb 0.006; U 0.016; Sm 0.060. Orthophosphates of the Smithsonian Institution were used as 655 

standards for REE analysis (Jarosewich and Boatner, 1991). Calibration of PbO was carried out on a crocoite 656 

standard. The U was calibrated on a metal standard. The reference monazite labelled “Madmon” with special 657 

ThO2*–PbO characteristics (Schulz and Schüssler, 2013) was used for calibration and offline re-calibration of ThO2 658 

as well as for the control of data. Interference of YLγ on the PbM line was corrected by linear extrapolation as 659 

proposed by Montel et al. (1996). An interference of ThMγ on UMβ was also corrected. The number of single 660 

analyses varies with the grain size of the monazites, e.g. 1–4 analyses in grains of <30 µm in diameter. Monazite 661 

chemical ages were first calculated using the methods of Montel et al. (1996). Weighted average ages for monazite 662 

populations calculated using Isoplot 3.0 (Ludwig, 2001) are interpreted as the time of closure for the Th–U–Pb 663 

system of monazite during growth or recrystallization in the course of metamorphism. Ages were further determined 664 

using the ThO2*–PbO isochron method (CHIME) of Suzuki et al. (1994) and Montel et al. (1996) where ThO2* is 665 

the sum of the measured ThO2 plus ThO2 equivalent to the measured UO2. This is based on the slope of a regression 666 

line in ThO2* vs. PbO coordinates forced through zero. In all analysed samples, the model ages obtained by the two 667 

different methods agree exceptionally well. 668 

 40Ar/39Ar age-dating 669 

40Ar/39Ar analyses largely follow descriptions given in Rieser et al. (2006) and Cao et al. (2017). Preparation of the 670 

samples before and after irradiation, 40Ar/39Ar analyses, and age calculations were carried out at the ARGONAUT 671 

Laboratory of the Department of Geography and Geology at the University Salzburg. The samples were crushed 672 

carefully with a hammer. The 200–250 µm white mica and amphibole fractions were hand-picked under the 673 

microscope. Mineral concentrates were packed in aluminium-foil and placed in quartz vials. For calculation of the J-674 

values, flux-monitors were placed between each 4–5 unknown samples. The sealed quartz vials were irradiated in 675 

the Rez reactor (Prague, Czechia) for 16 hours. Correction factors for interfering isotopes were calculated from 45 676 

analyses of two Ca-glass samples and 70 analyses of two pure K-glass samples and are: 36Ar/37Ar (Ca) = 0.000225, 677 

39Ar/37Ar (Ca) = 0.000614, 38Ar/39Ar (Ca) = 0.011700 and 40Ar/39Ar (K) = 0.0266. Variations in the neutron flux 678 

were monitored using the DRA1 sanidine standard for which a 40Ar/39Ar plateau age of 25.03 ± 0.05 Ma was 679 

originally reported (Wijbrans et al., 1995). Here we use the revised value of 25.26 ± 0.05 Ma (van Hinsbergen et al., 680 
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2008). 40Ar/39Ar analyses were carried out using a UHV Ar-extraction line equipped with a combined 681 

MERCHANTEKTM UV/IR laser system, and a VG-ISOTECHTM NG3600 mass spectrometer. Stepwise heating 682 

analyses of samples were performed using a defocused (~1.5 mm diameter) 25 W CO2-infrared laser operating in 683 

Tem00 mode at wavelengths between 10.57 and 10.63 µm. The NG3600 is an 18 cm radius 60° extended geometry 684 

instrument, equipped with a bright Nier-type source operated at 4.5 kV. Measurements were performed on an axial 685 

electron multiplier in static mode. Peak-jumping and stability of the magnet was controlled by a Hall-probe. For 686 

each increment the intensities of 36Ar, 37Ar, 38Ar, 39Ar, and 40Ar were measured, the baseline readings on mass 34.5 687 

were subtracted. Intensities of the peaks were back-extrapolated over 16 measured intensities to the time of gas 688 

admittance either by a straight line or a curved fit, depending on the intensity and type of the pattern of the evolving 689 

gas. Intensities were corrected for system blanks, background, post-irradiation decay of 37Ar, and interfering 690 

isotopes. Isotopic ratios, ages and errors for individual steps were calculated following suggestions by McDougall 691 

and Harrison (1999) and Scaillet (2000) using decay factors reported by Steiger and Jäger (1977). Definition and 692 

calculation of plateau ages was carried out using ISOPLOT/EX (Ludwig, 2003). 693 
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 847 

Figure captions: 848 

Figure 1. Simplified geological map of northern Sanandaj–Sirjan zone modified after Mahmoudi et al. (2011). The 849 

Alvand composite pluton and Hamadan metamorphic complex are located in the center of the map. 850 
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 851 

Figure 2. Simplified geological map of the Hamadan metamorphic complex and Alvand composite pluton modified 852 

after Eghlimi (2000) and Baharifar et al. (2004). (a) A compilation showing the distribution of metapelitic zones and 853 

major faults in the Hamadan metamorphic complex. Sample numbers from east of the composite pluton are shown 854 

on the map. (b) Schematic cross section (AB) through the Hamadan region (after Sabzehei et al., 1977). Horizontal 855 

scale = vertical scale. (c) map with tagged locality distribution of previous and new geochronological data. (d) map 856 

with labelled previous and new P–T estimates. The illustrated path from the contact is in agreement with Fig. 7. 857 

 858 

Figure 3. Photomicrographs and photographs showing the mineral assemblages and hornfelsic textures of cordierite 859 

+ K-feldspar (a-d) and andalusite ± cordierite (e-h) zones. (a) The pelitic hornfels with a boudinaged pegmatite. 860 

Note a weak foliation in the hornfels and some small fringes around andalusite porhyroblasts parallel to the weak 861 

foliation. (b) and (c) Large cordierite poikiloblasts containing small garnet inclusions. (d) The occurrence of 862 

muscovite in the high-grade hornfels zone close to the contact aureole. (e-g) Fresh andalusite porphyroblasts is 863 

present in a fine-grained matrix. (f) Cordierite is replaced by fine-grained aggregates rich in chlorite and quartz. 864 

Note weak foliation overgrown by cordierite porphyroblast in (f) and (g). (h) Garnet occurs as euhedral crystal in the 865 

matrix. Mineral abbreviations are according to Kretz (1983).  866 

 867 

Figure 4. Photomicrographs, field photographs and back-scattered electron image of schistose rocks in the staurolite 868 

(a-e), andalusite (g-m) and sillimanite (n-o) zones. (a) and (b) Garnet-staurolite bearing rocks are well-foliated 869 

schists which show a typical crenulation fabric. (c) and (h) Garnet crystals occur as inclusions in staurolite and 870 

andalusite. (d) Staurolite grain seem to show two stages of growth with the staurolite growth phase defined by trails 871 

of inclusions, followed by an inclusion poor rim in staurolite bearing rocks. Note chloritization of staurolite. (e) 872 

Biotite grains have been replaced by secondary chlorite in pressure fringes around garnet porphyroblasts. (f) 873 

Photomicrograph representing the foliation with grain boundary bulging of the schistose Jurassic granite gneiss of 874 

Aliabad-e Damaq. (g) and (h) Large andalusite porphyroblasts are typically present a chiastolitic cruciform pattern 875 

of inclusions and accumulations of graphite and opaque phases along rectilinear grain-edges. (i) Andalusite largely 876 

grew by replacement of muscovite. (j) Partial replacement of staurolite by andalusite. (k) Staurolite poikiloblast 877 

presenting sigmoidal inclusion trails reflecting syn-deformative growth in andalusite-staurolite bearing rocks. (l) 878 
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Microfabric of white mica in equilibrium with garnet. (m) Garnet is developed as poikilitic grains with inclusions of 879 

quartz, graphite and ilmenite. (n) and (o) Sillimanite occur in mats within the matrix and as fine needles intergrown 880 

with andalusite or coarse muscovite. Mineral abbreviations are according to Kretz, 1983.  881 

  882 

Figure 5. (a-d) Compositional profiles across the largest garnet porphyroblasts observed in thin sections of the 883 

samples investigated in this study. Garnet zonation patterns are consistent with a prograde metamorphism. (a) Xprp 884 

varies in higher values of mole fraction than Xsps and Xgrs in the flat compositional zoning of garnet. (b-d) The 885 

increase of Xalm and concomitant decrease of Xsps at the transition from core to rim compositions. Xgrs and Xprp 886 

feature gentle compositional trends.  887 

 888 

Figure 6. Intersections of selected thermometers and barometers of representative samples obtained from 889 

conventional thermobarometry: (a) Hornfels zones; sample H101 is from the cordierite + K-feldspar zone, sample 890 

H48 is from the andalusite ± cordierite zone. (b) Schistose zones; samples H44 and H54 are from the staurolite zone, 891 

samples H28 and H30 are from the andalusite zone, and samples H10 and H16 are from the sillimanite zone. A 892 

small systematic P increase from the contact outwards is observed, but a constant pressure may be possible in the 893 

light of the uncertainties in the determination of peak pressures. 894 

 895 

Figure 7. Calculated by PET (Dachs, 2004), the variation of temperatures of zones with distance from the contact is 896 

shown. The highest temperature belongs to the cordierite-bearing rocks close to the composite pluton and sillimanite 897 

bearing rocks far away from the contact.  898 

 899 

Figure 8. Equilibrium assemblage diagrams for the bulk compositions of two hornfels samples. The field for the 900 

appropriate peak assemblage identified in each sample is highlighted.  901 

 902 

Figure 9. Equilibrium assemblage diagrams for the bulk compositions of three schistose samples. The field for the 903 

appropriate peak assemblage identified in each sample is highlighted.  904 

 905 
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Figure 10. (a) Equilibrium assemblage diagram for the average Hamadan metapelite composition in the 906 

MnNCKFMASHT system. (b) Calculated isopleths of Xgrs and Mg# (Mg⁄ (Mg+Fe)) of garnet. The isobaric paths are 907 

located on (a) and (b) representing the prograde evolution of M3 metamorphism and contact metamorphism in 908 

different pressure. The location of the isobaric paths implies the most common assemblages of minerals in each 909 

hornfels and schistose part. Numbered reactions are listed in Table 6.  910 

 911 

Figure 11. (a) Th–U–Pb chemical model ages of monazite (Mnz). Total ThO2* vs PbO (wt. %) isochron diagrams; 912 

ThO2* is ThO2 + UO2 equivalents expressed as ThO2, after Suzuki et al. (1994). General minimal error 2σ on 913 

monazite PbO analysis is shown in a bar. Regression lines with the coefficient of determination R2 are forced 914 

through zero as proposed by Suzuki et al. (1994) and Montel et al. (1996). Weighted average ages (Ma) with 915 

MSWD and minimal error of 2σ are calculated from single analyses according to Ludwig (2001). (b) Y2O3 content 916 

vs. age. (c) Age histogram from the few monazite samples dated by microprobe. 917 

 918 

Figure 12. 40Ar/39Ar release patterns of white mica from the Hamadan metamorphic complex. 919 

 920 

Figure 13. 40Ar/39Ar release patterns of amphibole from the Hamadan metamorphic complex. 921 

 922 

Figure 14. (a) Estimated field of M1 garnet stability as constrained by compositional isopleths of Xgrs and Xprp 923 

corresponding to the garnet composition in Fig. 5a. (b) P–T phase diagram showing overlap of this domain with 924 

stability field of mineral assemblages. 925 

 926 

Figure 15. Time-integrated cooling rates of the Hamadan metamorphic complex, combining the results of 40Ar/39Ar 927 

age dating of investigated rock samples and previous geochronological data from the Hamadan complex. 928 

 929 

Figure 16. Tectonic model for the geodynamic framework. (a) Middle–Late Jurassic subduction of the Neotethyan 930 

oceanic lithosphere and formation of the Alvand composite pluton. (b) Late Cretaceous exhumation and cooling of 931 

the Hamadan metamorphic complex triggered by extension due to retreat of the subduction zone and steepening of 932 

the Neotethyan oceanic lithosphere. 933 
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Table 1. Summary of previous geochronological data related to metamorphism, subsequent cooling of metamorphic 935 

rocks and the granitic and gabbroic rocks of the Hamadan metamorphic complex. 936 

 937 

Table 2. A summary of existing P–T estimates from the Hamadan metamorphic complex. 938 

 939 

Table 3. Locations and mineral assemblages used for P–T conditions, thermobarometry, U–Pb monazite and 940 

40Ar/39Ar age dating of investigated rock samples from the Hamadan metamorphic complex. Abbreviations: Crd - 941 

Cordierite, St - Staurolite, And - Andalusite, Sil - Sillimanite, Grt - Garnet, Ms - Muscovite, Bt - Biotite, Qtz - 942 

Quartz, Pl - Plagioclase, Kfs - K-feldspar, Amph - Amphibole, Ttn - Titanite, Czo - Clinozoisite, Ilm - Ilmenite. 943 

 944 

Table 4. Whole-rock compositions used for phase diagram modelling. 945 

 946 

Table 5. Representative electron microprobe analyses of the Hamadan metapelitic assemblages.  947 

 948 

Table 6. Mineral reactions related to assemblages in the Hamadan metapelites. Numbered reactions are shown in 949 

Fig. 10 and discussed in the text. 950 

 951 

Table S1. Electron microprobe analyses of monazites. Error is 2σ on each analysis. The weighted average and its 952 

error on 30 analyses of the “Madmon” monazite (Schulz and Schüssler 2013) is used. Age is in Ma. 953 

Table S2. Analytical results of 40Ar/39Ar mineral age dating from the Hamadan metamorphic complex. 954 
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Area Rock type Method Dated mineral Age ± error (Ma) Authors

andalusite and kyanite vein K/Ar muscovite 76.7 ± 1.9

amphibolite in staurolite schist K/Ar amphibole 82.3 ± 2.4

amphibolite in staurolite schist K/Ar amphibole 114.6 ± 0.3

K/Ar 63 - 80

Rb/Sr 65 - 68

K/Ar 89.1 ± 3

Rb/Sr 78.5 - 88.5

gabbro 206Pb/238U zircon 166.5 ± 1.8
206Pb/238U zircon 163.9 ± 0.9
206Pb/238U zircon 161.7 ± 0.6
206Pb/238U zircon 154.4 ± 1.3
206Pb/238U zircon 153.3 ± 2.7
206Pb/238U zircon 165.2 ± 0.2
206Pb/238U zircon 165.0 ± 0.4
206Pb/238U zircon 165.1 ± 2.0
206Pb/238U zircon 163.9±1.8

ZFT zircon 39.5

AHe apatite 22.06

AFT apatite 23.1
206Pb/238U zircon 157.1 ± 1.2
206Pb/238U zircon 167.7 ± 1.5
206Pb/238U zircon 171.1 ± 1.2
206Pb/238U zircon 159.3 ± 1.0
206Pb/238U zircon 167.2 ± 1.3
206Pb/238U zircon 167.3 ± 2.7
206Pb/238U monazite 162.23 ± 0.77
206Pb/238U monazite 172.20 ± 0.91

migmatite 206Pb/238U zircon 173.60 ± 3.1 Sepahi et al., 2019

muscovite and 

biotite

Sepahi et al., 2018pegmatites

Alvand plutonic 

complex

Table 1. Summary of previous geochronological data related to metamorphism, subsequent cooling of 

metamorphic rocks and the granitic and gabbroic rocks of the Hamadan metamorphic complex.

Francois et al., 2014

Mahmoudi et al., 2011

Chiu et al., 2013

muscovite and 

biotite

acidic rocks (Alvand granitoid 

complex)

Hamadan 

metamorphic 

complex

Baharifar et al., 2004

Valizadeh and Cantagrel, 1975

mafic rocks

Shahbazi et al., 2010

Zhang et al., 2018

Alvand granitoid complex

granite (Alvand)

leucocratic granitoid

Table 1



garnet-staurolite schist 520-570 3-4 Baharifar, 1997

low-grade andalusite-bearing rocks 375-500 2-3 Sepahi et al., 2004

contact metamorphism 650 4 Sepahi et al., 2004

metapelite 387-567 - Agard et al., 2005

aluminosilicate-bearing schists 628 4 Mohajjel et al., 2006

migmatites 650-750 2-4 Sepahi et al., 2009; Saki et al., 2012

metamorphic aureole rocks 700-750 5-6 Sepahi et al., 2013

amphibolites (inner cores) 492-508 4.3-4.9 Miri et al., 2016

amphibolites (outer rims) 552-573 5.5-5.9 Miri et al., 2016

Table 2. A summary of existing P–T estimates from the Hamadan metamorphic complex.

AuthorsT (°C) P (kbar)Rock Type

Table 2-revised



Lat. (N) Long. (E) T (°C) P (bar) gt gb Ms Amph

Cordierite + K-feldspar  zone

620 ± 40 2.5 ± 0.5 grt-bt 76.61 ± 0.42 -

600 ± 40 2.5 ± 0.5 grt-crd - -

Andalusite ± cordierite zone

metapelitic hornfels H56 34°31ʹ06” 48°29ʹ34” And+Crd+Grt+Bt+Ms+Kfs+Pl+Qtz+Ilm - - - - - 80.21 ± 0.44 -

600 ± 30 3.0 ± 1.0 grt-bt - -

590 ± 30 3.0 ± 1.0 grt-crd - -

metapelitic hornfels H48 34°32ʹ26” 48°35ʹ26” And+Grt+Bt+Ms+Pl+Qtz+Ilm M2 event 590 ± 30 3.0 ± 1.0 grt-bt GASP - - -

Staurolite zone 

550 ± 20 4.5 ± 1.0 grt-bt - -

520 ± 30 4.0 ± 1.0 grt-st -

560 ± 30 4.0 ± 1.0 grt-bt - -

540 ± 40 3.5 ± 1.5 grt-st - -

590 ± 50 5.5 ± 1.5 grt-bt - -

590 ± 30 5.5 ± 1.5 grt-st - -

590 ± 10 3.5 ± 0.7 grt-bt - -

530 ± 30 3.0 ± 1.0 grt-st -

metapelitic schist H51 34°31ʹ14” 48°41ʹ04” Grt+Bt+Ms+Pl+Qtz+Ilm 600 ± 30 4.2 ± 0.7 grt-bt grt-pl-wm-bt - - -

metapelitic schist H58 34°29ʹ36” 48°40ʹ14” Grt+Bt+Ms+Pl+Qtz+Ilm - - - - 72.65 ± 0.49

metapelitic schist H66 34°45ʹ11” 48°33ʹ24” St+Grt+Bt+Ms+Pl+Qtz+Ilm - - - - - 69.17 ± 0.63 -

metapelitic schist H116 34°30ʹ20” 48°37ʹ06” St+Grt+Bt+Ms+Pl+Qtz+Ilm - - - - - - -

Amphibolite H61 34°40ʹ18” 48°35ʹ10” Amph+Pl+Qtz+Ttn+Ep+Czo - - - - - - 72.90 ± 1.10

Amphibolite H119 34°31ʹ03” 48°36ʹ35” Amph+Pl+Qtz+Ttn+Ep+Czo - - - - - - 65.50 ± 2.50

Amphibolite H120 34°31ʹ03” 48°36ʹ36” Amph+Pl+Qtz+Ttn+Ep+Czo - - - - - - 62.60 ± 2.40

Amphibolite H124 34°31ʹ06” 48°36ʹ37” Amph+Pl+Qtz+Ttn+Ep+Czo - - - - - - 65.80 ± 2.50

Andalusite zone 

metapelitic schist H32 34°37ʹ28” 48°39ʹ28” And+St+Grt+Bt+Ms+Pl+Qtz+Ilm - - - - - 73.50 ± 0.38 -

metapelitic schist H68 34°35ʹ12” 48°41ʹ32” And+St+Grt+Bt+Ms+Pl+Qtz+Ilm - - - - - 73.66 ± 0.45 -

600 ± 15 5.5 ± 0.7 grt-bt - -

550 ± 50 4.5 ± 1.5 grt-st - -

metapelitic schist H30 34°37ʹ26” 48°39ʹ28” And+Grt+Bt+Ms+Pl+Qtz+Ilm M3 event 580 ± 20 4.5 ± 1.0 grt-bt GASP - - -

metapelitic schist H31 34°37ʹ28” 48°39ʹ29” And+Grt+Bt+Ms+Pl+Qtz+Ilm 590 ± 15 5.0 ± 1.0 grt-bt GASP 149 ± 19 - -

Sillimanite zone

metapelitic schist H19 34°37ʹ25” 48°41ʹ57” Sil+And+Grt+Bt+Ms+Pl+Qtz+Ilm 630 ± 30 5.0 ± 1.0 grt-bt GASP - - -

metapelitic schist H16 34°37ʹ21” 48°41ʹ26” Sil+Grt+Bt+Ms+Pl+Qtz+Ilm 670 ± 20 5.5 ± 0.5 grt-bt GASP - - -

metapelitic schist H12 34°37ʹ20” 48°42ʹ09” Sil+Grt+Bt+Ms+Pl+Qtz+Ilm 630 ± 30 6.0 ± 1.0 grt-bt GASP - - -

metapelitic schist H10 34°37ʹ19” 48°42ʹ09” Sil+Grt+Bt+Ms+Pl+Qtz+Ilm M3 event 630 ± 30 5.0 ± 1.0 grt-bt GASP - - -

metapelitic schist H11 34°37ʹ20” 48°42ʹ09” Sil+Grt+Bt+Ms+Pl+Qtz+Ilm - - - - 162 ± 13 70.59 ± 0.24 -

metapelitic schist H67 34°37ʹ20” 48°41ʹ34” Sil+Grt+Bt+Ms+Pl+Qtz+Ilm - - - - - 70.84 ± 0.26 -

40Ar/39Ar ages (Ma)

-

47 ± 51

Table 3. Locations and mineral assemblages used for P–T conditions, thermobarometry, U–Pb monazite and 40Ar/39Ar age dating of investigated rock samples from the Hamadan metamorphic complex.

Abbreviations: Crd - Cordierite, St - Staurolite, And - Andalusite, Sil - Sillimanite, Grt - Garnet, Ms - Muscovite, Bt - Biotite, Qtz - Quartz, Pl - Plagioclase, Kfs - K-feldspar, Amph - Amphibole, Ttn - Titanite, Czo -

Clinozoisite, Ilm - Ilmenite.

Zone

Sample Location

Rock Type

H101

H102

34°34ʹ12” 48°25ʹ11”

34°31ʹ25” 48°28ʹ45”

Sample 

no.

(U-Th)-Pb 

monazite 

ages (Ma)

168 ± 11

-

-GASP

Method

grt-pl-wm-bt

GASP

grt-pl-wm-bt

grt-pl-wm-bt

H46

34°30ʹ29”H108

And+St+Grt+Bt+Ms+Pl+Qtz+Ilm

-St+Grt+Bt+Ms+Pl+Qtz+Ilm34°30ʹ20” 48°36ʹ24”

34°34ʹ33” 48°41ʹ33”

48°36ʹ41”

34°33ʹ19” 48°38ʹ23”

metapelitic schist

metapelitic schist -H44

grt-pl-wm-bt

M3 event34°37ʹ13” 48°38ʹ25” St+Grt+Bt+Ms+Pl+Qtz+Ilm

H28

H54

metapelitic hornfels

metapelitic hornfels

metapelitic schist

metapelitic schist

metapelitic schist

And+Crd+Grt+Bt+Ms+Kfs+Pl+Qtz+Ilm

St+Grt+Bt+Ms+Pl+Qtz+Ilm

St+Grt+Bt+Ms+Pl+Qtz+Ilm grt-pl-wm-bt

Assemblage-

forming 

event

M2 event, M1 

garnet
Crd+Grt+Bt+Kfs+Pl+Qtz+Ilm

Assemblage

Conventional 

thermobarometry

Table 3-revised



H101 H48 H116 H44 H30 H10

Crd + Kfs zone And ± crd zone St zone St zone And zone Sil zone

SiO2 61.87 62.72 45.40 64.61 64.52 63.55 63.45

TiO2 0.86 0.85 1.39 0.77 0.83 0.92 0.85

Al2O3 19.80 20.20 25.87 18.31 19.38 18.34 19.21

Fe2O3 7.39 6.80 10.85 6.52 5.99 7.82 6.90

MnO 0.18 0.19 0.26 0.08 0.12 0.15 0.14

MgO 2.21 2.12 3.10 2.16 1.83 2.18 2.10

CaO 0.42 0.28 1.05 1.26 0.97 0.51 0.69

Na2O 1.53 1.28 1.15 1.54 1.24 1.22 1.36

K2O 4.28 3.91 5.30 3.22 3.21 3.32 3.59

P2O5 0.20 0.16 0.21 0.19 0.15 0.21 0.18

LOI 1.38 2.08 4.99 2.02 2.27 2.15 1.98

Total 100.13 100.59 99.57 100.67 100.50 100.38 100.45

Table 4. Whole-rock compositions used for phase diagram modelling.

Average Hamadan 

composition

Table 4



Crd Grt core Grt rim Bt Ms Pl Kfs And Grt core Grt rim Bt Ms Pl

SiO2 48.34 37.07 37.43 35.39 48.49 63.84 64.94 35.65 36.95 36.96 33.03 46.17 62.32

TiO2 0.00 0.00 0.03 2.32 0.30 0.00 0.05 0.00 0.01 0.06 3.77 0.58 0.00

Al2O3 31.95 21.01 20.75 18.32 36.29 23.36 18.99 64.04 21.07 21.04 18.48 37.87 23.96

FeO 11.17 34.91 34.81 20.75 1.22 0.00 0.00 0.00 33.43 33.87 19.98 1.17 0.10

MnO 0.59 3.44 3.25 0.00 0.00 0.08 0.00 0.02 4.07 4.34 0.16 0.09 0.02

MgO 5.81 2.45 2.63 9.00 0.86 0.00 0.00 0.12 3.62 3.09 8.27 0.63 0.00

CaO 0.00 0.84 0.91 0.00 0.01 4.36 0.01 0.02 0.28 0.39 0.04 0.00 5.13

Na2O 0.37 0.00 0.00 0.16 0.34 8.79 1.10 0.00 0.00 0.00 0.08 0.34 8.32

K2O 0.02 0.02 0.04 9.28 10.35 0.22 14.86 0.00 0.03 0.03 9.13 9.83 0.17

F ­ ­ ­ 0.52 0.16 ­ ­ ­ ­ ­ 0.70 0.23 ­

Total 98.24 99.74 99.85 95.73 98.00 100.66 99.95 99.87 99.46 99.78 93.64 96.92 100.02

Oxygen 18 12 12 11 11 8 8 20 12 12 11 11 8

Si 5.058 3.007 3.026 2.709 3.122 2.801 2.984 0.963 2.989 2.992 2.603 3.009 2.758

Ti 0.000 0.000 0.002 0.134 0.015 0.000 0.002 0.000 0.001 0.004 0.223 0.028 1.250

Al 3.940 2.008 1.977 1.653 2.754 1.208 1.028 2.039 2.009 2.007 1.716 2.909 0.000

Fe2+ 0.977 2.368 2.354 1.328 0.066 0.000 0.000 0.000 2.250 2.291 1.317 0.064 0.000

Fe3+ 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.006 0.000 0.000 0.000 0.000 0.004

Mn 0.052 0.236 0.223 0.000 0.000 0.003 0.000 0.000 0.279 0.298 0.011 0.005 0.001

Mg 0.906 0.296 0.317 1.027 0.083 0.000 0.000 0.005 0.437 0.373 0.972 0.061 0.000

Ca 0.000 0.073 0.079 0.000 0.001 0.205 0.001 0.001 0.024 0.034 0.003 0.000 0.243

Na 0.075 0.000 0.000 0.024 0.042 0.748 0.098 0.000 0.000 0.000 0.012 0.043 0.714

K 0.003 0.002 0.004 0.906 0.850 0.012 0.871 0.000 0.003 0.003 0.918 0.817 0.010

Cl ­ ­ ­ 0.000 0.000 ­ ­ ­ ­ ­ 0.000 0.000 ­

F ­ ­ ­ 0.126 0.033 ­ ­ ­ ­ ­ 0.174 0.047 ­

Total 11.011 7.990 7.982 7.907 6.966 4.978 4.984 3.014 7.992 8.002 7.949 6.983 4.979

Xab ­ ­ ­ ­ ­ 0.775 0.101 ­ ­ ­ ­ ­ 0.738

Xan ­ ­ ­ ­ ­ 0.212 0.001 ­ ­ ­ ­ ­ 0.252

Xor ­ ­ ­ ­ ­ 0.013 0.899 ­ ­ ­ ­ ­ 0.010

Xalm ­ 0.797 0.792 ­ ­ ­ ­ ­ 0.753 0.765 ­ ­ ­

Xprp ­ 0.100 0.107 ­ ­ ­ ­ ­ 0.146 0.124 ­ ­ ­

Xgrs ­ 0.025 0.027 ­ ­ ­ ­ ­ 0.008 0.011 ­ ­ ­

Xsps ­ 0.079 0.075 ­ ­ ­ ­ ­ 0.093 0.099 ­ ­ ­

XMg 0.481 0.111 0.119 0.430 ­ ­ ­ ­ 0.163 0.140 0.425 ­ ­

K/(K+Na) ­ ­ ­ ­ 0.952 ­ ­ ­ ­ ­ ­ 0.950 ­

Table 5. Representative electron microprobe analyses of the Hamadan metapelitic assemblages.

Cordierite + K-feldspar zone (Sample H101) Andalusite ± cordierite zone (Sample H48)

Table 5



St core St rim Grt core Grt rim Bt Ms Pl And St core St rim Grt core Grt rim Bt Ms Pl Sill And Grt core Grt rim Bt Ms Pl

SiO2 27.16 28.77 36.41 37.21 38.01 48.47 60.42 36.52 27.81 27.99 36.65 36.89 35.19 47.12 61.82 36.48 36.50 36.59 36.93 34.88 47.20 62.05

TiO2 0.48 0.55 0.08 0.06 1.47 0.39 0.04 0.07 0.55 0.48 0.00 0.02 1.56 0.48 0.00 0.00 0.07 0.01 0.02 3.00 0.87 0.04

Al2O3 53.43 54.50 20.89 20.49 19.33 36.99 25.12 63.15 53.33 52.83 21.70 20.11 18.55 37.06 24.26 63.39 63.37 20.71 20.53 19.14 36.98 24.06

FeO 13.62 14.14 27.68 35.50 16.32 0.84 0.00 0.00 14.15 13.82 32.26 35.83 19.06 1.34 0.00 0.00 0.00 32.97 33.05 20.34 0.92 0.00

MnO 0.00 0.06 9.86 1.34 0.03 0.04 0.03 0.05 0.22 0.11 5.41 2.33 0.03 0.04 0.03 0.00 0.00 6.17 6.12 0.06 0.00 0.08

MgO 1.90 2.39 1.22 2.30 10.47 0.54 0.00 0.32 1.70 1.59 2.74 2.47 9.46 0.54 0.02 0.00 0.18 2.59 2.53 7.89 0.51 0.00

CaO 0.02 0.01 3.11 3.06 0.09 0.02 7.02 0.03 0.00 0.00 1.72 1.29 0.18 0.04 5.61 0.02 0.00 0.83 0.74 0.00 0.08 5.43

Na2O 0.00 0.01 0.00 0.00 0.21 0.98 7.37 0.00 0.03 0.00 0.00 0.00 0.22 1.20 8.53 0.00 0.02 0.00 0.00 0.20 0.77 8.49

K2O 0.00 0.03 0.03 0.01 8.30 8.37 0.05 0.00 0.01 0.00 0.00 0.01 8.32 9.91 0.03 0.01 0.00 0.02 0.03 9.03 9.92 0.04

ZnO 0.26 0.43 ­ ­ ­ ­ ­ ­ 0.52 0.25 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­

Cl ­ ­ ­ ­ 0.01 0.01 ­ ­ ­ ­ ­ ­ 0.11 0.01 ­ ­ ­ ­ ­ 0.01 0.02 ­

F ­ ­ ­ ­ 0.52 0.14 ­ ­ ­ ­ ­ ­ 0.00 0.00 ­ ­ ­ ­ ­ 0.51 0.16 ­

Total 96.87 100.89 99.28 99.97 94.76 96.80 100.05 100 98 97 100 99 93 98 100 99.90 100.13 99.89 99.95 95.07 97.44 100.19

Oxygen 46 46 12 12 11 11 8 20 46 46 12 12 11 11 8 5 20 12 12 11 11 8

Si 7.621 7.761 2.979 3.008 2.838 3.121 2.685 0.983 7.720 7.834 2.938 3.023 2.737 3.050 2.732 0.984 0.983 2.970 2.998 2.683 3.057 2.747

Ti 0.101 0.112 0.005 0.004 0.083 0.019 0.001 0.001 0.115 0.101 0.000 0.001 0.091 0.023 0.000 0.000 0.001 0.001 0.001 0.174 0.042 0.001

Al 17.670 17.328 2.014 1.952 1.701 2.808 1.316 2.004 17.449 17.427 2.050 1.942 1.700 2.827 1.264 2.015 2.011 1.981 1.965 1.735 2.823 1.256

Fe2+ 3.196 3.190 1.873 2.376 1.019 0.045 0.000 0.000 3.285 3.235 2.096 2.445 1.240 0.073 0.000 0.000 0.000 2.161 2.208 1.309 0.050 0.000

Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.005 0.005 0.000 0.000 0.000 0.000 0.003

Mn 0.000 0.014 0.683 0.092 0.002 0.002 0.001 0.001 0.052 0.026 0.367 0.162 0.002 0.002 0.001 0.000 0.000 0.424 0.421 0.004 0.000 0.003

Mg 0.795 0.961 0.149 0.277 1.165 0.052 0.000 0.013 0.704 0.663 0.327 0.302 1.097 0.052 0.001 0.000 0.007 0.313 0.306 0.905 0.049 0.000

Ca 0.006 0.003 0.273 0.265 0.007 0.001 0.334 0.001 0.000 0.000 0.148 0.113 0.015 0.003 0.266 0.001 0.000 0.072 0.064 0.000 0.006 0.258

Na 0.000 0.005 0.000 0.000 0.030 0.122 0.635 0.000 0.016 0.000 0.000 0.000 0.033 0.151 0.731 0.000 0.001 0.000 0.000 0.030 0.097 0.729

K 0.000 0.010 0.003 0.001 0.791 0.688 0.003 0.000 0.004 0.000 0.000 0.001 0.825 0.818 0.002 0.000 0.000 0.002 0.003 0.886 0.820 0.002

Zn 0.054 0.086 ­ ­ ­ ­ ­ ­ 0.107 0.052 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­

Cl ­ ­ ­ ­ 0.001 0.001 ­ ­ ­ ­ ­ ­ 0.014 0.001 ­ ­ ­ ­ ­ 0.001 0.002 ­

F ­ ­ ­ ­ 0.123 0.029 ­ ­ ­ ­ ­ ­ 0.000 0.000 ­ ­ ­ ­ ­ 0.124 0.033 ­

Total 29.443 29.470 7.979 7.975 7.760 6.888 4.979 3.009 29.452 29.338 7.926 7.989 7.754 7.000 4.998 3.005 3.008 7.924 7.966 7.851 6.979 4.998

Xab ­ ­ ­ ­ ­ ­ 0.653 ­ ­ ­ ­ ­ ­ ­ 0.732 ­ ­ ­ ­ ­ ­ 0.7372

Xan ­ ­ ­ ­ ­ ­ 0.344 ­ ­ ­ ­ ­ ­ ­ 0.266 ­ ­ ­ ­ ­ ­ 0.2605

Xor ­ ­ ­ ­ ­ ­ 0.003 ­ ­ ­ ­ ­ ­ ­ 0.002 ­ ­ ­ ­ ­ ­ 0.0023

Xalm ­ ­ 0.629 0.789 ­ ­ ­ ­ ­ ­ 0.713 0.809 ­ ­ ­ ­ ­ 0.728 0.736 ­ ­ ­

Xprp ­ ­ 0.050 0.092 ­ ­ ­ ­ ­ ­ 0.111 0.100 ­ ­ ­ ­ ­ 0.105 0.102 ­ ­ ­

Xgrs ­ ­ 0.092 0.088 ­ ­ ­ ­ ­ ­ 0.050 0.037 ­ ­ ­ ­ ­ 0.024 0.021 ­ ­ ­

Xsps ­ ­ 0.229 0.031 ­ ­ ­ ­ ­ ­ 0.125 0.054 ­ ­ ­ ­ ­ 0.143 0.140 ­ ­ ­

XMg ­ ­ 0.074 0.104 0.533 ­ ­ ­ ­ ­ 0.135 0.110 0.469 ­ ­ ­ ­ 0.127 0.122 0.409 ­ ­

K/(K+Na) ­ ­ ­ ­ ­ 0.849 ­ ­ ­ ­ ­ ­ ­ 0.844 ­ ­ ­ ­ ­ ­ 0.894 ­

Table 5. (Continued)

Staurolite zone (Sample H46) Andalusite zone (Sample H28) Sillimanite zone (Sample H19)

Table 5 (Continued)



1 And-in (from Chl) Ms + Chl + Qtz = And + Bt + H2O

2 And to Crd (Chl-free) Bt + And + Qtz + H2O = Ms + Crd

3 And+Kfs-in Ms + Qtz = Kfs + And + H2O

4 And to Crd+Kfs-in Bt + And + Qtz = Crd + Kfs +H2O

5 St-in (from Chl) Ms + Chl = St + Bt + Qtz + H2O

6 St to And (Chl-free) Ms + St + Qtz = And + Bt + H2O 

7 Sil-in (from And) And = Sil

Reaction number in 

P–T phase diagram 

Hornfels Zones

Schistose Zones

 Table 6. Mineral reactions related to assemblages in the Hamadan metapelites. Numbered reactions are 

shown in Fig. 10 and discussed in the text.

Reaction label Simplified reaction in KFMASH

Table 6
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