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Abstract iv

Abstract

In this thesis, we start by considering a hyperelastic circular solid cylinder or tube

that is rotating about its axis of symmetry with angular velocity ω. If the resultant

axial force F is fixed, it is shown that the bifurcation condition for a solid cylinder

or a tube that is shrink-fitted to a rigid circular cylindrical spindle is simply given by

dω/dλz = 0, where λz is the axial stretch. When the spindle is absent (the case of

unconstrained rotation), we also allow for the possibility that the tube is additionally

subjected to an internal pressure P . It is shown that with P fixed, and ω and F both

viewed as functions of the circumferential stretch λa and λz, the bifurcation condition

for localized bulging is that the Jacobian of ω and F should vanish.

The second part of the thesis studies localized bulging in an inflated bilayer tube under

inflation and axial extension. Firstly, bulging prevention in a hyperelastic bilayer tube

composed of the Gent material is investigated. We determine several critical parameter

regimes where localized bulging disappears, when one layer (layer I) of the tube cannot

bulge whereas the other part (layer II) can. Surprisingly, we find that localized bulging

still occurs if the proportion of layer II exceeds a critical value, no matter whether it

occupies the inner layer or outer layer. Secondly, we focus on the effect of modulus

ratio between two layers on the bulge formation. If the thickness of the bilayer tube

is specified, the composite tube is more stable when the stiffer part occupies the outer

layer. Moreover, the critical volume ratio vcr as a function of the interfacial radius D

has a maximum if s > 1 but a minimum if s < 1, where s is the ratio of the shear

modulus of the outer layer to that of the inner layer.



Finally, we turn our attention to study the effect of torsion on the onset of localized

bulging. When the twisting moment M is fixed, the bifurcation condition for localized

bulging is that the Jacobian of the internal pressure P and the resultant axial force

F should vanish. It is found that the onset of localized bulging can be delayed or

removed when a torsion is applied to the tube.
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Chapter 1

Introduction

When a hyperelastic tube is inflated by an internal pressure, the tube first expands

cylindrically until the pressure reaches a critical value. Subsequently, a localized bulge

appears at one point of the tube, and this state is known as the initiation stage. As

inflation is continued into the tube, the pressure drops while the bulge grows until

it reaches a maximum size (the growth stage). With continued inflation, the bulge

propagates axially along the tube at a constant propagation pressure (the propagation

stage); see Figure (1.1). This process has been illustrated by several authors. The

earliest study of localized bulging in an inflated isotropic tube seems to have been by

Mallock (1891), although the material was modelled by a linear constitutive law. Yin

(1977) studied the propagation stage and made some assumptions on the strain-energy

function. Therefore, he studied the progression of the bulge in cylindrical membranes

1



Chapter 1. Introduction

Figure 1.1: Representation of the whole bulging process (Wang et al., 2019). (1)

apply a dead weight (2) inflation (3)-(4) the initiation stage (5)-(6) the growth

stage (7)-(9) the propagation stage.

using Mooney and Hard-Smith models at small and large strains, respectively. Chater

and Hutchinson (1984) show that the propagation pressure can be obtained by the use

of Maxwell’s equal-area rule.

One of the most important applications of localized bulging is in the mathematical

modelling of aneurysm initiation in human arteries. An aneurysm is a bulge in a

blood vessel due to the weakness of its wall; see Figure (1.2). Localized bulging in

inflated tubes is similar to aneurysm formation. Thus, the study of bulge formation

could provide useful insights into aneurysm formation in human arteries; see Seshaiyer

2
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Figure 1.2: Brain aneurysm (https://www.medicinenet.com).

and Humphrey (2001), Pamplona and Mota (2012), Fu et al. (2012), Alhayani et al.

(2014), Fu and Il’Ichev (2015), Varatharajan and DasGupta (2017) and Varatharajan

and DasGupta (2018).

There are three distinct stages during the evolution of localized bulging: initiation,

growth, propagation, as illustrated previously. These stages are commonly observed

in other localization problems, such as propagating buckles in metal tubes (Kyriakides

and Babcock, 1981), propagating necks in materials under tension (Hutchinson and

Neale, 1983). Also, localized bulging is related to the so-called limiting point instabil-

ity, which refers to the existence of a pressure maximum in uniform inflation, for more

details see, Alexander (1971); Kanner and Horgan (2007); Mao et al. (2014); Hornỳ

et al. (2015); Wang et al. (2018). Therefore, the understanding of bulging behavior

3
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can shed light on many other localization problems, for instance, localized necking in

dielectric membranes (Fu et al., 2018). Furthermore, the accuracy of hyperelastic ma-

terial models, especially for moderate values of strains, can be examined by studying

localized bulging in inflated tubes; see Zhou et al. (2018).

The problem of an inflated tube and the related issue of bifurcation is a classical

subject in nonlinear elasticity, which has been investigated by many researchers; see,

for instance, Adkins and Rivlin (1952), Green and Adkins (1960) and Kydoniefs (1969).

In the bifurcation analysis of a hyperelastic tube under combined internal inflation

and axial stretching/compression, early efforts were dedicated to studying periodic

perturbations (Haughton and Ogden, 1979a,b), and the zero mode in the axial direction

was believed to be another uniform state such that it was excluded. It was recognized

recently by Fu et al. (2008) and Pearce and Fu (2010) that it is not the periodic

mode but the zero mode that corresponds to localized bulging in a membrane tube.

Meanwhile, a weakly nonlinear analysis was also carried out in Fu et al. (2008). In

addition, the stability of bulging solutions was further studied by Fu and Xie (2010);

Il’Ichev and Fu (2012), and the imperfection sensitivity has been examined in Fu

and Xie (2012). On the other hand, Rodŕıguez and Merodio (2011) considered the

equilibrium of different infinitesimal volume elements for a membrane tube subjected

to internal pressure and axial loading. They rederived the bifurcation criteria for

three bifurcation modes, including a prismatic mode, a bulging mode, and a composite

mode. Under the membrane assumption, the effect of constitutive models on the bulge

initiation was studied by Pearce (2012) for the cases of fixed axial force and fixed axial

4
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length.

It is worth mentioning that in most of the above-mentioned theoretical works, the tube

is modeled as a membrane, such that there is no bending stiffness. Fu et al. (2016)

started from the exact theory of nonlinear elasticity to study bulging behavior in a

tube of arbitrary thickness. Also, the accuracy of the membrane theory was examined.

Most importantly, they derived an explicit bifurcation condition for localized bulging,

and the effects of tube thickness and different constitutive models were discussed in

detail. Indeed, the explicit bifurcation condition derived by Fu et al. (2016) makes

it possible to explore the bulging behavior in double-fiber reinforced or layered tubes

in the framework of finite elasticity. Using the bifurcation condition derived in the

latter paper, Wang and Fu (2018) investigate the effects of fibre reinforcement on

localized bulging of an inflated hyperelastic tube of arbitrary thickness. Furthermore,

the applicability of the bifurcation condition derived by Fu et al. (2016) to layered

structures is also validated by direct numerical evidence in Liu et al. (2019).

In practice, two different loading types are usually adopted for a tube under combined

internal inflation and uniaxial tension, i.e., either the resultant axial force or the axial

length is fixed. The former case can be achieved by suspending an object on one end

and inflating the tube from the other end; see Figure (1.1). In this case, the movement

of one end of the tube is unrestricted, and a distinctive feature is that the pressure

against the volume (or the circumferential stretch) curve has an N shape if localized

bulging occurs at a critical pressure. Furthermore, bifurcation leading to localized

bulging is a result of the limit-point instability. Also, the propagation pressure can

5
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Figure 1.3: Localized bulging in the case of fixed axial length (Wang et al., 2019).

be determined by Maxwells equal-area rule. For the other loading type, a tube is first

stretched to a prescribed value, and then the length is fixed; see Figure (1.3). In this

situation, the behavior of pressure against volume might be monotonic. In this case,

localized bulging also occurs if the internal pressure P exceeds a critical value, which

provides a correspondence between the artery aneurysm and mechanical bifurcation.

Experimentally, pioneering works by Kyriakides and Chang (1990, 1991) explained

many features of localized bulging such as pressure drop after bulge initiation in the

case of fixed resultant axial force. Then, the inflation experiment was extended to

textured tubes by Guo et al. (2016) and the case of fixed axial length was studied

by Pamplona et al. (2006); Gonçalves et al. (2008) where comparisons with numer-

ical solutions were also presented. Recently, Wang et al. (2019) carried out a new

set of experiments guided by the newly emerged analytical results to evaluate the

6
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imperfection sensitivity of the initiation pressure and the robustness of the propaga-

tion pressure. Since bulging bifurcation is subcritical, the experimentally measured

initiation pressure is around 15% below the theoretical prediction.

Deformation of a rotating hyperelastic cylinder or tube is one of the first problems

solved using the continuum mechanics theory; see for example Green and Zerna (1992)

with results used to test the validity of constitutive assumptions. The question of an

axisymmetric bifurcation for a rotating cylinder was studied by Patterson and Hill

(1977) using the neo-Hookean material model. A significant generalization was sub-

sequently made by Haughton and Ogden (1980a,b,c), who considered all the possi-

ble periodic buckling modes (prismatic, axisymmetric, or asymmetric) for a rotating

cylinder or tube without restricting the material model in their general formulation

although numerical results were presented only for the Ogden material model. In the

last three studies, it was observed that the rotation speed, when viewed as a function

of a stretch measure, may reach a maximum beyond which the primary deformation

no longer exists. However, the connection between the limiting point instability and

localized bulging bifurcation was not fully understood at that time. It is shown in

Chapter 3 that under a certain loading condition, the existence of such an angular

speed maximum is closely associated with axisymmetric bulging localized in the ax-

ial direction, a phenomenon rather similar to localized bulging in circular cylindrical

tubes that are inflated by an internal pressure.

A common ground in Bucchi and Hearn (2013) and Wang and Fu (2018) to prevent

7
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bulging is to reduce the extensibility of the reinforced fibers. However, in some en-

gineering applications, for instance, the Anaconda wave energy extraction device, a

very stiff tube is not applicable (Bucchi and Hearn, 2013). Consequently, we need to

balance the stability and extensibility of a tube, and this is one of the motivations for

the current study. Indeed, there are many kinds of constitutive models of rubber in

continuum mechanics, such as the neo-Hookean model, MooneyRivlin model (Mooney,

1940), Ogden model (Ogden, 1972), Gent model (Gent, 1996) and Gent-Gent model

(Pucci and Saccomandi, 2002), etc. Among them, the Gent model was proposed based

on the finite extensibility of the polymeric chains in rubber, and a significant material

parameter Jm represents the extension limit. In Chapter 4, we are concerned with the

effect of the extension limit on bulging prevention, and thus we still adopt the Gent

model. So, we want to determine the critical parameters to avoid localized bulging and

then extend the current studies to layered tubes. We aim at offering an alternative to

bulging prevention by using a tube that cannot bulge to cover the inside or outside of

the original one.

It is well known that human arteries have a multilayer structure and they can be

modeled as a bilayer tubular structure (Holzapfel et al., 2000; Gasser et al., 2005).

In particular, strong evidence suggests that arteries stiffen with age (Kohn et al.,

2015). Hence, in Chapter 5, we study localized bulging of an inflated bilayer tube

to understand the effect of modulus ratio between two layers on the bulge formation

and maximum radius at the center of the bulge. Moreover, we apply the Gent model

and Ogden model to demonstrate the model insensitivity of the qualitative bifurcation
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features. We wish to provide useful insight into aneurysm formation in human arteries

and offers a possible way to control bulge initiation using a bilayer tube.

The deformation of a cylindrical tube under the combined action of internal infla-

tion, extension and torsion has been studied by Rivlin (1948, 1949), Gent and Rivlin

(1952), Balbi and Ciarletta (2015), Merodio and Ogden (2016) amongst others. Ren

et al. (2011) found a critical thickness in a three-layered fiber-reinforced above which

the limit-point instability becomes impossible. The problem of an inflated tube sub-

ject to axial extension and torsion was examined by Hamdaoui et al. (2014) for an

incompressible transversely isotropic material (or a standard reinforcing model). The

previous investigations are related to localized bulging only in the case of fixed axial

force. The situation of fixed axial length corresponds to what human arteries are in

vivo (Hornỳ et al., 2014). Thus, we wish to fill this gap in the literature in Chapter 6.

The results of Chapters 3,4 and 5 have been published in three journal articles, Wang

et al. (2017); Liu et al. (2019); Ye et al. (2019).

9



Chapter 2

Mathematical Preliminaries

2.1 Introduction

In this Chapter we provide the basic theory of continuum mechanics which is needed

for our research, including kinematics, balance laws and field equations, constitutive

equations, hyperelastic materials, and strain energy functions. The fundamental con-

cepts of continuum mechanics are presented in many books; see Ogden (1997), Taber

(2004), Holzapfel (2000), and Fu and Ogden (2001). We also provide a summary of

incremental equations, Stroh formulation, and the surface-impedance matrix method.
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2.2 Summary of Continuum Mechanics

2.2.1 Kinematics

A body B can be defined as a set of particles or material points that can be put into a

one-to-one correspondence with triplets of real numbers. In order to know the changes

in geometric characteristics of the body, we shall call Br a reference configuration or

undeformed configuration and Bt a current configuration or deformed configuration.

For our purpose, we shall use capital and small letters to indicate quantities in Br and

Bt, respectively. Therefore, we have a mapping χ : Br → Bt which takes particles,

associated with a position vector X, in the reference configuration to particles in the

current configuration. Then, we have

x = χ(X, t), X ∈ Br, (2.1)

where x is the position vector of X in Bt and t is time. For all coordinate systems, the

differential of the position vector X can be written as

dX =
∂X

∂SA
dSA = GAdSA, (2.2)

where SA are any set of coordinates. We also define another set of vectors GB associ-

ated with GA such that

GA.G
B = δAB, (2.3)

11
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where

δAB =

 1 if A = B

0 if A 6= B

, (2.4)

denotes the Kronecker delta.

In Kinematics, we are interested in how things move from the reference configuration

to the current configuration. Thus, the deformation gradient tensor F is defined by

F = Grad x =
∂x

∂SA

⊗GA, (2.5)

where Grad is the gradient operator in Br and ⊗ denotes the tensor product of an

ordered pair of vectors. We shall use two orthonormal basis vectors (Ei) and (ei)

associated with the reference configuration and the current configuration, respectively.

In rectangular coordinate systems, the deformation gradient tensor F can be defined

as

F = Gradx =
∂(xiei)

∂Xj

⊗ Ej =
∂xi

∂Xj

ei ⊗ Ej, i, j = 1, 2, 3. (2.6)

If cylindrical coordinate systems are used for both x and X, then

F =
∂

∂R
(rer + zez)⊗ ER +

1

R

∂

∂Θ
(rer + zez)⊗ EΘ +

∂

∂Z
(rer + zez)⊗ EZ . (2.7)
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In this case, the deformation gradient tensor can be written in matrix form as

F =


∂r
∂R

1
R
∂r
∂Θ

∂r
∂Z

r ∂θ
∂R

r
R
∂θ
∂Θ

r ∂θ
∂Z

∂z
∂R

1
R
∂z
∂Θ

∂z
∂Z

 . (2.8)

We now consider two infinitesimal line elements dX and dx in the reference and current

configurations, respectively. The relation between these elements under the deforma-

tion is then given by

dx = FdX. (2.9)

Let dV and dv be the infinitesimal volume elements in the reference and current

configurations, respectively. According to the basic tensor theory (Spencer, 1980), the

relationship between the two volume elements is given by

dv = JdV, (2.10)

where J denotes the determinant of the deformation gradient F. For an incompressible

material, where the volume does not change during the deformation, we have

J = detF = 1. (2.11)
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The polar decomposition theorem, for example see Chadwick (1999), enables us to

express an arbitrary invertible tensor F in the form

F = RU = VR, (2.12)

where U,V are positive definite symmetric tensors, and R is an orthogonal tensor,

RRT = RTR = I, where I is the identity tensor and a superscript T denotes the

transpose of a tensor. In addition, the right and left polar decompositions of F are

unique. Since U and V are positive definite symmetric tensors, each of these tensors

can be written in the spectral representations. For example, we have

U =
3∑
r=1

λr(pr ⊗ pr), (2.13)

where λr are the eigenvalues of U, or the principal stretches of U, and pr are the

eigenvectors of U. Note that the eigenvalues of U are the same as the eigenvalues of

V. The right and left Cauchy-Green deformation tensors are given by

C = FTF = U2, B = FFT = V2, (2.14)

respectively. Thus, we have

C =
3∑
r=1

λr
2(pr ⊗ pr), B =

3∑
r=1

λr
2(qr ⊗ qr), (2.15)
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where qr = R pr.

The velocity v of a material point x is given by

v ≡ ∂x

∂t
=
∂χ(X, t)

∂t
. (2.16)

Therefore, the velocity gradient tensor L is defined by

L = grad v. (2.17)

Using the result Gradu = (gradu)F, we may write

Ḟ ≡ ∂

∂t
F =

∂

∂t
Gradx = Gradv, LF = (grad v)F = Grad v, (2.18)

which implies

Ḟ = LF. (2.19)

2.2.2 Balance laws and field equations

2.2.2.1 Conservation of mass

Let ρ(x, t) and ρr(X) denote the mass densities in the current and reference configura-

tions, respectively. Then the conservation of mass states that the total mass must not

be destroyed or created under the deformation, i.e., the total mass remains constant.
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Thus, we have

ρdv = ρrdV. (2.20)

Substituting (2.10) into (2.20), we get

ρJ = ρr, or ρ = J−1ρr. (2.21)

On differentiating (2.21)1 with respect to t and using the result J̇ = Jdiv v, we obtain

ρ̇+ ρ div v = 0, (2.22)

where div is the divergence operator in Bt. If the material is incompressible (i.e.

detF = 1), then the density is constant ρ = ρr. Therefore, (2.22) reduces to div v = 0.

2.2.2.2 Principle of linear momentum

The principle of linear momentum, which may be viewed as a generalization of New-

ton’s second law, states that the rate of change of the total linear momentum is equal

to the resultant force. Let b denotes the body force acting on an arbitrary region in

the current configuration Rt and t(x,n) the tractions which act on the surface of the

arbitrary region in the current configuration ∂Rt, where n is the outward unit vector

normal to the surface of Rt. Then, we may write

d

dt

∫
Rt

ρv dv =

∫
Rt

ρb dv +

∫
∂Rt

t(x,n) da. (2.23)
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Equations (2.10) and (2.21) can be used to convert the integral of the left hand side

of (2.23) over Rt to their respective integral in the equivalent region in the reference

configuration R0 as follows

d

dt

∫
Rt

ρv dv =
d

dt

∫
R0

ρvJ dV =

∫
R0

d

dt
ρrv dV =

∫
Rt

ρv̇ dv. (2.24)

Therefore, (2.23) can be written as

∫
Rt

ρ(v̇ − b) dv =

∫
∂Rt

t(x,n) da. (2.25)

2.2.2.3 Equations of motion

According to Cauchy’s theorem (Ogden, 1997), if t(x,n) is continuous in x, then there

exists a second-order tensor called the Cauchy stress tensor σ, which is independent

of n, such that

t(x,n) = σT (x, t)n. (2.26)

Consequently, (2.25) becomes

∫
Rt

ρ(v̇ − b) dv =

∫
∂Rt

σT (x, t)n da. (2.27)

The divergence theorem allows us to transfer the surface integral in (2.27) into the

volume integral as ∫
∂Rt

σT (x, t)n da =

∫
Rt

divσ dv. (2.28)
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Thus, the equation of linear momentum (2.27) can be rewritten as

∫
Rt

(divσ + ρb− ρv̇) dv = 0, ∀ Rt. (2.29)

Since this is valid for every arbitrary region in the current configuration Rt, we derive

the equations of motion

divσ + ρ b = ρ v̇. (2.30)

In a similar manner, we may use the principle of angular momentum to deduce the

following

σ = σT . (2.31)

We shall introduce the nominal stress tensor S which will be used later. The nominal

stress tensor S is connected to Cauchy stress tensor σ through

S = JF−1σ. (2.32)

In this case, the following equation holds,

Div S + ρr b = ρr v̇. (2.33)

In the absence of body force b and if the material is in equilibrium, i.e. v̇ = 0, then

the equations of motion (2.30) and (2.33) reduce to equilibrium equations

divσ = 0, (2.34)
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Div S = 0. (2.35)

2.2.3 Constitutive equations

The governing equations derived earlier are valid for any continuum. Thus, in order

to derive the complete mathematical model, we need to introduce the constitutive

equations, which are the mathematical descriptions of material response based upon

their internal constitution. For our purpose, we need to specify these equations to the

elastic materials. In the case of elasticity, we assume that the Cauchy stress depends

only on the deformation gradient, no memory of past histories. Thus we have

σ = g(F), (2.36)

where g is a symmetric tensor-valued function.

2.2.3.1 Principle of objectivity

The principle of objectivity, or material frame-indifference, states that the constitu-

tive equations should be objective, i.e., material properties should be independent of

observers. Thus, the symmetric tensor-valued function g satisfies

g(QF) = Qg(F)QT , (2.37)

for each deformation gradient F and all rotations Q; see Ogden (1997) .
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2.2.3.2 Isotropic materials

Physically, isotropy means that the properties of materials are direction independent.

Therefore, the response function remains the same under any rotation Q. So, we have

g(FQ) = g(F), (2.38)

for every deformation gradient F and orthogonal tensor Q. Replacing F = VR and

setting Q = RT , we have

σ = g(F) = g(V). (2.39)

With the use of the definition of isotropy (2.38) together with material objectivity

(2.37) and (2.39), we may then write

g(SFQ) = g(SF) = Sg(F)ST = Sg(V)ST , (2.40)

where S is an arbitrary orthogonal tensor. Replacing Q = RTST and F = VR in

equation (2.40), we get

g(SVST ) = Sg(V)ST , (2.41)

for all orthogonal tensor S. In this case, according to the representation theorem; see

Ogden (1997), the Cauchy stress tensor can be written as

σ = g(V) = φ0I + φ1V + φ2V
2, (2.42)
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where φ0, φ1, and φ2 are scalar functions of the principal invariants of V defined by

i1 = tr V, i2 =
1

2
[ (tr V)2 − tr(V2) ], i3 = detV. (2.43)

These principal invariants i1, i2, i3 can be written in terms of the principal stretches as

i1(V) = trV = λ1 + λ2 + λ3,

i2(V) =
1

2
[ (tr V)2 − tr(V2) ] = λ2λ3 + λ3λ1 + λ1λ2,

i3(V) = detV = λ1λ2λ3.

(2.44)

Taking the expansion of (2.42), in terms of B = V2, we get

σ = η0I + η1B + η2B
2, (2.45)

where η0, η1, and η2 are scalar functions of the principal invariants of B (Ogden, 1997).

In this case, the principal invariants of B can be written as

I1(B) = trB = λ2
1 + λ2

2 + λ2
3,

I2(B) =
1

2
[ (tr B)2 − tr(B2) ] = λ2

2λ
2
3 + λ2

3λ
2
1 + λ2

1λ
2
2,

I3(B) = detB = λ2
1λ

2
2λ

2
3.

(2.46)
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2.2.4 Hyperelastic materials

The strain energy function W (F) is a function which characterizes the stored elastic

energy per unit volume in the reference configuration. A material is called hyperelastic

if its mechanical properties are described by a strain energy function such that the

following constitutive relation must hold

∂

∂t
W (F) = J tr (σL). (2.47)

Now, if we take the partial derivative of W with respect to t and use (2.19) , we get

∂

∂t
W (F) =

∂W

∂Fij

∂Fij
∂t

= tr

(
∂W

∂F
Ḟ

)
= tr

(
∂W

∂F
LF

)
= tr

(
F
∂W

∂F
L

)
, (2.48)

where we have used the convention

(
∂W

∂F

)
ji

=
∂W

∂Fij
. (2.49)

Therefore, a relation between the strain-energy function and the Cauchy stress can be

obtained by comparing (2.47) and (2.48)

σ = J−1F
∂W

∂F
. (2.50)
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For incompressible materials, the above equation is replaced by

σ = F
∂W

∂F
− pI, (2.51)

where p is a Lagrange multiplier arising from the incompressibility constraint; see

Ogden (1997). Moreover, for an incompressible isotropic hyperelastic material, the

strain-energy function depends on I1 and I2 only. Thus, the Cauchy stress can be

written as

σ = 2
∂W

∂I1

B + 2
∂W

∂I2

(I1B−B2)− pI. (2.52)

It follows from (2.32) that the nominal stress is given by S

S =
∂W

∂F
, (2.53)

S =
∂W

∂F
− pF−1, (2.54)

for compressible and incompressible materials, respectively.

Note that the strain-energy function W is either a function of three principal stretches,

W (λ1, λ2, λ3), or the three principal invariants of B ( also of C), W (I1, I2, I3). In the

case of isotropic elastic materials, the strain-energy function is a symmetric function

of the three principal stretches, i.e.,

W (λ1, λ2, λ3) = W (λ2, λ3, λ1) = W (λ3, λ2, λ1). (2.55)
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When the strain-energy function is a function of the three principal stretches, the three

Cauchy stresses are given by

σi = J−1λi
∂W

∂λi
, no summation on i, i = 1, 2, 3, (2.56)

for compressible materials, and by

σi = λi
∂W

∂λi
− p, no summation on i, (2.57)

for incompressible materials.

2.2.5 Strain energy functions

In the previous section, the existence of a strain energy function W is assumed for

hyperelastic materials. Here, we present some examples of strain energy functions

for isotropic, hyperelastic, incompressible materials which are commonly used in the

literature.

2.2.5.1 The neo-Hookean strain energy function

One of the most widely used strain energy functions is the neo-Hookean material

model. This model is obtained by taking the first term of the expansions of the strain

energy function in a power series of the first invariant I1. The strain energy function
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of neo-Hookean model, which involves one material constant only, is given by

W =
1

2
µ(I1 − 3) =

1

2
µ(λ2

1 + λ2
2 + λ2

3 − 3), (2.58)

where µ denotes the shear modulus of the material. Although the neo-Hookean model

gives good agreement with experimental results only for small strains (Gent, 2001), it

is popular due to its simplicity.

2.2.5.2 The Mooney-Rivlin strain-energy function

The Mooney-Rivlin model is a generalization of the neo-Hookean model, which includes

the second invariant I2. The strain energy function is given by

W =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3), (2.59)

where µ1 and µ2 are material constants. The Mooney-Rivlin model was proposed by

Mooney (1940) and developed later by Rivlin (1948), so it is known as Mooney-Rivlin

model. This model gives more accurate results than neo-Hookean model, and it may

be the first choice in finite element analysis.

2.2.5.3 The Ogden material model

The previous models defined above are valid only for small deformations. Thus, an

alternative model is needed to characterize the constitutive response of the material
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subject to large deformation. Ogden (1972) introduced a strain energy function given

in terms of the principal stretches in the form

W = µ

3∑
n=1

µn
αn

(λαn
1 + λαn

2 + λαn
3 − 3), (2.60)

where µ is the shear modulus and µn and αn are material constants such that

µnαn > 0, and
3∑

n=1

µnαn = 2µ. (2.61)

The values of the material constants were measured experimentally and given by

α1 = 1.3, α2 = 5.0, α3 = −2.0, µ∗1 = 1.491, µ∗2 = 0.003, µ∗3 = −0.023.

(2.62)

Note that the neo-Hookean and the Mooney-Rivlin models are special cases of Og-

den model. This model is in good agreement with the experimental observations for

stretches up to 7.

2.2.5.4 The Gent material model

In 1996, (Gent, 1996) proposed a simple constitutive model to characterise rubber

materials, which is written in terms of the first principal invariant only as,

W = −1

2
µJm ln

(
1− I1 − 3

Jm

)
, (2.63)
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where µ denotes the shear modulus and Jm is a positive material constant representing

the maximum extensibility. The Gent model reduces to the classic neo-Hookean model

(2.58) on taking the limit as Jm →∞, and it may be sometimes called the generalized

neo-Hookean model. Gent (1996) gives a value of Jm = 97.2, for rubber-like material

while Horgan and Saccomandi (2003) give values of Jm between 0.422 and 3.93 for

human arteries. When Jm ≤ 5, the internal pressure against the volume does not

have a maximum in uniform inflation; see Kanner and Horgan (2007). Although

the Gent model involves just two material parameters, its theoretical predictions are

in good agreement with experimental results for large strains. However, this model

cannot accurately capture the experimental behaviour at moderate values of stretches.

Thus, this model was later extended for the full range of deformations by Pucci and

Saccomandi (2002). The modified model, which is known as the Gent-Gent model,

is obtained by adding an extra term including a new material parameter C2 and the

second principal invariant I2 as follows

W = −1

2
µ0Jm ln

(
1− I1

Jm

)
+ C2 ln

I2

3
, (2.64)

where µ0 is a material constant. The Gent-Gent model gives much better results than

the original Gent model when we compare the theoretical predictions with experimen-

tal results; see Zhou et al. (2018).
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2.2.5.5 The Fung material model

The strain energy function proposed by Fung (1967) is one of the most widely used in

the biomechanics literature. It has the exponential form

W =
µ

2b

(
eb(I1−3) − 1

)
, (2.65)

where b > 0 is a material constant. The range of b for human arteries lies between

1.067 for a young thoracic artery and 5.547 for an older stiffer artery; see Horgan and

Saccomandi (2003). The Fung model is reduced to the neo-Hookean by taking the

limit b→ 0.

2.2.5.6 The Yeoh model

The Yeoh model was introduced by Yeoh (1990), where the strain energy function W

is given by taking the expansions of W in a power series of the first principal invariant.

The Yeoh strain energy function may be defined as

W =
3∑
i=1

Ci(I1 − 3)i, (2.66)

where Ci are material constants. The Yeoh model is fitted to experimental data for

all range of deformations. The neo-Hookean strain energy function can be viewed as

a special case of the Yeoh material model model.
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2.3 Incremental equations

The method of incremental deformations superposed on large deformations may be

used to solve bifurcation problems. Here the governing equations of incremental defor-

mations will be introduced. For more details of the derivation of incremental equations,

we refer to Fu and Ogden (2001) and Destrade and Saccomandi (2007). Now let B

be an elastic body which has an initial unstressed state B0. This body is subject to

large deformation χ such that x = χ(X), where X is position vectors in B0 and x is

position vectors in the deformed configuration Be. Then, we superimpose a small de-

formation, or an incremental deformation, on the deformed configuration Be denoted

by x′ = χ′(X). Therefore, the incremental displacement can be written in the form

x̂ = x′ − x = χ′(X)− χ(X) ≡ χ̂(X), (2.67)

and its gradient is

Gradχ̂ = Gradχ′ −Gradχ ≡ F̂. (2.68)

Also, the nominal stress difference is given by

Ŝ = S′ − S =
∂W

∂F
(F′)− ∂W

∂F
(F), (2.69)

for compressible materials. Note that equation (2.69) has the linear approximation in

the form

Ŝ = AF̂, (2.70)
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where A is the tensor of elastic moduli, with components

Aijlk =
∂2W

∂Fji∂Fkl
. (2.71)

For incompressible materials we take the linearized incremental form of the the nominal

stress (2.54) and the the incompressibility condition detF = 1 to get

Ŝ = AF̂− p̂F−1 + pF−1F̂F−1, (2.72)

tr(F̂F−1) = 0, (2.73)

respectively, where p̂ is the increment of p.

Similarly, the equilibrium equation (2.35) and the nominal stress difference (2.69) can

be used to get

Div Ŝ = 0. (2.74)

All incremental quantities can be expressed as functions of the position vector x in

the deformed configuration Be instead of the position vector X in the reference con-

figuration B0. Thus, we have

x̂ ≡ u(x) = χ̂(χ−1(x)), Γ = F̂F−1, Ŝ0 = J−1FŜ, (2.75)
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where Γ = grad u is the gradient of incremental displacement u and Ŝ0 is the push

forward of Ŝ. Consequently, equations (2.72) and (2.73) may be rewritten as

Ŝ0 = A1Γ + pΓ− p̂I, (2.76)

tr(F̂F−1) ≡ tr(Γ) ≡ div u = 0, (2.77)

respectively, where

A1
piqj = J−1FpαFqβAαiβj. (2.78)

The updated incremental tensor Ŝ0 has components

Ŝ0ji = A1
jilkΓkl + pΓji − p̂δji. (2.79)

Accordingly, the incremental equilibrium equation (2.74) becomes

div Ŝ0 = 0. (2.80)

2.4 Stroh formulation

The Stroh formulation was first introduced by Stroh (1958, 1962) for dealing with prob-

lems in general anisotropic elasticity. The applications of this formalism are extended

later to other elasticity problems such as incremental deformation superimposed on

large deformation. By using the Stroh formulation, the governing equations can be
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reduced to a system of first-order ordinary differential equations. In this section the

Stroh formulation will be outlined in cylindrical coordinates for incompressible mate-

rials.

We consider an incremental displacement field x̂ of the form

x̂ = u(r, z)er + v(r, z)eθ + w(r, z)ez, (2.81)

where u(r, z), v(r, z) and w(r, z) denote the incremental displacement in the r-, θ-, z-

directions, respectively, and er, eθ and ez are the corresponding basis vectors. Here, it

is assumed that the incremental displacement x̂ is independent of θ. We then assume

that the solution takes the form

[u, v, w, p̂] = [U(r), V (r),W (r), P (r)] eα z, (2.82)

where U(r), V (r),W (r) and P (r) are scalar functions of r only, and α is the axial

spectral parameter. Similarly, the components of the incremental tensor Ŝ0 can be

rewritten in the following form

[
Ŝ0rr, Ŝ0rθ, Ŝ0rz

]
= [S0rr(r), S0rθ(r), S0rz(r) ] eα z. (2.83)

With the use of equilibrium equations, P (r) can be eliminated in terms of U(r), V (r),

W (r).
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By introducing the displacement-traction vector η(r), as follows

η(r) =

 U (r)

S(r)

 with
U(r) = [U(r), V (r),W (r)]T

S(r) = [S0rr(r), S0rθ(r), S0rz(r)]
T

, (2.84)

then we may rewrite the governing equations (2.80) as the following first-order differ-

ential system

dη(r)

dr
=

1

r
G(r) η(r), (2.85)

where G(r) is the so-called Stroh matrix which has the following block representation

G =

 G1 G2

G3 G4

 , (2.86)

where G1,G2,G3, and G4 are functions of r. We note that G2 and G3 are symmetric,

and G4 = −GT
1 .

2.5 The surface-impedance matrix method

The surface-impedance method is first presented by Biryukov (1985), and later devel-

oped by a number of authors; see Norris and Shuvalov (2010) and the references cited

therein. Using this approach, we can rewrite the first-order differential equation (2.85)

as a differential matrix Riccati equation.

Suppose that ηn(n = 1, . . ., 6) are the independent solutions of the system (2.85) and
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let the 6× 6 matricant M(r, rk) take the form

M(r, rk) =

 M1(r, rk) M2(r, rk)

M3(r, rk) M4(r, rk)

 = τ (r)τ−1(rk), (2.87)

where rk is the point where the initial condition is assigned and

τ (r) = [η1, ...,η6]. (2.88)

Then, M(r, rk) is the solution of the initial value problem

dM(r, rk)

dr
=

1

r
G(r)M(r, rk), with M(rk, rk) = I(6), (2.89)

where I(6) is the 6× 6 identity matrix. Accordingly, we may define the 3×3 conditional

impedance matrix z as

S = zU . (2.90)

By substituting (2.84)1 and (2.90) into (2.85), we get

dU

dr
=

1

r
G1U +

1

r
G2zU , (2.91)

d(zU )

dr
=

1

r
G3U +

1

r
G4zU . (2.92)
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Therefore, the following differential matrix Riccati equation can be obtained by sub-

stituting (2.91) into (2.92), which gives,

dz(r)

dr
=

1

r
(G3 − zG1 − zG2z + G4z). (2.93)

Once the boundary conditions are specified, equation (2.93) can be solved to fine

non-trivial solutions.
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Chapter 3

Localized bulging in cylinders and

tubes under rotation

3.1 Introduction

In this chapter we consider a cylindrical, hyperelastic, isotropic, incompressible cylin-

der or tube subject to combined action of uniform inflation, axial extension and ro-

tation. First, the problem is formulated and the expressions for the angular speed

ω, the internal pressure P and the resultant axial force F associated with the pri-

mary shape-preserving deformation are summarized. We then derive the bifurcation

condition, and conjecture and verify that the bifurcation condition in each case can

be written simply in terms of the derivatives of ω, F and/or P with respect to the

stretches. Next, the bifurcation condition is solved and numerical results are presented
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when both the Gent and Ogden material models are used. Finally, a summary of our

main results is presented. The results of this chapter have been published in Wang

et al. (2017).

3.2 Primary deformation

We first write down the solution for the primary shape-preserving deformation associ-

ated with a circular cylindrical tube that is rotating about its axis of symmetry with

angular velocity ω. The corresponding results for a solid cylinder will be obtained by

taking A = a = 0. The tube is assumed to have inner radius A and outer radius B

in the undeformed configuration, and these dimensions take the values a and b in the

deformed configuration. The outer surface of the tube is traction-free, but its inner

surface may in general be subjected to a hydrostatic pressure P or shrink-fitted to a

rigid circular cylindrical spindle with a radius larger than A. It is also assumed that

each plane end-face of the tube is subject to a resultant axial force F (e.g. F = 0 in

which case the end faces are traction-free). In terms of cylindrical polar coordinates,

the primary shape-preserving deformation is given by

r =
√
λ−1
z (R2 − A2) + a2, θ = Θ + ωt, z = λzZ, (3.1)

where (R,Θ, Z) and (r, θ, z) are the cylindrical polar coordinates in the undeformed

and deformed configurations, respectively, t denotes time, and λz is a constant. The
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associated principal stretches in the hoop, axial and radial directions are

λ1 =
r

R
≡ λ, λ2 = λz, λ3 =

dr

dR
= 1/(λλz), (3.2)

respectively. We assume that the constitutive behavior of the tube is described by a

strain-energy function W (λ1, λ2, λ3). By integrating the only equilibrium equation in

the r-direction, it can be shown that various quantities can be expressed in terms of

the reduced strain-energy function w, and its derivatives w1 and w2, defined by

w(λ, λz) = W (λ, λz, λ
−1λ−1

z ), w1 = ∂w/∂λ, w2 = ∂w/∂λz; (3.3)

see Haughton and Ogden (1980c). For instance, the radial stress on the inner surface

is given by

σ33(a) =
1

2
ρω2λ−1

z (B2 − A2)−
∫ λa

λb

w1

λ2λz − 1
dλ, (3.4)

where ρ is the material density, the two limits λa and λb are defined by

λa =
a

A
, λb =

b

B
,

and are related to each other, through incompressibility, by

λ2
aλz − 1 =

B2

A2
(λ2

bλz − 1). (3.5)
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We observe that with λb eliminated using the above relation, the deformation is com-

pletely determined by the two stretches λa and λz.

The expression (3.4) suggests the introduction of a non-dimensional quantity Γ defined

by

Γ = ρω2B2/µ, (3.6)

where µ denotes the ground-state shear modulus. For convenience we shall assume that

the strain-energy function, stress components, and the pressure have all been scaled

by µ, forces by µB2, and the radii A, a, b by B. As a result of non-dimensionalization,

equation (3.4) is now replaced by

σ33(a) =
1

2
Γλ−1

z (1− A2)−
∫ λa

λb

w1

λ2λz − 1
dλ, (3.7)

and the resultant of σ22 at any cross section is given by

F̃0(λa, λz,Γ) ≡ 2π

∫ b

a

σ22rdr =
1

4
πΓλ−2

z (1− A2)2 + πa2

∫ λa

λb

w1

λ2λz − 1
dλ

+ πA2(λ2
aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (3.8)

where the first equation serves to define the function F̃0. Finally, the radial stress

component σ33 in the r-direction is given by

σ33(r) =
1

2
Γ(b2 − r2)−

∫ λ

λb

w1

λ2λz − 1
dλ. (3.9)
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This expression recovers (3.7) on evaluation at r = a followed by the use of the identity

(b2 − a2)λz = B2 − A2. We can now specialize the above formulae to three different

loading and geometry conditions.

Firstly, consider a tube under the combined action of an internal pressure, rotation

and an end thrust (referred to hereafter as the unconstrained case). Denoting the

internal pressure by P , we have σ33(a) = −P , and (3.7) then becomes

P = P̃ (λa, λz) ≡ −
1

2
Γλ−1

z (1− A2) +

∫ λa

λb

w1

λ2λz − 1
dλ, (3.10)

or equivalently,

Γ = Γ̃(λa, λz) ≡
2λz

1− A2

∫ λa

λb

w1

λ2λz − 1
dλ− 2λzP

1− A2
, (3.11)

where the second expression in each equation defines the functions P̃ and Γ̃, respec-

tively. To simplify notation, we have not shown explicitly the dependence of P̃ on Γ

or Γ̃ on P .

The resultant axial force at any cross section, that is to be balanced by the net force

F applied at each plane end-face, is given by

F = F̃ (λa, λz) ≡ 2π

∫ b

a

σ22rdr − πa2P

=
1

4
πΓλ−1

z (a2 + b2)(1− A2) + πA2(λ2
aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (3.12)
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where the second equation defines the function F̃ which should be compared with the

F̃0 defined by (3.8). We note that the Γ in the expression for F̃ could be eliminated

in favour of P with the use of (3.11). Thus, whenever F̃ is partially differentiated, it

can be either Γ or P that is fixed. This will always be indicated explicitly.

Once the geometry of the tube is specified, either P or Γ can be assumed to take a

dominant role together with F . If, for instance, P is specified and is assumed to take

a passive role (by being sufficiently small), then Γ and F can be viewed as functions

of the two stretches λa and λz, and we expect the following Jacobian to play a role in

the characterization of localized bulging:

Ωu(λa, λz) ≡ J(Γ̃, F̃ ) =
∂Γ̃

∂λa

∂F̃

∂λz
− ∂Γ̃

∂λz

∂F̃

∂λa
, (3.13)

where the first equation defines the function Ωu(λa, λz) with the subscript u signifying

“unconstrained”. Physically, the condition is satisfied when the expressions for Γ̃ and

F̃ can no longer be inverted to express λa and λz uniquely in terms of Γ̃ and F̃ .

Similarly, if Γ is assumed to take a passive role, then the Jacobian J(P̃ , F̃ ) can be

defined. However, it can be shown that this Jacobian is a non-zero multiple of J(Γ̃, F̃ )

when the connection (3.10) is used.

The case previously studied by Fu et al. (2016) can now be viewed as a special case,

corresponding to Γ ≡ 0, of the current more general formulation. The observations

made in the latter paper about J(P̃ , F̃ ) can be extended to the case when Γ is non-zero

but is held fixed. In particular, it can be shown that when F and Γ are both fixed, the
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pressure will reach a maximum precisely when J(P̃ , F̃ ) = 0. In a similar manner, we

note that if both P and F are held fixed, Γ̃ is a function of λa only since F̃ (λa, λz) = F

would define λz as a function of λa. In this case, Γ̃ reaches a maximum when

dΓ̃

dλa
=

∂Γ̃

∂λa
+
∂Γ̃

∂λz

dλz
dλa

= 0. (3.14)

The ordinary derivative in the above expression can be eliminated by solving

∂F̃

∂λa
+
∂F̃

∂λz

dλz
dλa

= 0.

It follows that

∂Γ̃

∂λa
− ∂Γ̃

∂λz

∂F̃

∂λa

(
∂F̃

∂λz

)−1

= 0. (3.15)

Thus, Γ reaches a maximum when the Jacobian J(Γ̃, F̃ ) vanishes. We emphasize that

this correspondence is lost when, for instance, it is the λz that is held fixed in rotating

the tube. Drawing upon the results of Fu et al. (2016), we may then further conjecture

that when the inner surface is traction-free or subjected to a hydrostatic pressure P

the bifurcation condition for localized bulging is simply J(Γ̃, F̃ ) = 0, whether it is the

F or λz that is fixed in rotating the tube. We shall verify in the next section that this

is indeed the case.

Next, consider the case when a tube is mounted on a rigid circular cylindrical spindle

with a radius larger than A, which is the shrink-fit case discussed in Chadwick et al.

(1977). We assume that the contact is smooth so that at the inner surface the stretch
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λa is specified and the shear stress components are negligible. When such a tube is

rotated, the expression (3.4) can be used to compute the contact pressure, and the

resultant F̃0(λa, λz,Γ) of σ22 given by (3.8) is now a function of the only variable stretch

λz. It will be shown in the next section that the bifurcation condition for localized

bulging is simply

Ωc(λa, λz,Γ) ≡ ∂F̃0

∂λz
= 0, (3.16)

where the first equation defines the function Ωc(λa, λz,Γ) with the subscript c signifying

“constrained”. Suppose that the equation F̃0(λa, λz,Γ) = F , with F̃0 given by (3.8), is

solved for Γ and the result is denoted by Γ = Γ̃0(λa, λz, F ). Then it can also be shown

that the above bifurcation condition is equivalent to ∂Γ̃0/∂λz = 0.

Finally, in the special case of a solid cylinder (A=a=0), the three principal stretches

given by (3.2) reduce to

λ1 = λ−1/2
z , λ2 = λz, λ2 = λ−1/2

z , (3.17)

which are all independent of r. Then in terms of the reduced strain-energy function

ŵ defined by

ŵ(λz) = W (λ−1/2
z , λz, λ

−1/2
z ), (3.18)

the principal stretch λz is determined by

Γ = 4λ2
z(
F

π
− ŵ′), (3.19)
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where the prime denotes differentiation with respect to the argument λz. If F is fixed,

then setting dΓ/λz = 0 would yield, after F has been eliminated with the use of (3.19),

the condition

Ωs(λz) ≡ 2λ3
zŵ
′′ − Γ = 0, (3.20)

where the first relation defines the function Ωs(λz) with the subscript s signifying

“solid”. On the other hand, if Γ is fixed instead, then setting dF/λz = 0 would again

yield the same condition (3.20). It will be shown in the next section that this is in

fact the bifurcation condition for localized bulging.

3.3 Bifurcation conditions for localized bulging

To investigate the axisymmetric localized bulging of the finitely deformed configura-

tions determined in the previous section, we consider an incremental displacement field

ẋ given by

ẋ = u(r, z)er + v(r, z)ez, (3.21)

where u(r, z) and v(r, z) are the incremental displacements in the r- and z-directions,

respectively. The incremental equation of motion takes the form

div χT = −Γuer, (3.22)
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where the incremental stress tensor χ is defined by the following components relative

to the orthonormal basis {eθ, ez, er}:

χij = Bjilkηkl + p̄ηji − p∗δji. (3.23)

In the above expression, the Bjilk’s are the incremental elastic moduli whose expression

in terms of the principal stretches can be found in Haughton and Ogden (1979a), p̄

and p∗ are, respectively, the primary and incremental pressures associated with the

constraint of incompressibility, δ is the Kronecker delta, and the gradient of incremental

displacement η is given by

η =


u/r 0 0

0 vz vr

0 uz ur

 , with vz ≡
∂v

∂z
, vr ≡

∂v

∂r
etc. (3.24)

The equation of motion is to be supplemented by the incompressibility condition

trη = ur + vz +
u

r
= 0, (3.25)

and is to be solved subject to appropriate boundary conditions on r = a, b. On the

outer boundary r = b, we impose the traction-free boundary condition

χn = 0 on r = b (3.26)
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for all the three cases under consideration, where n denotes the unit normal to the

surface. For a solid cylinder, this boundary condition is supplemented by the condition

that the solution must be bounded at r = 0. For the case when a tube is subjected to

an internal (hydrostatic) pressure P , the boundary condition on r = a is given by

χn = PηTn on r = a. (3.27)

Finally, for the shrink-fit case, the boundary conditions on r = a are given by

χ23 = 0, u = 0 on r = a. (3.28)

As explained in Fu et al. (2016), the bifurcation condition can be derived by first

looking for a solution of the form

u = f(r)eαz, v = g(r)eαz, p∗ = h(r)eαz, (3.29)

where α is the axial spectral parameter. On substituting these expressions into the

incremental equilibrium equations and then eliminating g(r) and h(r) in favor of f(r),

we find that f(r) satisfies the single fourth-order ordinary differential equation

r4
{
r−1[r−1B3232(r2f ′′ + rf ′ − f)]′

}′
+ α2r2 {r[r(B2222 + B3333 − 2B2233 − 2B3223)f ′]′

+(r2σ′′33 − r2B′′3232 + rB′2222 + rB′1133 − rB′1122 − rB′2233 − rB′3223
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+2B1122 + 2B3223 − B1111 − B2222 + r2Γ)f
}

+ α4r4B2323f = 0. (3.30)

This corresponds to Haughton and Ogden (1980c)’s equation (49) with α replaced by

iα. In a similar manner, the two boundary conditions (3.26) and (3.27) yield

r2f ′′ + rf ′ − (α2r2 + 1)f = 0 on r = a, b, (3.31)

and

r2[r−1B3232(r2f ′′ + rf ′ − f)]′ + α2r3(B2222 + B3333 − 2B2233 − 2B3223 + B3232)f ′

−α2r2(rσ′33−rB′3232 +B2222 +B1133−B1122−B2233−B3223)f = 0 on r = a, b. (3.32)

The last boundary condition (3.32) on r = a corresponds to (3.27) applied in the

normal direction. For the shrink-fitting case, this is replaced by

f(a) = 0, (3.33)

and as a result the boundary condition (3.31), which corresponds to χ23 = 0, reduces

to

af ′′(a) + f ′(a) = 0. (3.34)

Because of the translational invariance in terms of z, α = 0 is always an eigenvalue

of the above eigenvalue problem. For sufficiently small values of Γ, P and F , none

of the other eigenvalues can be pure imaginary since such eigenvalues give rise to
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bifurcation modes that are sinusoidal in the z-direction, and we only expect such modes

to appear for sufficiently large values of Γ, P and F . We note that Haughton and Ogden

(1980a,b,c)’s analysis is concerned with the conditions under which such bifurcation

modes would appear. Since our current analysis is concerned with a bifurcation mode

that is localized in the axial direction, as a first attempt we may assume that the

tube or solid cylinder is infinitely long so that boundary conditions at the two end

faces need not be considered. This is essentially the perfect bifurcation case (i.e.,

bifurcation in the absence of any imperfections). Effects of finite length as well as

material inhomogeneity and/or nonuniform wall thickness can all be considered as

imperfections. Since localized bulging is in general a subcritical bifurcation, it is

expected that in the presence of imperfections, the critical value of angular speed

will be significantly lower than the value determined in the current study. For an

illustration of the effect of imperfections, we refer to Fu and Xie (2012).

For the problem under consideration, we seek eigenvalues of α such that non-trivial so-

lutions can be found. It can be shown that the distribution of eigenvalues is symmetric

with respect to both axes in the complex α-plane. Suppose that the uniform inflation

is characterized by λa. As λa increases from 1, it can be shown that there are five

real eigenvalues of the form α = 0,±α1,±α2; see Figure (3.1)(a). The two eigenvalues

±α1 would move along the real axis towards the origin as λa is increased gradually.

With increasing λa, zero becomes a triple eigenvalue which signals the initiation of a

bifurcation into a localized solitary-wave type solution; see, e.g., Kirchgässner (1982)

or Haragus and Iooss (2010). If we increase λa further, ±α1 would move onto the
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Re α
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α1 α2−α1−α2
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−α1

−α2
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Figure 3.1: Movement of the eigenvalues as λa increases ( Fu et al. (2016)).

imaginary axis, and the exponential eαz then becomes sinusoidal. Therefore, a neces-

sary condition for a localized bulging bifurcation to take place is when α1 vanishes,

making zero a triple eigenvalue. Thus, localized bulging must necessarily occur before

any bifurcation into periodic patterns. This necessary condition will be derived for the

three different cases defined earlier.

3.3.1 Solid cylinder

For the case of a solid cylinder, all the elastic moduli are constants and the re-

duced eigenvalue problem can be solved analytically. Adapting Haughton and Og-

den (1980a)’s results slightly, we obtain the following equation satisfied by all the

eigenvalues of α:

K1 −K2 = 0, (3.35)
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where K1 and K2 are defined by

νµ(ν2
µ+1)I1(νµαb)Kµ = αb(ν2

µB1212+B2121)I0(νµαb)−νµ(2B1313+Γb2)I1(νµαb), (3.36)

where I0 and I1 are the modified Bessel functions of the first kind and ν1, ν2 denoting

the two positive roots of the bi-quadratic equation

ν4B1212 − ν2(B1111 + B2222 − 2B1122 − 2B1221) + B2121 = 0. (3.37)

The condition for zero to become a triple eigenvalue can be obtained by expanding

(3.35) in terms of α and then setting the leading term to zero. The result is

(2B1313 − 2B1212 + Γa2)ν2
1ν

2
2 − 2B2121(ν2

1 + ν2
2)− 2B2121 = 0,

which, on using (3.37), can be reduced to

Γa2 − 2B1111 + 4B1122 − 4B1212 + 4B1221 + 2B1313 − 2B2222 = 0. (3.38)

With the use of the expressions for the elastic moduli given by Haughton and Ogden

(1979a), we have verified that (3.38) can be reduced to (3.20). Thus, we conclude that

for a rotating solid cylinder, a localized bulge will initiate when the rotation speed ω

or the axial force given by (3.19) reaches a maximum.
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3.3.2 Unconstrained tube

We next consider the case of an unconstrained tube that is subjected to the combined

action of rotation, internal inflation and an axial force. An inspection of the associated

eigenvalue problem governed by (3.30), (3.31) and (3.32) shows that it can be obtained

from the case with Γ = 0 by the simple substitution

B1111 → B1111 − Γr2. (3.39)

As a result, the exact bifurcation condition can be derived following the same procedure

as in Fu et al. (2016). Guided by the results in the latter paper, we may further

conjecture that with the above substitution, the new bifurcation condition should be

equivalent to Ωu(λa, λz) = 0, where Ωu(λa, λz) is defined by (3.13). We have checked

to verify that this is indeed the case. Furthermore, in the thin-wall limit, with the

aid of an expansion procedure adapted from Fu et al. (2016), we find that the exact

bifurcation condition to leading order reduces to

λm(w1 − λzw12)2 + λ2
zw22(w1 − λ1w11) + λ3

mΓ2 + 2λ2
m(λzw12 − w1)Γ = 0, (3.40)

where λm denotes the circumferential stretch in the mid-surface, and all the partial

derivatives are now evaluated at λ = λm. The associated leading-order expressions for

Γ and F take the form

Γ = w1/λm − λzP0, F = π(2w2 − P0λ
2
m), (3.41)
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where P0 = P/ε, ε being the wall thickness scaled by the averaged radius. If (3.41)1 is

used to eliminate Γ in (3.40), we obtain the alternative bifurcation condition

λm(w11w22 − w2
12)− w1w22 + P0λ

2
m(2w12 − λmP0) = 0, (3.42)

which is valid if P0 is held fixed in rotating the tube. As a useful check, this leading-

order bifurcation condition can also be obtained from J(Γ, F ) = 0 when the leading-

order expressions (3.41) are used.

As expected, when Γ = 0, (3.40) reduces to its counterpart for the pure inflation case

given in Fu et al. (2008), and it is known that this reduced bifurcation condition has

a solution that defines λz as a function of λm for most of the commonly used strain-

energy functions. In contrast, if we set P0 = 0 in (3.42), the existence of solution of

the reduced bifurcation condition depends very much on the material model used: it

again has a solution when the Ogden material model is used, but it does not have a

solution when the Gent material model is used. This difference carries over even when

finite wall thickness is considered, which will be discussed further in the next section.

We also observe that equation (3.42) with P0 = 0 is the same as Haughton and Ogden

(1980b)’s equation (63) which emerged as the limit of the condition of bifurcation into

axially symmetric periodic modes in an infinitely long tube. This equation reappeared

as equation (71) in the same paper where it was observed as characterizing the turning

point of ω when the axial force F is held fixed.
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3.3.3 The shrink-fit case

Finally, we consider the shrink-fit case for which the applicable boundary conditions

at r = a, b are (3.33) and (3.34), and (3.31) and (3.32), respectively. Again, the

bifurcation condition is the condition under which zero becomes a triple eigenvalue.

To derive this condition, we expand the stretches as

λa = λ(0)
a + α2λ(1)

a + · · · , λz = λ(0)
z + α2λ(1)

z + · · · , (3.43)

and look for a regular perturbation solution of the form

f(r) = f (0)(r) + α2f (1)(r) + · · · , (3.44)

where the constants λ
(i)
a and λ

(i)
z (i = 0, 1, · · · ) and functions f (i)(r) (i = 0, 1, · · · )

are to be determined. The boundary conditions can similarly be expanded. We are

basically assuming that there is a small real eigenvalue α and then determining the

required values of the stretches that support such a small eigenvalue. If such a non-

trivial solution can be found, then the leading order values λ
(0)
a and λ

(0)
z are the stretch

values at which zero becomes a triple eigenvalue.

On substituting (3.44) into (3.30) and equating the coefficients of α0 and α2, we obtain

a homogeneous equation for f (0)(r) and an inhomogeneous equation for f (1)(r). These

equations are the same as their counterparts derived in Fu et al. (2016) except for the
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substitution (3.39). We thus have

f (0)(r) = c1r + c2
1

r
+ c3κ1(r) + c4κ2(r), (3.45)

where c1, c2, c3, c4 are constants and

κ1(r) =
1

r

∫ r

a

t

∫ t

a

s

ζ(s)
ds dt, κ2(r) =

1

r

∫ r

a

t

∫ t

a

1

sζ(s)
ds dt, (3.46)

with the function ζ(r) = B3232. Substituting equation (3.45) into the leading-order

boundary condition, we find that c3 = c4 = 0. At the next order, we get

f (1)(r) = d1r + d2
1

r
+ d3κ1(r) + d4κ2(r) + c1κ3(r) + c2κ4(r), (3.47)

where d1, d2, d3, d4 are constants and

κ3(r) =
1

r

∫ r

a

y

∫ y

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω1(s)ds dt dx dy, (3.48)

κ4(r) =
1

r

∫ r

a

y

∫ y

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω2(s)ds dt dx dy, (3.49)

with

ω1(r) = B′1122 − B′1133 + 3B′2233 − 2B′2222 − B′3333 + 3B′3223 + r(B′′3223 + p̄′′)

+
1

r
(B1111 − Γr2 − 2B1122 + 2B2233 − B3333),
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ω2(r) =
1

r
(B′′3223 + p̄′′) +

1

r2
(B′1122 − B′1133 − B′2233 − B′3333 − B′3223)

+
1

r3
(B1111 − Γr2 − 2B1122 + 2B2233 − B3333).

We observe that the last two terms in (3.47) are simply particular integrals. On

substituting (3.45) together with (3.47) into the leading- and second-order boundary

conditions, we find that c2 = −a2c1, d2 = −a2d1, and that the three constants c1, d3, d4

satisfy three homogeneous linear equations. For a non-trivial solution, we set the

determinant of its coefficient matrix to zero, thus obtaining the condition

Ω(λ(0)
a , λ(0)

z ) = 0, (3.50)

where

Ω(λa, λz) = (a2b2 − b4)F1 + (a2b4 − a4b2)F2 + 2b2F3 − 2a2b2F4 + (a4 − b4)σ3(b)

+b4(B1122(b)− B1133(b)− 2B2222(b) + 3B2233(b) + 2B3223(b)− 2B3232(b)− B3333(b))

+a2b2(2B1133(b) + 2B2222(b) + 2B3232(b)− 2B1122(b)− 2B2233(b)− 2B3223(b))

+b(a2 − b2)2(B′3223(b) + p̄′(b)) + a4(B1122(b)− B1133(b)− B2233(b) + B3333(b)).

In the last expression, the constants F1, . . . , F4 are given by

F1 =

∫ b

a

ω1(t)dt, F3 =

∫ b

a

t

(∫ t

a

ω1(s)ds

)
dt,
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F2 =

∫ b

a

ω2(t)dt, F4 =

∫ b

a

t

(∫ t

a

ω2(s)ds

)
dt.

We may conjecture that the bifurcation condition (3.50) is equivalent to (3.16). This

is verified numerically to be indeed the case.

3.4 Numerical results

We present some representative numerical results by considering two commonly used

material models for rubber-like materials, the Ogden and Gent material models. The

associated strain-energy function is given by (2.60) and (2.63), respectively. We adopt

Jm = 97.2 which is typical value for rubbers following Gent (1996). All our numerical

computations were carried out using Mathematica (Wolfram, 1991).

3.4.1 Solid cylinder

When the axial force F is specified, we find the value of Γ at which localized bulging

may take place. In Figure (3.2), we have shown the relation between Γ and F when

the bifurcation condition (3.20) is satisfied. The relation is obtained by varying λz

continuously from 0.2 to 1.2 and computing the associated Γ and F using (3.19) and

(3.35). It is seen that both curves contain a cusp point, corresponding to the fact

that the Γ given by Γ = 2λ3
zŵ
′′, defined by the bifurcation condition (3.20), attains a

minimum at λz = 0.39 for the Gent material, and λz = 0.20 for the Ogden material;

see Figure(3.3), left. In Figure (3.3), right, is shown the dependence of F on λz
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(a) Gent material (b) Ogden material

Figure 3.2: Relation between Γ and F when localized bulging takes place. The

solid and dashed parts on each curve corresponds to λz < 1 and λz > 1, respec-

tively.

(a) (b)

Figure 3.3: Dependence of Γ and F on λz when localized bulging takes place.

Solid and dashed lines correspond to the Gent and Ogden material models, respec-

tively.
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(a) (b)

Figure 3.4: Solution of the bifurcation condition Ωu(λa, λz) = 0, when the Ogden

material is used, for a rotating tube with A = 0.8 and P = 0 in terms of (λa, λz)

(left figure) and (Γ, λz) (right figure), respectively. The dashed lines represent the

loading paths with F = 0, 0.5,−0.7, respectively.

when localized bulging occurs. It is seen that there is a major difference between

the predictions between the two material models: whereas the Ogden model predicts

that localized bulging may take place when F = 0 and the associated critical value

of Γ = 3.81 is attained at λz = 0.15, the Gent material model predicts that localized

bulging can never take place when F = 0.

3.4.2 Unconstrained tube

We first consider the simplest case when P = 0, and we determine the critical value

of Γ at which localized bulging may occur. We have in mind two possible types of
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end conditions: either F or λz is fixed when Γ is increased. We note, however, that

the solution of the bifurcation condition Ωu(λa, λz) = 0 is independent of the end

conditions. It is found that when the Gent material model is used, this bifurcation

condition does not have a solution, and so localized bulging can never occur however

large the rotation speed is. This fact was already noted in the previous section in the

thin-wall limit. In contrast, when the Ogden material model is used, Ωu(λa, λz) = 0

has a solution giving λz as a function of λa; see the solid line in Figure (3.4)(a) where

we have also shown a typical loading curve defined by F̃ (λa, λz) = 0. As Γ is increased

gradually from zero, loading starts from the point where (λa, λz) = (1, 1) and traces

down the loading curve F̃ (λa, λz) = 0. Localized bulging would occur when this curve

intersects the bifurcation curve Ωu(λa, λz) = 0 at

(λa, λz) = (2.313, 0.683),

with the associated value of Γ equal to 0.885.

As a comparison, we have also shown in Figure (3.4)(a) the loading paths associated

with F = 0.5 and −0.7. It is seen that as F is increased from zero, the loading path

is shifted upwards, whereas as F is decreased from zero, the loading paths is shifted

downwards, eventually losing the intersections with the bifurcation curve when F is

approximately equal to −0.7. This means that when P = 0, localized bulging is always

possible when a stretching force is applied axially in addition to the rotation, but

becomes impossible when a compressive force exceeding 0.7 in magnitude is applied.
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2 4 6 8
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2

3
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Γ=0

0.2

0.5

(a) Gent material (b) Ogden material

Figure 3.5: Solution of the bifurcation condition J(P̃ , F̃ ) = 0 for the different

values of Γ indicated. The solid, dotted and dashed lines correspond to Γ = 0, 0.2

and 0.5, respectively.

To offer a different perspective on the bifurcation, we have shown in Figure (3.4)(b)

the critical value of λz as a function of Γ. This curve is obtained as follows. For each

value of λz, the bifurcation condition Ωu(λa, λz) = 0 is solved to find the corresponding

value of λa, and hence the value of Γ. This alterative plot of the bifurcation condition

is particularly useful when it is the axial stretch that is fixed as the rotation speed

is increased gradually. For each such axial stretch, λz0 say, the corresponding critical

value of Γ can simply be obtained from the intersection of the horizontal line λz = λz0

in this plot with the bifurcation curve. For instance, when λz is fixed at unity so

that the tube is not allowed to contract axially as the rotation speed is increased, the

associated critical value of Γ is equal to 0.997. It is seen that the critical value of Γ is

an increasing function of λz.
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We have also carried out calculations to find out how the results in Figure (3.4) depend

on A. It is found that as A decreases (so that the wall thickness increases), the curve

corresponding to F = 0 would shift downwards relative to the curve of Ωu(λa, λz) =

0. When A reaches 0.428 approximately, the two curves would no longer intersect,

implying that localized bulging becomes impossible below this threshold value. In

Table (3.1), we have listed the critical values of Γ for a selection of values of A. Since

the wall thickness is a decreasing function of A/B, it can be seen that the larger the

wall thickness, the larger the critical value of Γ. The numbers in brackets in the last

row are the corresponding results based on the thin-wall approximation (3.41) and

(3.42), and is seen to provide a good approximation, with a relative error of less than

5%, for values of A as small as 0.5.

A/B 0.43 0.5 0.6 0.7 0.8 0.9 0.99

λa 3.4779 2.9635 2.6486 2.4518 2.3128 2.2085 2.1346

λz 0.6291 0.6591 0.6729 0.6797 0.6834 0.6851 0.6956

Γ 1.4446 1.2984 1.1304 0.9958 0.8855 0.7935 0.7230

Γ ≈ (1.3641) (1.2397) (1.0896) (0.9907) (0.8837) (0.7931) (0.7230)

Table 3.1: Critical values of ω in free rotation (F = 0).

We next consider the effect of allowing for a non-zero internal pressure. There are now

two subcases. The first subcase is when the unconstrained tube is mainly subjected

to the action of internal inflation and an axial force, with rotation being small and
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playing a minor role. This subcase covers the case of zero rotation which has previously

been investigated Fu et al. (2016). In Figure (3.5) we have shown the solution of

the bifurcation condition Ωu(λa, λz) = 0 for three representative values of Γ and the

common value of A = 0.8. We note that when Γ is non-zero, the solution again has

two branches when the Ogden material model is used. We shall focus our discussion

on the parameter regime near λa = λz = 1. It is seen that adding a rotation to the

tube delays the onset of localized bulging when the Gent material is used, but when

the Ogden material is used the rotation has a delaying effect when the rotation speed

is small, but has an opposite effect when the rotation speed is large enough.

Finally, we assume that the internal pressure P is zero or small, and it is the rotation

and axial force F that play a dominant role. In Figure (3.6) we have shown the solution

of Ωu(λa, λz) = 0 for three representative values of P . There is a big difference between

the predictions of the two material models. For Gent material model, the bifurcation

condition Ωu(λa, λz) = 0 disappears when P = 0, as mentioned previously. Localized

bulging first becomes possible when P is increased to the value of 0.051. In contrast,

according to the Ogden material model, localized bulging is possible even if P is zero.

The dotted line in each figure represents the loading path, the solution of F̃ (λa, λz) = 0,

when P = 0.06.
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(a) Gent material (b) Ogden material

Figure 3.6: Solution of the bifurcation condition Ωu(λa, λz) = 0 for the three

different values of P indicated. The dashed line corresponds to the solution of

F̃ (λa, λz) = 0 when P = 0.06, and is the loading path when there is no net axial

force applied at the plane end-faces. Its intersection with the solid curve associated

with P = 0.06 gives the values of the two stretches when localized bulging takes

place.

3.4.3 The shrink-fit case

In this case the stretches must satisfy F̃0(λa, λz,Γ) = F . This equation may also be

solved to express Γ in terms of F . The bifurcation condition (3.16) then depends on

F as well as λa and λz. For each specified F , this condition defines a curve in the

λaλz-plane. A typical solution with F = 2 is shown in Figure (3.7), where the solution

of σ33(a) = 0 is also shown in a dashed line. It is seen that although localized bulging

is possible, the contact force at r = a must necessarily be tensile. This means that no

matter how tight the initial fitting is, localized bulging will not occur before the tube
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(a) Gent material (b) Ogden material

Figure 3.7: Solution of the bifurcation condition (3.16). The result corresponds

to F = 2 and is shown in solid line. The dashed line in each plot represents the

solution of σ33(a) = 0.

loses contact with the rigid spindle. It is also found that as F is gradually reduced,

the closed curve shrinks in size and eventually disappear at F = 1.29 when the Gent

material model is used and at F = 1.66 when the Ogden material model is used. Thus,

in particular, when the plane ends of the tube is traction-free, localized bulging will

not occur no matter how large λa or Γ is.

3.5 Conclusion

In this Chapter we have studied the bifurcation condition for localized bulging of a

circular solid cylinder or cylindrical tube which is rotated about its axis of symmetry.
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Additional external forces may include a non-zero net axial force and/or internal pres-

sure. In each case, the bifurcation condition is derived with the aid of the dynamical

systems theory and found to have simple interpretations in terms of physical quanti-

ties such as the rotation speed, axial force and internal pressure. For instance, when

the axial force and internal pressure are both fixed, the bifurcation condition simply

corresponds to the angular velocity reaching a maximum when viewed as a function

of λa for a tube or λz for a solid cylinder. However, this correspondence is lost when

for instance it is the axial stretch λz that is fixed in rotating the tube.

The simplest case is perhaps the case of free rotation when both F and P are zero.

Our illustrative calculations show that the Ogden material model would predict that

localized bulging may occur but the Gent material model would predict that localized

bulging can never occur. According to the Gent material model, localized bulging

could occur only if a sufficiently large internal pressure is added. Also, according to

both models, localized bulging will not occur in the shrink-fit case if F = 0. An

experimental study is needed to compare the theoretical predictions for these two

models with experimental results.
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Chapter 4

Prevention of localized bulging in

an inflated hyperelastic tube

4.1 Introduction

This chapter studies the bifurcation behavior in an inflated bilayer tube of arbitrary

thickness under inflation and axial extension. It is assumed that both layers are

composed of the Gent material with each layer having its own Jm, where Jm is a

material parameter in the Gent model that signifies the maximum extensibility. First,

we determine several critical parametrical regions where localized bulging disappears

for a single-layer tube. Then we investigate localized bulging in an inflated bilayer
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tube, where one layer (layer I) of the tube cannot bulge whereas the other part (layer

II) can. The cases of fixed axial force and fixed axial stretch are both studied, and

the critical geometrical parameters marking the transition between bulging and no

bulging are determined. In Chapter 5, we will study the effects of shear modulus and

constitutive models on the initiation of localized bulging in bilayer tubes. The results

of this chapter have been published in Liu et al. (2019).

4.2 Bulging in a single-layer tube

We first consider a single-layer hyperelastic tube with inner radius A, outer radius B

and length L. It is assumed that the tube is composed of an incompressible Gent

material with the strain energy function given by (2.63). The tube is subject to the

combined action of axial extension and an internal pressure P . Then we start from two

previous papers (Haughton and Ogden, 1979a; Fu et al., 2016) and summarize some

necessary results from them. After deformation, the inner and outer radii become

a and b, respectively. Denoting the coordinates of the deformed and undeformed

configurations by (θ, z, r) and (Θ, Z,R) , respectively, we obtain the deformation in

terms of cylindrical polar coordinates as follows:

r =
√
λ−1
z (R2 − A2) + a2, θ = Θ, z = λzZ, (4.1)
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where λz is the principal stretch in the axial direction.

By use of the incompressibility condition, the principal stretches are given by

λ1 =
r

R
≡ λ, λ2 = λz, λ3 = 1/(λλz), (4.2)

and the strain energy function can be rewritten as w(λ, λz). Note that the indices 1, 2, 3

correspond to θ-, z-, r-directions, respectively. Then the pressure P and resultant axial

force F are expressed as

P (λa, λz) =

∫ λa

λb

w,1
λ2λz − 1

dλ, (4.3)

F (λa, λz) = πA2(λ2
aλz − 1)

∫ λa

λb

2λzw,2 − λw,1
(1− λ2λz)2

λdλ, (4.4)

where λa = a/A and λb = b/B are the circumferential stretches, and a comma behind

a function represents the derivative with respect to the corresponding variable, i.e.,

w,1 = dw/dλ and w,2 = dw/dλz. The relation between λa and λb can be obtained from

equation (4.1) and is given by

λb =

√
B2 − A2 + A2λ2

aλz
B2λz

. (4.5)

In an inflated tube, localized bulging may occur if the internal pressure attains a critical

value. In some literature or experiments, either the resultant axial force F or the axial

stretch λz can be fixed, and the two loading approaches will also be investigated in
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this chapter. For convenience, we label them as case I (fixed axial force) and case II

(fixed axial stretch), respectively. In both cases, the outer surface is traction free. For

case I, the tube is subject to both internal pressure and a fixed axial load F0. For case

II, the tube is first subjected to a uniform pre-stretch λz0 and then the total length

is fixed. However, the resultant force F can change during the inflation process under

the length restriction. We mention that, for an inflated tube of arbitrary thickness,

the bifurcation condition for localized bulging has been derived by Fu et al. (2016),

which possesses the following form

J(P, F ) =
∂P

∂λa

∂F

∂λz
− ∂P

∂λz

∂F

∂λa
= 0. (4.6)

Generally speaking, for fixed axial force F , the curve for P against λa has an N shape

where the local maximum corresponds to the pressure triggering localized bulging.

However, the corresponding relation of P and λa might be monotonic for fixed ax-

ial stretch. We refer to Fu et al. (2018) for other possible forms of this bifurcation

condition.

By utilizing the bifurcation condition (4.6), the first bifurcation point for cases I and

II can be obtained by solving the following equations

fixed axial force: J(P, F ) = 0, F (λa, λz) = F0, (4.7)

fixed axial stretch: J(P, F ) = 0, λz = λz0. (4.8)

Since all functions are related to two variables λa and λz, the above equations actually
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provide the values of λa and λz at which localized bulging emerges. The critical

pressure can then be obtained from equation (4.3).

From now on, we specify the shear modulus µ = 1 and the outer radius B = 1 without

loss of generality. Indeed, this is equivalent to normalizing the pressure P by µ and

the quantities of length dimension by B, respectively. We aim to examine the effects

of Jm and λz0 on eliminating bulging in an inflated tube. In practice, the range of Jm

varies for different materials. It was suggested in Gent (1996) that Jm = 97.2 or 114

for rubber. On the other hand, the corresponding range for human arteries is between

0.422 and 3.93 (Horgan and Saccomandi, 2003).

It is worth mentioning that, Pearce (2012) found that there exist critical values of Jm

and λz0 at which the bifurcation point vanishes for a membrane tube. Here we extend

the corresponding results to a tube of arbitrary thickness. For definiteness, the inner

radius is specified as A = 0.8, and we let F0 = 0 in case I and λz0 = 1.5 in case II.

According to equations (4.7) we plot Figures (4.1) and (4.2) where the first intersec-

tion between J(P, F )−curve and F−curve triggers localized bulging. An exhaustive

explanation of the curves in these figures can be found in Fu et al. (2016). Figure (4.1)

adopts a commonly used parameter Jm = 97.2 whereas Figure (4.2) uses a smaller

Jm = 17. It can be seen that the tube can bulge in Figure (4.1) whereas there is no

bulging in Figure (4.2). Furthermore, the curves for J(P, F ) = 0 are always convex

and will shrink towards the λa-axis if Jm reduces; see Figure (4.3).
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Figure 4.1: Results for the Gent model when Jm = 97.2. The left intersection of

J(P, F ) = 0 and F0 = 0 corresponds to localized bulging.
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Figure 4.2: Results for the Gent model when Jm = 17 and F0 = 0.

Using equation (4.8), we plot Figures (4.4) and (4.5) where the first intersection be-

tween J(P, F )−curve and λz−line corresponds to localized bulging. It can be seen
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Figure 4.3: Plot of J(P, F ) = 0 for four representative values of Jm.
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Figure 4.4: Results for the Gent model when Jm = 97.2. The left intersection of

J(P, F ) = 0 and λz0 = 1.5 corresponds to localized bulging.

that localized bulging takes place in Figure (4.4) whereas there is no bulging in Figure

(4.5).
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Figure 4.5: Results for the Gent model when Jm = 17 and λz0 = 1.5.

Therefore, for case I, there may exist a critical value of Jm, say J cm , at which the

tube never bulges if Jm < J cm. For case II, if λz0 exceeds the maximum value of

J(P, F )−curve, localized bulging is also eliminated. This implies that either a small Jm

or a large pre-stretch λz0 could preclude bulging in a rubber tube. Since Jm represents

the extension limit, to reduce Jm is somehow equivalent to imposing a pre-stretch since

the final effect diminishes the incremental stretching ability. Therefore, we say that

the above-mentioned approaches to prevent bulging are actually equivalent.

It has been fully understood that in case I, localized bulging occurs when the pressure

reaches its local maximum, and this kind of instability is the so-called limit-point insta-

bility (Alexander, 1971; Kanner and Horgan, 2007; Wang et al., 2018). In contrary, if

the pressure-stretch (or volume) curve is monotonic, bulging formation never emerges.

For completeness, we show the pressure-stretch curves for Jm = 97.2 and Jm = 17 in
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Figure 4.6: The pressure-stretch curve has a local maximum when Jm = 97.2.

Figures (4.6) and (4.7). In accordance with the expectation, the curve for Jm = 97.2

has an N shape, whereas the curve for Jm = 17 is monotonic. Since the objective

of our study is to investigate how to remove bulging formation in a bilayer tube, we

first should characterize the above critical parametric domains where localized bulging

disappears. For case I, we need to determine J cm.

Before proceeding further, we note that the curve for F (λa, λz) = 0 is the lower

bound for F (λa, λz) = F0 when F0 ≥ 0, and this has been shown in Fu et al. (2016).

Consequently, that there is no intersection between F (λa, λz) = 0 and J(P, F ) = 0

provides a sufficient condition for avoiding localized bulging. As mentioned earlier, it

is known that the pressure-stretch curve becomes monotonic when Jm becomes less

than J cm. Thus, an inflection ceases to exist at the critical value J cm and we could
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Figure 4.7: The pressure-stretch curve is monotonic when Jm = 17.

determine J cm by solving the equations (Mangan and Destrade, 2015)

dP

dλa
= P,1 + P,2

dλz
dλa

= 0, (4.9)

d2P

dλ2
a

= P,11 + (2P,12 + P,22
dλz
dλa

)
dλz
dλa

+ P,2
d2λz
dλ2

a

= 0, (4.10)

F (λa, λz) = 0, (4.11)

where

dλz
dλa

= −F,1
F,2

, (4.12)

d2λz
dλ2

a

=
F,1(F,21 + F,22

dλz
dλa

)− F,2(F,11 + F,12
dλz
dλa

)

(F,2)2
, (4.13)

are from implicit differentiation F (λa, λz) = 0. However, the situation in case II is
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Figure 4.8: Critical curve where a transition of bulging behavior occurs in the

case of fixed axial force F0 = 0.

different because the pressure-stretch curve is always monotonic for Gent model. Then

we refer to Figure (4.5) and observe that when the pre-stretch λz0 increases from 1 to

1.5 the λz0−line varies from the secant line of J−curve to the tangent line and finally

departs from it. Therefore, the critical parameter λcz corresponds to the tangent case,

and we could determine λcz by solving the equations

dλz
dλa

= −Ω,1

Ω,2

, (4.14)

Ω(λa, λz) = 0, (4.15)

where we have represented the bifurcation condition as Ω(λa, λz) = J(P, F ) = 0.

By using equations (4.9)-(4.11) and (4.14), (4.15), we may determine J cm with varying
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Figure 4.9: Critical curve where a transition of bulging behavior occurs in the

case of fixed axial stretch when Jm = 97.2.

tube thickness and λcz with different Jm and tube thickness, respectively (the outer

radius has been set to B = 1). The corresponding results are displayed in Figures

(4.8)-(4.10), and the regions where localized bulging cannot emerge are shown. It can

be see that J cm is a decreasing function of A while λcz is an increasing function of both

A and Jm. For a membrane tube, it was found in (Pearce, 2012; Mangan and Destrade,

2015) that J cm ' 18.231 or J cm ' 17.638 respectively, which is very close to the value

based on the exact theory when A goes to 1. Meanwhile, a similar curve of λcz with

varying Jm was also shown in Pearce (2012).

Now localized bulging in an inflated tube of composed of Gent material has been

discussed, and some critical values for removing bulging are characterized. Indeed,

we are interested in what happens when a bilayer tube is inflated when one layer
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Figure 4.10: Critical curve where a transition of bulging behavior occurs in the

case of fixed axial stretch when A = 0.8.

cannot bulge. Intuitively, one may think that if a tube is unable to bulge, a bilayer

tube formed by covering another tube inside or outside this tube cannot bulge as well.

However, the following analyses reveal an unexpected result.

4.3 A bilayer tube under inflation and axial loads

The aim of this section is to study the bulging possibility of the whole tube when

one layer can bulge and the other layer cannot. In this section, we consider a bilayer

tube with inner radius A and outer radius B under combined internal inflation P and

axial load F . The geometry is given in Figures (4.11). In our setup, the bilayer tube
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Figure 4.11: A bilayer tube with inner radius A and outer radius B under internal

pressure P and axial load F .

has a finite length L. The interface is located at R = D. Accordingly, the deformed

radii become a, b and d, respectively. Each layer is composed of the Gent material

with the same shear modulus µ whereas the other parameter Jm is different. In the

sequel, we adopt the convention that a bar on a quantity belongs to the inner layer,

otherwise it represents a quantity for the outer layer; for instance, µ̄ and µ denote the

shear moduli for the inner and outer layers, respectively. Furthermore, we focus on

the effect of the proportion of each layer on bulging formation, so we set µ̄ = µ = 1

hereafter. The loading condition and boundary conditions are the same as that in

the previous section. During inflation, we assume that the interface remains perfect

bonded, i.e., the displacement and traction are continuous on the interface. In the

following analysis, only the derivations for the outer layer will be shown for simplicity,

and the results for the inner layer can be obtained by proper variable substitutions.

It is convenient to adopt cylindrical polar coordinates for the current problem. We use

(θ, z, r) and (Θ, Z,R) to represent the coordinates of a representative material point in

the deformed state and undeformed state, respectively. Note that the deformed state
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is axisymmetric, the deformation gradient tensor F for the outer layer is given by

F =


r

R
0 0

0 λz 0

0 0
dr

dR

 . (4.16)

By use of the incompressibility condition, we find

r2 = λ−1
z (R2 − A2) + a2, θ = Θ, z = λzZ, a ≤ r ≤ d, (4.17)

r2 = λ−1
z (R2 −D2) + d2, θ = Θ, z = λzZ, d ≤ r ≤ b. (4.18)

The only equation that is not satisfied automatically for the outer layer reads

dσ33

dr
+
σ33 − σ11

r
= 0, (4.19)

where σij is the Cauchy stress tensor. Denoting the principal stretches as λ1, λ2, λ3, we

write the strain energy function as W (λ1, λ2, λ3). Here the indices 1, 2, 3 correspond

to θ−, z−, and r− directions, respectively. Therefore, the principal Cauchy stresses

are given by

σii = λiW,i − p, no summation, (4.20)

where p is the Lagrange multiplier, and the comma depicts the derivative with respect

to the corresponding variable, for instance, W,1 = ∂W/∂λ1.
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Utilizing the incompressibility condition, we denote the principal stretches as

λ = λ1 =
r

R
, λ2 = λz, λ3 =

1

λ1λ2

. (4.21)

Then we use a reduced strain energy function w(λ, λz) = W (λ, λz, 1/(λzλz)) and obtain

w,1 = W,1 −
1

λ2λz
W,3,

w,2 = W,2 −
1

λλ2
z

W,3.

(4.22)

Finally, substituting equation (4.20) into the governing equation (4.19) yields

σrr =

∫ r

r0

λ1w,1
r

dr, (4.23)

where r0 is a constant to be determined. Then we apply a variable exchange λ = r/R

to furnish

dλ

dr
=
λ(1− λ2λz)

r
, (4.24)

and by use of which the Cauchy stress σrr is rewritten as

σrr =

∫ λ

λ0

w,1
1− λ2λz

dλ, (4.25)

where λ0 is an undetermined constant. Accordingly, we introduce the principal stretches

in the circumferential direction at the inner surface, outer surface, and interface as fol-

lows

λa =
a

A
, λb =

b

B
, λd =

d

D
. (4.26)
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From equation (4.17) and (4.18), their relations are given by

λb =

√
B2 − A2 + A2λ2

aλz
B2λz

, λd =

√
D2 − A2 + A2λ2

aλz
D2λz

. (4.27)

It is assumed that the outer surface of the bilayer tube is traction-free and the inner

surface is inflated by a pressure P . Furthermore, the interface between the two lay-

ers keeps perfectly bonded during the deformation. Therefore, the displacement and

traction are continuous at the interface. Then we obtain

σrr|λ=λb = 0, (σ̄rr − σrr)|λ=λd = 0, σ̄rr|λ=λa = −P. (4.28)

From equation (4.28)1, the integration constant for the outer layer reads λ0 = λb.

Moreover, employing the traction continuity condition (4.28)2 and the traction condi-

tion at the inner surface (4.28)3, we have

P (λa, λz) =

∫ λb

λd

w,1
1− λ2λz

dλ+

∫ λd

λa

w̄,1
1− λ2λz

dλ. (4.29)

On the other hand, the resultant axial force in any cross section possesses the form

F =2π

(∫ d

a

σ̄zzrdr +

∫ b

d

σzzrdr

)
− Pπa2

=π

(∫ d

a

(2λzw̄,2 − λŵ,1)rdr +

∫ b

d

(2λzw,2 − λw,1)rdr

)
. (4.30)

82



Chapter 4. Prevention of localized bulging in an inflated hyperelastic tube

By use of the variable substitution λ = r/R again and combining equations (4.17) and

(4.18), we obtain the simplified form of resultant axial force

F (λa, λz) =πA2(λ2
aλz − 1)

∫ λa

λd

2λzw̄,2 − λw̄,1
(λ2λz − 1)2

λdλ

+ πD2(λ2
dλz − 1)

∫ λd

λb

2λzw,2 − λw,1
(λ2λz − 1)2

λdλ. (4.31)

Once the formulas of P and F are expressed, we could utilize the bifurcation condition

(4.6) to determine the critical stretch triggering bulging formation. Although this

condition is derived for a single-layer tube, Wang and Fu (2018) have applied it to

double-fiber reinforced tubes to investigate the effect of fiber angle on localized bulging.

4.4 Results and discussions

In this section, we concentrate on a bilayer tube whose inner or outer layer cannot

bulge and depict the parametrical domains where localized bulging vanishes. Without

loss of generality, the outer radius is also set to B = 1. For case I, referring to Figure

(4.8), we specify Jm = 15 that is less than the critical value of J cm . For case II, we

assume that the bilayer tube is uniformly stretched by λz0 = 2.5 before inflation and

then the length is fixed.
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4.4.1 Case I: fixed axial force

By considering case I, we are interested in how to remove bulging formation in a bilayer

tube. First of all, a tube of Jm = 97.2 bulges when the internal pressure attains a

critical value, and we now wish to prevent bulging by coating this tube with another

tube with Jm = 15. Thus a bilayer tube with J̄m = 15 and Jm = 97.2 is studied. Since

the remaining free parameters are the inner radius and interfacial radius, respectively,

we could specify either the whole thickness of the tube or the thickness of the outer

layer to reveal the influence of the other parameter on the inflation behavior.

When the whole tube thickness is specified, we apply equations (4.9)-(4.11) again to

determine the critical value of D, say Dc, where the inflection point becomes a turning

point in the pressure-stretch curve. On the other hand, the same approach is applied

to find an analogue value Ac if the thickness of the outer layer is fixed. Similarly,

we only need to consider F = 0 to obtain a sufficient condition that a bilayer tube

never bulges under inflation, and the corresponding results are shown in Figure (4.12).

We mention that the dashed lines in Figure (4.12) (see also Figures (4.13), (4.14),

(4.15)) are A = D, which indicates the lower bound of D for a given A or the upper

bound of A for a given D. In other words, in Figure (4.12)(a), for example, the area

under bulging zone is in the forbidden region since D must be greater than A. Figure

(4.12)(a) illustrates the critical curve for Dc, and the corresponding curve for Ac is

shown in Figure (4.12)(b).

For convenience, we also highlight the region where bulging can or cannot occur.
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Figure 4.12: The inner layer cannot bulge whereas the outer layer can (J̄m = 15

and Jm = 97.2). The dashed line depicts the maximum or minimum value of

the vertical-axis parameter. Figure (a) illustrates the critical curve of D, say Dc,

where a transition of bulging behavior occurs. We also indicate the corresponding

region. Figure (b) shows the corresponding curve of Ac.

Actually, the critical curves Dc and Ac denote the corresponding transitions. It can

be seen that, if A is specified, the tube still bulges under sufficient internal pressure

with a small D. However, with increasing D, the tube cannot bulge when D > Dc.

In other words, the inner layer occupies a small part of the whole tube if D is small.

Therefore, the deformed configuration for a bilayer tube is governed by the major

part, i.e., the outer layer, and localized bulging occurs at a critical pressure. When

D > Dc, the dominant part becomes the inner layer, thus the tube losses the ability

to bulging. Meanwhile, we obtain the same property for fixed D. Thus, to prevent

bulging from appearing in a tube, we could attach a tube that is unable to bulge with

a small specified thickness at the inner surface of the original one.
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Figure 4.13: The outer layer cannot bulge whereas the inner layer can (J̄m = 97.2

and Jm = 15). The dashed line depicts the maximum or minimum value of the

vertical-axis parameter. Figure (a) illustrates the critical curve of Dc, and figure

(b) shows the corresponding curve of Ac.

Conversely, we further study the case where the outer layer can not bulge by only

exchanging the value of the parameter Jm. Similarly, whether bulging formation occurs

or not in the bilayer tube depends on the proportion of the outer layer. We also

consider two different situations, i.e., either the thickness of the tube or the thickness

of the outer layer is fixed. The corresponding results are shown in Figure (4.13).

Figure (4.13)(a) illustrates the dependence of Dc on the inner radius A. This also

corresponds to the situation of fixed total thickness of the tube. Figure (4.13)(b) plots

the curve of Ac with varying D. Likewise, we also highlight the region where localized

bulging disappears. It can be seen that the critical curves for both Ac and Dc are

almost straight. Furthermore, the no bulging area is small compared with the bulging

area. Combining the results in Figures (4.12) and (4.13), we conclude that the inner

layer likes to dominate the deformation, namely, the final deformed configuration is
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Figure 4.14: The inner layer cannot bulge (J̄m = 40 and Jm = 97.2), and the

axial length is fixed λz = 2.5.

mainly governed by the inner layer. We mention that the approach in Bucchi and

Hearn (2013) to prevent bulging formation is to attach some inextensible fibers at

the outside of the tube. Although this is valid, yet the current analysis suggests that

covering the tube with fibers at the inner surface of the tube might be more efficient.

4.4.2 Case II: fixed axial stretch

Next, we assume that a bilayer tube is uniformly stretched in the axial direction by

λz0 = 2.5 and then the axial length is fixed. The bilayer tube is also composed of two

parts. One layer cannot bulge (layer I) while the other layer (layer II) can under the

pre-stretch λz0 = 2.5. For that purpose, we specify Jm = 40 for layer I and Jm = 97.2

for layer II, respectively, according to the result in Figure (4.10).
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Figure 4.15: The outer layer cannot bulge (J̄m = 97.2 and Jm = 40), and the

axial length is fixed λz = 2.5.

We first consider similarly the situation that the inner layer is unable to bulge and then

study the converse case. The corresponding results are shown in Figures (4.14) and

(4.15), respectively. It can be seen that the features are quite similar to case I. This

is not surprising since we have mentioned before that Jm is a parameter describing

the maximum extensibility of a tube. If one regards the stretched tube as a new one

without pre-stretch, the new Jm actually reduces. On the other hand, the no bulging

area is dependent on the location of layer I. If the inner layer is unable to bulge, the no

bulging area is higher, or otherwise, the no bulging area is lower. In other words, the

inner layer has a significant effect on the final deformed configuration of the bilayer

tube.
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4.5 Conclusion

In the framework of nonlinear elasticity and by use of the Gent model, we investigate

the effects of Jm and pre-stretch λz0 on localized bulging in an inflated single-layer

tube and determine several parametric domains where localized bulging vanishes. The

critical parameters are denoted by J cm and λcz respectively. Bulging formation never

occurs if Jm < J cm for fixed axial force or the pre-stretch λz0 > λcz for fixed axial length.

Then we apply the results to a bilayer tube composed of the Gent material. In addition,

both layers share the same shear modulus but the other parameter Jm can be varied.

This tube is special because one layer (layer I) never bulges and the other layer (layer

II) may bulge under sufficient pressure. We find that whether localized bulging occurs

or not in this composite tube is dependent on the competition between two layers.

Localized bulging never occurs if the proportion of layer I increases to a critical value,

no matter whether layer I occupies the inner side or the outer side, also regardless of

whether the thickness of whole tube or the thickness of the outer layer is specified. In

particular, a better choice for bulging prevention is to locate layer I on the inner side

since a relatively thin thickness is enough to preclude bulging formation.

Finally, we note that bulging bifurcation is usually subcritical (Fu and Xie, 2012;

Wang et al., 2019) associated with the so-called snap-through phenomenon. Indeed,

this research is a primary study of localized bulging in inflated layered tubes, and we

do not address the stability of the bulging solution. The underlying assumption is that
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bulging instability is also subcritical in a bilayer tube. Other topics concerning effect

of shear modulus and constitutive models will be investigated in the next chapter.
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Chapter 5

Effects of the stiffness ratio on

localized bulging in a bilayer tube

5.1 Introduction

In this Chapter we consider a bilayer tube subject to an internal pressure and axial

force to study the effects of s, the interfacial radius D, and different constitutive models

on the bulge initiation, where s is the ratio of the shear modulus of the outer layer

to that of the inner layer. By use of the internal volume ratio v as the bifurcation

parameter, a parametric study of bulge initiation is carried out. The two typical cases
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of fixed axial force and fixed axial length are considered using the Gent and Ogden

material models. The results of this chapter have been published in Ye et al. (2019).

5.2 Problem formulation

We consider a bilayer tube composed of incompressible hyperelastic materials with

inner radius A, outer radius B, interfacial radius D, and initial length L, as shown in

Figure 4.11. Under inflation and axial extension, the tube is first dilated, but the cross-

section maintains a circular geometry. We call this deformed state the basic state (or

uniform inflation), and the corresponding radii become a, b, and d, respectively. Then

a further increase of the pressure may trigger localized bulging. Note that the basic

solution for a single-layer tube has been provided in Haughton and Ogden (1979b) and

Fu et al. (2016). Here we simply extend the corresponding results to a bilayer tube.

The deductions for the basic solution of the uniform inflation are shown in Chapter 4.

Therefore, in the following, we use the expressions of the internal pressure P (λa, λz)

(4.29) and resultant axial force F (λa, λz) (4.31) as shown in the previous chapter.

With the aid of dynamical systems theory, Fu et al. (2016) has provided an explicit

bifurcation condition for localized bulging in an inflated single-layer tube of arbitrary

thickness in a very concise form

J(P, F ) =
∂P

∂λa

∂F

∂λz
− ∂P

∂λz

∂F

∂λa
= 0. (5.1)
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Indeed, the above equation means that the Jacobian of P and F in terms of variables

λa and λz vanishes if localized bulging occurs. Furthermore, it was also shown by

Fu et al. (2016) that the pressure triggering bulging formation is just the maximum

pressure in uniform inflation when F is fixed. Recently, this bifurcation condition was

applied to fiber-reinforced tubes (Wang and Fu, 2018).

In an inflated tube, localized bulging may occur if the internal pressure attains a

critical value. As mentioned earlier, there are two loading types. The first case is to

fix the resultant axial force F and the other case has a fixed axial stretch (or fixed axial

length). In this chapter, we also consider these two loading types. For convenience, we

label them as case I (fixed axial force) and case II (fixed axial stretch), respectively,

and both cases share the same boundary conditions and continuity conditions. Case

I corresponds to the situation that one end of the tube is free to inflate and the other

end is subject to a dead weight. We refer to the experiment by Kyriakides and Chang

(1990, 1991); Guo et al. (2016); Wang et al. (2019) for such a kind of setup. Case

II can be achieved by first uniformly stretching the tube and then fixing the total

length. This kind of setup was adopted in the experiment by Pamplona et al. (2006);

Gonçalves et al. (2008); Wang et al. (2019).

By utilizing the bifurcation condition (5.1), the first bifurcation point for cases I and

II can be obtained by solving the following equations

fixed axial force: J(P, F ) = 0, F (λa, λz) = F0, (5.2)

fixed axial stretch: J(P, F ) = 0, λz = λz0, (5.3)
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where F0 and λz0 are constants. Since all functions are related to variables λa and λz,

the above equations actually provide the values of λa and λz at which localized bulging

emerges. Accordingly, the critical pressure can be obtained from equation (4.29).

In our illustrative calculations, the incompressible Gent model (Gent, 1996) and Ogden

model (Ogden, 1972) are employed, with the strain energy functions given by (2.63)

and (2.60), respectively. In the following analysis, we will consider that both layers

are composed of the Gent material or Ogden material, respectively. In particular, we

adopt Jm = 97.2 which is typical value for rubbers for both layers (Gent, 1996) when

the Gent model is employed.

Before proceeding further, we set the outer radius to B = 1 (this is equivalent to

scaling all quantities of length dimension by B) and introduce a parameter s = µ/µ̄

denoting the shear modulus ratio of the outer and inner layers. In Chapter 4, by use of

the Gent model, the situation that the two layers share the same modulus but different

Jm has been studied. In this chapter, however, we focus on the effect of stiffness ratio

s and constitutive model on bulge initiation.

On scaling the pressure P by µ̄ and the axial force F by µ̄B2 (for convenience, we

still keep the original symbols), the bifurcation condition (5.1) is dependent on three

parameters s, A, and D. In order to carry out a bifurcation analysis, a proper bifurca-

tion parameter shall be selected. Actually, three loading parameters including mass,

pressure and volume can be controlled in experiments. Mass control can be achieved

by inflating a rubber tube by an air pump (Pamplona et al., 2006; Gonçalves et al.,

94



Chapter 5. Effects of the stiffness ratio on localized bulging in a bilayer tube

2008; Guo et al., 2016; Wang et al., 2019). Pressure control is difficult to perform

and must involve a large enough water tank with a fixed height. Furthermore, bulging

solutions under pressure control are unstable (Fu and Xie, 2010).

In the case of volume control, one usually pumps water into the tube. Since water

may be treated as incompressible, it is the injected volume that can be controlled

(Kyriakides and Chang, 1990, 1991). For inflation problems, Varatharajan and Das-

Gupta (2017) considered a single-layer membrane tube surrounded by soft tissues and

adopted the circumferential stretch as the bifurcation parameter. In this study, we

directly employ the volume ratio v = V1/V0 as our controlled bifurcation parameter,

where V0 and V1 denote the internal volume for the bilayer tube in the initial and basic

states, respectively. After simple calculations, it is found that

v = λ2
aλz. (5.4)

In the sequel, we investigate the effects of modulus ratio and different proportion of

each layer on the bulge initiation and maximum radius of the bulge that a tube can

attain. Once the critical volume ratio vcr is known, the corresponding pressure can

be obtained by use of equation (4.29). In the next section, we study both of the fixed

axial force and fixed axial stretch. Since we adopt v as the bifurcation parameter, a

criterion in this study reads that a larger vcr corresponds to a more stable structure.

Indeed, for a volume control problem, this criterion is suitable since it is the volume

pumped into the tube that is controlled. However, for other kinds of control problems,
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the current study also provides useful insights into the bulging behavior in inflated

bilayer tubes.

5.3 Parametric studies of bulge initiation

In this section, we investigate the bulge initiation by use of equations (5.2) and (5.3).

In the initial state, the volume ratio is v = 1. When inflating a bilayer tube, the

volume ratio v increases and reaches a critical value vcr at which a bifurcation leading

to bulge formation occurs. Next, we study case I and case II separately.

5.3.1 Case I: fixed axial force

In this case, the axial resultant force F = F0 is fixed. For convenience, we consider

F0 = 0 in the subsequent analysis. By use of equation (5.2), the stretches λcra and λcrz

where localized bulging emerges can be determined. Then we can find the bifurcation

threshold vcr from (5.4). Next, without loss of generality, we specify the inner radius

by A = 0.6 and investigate the relations between vcr and the modulus ratio s with

different D, and the corresponding results are shown in Figure (5.1) for the Gent

model. It can be seen that, for a given D, the critical volume ratio vcr is an increasing

function of s. Therefore, a stiffer outer part creates a more stable structure, which is

consistent with the results in Varatharajan and DasGupta (2017) where the enclosed

substrate can delay the onset of bulging with increased stiffness. However, when s
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Figure 5.1: Relations between vcr and s when D = 0.9, 0.8, 0.7, respectively, for

the Gent model. The inner and outer radii are given by A = 0.6 and B = 1. The

arrow indicates the decrease of D. The right plot displays an enlarged part of the

left one.

is roughly larger than 100, the improvement of vcr becomes marginal. On the other

hand, when s is small, it is found from the right figure in Figure (5.1) that vcr is

non-monotonic with varied D. Furthermore, bifurcation curves for the Ogden model

are illustrated in Figure (5.2), and a similar feature is observed.

From the analysis, we can deduce that a stiffer outer layer generates a larger vcr when

all other parameters are prescribed. However, the critical volume ratio vcr is a non-

monotonic function of D if the thickness of bilayer tube and the modulus ratio s are

specified. Since layered tubes can be used to model human arteries (Gasser et al.,

2005) and a thinner tube is easier to bifurcate (Fu et al., 2016), we then focus on a

composite tube with a given thickness (or inner radius). We aim at providing new

insights into the role of the mechanical property of different layers in bulge initiation.
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Figure 5.2: Relations between vcr and s when D = 0.9, 0.8, 0.7, respectively, for

the Ogden model. The inner and outer radii are given by A = 0.6 and B = 1. The

arrow indicates the decrease of D. The right plot displays an enlarged part of the

left one.

From now on we study how vcr depends on D. From equation (5.4), both λa and λz

contribute to vcr. Therefore, we first seek the source of non-monotonicity of vcr with

respect to D and plot λcra and λcrz in Figure (5.3) for the Gent model. It can be seen

that both λcra and λcrz have a maximum when the outer layer is stiffer. However, as

shown in Figure (5.3(b)), λcrz varies in a very small range such that the behavior of vcr

in terms of D is mainly dominated by λcra . Therefore, we may speculate that vcr also

has a maximum when s > 1.

Next, the curves of vcr in terms of D for six values of s are depicted for the Gent

model and Ogden model in Figures (5.4) and (5.5), respectively. In consistency with

the previous results, when D is given, a larger s produces a higher vcr. Moreover, the

curve has a maximum if s > 1 but a minimum if s < 1. When the inner layer is stiffer,

the composite tube is less stable. Since further enhancement of stability when s > 100
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is negligible, we then only show the results for s 6 100. In addition, if the inner layer

is stiffer, we consider s > 0.01.

Solid line: s =10 

Dashed line: s =50 

Dotted line: s =100

(a)

Solid line: s =  

Dashed line: s =  

Dotted line: s =

(b)

D

Figure 5.3: Dependence of λcra and λcrz on D when A = 0.6 and B = 1. The

figure in the rectangular of (b) indicates the curve of λcrz when a large scale of the

vertical axis is adopted.

Solid line: s =  

Dashed line: s =  

Dotted line: s =

Solid line: s =  0.1 

Dashed line: s =  0.02 

Dotted line: s =  0.0

Figure 5.4: Dependence of vcr on D when A = 0.6 and B = 1 for the Gent

model. Three values of s are shown in each figure.

Now, it is known that vcr is always a monotonically increasing function of s but can

have a maximum or minimum in terms of D. We may determine the maximum or
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Solid line: s =  

Dashed line: s =  

Dotted line: s =

(a)

Solid line: s =  0.1 

Dashed line: s =  0.02  

Dotted line: s =  0.0

(b)

Figure 5.5: Dependence of vcr on D when A = 0.6 and B = 1 for the Ogden

model. Three values of s are shown in each figure.

minimum of vcr by simply differentiating vcr with respect to D and solve the following

equations

dvcr
dD

=
F̃,3Ω,2 − F̃,2Ω,3

F̃,1Ω,2 − F̃,2Ω,1

= 0, (5.5)

Ω(v, λz, D) = 0, (5.6)

F̃ (v, λz, D) = 0, (5.7)

where the first equation is obtained from implicit differentiations of Ω(v, λz, D) = 0

and F̃ (v, λz, D) = 0, the bifurcation condition is rewritten as Ω(v, λz, D) = J(P, F ),

and the resultant axial force is replaced by F̃ (v, λz, D) = F (λa, λz).

In fact, equations (5.5)-(5.7) determine the maximum or minimum critical volume

ratio, the corresponding interfacial radius, and the axial stretch in terms of the inner

radius A and ratio of modulus s. Obviously, a two dimensional picture is more clear.
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(a) Gent model. (b) Ogden model.

Figure 5.6: The maximum and minimum volumes when 0.01 6 s 6 100. The

solid line is a single-layer tube. The dashed line and dotted line correspond to

s = 100 and s = 0.01, respectively.

Next, we consider that the ratio of modulus s belongs to the interval 0.01 6 s 6 100.

Since a higher s generates a larger vcr, the lower and upper bounds of vcr when 0.01 6

s 6 100 just equate to vcr |s=0.01 and vcr |s=100, respectively. On the other hand,

since we fix B = 1, varying the inner radius A is equivalent to considering the effect

of thickness. The results for both the Gent model and Ogden model are plotted in

Figure (5.6). The solid curve denoting the critical volume ratio for a single-layer tube

is also shown for comparison. It can be seen that, for the same geometry, the critical

volume ratio vcr for a bilayer tube varies in a large range compared to a single-layer

tube. Therefore, in some situations where localized bulging is preferred or undesired,

a composite tube with specified ratio of modulus but the same geometry might offer

a potential way to control the bulge initiation.

Furthermore, we deal with the situation with specified A and varied s. In order to be
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(a) s > 1. (b) s < 1.

Figure 5.7: Dependence of Dmax
c and Dmin

c on s. The geometrical parameters are

given by A = 0.6 and B = 1. The solid lines correspond to the Gent Model and

the dashed lines represent the Ogden model.

consistent with the previous analysis, the inner radius is also set to A = 0.6. As the

vcr −D curve has a maximum when s > 1 but a minimum otherwise, we use (Dmax
c ,

vmax
cr ) to represent the turning point if s > 1. The counterpart when s < 1 is denoted

by (Dmin
c , vmin

cr ). Accordingly, the relations between Dmax
c and s or Dmin

c and s for the

Gent and Ogden models are displayed in Figure (5.7). It is observed that the critical

interfacial radius Dmax
c or Dmin

c increases monotonically. In particular, it turns out

that the difference between the results based on the two models is very small.

By combining both analyses in this subsection, we may summarize that, at least for

fixed axial force, the effect of modulus ratio on bulge initiation vcr in an inflated bilayer

tube is a kind of intrinsic property. Different choice of the constitutive models might

affect the value of vcr. However, the qualitative property remains the same. In the

next subsection, we shall study the other loading type, i.e., fixed axial stretch.
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Figure 5.8: Relations between vcr and s when D = 0.95, 0.85, 0.75, respectively,

for the Gent model. The inner and outer radii are given by A = 0.6 and B = 1.

The arrow indicates the decrease of D. The right plot shows the details of the left

one when s is around 1.

5.3.2 Case II: fixed axial stretch

In this case, it is the axial length that is fixed. Note that this kind of setup has been

used in the experiments by Pamplona et al. (2006); Gonçalves et al. (2008); Wang

et al. (2019). As shown by Gonçalves et al. (2008), if the pre-stretch λz0 is not large

enough, the tube may suffer Euler-type buckling. Consequently, we impose a pre-

stretch λz0 = 2.5 without loss of generality on the bilayer tube and then fix the axial

length. In addition, the human arteries also undergo a pre-stretch λz0 in situ and

λz0 decreases with increased age (Hornỳ et al., 2014). Since the pressure-stretch (or

volume) curve may be monotonic, we need to find the bifurcation threshold by utilizing

equation (5.3). Referring to case I, we also anticipate that the critical volume ratio

vcr is an increasing function of s but may have maximum or minimum with varied D.
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Thus, we first plot the dependence of vcr on s for three values of D in Figure (5.8) for

the Gent model. As we expected, the tendency of the vcr − s curve is quite similar to

the corresponding results in case I, and the gradient of vvr changes fast with increasing

s. In other words, a bilayer tube becomes more stable with a higher s. However, when

s is large enough, further improvement of vcr is negligible. Also, for a given s which

is less than 6, the relation between vcr and D is non-monotonic. For the sake of

simplicity, the counterpart for the Ogden model is not shown.

Furthermore, we also display the curves of vcr with varying D if all other parameters

are specified in Figure (5.9) for the Gent model and Figure (5.10) for the Ogden model.

It can be seen that the critical volume ratio vcr has a maximum if s > 1 and a minimum

if s < 1, and this is consistent with the results in case I. Nevertheless, unlike case I

(cf. Figures (5.4) and (5.5)), the magnitude of vcr for the Gent model is larger than

that for the Ogden model. In addition, we can determine the maxima and minima in

Figures (5.9) and (5.10) by directly differentiating vcr with respect to D. Because the

axial stretch λz is known, we need to solve the following equations

dvcr
dD

=
Φ,2

Φ,1

= 0, (5.8)

Φ(v,D) ≡ J(P, F ) = 0. (5.9)

In the second equation, the bifurcation condition is rewritten as a function of v and

D. The above two equations provide the turning point (Dmax
c , vmax

cr ) or (Dmin
c , vmin

cr )

when the inner radius A and ratio of modulus s are specified. Here, Dmax
c corresponds
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Solid line: =  

Dashed line: =  

Dotted line: =

Solid line: s =  0.1 

Dashed line: s =  0.02  

Dotted line: s =  0.0

Figure 5.9: Dependence of vcr on D when A = 0.6 and B = 1 for the Gent

model. Three values of s are shown in each figure.

Solid line: =  

Dashed line: =  

Dotted line: =

Solid line: s =  0.1 

Dashed line: s =  0.02  

Dotted line: s =  0.0

Figure 5.10: Dependence of vcr on D when A = 0.6 and B = 1 for the Ogden

model. Three values of s are shown in each figure.

to the case where vcr −D curve is convex, and Dmin
c is the counterpart when vcr −D

curve is concave, which are in accordance with the notations in case I.

Next, we plot the interval of vcr when 0.01 6 s 6 100 with varied A in Figure (5.11)

for the Gent model and Ogden model. The solid curves correspond to a single-layer

tube. In the case of fixed axial length, a composite tube can also be easier or harder
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(a) Gent model. (b) Ogden model.

Figure 5.11: The maximum and minimum volumes when 0.01 6 s 6 100. The

solid line is a single-layer tube. The dashed line and dotted line correspond to

s = 100 and s = 0.01, respectively.

s

Figure 5.12: Dependence of the turning point on s. The geometrical parameters

are given by A = 0.6 and B = 1. The solid lines correspond to the Gent Model

and the dashed lines represent the Ogden model.

to bifurcate than a single-layer tube with the same geometry, according to the value

of s. Finally, we fix the inner radius by A = 0.6 and show the dependence of Dmax
c or

Dmin
c on the ratio of modulus s in Figure (5.12) for the Gent model and Ogden model.
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We observe that in case II both models also generate very similar properties. Also,

the difference of the critical interfacial radius corresponding to maximum or minimum

critical volume ratio between two models is marginal, which also manifests the fact

that the effect of the modulus ratio is an intrinsic property.

5.4 Conclusion

In this chapter, we have studied localized bulging in an inflated bilayer tube of arbitrary

thickness. We focus on the situation that each layer has its own shear modulus, and

the influence of constitutive models are examined as well. The current study improves

the understanding of localized bulging in a hyperelastic tubes of arbitrary thickness.

Since layered structures are often observed in biological tissues, our results could also

provide deep insight into aneurysm formation and furnish a potential way to delay

bulge initiation.

By introducing the ratio of modulus s and regarding the volume ratio v as the bi-

furcation parameter, we establish a criterion that a higher vcr corresponds to a more

stable structure, where vcr refers to the bifurcation threshold. When all geometrical

parameters are specified, we find that vcr is an increasing function of s. However, if s

is large enough, say s > 100, the increment of vcr becomes negligible with increased s.

When the thickness of the whole tube is given, the dependence of vcr on the interfacial

radius D is non-monotonic. In particular, a composite tube is always more stable than

a single-layer tube if s > 1 or less stable if s < 1. Furthermore, the critical volume
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ratio vcr has a maximum when s > 1 but a minimum otherwise, and the corresponding

critical radii Dmax
c and Dmin

c are also determined. In addition, all results for the Gent

model and Ogden model are qualitatively similar, which implies that the bifurcation

behavior of an inflated bilayer tube is insensitive to the applied constitutive model.
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Chapter 6

Localized bulging of hyperelastic

tubes under inflation and torsion

6.1 Introduction

In this chapter localized bulging of a cylindrical, incompressible, isotropic tube that

is subject to combined action of internal pressure, torsion and axial extension is in-

vestigated. The expressions for the twisting moment M , the internal pressure P and

the resultant axial force F associated with the deformation are first given for the

Mooney-Rivlin material model. With the use of dynamical systems theory, we derive

the bifurcation condition for localized bulging when the twisting moment M is fixed.
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Figure 6.1: Localized bulging under inflation and torsion.

We then determine several critical regimes where localized bulging disappears. Finally,

we study the wrinkled solution to ensure that the tube will not wrinkle before localized

bulging takes place.

6.2 Problem formulation

First we consider a hyperelastic cylindrical tube with inner radius A and outer radius

B, which can be described by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (6.1)
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in the undeformed configuration, where (R,Θ, Z) are cylindrical polar coordinates,

and L is the length of the tube. The tube is subject to torsion together with an axial

extension and an internal pressure; see Figure (6.1). After the deformation, the inner

and outer radii take the values a and b, respectively.

Assuming that the material is incompressible, the deformation can be defined by

r = r(R) =
√
λ−1
z (R2 − A2) + a2, θ = Θ + γλzZ, z = λzZ, (6.2)

where (r, θ, z) are cylindrical polar coordinates after the deformation, λz is the axial

stretch, and γ is the amount of twist per unit axial length in the deformed configura-

tion. Accordingly, the deformation gradient tensor F can be written in matrix form

as

F =


∂r
∂R

0 0

0 r
R

λzγr

0 0 λz

 . (6.3)

Then, the left Cauchy-Green strain tensor B = FFT takes the form

B =


(
∂r
∂R

)2
0 0

0
(
r
R

)2
+ (λzγr)

2 λ2
zγr

0 λ2
zγr λ2

z

 , (6.4)

where the superscript T denotes the transpose of a tensor.

We shall use the Mooney-Rivlin strain-energy function, which is given by (2.59), to
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characterize the constitutive response of the material. Hence, according to equation

(2.52), the Cauchy stress tensor σ can be written as

σ = µ1B + µ2(I1B−B2)− pI. (6.5)

So, the non-zero components of Cauchy stress are given by

σrr(r) =
µ1(r2 − h)

r2λz
+ µ2

(
1

λ2
z

+
(r2 − h)(1 + r2γ2)λz)

r2

)
− p,

σθθ(r) =
(γ2hλ3

z − γ2r2λ3
z − 1) (µ2 (h− r2λ3

z − r2)− µ1r
2λz)

(r2 − h)λ2
z

− p,

σzz(r) = λz

(
µ2 + µ1λz −

hµ2

r2
+ µ2r

2

(
1

r2 − h
+ γ2λ3

z

))
− p,

σθz(r) = γrλ2
z

(
µ1 − γµ2rλ

2
z

)
,

(6.6)

where h = a2 − A2/λz. The equilibrium equation which is not satisfied automatically

is given by

dσrr
dr

= −σrr − σθθ
r

. (6.7)

It is assumed that the internal surface of the tube is subjected to the internal pressure

P while its external surface is traction-free, so the boundary conditions are

σrr(a) = −P, σrr(b) = 0. (6.8)

By integrating equation (6.7) subject to the boundary conditions (6.8), the internal

pressure P is given by

P =

∫ b

a

σθθ − σrr
r

dr. (6.9)
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The Lagrange multiplier p can then be obtained from equation (6.7) with the use of

equations (6.8)1 and (6.6)1. It takes the form

p =
µ1(r2 − h)

r2λz
+ µ2

(
1

λ2
z

+
(r2 − h)(1 + r2γ2)λz)

r2

)
+ P +

∫ r

a

σrr − σθθ
r

dr. (6.10)

It follows that the twisting moment M on any cross section of the tube and the axial

stress resultant N are expressed as

M =

∫ b

a

∫ 2π

0

σθzr
2drdθ = 2π

∫ b

a

σθzr
2dr,

N =

∫ b

a

∫ 2π

0

σzzrdrdθ = 2π

∫ b

a

σzzrdr.

(6.11)

Assuming that one end is closed and is subject to the action of an additional force F

(e.g. a dead weight), then

F = N − π a2 P. (6.12)

The corresponding equations for a neo-Hookean model can be obtained by setting

µ1 = µ and µ2 = 0.

We shall assume that the twisting moment M is fixed, say M0, throughout this re-

search. As a result, the torsional twist γ may be written, by using equation (6.11)1,

in the following way

γ =
20M0

5πµ1 (b4 − a4)λ2
z +
√

5π
√
λ4
z

(
32µ2τ (a5 − b5) + 5πµ2

1 (a4 − b4)2) . (6.13)

By introducing the circumferential stretches λa = a/A and λb = b/B, the internal
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pressure P and the resultant axial force F are viewed as functions of λz and λa only

where λb has been eliminated using (6.2) as follows

λb =

√
B2 − A2 + A2λ2

aλz
B2λz

. (6.14)

The special case when the torsional twist γ = 0, or equivalently M = 0, was studied

by Fu et al. (2016). It was shown in the latter paper that a necessary condition for

localized bulging to take place is given by the following expression

J(P, F ) =
∂P

∂λa

∂F

∂λz
− ∂P

∂λz

∂F

∂λa
= 0. (6.15)

We may then question if this correspondence can be extended to the case of twisted

tubes. We shall verify that J(P, F ) = 0 is the bifurcation condition for localized

bulging in inflated tubes when the twisting moment M is fixed. We highlight that the

torsion γ may be changed during the inflation. In the inflation of a tube, there are

two different loading conditions, either the resultant axial force F or axial length that

can be fixed, which shall be considered here.
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6.3 Incremental equations

To investigate the axi-symmetric bifurcation of the deformation determined earlier, we

consider an incremental displacement field ṙ of the form

ṙ = u(r, z)er + v(r, z)eθ + w(r, z)ez,

where u(r, z), v(r, z) and w(r, z) denote the incremental displacement in the r-, θ-

, z-directions, respectively, and er, eθ and ez are the corresponding basis vectors.

Accordingly, the gradient of incremental displacement has the form

Γ =


ur

−1
r
v uz

vr
1
r
u vz

wr 0 wz

 , ur ≡
∂u

∂r
, vr ≡

∂v

∂r
etc. (6.16)

According to the analysis developed in Chapter 2, the associated incremental stress

tensor Ŝ0 is defined by

Ŝ0 = B Γ + p Γ− p∗δ, (6.17)

where p∗ is the incremental of p, δ is the Kronecker delta, and B are the incremental

elastic moduli given by (2.78) with J = 1. Then, the three incremental equilibrium
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equations are

∂Ŝ0rr

∂r
+
∂Ŝ0zr

∂z
+
Ŝ0rr − Ŝ0θθ

r
= 0,

∂Ŝ0rθ

∂r
+
∂Ŝ0zθ

∂z
+
Ŝ0θr + Ŝ0rθ

r
= 0,

∂Ŝ0rz

∂r
+
∂Ŝ0zz

∂z
+
Ŝ0rz

r
= 0.

(6.18)

Furthermore, the incremental incompressibility condition takes the form

tr Γ = ur +
u

r
+ wz = 0. (6.19)

Taking the increment of boundary conditions (6.8), we find

ŜT0 n = P ΓTn, on r = a, ŜT0 n = 0, on r = b. (6.20)

The incremental equilibrium equations (6.18) and the incremental incompressibility

condition (6.19) will be solved numerically subject to the incremental boundary con-

ditions (6.20) in the next two sections.

6.4 Stroh formulation

Several methods can be used to solve the incremental eigenvalue problem derived

above. Here, we introduce the Stroh formulation which enables us to rewrite the gov-

erning equations (6.18) and (6.19) as a first-order differential system, as illustrated in
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Chapter 2. We present the results for the neo-Hookean model only, and the associated

results for the Mooney-Rivlin model are not presented for the sake of brevity. Balbi

and Ciarletta (2015) investigate the helical buckling of pre-stressed tubes subject to

a torsion, and the attention is mainly focused on sinusoidal patterns. In the present

analysis, we only focus on the bifurcation having zero mode number.

For our purpose, we seek a solution of the form

[u, v, w, p∗] = [U(r),−V (r),−W (r), P (r)] eα z, (6.21)

where U(r), V (r),W (r) and P (r) are scalar functions of r, and α the is axial spectral

parameter. Similarly, the components of the incremental nominal stress tensor can be

rewritten in the following form

[
Ŝ0rr, Ŝ0rθ, Ŝ0rz

]
=

[
1

r
S0rr(r),

1

r
S0rθ(r),

1

r
S0rz(r)

]
eα z. (6.22)

Note that P (r) is eliminated by substituting equation (6.17) into (6.22).

We now introduce the displacement-traction vector η(r), as follows

η(r) =

 U (r)

S(r)

 with
U(r) = [U(r), V (r),W (r)]T

S(r) = [S0rr(r), S0rθ(r), S0rz(r)]
T

. (6.23)

Using the incremental incompressibility condition (6.19) together with equations (6.17),

(6.21), and (6.22), we may rewrite the differential equations (6.18) as the following
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first-order differential system

dη(r)

dr
=

1

r
G(r) η(r), (6.24)

where G(r) is the so-called Stroh matrix which has the following block representation

G =

 G1 G2

G3 G4

 , (6.25)

where

G1 =


−1 0 αr

0 φ 0

αrφ 0 0

 , G2 =


0 0 0

0 −1/Brθrθ 0

0 0 −1/Brθrθ

 , (6.26)

G3 =


τ11 τ12 τ13

τ12 τ22 0

τ13 0 τ33

 , G4 = −G1
T, (6.27)

with

τ11 = α2r2(−Bzrzr + Brθrθφ2) + Brrrr + Bθθθθ + 2p,

τ12 = −2αrBθθzθ,

τ13 = −αr(Brrrr + p),
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τ22 = α2r2Bzθzθ − Bθrθr + φ2Brθrθ,

τ33 = α2r2(Brrrr − Bzzzz + 2p+ 2Bzθzθ),

φ = p/Brθrθ.

Note that the superscript T denotes the transpose and G2 and G3 are symmetric.

After writing the system of governing equations as a system of first order ordinary

differential equations, we solve equation (6.24) by using the impedance matrix method

in the following.

6.5 Numerical solution of the bifurcation condition

In this section, we present the the numerical results of the above problem using

impedance matrix method. As explained in Chapter 2, we assume that ηn are the

independent solutions of the system (6.24) and then the 6 × 6 matricant M(r, rk) is

introduced, such that

M(r, rk) =

 M1(r, rk) M2(r, rk)

M3(r, rk) M4(r, rk)

 = τ (r)τ−1(rk), (6.28)

where rk = a, b and

τ (r) = [η1, ...,η6]. (6.29)
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Therefore, M(r, rk) is the solution of the initial value problem

dM(r, rk)

dr
=

1

r
G(r)M(r, rk), with M(rk, rk) = I(6). (6.30)

Thus, we may define the 3× 3 conditional impedance matrix z in the following form

S = zU . (6.31)

As a results, equation (6.28) can rewritten as

η(r) = M(r, rk)η(rk), (6.32)

which gives

U(r) = M1(r, rk)U(rk) + M2(r, rk)S(rk), (6.33)

S(r) = M3(r, rk)U(rk) + M4(r, rk)S(rk). (6.34)

By substituting (6.23)1 and (6.31) into (6.24), we get

dU

dr
=

1

r
G1U +

1

r
G2zU , (6.35)

d(zU )

dr
=

1

r
G3U +

1

r
G4zU . (6.36)
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Therefore, the following differential matrix Riccati equation can be obtained by sub-

stituting (6.35) into (6.36), which gives,

dz(r)

dr
=

1

r
(G3 − zG1 − zG2z + G4z). (6.37)

So far, the equation (6.24) is rewritten as the differential matrix Riccati equation

(6.37) and the corresponding boundary conditions can be obtained as the following.

The boundary condition (6.20) on r = b requires

S(b) = 0. (6.38)

Substituting equation (6.38) and (6.31) into equation (6.34) gives

M3(b, rk)U(rk) + M4(b, rk)z(rk)U(rk) = 0. (6.39)

Taking rk = b in equation (6.39), we have

M3(b, b) + M4(b, b)z(b) = 0. (6.40)

According to equation (6.30)2, M3(b, b) = 0 and M4(b, b) = I3×3. Therefore, the

boundary condition of the differential matrix Riccati equation on r = b becomes

z(b) = 0. (6.41)
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Now, using (6.22) and (6.16), the boundary condition (6.20) on r = a becomes

1

a


S0rr

S0rθ

S0rz

 = P


U

′

1
a
V

α U

 , (6.42)

which can be rewritten by the use of (6.24) as

S = P


G

(11)
1 G

(12)
1 G

(13)
1

0 1 0

a α 0 0

U , (6.43)

where G
(11)
1 ,G

(12)
1 and G

(13)
1 are the first, second and third elements in the first row of

G1, respectively. More precisely expressed as,

G
(11)
1 = −1, G

(12)
1 = 0, G

(13)
1 = α a. (6.44)

Substituting (6.43) into (6.31), we get

det

z(a)− P


−1 0 α a

0 1 0

a α 0 0



 = 0. (6.45)

The eigenvalue problem derived above has two non-zero real eigenvalues, say ±α1.

Increasing the amount of M and/or F will move these two eigenvalues towards the
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-2 -1 1 2
α

0.05

0.10

0.15

�����[α]

(a) λz = 1.07.

-0.6 -0.4 -0.2 0.2 0.4 0.6
α

0.00005

0.00010

0.00015

�����[α]

(b) λz = 1.15.

-0.10 -0.05 0.05 0.10
α

2.×10
-9

4.×10
-�

6.×10
-�

8.×10
-�

1.×10
-8

�����[α]

(c) λz = 1.165.

Figure 6.2: The error function against α when B = µ = 1, F = 0, γ = 0.2, and

A = 0.8. Localized bulging takes place in (c).

origin. Based on the dynamical systems theory, a condition of the existence of localized

bulging is when α1 vanishes, see Kirchgässner (1982) and Haragus and Iooss (2010).

Figure (6.2) shows the movement of three real eigenvalues as λz increases. Localized

bulging may occur when α1 = 0, making zero a triple eigenvalue. Thus, the bifurcation

condition is reduced to the condition when the two eigenvalues ±α1 equal to zero.

Now, we present the numerical results of the eigenvalue problem by solving the differ-

ential matrix Riccati equation (6.37) subject to the boundary conditions (6.41) and
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Figure 6.3: The relation between α and λz when A = 0.8 and F = 0. Solid and

dashed lines correspond to M0 = 0, 0.4 repectively.

(6.45). Without loss of generality, we set the shear modulus µ = 1 and the outer

radius B = 1. By fixing λz, we integrate numerically the differential Riccati equation

(6.37) subject to the boundary condition (6.41) and α is iterated until the boundary

condition (6.45) is satisfied. Therefore, the connection between α and λz can be ob-

tained numerically. Figure 6.3 displays our numerical results for the variation of α

against λz for different M0 when the inner radius A = 0.8 and the resultant axial force

F = 0. Note that F = 0 is solved to define λa as a function of λz. It is seen that

when M is specified by 0, 0.4 then the corresponding values of λz at which α = 0 are

1.1783, 1.1699, respectively. If M = 0.4, we have verified that the pressure attains

its maximum when λz = 1.1699. Thus, determination of the initiation pressure for

localized bulging is the condition under which zero becomes a triple eigenvalue. The
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relation between negative α and λz can be obtained in similar manner. Also, the re-

lation between ±α and λa can be obtained similarly in the case of fixed axial stretch

λz.

6.6 Bifurcation condition

In this section we further derive a bifurcation condition for small α using the neo-

Hookean material model. Therefore, the incremental equilibrium equations (6.18)

together with the incremental incompressibility condition (6.19) will be solved analyt-

ically. Now, we look for a solution of the form

[u, v, w, p∗] = [U(r), V (r),W (r), P (r)] eα z. (6.46)

On substituting equation (6.46) into the incremental equilibrium equations (6.18) and

the incremental incompressibility condition (6.19), and then eliminating W (r) and

P (r) in favor of U(r) and V (r), we obtain

Brθrθ U (4) + ψ1 U
(3) +

(
−3Brθrθ/r2 + α2ψ2

)
U

′′
+
(
ψ3 + α2ψ4

)
U

′

+ (ψ5 + α2ψ6 + α4λ2
z )U = −2γλ2

zα
2V ∗,

BrθrθV ∗
′′

+ ψ7 V
∗′ +

(
ψ8 + α2λ2

z

)
V ∗ = 2γλ2

zα
2U,

(6.47)
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where V ∗ = αV and

ψ1 =
2(h+ r2)

r3λz
, ψ2 = Brθrθ + λ2

z, ψ3 = −3(5h− r2)

r5λz
,

ψ4 =
h+ r2 + r2λ3

z

r3λz
, ψ5 = −3(−5h+ r2)

r6λz
,

ψ6 = −λ
2
z

r2
− γ2λ2

z +
1

(h− r2)λz
− p′′

, ψ7 =
h+ r2

r3λz
,

ψ8 = −Bθrθr
r2
− p

′

r
.

(6.48)

We mention here that α appears through α2 in equations (6.47).

Following the same approach in Fu et al. (2016), we expand U(r, α) and V ∗(r, α) in

the form

U(r, α) = U0(r) + α2U1(r) + . . . , V ∗(r, α) = V ∗0 (r) + α2V ∗1 (r) + . . . . (6.49)

Also, the boundary conditions are expanded similarly. By substituting equation (6.49)

into equation (6.47), and equating the coefficients of α0 and α2 to zero, we find that

d

dr

1

r

d

dr
rζ(r)

d

dr

1

r

d

r
rU0(r) = 0,

d

dr

ζ(r)

ζ ′(r)

d

dr

1

r
V ∗0 (r) = 0, (6.50)

where ζ(r) = Brθrθ(r) = (−h + r2)µ/(r2λz) . Thus, the general solutions can be

obtained easily and are given by

U0(r) = c1r + c2
1

r
+ c3κ1(r) + c4κ2(r), V ∗0 (r) = c5r + c6r log[ζ(r)], (6.51)
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where ci (i=1, . . . , 6) are constants of integration and

κ1(r) =
1

r

∫ r

a

t

∫ t

a

s

ζ(s)
ds dt, κ2(r) =

1

r

∫ r

a

t

∫ t

a

1

sζ(s)
ds dt. (6.52)

By substituting these solutions into the leading-order boundary conditions of equations

(6.20), we note that the coefficients c3, c4 and c6 must vanish while c1, c2 and c5 are

arbitrary.

At order α2, we find that the expressions for the general solutions of U and V ∗ take

the form

U1(r) = d1r + d2
1

r
+ d3κ1(r) + d4κ2(r) + c1κ3(r) + c2κ4(r) + c5κ5(r),

V ∗1 (r) = d5r + d6r log[ζ(r)] + c5κ6(r) + c1κ7(r) + c2κ8(r),

(6.53)

where di (i=1, . . . , 6) are constants and κi(r) (i=3, . . . , 8) are particular integrals

defined by

κ3(r) =
1

r

∫ r

a

y

∫ y

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω1(s)ds dt dx dy,

κ4(r) =
1

r

∫ r

a

y

∫ y

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω2(s)ds dt dx dy,

κ5(r) =
1

r

∫ r

a

y

∫ y

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω3(s)ds dt dx dy,

κ6(r) = r

∫ r

a

ζ
′
(x)

ζ(t)

∫ t

a

ω4(s)ds dt,

κ7(r) = r

∫ r

a

ζ
′
(x)

ζ(t)

∫ t

a

ω5(s)ds dt,

κ8(r) = r

∫ r

a

ζ
′
(x)

ζ(t)

∫ t

a

ω6(s)ds dt,

(6.54)
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with ωi(r) (i=1, . . . , 6) given by

ω1(r) = −2h2(2h− 3r2)

r3(h− r2)2λz
, ω2(r) = − 2h(h− 2r2)

r3(h− r2)2λz
, ω3(r) = 2γλ2

zr,

ω4(r) = −rλ2
z, ω5(r) = −2rγλ2

z, ω6(r) = −2γλ2
z

r
.

(6.55)

By substituting (6.51) and (6.53) into second-order boundary conditions, we obtain

a matrix equation of the form QC where Q is a 6 × 6 matrix which is not written

for the sake of brevity, and C is the column vector obtained from the six constants

c1, c2, c5, d3, d4, d6. The condition for zero to become a triple eigenvalue then requires

detQ = 0. (6.56)

The bifurcation condition (6.56) can be used for the cases of fixed axial force and fixed

axial length. We then verify that the bifurcation condition detQ = 0 is graphically

equivalent to J(P, F ) = 0 when we plot these two curves in the (λa, λz)-plane. We can

then conclude that the bifurcation condition for localized bulging in a twisted tube is

given by J(P, F ) = 0.

6.7 Effect of torsion

After deriving the bifurcation condition, we now focus on studying the effects of torsion

on localized bulging. The cases of fixed axial force and fixed axial stretch will be

investigated separately. In this section the bifurcation condition (6.15) will be solved
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(b) The Mooney-Rivlin model.

Figure 6.4: The pressure P as a function of λa for different values of M0, A =

0.8, and F = 0. Solid, dashed, and dotted lines correspond to M0 = 0, 0.3, 0.6,

respectively.

when both the neo-Hookean and Mooney-Rivlin material models are used. From now

on, we set B = 1 without loss of generality. In the case of the neo-Hookean model, we

assume that the shear modulus µ = 1. Also, we assume that µ1 = 0.9 and µ2 = 0.1 for

the Mooney-Rivlin material model. Localized bulging may disappear with different

values of µ1 and µ2.

6.7.1 Fixed axial force

It is well known that localized bulging would take place when the internal pressure

P attains its maximum for the case of fixed resultant axial force F , see Fu et al.

(2016). In order to illustrate this correspondence, we first specify A and M0 and

then solve F = F0 numerically to express λz in terms of λa, where F0 is a constant.

Thus, the connection between P and λa can be obtained using equation (6.9). So, the
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pressure as a function of the circumferential stretch curve is shown in Figure (6.4) for

different values of M0. As expected, the critical point (λz, λa) at which the pressure

reaches its maximum is indeed the intersection point when we draw the contour plots

of J(P, F ) = 0 and F = 0 in the (λz, λa)-plane. Obviously, the pressure maximum

increases along with the increasing of the twisting moment M0, although the value of

the principal stretches λz and λa decrease. This is also true for different values A and

F0 although not shown. This is presented in detail in Table (6.1) for the neo-Hookean

model.

M0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

λa 1.7024 1.6940 1.6795 1.6581 1.6284 1.5882 1.5324 1.4492

λz 1.1773 1.1758 1.1732 1.1695 1.1645 1.1581 1.1501 1.1399

Pmax 0.1675 0.1681 0.1693 0.1709 0.1733 0.1764 0.1807 0.1867

γ 0.0374 0.0755 0.1154 0.158 0.205 0.2588 0.3242 0.4131

Table 6.1: The corresponding critical values of the stretches, pressure maximum,

and γ when localized bulging occurs for different M0 and F = 0.

The N-shaped curves of the pressure against the circumferential stretch λa, or the

pressure against the volume, are observed for the majority of material models with

a local maximum and a local minimum. This observation is also consistent with

experimental results (Wang et al., 2019). However, this feature disappears when the

neo-Hookean and Mooney-Rivlin models are used.
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Figure 6.5: The bifurcation condition curves and F = 0 for different values of

M0 when the neo-Hookean model is used.
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Figure 6.6: The bifurcation condition curves and F = 0 for different values of

M0 when the Mooney-Rivlin model is used.

Now, we can use the bifurcation condition (6.15) to determine the critical value of

M0cr at which localized bulging may become impossible. We first specify the inner

radius by A = 0.8 and investigate the effect of M0. Figures (6.5) and (6.6) show that

as M0 is increased from zero, localized bulging may appear until M0 reaches a critical
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Figure 6.7: The pressure P as a monotonic function of λa when localized bulging

becomes impossible in the case of fixed axial force and for the neo-Hookean model.

value after which the bifurcation condition J(P, F ) = 0 and F = 0 do not have any

intersection. In this case, the pressure is a monotonic function of λa; see for example

Figure (6.7). We also observe that when F0 is increased, the critical value of M0cr

to prevent localized bulging is decreased. For instance, when F0 = 0.5, we find that

the corresponding critical value M0cr for avoiding localized bulging is 0.7984 for the

neo-Hookean model.

Finally, we consider the effects of wall thickness on the initiation of the bulge. Without

torsion, we note that localized bulging occurs when the resultant axial force is zero

for the neo-Hookean and Mooney-Rivlin models, no matter how thick the tube is.

Therefore, we focus our attention on determining the critical value M0cr above which

localized bulging will not form. Figure (6.8) and Figure (6.9) show that as the thickness

of tube is increased, meaning A is decreased, the critical value M0cr to remove bulging
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Figure 6.8: The critical values M0cr at which the curves J(P, F ) = 0 and F = 0

have no intersections for the various A for the neo-Hookean model.
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Figure 6.9: The critical values M0cr at which the curves J(P, F ) = 0 and F = 0

have no intersections for different values of A for the Mooney-Rivlin model.
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Figure 6.10: The pressure P againest the circumferential stretch λa in the case of

fixed axial stretch when the neo-Hookean model is used where M0 = 0.6, A = 0.8,

and λz0 = 1.2.

formation is increased. It is clear that adding a small twisting moment to the thin-

walled tube has a significant effect on localized bulging. Thus, the critical value of M0

to avoid localized bulging in thick-walled tubes is higher than the critical value of M0

in thin-walled tubes. We mention that, when M0 < M0cr, the two curves J(P, F ) = 0

and F = 0 have an intersection.

6.7.2 Fixed axial stretch

The pressure is a monotonic function of λa in the case of fixed axial stretch λz for

some material models as mentioned in Chapter 4 ; see Figure (6.10). Hence, localized

bulging may occur if J(P, F ) = 0 and λz = λz0 have an intersection, where λz0 is

a constant. In Figures (6.11) and (6.12), we draw the contour plots of J(P, F ) = 0

when A = 0.8 and M0 = 0, 0.6, respectively. In the absence of torsion, it is known
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Figure 6.11: The bifurcation curves for the neo-Hookean model when A = 0.8.

that localized bulging can occur for any isotropic material in the case of fixed axial

stretch. However, this does not hold true when the torsion is present. The right plot

of Figure (6.11) shows that localized bulging becomes impossible when M0 = 0.6 and

λz ≥ 1.74 for the neo-Hookean model. In the case of the Mooney-Rivlin material,

localized bulging becomes impossible when M0 = 0.6 and λz ≥ 1.36.

As mentioned previously, the bifurcation condition J(P, F ) = 0 can be used for two

loading types. Therefore, the bifurcation condition curves in Figures (6.8) and (6.9)

can be utilized for fixed axial stretch case. So, it can also be seen that localized bulging

will never occur if the tube is first uniformly stretched by λz0 ≥ 1.15 and then twisted

by M0 = 0.5 for instance; see Figure (6.8) (b). Note that increasing F0 for the first

case has similar effect when we increasing λz0 for the second case.
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Figure 6.12: The bifurcation curves for the Mooney-Rivlin model when A = 0.8.
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Figure 6.13: Evolution of the bifurcation condition J(P, F ) = 0 with respect to

M0 for the neo-Hookean model.
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Figure 6.14: Evolution of the bifurcation condition J(P, F ) = 0 with respect to

M0 for the Mooney-Rivlin model.

By varying the inner radius A, we may study the effect of thickness, since we fix

B = 1. For the neo-Hookean model, Figure (6.13) shows that as M0 is increased,

the bifurcation condition J(P, F ) = 0 curve moves down until it reaches a certain

critical value in which the J(P, F ) = 0 curve disappears. For instance, if A = 0.99,

then localized bulging is unlikely to take place when M0 > 0.07. Furthermore, the

bifurcation curves for the Mooney-Rivlin model are illustrated in Figure (6.14), and a

similar feature is observed.
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6.8 Bifurcation condition for wrinkling

When a tube is subject to axial load, internal pressure and torsion, wrinkling may

be observed due to compressive stresses. Since we are interested in localized bulging

only, we assume that the amount of twist is small to avoid the possibility of wrinkling.

Thus, wrinkling regions will be determined, in this section, by solving the eigenvalue

problem derived earlier.

In parallel with section 6.4, we first look for a solution of the form

[v, w] = [V (r),W (r)] sin(α z),

[u, p∗] = [U(r), P (r)] cos(α z),

(6.57)

where α = 2nπ/(λzL) is the axial wave number and n is the axial mode number.

Similarly, the components of the incremental nominal stress tensor are given by

Ŝ0rr =
1

r
S0rr(r) cos(α z),[

Ŝ0rθ, Ŝ0rz

]
=

[
1

r
S0rθ(r),

1

r
S0rz(r)

]
sin(α z).

(6.58)

It follows that

dz(r)

dr
=

1

r
(G3 − zG1 − zG2z + G4z). (6.59)
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Figure 6.15: The relation between the torsion γ and the axial stretch λz in the

case of fixed axial force when L = 5.

where G1,G2,G3, and G4 are not written here for the sake of brevity. In this case,

the boundary conditions (6.20) are given by

z(b) = 0, on r = b, (6.60)

det

z(a)− P


−1 0 −α a

0 −1 0

−a α 0 0



 = 0, on r = a. (6.61)

We present numerical results for the two cases by assuming that B = µ = 1 and

A = 0.8. We may set the axial mode number n = 1 and vary the length L. In the

case of fixed axial force, Figure (6.15) shows the relation between the torsion and the

axial stretch λz where λa has been eliminated using F = 0. It seems that the value
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Figure 6.16: The relation between the torsion γ and the circumferential stretch

λa in the case of fixed axial stretch λz = 1.5 when L = 5.

of γ required for the wrinkling solution is higher than the value of γ required for the

bulging solution. The bulging curve is obtained by using J(P, F ) = 0 and F = 0. The

same feature also holds for fixed axial stretch λz; see Figure (6.16).

6.9 Conclusion

We have shown that when the twisting moment M is fixed, the bifurcation condition

for localized bulging of a twisted tube under the combined action of internal pressure

P and axial force F is simply the vanishing of the Jacobian of P and F . Moreover, in

the case of fixed resultant axial force, we find that the critical pressure corresponding

to the onset of localized bulging is increased as the twisting moment is increased,

although the values of the principal stretches λz and λa are decreased. The critical
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values of the twisting moment at which localized bulging may not occur are obtained

in the cases of fixed resultant axial force and fixed axial stretch. The effects of wall

thickness of the twisted tube on localized bulging are studied. In particular, it is shown

that the effect of torsion on localized bulging is significant in thin tubes.

Generally speaking, the same procedure can be applied to study localized bulging for

other material models. However, we may have some difficulties through the calcula-

tions. For instance, when we use the Gent material model, it is difficult to integrate

equation (6.7) analytically. Therefore, a numerical approach is needed.
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Chapter 7

Conclusions

In this thesis, we have studied the effect of rotation, multi-layering and torsion on

localized bulging in hyperelastic tubes. Firstly, the bifurcation condition for localized

bulging of a cylinder and tube is derived under the effect of rotation. Illustrative nu-

merical results are presented using the Ogden and Gent material models. Although

the numerical results are mostly given for A = 0.8, our simple representation of the

bifurcation condition can be used to evaluate the effects of wall thickness and depen-

dence on the material model in a straightforward manner if required. We remark that

the bifurcation condition derived is only a necessary condition for localized bulging

to occur. Strictly speaking, whether localized bulging can actually take place at the

critical value of rotation can only be established by a weakly nonlinear analysis.

In chapter 4, we have focussed on localized bulging in a bilayer tube composed of an

incompressible Gent material model. By considering a bilayer tube where one layer
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cannot bulge, we determined several critical values marking the transitions between

bulging and no bulging ranges. In any engineering situation where bulging formation

should be eliminated, for instance, the design of Anaconda wave-energy extraction

device Bucchi and Hearn (2013), the current study could provide useful insights. Fur-

thermore, we provide a deeper understanding of the relation between the stretching

ability and localized bulging of a tube. Actually, they are a pair of contradiction, which

means that a tube has a higher stretching ability is easier to bulge. Our study ex-

tends the current understanding of localized bulging in a hyperelastic tube of arbitrary

thickness (Fu et al., 2016; Wang and Fu, 2018) to layered structures.

In chapter 5, we have studied the effect of the modulus ratio and the constitutive model

on the bulging initiation. This work supports the viewpoint that aneurysm becomes

possible in human arteries with age or pathological change since a lower critical volume

ration vcr is attained if the inner layer is stiffening. Indeed, it is precisely true that

the innermost layer (intima) stiffens more than other layers in human arteries with

age (Kohn et al., 2015).

In chapters 4 and 5, we have assumed that the bilayer tube is made of an isotropic

elastic material. Our study can be extended to the case when the bilayer tube is

helically reinforced by two families of identical fibres. As demonstrated in a recent

study for a single layer tube (Wang and Fu, 2018), it is expected that the fibres will

have a drastic effect on localized bulging. To be more precise, using fibre-reinforcement

can be a very effective method to construct anti-bulging tubes.

144



Chapter 7. Conclusions

The main contribution of chapter 6 is to study the effect of torsion on the onset

of localized bulging. It is shown that the torsion has a significant effect on localized

bulging. We note that the pressure against the volume does not have a minimum, which

contradicts the experimental observations. Thus, the neo-Hookean and the Mooney-

Rivlin material models seem to be inappropriate for modelling bulge initiation and

propagation. We, therefore, wish to extend this research to other more appropriate

material models.

Finally, we mention that it is enough to use an infinitely long tube to carry out all

theoretical analyses since the end effects only act as a minor factor and can be treated

as an imperfection as long as the ratio L/B is greater than or equal to 30. Therefore,

an infinitely long tube can be used to capture most features of localized bulging.
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L. Hornỳ, M. Netušil, and Z. Horák. Limit point instability in pressurization of

anisotropic finitely extensible hyperelastic thin-walled tube. International Journal

of Non-Linear Mechanics, 77:107–114, 2015.

J. W. Hutchinson and K. W. Neale. Neck propagation. Journal of the Mechanics and

Physics of Solids, 31(5):405–426, 1983.

A. T. Il’Ichev and Y. B. Fu. Stability of aneurysm solutions in a fluid-filled elastic

membrane tube. Acta Mechanica Sinica, 28(4):1209–1218, 2012.

L. M. Kanner and C. O. Horgan. Elastic instabilities for strain-stiffening rubber-like

spherical and cylindrical thin shells under inflation. International Journal of Non-

Linear Mechanics, 42(2):204–215, 2007.
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