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Abstract

This thesis discusses how wave propagation in continuous linearly elastic media can be

controlled or suppressed using periodic structures. This involves controlling 2D waves

on a membrane, 3D longitudinal and transverse waves in a linearly elastic bulk, and

waves across the surface of a linearly elastic half-space, termed ‘Rayleigh waves’.

First, the concept of wave ‘bridging’ is introduced, using an array of periodic mate-

rials to carry waves across a void for two different continuous media. In a 2D membrane,

the void is bridged by a periodic array of strings. Two arrays are considered; the first

is a simple array of parallel strings, while the second is a square-based string lattice.

For each, bridging is shown to be possible but with limitations. The lattice bridge is

also shown to be capable of limited wave filtering.

A 3D linearly elastic bulk is then considered, with an array of membranes and

thin, rigid sheets held in parallel, intended to bridge the out-of-plane and in-plane wave

motion respectively. For bulk waves, ‘perfect’ wave bridging is shown to be possible for

normally incident waves only, with any other incident angle causing wave conversion.

For Rayleigh waves ‘perfect’ bridging is shown to be possible, but requires the bridge

parameters to have dependence on depth, indicating that this bridge cannot bridge

both Rayleigh waves and bulk waves. Furthermore, it is not possible to construct a

broadband Rayleigh bridge.

Next, different metasurfaces are designed and treated, consisting of a periodic array
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of vertical resonators attached to the surface of a half-space. These metasurfaces are

intended to control and suppress Rayleigh waves. Earlier studies have considered the

effect of compressional resonators. In this thesis, an asymptotic model is used to deter-

mine the approximate dispersion relation of the previously considered compressional

metasurface, which is shown to be remarkably close to the full unimodal dispersion

relation. The same asymptotic model is then used to consider a flexural metasurface,

with resonators formed from Euler-Bernoulli beams. The dispersion relation is again

compared with the full unimodal dispersion relation, again showing the same key be-

haviours. Special attention is given to the effect of different junction conditions, which

are shown to significantly change the size and behaviour of any stop bands.

Finally, a second-order term is derived for the previously employed asymptotic

model, verified by comparison to the Taylor expansion of the Rayleigh determinant.

This new model is applied to three different systems; a point harmonic forcing, a

moving load and a compressional metasurface. In each, the new model is shown to

more closely represent the exact solution, at a cost of increased complexity.
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CHAPTER 1

Introduction

1.1 Literature Review

It is known that for a point forcing on the surface of a semi-infinite soil layer, localised

surface waves, or ‘Rayleigh waves’ can account for around 67% of the energy carried

by a seismic wave, dominating over shear and pressure waves [110]. These Rayleigh

waves propagate only along the surface, with amplitude decreasing exponentially with

depth into the bulk [2]. This allows them to travel further and decay more slowly than

so called ‘bulk waves’ which propagate in all directions.

The human and financial costs of such seismic surface waves are well documented.

The 2011 New Zealand earthquake in Christchurch alone reportedly cost an estimated

16.5 billion NZD [84] while after the 2008 Sichuan earthquake in China, 69,197 people

were listed as having died, with many more injured or missing [101]. On a smaller

scale, ground vibrations from building work, roads and train lines can cause significant

damage to nearby buildings [102].

Recently there has been a significant increase in the amount of work produced with

the aim of redirecting or suppressing waves in a wide array of systems. This follows a

long tradition of attempting to control wave propagation, including the use of mirrors
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CHAPTER 1. INTRODUCTION

and basic lenses to focus and redirect optical wavelengths of electromagnetic radiation.

Following the discovery of microwaves in the late 19th Century there were attempts to

control the newly discovered electromagnetic waves using waveguides and differently

shaped antennae [95], while the use of seismic lensing by changing the refractive index

of the ground has been investigated more recently [21]. The approach to controlling

propagation has often been considered as a lattice problem, and numerous investiga-

tions have used or produced waveguides for which the dispersion relation shows band

gaps, also known as stop bands or filter bands, which are ranges of frequencies for which

waves cannot propagate through the material. Such waveguides have been produced

for optical [36, 56, 90], acoustic [96], elastic [29, 30, 78] and flexural [23, 46] waves.

Of particular interest is the use of periodic structures which can change the be-

haviour of waves passing through a continuous material. This includes wave gratings,

periodic structures classically originating in optics [37] used in elasticity to filter and

control wave propagation [109, 51]. More recently the effect that so called ‘structured

interfaces’, periodic connections between continuous materials, have on wave motion

has been investigated [6, 7]. These structures are capable of exhibiting behaviour such

as wave filtering [11] and polarisation [12]. Particular attention is given to structured

interfaces and gratings intended to enhance transmission using the resonance of suc-

cessive internal reflections [55, 54].

These waveguides have been complemented by recent advancements in the field of

so-called ‘metamaterials’. A metamaterial is any artificial construct which can behave

like a new effective material, usually with the aim of producing material parameters

or behaviours which are not found naturally or not possible with classical materials

[58]. As such, metamaterials have a wide range of other uses in multiple systems. A

subsection of metamaterials of particular interest for an elastic half-plane are ‘meta-
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1.1. LITERATURE REVIEW

surfaces’ [77]. As a metamaterial can be used to control bulk waves, metasurfaces are

constructed on the edge of a bulk and can be used to control surface waves. These

metasurfaces have the advantage of being easier to construct and insert into a physical

system and are easier to manufacture [114].

The development of materials which can exhibit behaviours not possible for natural

materials has renewed interest in designing materials to control waves using coordinate

transforms, including the study of cloaking. This recent development has numerous

practical uses and a great deal of vibrant research. These rely on metamaterial designs

since, to produce the transformation effect, material parameters are assumed to have

the form of an anisotropic matrix. This requirement is difficult, or even impossible,

with classical materials [17]. The original work on coordinate transformations was

developed in an electromagnetic system by Ward and Pendry [106], although work on

the topic had been undertaken previously at a purely theoretical level.

The aim of transformation cloaking is to create a region, or ‘inclusion’, surrounded

by some cloak which diverts incident waves around it, such that the inclusion is undis-

turbed and the wave pattern outside the cloak is identical to a wave pattern where

no cloak or inclusion is present. This has previously been achieved by the use of co-

ordinate transforms, where the cloak describes a deformed space which replicates the

wave equation of the undeformed region. Following the work by Pendry [93] on optical

cloaks there has been great interest in extending these ideas to other systems.

Many of the approaches in these problems require the treatment of multiscale

problems. The forcing at the interface between the two materials is classically modelled

as a point forcing, using a Dirac delta function. However, such point actions are often

incompatible with the exact treatment of a continuous boundary [103] and so other

models must be chosen for real-world relevance. Previous efforts to solve multiscale
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problems have included matched asymptotics [104], the so-called ‘Arlequin method’ [5,

69] and homogenisation (for examples, see [26, 53] and references within). While the

Arlequin method matches work done in the system, the treatment of the boundaries

in this thesis involves either homogenisation or Fourier series expansions to match

displacement and conserve tensions along the boundary. For more complicated systems

such treatments may not be possible or will not give an appropriate degree of accuracy.

1.1.1 Metamaterials

A metamaterial is an artificial construct which can behave like a new effective material,

usually with the aim of producing material parameters or behaviours which are not

found naturally or not possible with classical materials [58]. Many of the examples

provided below approximate a continuous material using a lattice structure. While in

optical systems these lattices are static, in a moving system such as an acoustic or

elastic system the lattice elements will be mobile. In more complicated systems this

may cause effects that cannot occur in an ideal continuous material. Furthermore, if

the metamaterial is a lattice and is embedded in a continuous material, then there will

be point forcing at the boundary between the two materials leading to discontinuity

effects.

Colquitt et al. [27] produced a comprehensive discussion of elastic waves in periodic

materials, with discussion on types of lattices, defects, standing waves, and frequency

dependent focusing and filtering. While in this treatment the lattice is a large struc-

ture, something which may not be achievable in all situations, the results can still be

useful. Of particular interest are the presence of stop bands and filter bands; having

wave frequencies which do not propagate through a system will be useful for controlling

or suppressing waves but would disrupt attempts at ideally reproducing them. Pro-
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ducing stop bands has also been extensively discussed for different shapes of lattice

by Martinsson and Movchan, [78] including unusual designs such as ordinary lattice

shapes with small periodically inserted oscillators. For these lattices, clear band gaps

should theoretically exist.

A broad range of metamaterials have been produced or theorised for a number

of applications. One of the first and leading uses of metamaterials, particularly in

optics, is to produce a ‘negative index material’ which appears to have a negative

refractive index [99] and can be used to create a perfect lens [91]. Such materials have

also been physically constructed and experimentally verified for limited wavelengths

[57, 100]. These are credited by Pendry et al. [93] as indicating electric permittivity

and magnetic permeability can be can be arbitrarily varied by a tailored material,

therefore making optical transformation cloaking conceivable.

Optical metamaterials are largely based on utilising well established properties of

electromagnetism. Several designs use a ‘Split Ring Resonator’ design, a periodic array

which uses induction laws to produce an effective magnetic permeability [92]. Such a

design has already been experimentally verified for cloaking at microwave frequencies

[98]. For three dimensional cloaks, however, the majority of experimentally verified

cloaks are carpet cloaks for microwave [73] and visible [44, 45, 48, 50] frequencies.

These can be made using simpler designs with dielectric components such as a lattice

constructed from polymers with a variable cell filling factor controlling the local refrac-

tive index [44, 45, 48] or with nanoscale silicon rods which have a placement density

proportional to the refractive index [50].

Following developments in optics and electromagnetism, metamaterials have been

extended to a broad range of different fields [58] including acoustics [71, 74, 83], elas-

ticity [81, 114], flexural plate waves [24, 108, 112] and most notably for this thesis,
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seismic waves [8].

Many of the results for acoustic metamaterials are applications of results for optical

systems, with Li et al. [71] producing negative index materials and negative effective

material parameters and Movchan and Guenneau [83] considering acoustic analogues

to Split Ring Resonators. Guenneau et al. [52] build on the same ideas to produce

so called ‘Double C Resonators’ consisting of rigid discs connected by thin ligaments

to produce negative refractive index and phase velocity for a given frequency band,

allowing for a limited wave trapping effect. A similar system has also been considered

using periodically arranged plates inserted into a fluid [94], where the fluid waves

exhibit negative refraction and ‘waveshifting’ properties.

Developments in elastic metamaterials follow a similar methodology of using pe-

riodic inclusions, including the use of periodically inserted coated spheres and finite

mass-spring systems to create negative bulk and shear moduli [114]. Milton and Willis

[81] consider embedded mass-spring systems and spinning rings to create overall effec-

tive bulk parameters and show that, as well as giving tunable material parameters, the

resulting form of the equations take a similar form to Maxwell’s electromagnetic field

equations, allowing previous results in electromagnetism to be replicated for elasticity.

As with metamaterials, the original work and subsequent focus for metasurfaces has

been electromagnetism [114]. Following the previous success of extending other meta-

materials to other systems, metasurfaces have started to be applied to other physical

systems, including acoustics [85, 113] and flexural waves [24, 108, 112]. Each of these

flexural wave metamaterials make use of different types out-of-plane resonators. Xiao

et al. used an array of ‘lumped resonators’ consisting of masses on the end of out-

of-plane springs [112], with Williams et al. using the same type of array but utilising

rod-like resonators [108] and Colombi et al. using beam-like resonators [24]. Each of

6
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these systems showed stop bands or band gaps in the dispersion of incident flexural

waves, with Williams et al. [108] verifying the results with an experimental setup.

Similar out-of-plane resonators have also been applied to elastic surface waves, termed

‘seismic metasurfaces’.

1.1.2 Seismic Metasurfaces

The development of seismic metasurfaces has been driven by large scale experiments.

In the first of these, Brûlé et al. [8] experimentally verified the existence of stop bands

to decrease the motion caused by earthquakes or man-made ground vibrations. Using

a test site in silty soil, a metamaterial lattice was constructed with periodic 5 metre

deep boreholes and the ground excited by a 50 Hz seismic source. In this system, it was

shown that regions near the lattice experienced a significant reduction in the seismic

energy received.

A similar seismic metasurface was treated analytically, using a buried lattice struc-

ture of rods [1]. This refined model took into account the effects of sub-soil structure,

and is particularly notable for being able to produce zero-frequency band gaps by

clamping the rods to a fixed bedrock. Further schemes have proposed constructing

buildings over specialised metamaterials to protect structures from seismic waves [13,

105].

In contrast to these embedded metasurfaces, the seismic experiment undertaken by

Colombi et al. [22] considered a natural array of trees. This was experimentally shown,

with numerical verification, to exhibit stop band behaviour and to cause reduction

of wave amplitude at certain frequencies. Usually in such systems, sub-wavelength

resonant arrays are only capable of producing very narrow band gaps [114] and, as

a result, it is challenging to make use of these band gaps in the design of filters and
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other wave control devices. Therefore, much of the existing work involves predicting

and controlling the locations of these band gaps, and also in enhancing the ‘size’ of the

stop bands to suppress a wider range of wave frequencies.

In further work by Colombi et al. [20] such an array with gradually varying system

parameters was shown to either ‘trap’ waves in the resonators or convert the surface

wave into a bulk wave. The overall effect of either of these is that the surface wave can

no longer propagate. This so called ‘metawedge’, typically characterised by increas-

ing or decreasing resonator heights, has been experimentally shown in a small scale

ultrasonic regime to cause conversion from Rayleigh waves to bulk waves [19]. This

metawedge design has also been applied to the energy harvesting [35] with the mode

trapping effect significantly increasing the energy yield.

In previous analytic treatment this type of array was modelled by Colquitt et al.

as an array of vertical rod-like resonators ideally attached at periodic intervals [25],

considering only longitudinal wave motion. This treatment provides analytic verifica-

tion for the band gap behaviour shown experimentally. However recent experimental

data obtained for a dense forest of pine trees, acting as subwavelength resonators, sug-

gests that the flexural resonances and junction conditions [97] may play an important

role. In the current literature, however, little attention has thus far been given to the

junction condition joining the resonators to the substrate.

1.1.3 Wave Cloaking

There are several different effects which are all referred to as cloaking. The most

general meaning of cloaking is for waves to ‘ignore’ some defect or inclusion, leaving

the wave pattern to appear as though the region being cloaked is not present. For

transformation cloaking, the cloak redirects the incident waves in such a way as to
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make both the object and the cloak undetectable. A related effect termed ‘carpet

cloaking’ covers an object with a transformation cloak and conceals any distortion or

bump caused by the inclusion, making the cloak appear to be flat [58]. The carpet

cloak is a type of transformation cloak, but instead of mapping the inclusion onto an

infinitely small point or line, the inclusion is mapped onto an infinitely thin sheet [16].

Since the transformation is simpler, this type of cloak can be produced from isotropic

dielectric materials and so has a simpler construction. While it is capable of concealing

an object, it does not prevent the cloak itself from causing reflections or scattering [72].

Cloaking of the Helmholtz equation was first solved in the short wavelength limit

by Leonhardt [70], making use of geometric optics to alter the refractive index to

divert rays around an inclusion. A more complete solution to the problem was given

by Norris [88], who advanced previous work done in producing cloaks for acoustic

waves [16, 32, 33]. In this Norris derived a relation for a cloak for acoustic waves

based around a metamaterial termed a “pentamode material”, originally posited by

Milton and Cherkaev [80] while discussing what properties can be artificially created

in metamaterials using only ordinary materials. The original physical design for such

a material is a lattice where each unit cell consists of four linkages meeting at a single

point, with the stress determined by the width of the linkages and the location of

the meeting point. The first theoretical use of pentamode materials in cloaking was

in a paper by Milton et al. [79] attempting to cloak the elasticity equations in an

investigation into the transform invariance of different physical equations. This result

was shown to be a special case of both acoustic cloaking [88] and elastic cloaking [89].

The main results obtained by Norris [88] are general for any coordinate transform

and can be applied to other physical systems. Colquitt et al. [28] applies the results

to the vertical displacement of an elastic membrane and due to the prevalence of the

9



CHAPTER 1. INTRODUCTION

Helmholtz equation in physical systems, it is likely they will be similarly useful in many

other situations. There are also equations which can be expressed in a Helmholtz-like

form, which can also use these results to achieve cloaking.

Several schemes have also attempted to cloak flexural waves in a Kirchoff-Love

plate, despite the fact that these waves are governed by a fourth order equation instead

of second order. Brun et al. [9] disregard terms lower than 4th order to reduce the

equation to a form suitable for transformation cloaking, using a similar technique to

acoustic cloaking. As before this requires the material parameters of the system to

be changed according to the cloaking transformation variables. The second approach,

proposed by Colquitt et al. [31], instead introduces in-plane forces to the system. The

final approach by Farhat et al. [47], which uses established plate theory to simplify

the form of the governing equation using only homogenised layered isotropic materials.

While each cloaking is shown to be successful the effect is either not broadband or

otherwise restricts the cloaking. However a computational model of the cloak by Farhat

et al. confirms that for the required frequency band a cloak with as few as 10 isotropic

layers can have a good cloaking effect.

Cloaking has also been arbitrarily achieved for elasticity by Norris and Shuvalov

[89], in a generalisation of two earlier schemes for elastic cloaking, termed ‘Cosserat’

[10] and ‘Willis’ [79]. While this can lead to a perfect cloaking of all elastic waves, the

strict requirements for the construction of such a cloak leaves scope for simpler cloaks

oriented at limited cloaking of individual wave types.

While much focus has been on transformation cloaking, other schemes have been

developed to cloak Rayleigh and Seismic waves. As a concept Colombi et al. [21]

proposed the construction of a Luneburg lens, a classical lens with variable refractive

index to redirect waves around the centre. However this cloak cannot cloak for arbitrary
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incidences.

1.1.4 Rayleigh Waves

In contrast to the modern fields of cloaking and metamaterials, elasticity and Rayleigh

waves are firmly established and thoroughly investigated branches of mathematics. The

first major mathematical discovery in elasticity was Hooke’s Law in the 17th Century

and at the time of Rayleigh there was a firm foundation of research on which to build

[76]. Of particular interest is Rayleigh’s research into surface waves on an elastic half-

space [75], now referred to as Rayleigh waves [2]. A succinct derivation of the Rayleigh

wave form is given by Kaplunov and Prikazchikov [60].

As mentioned previously these waves occur on the surface of an elastic half-space

and, in contrast to shear and longitudinal bulk waves, propagate only along the surface

and so for a point forcing will have an inverse square decay. Since they decay much

more slowly, Rayleigh waves have a higher amplitude than body waves at distances

far from the source [2]. However, unlike bulk waves, these surface waves do not have

an explicit wave equation; they are instead ‘hidden’ through the equations of linear

elasticity. This makes both finding the exact solution or undertaking numerical analysis

for a system dominated by surface waves difficult. Previous results have shown that the

displacement potentials can be expressed as a single function related through harmonic

conjugates [49], allowing the Rayleigh wave to be easily found in an arbitrary form

[14]. This has been extended to surface waves in linear elasticity with general depth

dependence [3, 68, 67].

Rayleigh waves are notable for having many practical applications, beginning with

the discovery that seismic waves from man-made ground vibrations or from earthquakes

include Rayleigh waves [4]. There are also similar surface waves which have been used
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in non-destructive testing [18], electrical components such as transducers [82], and

also in materials with a piezoelectric coating, where applied stress causes an electrical

current [64].

Taking advantage of the relation between displacement potentials, an asymptotic

model for the Rayleigh wave was first proposed by Kaplunov and Kossovich [66] with

the aim of reducing the full equations of elasticity and surface boundary conditions

to an elliptic bulk equation and a hyperbolic surface condition. This model predicts

the leading order Rayleigh-type waves produced by forcing along the surface of a lin-

early elastic half plane, for example see [63]. This model has been applied to multiple

problems including: Plane-strain and moving load systems [59, 61], mixed boundary

problems [42] and embedded point forces [38]. Special attention has also been given to

coated half-space problems [34, 43, 62]. For more general works and further examples

see also [63, 87]. In each, the asymptotic model has produced a simple but remark-

ably accurate approximation of the exact solution. This system could also be further

developed by considering the near-surface effect of coupled stresses. Furthermore, the

effect of microstructure, including non-local effects, have previously been considered for

near-surface wave motion [15] and, as might be expected, are asymptotically secondary

for treating Rayleigh-type waves.

The same asymptotic expansion method has also been applied to produce sim-

ilar models for interfacial waves in linear elasticity and edge waves on plates [60],

piezo-electric waves [64] and plates with surface loading [41] with similar success.

The hyperbolic-elliptic form of equations has also been shown to be present in the

asymptotic formulation of other physical systems. A further paper by Kaplunov and

Prikazchikov [60] details results for moving load problems on interfacial waves which

again have a hyperbolic-elliptic form, and for edge bending waves on thin elastic plates
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which instead have a parabolic-elliptic form. The same result for a surface wave in

an elastic material with surface stresses is extended by Ege et al. [40] for purely tan-

gential loads, but considering a fully 3D system with surface stresses acting in any

direction parallel to the surface. This system again shows equations of a hyperbolic-

elliptic form and a concise set of equations from which the displacement potentials in

the elastic half plane are produced. A similar result has been produced by Kaplunov

and Prikazchikov for piezoelectric Bleustein-Gulyaev waves [64], a surface wave where

displacement in the material and electric potential are strongly linked, which again

displays a hyperbolic-elliptic form.

1.2 Thesis Overview

The aim of this thesis is to demonstrate how wave propagation in continuous elastic

media can be controlled or suppressed using periodic structures. These metamaterials

will fall into two categories: The first, metasurfaces, are periodic arrays attached to the

surface of an elastic half-plane, while the second, bridges, are periodic arrays inserted

into a void between two halves of a continuous media. Since the treatment of the

metasurfaces makes extensive use of an existing asymptotic model for surface wave

propagation, this model will also be further investigated and developed.

This thesis will be organised as follows. Chapter 2 begins by establishing different

wave carrying materials and the homogenisation technique which will be used exten-

sively in this thesis. In Chapter 3 a novel method for transferring waves across a gap

between two thin elastic membranes using 1D strings is proposed. In Chapter 4 the

same formulation is extended to a 3D case using linear elasticity, with bulk waves

transferred in §4.1 and surface waves in §4.2. Chapters 5 and 6 will then propose
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metasurfaces for linearly elastic half spaces to control wave propagation; Chapter 5

will make use of the asymptotic model to discuss the effects of an array of vertical

rod-like resonators ideally attached to the surface and Chapter 6 will consider a similar

novel array with beam-like resonators with a variety of boundary conditions. Following

this, Chapter 7 uses the previous methodology used to produce the asymptotic model

for Rayleigh-type waves to extend the previous leading order model into a second order

model. Following the derivation, previous example situations are used to demonstrate

the improved accuracy of the new model. The work will then be concluded in Chap-

ter 8 with a final discussion of each of the problems with possibilities for future work

considered.
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CHAPTER 2

Preliminaries

In the work that follows there will be a selection of different materials and techniques

which will be made repeated use of. For convenience these will be described in this

section and referred back to as required.

2.1 1D and 2D Material Descriptions

A large component in this work is the theoretical construction of metamaterials and

metasurfaces for a bulk using a periodic array of lower-dimension objects. For this it is

necessary to make use of a range of 1D and 2D materials, both for bridging problems

and to act as surface resonators. For brevity, each will be detailed here. Since several

of these materials will be used in multiple different systems introduce an arbitrary 2D

Cartesian coordinate system (ζ, η) and transpose into the new coordinates for each

case as required. For consistency, define Ω as some constant angular frequency for the

wave motion.
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2.1.1 Infinitely Thin String

First the linearly elastic behaviour of an infinitely thin string will be detailed. Such a

string is a 1D object and has only out-of-plane wave motion. Represent the horizontal

plane by the arbitrary orthonormal co-ordinate system (ζ, η) such that the string mo-

tion is perpendicular to both the ζ-axis and η-axis and denote the vertical displacement

by us. Then if the ends of the string are fixed at (ζ1, η1), (ζ2, η1) the string exists only

in the domain ζ1 < ζ < ζ2, η = η1.

For these co-ordinates the equation of motion for vertical displacement is given by,

ρs
∂2us
∂t2

= Ts
∂2us
∂ζ2

, (2.1.1)

where ρs and Ts are the mass per unit area and average tension per unit length of the

strings respectively. At the ends of the string the vertical tension per unit length, P ,

is given by,

P = Ts
∂us
∂ζ

. (2.1.2)

This leads to harmonic wave solutions along the string of the form,

us = Ase
i[Ksζ ± Ωt] (2.1.3)

where the amplitude As and wavenumber Ks are arbitrary constants arising from the

boundary conditions, and where Ks is determined by,

Ω

Ks

= cs =

√
Ts
ρs
, (2.1.4)

where cs is the wave speed in the string. The choice of sign in the exponent depends

on whether the wave solution is right- or left-travelling.
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2.1.2 Stiff Elastic Rod

Next consider a stiff elastic rod. In the same way that the string can only support out-

of-plane motion, a stiff elastic rod is inflexible and only supports in-plane longitudinal

waves. Reusing the same arbitrary Cartesian (ζ, η) coordinates, with ends fixed at

(ζ1, η1), (ζ2, η1) the rod again exists only in the domain ζ1 < ζ < ζ2, η = η1. In this

domain the rods have governing equation,

ρr
∂2ur
∂t2

= Er
∂2ur
∂ζ2

, (2.1.5)

where Er and ρr are the Young Modulus and the density of the rod respectively. For

a cylindrical rod with diameter hr, the ends of the rod experience an in-plane force V ,

V = −πh
2
r

4
Er
∂ur
∂ζ

, (2.1.6)

which again leads to wave solutions of the form,

ur = Are
i[KSζ±Ωt], (2.1.7)

where Ar is the wave amplitude, determined by the boundary conditions, and the

wavenumber Kr comes from the dispersion relation,

Ω

Kr

= cr =

√
Er
ρr
, (2.1.8)

where cr is the speed of longitudinal waves in the rod.

2.1.3 Flexural Beam

In contrast to the stiff rod which can only support longitudinal waves, next introduce

a beam which can only support flexural motion. Again use the arbitrary Cartesian
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coordinates (ζ, η) and take a beam as occupying the domain ζ1 < ζ < ζ2, η = η1.

The classical Euler-Bernoulli beam model yields the governing equations for flexural

motion of a beam as,

Mb
∂2uη
∂t2

= −BbIb
∂4uη
∂ζ4

, (2.1.9)

where uη is a component of the displacement vector perpendicular to the beam, Bb and

Mb are the bending stiffness and mass per unit length of the resonators respectively,

and Ib is the area moment of inertia of the beams. If the beam is cylindrical Ib is given

by,

Ib =
πh4

b

64
, (2.1.10)

where hb is the diameter of a beam and for a beam Bb is given by

Bb =
Eb

1− ν2
(2.1.11)

where Eb and ν are the Young modulus and Poisson ratio respectively of the beam.

Unlike for the previous materials, a flexural beam has four boundary conditions at the

ends with the beam displacement and its first, second and third derivatives correspond-

ing to displacement, bending angle, moment and horizontal stress respectively. These

boundary conditions are;

∂uζ
∂η

=
∂uη
∂ζ

,
∂σζζ
∂η

= −Bb
∂2uη
∂ζ2

, H = IbBb
∂3uη
∂ζ3

, (2.1.12)

where uζ is the in-plane displacement, σζζ the in-plane stress and H is the out-of-plane

force in the η direction. A more detailed explanation for each of these is given in the

appendix §A.1. Also unlike the previous materials the wave speed is not a material

constant, instead being given by,

Ω

Kb

= cb =

(
Bbπh

4
b

64Mb

) 1
4 √

Ω, (2.1.13)

which has a clear frequency dependence.
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2.1.4 Infinitely Thin Membrane

Similar to the 1D string outlined previously, an infinitely thin membrane has only ver-

tical out-of-plane motion with displacement uM but unlike the string fills a 2D domain

of any shape. Utlising the previous Euclidean coordinates a rectangular membrane has

co-ordinates ζ1 < ζ < ζ2, η1 < η < η2. On this domain the out-of-plane displacement

for a membrane which has mass per unit volume ρM and internal tension per unit area

TM is given by the solutions to,

ρM
∂2uM
∂t2

= TM

(
∂2uM
∂ζ2

+
∂2uM
∂η2

)
. (2.1.14)

and at the edges ζ = ζ1, ζ2 of the rectangular membrane the out-of-plane stress, σζ3, is

given by,

σζ3 = TM
∂uM
∂ζ

. (2.1.15)

As with the string this gives harmonic solutions,

uM = AMe
i[KM (ζ cos θ+η sin θ) ± Ωt], (2.1.16)

where as before the amplitude AM and wavenumber KM are arbitrary constants and

again the choice of sign in the exponent denotes a right or left travelling wave. This is

clearly the 2D analogue of the 1D string solution (2.1.3) with wave propagation at an

angle θ to the ζ-axis. The frequency and wavenumber are also related to the membrane

wave speed, cM , by the expression,

Ω

KM

= cM =

√
TM
ρM

, (2.1.17)

which is similar to the string dispersion relation (2.1.4).
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2.1.5 Thin Stiff Sheet

As the infinitely thin membrane is a 2D generalisation of the 1D infinitely thin string,

introduce the thin stiff sheet to be the 2D analogue to the 1D stiff elastic rod. Since it

is stiff there is no flexural bending of the sheet and so only in-plane waves propagate

through the system. Unlike a rod however, an in-plane shear force on the boundary

could produce a shear wave and so in the work that follows this sheet will only be used

to consider a normally incident longitudinal wave.

Since only plane waves normally incident on the edge of the sheet are being con-

sidered, for a rectangular sheet with domain ζ1 < ζ < ζ2, η1 < η < η2 and a wave

incident at η = η1 propagating in the ζ direction only, the governing equation of waves

is,

ρS
∂2uS
∂t2

= ES
∂2uS
∂ζ2

, (2.1.18)

where uS is the displacement in the ζ direction, and ρS and ES are the mass density

per unit volume and Young modulus of the sheet respectively. Similar to the stiff rod

(2.1.6), this has in-plane stress at the edge,

σζζ = ES
∂uS
∂ζ

. (2.1.19)

Since only 1D propagation of waves through the sheet are allowed, the harmonic wave

form,

uS = ASe
i[KSζ ± Ωt], (2.1.20)

is similar to that of the string (2.1.3), again with AS, KS and Ω being arbitrary

constants determined by the boundary conditions with dispersion relation,

Ω

KS

= cS =

√
ES
ρS
, (2.1.21)

where cS is the speed of the longitudinal waves.
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2.2 Linear Elasticity Formulation

Although not detailed here, the previous materials are specific examples of linearly

elastic materials in limiting cases. In order to consider waves in a semi-infinite elastic

bulk it is necessary to use the general equations for linear elasticity. In each case the

materials used will be treated in 2D or 3D Cartesian coordinates. For the 2D systems

take x1 = x and x2 = y and for the 3D systems take x1 = x, x2 = y and x3 = z. For

most of the 3D cases it will be assumed that there is uniform motion in the y-direction.

Start with with the classical equations of motion in 3D elasticity [2];

ρ
∂2ui
∂t2

=
∂σim
∂xm

, i = 1, 2, 3, (2.2.1)

where ρ is the mass volume density, σim are components of the stress tensor and ui

are components of the displacement vector u. Linear elasticity has the constitutive

relations,

σik = δik λ divu + µ

(
∂ui
∂xk

+
∂uk
∂xi

)
, (2.2.2)

where λ and µ are the first and second Lamé parameters respectively and δik is the Kro-

necker delta. These when combined with the equations of motion yields the particular

vector equation of motion as,

ρ
∂2u

∂t2
= (λ+ µ) grad divu + µ∆u, (2.2.3)

where grad, div and ∆ are the usual 3D differential operators. For most uses of an

elastic bulk in this work, assume that waves propagate in the x- and z-directions with

uniform motion in the y-axis. Then introduce two displacement potentials, φ, ψ, such

that,

u1 =
∂φ

∂x
− ∂ψ

∂z
, u3 =

∂φ

∂z
+
∂ψ

∂x
, (2.2.4)
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so the equations of motion for the half-space (2.2.3) can be rewritten in terms of the

displacement potentials as,

∂2φ

∂x2
+
∂2φ

∂z2
− 1

c2
1

∂2φ

∂t2
= 0,

∂2ψ

∂x2
+
∂2ψ

∂z2
− 1

c2
2

∂2ψ

∂t2
= 0, (2.2.5)

where the longitudinal and shear wave speeds, c1 and c2, have equations,

c1 =
λ+ 2µ

ρ
, c2 =

µ

ρ
. (2.2.6)

Neglecting the y-plane motion the linear elastic bulk has stresses,

σ11 = (λ+ 2µ)
∂2φ

∂x2
+ λ

∂2φ

∂z2
− 2µ

∂2ψ

∂x∂z
,

σ13 = 2µ
∂2φ

∂x∂z
− µ∂

2ψ

∂z2
+ µ

∂2ψ

∂x2
,

σ33 = (λ+ 2µ)
∂2φ

∂z2
+ λ

∂2φ

∂x2
− 2µ

∂2ψ

∂x∂z
,

(2.2.7)

where for boundaries parallel to the x-axis conserve σ13 and σ33, and parallel to the

z-axis conserve σ11 and σ13. The following work will involve both elastic bulk and

surface waves, the formulation of which will both now be detailed.

2.2.1 Elastic Bulk Waves

When the linearly-elastic bulk is infinite in all directions the only propagating wave

types are bulk waves. In any elastic bulk these are given by wave solutions to the

displacement potentials,

φ = Aφe
i[Kφ(x cos θ1+z sin θ1) ± Ωφt], (2.2.8)

ψ = Aψe
i[Kψ(x cos θ2+z sin θ2) ± Ωφt], (2.2.9)

where,

Ωφ

Kφ

= c1,
Ωψ

Kψ

= c2, (2.2.10)
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and Aφ and Aψ are arbitrary constants. As before, θ1 and θ2 are the angles between

each wave and the x-axis and the choice of sign in the exponent denotes a right or left

travelling wave. If both waves share the same angular frequency,

Ωφ = Ωψ = Ω, (2.2.11)

then the wavenumbers and propagation angles are related by,

Kψ sin θ2 = Kφ sin θ1, (2.2.12)

sin θ2 =
Kφ

Kψ

sin θ1, (2.2.13)

=
c2

c1

sin θ1. (2.2.14)

where c2/c1 is a fixed material parameter where for conventional materials,

0 ≤ c2

c1

≤ 1√
2
. (2.2.15)

2.2.2 Rayleigh Waves

If the elastic bulk is semi-infinite with a surface at z = 0 then there are wave solutions,

termed “Rayleigh waves”, which propagate along the surface and decay into the bulk.

In the case of a free surface, at z = 0 stress free boundary conditions are imposed

yielding,

σ3i = 0, i = 1, 2, 3. (2.2.16)

Assuming a wave propogating in the x-direction this produces a single wave with both

shear and longitudinal components of the form,

φ = Aφ e
i[Kx ± Ωt]−Kαz, ψ = Aψ e

i[Kx ± Ωt]−Kβz, (2.2.17)

where Aφ, Aψ, K and Ω are constants and α and β are given by,

α =

√
1−

(
Ω

c1K

)2

, β =

√
1−

(
Ω

c2K

)2

. (2.2.18)
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Substituting these assumed solution forms into the stress free surface conditions yields

the Rayleigh determinant,

4αβ − (1 + β2)2 = 0 (2.2.19)

which has a unique solution for wave speed,

cR =
Ω

K
(2.2.20)

termed the Rayleigh speed where the Rayleigh decay constants are subsequently given

by,

α =

√
1−

(
cR
c1

)2

, αR, β =

√
1−

(
cR
c2

)2

, βR. (2.2.21)

The stress free surface also gives the relations between the two displacement potentials

at the surface,

∂ψ

∂x
= − 2

1 + β2
R

∂φ

∂z
,

∂ψ

∂z
=

1 + β2
R

2

∂φ

∂x
(2.2.22)

2.2.3 Asymptotic Rayleigh Wave Model

Next introduce the asymptotic model from Kaplunov and Prikazchikov [60] for a near-

Rayleigh surface wave. While here only 2D systems are considered, the same asymp-

totic model applies for a 3D system. For details and other examples of this model, see

[63] and references within. A short derivation is also given in the appendix §A.2. In

this model for a near-Rayleigh wave, the equations for the bulk are simplified to,

∂2φ

∂z2
+ α2

R

∂2φ

∂x2
= 0,

∂2ψ

∂z2
+ β2

R

∂2ψ

∂x2
= 0. (2.2.23)

which then leads to the previous travelling wave solutions (2.2.17) becoming,

φ = Aφ e
i[Kx ± Ωt]−KαRz, ψ = Aψ e

i[Kx ± Ωt]−KβRz. (2.2.24)
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Depending on the applied surface stress, the model is formulated in terms of either the

longitudinal or shear wave potential. When σ33 = 0, the model is oriented at solving

for the shear wave potential and so leads to the condition for the wave along the surface

z = 0,

∂2ψ

∂x2
− 1

c2
R

∂2ψ

∂t2
= −1 + β2

R

2µB
σ31, (2.2.25)

whereas for σ31 = 0 the model is oriented at solving for the longitudinal wave potential

and so leads to the surface condition at z = 0,

∂2φ

∂x2
− 1

c2
R

∂2φ

∂t2
=

1 + β2
R

2µB
σ33, (2.2.26)

where

B =
βR
αR

(1− α2
R) +

αR
βR

(1− β2
R)− (1− β4

R), (2.2.27)

and the displacement potentials are related along the surface by (2.2.22) allowing for

the full solution for the system to be obtained.

Not only is this form of the surface equations much simpler than the exact form of

the equations, but for a known stress they will each only require the solving of a single

hyperbolic scalar problem along the surface with the explicit Rayleigh wave speed.

This asymptotic model is a leading order perturbation of the equations of motions

(2.2.5) around the Rayleigh wave eigensolution above (2.2.19). Here, a surface stress

is imposed which causes a small deviation from the Rayleigh speed. This expansion

relies on the small parameter condition,

ε =

∣∣∣∣1− ω

cRk

∣∣∣∣� 1, (2.2.28)

so the solution is known to be valid only if ω
k
∼ cR. From inspection of the surface

conditions this is equivalent to both of the surface stresses tending to zero.
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As mentioned before, the asymptotic model used is a simplification of the more

general 3D model. To recover the 3D model from the 2D one, add a second shear

potential ψ2 to correspond to the stress σ32 and replace any second order x derivatives

with the two dimensional Laplace operator, ∆. For example the vertical surface relation

(2.2.26) in full 3D form becomes,

∆φ− 1

c2
R

∂2φ

∂t2
=

1 + β2
R

2µB
σ33. (2.2.29)

Finally, replace the surface potential relations (2.2.22) by the 3D equivalents,

φ,i =
2

1 + β2
R

ψi,3 , φ,3 = −1 + β2
R

2
(ψ1,1 + ψ2,2) , i = 1, 2. (2.2.30)

where as usual, a subscript after the comma denotes differentiation.

2.3 Homogenisation Procedure

Throughout this work periodic arrays are attached to a continuous material. While it is

possible to conduct an exact analysis of these systems, it is more convenient to make a

long wave assumption and homogenise any stresses along the boundary. Furthermore,

as previously mentioned, such point actions are often inconsistent with continuous

media [103], and using homogenisation to distribute the point forcing removes this

inconsistency. For simplicity, introduce a new periodic delta function δ(l) given by,

δ(l)(η) =
∞∑

n=−∞

δ(η + nl), (2.3.1)

If the spacing between the bridges is sufficiently small then for a wave passing

through the system the boundary will appear near-continuous and to a high degree of

accuracy the point loading can be distributed over the unit cell to obtain a continuous

tension. This distribution is obtained by integrating the stresses at the boundary over
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the unit cell and assuming that on these short scales the changes in displacement is

negligible,

∫ (n+ 1
2

)l

(n− 1
2

)l

Pδ(η + nl) dη =

∫ (n+ 1
2

)l

(n− 1
2

)l

σ dη, (2.3.2)

P |η=nl ≈ σl. (2.3.3)

This can then be distributed across the entire boundary to give the homogenised bound-

ary condition,

P = σl. (2.3.4)

It is worth noting that the Fourier series for a periodic delta function of this type is,

δ(l)(η) =
∞∑

j=−∞

1

l
ei 2jπ η

l , (2.3.5)

for which the above homogenisation gives the leading order coefficient.
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CHAPTER 3

Membrane Bridging

This chapter introduces a novel method for transferring waves across a void between

two halves of a membrane. While this approach is intended to perfectly reproduce

the wave pattern as though the region were filled, it is distinct from transformation

cloaking and so throughout this new approach is referred to as ‘bridging’. While

cloaking has already been achieved for a membrane [28] this bridging method does not

require anisotropic material parameters and so is much simpler to construct. It is also

directly oriented at concealing infinite voids rather than finite inclusions. This will

be used as a sample problem on which to build similar bridges for more complicated

systems, as well as to verify the use of the homogenisation procedure.

The system considered in this chapter consists of two half-membranes which occupy

the regions −∞ < x < 0 and d < x < ∞, −∞ < y < ∞. Then consider an array

of 1D strings held at an angle ϑ which have end points (0, nl) and (d, nl + d tanϑ),

n ∈ Z which connect the edges of the two membranes, as shown in Fig. 3.1. A wave

travelling on the membrane incident on the boundary will transfer some energy to the

strings which will be carried on as wave motion, and then be transmitted again into the

membrane on the other side of the void, carrying some component of the wave motion

across the gap.
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l
x = d

x = 0

x

y

ϑ

Figure 3.1: An infinite elastic membrane with periodically inserted 1D strings bridg-

ing a void between x = 0 and x = d.

If it is assumed that the strings are infinitely thin and are ideally connected to the

membrane then from the boundary conditions (2.1.2, 2.1.15) this leads to a boundary

condition at x = 0 and x = d,

Ts
∂us
∂x

δ(l)(y) = TM
∂uM
∂x

. (3.0.1)

This can be solved either through homogenisation or taking the Fourier series of the

delta function. Consider the homogenised problem first in §3.1 and then verify these

results in §3.2 using a Fourier series boundary.

3.1 Homogenised Boundary

Begin by making use of the homogenisation procedure in §2.3, which when applied to

the boundary condition (3.0.1) leads to the homogenised boundary condition,

Ts
l

∂us
∂x

= TM
∂uM
∂x

. (3.1.1)
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Since the connections at the boundary are fixed it is necessary to conserve displace-

ments at the boundary, such that at the connection points between the bridge and the

membrane,

us = uM . (3.1.2)

The solution of this system then depends on the incident wave pattern. Start with

a normally incident wave and then analyse increasingly complicated systems with the

aim of perfectly reproducing the incident wave pattern on the other side of the void.

3.1.1 Normal Incidence

First consider the simplest system, that of a wave normally incident to the boundary

propagating through the membrane. For simplicity, denote the incident, reflected and

transmitted wave components by superscript (i), (r) and (t) respectively. From the

general solution (2.1.16) define the incident component of the wave as u
(i)
M where,

u
(i)
M = Aie

i[kx−ωt], (3.1.3)

where Ai is an arbitrary constant and ω and k are the wave angular frequency and

wavenumber respectively, which have the usual relation (2.1.17). Similarly the solution

for the transmitted waves in the strings (2.1.3) is,

u(t)
s = Ate

i[Kx−Ωt] (3.1.4)

where as above At is a constant, and the angular frequency Ω and wavenumber K are

related by (2.1.4).

Assume also that there is a reflected component to the wave, which has the same

form as the incident wave but propagating in the opposite direction and with a different
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amplitude, given by

u
(r)
M = Are

−i[kx+ωt], (3.1.5)

where the overall membrane displacement is,

uM = u
(i)
M + u

(r)
M . (3.1.6)

Substituting the displacements into the stress boundary condition between the

strings and the membrane (3.1.1) and letting x = 0 gives,

i l TMk(Ai − Ar)e−iωt = iTsKAte
−iΩt. (3.1.7)

From this, it is clear that the only term dependent on time is in the exponent part of

the wave solution. Therefore,

e−iΩt = e−iωt, (3.1.8)

and hence Ω = ω. So,

Ai − Ar = γAt, (3.1.9)

where

γ =
TscM
l TMcs

. (3.1.10)

Conserving the displacements (3.1.2) gives the condition,

Ai + Ar = At. (3.1.11)

Therefore by rearranging and substituting the expressions for the transmission and

reflection amplitudes in terms of the incident amplitude and γ can be obtained,

Ar =
1− γ
1 + γ

Ai, At =
2

1 + γ
Ai. (3.1.12)
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This procedure can then be repeated for the second boundary, with an incident wave

on the strings being transmitted into the membrane with some component reflecting

back into the strings. For simplicity, since the wave is fully periodic with time and

position, the co-ordinate system can be arbitrarily moved with only a change in phase.

Since the main motivation is preserving wave amplitudes, for now disregard phase

changes and define the boundary currently being treated as x = 0. Assume then that

the incident, reflected and transmitted waves respectively have the form,

u(i)
s = Bi e

i[Kx−ωt], (3.1.13)

u(r)
s = Br e

−i[Kx+ωt], (3.1.14)

u
(t)
M = Bt e

i[kx−ωt], (3.1.15)

where the overall string displacement is,

us = u(i)
s + u(r)

s , (3.1.16)

and as before Bi, Br and Bt are constants representing the incident, reflection and

transmission amplitudes respectively. Substituting into the stress boundary condition

(3.1.1) as before yields the expression,

Bi −Br =
1

γ
Bt, (3.1.17)

where γ is defined as before (3.1.10). Rearranging these and substituting into (3.1.2)

gives the reflection and transmission amplitudes in terms of the incident amplitude,

Br =
γ − 1

γ + 1
Bi, Bt =

2γ

γ + 1
Bi. (3.1.18)

To obtain the overall effect of the bridging, consider the ratio of the transmission

from the second boundary to the initial incident wave amplitude. Furthermore, the

amplitude of the wave incident on the second boundary will be given by the transmitted
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amplitude from the first boundary. Hence the overall transmission of the system in

terms of the initial wave amplitude Ai will be given by,

Bt

Ai
=
Bt

Bi

At
Ai

=
4γ

(1 + γ)2
. (3.1.19)

For positive γ, this transmission ratio has a maximum at γ = 1, for which the trans-

mitted wave has the same amplitude as the incident wave, representing a perfect trans-

mission. As γ tends to zero or infinity however, the transmission through the system

tends to zero with the parameter contrast making the wave unable to propagate.

3.1.2 Oblique Incidence

Suppose now that the incident wave is propagating at some angle θ to the boundary

normal, and has the form,

u
(i)
M = Aie

i[k(x cos θ+y sin θ)−ωt], (3.1.20)

where k and ω again satisfy the dispersion relation (2.1.17). Assume also that the

transmitted waves into the strings have the form,

u(t)
s = Ate

i[Kx+χy0−ωt]. (3.1.21)

where K and Ω satisfy the string dispersion relation (2.1.4) where for y0 = nl, n ∈ Z

then χ is introduced to match the form of the exponent at the connections where for

each string y = y0. Following the same procedure as before then at the connections,

P (y, t) = Peiχy0−iΩt = Peiky0 sin θ−iωt, (3.1.22)

from which it readily follows that χ = k sin θ. Since χ is real, this represents a change

in phase between successive strings. As the displacement along the boundary must be

continuous and it is assumed that there is only one transmitted wave direction then it
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equally follows that the reflected wave has the form,

u
(r)
M = Are

−i[k(x cos θ−y sin θ)+ωt]. (3.1.23)

As expected the angle of incidence is equal to the angle of reflection. On substituting

these assumed wave solutions into the stress boundary condition (3.1.1),

Ai − Ar = γ̃ At, (3.1.24)

where

γ̃ =
γ

cosθ
. (3.1.25)

Using the displacement continuity (3.1.2), the transmission and reflection coeffi-

cients are,

Ar =
1− γ̃
1 + γ̃

Ai, At =
2

1 + γ̃
Ai. (3.1.26)

Repeating the procedure at the second boundary assuming incident, reflection and

transmission amplitudes respectively of the form,

u(i)
s = Bi e

i[Kx+ky0 sin θ−ωt], (3.1.27)

u(r)
s = Br e

−i[Kx−ky0 sin θ+ωt], (3.1.28)

u
(t)
M = Bt e

i[k(x cos θ+y sin θ)−ωt], (3.1.29)

which yields the boundary condition,

i TsK(Bi −Br) = i l TMk cos θBt, (3.1.30)

Bi −Br =
1

γ̃
Bt. (3.1.31)

And so similar to before the reflection and transmission coefficients are,

Br =
γ̃ − 1

γ̃ + 1
Bi, Bt =

2γ̃

γ̃ + 1
Bi, (3.1.32)
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and the overall transmission through the system is,

Bt

Ai
=

4γ̃

(1 + γ̃)2
. (3.1.33)

This is similar in form to the normal incidence result and as expected reduces to the

previous result (3.1.19) when θ = 0. This angular dependence does indicate that

this system cannot be used to simultaneously bridge a range of waves with different

incidences without causing reflections and losing transmission. Instead it is limited to

perfectly bridging waves from one particular angle.

3.1.3 Oblique Boundary

Finally, consider the effect of having the strings connected at some angle ϑ to the

boundary, instead of perfectly perpendicular. These strings will now have connection

points to the membrane at (0, nl) and (d, nl + d tanϑ). The formulation follows in

the same way as before for the membranes but the governing equation for the strings

instead becomes (2.1.1),

ρs
∂2us
∂t2

= Ts
∂2us
∂ξ2

, (3.1.34)

where ξ = x cosϑ+y sinϑ and so on matching the vertical tension, the altered boundary

condition is given by,

TM
∂uM
∂x

= Ts
∂us
∂ξ

δ(l)(y), (3.1.35)

which can be homogenised to produce,

TM
∂uM
∂x

=
Ts
l

∂us
∂ξ

(3.1.36)

From these expressions the displacement in the string is given by,

u(t)
s = Ate

i[Kξ−Ωt]eiχy0 = Ate
i[K(x cosϑx+y sinϑ)−Ωt]eiχy0 , (3.1.37)
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where K and Ω are related by (2.1.4) and to match the form of the exponents at the

connections, χ = km sin θ − ks sinϑ. It is clear that matching the displacements and

tensions at the boundary in the same way as before will yield the same amplitude

expressions as previously (3.1.24, 3.1.31), resulting in the same expressions for γ̃ and

transmission and reflection coefficients (3.1.26, 3.1.32) but with an added phase change.

Instead this system will be used to determine the wave phase shifts caused by the

bridging. For this define two different phase shifts, a reflection phase shift, ϕ, and a

transmission phase shift ϕ′.

The reflection phase shift refers to the phase shift undergone by a wave travelling

from one end of the string to another. This is referred to as the reflection phase shift

since a wave reflected at the right boundary will be out of phase with the incident

wave by a factor of 2ϕ when it returns to the left boundary. The transmission phase

shift will instead concern the right boundary of the system, representing the difference

in phase of waves produced by the bridge and the phase of the corresponding wave

produced by a system where the entire space is filled by the elastic membrane.

Begin by considering an arbitrary point of the left boundary, and set this to be

the new origin of the coordinate system. Since all waves share the same frequency

disregard the variation of phase with time and only consider spatial phase changes.

At the origin then, define the phase to be 0. For a wave travelling along a string, the

change in phase will simply be,

ϕ = Kd cosϑ+Kd sinϑ tanϑ, (3.1.38)

=
ωd

cs cosϑ
, (3.1.39)

which has no dependence on the angle of the incident wave. Thus by only knowing

the frequency of an incoming wave it is possible to tune the phase changes and control

wave interference. In the long wave limit the width of the gap will be much smaller
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than the wavelength so kd � 1. With the exception of ϑ → ±π/2, at this limit the

reflection phase difference will tend to 0.

Next attempt to determine the transmission phase shift. An unbridged wave prop-

agating from the origin would have a phase shift ϕ′0 of,

ϕ′0 = kd cos θ + kd sin θ tan θ, (3.1.40)

=
ωd

cM cos θ
, (3.1.41)

The corresponding ‘originator’ point on the left boundary for a bridged wave will

be (0, d tan θ − d tanϑ). Since the change in phase along a string has already been

calculated, the overall phase difference will be,

ϕ′ = kd sin θ(tan θ − tanϑ) + ϕ− ϕ′0, (3.1.42)

=
ωd

cM

(
1

cosϑ

(
cM
cs
− sin θ sinϑ

)
− 1

cos θ

)
, (3.1.43)

which has the trivial solution of ϕ′ = 0 for normal incidence on strings perpendicular

to the boundary, where cM = cs. It also shows an infinite phase difference as the string

angle ϑ → ±π/2, representing the infinite increase of the string length. When the

strings are held perpendicular to the boundary this simplifies to,

ϕ′ =
ωd

cM

(
cM
cs
− 1

cos θ

)
. (3.1.44)

Again in the long wave limit kd � 1 for a non-zero string wave speed, or an incident

wave not parallel to the boundary, this gives ϕ′ → 0.

3.1.4 Perfect transmission

In many of the physical situations where a periodic bridge would be required, it is

desirable that the system behaves as though there were no bridge present. For this
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perfect transmission, it is required that the wave behaviour after the bridge is identi-

cal to the behaviour before the bridge. Most importantly, this means that both the

amplitude and phase of the wave must be unchanged.

Both the cases for normal and oblique incidence have a single parameter which

determine the transmission and reflection in the system, and both (3.1.19, 3.1.33) are

an equation of the form,

T (Γ) =
4Γ

(1 + Γ)2
, (3.1.45)

where Γ represents some unspecified bridging parameter such that Γ = γ for normal

incidence and Γ = γ̃ for oblique incidence. Then T (Γ) = Bt
Ai

, plotted in Fig. 3.2 is

the overall ratio of transmission. This function is a result of the transmissions and

reflections from the first boundary, t1 and r1 (3.1.12, 3.1.26) and the second boundary,

t2 and r2 (3.1.18, 3.1.32),

t1 =
2

1 + Γ
, r1 =

1− Γ

1 + Γ
, (3.1.46)

t2 =
2Γ

1 + Γ
, r2 =

Γ− 1

Γ + 1
. (3.1.47)

It is clear both analytically from (3.1.45) and graphically from Fig. 3.2 that the

0 2 4 6 8 10
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0.6
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Γ

T
(
Γ
)

Figure 3.2: Ratio of amplitude of overall transmission to initial wave amplitude

(3.1.45) against the parameter Γ.

transmission has a maximum of T (Γ) = 1 at Γ = 1. For normal incidence Γ = γ, which
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has the special case of γ = 1 where the wave speeds across the two materials match

and TM l = Ts (3.1.10). Physically this is the most intuitive system as it indicates

that the tensions across the two materials match with perfectly balanced forces; the

equivalent tension per unit area from the string acting on the membrane is equal to

the tension per unit length divided by the length over which the tension is distributed,

in this case l.

Since Γ varies with θ, it is not possible to construct a bridge such that Γ = 1

for all possible incident angles. Hence this system cannot be used to simultaneously

bridge a range of waves with different incidences without losing transmission; instead

it is limited to perfectly bridging waves from one particular angle. To find the average

transmission over all incident angles, evaluate the integral,

T̃ (γ) =
1

π

∫ π/2

−π/2
Tdθ =

1

π

∫ π/2

−π/2

4Γ cos θ

(cos θ + Γ)2
dθ, (3.1.48)

=
8Γ

π(1− Γ2)

2
tanh−1

(√
1−Γ
1+Γ

)
√

1− Γ2
− 1

 (3.1.49)

which has a global maximum T̃ ≈ 0.891 for Γ = 0.612871..., compared to T̃ ≈ 0.849

for a bridge with Γ = 1 aimed at perfectly transmitting normally incident waves only.

For some constant ‘tuned’ value of γ, transmission has a dependence with angle,

T (θ) =
4Γ cos θ

(Γ + cos θ)2
(3.1.50)

which is shown for Γ = 1 and Γ = 0.612871... in Fig. 3.3.

Both of the choices of parameter effectively transfer the wave amplitude from one

side of the void to the other. While the maximised average tuning transmits the wave

more effectively over a wider range of angles, the normal incidence tuning is more

effective for small incident angles. Depending on the choice of system, either of these

tuning choices may be more effective at bridging an incoming wave.
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Figure 3.3: Ratio of amplitude of overall transmission to initial wave amplitude

(3.1.50) for different incident angles θ on a string bridge. The two plot lines show

different choices of parameter tuning, with normal incidence tuning, Γ = 1 denoted in

red, and maximum average transmission tuning Γ = 0.612871... denoted in black.

More generally, a wave tuned for perfect transmission for an angle θ has tuning

parameter Γ = cos θ. If Γ > 1 then there is no perfect transmission for any incident

angle, and transmission is decreased for all values of θ.

In this system, if the reflection at the second boundary is not perfect then there

will be a part of the wave still present in the bridge, travelling back toward the first

boundary. At this boundary it can again be transmitted or reflected, and the reflected

component will again be incident on the second boundary, and so on. Therefore, as well

as ‘primary’ reflection and transmission there will be an infinite number of reflections

and transmissions at some fixed time intervals after the initial incidence, determined

by the distance between the two boundaries and the wave speed in the strings.

Assuming that the two membrane halves are identical and that the properties of the

string are constant, then from (3.1.46, 3.1.47), successive transmissions and reflections
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from the bridges have coefficients,

Rn =


1− Γ

1 + Γ
, n = 1

4Γ

(1 + Γ)2

(
Γ− 1

Γ + 1

)2n−3

, n ≥ 2

(3.1.51)

Tn =
4Γ

(1 + Γ)2

(
Γ− 1

Γ + 1

)2n−2

(3.1.52)

where Rn is the nth reflection and Tn the nth transmission, n being an integer denoting

the number of reflections and transmissions the system has undergone. In this defini-

tion, T (Γ) ≡ T1. These coefficients are plotted against the parameter Γ in Fig. 3.4 and

show a clear decrease of amplitude for each successive Rn and Tn.
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(a) Reflection Ratios, Rn
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(b) Transmission Ratios, Tn

Figure 3.4: Ratios of amplitudes of successive reflections (3.1.51) and transmissions

(3.1.52) to initial wave amplitude against the parameter Γ.

This treatment only applies if there is a single wave packet incident upon the

boundary. If the wave incident upon the bridge has an infinite number of successive

wave packets then there will be wave interference between the successive reflections and

transmissions. If the reflected waves or transmitted waves are in phase with each other

as they exit the system then the overall amplitude will be the sum of all amplitudes.

42
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These form the geometric series,

RT =
1− Γ

1 + Γ
+
∞∑
n=2

4Γ

(1 + Γ)2

(
Γ− 1

Γ + 1

)(2n−3)

, (3.1.53)

TT =
∞∑
n=1

4Γ

(1 + Γ)2

(
Γ− 1

Γ + 1

)(2n−2)

, (3.1.54)

where RT and TT are the total reflection and transmission amplitude ratios respec-

tively. Since these are geometric series the summation can be computed easily, and so

regardless of the value of Γ,

RT = 0, TT = 1. (3.1.55)

Therefore in an infinite system where the reflections and transmissions are kept in

phase, the system will tend to having perfect transmission and no reflection.

However the successive transmitted and reflected waves are, in general, not in

phase. When the waves are not kept in phase the amplitude of the overall wave is

not equal to the summation of the amplitudes of the individual waves. To find the

amplitude of the overall waves, assume the incident wave is of the form (3.1.20) and

that each transmission across the strings adds a phase difference of ϕ (3.1.39) so that

the transmitted wave is of the form,

u
(t)
M =

∞∑
n=1

TnAie
i[k(x cos θ+y sin θ)−ωt]ei(2n−1)ϕ, (3.1.56)

and similarly the reflected wave is of the form,

u
(r)
M =

∞∑
n=1

RnAie
−i[k(x cos θ−y sin θ)+ωt]ei(2n−2)ϕ. (3.1.57)

so the overall transmission and reflection ratios are,

RT =
1− Γ

1 + Γ
+
∞∑
n=2

4Γ

(1 + Γ)2

(
Γ− 1

Γ + 1

)2n−3

ei(2n−2)ϕ, (3.1.58)

TT =
∞∑
n=1

4Γ

(1 + Γ)2

(
Γ− 1

Γ + 1

)2n−2

ei(2n−1)ϕ, (3.1.59)
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where the previous TT and RT values (3.1.55) are for the particular case that ϕ = 2mπ,

m ∈ Z. The magnitude of the ratio between successive terms in both of the infinite

series are less than or equal to 1. When the ratio is 1 then there is already perfect

transmission and Rn and Tn terms are zero for n > 1. In the other cases again treat

these as a geometric series leading to,

RT =
1− Γ

1 + Γ

(
1− e2iφ

1−
(

1−Γ
1+Γ

)2
e2iϕ

)
, (3.1.60)

TT =
4Γ

(1 + Γ)2e−iϕ − (1− Γ)2eiφ
(3.1.61)

These have real wave amplitudes of,

|RT | =
1− Γ2

4Γ

(
1

2
+

(
1− Γ2

4Γ

)2

sin2 2ϕ

)−1/2

sin 2ϕ, (3.1.62)

|TT | =

(
1 +

((
1 + Γ2

4Γ

)2

− 1

)
sin2 ϕ

)−1/2

, (3.1.63)

which are plotted in Fig. 3.5. From Fig. 3.5b it is clear that the overall transmission

(a) Overall Reflection Ratio |RT | (b) Overall Transmission Ratio |TT |

Figure 3.5: Ratios of amplitudes of overall reflection (3.1.62) and transmission (3.1.63)

to initial wave amplitude against the parameter Γ and the added phase difference ϕ.

is only perfect for either Γ = 1 or when the phase difference ϕ is an integer multiple

of π. Outside of these conditions the overall transmission decreases and the reflection

increases. These two cases will be investigated individually.

44



3.1. HOMOGENISED BOUNDARY

When Γ = 1, it is not necessary to consider ϕ as there are no successive reflections

and transmissions. In the long wave limit assuming cM and cs are both finite and that

neither the incident wave or the strings are parallel to the boundary, both ϕ and ϕ′

tend to 0, guaranteeing perfect matching of the wave.

If θ → ±π/2 then the long wave assumption is no longer valid. Since perfect

amplitude matching requires Γ = 1, then using the matching parameter for oblique

incidence (3.1.24) gives Γ = γ̃ so,

cos θ = γ, (3.1.64)

and to perfectly match the wave requires the overall phase change to be ϕ′ = 2mπ, m ∈ Z.

This leads to the relation for string angle to be,(
2mπ

cM
ωd

γ + 1
)

cosϑ = γ

(
cM
cs
−
√

1− γ2 sinϑ

)
, (3.1.65)

and if it is assumed that the strings are not held parallel to the boundary, cosϑ 6= 0 so

as γ, ωd → 0, the resulting wave matches if the wavelength and angle of the incident

wave and size of the void satisfy,

d

λ cos θ
∈ N, (3.1.66)

where N is the set of natural numbers not including 0. Interestingly this condition is

independent on the properties of the bridge itself, so this bridge construction cannot

arbitrarily bridge any void for any incident wave.

In the case of an infinite number of incident wavefronts, when ϕ = rπ, r ∈ Z,

TT = 1 and RT = 0. The overall wave, like each of the component waves, has a relative

phase difference of 0. Hence the phase difference to the unbridged wave will be given

by ϕ′ (3.1.43). Since perfect matching requires that the bridged and unbridged waves

be identical, ϕ′ = 2mπ, m ∈ Z. Substituting ϕ from (3.1.39) gives,

cosϑ =
ωd

csrπ
. (3.1.67)
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In the long wave limit this gives ϑ = 0, r 6= 0.

2mπ =
ωd

cM

(
cM
cs
− 1

cos θ

)
, (3.1.68)

which gives the angle requirement,

cos θ =
cs

cM − mλ
d
cs
. (3.1.69)

This will give different results depending on m. For m = 0 this gives the angle require-

ment,

cos θ =
cs
cM

(3.1.70)

and for m > 0,

d

λ cos θ
∈ N, (3.1.71)

which is the same as the result for a single wave front.

Therefore for this system, whether a wave can be perfectly bridged or not depends

only on the properties of the void and the incident wave. While a bridge exists for all

angles of incidence which can ideally transfer the wave amplitude, for shallow incidence

waves the change of phase cannot be controlled by changing bridge parameters. This

is true for both a single incident wavefront and infinite wavefronts.

The system also produces no reflections for ϕ = rπ/2, but unlike the other cases

for no reflection there is still a loss in transmission. For this phase difference the overall

transmission is,

TT =
4Γ

(1 + Γ)2
(3.1.72)

which is the same as the first wave transmission from the system (3.1.45). For this phase

difference the Rn terms all cancel, and so do the Tn terms except T0. Practically this
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represents a wave suppression, where the wave pattern is replicated with no reflections

but the amplitude is reduced.

Note also that the transmission for RT and TT is only valid for an infinite continuous

wave. For a finite number of wavefronts, only the matching for Γ = 1 will give perfect

transmission.

3.2 Fourier Series method

Complementary to the homogenisation approach above, this problem can also be

treated using a Fourier Series approach. The purpose of this section is to show that the

homogenisation technique is valid for this system given the periodic scale of the bound-

ary is much smaller than the characteristic length scale of the wave, the wavelength

λ.

3.2.1 Arbitrary Fourier Series

Since the above forcing is periodic, introduce an exact Fourier series to model the

boundary. First start with the most general case of some arbitrary Fourier series with

coefficients Ej and replace δ(l) with the series,

∞∑
j=−∞

Ej
l
e−i jπ

y
l . (3.2.1)

so the boundary condition (3.0.1) takes the form,

TM
∂uM
∂x

= Ts
∂us
∂x

∞∑
j=−∞

Ej
l
e−i jπ

y
l , (3.2.2)

where Ej terms are constants with respect to the spatial and time variables. The

incident wave is independent of the boundary so it is assumed that this has the same
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arbitrary form as before,

u
(i)
M = Aie

i[k(x cos θ+y sin θ)−ωt]. (3.2.3)

However, as the forcing along the boundary of the membrane contains a summation,

to balance both sides of the equation it is assumed that the reflected component of

the wave is an infinite summation. For the most simple matching assume that the

summation takes the form,

u
(r)
M =

∞∑
j=−∞

Arje
−i[k(κjx cos θ−y sin θ)−ωt]ei 2jπ y

l , (3.2.4)

where to satisfy the governing equations,

k2 cos2 θ = k2κ2
j cos2 θ +

(
2jπ

l

)2

, (3.2.5)

κj =

√
1−

(
jλ

l cos θ

)2

, (3.2.6)

and as before λ is the wavelength of the incident wave and θ is the angle of incidence.

Assume also that as before the transmitted waves into the strings have the form,

u(t)
s = Ate

i[Kx+ky sin θ−ωt] (3.2.7)

and so the boundary condition (3.2.2) becomes,

TMe
i[ky sin θ−ωt]

(
k cos θAi −

∞∑
j=−∞

kjArje
i 2jπ y

l

)
= TsKAte

i[ky sin θ−ωt]
∞∑

j=−∞

Ej
l
ei 2jπ y

l ,

(3.2.8)

which gives

Ai −
∞∑

j=−∞

κjArje
i 2jπ y

l = γ̃At

∞∑
j=−∞

Eje
i 2jπ y

l . (3.2.9)

Since both sides have the form of a Fourier series, the summation coefficients are unique

and each term on the left hand side will equal the corresponding term from the right

hand side. For the waves arising from the higher order terms to propagate into the
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material and not decay exponentially away from the boundary, the values of κj must

be real. Since the incident wave is always propagating then the incident wave number

k cos θ must be real. Then for the jth term of the summation to be real, from (3.2.6),

|j|λ
l| cos θ|

≤ 1, (3.2.10)

|j| ≤ l| cos θ|
λ

. (3.2.11)

For the homogenisation, it was assumed that λ� l and since | cos θ| ≤ 1,

0 <
l| cos θ|
λ

� 1, (3.2.12)

so for long incident waves, for all j 6= 0 the reflected waves will decay exponentially

away from the boundary. Thus it is preferable to treat the j = 0 reflected wave, or the

‘first reflection’ separately. Therefore on matching the summation term by term,

Ai − Ar0 = E0γ̃At, (3.2.13)

Arjκj = Ej γ̃At, j 6= 0. (3.2.14)

and introduce a new summation parameter, σ, to represent the effect of the waves from

the n 6= 0 terms,

σ =
−1∑

j=−∞

Ej
E0

κ−1
j +

∞∑
j=1

Ej
E0

κ−1
j . (3.2.15)

Using the continuity of displacement (3.1.2),

Ai +
∞∑

j=−∞

Arj = At, (3.2.16)

Ai + Ar0 = (1 + E0σγ̃)At. (3.2.17)

These give the reflection and transmission coefficients of,

Ar0
Ai

=
1− E0γ̃(1− σ)

1 + E0γ̃(1 + σ)
,

At
Ai

=
2

1 + E0γ̃(1 + σ)
. (3.2.18)
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For the second boundary, follow the same technique as above but assume incident,

reflected and transmitted displacements respectively of the form,

u(i)
s = Bi e

i[Kx+ky sin θ−ωt], (3.2.19)

u(r)
s = Br e

−i[Kx−ky sin θ+ωt], (3.2.20)

u
(t)
M =

∞∑
j=−∞

Btj e
i[k(κjx cos θ+y sin θ)−ωt] 1

l
ei 2jπ y

l . (3.2.21)

As before, only the j = 0 case will propagate and so this ‘first transmission’ case of

Bt0 will be treated separately. In this case the continuity of displacements (3.1.2) gives

the condition,

Btj =
Ej
E0

κ−1
j Bt0, (3.2.22)

∞∑
j=∞

Btj = Bt0(1 + σ). (3.2.23)

Then by substituting into the stress boundary condition (3.2.2) and following the same

procedure as before of matching terms in the Fourier series yields the expression,

TsK(Bi −Br)E0 = l TMk cos θBt0, (3.2.24)

Bi −Br =
Bt0

Ẽ0γ
, (3.2.25)

so then the coefficients of reflection and transmission are,

Br

Bi

=
E0γ̃(1 + σ)− 1

E0γ̃(1 + σ) + 1
,

Bt0

Bi

=
2E0γ̃

E0γ̃(1 + σ) + 1
, (3.2.26)

which leads to the overall transmission through the system as being,

Bt0

Ai
=

4E0γ̃

(1 + E0γ̃(1 + σ))2
. (3.2.27)

(3.2.27) is the more general case of (3.1.45), with γ̃ replaced with E0γ̃, and the inclusion

of σ to represent the effect of the leading order terms. Thus, when σ is small the

transmission will be perfect for E0γ̃ = 1.
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Next reintroduce the periodic delta function, for which the Fourier series is given

by,

δ(l)(y) =
∞∑

j=−∞

1

l
ei 2jπ y

l . (3.2.28)

then for this forcing Ej = E0 = 1 and κj = κ−j so the σ for this forcing, σδ, is given by

σδ = 2
∞∑
j=1

κ−1
j (3.2.29)

Using the delta function boundary therefore leads to the coefficient for overall

transmission through the system as,

Bt0

Ai
=

4γ̃

(1 + γ̃(1 + σδ))2
, (3.2.30)

which replicates the homogenised results (3.1.45) for σδ = 0. In order to verify the

homogenisation, it is therefore necessary to investigate the behaviour of σ.

3.2.2 Fourier Series σ Analysis

The homogenised solution differs to the exact Fourier solution due to the presence

of σδ, a parameter arising from the summation, dependent on the angle of incidence,

wavelength of the incident wave, and the spacing of the strings and also independent

of the material parameters of the membrane and string. It is clear on comparing the

overall transmission coefficient for the homogenised system (3.1.45) and those for the

exact Fourier solution (3.2.30) that the two sets of results coincide given σδ = 0.

For the higher terms, as j →∞,

κj → 2i
l cos θ

λ

1

j
. (3.2.31)

On a term by term analysis, all of the terms are vanishingly small and so can indi-

vidually be discarded. However for large j, the series σδ will converge towards the
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harmonic series, which is divergent. Therefore it can be supposed that this series is

also divergent and so σδ → ∞. Substituting this into the previous coefficients shows

that regardless of the value of γ̃, the overall transmission will tend to 0.

It can however be supposed that this non-physical result is a consequence of using

the delta function, a non-physical representation of point loading which disregards

material deformations along the boundary. To see if this is a problem with the system

or a particular feature of using delta function forcing, next investigate σ in a more

general case.

In the particular case that the forcing is both real and symmetric, the values of Ej

must be given by {Ej ∈ IR|Ej = E−j}. In this case, the expression for σ becomes,

σ =
∞∑
j=1

2Ej
E0

κ−1
j . (3.2.32)

As with the case for the delta function, as j →∞ each term σj is given by,

σj → 2i
l cos θ

E0λ

Ej
j
, (3.2.33)

and since it is necessary that the boundary Fourier series converges, then it follows

that the sum
∑∞

j=1Ej must converge. From this it can also be shown that the sum∑∞
j=1

Ej
j

converges and so σ will have a finite value.

As before, if λ cos θ � l then the summation will have all imaginary terms and so

when σ 6= 0, in general, Bt0
Ai
6= 1 since there will be some imaginary component. Hence

for full amplitude transmission the argument of the overall transmission ratio must be

equal to 1, with the imaginary part causing a phase shift in the wave.

In the case σ = σr + i σi, where σr and σi are both real,

∣∣∣∣ 4E0γ̃

(1 + E0γ̃(1 + σr + i σi))2

∣∣∣∣ = 1. (3.2.34)

When σ has no real part, σr = 0. If it is also assumed that the bridge parameters are
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all strictly real and positive then the above condition can be simplified to,

∣∣(1 + E0γ̃)2 − E2
0 γ̃

2σ2
i − 2i(1 + E0γ̃)E0γ̃σi

∣∣ =

((1 + E0γ̃)2 − E2
0 γ̃

2σ2
i )

2
+ 4(1 + E0γ̃)2E2

0 γ̃
2σ2

i

4E0γ̃
(3.2.35)

which has solutions,

E0γ̃ =
3± 2

√
2 + iσi + iσi

σ2
i − 1− 2iσi

,
1± 2(−1)3/4√σi − iσi

1 + 2iσi − σ2
i

. (3.2.36)

However, these solutions only give real positive values of E0γ̃ for σi = 0. Thus even

though a sufficiently small value of σ will lead to diminishingly small transmission losses

there is no way to perfectly reproduce all aspects of the wave pattern even taking into

account the coupling between the two materials.

Since perfect transmission is not possible solely by selecting bridge parameters,

it is again possible to consider the effect of the summation of successive reflections

and transmissions from the system as before. Like the simple case for homogenisation

(3.1.51, 3.1.52) the Fourier series gives reflection and transmission coefficients of,

Rn =


Ar0
Ai

, n = 1

Bt0

Ai

(
Br

Bi

)(2n−3)

, n ≥ 2

(3.2.37)

Tn =
Bt0

Ai

(
Br

Bi

)(2n−2)

, (3.2.38)

for which the summations of Rn and Tn are again a geometric series. From equations

(3.2.18, 3.2.26, 3.2.27), the total reflected and transmitted amplitudes, RT and TT

respectively, are

RT =
σ

1 + σ
, TT =

1

1 + σ
. (3.2.39)

Unlike for the homogenised case, the reflection and transmission totals do not tend

to a value. They are however still independent of the material parameters and instead
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depend only on the nature of the coupling chosen. To recover the homogenised solution,

when σ tends to zero, RT again tends to 0 and TT tends to 1. In a more general case the

sum of the transmitted and reflected wave amplitudes is 1 which conserves energy in

the system. Furthermore, if the phase of the transmission and reflection are disregarded

and as before assume that σ = iσi, then the wave amplitudes are,

|RT | =
σi√

1 + σ2
i

, |TT | =
1√

1 + σ2
i

(3.2.40)

which again only equal 0 and 1 respectively when σi = 0. For any other value of σi the

transmission decreases and reflection increases.

Therefore our perfect matching is fundamentally limited by the matching between

the materials, and a ‘good’ matching can only be produced for a small value of σ. It

is therefore necessary to examine more realistic models for the boundary to see if this

condition can be met. To undertake short scale analysis it is necessary to replace the

delta function for a more realistic coupling function.

3.2.3 Distributed Delta Function Boundary

To determine how valid the above approach is, choose a function to investigate which

could represent forcing along the boundary in a real physical system. Since this analysis

began using the delta function, it is a good starting point to choose a function which

on larger length scales approximates or tends to the delta function. One such function

is a capped exponential, which is given by,

f(y) =

√
α

√
π erf(

√
α l
2

)
e−αy

2

(3.2.41)

where erf(x) is the error function of x and α is a tuning parameter to alter the width of

the function. This function is positive over the whole domain and has a single peak at

the origin. The integral of the function over − l
2

to l
2

is 1 and as α tends to infinity, f(y)
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will tend to 0 everywhere except the origin. These conditions together are sufficient to

define f(y) as α→∞ as the delta function.

To fully replicate the coupling this function needs to be periodic over l. While the

function could be defined piecewise periodically, this would lead to a discontinuity of

the gradients at y = (m+ 1
2
)l, m ∈ Z. Instead, suppose that each connection between

the string and the membrane causes a capped exponential. Then the overall function

would be an infinite sum of periodically arranged capped exponentials, which can be

expressed as a Jacobi ϑ3 function [107],

ϑ3

(
πy
l
, e

−π2
αl2

)
= l

∞∑
m=−∞

√
α

π
e−α(y+ml)2 , (3.2.42)

where the function is periodic and infinitely differentiable. Since physical strings cannot

have point like connections and the forcing will depend on the width of the strings,

it may be more convenient to use a tuning parameter which changes the width of the

function. Hence choose h to be the relative half width of one peak, ie.,

{
h ∈ R | d > 0, e−α(hl

2
)2 =

1

2

}
. (3.2.43)

Defining this distributed delta function as δ(h,l)(y) gives

δ(h,l)(y) = 1
l
ϑ3

(
πy
l
, e

−π2h2
4ln(2)

)
, (3.2.44)

where the function has been normalised so that again the integral of δ(h,l)(y) over any

one period, m
2
l to (m+1)

2
l is 1. Figure 3.6 shows how this function behaves for decreasing

values of h/l, quickly converging to the delta function.

From the standard expression for Fourier series coefficients,

Ej =

∫ l/2

−l/2

1
l
ϑ3

(
πx
l
, e

−π2h2
4ln(2)

)
e−i(jπy/l)dy, (3.2.45)

E0 =

∫ l/2

−l/2

1
l
ϑ3

(
πx
l
, e

−π2h2
4ln(2)

)
dy. (3.2.46)
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Figure 3.6: Comparisons of the distributed delta function δ(h,l)(x) for different values

of the half-thickness h, where l is the separation between successive strings.

It has already been established that the integral of the function equals 1, so regard-

less of the choice of parameters, E0 = 1. Note that for the forcing to conserve tension

along the boundary this integral should equal 1 and so E0 = 1 in general.

To find the values for σ of the above δ(h,l)(y), the sum of a numerical Fourier Series

approximation can be made. For demonstration, a range of σ values for a normally

incident wave with this type of boundary forcing are shown in Table 3.1 for different

peak widths and incident wavelengths to an appropriate level of accuracy. From Table

l/λ

1× 10−1 1× 10−2 1× 10−3 1× 10−4

h

1 0.0057 i 0.057 i×10−2 0.057 i×10−3 0.057 i×10−4

0.5 0.0854 i 0.850 i×10−2 0.850 i×10−3 0.850 i×10−4

0.1 0.3930 i 3.919 i×10−2 3.919 i×10−3 3.919 i×10−4

0.05 0.5312 i 5.301 i×10−2 5.300 i×10−3 5.300 i×10−4

0.01 0.8530 i 8.518 i×10−2 8.518 i×10−3 8.518 i×10−4

Table 3.1: Values for σ (3.2.32) for a Jacobi ϑ3 forcing with Fourier coefficients

(3.2.45) with varying incident wavelengths λ and peak relative half widths d.

56



3.3. NET BRIDGE

3.1 it is visible that smaller values of h lead to larger σ values. Alternately, for small d

this function can be approximated by the delta function, and so the increasing σ will

diverge. Similarly, for large d the forcing gradually becomes constant; in this instance

the Fourier Series has no significant terms beyond the first and σ will tend to zero.

Furthermore, from (3.2.33), for large jλ
l cos θ

, the wave scaling parameter l/λ can be taken

out of the terms of σ as a constant factor. Thus when the wavelength is much larger

than the distance between the strings, σ is inversely proportional to λ.

Therefore, as E0 = 1 and σ tends to 0 for large wavelengths, the homogenisation

technique developed earlier reproduces the results of the exact solution while also being

much simpler to solve. For the remainder of the bridging problems in this thesis,

this homogenisation procedure will be assumed to be valid. Hence as the problems

become more involved to solve, use this homogenisation procedure without additional

verification from the exact result.

3.3 Net Bridge

Next, introduce a net of strings as described in [78] as a “membrane-like lattice”. This

square lattice consists of an infinite array of strings which we will insert into the void

between membranes, as indicated in Figure 3.7. While this structure allows for both x

and y-direction wave propagation in the bridge the size of the ‘holes’ are much smaller,

meaning that the maximum size of inclusion which can be concealed by the bridge is

correspondingly much smaller. Due to the connections between strings along the y-axis

the wave propagation can be 2D in this structure. The dispersion of waves in such a

net has already been studied, and for a harmonic wave of amplitude An being excited

by a constant angular frequency ω the out-of-plane displacement waves in the net have
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l

l

x = d

x = 0

x

y

Figure 3.7: Schematic of an infinite elastic membrane with a square lattice of strings

with separation l, bridging a void between x = 0 and x = d.

a form,

un = Ane
i[kxx+kyy−ωt], (3.3.1)

where kx and ky are the wavenumbers in the x and y-direction for waves in the net and

in the notation of this thesis,

cos(kxl) + cos(kyl) = 2 cos

(
ωl

cs

)
. (3.3.2)

Using the same long wave assumption as before, if ω � csl then kx, ky � l and so

using the Taylor expansion of the cosine function yields,

k2
x + k2

y =
√

2
ω2

c2
s

, (3.3.3)

which is similar to the dispersion relation for a membrane (2.1.17). Defining a new

wave speed cn and wavenumber kn by,

cn =
cs
4
√

2
=

ω

kn
. (3.3.4)
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For cM = cn this net will have the same wave speed as the membrane. Following

the same procedure as before yields the altered boundary conditions for forces and

displacements respectively at x = 0 and x = d,

Tm
∂uM
∂x

= Ts
∂un
∂x

δ(l)(y), (3.3.5)

and

uM = un. (3.3.6)

Since we have already made use of a long wave assumption and shown the effectiveness

of the homogenisation scheme for this boundary, consider only a homogenised boundary

condition for this bridge. As before the homogenisation of the distributed delta function

yields,

TM
∂uM
∂x

=
Ts
l

∂un
∂x

(3.3.7)

and on assuming waves in the membrane and net respectively of the form

uM = Aie
i[km(x sin θ+y cos θ)−ωt] + Are

i[km(−x sin θ+y cos θ)−ωt], un = Ate
i(kxx+kyy−ωt),

(3.3.8)

for which substitution into the boundary conditions at x = 0 yields,

Ar =
1− γn
1 + γn

Ai, At =
2

1 + γn
Ai, (3.3.9)

where in this case the bridging function γn(θ) is given by,

γn(θ) =
Ts
TM l

√
1−

(
1− c2

M

c2
n

)
sec2 θ. (3.3.10)

Similarly, taking the assumed wave forms,

un = Bie
i[kxx+kyy−ωt] +Bre

i[−kxx+kyy−ωt], uM = Bte
i[km(x sin θ+y cos θ)−ωt], (3.3.11)
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and substituting into the boundary y = d yields,

Br =
γn − 1

γn + 1
Bi, Bt =

2γn
γn + 1

Bi. (3.3.12)

for which the coefficients obtained from this system are identical to (3.1.26) and (3.1.32)

with γθ replaced by γn and so the previous analysis also applies here, with the overall

first wave transmission coefficient given by,

T1(γn) =
Bt

Ai
=

4γn
(1 + γn)2

, (3.3.13)

which has a maximum T1(γn) = 1 at γn = 1. Unlike the previous string bridging

problem, it is possible to ensure that perfect bridging can be obtained in this system

regardless of incident angle since when cM = cn there is no angular dependence on the

value of γn. For this choice of material parameters the membrane formulation is the

same as a distributed formulation for the net bridge and so in a long wave assumption

the matching is trivial. Therefore, for this bridge the natural matching of tensions

TM l = Ts gives γn = 1 and there is no phase change introduced, leading to a perfect

bridging.

This bridging system also allows for tunable wave filtering based on incident angle.

While the previous string bridging scheme had a decrease in transmission from angles

away from the maximum, there was always some transmission from every incident wave

angle. However, for this bridge system there are no propagating waves for

sin θ >
cM
cn

(3.3.14)

so if cn > cM there are always some waves which are not transmitted. To filter any

waves with an incident angle greater than a previously defined filtering angle, θf ,

requires

cM
cn

= sin θf (3.3.15)
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and to ensure a maximum at some given angle, θmax, requires γn = 1 at this angle.

Therefore on substitution the ratio of tensions must be given by,

TM l

Ts
=

√
1− cos θf

cos θmax
(3.3.16)

so by altering the tension and the wave speed of the strings proportional to the tension

and wave speed in the membrane any incident wave can be fully bridged and any range

of incident angles greater than a specified angle can be fully filtered. There is, however,

no way to filter a range of angles less than a given angle.

Furthermore the previous discussion on the effect of successive transmissions and

reflections remain valid where in this system if the propagation angle of the waves in

the net is θn the reflection phase change ϕn is given by,

ϕn = d(kn (cos θn + sin θn tan θn)− km sin θ tan θ) (3.3.17)

=
ωd

cM

(
cM
cn

(
1− c2

n

c2
M

sin2 θ

)−1/2

− sin θ tan θ

)
. (3.3.18)

This phase change is much more involved than the previous phase changes due to the

2D wave propagation in the bridge. However, as before when ϕn is an integer multiple of

π, wave superposition leads to the overall reflected wave tending to a relative amplitude

of 0 and the transmitted wave tending to a relative amplitude of 1.

As before, however, this phase change depends on both the wave frequency and

the incident wave angle so it is not possible to produce perfect transmission by internal

reflections which is either broadband or angle independent.

3.4 Membrane Bridge Conclusion

For the above bridge system, it is demonstrated that two different periodic arrays of

strings can carry wave behaviour across a void in an elastic membrane. Not only is
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it possible to select material parameters for the strings to perfectly transmit a wave

pattern incident from a single angle, but if the phase of the wave is correctly tuned,

internal reflections on the bridge can interfere and for an infinite number of wavefronts

either the same wave pattern or a suppressed wave can be transmitted across the void

with no reflection. Importantly, all of the required material parameters are isotropic

constants. This is unlike the scheme for membrane cloaking where the cloak stiffness

and density were both spatially dependent and anisotropic.

It has also been shown that a homogenisation approach can be used to determine

the wave transmission and reflection across the void caused by the periodic insertion of

strings. Furthermore, it has been shown using a Fourier series to represent the forcing

at the boundary that the transmission and reflection coefficients determined by this

approach are accurate for long wavelength forcing. Thus, the homogenisation is not

only practical to apply and use but the results are, to a good degree of accuracy, close

to the exact solution. As a result this homogenisation can be applied to other more

complicated schemes where the exact solution cannot be so easily obtained.

The scheme proposed does have limitations. While the results for the string bridge

are broadband in the long wave limit, this bridge cannot ideally reproduce the wave

pattern for all incident angles. Furthermore, while the net bridge produces a bridging

scheme which can be both broadband and ideally reproduce the incident wave pattern

for all incident angles, it strictly requires a matching of wave speeds cm = cn which

may not be possible in a physical system. The size of possible inclusions which can be

concealed are also smaller than for the string bridge. While the ‘holes’ in the string

bridge have area d× l the net bridge has significantly smaller holes of area l2.

The net bridge can also produce a filtering effect, preventing the transmission of

waves with an incidence angle greater than a critical angle, determined by system
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parameters. This filtering effect also allows for perfect transmission of one incident

angle, which can be changed by tuning the net parameters. However there is no way

to perfectly transmit over a range of angles while filtering another. There is also no

way to filter out small incident angle waves while allowing larger incident angle waves

to be transmitted.

The simplicity of this bridging setup does however give scope for further develop-

ment. The same type of metamaterial can also be proposed for other continuous media

to extend the same bridging ideas to other systems. Notably, many other systems

have the same Helmholtz governing equations, including the asymptotic leading order

motion along the surface of a linearly elastic half plane [63], so the results obtained

can potentially be extended to other systems.
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CHAPTER 4

Linear Elasticity Bridging

Now consider a similar scheme as in Chapter 3 but with 3D waves in a linearly elastic

bulk being bridged by 2D objects. The stresses from the bulk at each of the two

boundaries come from the standard constituent equations (2.2.7), and the stresses

from the bridges will depend on the bridge construction. As before the aim is to be

able to perfectly reproduce an incident wave pattern on the other side of the void as

though the bridges were not present.

This ‘bridging’ scheme is again distinct to transformation cloaking but has similar

aims. Like cloaking the aim is to ‘hide’ a region, leaving the wave pattern undisturbed.

Unlike the general cloaking scheme for elasticity [89] this relies on conventional isotropic

materials and is much simpler to construct. It is also oriented at transferring waves

over an infinite void rather than concealing a finite inclusion.

Begin in §4.1 by attempting to bridge bulk waves. First introduce two single mode

bridges, each oriented at bridging only a single bulk wave type. These two single bridge

types are then combined to produce a mixed mode bulk bridge intended to bridge both

shear and longitudinal components of an incident wave. The same mixed mode bridge

is then made use of to bridge surface waves in §4.2. Each section includes a conclusion

specific to the wave types, with an overall discussion of the results at the end of the
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chapter.

Each of the bridges connects two edges of a void in an elastic half plane between

x = 0 and x = d with 2D objects periodically inserted parallel to the x− y plane, with

constant spacing in the z−axis, as shown in Fig. 4.1. For each of the bridges make use

x = 0 x = d

x

z

y

Figure 4.1: Cross-sectional view of an infinite linearly elastic bulk with periodically

inserted 2D objects bridging a void between x = 0 and x = d.

of the homogenisation procedure §2.3 to turn the periodic point forcing at the edges

into a distributed load.

4.1 Elastic Bulk Wave Bridging

To bridge bulk waves first establish two 3D linearly elastic structures with domains

∞ < y, z < ∞, ∞ < x ≤ 0, d ≤ x < ∞ with an array of 2D bridges connecting

the two edges. The two bulk regions will both be able to support longitudinal and

shear wave propagation with standard governing equations (2.2.5) and solutions (2.2.8,

2.2.9).
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4.1.1 Single Material Bridges

First consider two different types of bridge, each oriented at bridging one type of bulk

wave. To match a wave type to a bridge material, it is natural to attempt to bridge

using a material which only supports that type of motion. Hence, for a longitudinal

incident wave, use an array of thin stiff sheets, with governing equation (2.1.18), which

are analogous to the 1D rod. Similarly, for transverse incident waves use an array of

membranes with governing equation (2.1.14).

Longitudinal Bridging

To bridge longitudinal incident waves, first construct a bridge between the two elastic

bulks, consisting of layers of sheets which each occupy∞ < z <∞, 0 ≤ x ≤ d, y = nl,

n ∈ Z. Each nth sheet is connected to the bulk at −∞ < z <∞, x = 0, x = d, y = nl,

and so from (2.1.18) have governing equations,

ρS
∂2uS
∂t2

= ES
∂2uS
∂x2

. (4.1.1)

In linear elasticity, the reflections from a single incident wave at a boundary wave can

produce multiple reflected and transmitted waves. As in the previous chapter denote

incident, reflected and transmitted waves by superscript (i), (r) and (t) respectively

and begin with a longitudinal wave (2.2.8) with the form,

φ(i) = Aie
i[k(x cos θ1+z sin θ1)−ωt], (4.1.2)

which transmits a horizontal displacement wave into the sheet bridge (2.1.20),

u
(t)
1 = Ate

i[KSx+kz sin θ1−ωt], (4.1.3)

where the sheet wave speed (2.1.21) and longitudinal wave speed (2.2.6) are given by,

cS =
ω

KS

, c1 =
ω

k
(4.1.4)
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This produces reflected waves of the form (2.2.8, 2.2.9) with dispersion relation (2.2.14),

φ(r) = Are
−i[k(x cos θ1−z sin θ1)−ωt], (4.1.5)

ψ(r) = Bre
−i[k(x

c1
c2

cos θ2+z sin θ2)−ωt]
, (4.1.6)

where,

φ = φ(i) + φ(r), ψ = ψ(r). (4.1.7)

Matching the horizontal displacements (2.2.4) at the boundary yields,

ik cos θ1(Ai − Ar)− ik sin θ1Br = At, (4.1.8)

and matching the bridge stress (2.1.19) gives the boundary conditions,

σ11 = fSES
∂u1

∂x
δ(l)(y), σ13 = 0, (4.1.9)

where fS is the thickness of the sheets. Substituting the assumed wave to find the half

plane stresses (2.2.7) and homogenising the delta function yields,

σ11 = µk

((
2k sin2 θ1 − k

c2
1

c2
2

)
(Ai + Ar) + 2k

c1

c2

cos θ2 sin θ1Br

)
(4.1.10)

= i
fS
l
ESKSAt, (4.1.11)

= iµk
c2

1

c2
2

γSAt, (4.1.12)

σ13 = µk

(
2k cos θ1 sin θ1)(Ai − Ar) +

(
2k sin2 θ1 − k

c2
1

c2
2

)
Br

)
= 0, (4.1.13)

where γS is defined as,

γS =
fS
l

c1

cS

ES
λ+ 2µ

. (4.1.14)

68



4.1. ELASTIC BULK WAVE BRIDGING

This gives the solutions,

At = ik
2
c21
c22

cos θ1

(
1− 2

c22
c21

sin2 θ1

)(
1− 4

c22
c21

sin2 θ1

)
(
c21
c22
− 4 sin2 θ1

)
(γS cos θ1 + 1) + 4 sin2 θ1

(
c22
c21

sin2 θ1 − c2
c1

cos θ1 cos θ2

)Ai,
(4.1.15)

Ar =

(
c21
c22
− 4 sin2 θ1

)
(γS cos θ1 − 1)− 4 sin2 θ1

(
c22
c21

sin2 θ1 + c2
c1

cos θ1 cos θ2

)
(
c21
c22
− 4 sin2 θ1

)
(γS cos θ1 + 1) + 4 sin2 θ1

(
c22
c21

sin2 θ1 − c2
c1

cos θ1 cos θ2

)Ai,
(4.1.16)

Br =
4 cos θ1 sin θ1

(
2
c22
c21

sin2 θ1 − 1
)

(
c21
c22
− 4 sin2 θ1

)
(γS cos θ1 + 1) + 4 sin2 θ1

(
c22
c21

sin2 θ1 − c2
c1

cos θ1 cos θ2

)Ai.
(4.1.17)

There are some immediate conclusions which can be seen from these coefficients. In

the case of normal incidence, this system will behave similar to those considered for

the membrane-string bridge system; replacing Γ with γS from the membrane first

boundary (3.1.46) gives the same transmission coefficient while the reflection coefficient

is the same amplitude but negative. This is due to the formulation being in terms of

displacement potentials; in displacement terms this will represent the same coefficient

as before.

From this, there are two cases for perfect reflection of the incident wave, (ie, where

Ai = Ar), both of which only have dependence on the incident angle and the bulk

parameters. The first is limiting case of a shallow incidence, where θ1 → π/2. The

second is given when the incident wave satisfies sin θ1 = c1
c2
√

2
, or alternately when the

shear wave reflection would have the angle θ2 → π/4. For these conditions there is

neither a transmitted wave nor any reflected wave conversion.

It is also clear that these are the only angles for which there is no reflected wave

conversion and that these depend solely on the material parameters and not on the

properties of the bridge. However the angle condition for which there is no reflected
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wave at all will depend both on the half plane and γS, which will be discussed in more

detail later, also taking into account the overall transmission.

This boundary has one more condition for which there is no transmitted wave, for

which the incident angle satisfies sin θ1 = c1
2c2

, or equivalently, θ2 = π/6. For conven-

tional materials this will require the incident angle to be in the range π/4 < θ1 < π/2.

This condition produces reflected waves with amplitude ratios,

Ar
Ai

=
cos(θ1 − θ2)

cos(θ1 + θ2)
,

Br

Ai
=
c2

c1

sin(2θ1)

cos(θ1 + θ2)
, (4.1.18)

which will clearly both have asymptotes at θ1 = π/3. This represents an infinitely large

reflection with no transmission and can only occur in a material where c1/c2 =
√

3,

or equivalently which has a Poisson ratio of 1/4. Physically this represents a system

where the reflection forms standing waves. It is also not possible to entirely convert

the longitudinal incident wave into a shear reflection since there is no value of θ1 where

Ar = 0. It is possible to choose material parameters such that Br = 0, but only for

θ1 = π/2 where c1/c2 =
√

2, for a Poisson ratio of 0. This is a specific case of an effect

which will be discussed later.

To see the effect of the transmitted waves from the first boundary, now consider

the second boundary. The sheet now has an incident wave of,

u
(i)
1 = Cie

i[KSx+kz sin θ1−ωt], (4.1.19)

and since this sheet can only support one type of wave (2.1.20), if there is a reflected

wave it must be of the form,

u
(r)
1 = Cre

−i[KSx−kz sin θ1+ωt], (4.1.20)

where the overall vertical displacement in the bridge is,

u1 = u
(i)
1 + u

(r)
1 . (4.1.21)
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As before take both a longitudinal and transverse wave in the elastic bulk, with trans-

mitted waves,

φ(t) = Cte
i[k(x cos θ1+z sin θ1)−ωt], (4.1.22)

ψ(t) = Dte
i[k(x

c1
c2

cos θ2+z sin θ1)−ωt]
. (4.1.23)

This leads to a horizontal displacement matching of,

ik cos θ1(Ct) + ik
c1

c2

cos θ2Dt = Ai + Ar (4.1.24)

and substituting the assumed wave forms into the boundary conditions (4.1.9) as before

gives,

σ11 = µk

((
2k sin2 θ1 − k

c2
1

c2
2

)
Ct + 2k

c1

c2

cos θ2 sin θ1Dt

)
= iµk

c2
1

c2
2

γS(Ci − Cr),

(4.1.25)

σ13 = µk

(
2k cos θ1 sin θ1)Ct +

(
2k sin2 θ1 − k

c2
1

c2
2

)
Dt

)
= 0, (4.1.26)

and in the same way as before, obtain the coefficients,

Ct =
1

ik

2γS

(
c21
c22
− 2 sin2 θ1

)
c21
c22

(γS cos θ1 + 1) + 4 sin2 θ1

(
c22
c21

sin2 θ1 + c2
c1

cos θ1 cos θ2 − 1
)Ai, (4.1.27)

Cr =

c21
c22

(γS cos θ1 − 1)− 4 sin2 θ1

(
c22
c21

sin2 θ1 + c2
c1

cos θ1 cos θ2 − 1
)

c21
c22

(γS cos θ1 + 1) + 4 sin2 θ1

(
c22
c21

sin2 θ1 + c2
c1

cos θ1 cos θ2 − 1
)Ai, (4.1.28)

Dt =
1

ik

4γS cos θ1 sin θ1

c21
c22

(γS cos θ1 + 1) + 4 sin2 θ1

(
c22
c21

sin2 θ1 + c2
c1

cos θ1 cos θ2 − 1
)Ai. (4.1.29)

As with the first boundary, the system is identical to the membrane-string system

coefficients (3.1.47) given normal incidence and replacing Γ for γS. Since all the con-

sidered waves in the bulk are right travelling, the reflection phase change seen at the

first boundary does not occur at the second boundary.

Since the waves in this bridge have undergone wave conversion, it may also be useful

to see if ‘perfect conversion’ is possible, where one wave type is converted entirely to

71



CHAPTER 4. LINEAR ELASTICITY BRIDGING

another with no reflection. For this purpose introduce the wave conversion metric,

WC =
|Amplitude 2|

|Amplitude 1|+ |Amplitude 2|
(4.1.30)

where “Amplitude 1” is the transmitted wave amplitude of the same type as the incident

wave, and “Amplitude 2” is the transmitted wave amplitude of a different wave type.

When the transmitted wave is entirely the same form as the incident wave WC will

equal 0 and when the incident wave is entirely converted into a different wave form

WC will equal 1. For this system these will be the transverse and longitudinal waves

in the bulk respectively, which for this example gives

WC =
|Dt|

|Ct|+ |Dt|
, (4.1.31)

=
| sin(2θ1)|

| c
2
1

c22
− 2 sin2 θ1|+ | sin(2θ1)|

(4.1.32)

Interestingly, this does not depend on the properties of the bridge at all. Instead there

is dependence only on the material properties of the bulk and of the angle of incidence.

‘Perfect’ wave transmission, where the incident wave is fully replicated on the other

side of the bridge with no reflection, is only possible where sin(2θ1) = 0. This requires

either normal incidence or the limit of shallow incidence. However, from (4.1.15) there

is no wave transmission at shallow incidence so perfect transmission only occurs for

a single wave front at θ1 = 0, γS = 1. As with the membrane-string bridge system

considered before, if there is more than one wave front the successive transmissions

will superpose. Since for θ1 = 0 the coefficients at each boundary are identical to those

obtained before, the coefficients obtained for repeated reflections (3.1.53, 3.1.54) will

also be valid for this system at normal incidence.

Since there is only one incident angle and value of γS which results in perfect

matching, it is useful to see how a bridge with γS = 1 will behave for other incident an-

gles. If the longitudinal transmission remains close to 1 while the reflections and shear
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transmission amplitudes remain small then this bridge, while not perfectly matching,

will be adequate for reproducing incident wave patterns.
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Figure 4.2: Coefficients for longitudinal transmission (blue) and reflection (orange)

from a longitudinal oriented bridge with γR = 1 for a longitudinal incident wave with

incident angle θ1.
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Figure 4.3: Coefficients for shear transmission (blue) and reflection (orange) from a

longitudinal oriented bridge with γR = 1 for a longitudinal incident wave with incident

angle θ1.

Figs. 4.2 and 4.3 show the expected behaviour for normal incidence and shallow

incidence, and for smaller ratios of c2/c1 bridge reasonably well for a wide range of

incident angles. At higher values of c2/c1 however, the bridge has a resonance producing

infinite amplitude shear and longitudinal reflections and transmissions.

To produce ‘perfect conversion’ where the entire incident wave is converted to

another wave type with no reflection, then it is first required that Ct = 0. This gives

the condition,

c2
1

c2
2

= 2 sin2 θ1 (4.1.33)

For all of the wave energy to be converted then it is necessary to have no reflections,

73



CHAPTER 4. LINEAR ELASTICITY BRIDGING

so also take Ar = Br = Cr = 0. From inspection, if the conversion condition (4.1.33)

is already true then Br (4.1.17) is already 0. Then it is also required for Ar (4.1.16)

and Cr (4.1.28) respectively that,

c2
1

c2
2

(γS cos θ1 − 1) + 2
c2

1

c2
2

(
c2

2

c2
1

sin2 θ1 +
c2

c1

cos θ1 cos θ2

)
= 0, (4.1.34)

c2
1

c2
2

(γS cos θ1 − 1)− 2
c2

1

c2
2

(
c2

2

c2
1

sin2 θ1 +
c2

c1

cos θ1 cos θ2 − 1

)
= 0. (4.1.35)

where manipulation yields the condition that regardless of γS, c1/c2 is either
√

2 or

6
√

2, the latter of which is unobtainable by standard materials and the former is only

obtainable as an ideal perfectly compressible material with Poisson ratio of 0. Substi-

tuting this into the conversion condition (4.1.33) yields that even for this material, the

wave is only ideally converted for incidence of θ1 = π/2. The previous condition for no

transmission (4.1.18) is a specific case of this where there is also no reflection and so

all waves are trapped in the bridge.

Shear Wave Bridging

Next investigate an array of membranes oriented at bridging a shear wave. As before

suppose that there is an array of bridges which occupy the domain ∞ < z < ∞, 0 ≤

x ≤ d, y = nl, n ∈ Z and are connected to the bulk at −∞ < z <∞, x = 0, x = d, y =

nl. However, unlike the previous case these bridges will each be an elastic membrane

(2.1.14). If there is no wave propagation in the y-axis then these membranes have

governing equation,

ρM
∂2uM
∂t2

= TM
∂2uM
∂x2

. (4.1.36)

Begin with a shear incident wave (2.2.9),

ψ(i) = Bie
i[k(x

c1
c2

cos θ2+z sin θ1)−ωt]
, (4.1.37)
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so that the reflected waves will have the same forms (4.1.5, 4.1.6) and from (2.1.16)

the transmitted vertical displacement wave will have the form,

u
(t)
3 = Bte

i[KMx+k1z sin θ1−ωt], (4.1.38)

Conserving the stresses from the bridge (2.1.15) yields the boundary conditions,

σ11 = 0, σ13 = fMTM
∂u3

∂x
δ(l)(y). (4.1.39)

In the same way as before homogenise the stress and match the half plane vertical

displacement (2.2.4) and stresses (2.2.7) at the boundary to obtain,

ik sin θ1Ar + ik
c1

c2

cos θ2(Bi −Br) = Bt (4.1.40)(
2 sin2 θ1 −

c2
1

c2
2

)
Ar + 2

c1

c2

cos θ2 sin θ1(Bi −Br) = 0, (4.1.41)

−2k cos θ1 sin θ1)Ar +

(
2k sin2 θ1 − k

c2
1

c2
2

)
(Bi +Br) = i

fM
l
TMKMAt, (4.1.42)

= i
c1

c2

γMBt, (4.1.43)

where γM is defined as,

γM =
fM
l

c2

cM

TM
µ
. (4.1.44)

This system of equations has solutions,

Bt = ik
2 c1
c2

cos θ2

(
1− 2 sin2 θ2

)
γM cos θ2 + 1− 4 sin2 θ2

(
c2
c1

cos θ1 cos θ2 + cos2 θ2

)Bi, (4.1.45)

Br =
γM cos θ2 − 1− 4 sin2 θ1

(
c2
c1

cos θ1 cos θ2 − cos2 θ2

)
γM cos θ2 + 1− 4 sin2 θ2

(
c2
c1

cos θ1 cos θ2 + cos2 θ2

)Bi, (4.1.46)

Ar =
4γM cos θ2 sin θ2

(
1− 2 sin2 θ2

)
γM cos θ2 + 1− 4 sin2 θ2

(
c2
c1

cos θ1 cos θ2 + cos2 θ2

)Bi. (4.1.47)

from which it is again possible to immediately determine key behaviours of the system.

Unlike for the longitudinal bridge, there are only two conditions for which there is no

transmitted wave; the shallow incidence limit θ2 → π/2 and a shear wave incidence
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θ2 = π/4 both produce total reflection. As before normal incidence produces displace-

ment wave amplitude ratios the same as given by the previous membrane-string bridge

(3.1.46) with Γ replaced by γM .

At the second boundary now assume an incident and reflected displacement wave,

u
(i)
3 = Die

i[KSx+k1z sin θ1−ωt], (4.1.48)

u
(r)
3 = Dre

i[KSx+k1z sin θ1−ωt], (4.1.49)

where,

u3 = u
(i)
3 + u

(r)
3 , (4.1.50)

and the same transmitted waves as from the longitudinal bridge (4.1.22, 4.1.23). Use

the stress boundary conditions from the first boundary (2.2.7, 4.1.39) and match ver-

tical displacements to obtain,

ik sin θ1Ct + ik
c1

c2

cos θ2Dt = Di +Dr, (4.1.51)(
2 sin2 θ1 −

c2
1

c2
2

)
Ct + 2

c1

c2

cos θ2 sin θ1Dt = 0, (4.1.52)

2k1 cos θ1 sin θ1Ct +

(
2k1 sin2 θ1 − k1

c2
1

c2
2

)
Dt = i

c1

c2

γM(Di −Dr). (4.1.53)

which gives the solutions,

Dt =
1

ik

2 c2
c1
γM
(
1− 2 sin2 θ2

)
γM cos θ2 + 1− 4 sin2 θ2

(
c2
c1

cos θ1 cos θ2 + cos2 θ2

)Di, (4.1.54)

Dr =
γM cos θ2 − 1 + 4 sin2 θ1

(
c2
c1

cos θ1 cos θ2 + cos2 θ2

)
γM cos θ2 + 1− 4 sin2 θ2

(
c2
c1

cos θ1 cos θ2 + cos2 θ2

)Di, (4.1.55)

Ct =
4 c2
c1
γM cos θ2 sin θ2

γM cos θ2 + 1− 4 sin2 θ2

(
c2
c1

cos θ1 cos θ2 + cos2 θ2

)Di, (4.1.56)

which again produces identical coefficients for the displacement wave amplitudes as for

the membrane-string bridge (3.1.47). Again make use of the previous wave conversion
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metric (4.1.30) where,

WC =
|Ct|

|Dt|+ |Ct|
, (4.1.57)

=
| sin 2θ2|

|1− 2 sin2 θ2|+ | sin 2θ2|
(4.1.58)

which, as before, does not depend on the properties of the bridge. Unlike before,

however, there is also no dependence on the properties of the bulk. From this it is visible

that the wave undergoes no conversion at θ2 = 0, π/2 and has total wave conversion

at θ2 = π/4. As previously discussed however, at both θ2 = π/2 and θ2 = π/4 there

is no transmission onto the bridge so the overall transmission in both cases would

be 0. Hence perfect wave conversion is not possible and perfect wave transmission

can only occur for normal incidence, which will follow the same conditions for perfect

transmission for the membrane-string bridge (3.1.45, 3.1.54), replacing Γ for γM .

As with the longitudinal bridge previously, it may be useful to know how the

system will behave for a wave arbitrary incidence on a bridge tuned for perfect bridging.

Figs. 4.4 and 4.5] show the shear and longitudinal transmissions and reflections for a

single incident shear wave on a bridge with γM = 1. As before these plots show that

the overall bridge effect is better for materials with a lower value of c2/c1. However,

unlike for the previous case, real transmissions and reflections do not occur for the full

range of incident angles. Propagating waves only occur when sin θ1 < c2/c1, with other

waves decaying exponentially away from the boundary.

Also unlike the longitudinal waves, a more easily compressible bulk material does

not produce vertical asymptotes and an infinite transmission or reflection for certain

incident angles. The overall transmitted amplitude can, however, still be greater then

the incident amplitude.
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Figure 4.4: Coefficients for shear transmission (blue) and reflection (orange) from a

transverse oriented bridge with γM = 1 for a shear incident wave with incident angle

θ2.
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Figure 4.5: Coefficients for longitudinal transmission (blue) and reflection (orange)

from a transverse oriented bridge with γM = 1 for a shear incident wave with incident

angle θ2.

4.1.2 Longitudinal and Transverse Bridging

Now consider attempting to bridge two different types of waves with a single bridge.

Such a bridge will require both longitudinal and shear components, which will aim to

have the added capability of being able to better carry waves at a non-normal incidence.

The new bridge will be a combination of the previous two bridges, with membranes

with standard governing equations (2.1.14) equally spaced at z = nl and sheets with

standard governing equations (2.1.18) at z = (n + 1/2)l, n ∈ Z. As such the previous

two bridges are special cases of the new bridge.
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Formulation of full bridging problem

Unlike for the previous cases consider both a longitudinal and shear incident wave

(2.2.8, 2.2.9) with the same angular frequency ω,

φ(i) = Aie
i[k1(x cos θ1+z sin θ1)−ωt], (4.1.59)

ψ(i) = Bie
i[k2(x cos θ2+z sin θ2)−ωt], (4.1.60)

using the same notation as before, where

c1 =
ω

k1

, c2 =
ω

k2

. (4.1.61)

Although ultimately these two systems will be considered independently, both systems

can be solved simultaneously using the elastic bulk dispersion relation (2.2.14) and so

for brevity the incident waves become,

φ(i) = Aie
i[k1(x cos θ1+z sin θ1)−ωt], (4.1.62)

ψ(i) = Bie
i[k1(x

c1
c2

cos θ2+z sin θ1)−ωt]
. (4.1.63)

At the left boundary this leads to reflected waves of the form,

φ(r) = Are
−i[k1(x cos θ1−z sin θ1)+ωt], (4.1.64)

ψ(r) = Bre
−i[k1(x

c1
c2

cos θ2−z sin θ1)+ωt]
, (4.1.65)

and transmitted waves into sheet and membrane bridges respectively (2.1.16, 2.1.20),

u
(t)
1 = Ate

i[KMx+k1z sin θ1−ωt], (4.1.66)

u
(t)
3 = Bte

i[KSx+k1z sin θ1−ωt], (4.1.67)

where as before,

cM =
ω

KM

, cS =
ω

KS

. (4.1.68)
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Conservation of vertical and horizontal displacements (2.2.4) at the boundary gives,

ik1 cos θ1(Ai − Ar)− ik1 sin θ1(Bi +Br) = At (4.1.69)

ik1 sin θ1(Ai + Ar) + ik1
c1

c2

cos θ2(Bi −Br) = Bt (4.1.70)

and after homogenising, the two stresses from the bridges (2.1.15, 2.1.19) are conserved

as,

σ11 =
fS
l
ES

∂u1

∂x
, σ13 =

fM
l
TM

∂u3

∂x
, (4.1.71)

with horizontal and vertical stresses from the bulk (2.2.7) yielding,

µk1

((
2k1 sin2 θ1 − k1

c2
1

c2
2

)
(Ai + Ar) + 2k1

c1

c2

cos θ2 sin θ1(Bi −Br)

)
= iµk1

c2
1

c2
2

γSAt,

(4.1.72)

µk1

(
2k1 cos θ1 sin θ1)(Ai − Ar) +

(
2k1 sin2 θ1 − k1

c2
1

c2
2

)
(Bi +Br)

)
= iµk1

c1

c2

γMBt,

(4.1.73)

where γS and γM are defined as before (4.1.14, 4.1.44). On repeating the process for

the right boundary with incident waves,

u
(i)
1 = Cie

i[KMx+k1z sin θ1−ωt], (4.1.74)

u
(i)
3 = Die

i[KSx+k1z sin θ1−ωt], (4.1.75)

this system will produce reflected waves,

u
(r)
1 = Cre

i[−KMx+k1 sin θ1z−ωt], (4.1.76)

u
(r)
3 = Dre

i[−KSx+k1 sin θ1z−ωt], (4.1.77)

and transmitted waves into the elastic region,

φ(t) = Cte
i[k1(x cos θ1+z sin θ1)−ωt], (4.1.78)

ψ(t) = Dte
i[k1(x

c1
c2

cos θ2+z sin θ1)−ωt]
. (4.1.79)
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Hence by matching the displacements at this boundary,

ik1 cos θ1(Ct)− ik1 sin θ1(Dt) = Ci + Cr (4.1.80)

ik1 sin θ1(Ct) + ik1
c1

c2

cos θ2(Dt) = Di +Dr, (4.1.81)

and similarly by matching stresses,

µk1

((
2k1 sin2 θ1 − k1

c2
1

c2
2

)
Ct + 2k1

c1

c2

cos θ2 sin θ1Dt

)
= iµk1

c2
1

c2
2

γS(Ci − Cr), (4.1.82)

µk1

(
2k1 cos θ1 sin θ1)Ct +

(
2k1 sin2 θ1 − k1

c2
1

c2
2

)
Dt

)
= iµk1

c1

c2

γM(Di −Dr).

(4.1.83)

These two sets of boundary conditions can be expressed by the matrix equations,

ik1M

Ai − Ar
Bi +Br

 = ik1R

Ai + Ar

Bi −Br

 =

At
Bt

 , (4.1.84)

where,

M =

 cos θ1 − sin θ1

−2 c2
c1

cos θ1 sin θ1
γM

c1
c2

(
1
γM
− 2

c22
c21

sin2 θ1
γM

)
 , (4.1.85)

R =


1
γS
− 2

c22
c21

sin2 θ1
γS

−2 c2
c1

cos θ2 sin θ1
γS

sin θ1
c1
c2

cos θ2

 (4.1.86)

and,

ik1D

Ct
Dt

 =

Ci + Cr

Di +Dr

 , ik1F

Ct
Dt

 =

Ci − Cr
Di −Dr

 (4.1.87)

where,

D =

cos θ1 − sin θ1

sin θ1
c1
c2

cos θ2

 , F =

 1
γS
− 2

c22
c21

sin2 θ1
γS

−2 c2
c1

cos θ2 sin θ1
γS

−2 c2
c1

cos θ1 sin θ1
γM

c1
c2

(
1
γM
− 2

c22
c21

sin2 θ1
γM

)
 (4.1.88)
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Define some incidence, reflection and transmission matrices,

î1 =

Ai
Bi

 , r̂1 =

Ar
Br

 , t̂1 =

At
Bt

 , (4.1.89)

so that the left boundary is represented by,

ik1M

î1 −
1 0

0 −1

 r̂1

 = ik1R

î1 +

1 0

0 −1

 r̂1

 = t̂1. (4.1.90)

Similarly at the right boundary define,

î2 =

Cr
Dr

 , r̂2 =

Cr
Dr

 , t̂2 =

Ct
Dt

 , (4.1.91)

so that,

ik1t̂2 = D−1(̂i2 + r̂2) = F−1(̂i2 − r̂2) (4.1.92)

and from these it is clear that the transmissions are given by,

t̂1 = 2ik1(M−1 +R−1)−1î1, t̂2 =
2

ik1

(D + F )−1î2 (4.1.93)

and the reflections are given by,

r̂1 =

1 0

0 −1

 (M +R)−1(M −R)̂i1, r̂2 = (F−1 +D−1)−1(F−1 −D−1)̂i2

(4.1.94)

In a general case, t̂1 and î2 have the same amplitude but have some phase difference

from the change in speed and so are related by,

î2 =

eiϕ1 0

0 eiϕ2

 t̂1 = ϕt̂1 (4.1.95)

where ϕ1 and ϕ2 are the phase difference from the membranes and sheets respectively,

ϕ1 =
ωd

cs
, ϕ2 =

ωd

cM
, (4.1.96)
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If and only if the angular frequency is given by,

ω =
2mπ

d

cMcS
cS − cM

, m ∈ Z (4.1.97)

then ϕ1 = ϕ2 and on disregarding the phase the wave pattern transmitted from the

left boundary is identical to that incident on the right boundary.

For simplicity, consider only the case that ϕ1 = ϕ2 = 0 so ϕ = I2, where I2 is the

2× 2 identity matrix. It then follows from (4.1.95) that t̂1 = î2 and hence,

t̂2 = 4(D + F )−1(M−1 +R−1)−1î1. (4.1.98)

The wave component re-incident upon a boundary undergoes two reflections and so is

given by,

în+2 =
(
(F−1 +D−1)−1(F−1 −D−1)

)2
în, (4.1.99)

so as before successive reflection and transmission coefficients are obtained,

Rn =



1 0

0 −1

 (M +R)−1(M −R) n = 1

4(D + F )−1 ((F−1 +D−1)−1(F−1 −D−1))
2n−3

(M−1 +R−1)−1, n ≥ 2

(4.1.100)

Tn = 4(D + F )−1
(
(F−1 +D−1)−1(F−1 −D−1)

)2n−2
(M−1 +R−1)−1 (4.1.101)

which are analogous to the similar coefficients from (3.1.51, 3.1.52). If the eigenvalues

of the reflection matrix are both less than 1 then the total reflection and transmissions

can be computed in the same way as the summation of the Rn and Tn terms. This
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yields,

RT =

1 0

0 −1

 (M +R)−1(M −R)

+ 4(D + F )−1
((
I2 − (F−1 +D−1)−1(F−1 −D−1)

)−1 − I2

)
(M−1 +R−1)−1

(4.1.102)

TT =4(D + F )−1
(
I2 −

(
(F−1 +D−1)−1(F−1 −D−1)

)2
)−1

(M−1 +R−1)−1 (4.1.103)

Normal and Shallow wave incidence

To investigate the effectiveness of this bridge, start with the key cases from the single

mode bridging: Normal incidence, shallow longitudinal incidence and shallow shear

incidence. For normal incidence, θ1 = θ2 = 0 and so,

M =

1 0

0 c1
c2

1
γM

 , R =

 1
γS

0

0 c1
c2

 , D =

1 0

0 c1
c2

 , F =

 1
γS

0

0 c1
c2

1
γM

 ,

(4.1.104)

from which the transmissions are given by,

t̂1 = 2ik1

 1
1+γS

0

0 c1
c2

1
1+γM

 î1, t̂2 =
2

ik1

 γS
1+γS

0

0 c2
c1

γM
1+γM

 î2 (4.1.105)

and similarly the reflections are,

r̂1 =

γS−1
γS+1

0

0 γM−1
γM+1

 î1, r̂2 =

γS−1
γS+1

0

0 γM−1
γM+1

 î2 (4.1.106)

which describe the systems for normal incidence on single mode bridges in §4.1.1,

indicating how for normal incidences each wave depends only on one bridge.
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For shallow longitudinal incidences, θ1 = π/2, sin θ2 = c2/c1 and so,

M =

0 −1

0 c1
c2

1−2
c22
c21

γM

 , R =


1−2

c22
c21

γS
−2 c2

c1

cos θ2
γS

0 c1
c2

cos θ2

 . (4.1.107)

Since M is singular, the transmission relation (4.1.93) can no longer be used to de-

termine the transmission from the first boundary. Instead substitute the particular

M and R into the first boundary condition (4.1.90) which results in no shear or lon-

gitudinal transmission from shallow longitudinal incidences. It is however possible to

transmit a longitudinal wave front at this angle with an incident shear wave. This

shear wave must have incidence such that sin θ2 = c2/c1. Since standard materials

have c2/c1 ≤ 1/
√

2 then for any bulk material there exists a propagating wave which

can meet this requirement.

For shallow shear incidences, θ2 = π/2, sin θ1 = c1/c2 and so,

M =

 cos θ1 − c1
c2

−2 c1
c2

cos θ1 − c1
c2

1
γM

 , R =

− 1
γS

0

c1
c2

0

 , (4.1.108)

for which R is clearly singular. As with the longitudinal case, the transmission matrix

equation (4.1.93) cannot be valid and therefore instead substitute these M and R

matrices directly into the first boundary condition (4.1.90). As before a shear shallow

incidence cannot cause any transmission on the other side. However, unlike the previous

case, it is not possible to produce a shear transmission parallel to the boundary since

sin θ1 = c1/c2 does not have a real solution for any possible Poisson ratio.

Perfect Bridging

To investigate whether perfect bridging is possible for both waves simultaneously then

it is more convenient to put the overall transmission coefficient (4.1.98) in the form,

t̂2 =
4

|M | |M−1 +R−1|

(
I2 +

|M |2 − |R|
|R|

(M +R)−1R

)
î1. (4.1.109)
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Then the condition for which there is no wave conversion in the transmitted wave is

that the non diagonal components of the matrix (M + R)−1R are zero. Hence the

longitudinal-to-shear coefficient is 0 when,

sin θ1 cos θ1

(
1− 4

c2
2

c2
1

sin2 θ1

γMγS

)
= 0 (4.1.110)

and the shear-to-longitudinal coefficient is 0 when,

sin θ2 cos θ2

(
c1

c2

− 2

γMγS
cos2 θ2

)
. (4.1.111)

For both shear and longitudinal wave incidence this gives no wave conversion for normal

incidence and shallow incidence. It also yields an extra set of solutions where γM and

γS can be tuned to produce no wave conversion at an arbitrary incidence. To prevent

conversion into shear waves there must be bridge parameters such that,

γMγS = 4
c2

2

c2
1

sin2 θ1, (4.1.112)

and to prevent conversion into longitudinal waves equally requires,

γMγS = 2
c2

c1

cos2 θ2. (4.1.113)

These two equations show that wave conversion can only be arbitrarily controlled for

one incident wave; preventing wave conversion of one incident wave limits the other

wave type to only one possible angle for which there is no conversion.

Next it will be considered whether it is possible to produce bridges in such a way

that there is no wave conversion and no reflections for a single wave type. Begin by

considering the first reflection coefficient for longitudinal waves. If it is assumed that

the bridge already has parameters such that (4.1.112) is satisfied, the shear reflection

is 0 if,

2
√
γMγS

(
4
c2

2

c2
1

− γMγS
)(

c2

c1

(γMγS − 2)− γMγS
)

= 0 (4.1.114)
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which has solutions for normal incidence, shallow incidence and,

γMγS =
2

c1
c2
− 1

, (4.1.115)

which gives the angle requirement,

sin θ1 =

√√√√ 1

2
c22
c21
− 2 c2

c1

(4.1.116)

which has no real solutions. Hence it is not possible to use this bridge to perfectly

match a longitudinal wave without inducing some shear wave reflection except for

normal incidence.

Next consider the first reflection of a shear wave given that the bridge has been

constructed in such a way that (4.1.113) is true. Then the longitudinal reflection caused

by a shear incidence is 0 if,

c1

c2

γMγS

(
2
c2

c1

− γMγS
)

= 0. (4.1.117)

Like the longitudinal case, the only solutions are normal incidence and shallow incidence

so as before ‘perfect bridging’ is only possible for normal incidence waves. Since the

conditions for perfect bridging at normal incidence are already known, it will be useful

to see how the γS = γM = 1 system behaves for a range of incident angles.

Normal Incidence Bridge Tuning

Since the only possible way to perfectly bridge waves in this system is for normally

incident waves on bridges with γS = γM = 1, see how the transmission and reflection

coefficients behave away from normal incidence. The main aim of the bridging is to

replicate the wave pattern on the other side of the gap, and so first look at the overall

transmission coefficients.

Below is plotted the transmission ratios for both longitudinal and shear waves

resulting from a longitudinal or shear incident wave against the incidence angle of
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the wave and the wave speed ratio c2/c1. While the longitudinal wave has a real

transmission for all incidence angles, the shear wave only has wave transmission given

that sin θ2 < c2/c1; for other angles of incidence the right boundary only produces an

evanescent wave which decays exponentially with distance from the bridge.

As expected the shear-shear and longitudinal-longitudinal coefficients are both 1

for normal incidence. It is visible from Figs. 4.6–4.9 that for small angles γM = γS = 1

still produces very little reflection or mode switching, especially for small values of

c2/c1. This does come with limitations however; as mentioned above the shear wave

only produces real transmissions and reflections when sin θ < c2/c1 and outside this

range it is not possible to perfectly bridge the incident wave. Since c2/c1 < 1/
√

2 the

largest range angles possible to transmit is only −π/4 < θ < π/4, half of the range

of possible incident angles. However for the majority of values of c2/c1, θ1 and θ2,

the longitudinal-longitudinal and shear-shear transmissions remain close to 1 and the

reflections and converted wave amplitudes remain small.
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Figure 4.6: Coefficients for longitudinal transmission (blue) and reflection (orange)

from a mixed mode bridge with γR, γM = 1 for a longitudinal incident wave with

incident angle θ1.
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Figure 4.7: Coefficients for shear transmission (blue) and reflection (orange) from

a mixed mode bridge with γR, γM = 1 for a longitudinal incident wave with incident

angle θ1.
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Figure 4.8: Coefficients for shear transmission (blue) and reflection (orange) from a

mixed mode bridge with γR, γM = 1 for a shear incident wave with incident angle θ2.
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Figure 4.9: Coefficients for longitudinal transmission (blue) and reflection (orange)

from a mixed mode bridge with γR, γM = 1 for a shear incident wave with incident

angle θ2.
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If there is more than a single wave packet incident incident on the system then,

with the assumption that the incident waves are kept in phase along the bridge, the

successive reflection and transmission relations (4.1.102, 4.1.103) can be used to cal-

culate the coefficients caused by reflected wave superposition. For these relations to

be valid the eigenvalues of the internal reflection matrix (4.1.99) must be less than

1. For the values of c2/c1 considered in the figures above this is only relevant for

c2/c1 = 1/
√

2. Physically, this can be interpreted as a resonance for which most of

the energy is internally reflected back onto the bridge. This gives an increase in wave

amplitude on the bridge for each additional incident wave, which for infinite incident

waves will lead to an infinite wave amplitude in the bridge. Matching displacements

at the boundary requires that the bridge will then transmit infinite amplitude waves.

This will be visible in the plots by a vertical asymptote.

It is clear from the Figs. 4.10–4.13 that unlike the membrane bridge considered

previously, an infinite number of incident waves do not superpose to produce a perfect

transmission with no reflection. The infinite summation does produce several key

differences between a single incident wave and infinite incident waves. First, there is

in general an increase in the transmission and a decrease in reflection. This is most

notable near normal incidence of the longitudinal waves where both the reflections and

transmissions cancel to produce no overall wave pattern.

There is also a clear decrease in the amount of wave conversion in the system.

Aside from the infinite reflections near the asymptotes, the wave conversion ampli-

tudes from Figs. 4.11 and 4.13 are visibly less than the corresponding amplitudes in

Figs. 4.7 and 4.9.
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Figure 4.10: Coefficients for longitudinal transmission (blue) and reflection (orange)

from a mixed mode bridge with γR, γM = 1 for infinite longitudinal incident waves with

incident angle θ1.
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Figure 4.11: Coefficients for shear transmission (blue) and reflection (orange) from

a mixed mode bridge with γR, γM = 1 for infinite longitudinal incident waves with

incident angle θ1.
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Figure 4.12: Coefficients for shear transmission (blue) and reflection (orange) from

a mixed mode bridge with γR, γM = 1 for infinite shear incident waves with incident

angle θ2.
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Figure 4.13: Coefficients for longitudinal transmission (blue) and reflection (orange)

from a mixed mode bridge with γR, γM = 1 for infinite shear incident waves with

incident angle θ2.
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4.1.3 Elastic Bulk Bridging Conclusion

In this section the effect of periodic insertions bridging the gap between two elastic half-

planes has been investigated. Three different systems were considered; a longitudinal

wave bridge, a shear wave bridge and a combination of the two.

All three systems only have perfect matching when the bridge parameters, γM and

γS, both equal 1, and only for normally incident waves. Away from normal incidence

any incident wave produces either a reflected wave or a wave conversion which changes

the wave pattern in the system. The bridges are also not able to perfectly convert

the wave. Any transmitted wave has some component which is the same form as the

incident wave.

In general the bridges reproduce the wave pattern better for a less easily compress-

ible bulk. Figs. 4.6–4.9 show that each system has less wave conversion and a higher

transmission for low values of c2/c1 than higher values.

4.2 Elastic Surface Wave Bridging

Next consider a bridge oriented at bridging a linearly elastic structure as before, but

instead designed to bridge waves which propagate along a surface. For this, suppose

that there is an semi-infinite linearly elastic half plane with an infinitely deep gap.

These two parts of the elastic half plane will occupy 0 ≤ z <∞,−∞ < y <∞, and

x ≤ 0 and x ≥ d respectively. Along the surface of the half plane will propagate a

Rayleigh wave, a travelling wave solution which decays exponentially with depth away

from the surface as detailed in §2.2.2. For an incident wave with angular frequency ω

the wavenumber k is determined by the solution to the Rayleigh determinant (2.2.19).
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The displacement potentials then have the standard 2D Rayleigh form (2.2.24),

φ = φ0e
i[kx−ωt]−kαRz, ψ = ψ0e

i[kx−ωt]−kβRz, (4.2.1)

with relations along the surface (2.2.22).

As before the aim is to construct a periodic bridge which can carry and reproduce

the wave pattern incident on one side of the gap at the other side without causing any

reflections. Since the wave amplitude will decay with depth it is simplest to start with

periodic insertions connected uniformly at regular depth intervals. For convenience use

the same bridge materials used for the bulk waves; thin membranes and stiff elastic

sheets as detailed in §4.1.2.

4.2.1 Rayleigh Bridge Formulation

As before assume an incident and reflected wave in the bulk and a single transmitted

wave in the bridges. Hence the incident and reflected wave potentials take the form,

φ(i) = Aie
i[kx−ωt]−kαRz, φ(r) = Are

−i[kx+ωt]−kαRz, (4.2.2)

ψ(i) = Bie
i[kx−ωt]−kβRz, φ(r) = Bre

−i[kx+ωt]−kβRz, (4.2.3)

with vertical and horizontal displacements from (2.2.4) and the displacements in the

bridges are the same as for the bulk waves bridges (4.1.66, 4.1.67). This leads to

displacement matching at the boundary of,

ik
(
(Ai − Ar)e−kαRz − iβR(Bi +Br)e

−kβRz
)

= At, (4.2.4)

ik
(
iαR(Ai + Ar)e

−kαRz + (Bi −Br)e
−kβRz

)
= Bt. (4.2.5)
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Similarly matching of stresses from the half plane (2.2.7) and the bridges (4.1.71) at

the boundary yields,

µk2
(
(β2

R − 2α2
R − 1)(Ai + Ar)e

−kαRz + 2iβR(Bi −Br)e
−kβRz

)
= iµk

c2
1

c2
2

γSAt, (4.2.6)

µk2
(
−2iαR(Ai − Ar)e−kαRz − (1 + β2

R)(Bi +Br)e
−kβRz

)
= iµk

c1

c2

γMBt. (4.2.7)

where γM and γS have the same definitions as the bulk case (4.1.14, 4.1.44). Unlike the

previous boundaries there is now a dependence on depth. This removes some of the

freedom of choosing parameters and since the aim is to perfectly bridge waves, in order

to avoid any wave conversion the following formulation will differ from the previous

methods. First, at the surface the wave potentials must satisfy the conditions arising

from the free stress condition (2.2.22) and so,

i(Bi −Br) =
2αR

1 + β2
R

(Ai + Ar), −βR(Bi +Br) = i
1 + β2

R

2
(Ai − Ar). (4.2.8)

Substituting into the boundary conditions gives the new relations,

ik

(
e−kαRz − 1 + β2

R

2
e−kβRz

)
(Ai − Ar) = At, (4.2.9)

ik

(
iαRe

−kαRz − i 2αR
1 + β2

R

e−kβRz
)

(Ai + Ar) = Bt, (4.2.10)

ik
(
(2α2

R + 1− β2
R)e−kαRz − (1 + β2

R)e−kβRz
)

(Ai + Ar) =
c2

1

c2
2

γSAt, (4.2.11)

ik
(
2iαRe

−kαRz − 2iαRe
−kβRz

)
(Ai − Ar) =

c1

c2

γMBt. (4.2.12)

This set of equations has the solvability condition,

c3
1

c3
2

e−kαRz − 1+β2
R

2
e−kβRz

(2α2
R + 1− β2

R)e−kαRz − (1 + β2
R)e−kβRz

γS =
2e−kαRz − 2e−kβRz

e−kαRz − 2
1+β2

R
e−kβRz

1

γM
(4.2.13)

which limits the freedom of choice in this system to a single parameter to preserve

Rayleigh wave form for the reflected waves. Define a new parameter,γR to represent
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this Rayleigh matching, such that

γR =
c2

1

c2
2

e−kαRz − 1+β2
R

2
e−kβRz

(2α2
R + 1− β2

R)e−kαRz − (1 + β2
R)e−kβRz

γS =
c2

c1

2e−kαRz − 2e−kβRz

e−kαRz − 2
1+β2

R
e−kβRz

1

γM
,

(4.2.14)

which gives the reflection coefficients,

Ar
Ai

=
γR − 1

γR + 1
,

Br

Bi

=
1− γR
1 + γR

(4.2.15)

and transmission coefficients,

At
Ai

= 2ik

(
e−kαRz − 1+β2

R

2
e−kβRz

)
1 + γR

,
Bt

Bi

= 2ik

(
e−kβRz − 1+β2

R

2
e−kαRz

)
1 + γR

γR, (4.2.16)

where the displacements along the bridge are related by,

Bt

At
= −i 2αR

1 + β2
R

(
e−kβRz − 1+β2

R

2
e−kαRz

)
(
e−kαRz − 1+β2

R

2
e−kβRz

)γR. (4.2.17)

From these relations, there is no initial reflection if γR = 1. However, substituting this

into the bridge parameter equations (4.2.14) shows that as well as having a dependence

on depth, the bridges are not independent of the wavenumber of the incident wave.

Hence the bridge constructed in this way is not broadband, instead only working ideally

for a single frequency.

From repeating this process at the right boundary for displacement potentials in

the bulk,

φ(t) = Cte
i[kx−ωt]−kαRz, (4.2.18)

ψ(t) = Dte
i[kx−ωt]−kβRz, (4.2.19)

and in the bridges the displacements have the same transmitted forms (4.1.74, 4.1.75)

and reflected forms, (4.1.76, 4.1.77) as for the bulk wave bridges. Then as before the
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displacement and stress matching yields,

ik
(
Cte

−kαRz − iβRDte
−kβRz

)
= Ci + Cr, (4.2.20)

ik
(
iαRCte

−kαRz +Dte
−kβRz

)
= Di +Dr, (4.2.21)

µk2
(
(β2

R − 2α2
R − 1)Cte

−kαRz + 2iβRDte
−kβRz

)
= iµk

c2
1

c2
2

γS(Ci − Cr), (4.2.22)

µk2
(
−2iαRCte

−kαRz − (1 + β2
R)Dte

−kβRz
)

= iµk
c1

c2

γM(Di −Dr). (4.2.23)

which if the transmitted wave is a Rayleigh wave again allows the use of the classical

surface relation for the displacement potentials (2.2.22). This leads to the relations,

ik

(
e−kαRz − 1 + β2

R

2
e−kβRz

)
Ct = Ci + Cr, (4.2.24)

ik

(
iαRe

−kαRz − i 2αR
1 + β2

R

e−kβRz
)
Ct = Di +Dr, (4.2.25)

ik
(
(2α2

R + 1− β2
R)e−kαRz − (1 + β2

R)e−kβRz
)
Ct =

c2
1

c2
2

γS(Ci − Cr), (4.2.26)

ik
(
2iαRe

−kαRz − 2iαRe
−kβRz

)
Ct =

c1

c2

γM(Di −Dr). (4.2.27)

Again solve these to produce reflection coefficients,

Cr
Ci

=
γR − 1

γR + 1
,

Dr

Di

=
1− γR
1 + γR

, (4.2.28)

and transmission coefficients,

Ct
Ci

=
2ik(

e−kαRz − 1+β2
R

2
e−kβRz

) γR
1 + γR

,
Dt

Di

=
2ik(

e−kβRz − 1+β2
R

2
e−kαRz

) 1

1 + γR
.

(4.2.29)

Since the aim is to not cause any wave conversion, there can be no phase difference

between the two bridges. In this case the overall transmission from the right boundary

will be of the form,

Ct
Ai

=
Dt

Bi

=
4γR

(1 + γR)2
, (4.2.30)
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which is identical to the form studied previously for the membrane-string bridge (3.1.45).

Importantly, both the φ and ψ have the same reduction in amplitude so the transmit-

ted wave remains of Rayleigh form. Furthermore, on considering the displacements in

the system the successive reflections and transmissions from the system become of the

form studied previously (3.1.46, 3.1.47), with Γ replaced with γR.

4.2.2 Rayleigh Bridge Construction

Initially it may seem that despite the dependence on the wavenumber of the incident

wave and depth of each bridge for the bridge parameters γM and γS, the construction

of a bridge for this system is straightforward. However, on closer investigation of

the requirements of the wave parameters it is evident that at certain depths it is not

possible to construct bridges with the required parameters. In what follows, since

perfect bridging is most desirable, consider only the case where γR=1.

From Fig. 4.14a there is a small range of depths for which γS values must be

negative. Physically, however, γS must be positive and so it is not possible to construct

bridges at these depths. This means that unlike all previous cases the bridge separation

is not arbitrary.

First it must be determined whether the bridge at the surface of the half plane

should consist of a membrane or sheet. In Fig. 4.14b the bridging requirement for a

membrane at z = 0 is γM = 0, due to the free surface condition of the half plane. It is

therefore not necessary to have a membrane at the surface for bridging to occur, so at

z = 0 there will be a sheet with,

γS = 4
c2

2

c2
1

(
1− c2

2

c2
1

)
. (4.2.31)

As the depth of the bridges increase, the required values of the bridge parameters γM
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Figure 4.14: Required values of γM and γS for bridging a Rayleigh wave of wavenum-

ber k at a depth of z for a bulk material with Poisson Ratio ν = 0.4 and bridging

parameter γR = 1.

and γS tend to fixed values. These are, as kz →∞,

γS → 2
c2

2

c2
1

, γM →
c2

c1

(1 + β2
R), (4.2.32)

which are both positive for any choice of material parameters. Thus at an infinite

depth of any bulk material it is possible to construct bridges. Therefore, the difficulty

of constructing a bridge while avoiding negative parameters is strictly confined to

the region visible in Fig. 4.14a. This can be seen more generally by considering the

behaviour of γR (4.2.14). From this definition γM is positive for all positive values of

z, regardless of material parameters, while γS = 0 when,

kz =
1

αR − βR
ln

∣∣∣∣21 + α2
R

1 + β2
R

− 1

∣∣∣∣ . (4.2.33)

and has a singularity at,

kz =
1

αR − βR
ln

∣∣∣∣ 2

1 + β2
R

∣∣∣∣ , (4.2.34)

98



4.2. ELASTIC SURFACE WAVE BRIDGING

Between these two points γS must be negative and is positive at all other depths. The

smallest value of l results from ‘sandwiching’ this negative region with two sheets. This

gives an absolute limit on the size of l as,

l >
λ

2π

1

αR − βR
ln

∣∣∣∣α2
R +

1− β2
R

2

∣∣∣∣ , (4.2.35)

If the bridges are constructed such that the sheets are placed at depths of z = nl, and

the membranes at z = (n + 1/2)l, n ∈ Z then this condition gives inequalities for the

location of the sheets either side of the negative region,

knll <
1

αR − βR
ln

∣∣∣∣ 2

1 + β2
R

∣∣∣∣ (4.2.36)

k(nl + 1)l >
1

αR − βR
ln

∣∣∣∣21 + α2
R

1 + β2
R

− 1

∣∣∣∣ (4.2.37)

where nl ∈ Z is defined as being one greater than the number of sheets before the

negative region. This can be solved to produce,

nl ≤
ln
∣∣∣ 2

1+β2
R

∣∣∣
ln
∣∣∣α2

R +
1−β2

R

2

∣∣∣ (4.2.38)

which is greater than 1 for all possible system parameters. To maximise the number of

bridges take the above inequality (4.2.38) to be an equality. Then the smallest possible

l is when,

l

λ
=

1

2π(nl + 1)

1

αR − βR
ln

∣∣∣∣21 + α2
R

1 + β2
R

− 1

∣∣∣∣ . (4.2.39)

The homogenisation used to model the bridge is only valid when the separation between

the layers of bridges is much less than the wavelength of the incident wave. To see if

the homogenisation will remain valid the smallest possible value of l/λ is taken from

(4.2.39) and plotted in Fig. 4.15 for the full possible range of Poisson ratios.

In Fig. 4.15 there is a discontinuous ‘stepped’ behaviour coming from nl being

strictly an integer. From the plot it is visible that l/λ . 0.12 and for smaller Poisson
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Figure 4.15: The smallest possible values of l/λ from (4.2.39) possible for a bridge

for Rayleigh waves with γR = 1 in a bulk material with Poisson ratio ν

ratios decreases to 0. Therefore this method of bridging will be more valid for more

easily compressible materials. However, the previous treatment for the membrane in

§3.2.3 shows how a periodic forcing can be close to the homogenised result even for l/λ

values of 0.1, which would make this bridge valid for all but the most incompressible

Poisson ratios.

4.2.3 Rayleigh Bridge Conclusion

In this section the previous bridge construction for bulk waves has been used to bridge

a propagating surface wave. While the formulation of the problem and the resulting

coefficients for the bridge appear to have a similar form to those produced by the bulk

systems, the presence of the surface and form of the wave makes the actual bridging

significantly different.

Unlike the previous systems, since this system is restricted to Rayleigh waves only,

there is only one wave type and one corresponding bridging parameter, γR. Like the
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previous systems, when this parameter is equal to 1 the system will bridge perfectly

and reproduce the incident wave pattern on the other side of the gap as a transmitted

wave with no reflections.

However, this bridging parameter determines two other parameters, γM and γS,

both of which correspond to one bridge type. These bridge parameters also have

a dependence on the depth of the bridge and the wavelength of the incident wave.

While it would be simple to tune bridges depending on their depth, the wavelength

requirement means this bridge type cannot ever be broadband.

Also unlike the previous systems there is not an arbitrary choice in the spacing

of the bridges. To ensure that the bridges can be constructed the individual bridge

components must take the values which satisfy (4.2.13). However there is a range of

γS values which must be negative. No bridge can be physically constructed with these

values so the spacing must be set that all of the longitudinal bridges are at depths

which correspond to a positive γS.

Finally then, it is possible to construct a periodic bridge which can perfectly trans-

mit a normally incident Rayleigh wave across a gap. To satisfy the stress free surface,

longitudinal bridges are constructed at nl and shear bridges at (n + 1/2)l, with l and

the bridge material parameters specified by (4.2.39) and (4.2.14) respectively. Such a

construction will lead to a sufficiently small l/λ so that the homogenisation procedure

detailed earlier remains valid and to a high degree of accuracy the wave form will be

transmitted.
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4.3 Linear Elasticity Bridging Conclusion

In this chapter the same type of bridge construction has been used on two different

types of waves, linearly elastic bulk waves and Rayleigh waves. Both of these wave

types have conditions which lead to identical incidence and transmission, making it

appear to an outside observer that there is no gap in the material. This has multiple

real world uses.

The requirements for so called perfect bridging are very different for both bridge

types. are however very different. To ideally bridge both types of bulk waves is only pos-

sible for normal incidence and requires bridging parameters of γM = γS = 1. However

to bridge a Rayleigh wave requires both of these parameters to have a strict dependence

on depth and wavelength meaning that the Rayleigh bridge is not broadband.

As the depth of the Rayleigh bridge increases the bridging parameters γM and γS

tend to constant values which depend solely on the properties of the bulk. However to

have both of these constant values tend to 1 as required for bulk bridging requires

2
c2

2

c2
1

=
c2

c1

(1 + β2
R) = 1, (4.3.1)

which no material can satisfy. To bridge shear waves only the requirement γM = 1

leads to a material with c2/c1 ≈ 0.364, and equivalently the requirement γS = 1

for longitudinal waves leads to c2/c1 = 1/
√

2. While both of these are theoretically

achievable by conventional materials, the longitudinal requirement is only possible in

the limit of an ideal compressibility. As such it is possible to arbitrarily bridge either

bulk waves or Rayleigh waves with this bridge but not both.
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CHAPTER 5

Rod-Like Resonator Metasurface

In this chapter the behaviour of waves on the surface of a linearly elastic half plane

with vertical rod-like resonators is considered. A full unimodal solution of this system

has already been given by Colquitt et al. [25]. The aim of this chapter is to attempt

to replicate these results, making use of the asymptotic model for Rayleigh waves [63]

detailed in §2.2.3. While the results will not be a perfect match to those produced by

full unimodal analysis it will be possible to produce an explicit dispersion relation and

more easily characterise the key wave behaviours. Some of this work has been adapted

and published [39] with additional discussion of similar structures.

This chapter will be organised as follows: First the asymptotic model for forcing

at the surface of a half-plane will be applied to this system, leading to an approximate

first mode dispersion relation. This dispersion relation will be compared with the

full unimodal result from Colquitt et al. [25]. Then the same model will be used

without homogenising the forcing at the boundary, producing a dispersion relation

which accounts for higher order mode behaviour. This dispersion relation will then

be used to investigate the effect different types of forcing profiles have on the overall

behaviour of the system, which first mode analysis cannot account for.
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5.1 Asymptotic Analysis

This section makes use of a linearly elastic half plane with vertical resonators at the

surface. On making use of the asymptotic model introduced in §2.2.3 the half plane

has propagating on it a travelling surface wave of angular frequency ω and wavenumber

k with displacement potentials of the form (2.2.24),

φ = Aφ e
i[kx−ωt]−kαRz, ψ = Aψ e

i[kx−ωt]−kβRz, (5.1.1)

where the vertical and horizontal displacements are defined by (2.2.4) and along the

surface z = 0 have the relations (2.2.22). Hence the wave amplitudes are related by,

Aψ = −i 2αR
1 + β2

R

Aφ, (5.1.2)

leading to displacements at the surface,

u1 = ik
1− β2

R

2
Aφ, u3 = kαR

1− β2
R

1 + β2
R

Aφ. (5.1.3)

This wave is then incident upon a region where the surface of the half-space is coated

with periodically arranged vertical resonators, with a uniform spacing l. Assume that

these resonators are of uniform height L and diameter hr, as shown in Fig. 5.1 where

hr � l. These resonators are modeled as rods such that they each have the governing

equation (2.1.5), which if the resonators are arranged vertically becomes,

Er
∂2ur
∂z2

= ρr
∂2ur
∂t2

, (5.1.4)

and using the boundary condition (2.1.6), these rods have boundary conditions,

−πh
2
r

4
Er

∂u3

∂z
|z=0 = V (x, y, t), (5.1.5)

∂u3

∂z
|z=L = 0, (5.1.6)
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Figure 5.1: An array of rod-like resonators of length L and diameter hr periodically

attached with spacing l to the surface of a semi-infinite linearly elastic half space.

where V (x, y, t) is the vertical force on the half plane caused by a single rod and hr

is the diameter of each rod, assuming that they are cylindrical. When surface waves

are dominant, the governing equation for a surface wave on a half plane with vertical

forcing is (2.2.23) subject to the surface boundary condition (2.2.26) at z = 0. In this

system the forcing comes from an infinite number of periodically arranged rods, each

with a point force taken from (5.1.5). Therefore the boundary condition (2.2.26) can

be taken as,

∂2φ

∂x2
− 1

c2
R

∂2φ

∂t2
=

1 + β2
R

2µB
V δ(l)(x)δ(l)(y). (5.1.7)

It will be assumed that the solutions are time harmonic with fixed frequency ω.

Then the solution for waves in the rod is given by,

ur = Are
i[Kz−ωt] +Bre

−i[Kz+ωt], (5.1.8)

where K is determined by the longitudinal dispersion relation (2.1.8) and Ar and Br

are constants. Substituting into the free boundary condition (5.1.6) gives the rod

displacement as,

ur = Are
i[Kz−ωt] + Are

i(2KL)e−i[Kz+ωt], (5.1.9)
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and on assuming that

V (x, y, t) = V ei[kx−ωt], (5.1.10)

so use the boundary conditions at z = 0 to obtain,

Ar(1 + ei(2KL)) = kαR
1− β2

R

1 + β2
R

Aφ, (5.1.11)

−πh
2
r

4
ErAr(1− ei(2KL)) = V. (5.1.12)

On combining these,

V =
πh2

r

4
Er

ω

cr
kαR

1− β2
R

1 + β2
R

tan

(
ωL

cr

)
Aφ. (5.1.13)

Then, making use of the homogenisation scheme in §2.3 to remove the delta functions,

the boundary condition becomes,

∂2φ

∂x2
− 1

c2
R

∂2φ

∂t2
=

1 + β2
R

2l2µB
V ei[kx−ωt], (5.1.14)

which gives on substitution of the assumed wave solution,(
k2 − ω2

c2
R

)
= −1− β2

R

2l2µB

πh2
r

4
Er

ω

cr
kαR tan

(
ωL

cr

)
. (5.1.15)

Then, define a resonator variable Υ by,

Υ(ω) = −αR
1− β2

R

2l2µB

πh2
r

4
Er

ω

cr
tan

(
ωL

cr

)
, (5.1.16)

so on substitution the explicit dispersion relation becomes,

k =
Υ(ω)

2
±

√(
Υ(ω)

2

)2

+
ω2

c2
R

, (5.1.17)

which is plotted in Fig. 5.2 using the material parameters detailed in Table 5.1 alongside

the full unimodal solution for the dispersion relation from Colquitt et al. which is given

by,

4
k2c2

2

ω2

√
k2c2

2

ω2
− c2

2

c2
1

√
k2c2

2

ω2
− 1−

(
2
k2c2

2

ω2
− 1

)2

=

√
k2c2

2

ω2
− c2

2

c2
1

πh2
rEr c2

4l2µ cr
tan

(
ωL

cr

)
.

(5.1.18)
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Table 5.1: The numerical system parameter values for the rod resonators and half-

space used to produce the dispersion relation curves of Figs. 5.2 and 5.3.

Symbol Definition Value

l Lattice spacing 2 m

ρ Half-plane density 13000 kg m−3

µ Half-plane shear modulus 325 MPa

λ Half-plane first Lamè parameter 702 MPa

L Resonator length 14 m

hr Resonator diameter 0.3m

ρr Resonator density 450 kg m−3

Er Resonator Young Modulus 1.70 GPa

In the plot in Fig. 5.2, it is difficult to tell where the full unimodal and asymptotic

solutions differ demonstrating that the asymptotics are an excellent approximation for

the full unimodal solution. To show the small divergences, more closely examine the

region of the plot around the asymptotes of the graph, where the difference between

the full unimodal solution and the asymptotic solution should be greatest.

The regions of greatest divergence from Fig. 5.3 show a measurable error in k of

0.04 m−1 at the first asymptote and 0.06 m−1 at the second leading to relative errors

of around 2.5% and 1.4% respectively. These errors are less than it would be expected

that even an ideal physical system would replicate the dispersion relation. Furthermore,

due to the shallow gradient near the asymptotes, the differences between k values are

much greater than the differences between the predicted values of wave frequency or

speed. As such the asymptotic model used can produce an accurate approximation for

the physical system described.
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Figure 5.2: The dispersion curves for surface waves on the half plane coated with

rod-like resonators, using physical parameters from Table 5.1. The solid blue lines show

the dispersion curve of the full unimodal solution from (5.1.18) and the solid black lines

the dispersion curve of the asymptotic solution from (5.1.17). The dashed orange and

purple lines correspond to the shear and Rayleigh wave lines respectively.

5.2 Fourier Series Solutions

To verify the use of the homogenisation scheme in both the full unimodal and asymp-

totic cases, make use of the asymptotic formulation again but instead solve for the full

boundary conditions without using the homogenisation procedure.

5.2.1 Delta Function Fourier Series

To solve the same system but with full boundary conditions, substitute the Fourier se-

ries representation of the delta function (2.3.5) into the asymptotic boundary condition
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(a) First asymptote.
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Figure 5.3: The dispersion curves near the asymptotes for surface waves on the half

plane coated with rod-like resonators, using physical parameters from Table 5.1. The

solid blue lines show the dispersion curve of the full unimodal solution from (5.1.18)

and the solid black lines the dispersion curve of the asymptotic solution from (5.1.17).

The dashed orange and purple lines correspond to the shear and Rayleigh wave lines

respectively.

(5.1.7),

∂2φ

∂x2
+
∂2φ

∂y2
− 1

c2
R

∂2φ

∂t2
=

1 + β2
R

2µBl2
V

∞∑
m,n=−∞

ei(
nπx
l

+mπy
l ). (5.2.1)

Since the surface is no longer being homogenised, the dispersion relation may depend

on the orientation of the waves. Assume that the form of φ along the surface is given

by,

φ = ei[k(x cos θ+y sin θ)−ωt]
∞∑

m,n=−∞

Amne
i(nπxl +mπy

l ) (5.2.2)

Assume also that since these are both Fourier series, and a Fourier series has a unique

representation, each term in the summation of φ directly corresponds to a term in the

delta series summations. Thus, define each mnth term as,

φmn = Amne
i[k(x cos θ+y sin θ)−ωt]ei(

nπx
l

+mπy
l ), (5.2.3)
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where m,n ∈ Z. Then on substituting into the original equation,

(
ω2

c2
R

−
((

k cos θ +
nπ

l

)2

+
(
k sin θ +

mπ

l

)2
))

Amne
i[kx−ωt] =

1 + β2
R

2µBl2
V, (5.2.4)

and making use of the previously obtained solution for waves in the rods (5.1.12),

V (x, y, t) = −πh
2
r

4
Er

ω

cr
u3 tan

(
ωL

cr

)
ei[k(x cos θ+y sin θ)−ωt], (5.2.5)

and so by taking the 0th term in the summation, an expression for Amn can be obtained

in terms of A00,

Amn = A00

ω2

c2R
− k2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 . (5.2.6)

Suppose also that derivatives are taken in the direction of wave propagation (denoted

by x̂mn) for each individual component of the summation, so that the relation for how

the waves decay in the bulk is given by,

∂2φmn
∂z2

+ α2
R

∂2φ2

∂x̂2
mn

= 0 (5.2.7)

and the surface relation between potentials at z = 0 given as,

∂ψmn
∂x̂mn

= − 2

1 + β2
R

∂φmn
∂z

, (5.2.8)

From this it follows that the full form of the φmn terms are,

φmn = Amne
i[kmnx̂−ωt]−kmnαRz, (5.2.9)

where,

kmn =

√(
k cos θ +

nπ

l

)2

+
(
k sin θ +

mπ

l

)2

. (5.2.10)

Along the surface, using the displacement potential relations (2.2.22) then,

ψmn = −i 2αR
1 + β2

R

φmn. (5.2.11)
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The vertical displacement at the base of each rod is given by,

u3 =
∞∑

m,n=−∞

∂φmn
∂z

+
∂ψmn
∂x̂mn

, (5.2.12)

=
∞∑

m,n=−∞

−kmnαRφmn + ikmnψmn, (5.2.13)

=
∞∑

m,n=−∞

kmnαR

(
1− β2

R

1 + β2
R

)
Amn, (5.2.14)

and using the expression for Amn from above,

u3 = αR

(
1− β2

R

1 + β2
R

)
A00

∞∑
m,n=−∞

(
ω2

c2R
− k2

)√(
k cos θ + nπ

l

)2
+
(
k sin θ + mπ

l

)2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 ,

(5.2.15)

and so substituting this into the 0th term,

(
ω2

c2
R

− k2

)
A00 =

β2
R − 1

2µBl2
πh2

r

4
Er

ω

cr
tan

(
ωL

cr

)
αRA00

∞∑
m,n=−∞

(
ω2

c2R
− k2

)√(
k cos θ + nπ

l

)2
+
(
k sin θ + mπ

l

)2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 , (5.2.16)

from which the asymptotic dispersion relation accounting for the surface structure is,

8µBl2cr
ωEr(1− β2

R)πh2
r

cot

(
ωL

cr

)
=

∞∑
m,n=−∞

√(
k cos θ + nπ

l

)2
+
(
k sin θ + mπ

l

)2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 .

(5.2.17)

Similarly, if the first Fourier coefficient is finite then the vertical displacement is also

finite, or conversely, using the dispersion relation to obtain the wave number for a

given frequency the Fourier series can be obtained from using the value of the vertical

displacement as a boundary condition,

A00 =

(
k2 − ω2

c2
R

)−1
1 + β2

R

2µBl2
πh2

r

4
Er

ω

cr
tan

(
ωL

cr

)
u3. (5.2.18)

If the wave speed is close to the Rayleigh speed and the wavelength of the system

is much greater than l then it is clear that the terms in the summation will quickly
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become negligible. Then, if the new surface wave has speed c = ω/k and wavelength

λ = 2π/k,√(
k cos θ + nπ

l

)2
+
(
k sin θ + mπ

l

)2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2

= − l
π

√(
2l
λ

cos θ + n
)2

+
(

2l
λ

sin θ +m
)2(

2l
λ

cos θ + n
)2

+
(

2l
λ

sin θ +m
)2 −

(
2l
λ

)2 c2

c2R

, (5.2.19)

and making use of the long wave assumption λ� l,√(
k cos θ + nπ

l

)2
+
(
k sin θ + mπ

l

)2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 ' −
l

π
√
m2 + n2

, m or n 6= 0. (5.2.20)

On contrasting this with the result for when m and n both equal 0,√(
k cos θ + nπ

l

)2
+
(
k sin θ + mπ

l

)2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 = − λ

2π
(

1− c
cR

) , m, n = 0 (5.2.21)

it is clear that the first term is much greater than the lower order terms due to the

multiplication of λ
l
. Therefore for any finite number of terms in this dispersion rela-

tion, the lower order terms will act as a small correction to the homogenised solution.

To demonstrate this, the table below shows the numerical solution to the dispersion

relation for an example given ω and different amounts of terms kept in the summation.

n 0 [−1, 1] [−5, 5] [−10, 10]

k 0.679858 0.679830 0.679827 0.679827

Table 5.2: The solutions to partial evaluations of (5.2.17) for given intervals of n with

m = 0, ω = 100, for system parameters from Table 5.1.

In this table, the values of k seem accurate from taking just the first term up to

4 decimal places. This demonstrates how accurate the homogenisation is in this case

and how few additional terms need to be accounted for to produce values with high

degrees of precision.
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However, elementary analysis of the dispersion relation shows that by adding in

the lower order terms, the system cannot have a solution. This is because if ω and k

are finite then when n tends to infinity the series tends to the harmonic series, which

diverges slowly. Since this is due to the behaviour of the delta function, using another

function will most likely remove the divergence from the lower order terms. This will

also have the added advantage of making the system more physically realisable as the

delta function is an ideal modelling of a point force and cannot exist in a physical

system where all objects have a finite thickness to distribute the force over.

If it is assumed that whatever forcing used is also periodic on the same scale as the

resonators then reuse the Fourier series method but instead use arbitrary coefficients.

To model a more realistic forcing than that of the periodic delta functions, suppose that

the periodic rods impart a more realistic ‘smooth’ forcing, represented by a combined

Fourier series of,

∞∑
m,n=−∞

Emn
l2

ei(
nπx
l

+mπy
l ). (5.2.22)

Then the surface boundary condition can be represented as,

∂2φ

∂x2
+
∂2φ

∂y2
− 1

c2
R

∂2φ

∂t2
=

1 + β2
R

2µBl2
V

∞∑
m,n=−∞

Emne
i(nπxl +mπy

l ). (5.2.23)

Assuming the same form of φ as before (5.2.3) and taking the 0th term again yields the

relation between the summation constants as,

Amn = A00
Emn
E00

ω2

c2R
− k2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 . (5.2.24)

which, using the same relation between the displacement potentials along the surface

(5.2.11) then leads to the expression for the displacement along the surface as,

u3 = αR

(
1− β2

R

1 + β2
R

)
A00

∞∑
m,n=−∞

Emn
E00

(
ω2

c2R
− k2

)√(
k + nπ

l

)2
+
(
mπ
l

)2

ω2

c2R
−
(
k + nπ

l

)2 −
(
mπ
l

)2 . (5.2.25)
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Then on repeating the same process as for the delta function Fourier series substitute

this displacement into the surface boundary condition (5.1.7) and rearrange to produce

the dispersion relation,

8µBl2cr
ωEr(1− β2

R)πh2
r

cot

(
ωL

cr

)
=

∞∑
m,n=−∞

Emn
E00

√(
k cos θ + nπ

l

)2
+
(
k sin θ + mπ

l

)2

ω2

c2R
−
(
k cos θ + nπ

l

)2 −
(
k sin θ + mπ

l

)2 .

(5.2.26)

If the chosen Fourier series converges to a ’smooth’ function, where the forcing

and all derivatives are continuous then each term in the summation for the dispersion

relation will have a reduced magnitude and so in general this series will converge.

5.3 Vertical Rod Metasurface Conclusion

Previous efforts in treating a system of vertical rod-like resonators along the surface

of an elastic half plane have been based on an full unimodal formulation. There have

however been recent developments in an asymptotic method to more easily treat surface

waves by producing a direct wave equation. This method relies on applied stresses or

displacements along the surface and allows complicated systems that produce surface

waves to be solved from a system of equations much simpler than that produced by

the full unimodal method.

Applying the asymptotic method to the system of surface resonators has success-

fully produced a more complete solution than that produced by full unimodal analysis.

Using this method two solutions were obtained, using two different approaches of treat-

ing the effect of the surface resonators. The first of these solutions used homogenisation

of the forcing of the rods into the half plane to obtain a long wave solution. This pro-

duced a quadratic equation in terms of the wave number, k, which could then be simply

solved to produce a simple closed form explicit dispersion relation for wave number in
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5.3. VERTICAL ROD METASURFACE CONCLUSION

terms of angular frequency, ω. It has been shown that graphically the solution obtained

is very close to the full unimodal solution obtained previously.

The second approach treated the forcing as a Fourier series, for which the previous

approach is a specific case where only the first term of the Fourier series is consid-

ered. This approach allows for a full solution of the system much simpler than that

produced by a unimodal formulation, making term by term analysis of the solution

possible. Taking the solution term by term yields a powerful insight into the system,

provides a justification for the previous homogenisation assumption by showing that

if the wavelength is greater than the distance between resonators then the first term

dominates, and also shows effects arising from the geometry of the periodic arrange-

ment, rather than just the resonators. Since the delta function is non analytic the use

of it in the forcing leads to a divergence in the summation. Making the Fourier series

arbitrary allows this method to be applied to any ‘thin’ periodic forcing. Hence this

result can be easily changed to be guided by experimental results to refine the model.

Also importantly, by showing that this simple model can be closely approximated

by a Helmholtz equation, it has been shown that it is possible to construct a repre-

sentative experimental setup for elastic surface waves using a thin elastic membrane.

This is also a significant improvement on a fully elastic half plane experimental setup

and so complicated systems can now be analysed experimentally without needing an

experiment which is expensive and difficult to build and manage.
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CHAPTER 6

Beam-Like Resonator Metasurface

Following the successful treatment of the rod resonator system, again make use of the

asymptotic model to treat a more sophisticated resonator array. Instead of considering

stiff rod-like resonators instead use flexural beams. These more accurately model the

motion of real world arrays along surfaces such as trees under low frequency seismic

excitation.

In this chapter the effect that a periodic array of flexural resonators embedded

into the surface of an elastic half-space has on propagating surface waves is discussed.

In order to better see the effect of the flexural motion, and because in the frequency

ranges considered flexural waves dominate, the longitudinal motion of the resonators

is neglected. The problem being considered in this chapter concerns the effect on a

travelling Rayleigh wave with stresses caused by resonators applied at the surface and

so the asymptotic model from §2.2.3 should be ideal for the investigation which follows.

For completeness, however, the exact solution will also be computed numerically and

used as a comparison to the asymptotic solution as verification. Special attention is

devoted to the effect of various junction conditions joining the beams to the elastic

half-space which arise from considering flexural motion and are not present for the

case of purely compressional resonators.
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This discussion will be organised as follows: The problem formulation is given in

Section 6.1 and sections which follow then each detail the treatment of a different

boundary condition between the resonators and the half-space. Section 6.2 consid-

ers the resonators as simply supported, with the resonators able to freely rotate but

conserve displacements and horizontal stresses. In Section 6.3 the resonators are con-

sidered as ideally attached at the base to rails which can move freely but matches the

bending moment and the gradient at the surface. For the boundary considered in Sec-

tion 6.4 the resonators are considered as ideally attached to the half-space and so all

variables between the resonator and half-space are fully matched. In each section, the

solution obtained from the asymptotic formulation is compared with the full unimodal

solution.

This work has been published in [111] with added computational work demonstrat-

ing the behaviour of the resonances of the system.

6.1 Problem Statement

To start, consider linearly elastic motion on a 3D half-space−∞ < x1 <∞, −∞ < x2 <∞,

0 ≤ x3 <∞ and make use of both the exact formulation and asymptotic model for

Rayleigh waves detailed in §2.2.3. Consider also the motion of a regular infinite array

of identical flexural resonators of length L and cylindrical cross section with diameter

hb that are ideally attached to the surface at z = 0, as shown in Fig. 6.1. Treating

these resonators as classical Euler-Bernoulli beams yields the governing equations for

flexural motion of each beam from (2.1.9) as,

Bb
πh4

b

64

∂4u1

∂z4
= −Mb

∂2u1

∂t2
, (6.1.1)
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l

Lx

z

y

hb

z = 0

Figure 6.1: An array of beam-like resonators of length L and diameter hb periodically

attached with spacing l to the surface of a semi-infinite linearly elastic half space.

with boundary conditions (2.1.12). Suppose also that the ends of the beams at x3 = −L

are not subject to any additional forcing. Then, the boundary conditions at the free

end of the beam are,

∂3ui
∂x3

3

= 0,
∂2ui
∂x2

3

= 0, i = 1, 2, (6.1.2)

and the solution of the above system will depend on the specific boundary condition

chosen for the interface between the half-space and the resonators. In what follows,

adapt and study a range of different boundary conditions, which will be defined and

studied in the sections which follow.

It is also assumed that the beams’ diameter is much less than the separation be-

tween them so approximate each as a point loading, represented by the periodic Dirac

delta function (2.3.1). If it is also assumed that the wavelength of the travelling surface

wave is much greater than the separation between the beams, then the homogenisation

procedure in §2.3 can be used to a reasonable approximation. Therefore at the surface

the load can be distributed as,

∞∑
n,m=−∞

σijδ
(l)(x)δ(l)(y) ≈ 1

l2
σi3, i = 1, 3. (6.1.3)
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Each type of boundary condition treated in this paper will result from the matching

of variables between the resonators and the surface of the half-space at x3 = 0. These

junction conditions are summarised in §A.1.

For sufficiently thin resonators the resistance to bending motion is, typically, much

smaller than the resistance to compression and therefore, in the linear regime, the

flexural and compressional deformations are decoupled at leading order (see, for exam-

ple, [65]). Moreover [25] suggests that, for the case of resonant arrays on thin plates,

the effects of flexural and compressional resonances can be considered independently.

Therefore, in the present paper, we focus on the flexural motion of the resonators and

consider pure bending only such that vertical motion on the surface of the half-space

does not couple to compressional deformation of the resonators. It is however empha-

sised that vertical tractions may arise at the surface of the half-space as a result of

rotations in the flexural resonators [65] and these are taken into account.

6.2 Simply Supported Beams

Begin by considering the resonators as simply supported at the surface of the half-

space. In this system, there is no need to conserve bending angle and there is no

overall bending moment at the coupling. Instead only the horizontal displacement and

the transverse force require matching. The boundary conditions (2.1.12) at the end of

the beam fixed into the half-space are therefore,

u1|z=0 = uH ,

∂2u1

∂z2
|z=0 = 0,

(6.2.1)

and the stress at the end of the beam is,

H(x, y, t) =
πh4

b

64
Bb

∂3u1

∂z3
|z=0, (6.2.2)
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where uH is the horizontal displacement at the surface under the beam and H(x, y, t)

is the horizontal force at the surface of the half-space caused by the resonators.

Solving the beam equation (6.1.1) with these boundary conditions and the free end

conditions (6.1.2) in the usual way yields the relation for horizontal force,

H(x, y, t) = Bb
πh4

b

64
K3uH

cos(KL) cosh(KL)− 1

cosh(KL) sin(KL)− cos(KL) sinh(KL)
, (6.2.3)

where from (2.1.13), K is given by,

K =

(
64MR

Bbπh4
b

) 1
4 √

ω. (6.2.4)

This force is applied as a point force in a regular array. If the size of the overall

array and wavelength of the wave are assumed to be large in comparison with the

distance between the point forces then homogenise these point forces into a continuous

surface stress using the distribution (6.1.3). This stress is given by,

σ31 = H(x, y, t)δ(l)(x)δ(l)(y) (6.2.5)

=
H(x, y, t)

l2
, (6.2.6)

where l is the distance between two beams.

Start with the full unimodal formulation for the system. Taking the surface stresses

in terms of displacement potentials from (2.2.7),

−2i µk2αφ− µk2(1 + β2)ψ =
H(x, y, t)

l2
, (6.2.7)(

(λ+ 2µ)k2α2 − λk2
)
φ− 2iµk2βψ = 0, (6.2.8)

then for ease of manipulation let the surface stress from the beams be expressed by,

σ31 = K3ĤuH , (6.2.9)

and using (2.2.4) and substituting along the surface to find uH ,

uH = k(iφ+ βψ). (6.2.10)
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By substituting from (6.2.3) and solving simultaneously the full unimodal disper-

sion relation for this system is given by,

(
(λ+ 2µ)k2α2 − λk2

) (
−µk2

(
1 + β2

)
− kK3Ĥβ

)
=
(

2 µk2α + kK3Ĥ
) (
−2µk2β

)
.

(6.2.11)

It is clear that in this form this expression will be difficult to manipulate. If the

asymptotic model produces a close approximation which can be used to investigate

the behaviour of the dispersion relation, then this will allow this system to be easily

understood on a more fundamental level than the full unimodal solution can.

Begin by applying the asymptotic model to this system. From (2.2.25) along the

surface,

∂2ψ

∂x2
− 1

c2
R

∂2ψ

∂t2
= −1 + β2

R

2µBl2
H(x, y, t), (6.2.12)

and by combining (2.2.22) and (6.2.10), uH is given by,

uH = −kβR
1− β2

R

1 + β2
R

ψ. (6.2.13)

As in (6.2.9) let H(x, y, t) be denoted by,

H(x, y, t)

l2
= K3ĤuH (6.2.14)

= −kK3ĤβR
1− β2

R

1 + β2
R

ψ, (6.2.15)

and so the dispersion relation is given by,

(
−k2 +

ω2

c2
R

)
ψ = kK3Ĥ βR

1− β2
R

2µB
ψ. (6.2.16)

From the above it follows that the dispersion relation can be given explicitly by

the solution to the quadratic equation,

k2 + kK3Ĥ βR
1− β2

R

2µB
− ω2

c2
R

= 0. (6.2.17)
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This asymptotic solution can also be obtained directly from the full unimodal dispersion

relation obtained earlier by expanding around the Rayleigh solution. If the Rayleigh

condition (2.2.19) is taken in the form R(r) = 0 where,

r =
ω2

c2
2k

2
, (6.2.18)

and

R(r) = (2− r)2 − 4
√

1− r

√
1− c2

2

c2
1

r, (6.2.19)

the one term Taylor expansion of this around the Rayleigh line can then be written,

R(r) ≈
(
ω2

c2
2k

2
− c2

R

c2
2

)
R′
(
c2
R

c2
2

)
= −2

(
1− ω2

c2
Rk

2

)
B. (6.2.20)

By expanding the full unimodal dispersion relation, (6.2.11), it can be shown that for

the simply supported beams,

R(r) =
K3Ĥ

µk
β(1− β2), (6.2.21)

and so,

k2 − ω2

c2
R

= −kK
3Ĥ

2µB
β(1− β2), (6.2.22)

which is identical to the asymptotic dispersion relation (6.2.17) given that β = βR.

It is clear that the asymptotic dispersion relation (6.2.17) is much simpler than

the full unimodal one obtained previously (6.2.11). Most importantly, the dispersion

relation can be given for k as an explicit function of ω and, therefore, manipulated

with greater ease. To see if this dispersion relation is useful, compare it with the exact

relation and see how the two sets of results compare. This is shown in Fig. 6.2 using

the parameter values in Table 6.1.

Due to the choice of system parameters, for each of the demonstration figures,

Figs. 6.2–6.5, the homogenisation from (6.1.3) is only valid when the wavelength is
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Table 6.1: The numerical system parameters for the beam resonator and half-space

used to produce the dispersion curves shown in Figs. 6.2– 6.5.

Symbol Definition Value

l Lattice spacing 2 m

ρ Half-plane density 13000 kg m−3

µ Half-plane shear modulus 325 MPa

λ Half-plane first Lamè parameter 702 MPa

L Resonator length 14 m

hb Resonator diameter 0.3m

ρb Resonator density 450 kg m−3

Bb Resonator Bending Stiffness 1.70 GPa

much greater than 2 metres, or alternately when k � πm−1. Also, while the asymptotic

method gives a solution which is valid for all k, in the full unimodal system β will

become purely imaginary when ω
k
> c2 and so no propagating solution can exist in this

region of the plot.

This plot shows how closely the asymptotic method matches with the full unimodal

result, particularly near the Rayleigh line and for lower frequency waves. Due to the

asymptotes, this plot also shows that the asymptotic model can be used to model a

dispersion relation and remain accurate even for large stresses. The regions around

the asymptotes also produce an effective band gap, which are ranges of frequencies

for which a wave cannot propagate through the system. Such band gaps have many

practical real-world applications, as they can filter a wide range of wave frequencies.
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Figure 6.2: The dispersion curves for surface waves on the half-space coated with

simply supported beam-like resonators, using physical parameters from Table 6.1. The

solid blue lines show the dispersion curve of the full unimodal solution from (6.2.11)

and the solid black lines the dispersion curve of the asymptotic solution from (6.2.17).

The dashed green, orange and purple lines correspond to the longitudinal, shear and

Rayleigh wave lines respectively.

6.3 Beams on a Rail

Suppose that the resonators are held at z = 0 to a rail parallel to the surface of the

half-space, which allows the base of the beam to move freely but changes the bending

angle of the beam depending on the gradient of the surface. This allows the beam

to impart a bending moment on the half-space but no horizontal forcing. There is

therefore no need to conserve displacements and the horizontal stress must equal zero.

125



CHAPTER 6. BEAM-LIKE RESONATOR METASURFACE

This then leads to the boundary conditions (2.1.12) becoming,

∂u1

∂z
|z=0 = uV,x,

Bb
πh4

b

64

∂2u1

∂z2
|z=0 = −πh

4
b

64

∂σ33

∂x
|z=0,

∂3u1

∂z3
|z=0 = 0,

(6.3.1)

and the vertical stress at the end of the beam is given by,

V (x, y, t) =
πh2

b

4
σ33|z=0, (6.3.2)

where V (x, y, t) is the vertical force from the beams into the half-space and uV,x is the

gradient of the vertical displacement along the surface. Whilst this junction condition

may initially appear somewhat counter-intuitive, it can be understood in terms of

so-called ‘gyroscopic hinges’ [86].

Solving these in the usual way along with the free end conditions (6.1.2) and the

beam equation (6.1.1) gives the vertical force,

V (x, y, t) = i
K

k

πh2
b

4
Bb uV,x

1− cos(KL) cosh(KL)

cosh(KL) sin(KL) + cos(KL) sinh(KL)
(6.3.3)

Again start with the full unimodal treatment. As with H(x, y, t) previously, use the

force distribution (6.1.3) and define V̂ such that,

V (x, y, t)

l2
= i

K

k
V̂ uV,x, (6.3.4)

where uV,x be expressed in displacement potentials from (2.2.4) as,

uV,x = −ik2αφ− k2ψ. (6.3.5)

Then, from (2.2.7) the surface stresses on the half-space are,

−2i µk2αφ− µk2(1 + β2)ψ = 0, (6.3.6)(
(λ+ 2µ)k2α2 − λk2

)
φ− 2i µk2βψ = −KV̂ (−kαφ+ ikψ), (6.3.7)
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for which, rearranging and solving simultaneously leads to the full unimodal dispersion

relation,

(
(λ+ 2µ)k2α2 − λk2 − kKV̂ α

) (
−µk2

(
1 + β2

))
=
(
2 µk2α

) (
−2µk2β + kKV̂

)
(6.3.8)

As could be expected, this dispersion relation is very similar to the one obtained for

the simply supported case. As before, it is difficult to manipulate and interpret so, to

understand the system on a more fundamental level, again use the asymptotic model

to obtain a simpler approximate system solution.

To apply the asymptotic model to this system, where there is only a vertical stress,

apply (2.2.26) along the surface of the half-space,

∂2φ

∂x2
− 1

c2
R

∂2φ

∂t2
=

1 + β2
R

2µB
V (x, y, t), (6.3.9)

or equivalently, using the surface potential relation (2.2.22) and making the assumption

of a harmonic wave to make this in terms of ψ,

∂2ψ

∂x2
− 1

c2
R

∂2ψ

∂t2
= −i αR

µB
V (x, y, t). (6.3.10)

Combining (2.2.22) with (6.3.5), uV,x is given by,

uV,x = −k2 1− β2
R

2
ψ. (6.3.11)

Then by taking V̂ from (6.3.4) and substituting into the surface boundary condition,

(
−k2 +

ω

c2
R

)
ψ = −k αR

µB
KV̂

1− β2
R

2
ψ, (6.3.12)

leading to the asymptotic dispersion relation,

k2 − k αR
µB

KV̂
1− β2

R

2
− ω2

c2
R

= 0. (6.3.13)
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In the same way as before that the asymptotic dispersion relation can be obtained

by expressing the full unimodal dispersion relation (6.3.8) in terms of R(r)

R(r) = −KV̂
µk

α(1− β2), (6.3.14)

and using the single term Taylor expansion of R(r) around the Rayleigh solution, for

a near-Rayleigh wave speed,

k2 − ω2

c2
R

= k
KV̂

2µB
α(1− β2), (6.3.15)

which as with the simply supported case gives the asymptotic dispersion relation

(6.3.13) if α = αR and β = βR.

As with the simply supported case, the dispersion relation from the asymptotic

model is much simpler than the one produced by the full unimodal analysis. It is

again quadratic and so can be expressed to explicitly give k in terms of ω. To examine

how well the asymptotic model approximates the full unimodal solution, plot the two

solutions in Fig. 6.3, using the system parameters from Table 6.1.

This plot shows how again the asymptotic model reproduces the main features of

the full unimodal solution, particularly near the Rayleigh line. For all of the modes the

asymptotic model predicts the asymptote, the overall shape of the dispersion relation

and the existence of a large band gap for each mode.

6.4 Fully Matched Beams

Full matching of the beams is a more complete coupling between the half-space and the

resonators, ensuring that all relevant displacements, gradients, moments and stresses

at the coupling between the two media are conserved. Predictably this also leads to

a more involved solution for both the beam motion solution and the surface wave
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Figure 6.3: The dispersion curves for surface waves on the half-space coated with

beam-like resonators supported by rails, using physical parameters from Table 6.1.

The solid blue lines show the dispersion curve of the full unimodal solution from (6.3.8)

and the solid black lines the dispersion curve of the asymptotic solution from (6.3.13).

The dashed green, orange and purple lines correspond to the longitudinal, shear and

Rayleigh wave lines respectively.
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dispersion relation. For simplicity, we also assume an ideal contact between the beams

and half-space, neglecting any local contact strain effects.

Since the beam itself is unchanged, the governing equation for the bulk of the beam

from (6.1.1) and the boundary conditions for the free end from (6.1.2) are the same

as those for the previous two cases. Matching at z = 0 gives the boundary conditions

(2.1.12) for the fully matched beams as,

u1|z=0 = uH ,

∂u1

∂z
|z=0 = uV,x,

Bb
πh4

b

64

∂2u1

∂z2
|z=0 = −πh

4
b

64

∂σ33

∂x
|z=0,

(6.4.1)

and the stresses at the base of the beam as given by,

H(x, y, t) =
πh4

b

64
Bb

∂3u1

∂z3
|z=0,

V (x, y, t) =
πh2

b

4
σ33|z=0.

(6.4.2)

Solving these conditions in the usual way along with (6.1.1,6.1.2) gives,

H(x, y, t) =
πh4

b

64
BbK

2(ξuV,x +KηuH),

V (x, y, t) = i
πh2

b

4
Bb
K

k
(ζuV,x +KξuH),

(6.4.3)

where,

ξ =
sin(KL) sinh(KL)

cos(KL) cosh(KL) + 1
, (6.4.4)

η =
cosh(KL) sin(KL) + cos(KL) sinh(KL)

cos(KL) cosh(KL) + 1
, (6.4.5)

ζ =
cosh(KL) sin(KL)− cos(KL) sinh(KL)

cos(KL) cosh(KL) + 1
. (6.4.6)

As in the previous sections, begin with the full unimodal treatment and then use the

asymptotic model for comparison.

Unlike the cases discussed previously, the full unimodal solution will not intersect

with the asymptotic solution at the Rayleigh line. To do so, the beam must behave
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as though the coupled end with the half-space is free. This imposes requirements for

the displacement and gradient at the base of the beam but these do not match with

the required displacement and gradient for the half-space. This will not affect the full

unimodal solution but will affect the accuracy of the asymptotic solution since the

assumption that stresses tend to zero at the Rayleigh line is no longer valid.

In the same approach as before begin with the full unimodal treatment. From

(2.2.7) and using the distribution (6.1.3), in terms of the two displacement potentials,

the surface stresses on the half-space are,

−2i µk2αφ− µk2(1 + β2)ψ =
H(x, y, t)

l2
,(

(λ+ 2µ)k2α2 − λk2
)
φ− 2i µk2βψ =

V (x, y, t)

l2
.

(6.4.7)

Let uH be expressed in displacement potentials as from (6.2.10) and uV,x as from (6.3.5).

Then by substituting in the stresses from (6.4.3),

(
2µk2α +

πh4
b

64l2
Bbk

(
K3η −K2kαξ

))(
2µk2β +

πh2
b

4l2
Bb

(
K2βξ −Kkζ

))
=

(
µk2

(
1 + β2

)
+
πh4

b

64l2
Bbk

(
K3βη −K2kξ

))
(

(λ+ 2µ)k2α2 − λk2 +
πh2

b

4l2
Bb

(
K2ξ −Kkαζ

))
(6.4.8)

As expected, this dispersion relation is significantly longer and more complicated than

those obtained for the previous systems, and correspondingly more difficult to inter-

pret. Again then, attempt to produce an accurate approximation using the asymptotic

model.

The asymptotic model in Kaplunov and Prikazchikov [63] consists of two relations

which each use a single surface stress to produce a wave. Since this system has two

stresses, one of which is perpendicular and the other of which is parallel to the surface,

the two relations must be combined to produce one wave from two stresses.
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To do this, assume that each stress produces a wave and that these waves have the

same wavelength and frequency, effectively behaving as one wave. These waves will

each have a pair of displacement potentials, ψ1 and φ1, and ψ2 and φ2 such that the

overall displacement potentials φ and ψ are given by,

φ = φ1 + φ2,

ψ = ψ1 + ψ2.

(6.4.9)

Each pair of potentials then corresponds to one of the surface relations from (2.2.25,

6.3.10),

∂2ψ1

∂z2
− 1

c2
R

∂2ψ1

∂t2
= −1 + β2

R

2µBl2
H(x, y, t), (6.4.10)

∂2ψ2

∂z2
− 1

c2
R

∂2ψ2

∂t2
= −i αR

µBl2
V (x, y, t), (6.4.11)

On assuming that the wave potentials are harmonic functions in the form (2.2.24), this

manipulation can lead to a general expression for a multi stress system,

∂2ψ

∂z2
− 1

c2
R

∂2ψ

∂t2
= −1 + β2

R

2µB
σ31 − i

αR
µB

σ33. (6.4.12)

Taking uH from (6.2.13) and uV,x from (6.3.11) then on substitution of the stresses

from (6.4.3),

k2 − ω2

c2
R

=
αR
µBl2

πh2
b

4
Bb
K

k

(
k2 1− β2

R

2
ζ +KkβR

1− β2
R

1 + β2
R

ξ

)
− 1 + β2

R

2µBl2
πh4

b

64
BbK

2

(
k2 1− β2

R

2
ξ +KkβR

1− β2
R

1 + β2
R

η

)
,

(6.4.13)

which can be written as a quadratic equation in terms of k,

0 = k2

(
1 +

1 + β2
R

2µBl2
πh4

b

64
BbK

2 1− β2
R

2
ξ

)
− k

(
αR
µBl2

πh2
b

4
BbK

1− β2
R

2
ζ − 1 + β2

R

2µBl2
πh4

b

64
BbK

3βR
1− β2

R

1 + β2
R

η

)
−
(
ω2

c2
R

+
αR
µBl2

πh2
b

4
BbK

2βR
1− β2

R

1 + β2
R

ξ

)
.

(6.4.14)

As with the previous cases, this is a quadratic equation so the dispersion relation

can be expressed explicitly in terms of k. While more difficult to interpret than the
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simply supported asymptotic solution, it is still a great improvement on the full uni-

modal dispersion relation. To determine if this solution is valid, again compare the

asymptotic and full unimodal solutions.
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Figure 6.4: The dispersion curves for surface waves on the half-space coated with

fully matched beam-like resonators, using physical parameters from Table 6.1. The

solid blue lines show the dispersion curve of the full unimodal solution from (6.4.8)

and the solid black lines the dispersion curve of the asymptotic solution from (6.4.13).

The dashed green, orange and purple lines correspond to the longitudinal, shear and

Rayleigh wave lines respectively.

From Fig. 6.4 the asymptotic model predicts the main features of the dispersion

curves, including predicting the existence and general shape of the solution branch for

each quasi periodic mode and also giving a close approximation of the intersections with

the Rayleigh line. The key feature of the plot, and one present in both the asymptotic

and full unimodal results, is the band gaps. This system is notable for the large range

of frequencies which do not have a corresponding real wave number solution and will,
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therefore, not propagate through the system. While it is difficult to locate where the

band gaps are from the full unimodal dispersion relation, they can be approximated

by the intersections between the asymptotic model and the shear wave line.

This system also highlights some of the limitations of this model. As previously

mentioned and shown on Fig. 6.4, unlike for a single stress the asymptotics and the

full unimodal solution are not guaranteed to intersect at the Rayleigh line. This is due

to the way the stresses are treated in the two methods. In the asymptotic model there

is no interaction between the two stresses and there will be Rayleigh line intersections

only at,

(1 + β2
R)σ31 = 2i αR σ33, (6.4.15)

whereas for the full unimodal dispersion relation there is a cross multiplication of the

two stress terms. This leads to a much more complicated condition for the stresses

to cancel and for the solution to correspond with the Rayleigh solution. This can be

shown by assuming that the two stresses have the form,

σ31 = Hφφ+Hψψ,

σ33 = Vφφ+ Vψψ.

(6.4.16)

Expanding these stresses as before yields,

−R(r) = i
2β

µk2
Hφ +

1 + β2

µk2
Hψ −

1 + β2

µk2
Vφ + i

2α

µk2
Vψ +

HφVψ − VφHψ

µ2k4
. (6.4.17)

If it is assumed that there will be a coincidence at the Rayleigh line, then at this point

replace α and β with αR and βR and use the surface relation (2.2.22) to obtain,

−
(
k2 − ω2

c2
R

)
ψ = −1 + β2

R

2µB
σ31 − i

αR
µB

σ33 +
VφHψ −HφVψ

2µ2Bk2
ψ. (6.4.18)

Clearly this equation is equivalent to the multi stress boundary condition (6.4.12) but

with an added stress interaction term which the previous asymptotic model does not
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predict. For this example take the surface stresses (6.4.3) and put them into the

required form which yields,

Hφ = i
πh4

b

64l2
BbK

2k(Kη − kαζ), Hψ =
πh4

b

64l2
BbK

2k(βKη − kξ),

Vφ =
πh2

b

4l2
BbK(kαζ −Kξ), Vψ = i

πh2
b

4l2
(βKξ − kζ).

(6.4.19)

Letting α = αR and β = βR and substituting these into the expansion (6.4.18) leads

to the dispersion relation,

k2 − ω2

c2
R

=
αR
µBl2

πh2
b

4
Bb
K

k

(
k2 1− β2

R

2
ζ +KkβR

1− β2
R

1 + β2
R

ξ

)
− 1 + β2

R

2µBl2
πh4

b

64
BbK

2

(
k2 1− β2

R

2
ξ +KkβR

1− β2
R

1 + β2
R

η

)
− πh6

256l4
B2
bK

3

2µ2k
((kαRζ −Kξ)(βRKη − kξ) + (βRKξ − kζ)(Kη − kαRζ)) ,

(6.4.20)

which is the same as (6.4.13) but with an added term from the stress interaction. Due

to cancellation in the stress interaction term this dispersion relation is also a quadratic,

but even for simple stresses in a general case this new equation could be up to a 4th

order polynomial. This can be plotted against the full unimodal solution to determine if

the stress interaction makes a significant difference to the solution. As predicted Fig. 6.5

shows that accounting for the stress interaction forces the model to coincide with the

full unimodal dispersion relation at the Rayleigh line. However a comparison with the

asymptotic dispersion relation in Fig. 6.2 does not show a significant improvement for

the rest of the plot over the standard asymptotic model. This indicates that for this

system the stress interaction does not have a significant effect on the overall behaviour

of the waves.

The stress interaction problem also indicates a more fundamental and significant

possible limitation with using this model on a multi stress system. The asymptotic

model requires both stresses to be small for the combined result to be an accurate
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Figure 6.5: The dispersion curves for surface waves on the half-space coated with

fully matched beam-like resonators, using physical parameters from Table 6.1. The

solid blue lines show the dispersion curve of the full unimodal solution from (6.4.8)

and the solid red lines the dispersion curve of the asymptotic solution with stress

interaction term from (6.4.20). The dashed green, orange and purple lines correspond

to the longitudinal, shear and Rayleigh wave lines respectively.

approximation. If one stress is always large while the other is small then the asymptotic

model cannot be valid, even if the result crosses the Rayleigh line.

Finally, much of the behaviour of the dispersion curve is away from the Rayleigh

line, where the asymptotic model cannot accurately predict. For example, instead of

predicting asymptotes at,

cos(KL) cosh(KL) + 1 = 0, (6.4.21)

the asymptotic model instead produces asymptotes at,

−1 + β2
R

2µBl2
πh4

b

64
BbK

2 1− β2
R

2
sin(KL) sinh(KL) = cos(KL) cosh(KL) + 1. (6.4.22)

136



6.5. VERTICAL BEAM METASURFACE CONCLUSIONS

This is notable as the asymptotes for a simply supported beam and a beam on a rail

were predicted by the asymptotic model. This led to the asymptotic model for that

system remaining accurate to a good degree even while away from the Rayleigh line.

For the fully matched system however, at some point away from the Rayleigh line the

full unimodal solution and the asymptotics must significantly diverge.

Therefore, while this is a powerful technique for when both stresses are small the

results cannot be relied upon away from this condition.

6.5 Vertical Beam Metasurface Conclusions

An array of flexural resonators attached to the surface of an elastic half-space is anal-

ysed using an explicit model for the Rayleigh wave. This chapter generalises previous

considerations using both full unimodal and asymptotic solutions for an elastic half-

space in the case of a longitudinal array of resonating rods [25]. The considered bending

array appears to be a better model for a number of applications including, but not lim-

ited to, modelling of forests.

Three types of boundary conditions are considered, and for each the asymptotic

solution is verified using full unimodal solutions for the half-space. The first boundary

condition to be considered treats the resonators as simply supported at the surface of

the half-space. Matching of the beam equation yields a horizontal stress only. The

second considered boundary condition treats the resonators as being supported by a

freely moving rail at the surface of the half-space. In contrast to the previous system

this yields a vertical stress only.

For both of these boundary conditions the asymptotic formulation closely matches

with the full unimodal solution. The asymptotic solution obtained predicts both a
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coincidence with the full unimodal solution at the Rayleigh line, and also quasi-periodic

resonances arising from the solution to the beam equation.

The final boundary condition considered in this paper fully matches all variables

at the boundary. Unlike the previous two cases this results in both a vertical stress and

a horizontal stress, requiring an alteration to the existing asymptotic formulation to

account for both stresses. While this asymptotic solution closely matches with the full

unimodal solution it does not accurately predict the coincidence with the Rayleigh line

or the location of the system resonances. A further addition to the asymptotic model

produces a solution which does accurately predict coincidence with the full unimodal

solution with the Rayleigh line, but still does not accurately predict resonances.

All of the systems considered produce band gaps in the region around the beam

resonances, with the largest band gaps produced by the beam on a rail and fully

matched boundary conditions. This demonstrates the potential for such systems to be

utilised in controlling the propagation of surface waves.

The explicit asymptotic formulation has the potential to be applied in more sophis-

ticated systems where an exact solution may be difficult or impossible to obtain since it

reduces the vector problem in full linear elasticity to a scalar problem along the surface.

It has been shown that for the systems in this paper the asymptotic formulation easily

produces simple explicit solutions which match closely with the full unimodal solution.

The formulation discussed involves a surface scalar problem identical to the equa-

tion for transverse forces applied to an elastic membrane. Currently, experimental

setups to model elastic half-spaces can be large and expensive and this formulation

gives scope for simpler experiments on membranes which model the behaviour at the

surface of an elastic half-space.
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Second Order Rayleigh Wave Asymptotics

Previous chapters have made extensive use of a leading order asymptotic model for

the surface of an elastic half plane, from Kaplunov and Prikazchikov [63] detailed in

§2.2.3. While this model has been used effectively in multiple situations, the treatment

of flexural resonators in Chapter 5 shows that this model does have limitations. To

ensure that this asymptotic model remains valid as the complexity of problems increases

it is necessary to consider further development of the model. In this chapter the same

method used to produce the leading order asymptotic model is used to add a second

order term and introduce a new combined model.

This chapter shall be arranged as follows: First the results of the leading order

expansion for surface waves on an elastic half plane from Kaplunov and Prikazchikov

[63] will be described, followed by the derivation for a second order model which will

add an additional term to the existing model. This new model will then be applied to

a variety of simple problems on which the leading order asymptotic model has already

been applied. The results from our new model will be compared directly with both

the solution from the leading order asymptotic model and with either an exact or full

unimodal solution. The first problem considered will be a simple 2D harmonic forcing.

This will be followed by considering a moving point load along the surface. Finally a
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system consisting of vertical rod-like resonators periodically embedded into the surface

of the half plane originally from Colquitt et al. [25] will be considered, followed by a

final conclusion and discussion of the results.

7.1 Perturbed Governing Equations

First, follow the approach from Kaplunov and Prikazchikov [63] to find perturbed

Rayleigh wave solutions. For generality, adopt 3D Cartesian coordinates of the form

(x1, x2, x3) where the surface of the half plane is at x3 = 0. For ease of use, use

the standard subscript notation for derivatives such that the standard equations of

elasticity (2.2.5) take the form,

φ,11 + φ,33 −
1

c2
1

φ,tt = 0,

ψ,11 + ψ,33 −
1

c2
2

ψ,tt = 0

(7.1.1)

with surface conditions (2.2.7) at x3 = 0 in the form,

2φ,13 + ψ,11 − ψ,33 =
Q

µ
,

(κ−2 − 2)φ,11 + κ−2φ,33 + 2ψ,13 =
P

µ
.

(7.1.2)

where κ = c2/c1 and Q and P represent some horizontal and vertical surface loading

respectively. Suppose that φ and ψ can be asymptotically expanded into the infinite

series,

φ = ε−1φ0 + φ1 + εφ2 + ε2φ3 + ..., ψ = ε−1ψ0 + ψ1 + εψ2 + ε2ψ3 + ..., (7.1.3)

where the small parameter 0 < ε� 1 is given by,

c = cR(1± ε). (7.1.4)

where c is the phase velocity of the perturbed wave solution. Using a multiple scales

approach in the usual way, define new fast time and slow time variables, τf and τs
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respectively such that,

τf = t, τs = εt, (7.1.5)

leading to the operator identity,

∂

∂t
=

∂

∂τf
+ ε

∂

∂τs
. (7.1.6)

Using this operator relation to perturb the bulk equations (7.1.1) yields,

φ,33 + α2
Rφ,11 − 2

ε

c2
1

φ,τf τs −
ε2

c2
1

φ,τsτs = 0,

ψ,33 + β2
Rψ,11 − 2

ε

c2
2

ψ,τf τs −
ε2

c2
2

ψ,τsτs = 0.

(7.1.7)

The derivation for the leading order term of this asymptotic expansion is given in §A.2.

7.2 Second Order Asymptotic Model

We now intend to use the same method to produce a higher order asymptotic model.

Suppose that φ and ψ have the three term asymptotic expansions,

φ = ε−1φ0 + φ1 + εφ2, ψ = ε−1ψ0 + ψ1 + εψ2, (7.2.1)

We shall first complete the asymptotic treatment for a vertical stress only so let Q = 0,

P = O(1). Assume the solution for φ0 (A.2.20) and relations for the first order non-

homogeneous φ and ψ terms (A.2.15) from §A.2. Also assume that φ and ψ are related

as a single plane harmonic function [14]. Taking the perturbed bulk equations (7.1.7)

at O(ε),

φ2,33 + α2
Rφ2,11 −

2

c2
1

φ1,τf τs −
1

c2
1

φ0,τsτs = 0,

ψ2,33 + β2
Rψ2,11 −

2

c2
2

ψ1,τf τs −
1

c2
2

ψ0,τsτs = 0.

(7.2.2)

Supposing that the second order term solutions have the form,

φ2 = φ20 + x3φ21 + x2
3φ22,

ψ2 = ψ20 + x3ψ21 + x2
3ψ22,

(7.2.3)
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where φ20 and ψ20 are the complementary solution and x3φ21 + x2
3φ22, x3ψ21 + x2

3ψ22

are the particular integrals. Then it follows by substitution that,

2φ21,3 + 2φ22 + 4x3φ22,3 =
2

c2
1

(φ01,τf τs + x3φ11,τf τs) +
1

c2
1

φ0,τsτs , (7.2.4)

2ψ21,3 + 2ψ22 + 4x3ψ22,3 =
2

c2
2

(ψ01,τf τs + x3ψ11,τf τs) +
1

c2
2

ψ0,τsτs , (7.2.5)

Matching coefficients in the usual way,

2φ22,311 =
1

c2
1

φ11,11τf τs , 2φ21,3 + 2φ22 =
2

c2
1

φ10,τf τs +
1

c2
1

φ0,τsτs , (7.2.6)

2ψ22,311 =
1

c2
2

ψ11,11τf τs , 2ψ21,3 + 2ψ22 =
2

c2
2

ψ10,τf τs +
1

c2
2

ψ0,τsτs . (7.2.7)

Using the relations (A.2.15) from above yields,

2φ22,311 = − 1

α2
Rc

4
1

φ0,3τf τf τsτs , 2ψ22,311 = − 1

β2
Rc

4
2

ψ0,3τf τf τsτs . (7.2.8)

If it is assumed that the forcing produces a near-Rayleigh travelling surface wave then

the fast time variable must correspond to the Rayleigh wave speed with the slow time

acting as an O(ε) correction. Hence, introduce the travelling wave ansatz,

∂2

∂τ 2
f

= c2
R

∂2

∂x2
1

, (7.2.9)

which gives on substitution,

2φ22 = − c2
R

α2
Rc

4
1

φ0,τsτs , 2ψ22 = − c2
R

β2
Rc

4
2

ψ0,τsτs , (7.2.10)

and so,

2φ21,3 =
2

c2
1

φ10,τf τs +
1

α2
Rc

2
1

φ0,τsτs , (7.2.11)

2ψ21,3 =
2

c2
2

ψ10,τf τs +
1

β2
Rc

2
2

ψ0,τsτs . (7.2.12)

Then by using the relations for harmonic functions,

2φ21,1 =
2

αRc2
1

φ∗10,τf τs
+

1

α3
Rc

2
1

φ∗0,τsτs , (7.2.13)

2ψ21,1 =
2

βRc2
2

ψ∗10,τf τs
+

1

β3
Rc

2
2

ψ∗0,τsτs . (7.2.14)
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Substituting the second order expansions for φ and ψ into the boundary conditions

and setting x3 = 0 gives,

2φ20,13 + (1 + β2
R)ψ20,11 = −2φ21,1 + 2ψ21,3 + 2ψ22,

−(1 + β2
R)φ20,11 + 2ψ20,13 = −2

1− β2
R

1− α2
R

(φ21,3 + φ22)− 2ψ21,1.

(7.2.15)

On substituting the above relations for harmonic functions, these yield,

2φ20,13 + (1 + β2
R)ψ20,11 =

2

c2
2

ψ10,τf τs +
1

c2
2

ψ0,τsτs −
2

αRc2
1

φ∗10,τf τs
− 1

α3
Rc

2
1

φ∗0,τsτs , (7.2.16)

2φ∗20,13 + (1 + β2
R)ψ∗20,11 =

2

c2
2

ψ∗10,τf τs
+

1

c2
2

ψ∗0,τsτs +
2

αRc2
1

φ10,τf τs +
1

α3
Rc

2
1

φ0,τsτs , (7.2.17)

and,

−(1 + β2
R)φ20,11 + 2ψ20,13 = −1− β2

R

1− α2
R

(
2

c2
1

φ10,τf τs +
1

c2
1

φ0,τsτs

)
− 2

βRc2
2

ψ∗10,τf τs
− 1

β3
Rc

2
2

ψ∗0,τsτs .

(7.2.18)

Then use the leading order relations (A.2.18) to find a relation for ψ∗10 in terms of φ0

and φ10,

ψ∗10,11 = − 2αR
1 + β2

R

φ10,11 +

(
2

(1 + β2
R)αRc2

1

− 1

βRc2
2

)
φ0,τf τs , (7.2.19)

and using the travelling wave ansatz (7.2.9) this becomes,

ψ∗10,τf τs
= − 2αR

1 + β2
R

φ10,τf τs +

(
2c2
R

(1 + β2
R)αRc2

1

− c2
R

βRc2
2

)
φ0,τsτs , (7.2.20)

Then by taking advantage of relations between harmonic functions,

2αRφ20,11 + (1 + β2
R)ψ∗20,11 =

(
2αR

1 + β2
R

)(
1 + β2

R

α2
Rc

2
1

− 2

c2
2

)
φ10,τf τs

+

(
2αR

1 + β2
R

)((
1 + β2

R

2α4
R

+
1− β2

R

α2
R

)
1

c2
1

−
(

4
1− β2

R

1 + β2
R

+ 1

)
1

c2
2

)
φ0,τsτs

(7.2.21)

−(1 + β2
R)φ20,11 + 2ψ20,13 =−

(
2

c2
2

− 1 + β2
R

β2
Rc

2
2

)
φ10,τf τs

−
(

1

c2
2

+ 4
1− α2

R

(1 + β2
R)αRβRc2

2

− 2
1− β2

R

β2
Rc

2
2

− 1 + β2
R

2β4
Rc

2
2

)
φ0,τsτs

(7.2.22)
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This system of equations can be expressed as,

2αRφ20,11 + (1 + β2
R)ψ∗20,11 =

(
2αR

1 + β2
R

)(
aφ0,τsτs + bφ10,τf τs

)
,

−(1 + β2
R)φ20,11 − 2βRψ

∗
20,11 = −

(
cφ0,τsτs + dφ10,τf τs

)
,

(7.2.23)

where,

a =

(
1 + β2

R

2α4
R

+
1− β2

R

α2
R

)
1

c2
1

−
(

4
1− β2

R

1 + β2
R

+ 1

)
1

c2
2

, b =
1 + β2

R

α2
Rc

2
1

− 2

c2
2

,

c =
1

c2
2

+ 4
1− α2

R

(1 + β2
R)αRβRc2

2

− 2
1− β2

R

β2
Rc

2
2

− 1 + β2
R

2β4
Rc

2
2

, d =
2

c2
2

− 1 + β2
R

β2
Rc

2
2

.

(7.2.24)

Using the Rayleigh identity, this system of equations can then be simplified to,

cφ0,τsτs + dφ10,τf τs = aφ0,τsτs + bφ10,τf τs (7.2.25)

which leads to the relation for the second order component of φ,

φ10,τf τs =
a− c
d− b

φ0,τsτs , (7.2.26)

= ΓR φ0,τsτs , (7.2.27)

where ΓR can be significantly simplified as,

ΓR = 2
1− β2

R

1 + β2
R

− 1

2
+

1

2B

(
2(1− β2

R)2 +
(α2

R − β2
R)2

α3
Rβ

3
R

)
, (7.2.28)

which is plotted in Fig [7.1] for varying values of the Poisson ratio, ν.

0.0 0.1 0.2 0.3 0.4 0.5
-12

-10

-8

-6

-4

-2

0

ν

Γ
R

Figure 7.1: The values for ΓR (7.2.28) for varying Poisson ratio ν.
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To obtain a general relation for φ, combine the second order relation (7.2.27) and

the leading order relation (A.2.20) to produce,

2εφ,τf τf τf τs = −c2
R

1 + β2
R

2µB

(
P,τf τf + εΓRPτf τs

)
. (7.2.29)

Then it follows from the operator relationship (7.1.6) that,

2ε
∂2

∂τf∂τs
=

∂2

∂t2
− ∂2

∂τ 2
f

− ε2 ∂
2

∂τ 2
s

, (7.2.30)

=
∂2

∂t2
− c2

R

∂2

∂x2
1

− ε2 ∂
2

∂τ 2
s

, (7.2.31)

= −c2
R�− ε2

∂2

∂τ 2
s

. (7.2.32)

where the D’Alambertian operator, �, is defined as

� =
∂2

∂x2
1

− 1

c2
R

∂2

∂t2
. (7.2.33)

This gives,

�φ =
1 + β2

R

2µB
P − ε2

c2
R

(2ΓR + 1)φ,τsτs + 2
ε3

c2
R

ΓRφ10,τsτs , (7.2.34)

�φ,τf τf =
1 + β2

R

2µB
P,τf τf −

ε2

c2
R

(2ΓR + 1)φ,τf τf τsτs + 2
ε3

c2
R

ΓRφ10,τf τf τsτs , (7.2.35)

and the O(ε2) term can be expanded using the operator relation,

ε2

c4
R

φτf τf τsτs =
ε

2

(
2ε

c2
R

φ0,τf τf τsτs

)
+O(ε3) (7.2.36)

=
1 + β2

R

8µB

(
c2
R�P + ε2P,τsτs

)
+O(ε3) (7.2.37)

so on neglecting the remaining O(ε2) terms, these can be combined using the travelling

wave ansatz (7.2.9) to give,

�φ,11 =
1 + β2

R

2µB
P,11 +

ΓR
2

1 + β2
R

2µB
�P (7.2.38)

=
1 + β2

R

2µB

(
P,11 +

2ΓR + 1

4
�P

)
(7.2.39)
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and on repeating the process in a similar fashion for a horizontal load,

�ψ,11 = −1 + β2
R

2µB

(
Q,11 +

2ΓR + 1

4
�Q

)
. (7.2.40)

From the definition of ΓR (7.2.28),

2ΓR + 1

4
=

1− β2
R

1 + β2
R

+
1

4B

(
2(1− β2

R)2 +
(α2

R − β2
R)2

α3
Rβ

3
R

)
. (7.2.41)

We can verify this using a Taylor expansion around the Rayleigh solution. If the

Rayleigh determinant is expressed as a function of r = c2/c2
2,

R(r) = (2− r)2 − 4
√

1− r
√

1− κ2r (7.2.42)

which has Taylor expansion around the Rayleigh solution r0 = c2
R/c

2
2,

R(r) ≈ R(r0) +R′(r0)(r − r0) +
1

2
R′′(r0)(r − r0)2 + ... (7.2.43)

These derivatives are,

R′(r) = 2(r − 2) + 2
κ2(1− r) + (1− κ2r)
√

1− r
√

1− κ2r
, (7.2.44)

R′′(r) = 2 +
(1− κ2)2

(
√

1− r
√

1− κ2r)3
(7.2.45)

and it is clear that,

(r − r0) = −r0

(
1− r

r0

)
= −(1− β2

R)

(
1− c2

c2
R

)
. (7.2.46)

so for each term of the Taylor series. By definition the leading order term is given by,

R(r0) = 0, (7.2.47)

which as expected represents a solution R(r) = 0 at c = cR. The next order term is

given by,

R′(r0)(r − r0) =

(
2(2− r0)− 2

κ2r0(1− r0) + (1− κ2r0)r0√
1− r0

√
1− κ2r0

)(
1− c2

c2
R

)
, (7.2.48)

= −2B

(
1− c2

c2
R

)
, (7.2.49)
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which is the same behaviour as the leading order model. The second order term then

takes the form,

1

2
R′′(r0)(r − r0)2 =

(
r2

0 +
(r0 − κ2r0)2

2(
√

1− r0

√
1− κ2r0)3

)(
1− c2

c2
R

)2

, (7.2.50)

=

(
(1− β2

R)2 +
(α2

R − β2
R)2

2α3
Rβ

3
R

)(
1− c2

c2
R

)2

. (7.2.51)

On combining these expressions we produce the Taylor series,

R(r) ≈ −2B

(
1− c2

c2
R

)(
1− 1

4B

(
2(1− β2

R)2 +
(α2

R − β2
R)2

α3
Rβ

3
R

)(
1− c2

c2
R

))
, (7.2.52)

which can then be substituted into the previous boundary conditions along the surface.

In the case of a vertical stress only,

R(r) = −1 + β2

µk2
P, (7.2.53)

1− c2

c2
R

≈ 1 + β2

2µBk2

(
1− 1

4B

(
2(1− β2

R)2 +
(α2

R − β2
R)2

α3
Rβ

3
R

)(
1− c2

c2
R

))−1

P, (7.2.54)

≈ 1 + β2
R

2µBk2

(
1 +

(
1− β2

R

1 + β2
R

+
1

4B

(
2(1− β2

R)2 +
(α2

R − β2
R)2

α3
Rβ

3
R

))(
1− c2

c2
R

))
P.

(7.2.55)

This clearly has the same form as the boundary condition obtained above (7.2.39),

and by rearranging, the coefficient from the Taylor series matches exactly with the

coefficient from the asymptotic expansion (7.2.41).

7.3 Example Problems

In order to verify that this second order model is valid, we shall next consider three

different fundamental types of forcing along the surface and see how the solution ob-

tained from the newly obtained model compares with the result from the previous

leading order model and the exact solution. For each, it is expected that the second

order model will closely match the exact solution in the vicinity of wave speeds close
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to the Rayleigh solution and will, in general, be more accurate than the leading order

solution.

7.3.1 2D Harmonic Forcing

As in Kaplunov et al. [63], introduce a vertical load of constant amplitude,

P = P0e
ik[x1−ct], (7.3.1)

where k is the wave number and as before c is the wave speed. For this forcing the

exact solution for φ is given by,

φ =
P0(1 + β2)

µk2R(c)
eik[x1−ct]−kαx3 , (7.3.2)

with

R(c) = (1 + β2)2 − 4αβ. (7.3.3)

If we define the wave speed by c = (1 + ε)cR then c2 − c2
R = 2εc2

R + ε2 and the leading

order asymptotic solution is hence given by,

φ =
P0(1 + β2

R)

2(2ε+ ε2)µBk2
eik[x1−ct]−kαRx3 . (7.3.4)

We shall repeat the same procedure but use our newly derived second order model

(7.2.39), which yields,

φ =
P0(1 + β2

R)

2(2ε+ ε2)µBk2

(
1 +

2ΓR + 1

2
ε

)
ei[kx1−ct]−kαRx3 . (7.3.5)

It is clear to see that this result is the same as that obtained with the leading order

mode l but with an O(ε) correction term. To compare the previously obtained results

from Kaplunov et al. with that of our new second order model, introduce the scaled

potential,

φs =
(2ε+ ε2)µk2

2P0

e−ik[x1−ct]φ(x1, 0, t). (7.3.6)
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where Fig. 7.2 shows the plots of φs for both asymptotic models and the exact solution

near the Rayleigh speed

Leading Order

Second Order

Exact solution

-0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

ε

ϕ
s

Figure 7.2: A comparison of the leading and second order asymptotic models with

the exact solution for the scaled potential φs near the Rayleigh speed. Here the leading

order and second order asymptotic solutions correspond to the dashed grey and solid

grey lines respectively and the exact solution is denoted by the solid black line.

From this figure the improvement of the second order model is clear; while both

asymptotic models match exactly with the exact solution at ε = 0, the second order

model stays close to the exact solution for a remarkably wide range of wave speeds. It

does not however model the mode conversion of the exact solution, where the travelling

surface wave solution becomes evanescent and begins to decay along the surface. This

is due to treating α and β as fixed constants. In the exact solution as c increases α

and β become purely imaginary and the wave propagates into the bulk, a behaviour

the asymptotic model cannot replicate.
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7.3.2 Plane Strain Steady-State Problem

Since we have shown that the above model is valid for a static harmonic load, we shall

next move to modelling the effects of a moving load. As with before we will make

use of a system given by Kaplunov et al. [63], in this instance considering a point

vertical load moving at constant speed, c. Using the delta function to represent the

point forcing, this load is given by P = P0δ(x1 − ct) along x3 = 0. From Kaplunov et

al., introduce a moving coordinate system s = x1 − ct such that

∂2

∂x2
1

=
∂2

∂s2
, � = (1− c2)

∂2

∂s2
, (7.3.7)

for which the leading order asymptotics yields,

φ,ss(s, 0) =
1 + β2

R

2µB

c2
R

c2
R − c2

P0δ(s), (7.3.8)

and so instead at second order,

φ,ss(s, 0) =
1 + β2

R

2µB

(
c2
R

c2
R − c2

+
2ΓR + 1

4

)
P0δ(s). (7.3.9)

This retains the key properties of the leading order solution, most notably the resonance

at c = cR. This form makes the change from the leading order to the second order

model solution relatively straightforward as for constant c, the second order correction

acts as a constant multiplicative factor. For instance, where in Kaplunov et al., the

leading order displacement potentials were found to be,

φ,s(s, x3) =
1 + β2

R

2πµB

c2
R

c2
R − c2

P0 tan−1

(
s

αRx3

)
, (7.3.10)

ψ,s(s, x3) = − αR
4πµB

c2
R

c2
R − c2

P0 ln (s2 + β2
Rx

2
3), (7.3.11)

from the second order model we instead yield,

φ,s(s, x3) =
1 + β2

R

2πµB

(
c2
R

c2
R − c2

− 2ΓR + 1

4

)
P0 tan−1

(
s

αRx3

)
, (7.3.12)

ψ,s(s, x3) = − αR
4πµB

(
c2
R

c2
R − c2

− 2ΓR + 1

4

)
P0 ln (s2 + β2

Rx
2
3). (7.3.13)
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Using the dimensionless variables v, vR and ξ such that,

ξ =
s

x3

, v =
c

c2

, vR =
cR
c2

, (7.3.14)

in the same way we can also produce the second order solution for the steady-state

displacements,

ust1 =
1 + β2

R

2πµB

(
v2
R

v2
R − v2

− 2ΓR + 1

4

)
P0

(
tan−1

(
ξ

αR

)
− 1 + β2

R

2
tan−1

(
ξ

βR

))
,

(7.3.15)

ust2 = −(1 + β2
R)αR

4πµB

(
v2
R

v2
R − v2

− 2ΓR + 1

4

)
P0

(
ln (ξ2 + α2

R)− 2

1 + β2
R

ln (ξ2 + β2
R)

)
.

(7.3.16)

As in Kaplunov et al., introduce a scaled stress S33 such that,

S33 = π
σ33x3

P0

, (7.3.17)

for which the exact solution of the system gives,

S33 =
α

R(c)

(
(1 + β2)2

ξ2 + α2
− 4β2

ξ2 + β2

)
. (7.3.18)

The leading order asymptotic solution then gives,

S33 =
2αRβR
B

v2
R

v2
R − v2

(
− αR
ξ2 + α2

R

+
βR

ξ2 + β2
R

)
(7.3.19)

and hence it is straightforward to obtain S33 from the second order asymptotic solution,

S33 =
2αRβR
B

(
v2
R

v2
R − v2

− 2ΓR + 1

4

)(
− αR
ξ2 + α2

R

+
βR

ξ2 + β2
R

)
. (7.3.20)

We shall again compare the leading order solution with the solution obtained from the

second order model. This comparison is given in Fig 7.3 for a Poisson ratio of ν = 0.25,

with vR ≈ 0.9194, at ξ = 0.2.
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Exact Solution

Leading Order

Second Order

0.8 0.85 0.9 0.95 1

-20

0

20
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3
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Figure 7.3: A comparison of the leading and second order asymptotic models with

the exact solution for the scaled stress S33 near the Rayleigh speed for ξ = 0.2 . Here

the leading order and second order asymptotic solutions correspond to the dashed grey

and solid grey lines respectively and the exact solution is denoted by the solid black

line.

This again shows a significant improvement between the leading order and the

exact solution, with the second order model being a consistent improvement for a wide

range of speeds, even those far away from the resonance at the Rayleigh speed. The

plot shows that for forcing speeds less than the Rayleigh speed in particular, the second

order model approximates the exact solution remarkably well.

Furthermore, the second order model in this instance only introduces a constant

multiplying factor to the leading order model. This is a feature of having a forcing

of the form P = P (x1 − ct) and so for any similar moving load problems the second

order model will be more accurate than the leading order model but no more difficult

to apply.

It is however important to note that this model is only valid near the surface of a
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near-resonant load, ie. for c ≈ cR, and s � x3. While when both of these conditions

are met the model is shown to be highly accurate, the asymptotic solution cannot

predict far-field behaviour or the effect of non-resonant moving loads.

7.3.3 Vertical Rod-like Resonators

We will now attempt to replicate and improve on the results produced by the leading

order asymptotic model for a more involved system. As discussed in Chapter 5, and in

Ege et al. [39] the asymptotic model was used to accurately interpret the behaviour of

a system consiting of an array of identical vertical rod like resonators along the surface

of a half plane, originally proposed by Colquitt et al. [25].

If the spacing between each rod is l then we can introduce the dimensionless vari-

ables,

K = kl, Ω =
ωl

cR
, (7.3.21)

where ω is the angular frequency of the wave. Hence the full unimodal dispersion

relation for this system from Colquitt et al. [25] can be expressed in dimensionless

form as,

R

(
cRΩ

c2K

)
= 2B

α

αR

(
Ω

K

)3

Υ, (7.3.22)

where,

Υ =
h

l
ER

cR
cV
αR

β2
R − 1

2µB
tan

(
Ω
cR
cV

)
, (7.3.23)

and h, ER and cV are respectively the width, Young Modulus and compressional wave

speed of the resonators. The leading order asymptotic dispersion relation for wave

number k and angular frequency ω produced for this system can be expressed,

K2 +KΥΩ− Ω2 = 0. (7.3.24)
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Using the second order model introduced above, we instead produce the dispersion

relation,

K3 −K2

(
2ΓR − 3

4

)
ΥΩ−KΩ2 +

(
2ΓR + 1

4

)
ΥΩ3 = 0. (7.3.25)

This dispersion relation is plotted in Fig 7.4. For simplicity, use the same system

parameters as used in the previous treatments of the problem, from Table 5.1. Although

not immediately clear, it is possible to show that this is the same as the leading order

dispersion relation with an O(ε) correction.

0 2 4 6 8 10
0

2

4

6

8

10

K

Ω

Figure 7.4: The second order asymptotic solution (7.3.25), denoted by the grey curve,

for a 2D system of rod like resonators. The Rayleigh line is plotted in dashed purple

and the shear wave line in dashed orange.

This shows the main behaviours of the full unimodal solution, specifically the res-

onances at the rod resonant frequency, as well as anti-resonances which intersect the

Rayleigh line. To see if this is an improvement on the leading order model, we will

compare the results of the leading order and second order model to the full unimodal
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(a) First Asymptote
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K
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Figure 7.5: The dispersion relation near the first two resonances for a 2D system of

rod like resonators. The second order asymptotic solution (7.3.25) is denoted by the

solid grey curve, the full unimodal solution (7.3.22) by the solid black curve, and the

first order asymptotic solution (7.3.24) by the dashed grey curve. The Rayleigh line is

plotted in dashed purple and the shear wave line in dashed orange.

solution. Since it has already been shown that the leading order model matches the

full unimodal solution well close to the Rayleigh line, it is sufficient to compare the two

models near the resonances only. This comparison is given by Fig 7.5.

These figures show a clear improvement between the leading order model and the

second order model. Between the Rayleigh and shear wave lines in particular the

second order model matches with the full unimodal solution remarkably well, with the

two solutions almost indistinguishable. Even for larger values of K and around the

asymptote where the model is predicted to not work as well, the level of matching

remains highly accurate with a relative error in Ω of less than ∼ 2% for these material

parameters.
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7.4 Concluding Remarks

In this work we have shown that by using the same method used to produce the leading

order model for the Rayleigh wave field, it is possible to obtain a higher order correc-

tion term to the surface boundary condition while leaving the equations for the bulk

unchanged. This correction term leaves the hyperbolic-elliptic nature of the system un-

changed with the surface boundary condition still giving a hyperbolic equation. This

correction term also converges with the second order Taylor expansion for a surface

loading, demonstrating that in a general case the model obtained will converge to the

exact solution.

This new higher order model has been applied to three different systems: a vertical

harmonic forcing, a steady state point moving load, and an array of vertical resonators

attached to the surface. Each of these problems has been treated by the leading order

model previously to good effect. Applying the new higher order model to each has

shown close matching to the full unimodal solutions and significant improvement over

the existing leading order model, at the cost of a less succinct solution form.

The treatment of the harmonic forcing in particular shows how the second order

model is an improvement over the leading order model. While the leading order model

matches the exact solution only at the Rayleigh speed, the solution from second order

model remains a good fit for the exact solution for a much greater range of speeds.

Furthermore, the moving load problem demonstrates how the added accuracy of the

model does not necessarily come with an increased difficulty to solve. While the second

order model is significantly more accurate than the leading order model, particularly

for a wider range of load speeds, the process for solving the problem remains the same.

Finally, the resonator forcing demonstrates how well the second order model can
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predict the resonances and band gaps caused by a structured surface. This is especially

notable as the forcing is not applied, it is caused as a reaction to the existing motion

of the half-space, and so the model must accurately represent both the initial motion

and the effect of the reaction. These features are particularly sought after for their

uses in controlling and suppressing wave propagation and have shown a recent increase

in interest in such ‘metasurfaces’.

From these results there is clear scope for further development of the model and

application of this model in other situations. The leading order model has been ex-

tended to full 3D systems and both tangential and perpendicular applied stresses, and

there is no reason why the same cannot be done for the higher order model. Similarly,

the higher order model can be used to re-examine previously studied systems to gain

further insight and extend those previous systems into more involved problems which

the leading order model was not refined enough to accurately approximate.
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CHAPTER 8

Conclusion

In the work presented within this thesis there has already been discussion and conclu-

sions made for the individual problems. This chapter unifies the disparate problems

and solutions into a broader body of work which taken together show scope for further

research. First each of the preceding chapters will be discussed and then there will

be a discussion both the immediate and distant future work which the content of this

thesis has opened up for study.

8.1 Concluding Remarks

In the Literature Review in Chapter 1 it was mentioned that wave control by means of

metamaterials and metasurfaces has had significant activity in recent years, with key

developments in many different fields. The work presented aims to add to this active

field with a focus on waves in linearly elastic structures, and also to introduce new

models and methods to complement the research and assist in further work.

In Chapter 3 a novel ‘bridging’ scheme was introduced where a gap in a 2D mem-

brane continuum was filled with a periodic array of 1D strings. Such a bridge was

capable of perfectly replicating an incident wave pattern on the other side of the gap
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with no reflections given that the wave had a wavelength much greater than the bridge

spacing. Notably this bridging effect was dependent only on the materials parameters

of the membrane and the strings, spacing of the periodic strings and the angle of inci-

dence of the wave making this construction broadband. A similar effect was produced

by inserting a periodic ‘net’ of strings, as well as introducing the possibility of a wave

filtering effect.

In Chapter 4 the same bridging ideas were used to produce a similar system where

waves on linear elastic structures are transferred over the gap. This includes two differ-

ent bridging schemes, the first to bridge bulk waves and the second to bridge Rayleigh

waves. Both of these exhibit some degree of success but the overall bridging require-

ments are predictably more complicated than the simpler membrane-string bridge.

For bulk waves it was demonstrated that there is no choice of bridge parameters

for which an arbitrary incident wave is perfectly recreated on the other side of the

gap. Instead, any incidence apart from normally incident waves will cause a wave

conversion so the incident wave pattern cannot be perfectly replicated. For normally

incident waves however, there is no wave conversion and there are broadband conditions

for which both shear and longitudinal waves can both be bridged with no reflection.

The bridge for Rayleigh waves uses the same type of bridge as for bulk waves

but imposes a strict condition on the bridge parameters. This condition is to prevent

any wave conversion into bulk waves and accounts for how the Rayleigh wave decays

with depth. However, since the decay has a dependence on wavelength, unlike the

previous bridges this formulation cannot be broadband. Also unlike previous bridging

attempts, waves are restricted to normal incidence and there is a strict requirement on

the separation of bridge layers. It is however shown that it is possible to produce a

Rayleigh bridging effect.
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Each of the bridging schemes have multiple applications; in physical realisations of

these systems an outside observer will be unable to tell whether or not a gap is present.

This may conceal objects within the gap which would cause wave disturbances if the

gap were attempted to be filled with a continuum. This gives a crude cloaking effect

which can be easily reproduced with simple materials. The bridge also acts as a simple

repair of the continuum while still being able to transfer wave energy.

In Chapter 5 an existing system of vertical rod-like resonators to alter wave prop-

agation along the surface of a linearly elastic half plane was considered. Using the

asymptotic model from Kaplunov and Prikazchikov [63] an explicit dispersion rela-

tion was produced which is both qualitatively and numerically nearly identical to the

implicit dispersion relation from the original paper [25].

This work is followed with a similar but more involved system in Chapter 6; here

the rod-like resonators are replaced by flexural resonators modelled as Euler-Bernoulli

beams with a range of boundary conditions between the surface and the beams. Using

the same asymptotic model explicit dispersion relations were produced for each. For

completeness the full unimodal systems were also solved to produce implicit dispersion

relations to verify the asymptotic results.

While the asymptotic model matches well graphically with the full unimodal solu-

tion, there are significant differences between the two solutions at key points. This is

particularly visible for the fully matched boundary condition, which is also the most

physically realistic of those treated. Since this is a mixed stress problem, which the

existing model does not account for, two new models were developed to treat this prob-

lem. Neither, however, identify the key resonances of the system, although the second

refined model does agree with the full unimodal solution at the Rayleigh line.

Chapter 7 proposes adding a second order term to the existing asymptotic model
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which the preceding chapters have made extensive use of. This second order term has

been shown to match with the Taylor expansion in the case of an arbitrary harmonic

loading. Furthermore, the new model has shown significant improvement over the

leading order model, at the cost of a less succinct solution form.

First it is useful to verify that the methods used in this work are valid in each in-

stance. Chapters 3 and 5 demonstrate that the simple homogenisation used is valid for

the periodic metamaterials in the long wave limit by comparing with non homogenised

boundary conditions. Chapters 5 and 6 each verify the use of the asymptotic model

from Kaplunov and Prikazchikov [63] to investigate how metasurfaces in linear elas-

ticty control Rayleigh wave propagation. In each the results from the asymptotic model

match well with the exact results. Testing both of these procedures indicates how the

same homogenisation procedure and asymptotic model can be used in the production

of more sophisticated bridging metamaterials and wave control metasurfaces. It is

however noted that the asymptotic results from the beam resonator system are much

less accurate than those from the rod resonator system. Hence while the asymptotic

method is valid, the solutions demonstrate a potential need for a more refined model

to more accurately detail all of the features of the system.

Some of the refinements developed for the asymptotic model are detailed in Chap-

ters 5 and 6 with both showing the improvement of the new model. The first improve-

ment to the model is the development of an asymptotic model for multiple stresses

applied to the surface, where previous models have involved only either perpendicular

or parallel stresses. While this new model is capable of producing a close approximation

to the full unimodal dispersion relation it treats the applied stresses as independent.

This leads to results from this model not necessarily converging with the full unimodal

solution at the Rayleigh solution. A further refinement is then introduced which ac-
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counts for stress interaction but requires the applied stresses to have a form which can

be reduced to a linear function of the two displacement potentials. While more limited,

this model does force convergence between the asymptotic and exact solutions in the

region of the Rayleigh solution.

The second refinement to the model is proposed in Chapter 7. This development

adds a second term to the existing leading order model, which has been shown to be

an improvement over the existing leading order model in a variety of situations.

Finally Chapters 3,4 and 6 each introduce novel metamaterials or metasurfaces

each designed to control wave propagation in different ways. These include the bridges

aimed at reproducing wave behaviour on the other side of a gap, rendering the gap

undetectable, and a resonator metasurface aimed at suppressing waves. Each of have

multiple practical applications of controlling wave propagation.

Therefore it is clear that this work has introduced new materials with real world

applications in wave suppression and control. This work has also made use of both

new and existing methods for simple systems in order to verify that the same methods

can be applied to more complicated problems to better analyse physical problems.

8.2 Future Work

The content in this thesis has several natural avenues of future work. The first of

these is to develop the bridging metamaterials which are a simple route to controlling

wave propagation and concealing voids and defects. However the materials used to

construct the bridges are ideal mathematical objects and are not fully realisable in

physical without further work. To see how functional these bridges are requires further

work with more realistic mathematical models and possible experimental work.
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The bridge metamaterials also each have many fundamental limitations. These

include restrictions of incident angle, inability to ideally bridge multiple wave types,

unintentional wave mode switching for the bulk wave bridge, and the single wavelength

requirements of the Rayleigh bridge. Many of these limitations arise from the funda-

mental construction of the bridge, which is intentionally simplistic. It may be possible

however to remove some of these restrictions with more sophisticated bridge designs,

based around improved system design itself, or more sophisticated use of multiple ma-

terials. There are also numerous opportunities to extend the same bridging ideas to

other systems. This may include other elastic media like flexural waves on plates and

beams or possibly to other fields entirely.

There is also scope to use the new Rayleigh wave models developed to investigate

more systems for linearly elastic half planes. This includes using the second order

model developed in Chapter 6 and the leading order multi-stress models developed in

Chapter 5. The second order model can more accurately investigate previous single

stress problems than the leading order model, or can be used to predict and analyse

more system characteristics than the leading order is capable of. Alternately the multi

stress models can be used to investigate more sophisticated systems than the existing

single stress model, particularly as most real physical systems will have both vertical

and horizontal stress components. Therefore these two new developments to the model

have made the asymptotic formulation much more applicable for physical systems and

can more be reliably used for problems with difficult exact formulations.

In order to apply the new higher order model to the beam resonator system pro-

posed in Chapter 5 would also require the higher order model to be able to treat both

vertical and horizontal stresses. Therefore a further avenue to consider is to develop

the higher order model to produce a multi-stress model using the methodology from
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Chapter 5.

The final clear avenue for future work is to further develop the metasurfaces from

Chapters 5 and 6. This development can take either of two possible routes; either fur-

ther theoretical development with different resonators and boundary conditions which

can more accurately model real world systems or experimental work to determine

whether these metasurfaces are physically realisable.

While this experimental work could be conducted on a linearly elastic half plane,

the use of the leading order asymptotic model also allows for half plane experiments to

be conducted on membranes with appropriately constructed resonator analogues. This

allows for complicated resonator arrangements to be experimentally tested on a much

simpler and less expensive experimental setup.
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APPENDIX

A.1 Beam Boundary Conditions

At the end of a beam there are four conserved quantities that will affect the beam mo-

tion: Out-of-plane displacement, bending angle, moment and out-of-plane force. Each

of these corresponds to a derivative of the out-of-plane displacement. To determine

the boundary conditions it is useful to introduce a ‘dummy’ beam in the coordinates

(ζ, η) occupying the domain 0 < ζ < −ζ1, η = η1. This beam will have out-of-plane

displacement uη and in-plane displacement uζ .

It is self evident that if the beam is fixed to another object that the displacements

at the boundary between the two will match exactly. Similarly the flat end of the beam

will be perpendicular to the central axis so if the end of the beam is pressed to a flat

angled surface with in-plane displacement uV then from fundamental geometry,

∂uη
∂ζ

=
∂uV
∂η

. (A.1.1)

Next find the bending moment M caused by flexing of the beam. This is given by,

M =

2π∫
0

hb/2∫
0

rcosθ σζζ r drdθ. (A.1.2)

where σζζ in the in-plane stress at the end of the beam. Using standard polar coordi-

nates r and θ, where r is the centre axis of the beam, suppose that the stress can be
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approximated around the centre of the beam by a Taylor series,

σζζ = σζζ |r=0 + r cos θ
∂σζζ
∂η
|r=0 + ... . (A.1.3)

From this expansion, a simple substitution shows that the first and third terms of the

series tend to zero, which leaves the second term as the dominant term in the vicinity

of the origin. Since the beams have a small cross section, this level of accuracy is

sufficient. The bending moment along at the edge of the beam will therefore be given

by,

M =

∫ 2π

0

∫ hb/2

0

r3cos2θ
∂σζζ
∂η

drdθ (A.1.4)

=
πh4

b

64

∂σζζ
∂η

. (A.1.5)

To determine the sign of the moment and out-of-plane force at the end of the beam,

impose a displacement and gradient at each end of the dummy beam so that at ζ = 0,

uη = 0, ∂uη
∂ζ

= 0 and at ζ = −ζ1, uη = η1, uη,ζ = 0. If the beam is infinitely stiff then

the second and third displacements at ζ = 0 will be,

∂2uη
∂ζ2

=
6 η1

ζ2
1

,
∂3uη
∂ζ3

=
12 η1

ζ3
1

. (A.1.6)

Physically a sudden positive displacement applied to the negative end of a stiff beam

must cause a force in the positive direction and an anti-clockwise moment at the positive

end. This leads to the boundary conditions at ζ = 0,

Bb
∂uη
∂ζ

= −∂σζζ
∂η

, IbBb
∂3uη
∂ζ3

= H, (A.1.7)

where H is the out-of-plane force.
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uH

uζ

uV

uη

η

ζ

(a) Displacements

∂uζ
∂η

uV,x

η

ζ

(b) Gradients

∂uη
∂ζ2

∂σηη
∂η

η

ζ

(c) Bending moments

σζη

∂3uζ
∂η3η

ζ

(d) Horizontal stress

Figure A.1: A schematic representation of the system junction conditions, showing

the end of the beam above the edge of the half-space. The relevant half-space quanti-

ties and corresponding beam quantities are indicated with a single arrow indicating a

dimension of length and a double arrow indicating a dimension of stress.
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A.2 Leading Order Asymptotic Model

In this section the method and results produced in Kaplunov and Prikazchikov [63] for

the leading order model in §2.2.3 are summarised. This makes use of the governing

equations for a linearly elastic half plane taken in the form (7.1.1), which are restated

for ease of reference as

φ,11 + φ,33 −
1

c2
1

φ,tt = 0,

ψ,11 + ψ,33 −
1

c2
2

ψ,tt = 0,

(A.2.1)

and boundary conditions at x3 = 0 (7.1.2),

2φ,13 + ψ,11 − ψ,33 =
Q

µ
,

(κ−2 − 2)φ,11 + κ−2φ,33 + 2ψ,13 =
P

µ
,

(A.2.2)

for a specified tangential stress Q and normal stress P and where

κ−2 =
c2

1

c2
2

=
1− β2

R

1− α2
R

. (A.2.3)

Suppose that φ and ψ have the two-term asymptotic expansions,

φ = ε−1φ0 + φ1, ψ = ε−1ψ0 + ψ1, (A.2.4)

where, if the resulting perturbed wave solution has some speed c, the small parameter

ε is given by the difference between the wave speed and the classical Rayleigh speed,

cR (7.1.4). Then on taking a usual multiple scales approach, introduce slow and fast

time variables, τs and τf respectively, given by (7.1.5),

τf = t, τs = εt. (A.2.5)

from which the time derivative can be expressed as (7.1.6),

∂

∂t
=

∂

∂τf
+ ε

∂

∂τs
. (A.2.6)
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Substitution of this operator identity into the bulk equations (A.2.1) yields the

perturbed bulk equations (7.1.7), again restated as,

φ,33 + α2
Rφ,11 − 2

ε

c2
1

φ,τf τs −
ε2

c2
1

φ,τsτs = 0,

ψ,33 + β2
Rψ,11 − 2

ε

c2
2

ψ,τf τs −
ε2

c2
2

ψ,τsτs = 0.

(A.2.7)

Taking these at O(1), the leading order terms of the displacement potentials are given

by,

φ0,33 + α2
Rφ0,11 = 0, ψ0,33 + β2

Rψ0,11 = 0. (A.2.8)

If a harmonic function f(x1, x3) is defined by,

f,11 + a2f,33 = 0, (A.2.9)

where a is a constant, then such a function obeys the Cauchy-Riemann identities,

f,3 = −af ∗,1, f,1 =
1

a
f ∗,3, f ∗∗ = −f (A.2.10)

where f ∗ denotes the harmonic conjugate of f . Then, from this definition, it is clear

that φ0 and ψ0 are harmonic functions. Furthermore, from Chadwick et al., [14] the

displacement potentials along the surface can be expressed as a single plane harmonic

function, with relations between φ and ψ,

φ = − 2βR
1 + β2

R

ψ∗, ψ =
2αR

1 + β2
R

φ∗. (A.2.11)

Similarly, at O(ε) the perturbed bulk equations (A.2.7) give,

φ1,33 + α2
Rφ1,11 =

2

c2
1

φ0,τf τs , ψ1,33 + β2
Rψ1,11 =

2

c2
2

ψ0,τf τs . (A.2.12)

Assume then that the second order terms of ψ and φ consist of a complementary

solution and particular integral,

φ1 = φ10 + x3φ11, ψ1 = ψ10 + x3ψ11, (A.2.13)
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where φ10 and ψ10 are again harmonic functions. Then substitution into the perturbed

bulk equations (A.2.12) yields,

φ11,13 =
1

c2
1

φ0,1τf τs , ψ11,13 =
1

c2
2

ψ0,1τf τs . (A.2.14)

Then using the leading order relations for φ0 and ψ0 yields,

φ11,11 = − 1

α2
Rc

2
1

φ0,3τf τs , ψ11,11 = − 1

β2
Rc

2
2

ψ0,3τf τs . (A.2.15)

Finally, substituting these into the surface conditions (A.2.2) at O(1) gives, for a ver-

tical stress (ie. P = O(1), Q = 0),

2φ10,113 − (1 + β2
R)ψ10,111 =

2

α2
Rc

2
1

φ0,13τf τs −
2

c2
2

ψ0,11τf τs , (A.2.16)

(1 + β2
R)φ10,111 − 2ψ10,113 = − 4

(1 + β2
R)c2

2

φ0,13τf τs −
1 + β2

R

β2
Rc

2
2

ψ0,11τf τs −
P,1
µ
. (A.2.17)

Then on taking advantage of the harmonic function relations (A.2.10) and relations

between the potentials along the surface (A.2.11),

2αRφ10,11 + (1 + β2
R)ψ∗10,11 =

(
2

αRc2
1

− 1 + β2
R

βRc2
2

)
φ0,1τf τs , (A.2.18)

(1 + β2
R)φ10,11 + 2βRψ

∗
10,11 =

(
2

c2
2

− 1 + β2
R

β2
Rc

2
2

)
ψ0,1τf τs −

P

µ
. (A.2.19)

Using the Rayleigh denominator (2.2.19), these solve simultaneously to give the leading

order relation for φ0 along the surface,

2εφ0,τf τs = −c2
R

1 + β2
R

2µB
P. (A.2.20)

Then from the time operator relation (A.2.6),

2ε
∂2

∂τf∂τs
=

∂2

∂t2
− ∂2

∂τ 2
f

− ε2 ∂2

∂τs∂τs
, (A.2.21)

where, on assuming that the forcing produces a travelling surface wave, introduce the

travelling wave ansatz,

∂2

∂τ 2
f

= c2
R

∂2

∂x2
1

. (A.2.22)
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Then on substitution the leading order term of the previous relation at x3 = 0 is given

in terms of the original variables by,

φ,11 −
1

c2
R

φ,tt =
1 + β2

R

2µB
P. (A.2.23)

Following the same procedure for a horizontal stress (ie. P = 0, Q = O(1)) yields,

2εψ0,τf τs = c2
R

1 + β2
R

2µB
Q, (A.2.24)

yielding the leading order relation at x3 = 0,

ψ,11 −
1

c2
R

ψ,tt = −1 + β2
R

2µB
Q. (A.2.25)
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