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Abstract

We consider both analytical and numerical studies of a steady-state fracture process
inside a discrete mass-beam structure, composed of periodically placed masses con-
nected by Euler-Bernoulli beams. A fault inside the structure is assumed to propagate
with a constant speed and this occurs as a result of the action of a remote sinusoidal,
mechanical load. The established regime of fracture corresponds to the case of an al-
ternating generalised strain regime. The model is reduced to a Wiener-Hopf equation
and its solution is presented. We determine the minimum feeding wave energy required
for the steady-state fracture process to occur. In addition, we identify the dynamic
features of the structure during the steady-state fracture regime. A transient analysis
of this problem is also presented, where the existence of steady-state fracture regimes,
revealed by the analytical model, are verified and the associated transient features of
this process are discussed.

Keywords: Discrete periodic media, mass-beam structures, fracture, Wiener-Hopf tech-
nique, numerical simulations.

1 Introduction
The modelling of periodic flexural materials is a useful tool in understanding the behaviour of
structures commonly found in civil engineering, such as buildings, bridges, rooftops, pipeline
systems and many more. The need to understand the response of these structures, as shown
in Figure 1, is greater when failure initiates and propagates through the system.

We present a simplified analytical and numerical model to represent the failure of a
long bridge or a rooftop. The structure is modelled by Euler-Bernoulli beams connecting
periodically placed masses, where the failure is assumed to propagate steadily within the
structure.

The modelling of failure in structured materials has been widely developed for the analysis
of mass-spring systems. These models help in describing several microstructural processes
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(a) (b)

Figure 1: (a) The demolition of a bridge in Guangxi, China. The excavator in this picture
was used to initiate a failure at one end of the bridge. The figure shows the resulting
periodic failure process propagating through the structure, where the supporting columns
fail sequentially. An alternative view of this process is presented in (b). (online version in
colour)

which occur in the fracture of materials [1]. Dynamic Mode III fracture of a square cell lattice,
composed of massless springs connecting periodically placed masses, has been considered in
[2]. For discrete mass-spring systems which undergo phase transition processes at a uniform
rate, see [3]. Dynamic fracture modes in elastic triangular lattices were treated in [4] for a
homogeneous lattice and in [5] for an anisotropic lattice. In these models, the micro-level
processes involved in the fracture phenomenon can be identified, including effects such as
wave radiation occurring when failure propagates. The introduction of inertial links in a
lattice brings new features in terms of wave radiation processes that accompany the crack
growth, as demonstrated for Mode III fracture inside an inertial square cell lattice in [6].

In addition to the analytical models considered in [2, 3, 4, 6], numerical modelling of
Mode I and II crack growth inside strips of triangular lattice has been carried out in [7],
where some surprising periodic patterns of fault propagation were observed.

The analytical approach developed in [8] for treating phase transition in a structured
material utilises the Fourier transform of the governing equations with respect to a moving
coordinate that follows the position of the phase transition front. The problem can then be
reduced to a Wiener-Hopf equation along the line containing the defect, where the conditions
ahead of and behind the phase transition front differ. This functional equation contains
information about the dynamics of the medium on both macro- and micro-scales. The
application of the Wiener-Hopf technique to solving dynamic problems for lattices with
defects is of wide utility and has also been employed in [9, 10, 11, 12, 13] in analysing
scattering and diffraction of waves by defects in several types of periodic media.

Lattices, composed of fundamental mechanical elements, can easily be designed to pro-
duce a variety of media capable of controlling the flow of waves for different applications.
In particular, the introduction of structural heterogeneities may influence the admissible
regimes where steady crack propagation is possible. The effects of inhomogeneities on Mode
III crack propagation in two-dimensional lattices have been analysed in [14]. The dynamic
failure of dissimilar chains has been analysed in [15, 16].

Periodically distributed inhomogeneities in mass-spring lattices have been shown to en-
hance fracture propagation in [17]. There, a structured interface was shown to induce a
failure mechanism caused by a “knife wave” or localised deformation surrounding the crack,
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capable of sustaining crack propagation within the interface. Numerical simulations of a
crack growing through a high-contrast interface were later carried out in [18]. Moreover,
these numerical simulations revealed non-steady failure regimes such as clustering, where a
crack may propagate in an unusual way.

Other failure processes propagating in a lattice have been treated in [19], where the
extraction of a mass-spring chain due to a point force was considered. The study of a
propagating bridge crack in an inhomogeneous lattice has been carried out in [20]. Different
fracture criteria, independent of or dependent on time, can also produce a variety of fracture
patterns within lattice systems and can affect the existence of admissible steady-state fracture
regimes. The impact of time dependent fracture criteria on the failure of one-dimensional
mass-spring chains has been investigated in [21].

The important question of admissibility of unstable and stable crack regimes for cracks
propagating in discrete periodic media has been discussed in [1, 8, 22]. The existence of
admissible low velocity steady-state failure regimes in a mass-spring square cell lattice [8]
has recently been re-addressed in [23]. The admissibility of crack propagation regimes can
also be investigated for different loading conditions. The influence of a moving load on Mode
III fracture regimes in a discrete mass-spring structure has been analytically and numerically
studied in [24]. A transient analysis of thermal shock induced crack propagation in triangular
lattices has also been carried out in [25, 26] and in [27], where cracks with chiral coatings
were considered.

Failure regimes in discrete structures with non-local interactions and their effects on the
wave radiation processes are presented in [28] and for media with additional non-linearities
in the connections see [29]. Macro and micro-level models for the reversible decohesion of
finite elastic layers, associated with the denaturation of DNA, are considered in [30].

In contrast to the study of dynamic fracture in mass-spring systems, very few articles
concentrate on the failure of systems incorporating flexural elements such as beams. The
study of bending modes in 2D discrete flexural structures, composed of beams connecting
masses and containing static faults, can be found in [31]. The analysis of a static Mode III
crack in a three-dimensional beam lattice, representing an open cell foam, is presented in
[32]. The investigation of the fracture toughness of structured materials, with applications to
understanding the response of foams with cracks and broken elements, is considered in [33].
The dynamics of periodic materials with small suddenly appearing flaws have been analysed
in [34]. Quasi-static damage propagation in two-dimensional beam structures under tensile
loading has been considered in [35], motivating the design of fault-tolerant beam lattices in
[36].

One-dimensional mass-beam chains supported by an elastic foundation, have been used to
create a simplified model of a collapsing bridge [37]. This model has been further developed
in [38] and used to predict the collapse rate of the San-Saba rail road bridge, Texas, in
2013. Transition waves in continuous flexural systems have been shown to exhibit surprising
non-steady failure behaviour [39].

Experimentally, one can observe counter-intuitive fracture behaviour in elastic materi-
als such as rubber sheets [40], where analytical descriptions and numerical simulations of
this process have been given in [41]. The influence of lattice vibrations and wave radia-
tion processes on the stability of crack trajectories in Silicon crystals has been investigated
experimentally and numerically using molecular dynamics simulations in [42, 43, 44].
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Figure 2: (a) A heterogeneous discrete structure composed of point masses connected by
beams. (b) The convention adopted for positive direction of the displacement w

m

and ro-
tations ✓x

m

and ✓y
m

associated with the mth mass. The positive directions for the internal
bending moments My

m

, (Mx,+

m

) and shear forces Vx

m

, (Vy,+

m

) in the mth beam directed from
the mth mass in the positive x-direction (y-direction) are also indicated.

In [45], an analytical model for the failure of a discrete flexural structure, contained within
an interface, was studied. The fracture was assumed to be caused by a remote sinusoidal
load and the dynamic features of the structure were studied. Further, in [46] the transient
failure process was numerically modelled and the results of [45] were verified.

Here, we consider failure propagation within the mass-beam structure shown in Figure
2. The failure is represented by the sequential removal of transverse links supporting the
masses along the central chain, aligned with the horizontal axis. In [45, 46], the failure
process was investigated under the assumption that the supporting columns of the central
chain are removed if the masses achieve a positive critical displacement. The steady-state
regimes achieved in this case are referred to here as “pure steady-state regimes” and assumed
to be driven by a remote mechanical sinusoidal load. In terms of applications, it is realistic
to consider the case when the supporting links break if a positive or negative critical dis-
placement is reached. As we show here, along with the pure steady-state regimes observed
in [45, 46], the imposed fracture criterion yields additional regimes, which can be predicted
and verified numerically. These regimes correspond to the case when, at each consecutive
failure in the system, a change in the sign of the bending moments and shear forces in the
supporting beams can be observed. These regimes are investigated in detail here and are
referred to as “alternating generalised strain regimes”. We note that for mass-spring systems,
the analogous phenomenon is studied in [17].

The structure of the present article is as follows. In Section 2, we present an analyti-
cal description of the problem concerning failure propagation in the mass-beam structure
subjected to a sinusoidal load. This section also includes the reduction of the problem to a
functional equation of the Wiener-Hopf type, from which the alternating generalised strain
regimes can be identified. The characterisation of the dispersive nature of this particular
discrete system is given in Section 3. The results of Section 3 are then used in Section 4
to solve the Wiener-Hopf equation. We also identify the dynamic properties of the system
during the steady propagation of the alternating generalised strain regime in Section 5. In
Section 6, we present numerical simulations which support the analytical results of Sections
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2–5. We give some conclusions in Section 7. Finally, Appendices A and B contain details of
some derivations.

2 Model of failure within a discrete periodic flexural struc-
ture

2.1 Description of the problem

We consider a structure composed of a mass-beam chain, as shown in Figure 2(a). This
structure is formed from periodically placed point masses, connected longitudinally (along
x-axis) by massless Euler-Bernoulli beams all with Young’s modulus E

1

and second moment
of area I

1

. Each junction node has mass M and corresponds to an index m 2 Z. This chain
is assumed to be partially supported by transverse Euler-Bernoulli beams (parallel to the
y-axis), having Young’s modulus E

2

and second moment of area I
2

. These beams connect
the masses to an interface where the beams are clamped. All beams have length a.

Inside the structure, failure is assumed to propagate with a uniform speed V as result
of the breakage of the transverse connections to the interfaces within the structure. This
breakage occurs when the absolute value of the displacement w

p

of the pth mass (where
m = p corresponds to the position of the transition front in the structure, see Figure 2(a),
that depends on time) reaches a critical value w

c

. Thus we assume for bonds to remain
intact

|w
j

(t)| < w
c

, j � p, p 2 Z , (1)
and when the condition w

p

= ±w
c

is fulfilled, the transverse links at the pth-mass break and
the moving interface advances a distance a in the structure to the (p+ 1)

th node.
The condition (1) enables us to exclude the case of non-steady propagation of the interface

inside the structure. Under these assumptions, we consider the case when the generalised
strains (moments and shear forces) inside the transverse links alternate in sign during the
failure process.

2.2 Governing equations

At a given time t, the position of the interface in the structure is given by m = bV t/ac,
where bxc denotes the integer part of x. Here, the inequality m � bV t/ac corresponds to
masses located in the supported part of the structure and m < bV t/ac are those in the
unsupported region of the structure (see Figure 2).

The equations for the balance of linear and angular momentum for the mth mass, m 2 Z,
are

M
d

2w
m

(t)

dt2
= Vx

m

(0, t) � Vx

m�1

(a, t) +H(x � V t)(Vy,+

m

(0, t) � Vy,�
m

(a, t)) +Q
m

(t), (2)

My

m

(0, t) = My

m

(a, t), (3)
where H is the Heaviside function

H(x) =

⇢
1 , if x � 0 ,
0 , otherwise .
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In (2) and (3), My

m

(x̃, t) and Vx

m

(x̃, t), denote the y-component of the moment vector and
the shear forces in the mth horizontal beam, respectively, at time t and position x̃ along the
beam, where 0 < x̃ < a, (see Figure 2(b)). They can be written in terms of the generalised
coordinates describing the motion of the mth mass as

My

m

(x̃, t) = �2E
1

I
1

a3
[a2✓y

m

(t)+a(a�3x̃)(✓y
m

(t)+✓y
m+1

(t))�3(2x̃�a)(w
m+1

(t)�w
m

(t))] , (4)

Vx

m

(x̃, t) =
6E

1

I
1

a3
[a(✓y

m

(t) + ✓y
m+1

(t)) � 2(w
m

(t) � w
m+1

(t))] , (5)

where w
m

is the displacement and ✓y
m

is the rotation about the y-axis of the mth mass
(see Appendix A for the derivation of (4) and (5)). In a similar way, the shear forces
Vy,+

j

(y
+

, t) and Vy,�
j

(y�, t) correspond to those in the transverse beam located at 0 < y < a
and �a < y < 0, respectively, for x = ja where j � bV t/ac. Here, the notation ỹ

+

= y
(ỹ� = y+a) represents the local coordinate for the transverse beam located at y > 0 (y < 0).
The shear forces Vy,�

m

adopt the same convention as described for Vy,+

m

in Fig. 2. As discussed
in Appendix A, the internal shear forces in these transverse elements take the form

Vy,±
m

(y±, t) = ⌥12E
2

I
2

a3
w

m

(t) . (6)

In (2), the term Q
m

(t) is the applied load at a node m. In addition, in Appendix A, we show
the angular momentum balance about the x-axis for a mass in the supported region shows
that the masses do not rotate about about the x-axis, i.e. ✓x

m

= 0 for m 2 Z.
Equations (2) and (3) then become

6

�
2[2w

m

(t) � w
m�1

(t) � w
m+1

(t)] � a[✓y
m+1

(t) � ✓y
m�1

(t)]
 

+ 24rw
m

(t)H(m � V t/a) +
Ma3

E
1

I
1

d

2w
m

(t)

dt2
=

a3

E
1

I
1

Q
m

(t) (7)

and
3[w

m+1

(t) � w
m�1

(t)] + a[✓y
m+1

(t) + ✓y
m�1

(t) + 4✓y
m

(t)] = 0 , (8)

where the contrast parameter r = E
2

I
2

/E
1

I
1

. In (7) and (8), we introduce the normalisations

˜t = t

r
E

1

I
1

Ma3
, ṽ = V

r
Ma

E
1

I
1

, w̃
m

(

˜t) =
w

m

(t)

a
, ˜Q

m

(

˜t) =
a2

E
1

I
1

Q
m

(t),

where the symbol “tilde" will be omitted in the following for ease of notation. In this case,
the dimensionless governing equations for the system are then

6

�
2[2w

m

(t) � w
m�1

(t) � w
m+1

(t)] � [✓y
m+1

(t) � ✓y
m�1

(t)]
 

+ 24rw
m

(t)H(m � vt) +
d

2w
m

(t)

dt2
= Q

m

(t) , (9)

and
3[w

m+1

(t) � w
m�1

(t)] + [✓y
m+1

(t) + ✓y
m�1

(t) + 4✓y
m

(t)] = 0 . (10)
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2.3 Derivation of the Wiener-Hopf equation

Since we consider the case of alternating generalised strains, we look for the displacements
and the rotations as functions of the moving coordinate ⌘ = m � vt as follows

w
m

(t) = (�1)

mw(⌘), ✓y(t) = (�1)

m✓y(⌘) , (11)

where w(⌘) and ✓(⌘) play the role of envelope functions (see [17]). In addition, we assume
the load takes the form Q

m

(t) = (�1)

mQ(⌘).
We introduce the Fourier transforms with respect to the variable ⌘ for the quantities wF,

✓yF as
{wF, ✓yF} =

Z 1

�1
{w(⌘), ✓y(⌘)}eik⌘d⌘ ,

where k is the dimensionless wavenumber. The following “half" transforms are also used:

w±(k) =

Z 1

�1
w(⌘)eik⌘H(±⌘)d⌘ , ±Im k > 0 , wF

= w
+

+ w� .

Here w
+

(w�) corresponds to a function analytic in the upper (lower) half of the complex
plane defined by k.

After substitution of (11) into (9) and (10) we obtain

6 {2[2w(⌘) + w(⌘ � 1) + w(⌘ + 1)] + [✓y(⌘ + 1) � ✓y(⌘ � 1)]}

+ 24rw(⌘)H(⌘) + v2
d

2w(⌘)

d⌘2
= Q(⌘) (12)

and
� 3[w(⌘ + 1) � w(⌘ � 1)] + [4✓y(⌘) � ✓y(⌘ + 1) � ✓y(⌘ � 1)] = 0. (13)

The Fourier transform of (13) with respect to the moving coordinate ⌘ leads to

✓yF = � 3i sin(k)

2 � cos(k)
wF (14)

and together with the Fourier transform of (12) we then obtain

h
1

(k, 0 + ikv)w
+

+ h
2

(k, 0 + ikv)w�= QF , (15)

where QF is the Fourier transform of the load Q and

h
j

(k, Y ) = ⌦

2

j

(k + ⇡) + Y 2 , j = 1, 2, (16)

⌦

1

(k) =

s
48 sin

4

(k/2)

2 + cos(k)
+ 24r , ⌦

2

(k) =

s
48 sin

4

(k/2)

2 + cos(k)
. (17)

Here
0 + ikv = lim

"!+0

("+ ikv) (18)

in (15) appears as a result of the causality principle discussed in [8], and represents the
passing from the transient regime to the steady-state regime in the Laplace transform. Note
that the expressions (17) correspond to dispersion relations for the problem in [45, 46], where
the fracture was considered for the pure steady-state failure regimes.
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Figure 3: Dispersion diagrams for equations (19) and (20) are shown as functions of the
wavenumber k for r = 1.2. The ray ! = kv intersects the dispersion curves at points, shown
as dots, with the k-coordinates y

1

, y
2

, y
3

and z
1

, z
2

, z
3

that are solutions of h
1

and h
2

,
respectively. The dotted inclined line has the gradient v

1

= 1.117 and represents the upper
bound of the alternating generalised strain failure regime. The dashed inclined lines represent
the bounds for the speeds of possible transmission regimes, where waves propagating ahead of
the transition front can occur. The occurrence of such regimes can increase with decrease of
the failure speed. Outside these intervals, failure regimes where evanescent waves propagate
ahead of the transition front are encountered.

3 Dispersion relations and characterisation of waves in
the structure

The dispersive properties of the structure can be determined from the zeros of h
j

, j = 1, 2,
in (15). In replacing Y by i! in (16) and rearranging for ! we obtain the dispersion relations

!
1

(k) = ⌦
1

(k + ⇡) =

s
48 cos

4

(k/2)

2 � cos(k)
+ 24r , (19)

for the waves ahead of the transition front and

!
2

(k) = ⌦
2

(k + ⇡) =

s
48 cos

4

(k/2)

2 � cos(k)
, (20)

for waves behind the transition front.
Waves inside the structure are assumed to propagate as a result of either the external

action from a remote load or through dissipation from the transition front. These waves
can be identified from the functions in (16). In Figure 3, we give a representative example
showing the dispersion curves !

1

and !
2

as functions of the wave number k, based on (19)–
(20), along with the generic line ! = kv.
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Characterisation of the waves. Intersections of the line defined by ! = kv with the
curve based on the relation !

1

in (19) represent waves propagating ahead of the transition
front (⌘ � 0). Those intersection points of this line with !

2

, given by (20), correspond to
waves behind the transition front (⌘ < 0).

By computing the group velocity of the wave defined by v
g

= d!/dk at each intersection
point, it is possible to determine the direction of propagation of the wave. Any intersection
point of the curve given by !

1

with the line ! = kv where v
g

< v or v
g

> v, indicates a wave
propagating in the supported region towards or away from the transition front, respectively.
In a similar way, any intersection of the curve provided by !

2

with the ray ! = kv where
v
g

> v or v
g

< v indicates a wave propagating in the unsupported region towards or away
from the transition point, respectively.

Roots of the functions h
j

, j = 1, 2. Here we describe, in general, possible roots of
the functions h

j

, j = 1, 2, which will determine the nature of the waves inside the structure.
These roots are associated with the intersections of the ray ! = kv and the curves determined
by the functions !

j

, j = 1, 2.
For the analytical model presented here, we consider the speed range 0 < v  v

1

= 1.117.
Here the upper bound determines the maximum speed for which the failure process can occur
under the alternating generalised strain regime. This upper bound is the slope of the dotted
inclined line in Figure 3. For the failure process with speed v to occur, it is required that
there exists one intersection point of the line ! = kv with the curve !

2

where v
g

> v. Such
a point defines a wave that can propagate behind and deliver energy to the transition front.

Zeros of h
1

. The function h
1

(k, ikv) has one, three or more pairs of simple zeros at the
points k = ±y

1

,±y
2

, . . . ,±y
2b+1

, with b 2 Z, b � 0. Here b depends on the speed v. Prior
to taking the limit in (18), according to [8], these zeros are located in the complex plane
and possess a small imaginary part. The sign of the imaginary part is then determined by
comparing the group velocity v

g

with the failure speed v. For the points

1. with k = ±y
1

, . . . ,±y
2b+1

, the group velocity v
g

< v and

2. with k = ±y
2

, . . . ,±y
2b

, the group velocity v
g

> v.

If v
g

< v (v
g

> v), these points are located in the upper (lower) part of the complex
plane defined by k. Thus in the limit (18), we have k = ±y

1

+ i0, . . . ,±y
2b+1

+ i0 and
k = ±y

2

� i0, . . . ,±y
2b

� i0.
Here, the points with v

g

< v can represent waves produced by a load situated far ahead
of the transition front. In the loading problem considered in the next section, the points with
v
g

> v will be associated with transmitted waves that propagate ahead of the transition front
in the steady-state failure process. These waves can appear for particular failure speeds and
an example of an interval of such speeds is shown in the shaded region in Figure 3. In this
case, the boundaries of this region correspond to the failure speed v = 0.5214 and v = 0.703.

Zeros of h
2

. The function h
2

(k, ikv) can have three, five or more pairs of simple zeros at
k = ±z

1

,±z
2

,±z
3

, . . . ,±z
2l+1

, l 2 Z, l � 1. Again l is a parameter which depends on the
speed v. For

1. k = ±z
1

,±z
3

, . . . ,±z
2l+1

, we have v
g

< v,

2. k = ±z
2

,±z
4

, . . . ,±z
2l

, it holds that v
g

> v.
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Again, in the limit in (18), we receive k = z
1

+i0, . . . , z
2l+1

+i0 and k = ±z
2

�i0, . . . ,±z
2l

�i0.
In the next section, in the problem concerning the loading of the structure, the wave

numbers here with a negative or positive imaginary part will correspond to feeding or reflected
waves, respectively, that appear behind the transition front during the steady failure regime.

4 The Wiener-Hopf equation and fracture criterion
Here, we develop the solution of (15) for the alternating generalised strain regime.

We rewrite this equation in the form

w
+

+

 

+

(k)

 �(k)
L(k)w� =

QF

h
1

(k, 0 + ikv)
, (21)

with

 

+

(k) =

lY

i=1

(0 � i(k � z
2i

))(0 � i(k + z
2i

))

(1 � ik)2(l�b)

bY

j=1

(0 � i(k � y
2j

))(0 � i(k + y
2j

))

, (22)

 �(k) =

(1 + ik)2(l�b)

bY

j=0

(0 + i(k � y
2j+1

))(0 + i(k + y
2j+1

))

lY

i=0

(0 + i(k � z
2i+1

))(0 + i(k + z
2i+1

))

, (23)

where
Q

0

j=1

= 1 and

L(k) =
 �(k)

 

+

(k)

h
2

(k, 0 + ikv)

h
1

(k, 0 + ikv)
. (24)

Here, L(k) > 0 for k 2 R and satisfies the conditions required for its factorisation. That is,
for k 2 R

Re(L(k)) = Re(L(�k)) and Im(L(k)) = Im(L(�k)) . (25)

In addition, L(k) ! 1 as k ! ±1 and the index of the function L(k) is zero. Then,
L(k) can be written using the Cauchy-type factorisation in the form:

L(k) = L
+

(k)L�(k) , L±(k) = exp
✓

± 1

2⇡i

Z 1

�1

lnL(⇠)

⇠ � k
d⇠

◆
, ±Im(k) > 0 .

In this representation, the function L
+

(L�) is analytic in the upper (lower) half of the
complex plane defined by k. Then, (21) can be written in the form of the Wiener-Hopf
equation

1

L
+

(k) 
+

(k)
w

+

+

1

 �(k)
L�(k)w� =

QF

L
+

(k) 
+

(k)h
1

(k, 0 + ikv)
. (26)
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4.1 The solution of the Wiener-Hopf equation

As in [8], non-trivial solutions of (26) correspond to singular points of the right-hand side.
Such singular points occur when

L
+

(k) 
+

(k)h
1

(k, 0 + ikv) = 0 .

As L(k) has no real zeros and, referring to Section 3 and (22), we note the above left-hand
side is only zero when k = ±y

2j+1

� i0, 0  j  b, and k = ±z
2j

� i0, 1  j  l. The
points k = ±y

2j+1

� i0, 0  j  b, correspond to the action of a remote force ahead of the
transition front as they are associated with the inequality v

g

< v. On the other hand, the
points k = ±z

2j

� i0, 1  j  l, represent the loading from behind the transition front (with
v
g

> v).
Here, we assume that the loading of the structure takes the form of an oscillatory mechan-

ical load. This load is situated at some point far from the transition front on the negative
x-axis with frequency !

0

= vk
f

, where we note in addition !
0

= !
1

(k
f

). Here k
f

, corre-
sponds to a feeding wave that causes the failure to propagate with constant speed v (see
section 6.2 for the description of how k

f

is chosen). Following [8], this allows one to rewrite
the right-hand side of (26) as

1

L
+

(k) 
+

(k)
w

+

+

L�(k)

 �(k)
w� =

h Cei�

0 � i(k � k
f

)

+

Ce�i�

0 � i(k + k
f

)

+

Cei�

0 + i(k � k
f

)

+

Ce�i�

0 + i(k + k
f

)

i
, (27)

where � is the phase of the feeding wave and C is a constant to be linked to the amplitude
of the feeding wave. The solution to the above equation is then found in the form

w
+

= L
+

(k) 
+

(k)


Cei�

0 � i(k � k
f

)

+

Ce�i�

0 � i(k + k
f

)

�
, (28)

w� =

 �(k)

L�(k)


Cei�

0 + i(k � k
f

)

+

Ce�i�

0 + i(k + k
f

)

�
. (29)

4.2 The fracture criterion and uniqueness of the solution

In terms of the moving coordinate system, the condition (1) can be re-interpreted for the
amplitude function w(⌘) as

w(0) = w
c

, and w0
(+0) < 0 . (30)

The first of these conditions can be satisfied by computing the limits

w(⌘)
��
⌘=0

= lim

k!i1
�ik w

+

= lim

k!�i1
ik w� (31)

using (28) and (29). In doing this we obtain

w
c

= 2Re(Cei�) , (32)

11



which allows for the determination of � if the feeding wave amplitude, and consequently C,
are known. With regard to the second condition in (30), we construct the asymptote of w

+

in (28) as k ! i1. which in terms of the physical variables represents the expansion

w(⌘) = w(+0) + ⌘w0
(+0) +O(⌘2) for ⌘ ! +0 .

We have

w
+

= �2Re(Cei�)

ik
� 2

k2


k
f

Im(Cei�) + Re(Cei�)

⇢
2(b � l) +

1

2⇡

Z 1

�1
lnL(⇠)d⇠

��
+O

✓
1

k3

◆

for k ! i1. Owing to the fact that
Z 1

0

⌘eik⌘dk =

1

(0 � ik)2
,

we obtain that the second condition in (30) is satisfied if

k
f

Im(Cei�) + Re(Cei�)

⇢
2(b � l) +

1

2⇡

Z 1

�1
lnL(⇠)d⇠

�
< 0 . (33)

This allows for � to be uniquely determined as a solution of (32).

5 Dynamic loading and waves in the steady-state frac-
ture regimes

We discuss the dynamic behaviour of the structure, subjected to a sinusoidal load, during
the alternating generalised strain failure process. In particular, concerning the wave radi-
ation processes associated with the moving transition front, we discuss the reflected and
transmitted waves emitted from this point.

5.1 Sinusoidal remote load and the feeding wave

We assume a sinusoidal load acts at some point far from the origin on the negative x-axis (see
Figure 2) inside the structure. The load has amplitude P

0

and frequency !
0

. Following the
normalisations adopted in Section 2.3, we introduce the normalised forms of these quantities
as

!̃
0

=

s
Ma3

E
1

I
1

!
0

, ˜P
0

=

s
a2

E
1

I
1

P
0

.

From here on, we omit the symbol “˜”. This load generates a wave incident on the moving
interface with the form

w
f

(⌘) =
P
0

2k
f

R
0

(k
f

,!
0

)

cos(k
f

⌘ � �) , (34)
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where � is the feeding wave phase, ⌘ = m � !
0

t/k
f

, with !
0

/k
f

= v being the phase speed
of the outgoing wave and

R
0

(k,!
0

) =

h
2

(k, i!
0

)

(0 � i(k � k
f

))(0 + i(k � k
f

))

, (35)

(see the Appendix B for the derivation of the amplitude in (34)).
We now determine the expression for the constant C in the solution (28), (29) by con-

sidering the fracture criterion at the point ⌘ = 0. We note that the form of the feeding wave
based on (34) can also be found if one considers the complex residues of the simple poles
at k = ±k

f

for the inverse Fourier transform of w�. This is derived under the assumption
⌘ ! �1, corresponding to a remote distance far behind the transition front and using

1

2⇡

Z 1

�1
w�(k)e

�ik⌘dk . (36)

In doing so, we have

w
f

=

h
 �(kf )

L�(kf )
Cei(��k

f

⌘)

+

 �(�k
f

)

L�(�k
f

)

Ce�i(��k

f

⌘)

i
. (37)

Noting that
 ±(�k) =  ±(k), L±(�k) = L±(k) ,

we obtain
w

f

= 2Re
h
 �(kf )

L�(kf )
Cei(��k

f

⌘)

i
. (38)

Comparing with (34), we see that

C =

L�(kf )P0

4k
f

R
0

(k
f

,!
0

) �(kf )
. (39)

5.2 Criterion for steady-state failure propagation in the alternating
generalised strain regime

For the crack to propagate steadily, it is required that amplitude of the feeding wave reaches
or exceeds the critical displacement, i.e.

w
f

(�0) � w
c

.

Using this condition, (32) and (39) yields the criterion

P � P
min

(40)

for the failure to propagate steadily in the alternating generalised strain regime, where

P = P
0

/w
c

and P
min

:= minP =

2k
f

R
0

(k
f

,!
0

)| �(kf )|
|L�(kf )|

. (41)
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Figure 4: The plot of P
min

in a typical range of loading frequencies !. Black curves are
associated with the pure steady-state regimes identified in [45, 46] and the grey curves are
computed using (40) and (41). The circles are results obtained from numerical simulations
implemented in MATLAB (discussed in Section 6), where a sufficiently large system loaded
by a sinusoidal load is considered and these failure regimes are identified. For a given
frequency in this interval, each curve provides the P

min

for the failure to propagate with a
speed v = !/k

f

. The speed is different for each curve and in this case the speeds form a
monotonically increasing sequence, with the grey dashed curve associated with the lowest
failure speed and the solid black curve corresponding to the highest possible failure speed.

Figure 4, shows the plot of P
min

in (41) for a representative range of load frequencies. The
computations are performed for r = 0.4, corresponding to a structure with soft supports,
which will be investigated further in Section 6. For a given choice of the load frequency,
the grey solid and dashed lines, based on (41) in Figure 4, predict the P

min

required for a
fracture process with speed v = !/k

f

to propagate through the flexural system. Here k
f

is
determined from the dispersion diagram. The grey solid curve corresponds to regimes with
a higher fracture speed than those connected with the grey dashed curve. These curves are
associated with the P

min

for the alternating generalised strain regime.
For illustrative purposes, we also plot the results of [45, 46] with black curves and these

predict the appearance of pure steady-state modes, where the sign of the bending moments
and shear forces are uniform at each instant of the failure process.

Accompanying these analytical computations is a verification of the predictions based
on numerical simulations for a sufficiently large finite structure implemented in MATLAB
(and described in detail in Section 6). There is a excellent agreement between the analytical
results, which are based on an infinitely long medium, and the results of the MATLAB
computations based on a finite medium.
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5.3 Dynamic features for the alternating generalised strain regime

Here, we give the representation of the envelope functions for the reflected and transmitted
waves encountered during the failure process based on (28) and (29). The expressions for
the associated waveforms in the structure may then be determined by combining the results
presented here with (11).

Reflected waves behind the transition front. The reflected waves can be derived from the
residues of the poles k = ±z

2j+1

+ i0, 1  j  l, of the function w� in (29). The functions
w(s)

r

, 0  s  l, representing the reflected waves, have the following form

w(s)

r

= A(s)

r

cos(z
2s+1

⌘ �  (s)

r

) ,

with amplitude A(s)

r

given by

A(s)

r

=

4|C|| r

�(z2s+1

)|
|L�(z2s+1

)||z2
2s+1

� k2

f

|

q
z2
2s+1

cos

2

(�+  
c

) + k2

f

sin

2

(�+  
c

)

where

 

r

�(z2s+1

) =

(�1)

b�l+1

(1 + iz
2s+1

)

2(l�b)

2iz
2s+1

bY

j=0

(z2
2s+1

� y2
2j+1

)

Y

0il

i 6=s

(z2
2s+1

� z2
2i+1

)

and the phase shift  (s)

r

given as

 (s)

r

= arg
⇣

�
i 

r

�(z2s+1

)(z
2s+1

cos(�+  
c

) + ik
f

sin(�+  
c

))

(z2
2s+1

� k2

f

)L�(z2s�1

)

⌘
,  

c

= arg(C) .

Waves transmitted ahead of the transition front. The waves that are transmitted ahead
of the propagating interface are associated with the poles of the function w

+

in (28), at the
points k = y

2j

� i0, 1  j  b.
The transmitted waves w(s)

tr

, 1  s  b, are given by:

w(s)

tr

= A(s)

tr

cos(y
2s

⌘ �  (s)

tr

) .

Here the amplitude A(s)

tr

has the form

A(s)

tr

=

4|C|| tr

+

(y
2s

)||L
+

(y
2s

)|
|y2

2s

� k2

f

|

q
y2
2s

cos

2

(�+  
c

) + k2

f

sin

2

(�+  
c

)

with

 

tr

+

(y
2s

) =

(�1)

l�b+1

2iy
2s

(1 � iy
2s

)

2(l�b)

lY

j=1

(y2
2s

� z2
2j

)

Y

1ib

i 6=s

(y2
2s

� y2
2i

)

.
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The phase shift  (s)

tr

is

 (s)

tr

= arg
⇣
i 

tr

+

(y
2s

)L
+

(y
2s

)[y
2s

cos(�+  
c

) + ik
f

sin(�+  
c

)]

y2
2s

� k2

f

⌘
.

Note, if b = 0, then there are no propagating waves transmitted to the intact structure.

6 Numerical simulations modelling the failure process
In this section, we implement a numerical scheme in MATLAB that models the behaviour
of a finite flexural structure subjected to a sinusoidal load. In addition, using the numerical
scheme we also trace the propagation of failure inside this structure as a result of the action
of the load. The scheme is based on the normalised governing equations (9) and (10) for the
system, which are solved using the ode45 routine of MATLAB.

We use the results from the analysis of the alternating generalised strain fracture regime
presented in Section 2, to show that we can predict: (i) when such regimes occur, (ii) the
speed with which the fracture propagates in such regimes and (iii) the behaviour of the
structure in these particular regimes.

6.1 The numerical model

A finite structure composed of 3800 nodes, connected by massless beams, is considered. As
the numerical scheme is based on the dimensionless equations (9) and (10), the dimensionless
length and flexural stiffness of the connecting beams can be taken equal to unity. Therefore,
the position of each mass is then given by x = n, 1  n  3800. The system is initially
at rest. We consider this structure composed of a region supported by transverse links and
a region where the masses along the central axis of the structure are unsupported by such
links. The supported region is characterised by the heterogeneity parameter r. The nodes
corresponding to 0  x  1999 constitute the unsupported part of the structure, behind the
interface, and the remaining 1800 nodes (corresponding to 2000  x  3800) represent the
system in the supported region. Therefore, the interface between these two media is initially
at n = 2000.

The external applied force is taken as a sinusoidal force having the form P
0

sin(!
0

t),
where P

0

and !
0

are the dimensionless load amplitude and frequency. This load is situated
at node x = 1800. We can choose the value of !

0

based on the frequency ! of the unforced
problem for the unsupported structure of infinite extent in the x direction. To generate
feeding waves in the unsupported structure capable of reaching the transition front, the load
frequency !

0

should be chosen in the interval 0 < !
0

<
p
48, representing the passband for

the analogous infinite medium. Below, we consider !
0

= 3.1 and 5.9 representing frequencies
located in the middle and close to the upper limit of the passband, producing waves capable
of exciting the microstructure. In the numerical scheme, the right end of the structure is
clamped at x = 3800, whereas the node at x = 1 is free. The structure’s size has been chosen
to minimise effects due to reflections produced by the ends.

As discussed in Section 5.1, the feeding waves generated by the load help to initiate and
propagate the failure process. Fracture regimes in two different types of structure are exam-
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Figure 5: Dispersion relations for r = 0.4. (a) The dispersion curves !
1

and !
2

for the case
of the alternating generalised strain regime for fracture propagation (see (19) and (20)). (b)
The dispersion curves !

3

and !
4

for the pure steady-state regimes that are associated with
the conditions (42) (see [45, 46]). The loading frequencies !

0

= 3.1 and 5.9 are shown as
dashed horizontal lines. The squares represent the intersection points of lower curves with
these lines, where the wave group velocity v

g

exceeds the wave phase velocity v. The slope
of the ray ! = kv that passes through the intersection points indicates possible steady-state
speeds. Those intersection points with the red diamonds are associated with failure regimes
observed in the MATLAB numerical simulations. (online version in colour)

ined here:

Case 1 : A structure whose supporting transverse links are “softer” than those along the
central axis of the structure (r = 0.4)

Case 2 : A structure with transverse supports that are much stiffer than the beams along
its central axis (r = 3.4).

6.2 Case 1 - soft supports

Here we show that it is possible to encounter two fracture regimes. The first involves the
regime where the failure will propagate if (1) is violated at the transition front. The second
concerns the regime defined by

w
j

(t) < w
c

, j � p, p, j 2 Z , (42)

where p represents the node number where the interface is located at a given time t. This
was studied in detail in [45, 46]. For these regimes, the sign of the generalised strains at the
instant of each fracture in the structure remains constant. We refer to the regimes associated
with (42) as the pure steady-state regimes .

We first show that speeds associated with the failure regimes observed can be predicted
from the dispersion curves (19), (20) and those identified in [45, 46].
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Failure speed predictions. A list of steady-state speeds for the considered fracture regimes
can be determined using the dispersion curves discussed in Section 3. Figure 5(a) shows the
dispersion curves (19), (20) plotted as functions of the wave number k for the case r = 0.4.
In addition, the horizontal dashed lines represent the loading frequencies !

0

chosen for the
MATLAB computations.

For the case !
0

= 3.1, the horizontal dashed line in Figures 5(a) and (b) associated with
this frequency intersect the curves given by !

2

(k) and !
4

(k) infinitely many times. Since we
require a feeding wave to reach the transition front inside the structure, we need the group
velocity v

g

of this wave to be greater than the fracture speed v i.e. the slope of the line
! = kv. For k > 0, we have indicated using squares the intersection points, representing
possible feeding waves, where this criterion is satisfied in Figure 5(a) and (b).

Without loss of generality, we take the first of these points (k⇤,!), shown in Figure 5(a),
along the line ! = 3.1 with the smallest wavenumber. We connect this point to the origin
by a ray whose slope is defined by v = !/k⇤ (see Figure 5(a)). This slope predicts a possible
steady-state speed of failure inside the structure. In the case of ! = 3.1 in Figure 5(a), such
an intersection point is given by (k⇤,!) = (4.915, 3.1) and the slope of the corresponding ray
is 0.6307. That particular intersection point corresponds to an alternating generalised strain
failure regime with speed v = 0.6307 initiated by the sinusoidal load of frequency ! = 3.1.

Owing to the 2⇡-periodicity of the function !
2

(k), a decreasing sequence of possible
speeds can be deduced in the form

v =

!

k⇤
+ 2⇡n

, n � 0, n 2 Z .

As an example, for the case ! = 3.1 in Figure 5(a), this list takes the form

v = 0.6307, 0.2768, 0.1773, 0.1304, 0.1032, ... . (43)

The intersection points connected with these speeds are shown along the line defined by ! =

3.1 in Figure 5(a) by squares.
In the MATLAB simulations we can also identify pure steady-state regimes correspond-

ing to the case when the failure propagation occurs as a result of the violation of (42) at
the transition front. In this scenario, following [45, 46], the dispersion relations are given
by !

j+2

(k) = ⌦
j

(k), j = 1, 2, (see (16)) and are shown in Figure 5(b). Repeating the proce-
dure outlined above, we can obtain the speeds in the pure steady-state regime. For ! = 3.1,
the list of predicted speeds for this regime is:

v = 1.7484, 0.3848, 0.2162, 0.1503, 0.1152, ... .

Predictions for the potential steady-state speeds at different load frequencies can be
calculated in a similar way.

Results of the transient analysis and identification of failure regimes. Here, for r = 0.4 and
! = 3.1, we analyse the failure processes in the finite structure for various load amplitudes.
We show that the failure processes discussed here and in [45, 46] both can appear as a result
of the action of the load.

Figure 6 shows a result of the transient computation presented here when one of the
alternating generalised strain failure regimes is initiated in the finite medium. As mentioned
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Figure 6: Displacement profile attained by the central axis of the harmonically excited
flexural system that is undergoing a steady failure with the alternating generalised strain
mode. The frequency and amplitude of the external load is !

0

= 3.1 and P = 13.115,
respectively. The heterogeneity parameter of the structure r = 0.4. The speed of failure for
this particular regime is 0.6307. Masses along the unsupported structure are represented by
black dots and those masses supported by transverse links are marked with crosses. The
limits ±w

c

, with w
c

= 1.7919, of the critical displacement for every mass in the supported
region is indicated by horizontal dashed lines. (online version in colour)

earlier, for a given load frequency, the appearance of these regimes is dependent on the applied
load amplitude. In Figure 6, we show the dynamic response of the structure when the speed
of this failure regime is maximal. There, as predicted by the analytical results in Sections 2–
5, the transition front propagates with a constant speed as a result of feeding waves from the
load providing energy to the front. This allows the front to reach the critical displacement
for the failure of the supports. During the steady propagation, waves are radiated outward
from the transition front when the failure of the supporting beams is achieved. The video
of the Supplementary data shows the evolution of this failure process and the behaviour of
the structure resulting from the transient analysis undertaken here. Later we show that in
the transient regime the failure process can occur non-steadily before reaching such states.
In particular, we will also demonstrate that dynamic response of the structured medium
is different when undergoing an alternating generalised strain failure mode when compared
with a pure steady failure mode.

Transient behaviour of the transition front

The failure of the finite structure resulting from the harmonic load was performed for a large
interval of load amplitudes. We denote by m⇤ the index of the mass where the transition
front is initially located. For the simulations m⇤

= 2000. The index m
i

= m�m⇤
+ 1 refers

to the index of a mass in the supported region where the failure of the transverse beams at
time t

i

, i � 1, i 2 Z, occurs. Simultaneously, as the length of the beams along the central
axis is equal to unity, m

i

also represents the position of the failure in the supported region
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Figure 7: For r = 0.4 and !
0

= 3.1, we show the behaviour of the transition front as
a function of time for various load amplitudes P . (a) The position of failure inside the
supported part of the structure as a function of time. (b) A magnification of the initial data
of the computations in (a). (online version in colour)

measured with respect to the initial position of the transition front.
Figure 7(a) shows several examples of the failure position as a function of time t for

various load amplitudes where steady failure regimes can be observed in the simulations.
Since the results are based on a transient simulation, we can expect some effects in the
initial period of the failure process. For instance, for P = 11.496 in Figure 7(b) we see a
visible oscillatory behaviour in the transition front speed initially. Similar behaviour can
also be seen for the computations based on the other load amplitudes.

After these initial periods, the transition process settles and the position of failure ap-
pears to behave as a linear function of time, representing that the steady-state failure phe-
nomenon has been achieved. After the transient failure process, we can calculate the av-
erage failure speed from the data shown. The average speed v̄ is then computed as the
slope of the line of best fit for this data. In this case, the average speeds obtained are
v̄ = 0.1773, 0.2162, 0.2768, 0.3848, 0.6307, 1.7484, that agree with the analytical predictions
for the possible failure speeds of Section 6.2. As expected from physical considerations,
Figure 7 shows that as the load amplitude is increased, a higher failure speed is achieved.

Actually, one can observe further oscillations in the failure speed when it appears to have
settled to a uniform state. We define the instantaneous speed v

i

for the fracture process as

v
i

=

m
i

� m
i�1

t
i

� t
i�1

, if i � 2 . (44)

Using the notion of the instantaneous speed, we also can understand how quickly the failure
process settles to the steady-state limit.

In Figure 8(a), we show the instantaneous speed plotted as function of the failure position
m

i

. Here, the instantaneous speed data presented corresponds to cases considered in Figure
7. To demonstrate the speed of convergence to the steady-state failure process, each set of
data for the instantaneous front speed has been normalised by the analytical prediction for
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Figure 8: (a) The normalised instantaneous speeds computed via (44) (and normalised by
the respective predicted steady-state speeds based on the dispersion diagrams in Section
3) as a function of the position of failure. (b) Magnification of the black box in (a). (c) A
magnification of the normalised instantaneous speed distribution as a function of the position
of failure for the case P = 10.101. The computations are performed for r = 0.4 and !

0

= 3.1.
(online version in colour)

the speed v
pred

that was attained in Figure 7 (see Section 6.2). In this case, convergence
to the steady-state speed is represented by the convergence to unity in Figure 8. It is
observed that the instantaneous speeds, for nearly all the load amplitudes, oscillate about
the predicted speed in each case (see the magnification in Figure 8(b)). In fact, Figure 8(b)
shows that there exist micro-oscillations in speed of the failure front not necessarily seen in
Figures 7(a) and (b). In addition, these oscillations in the transition front speed are not part
of the analytical model studied in Section 2–5, where the speed of the front is assumed to
be uniform.

Larger oscillations in the transition front speed are attained with larger values of the
amplitude P . The speed of convergence of these regimes appears to be a non-monotonic
function of the load amplitude.

In Figure 8(c), we show a special case (P = 10.101) where the instantaneous speed of
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Figure 9: The average failure speed shown as a function of the quantity P , for !
0

= 3.1
and r = 0.4. The circles and crosses represent the fracture behaviour for different regimes
recorded from MATLAB simulations. Specifically, the crosses are associated with the steady-
state propagation of the transition front and the circles indicate non steady-state propagation
regimes. The dashed horizontal lines are for the predicted steady-state speeds that follow
from the dispersion curve analysis in Section 6.2. Here, the plateaus for the steady-state
speeds are shown as red for the alternating generalised strain regimes and blue for the pure
steady-state regimes. (online version in colour)

the front does not converge to unity in the steady failure process, but instead settles to two
distinct speeds (given by v

i

/v
pred

approximately equal to 0.79 and 1.39 after the 118th failure
event). Although there is an apparent jump in the instantaneous speed of the failure, the
average speed v̄ is in fact equal to the predicted value 0.2768. Moreover, the corresponding
data representing the failure position as a function of time in Figure 7(a) exhibits a straight
line that is commonly associated with the steady-state failure propagation.

Dependency of the average failure speed on the load amplitude

In the Figure 9, we show the average fracture speed v̄ as a function of the normalised
oscillating force amplitude P . There we see six plateaus corresponding to the steady-state
speeds reached by the transition front observed in Figures 7 and 8. These include the
speeds v̄ = 0.1773, 0.2768, 0.6307, which correspond to alternating generalised strain regimes,
and v̄ = 0.2162, 0.3848, 1.7484 that are the speeds associated with the pure steady-state
regimes.

From Figure 9, we can conclude:

• The average speed is a monotonically increasing function of the load amplitude.

• There exists several plateaus, highlighted in red and blue indicating alternating generalised
strain regimes and pure steady-state regimes, respectively, where speeds predicted by the
analytical model are realised.
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MATLAB results Analytical results Regime
v̄ P

min

P
min

0.1773 8.985 8.932 1
0.2162 9.376 9.366 2
0.2768 10.045 10.055 1
0.3848 10.715 10.686 2
0.6307 11.887 11.742 1
1.7484 23.048 23.00 2

Table 1: Load amplitude values that initiate steady-state failure regimes for !
0

= 3.1 and
r = 0.4. The first two columns show the values for the average speed and the corresponding
minimum load amplitude P

min

when the regime was first identified from the numerical scheme
of MATLAB. The third column presents the analytical predictions for the load amplitude
based on the results of Section 4 and the theory of [45, 46]. In the last column, we specify
the regime encountered, where “1" represents the alternating generalised strain regime and
“2" indicates the pure steady-state regime.

• Only a finite collection of speeds predicted by the analytical model are realised and lower
speeds exist for narrow intervals of the load amplitude or are never realised.

• Between any two pure steady-state regimes, corresponding to the fracture process associ-
ated with criteria (1), there exists a plateau of finite width at the failure speed associated
with the alternating generalised strain failure regime.

• The size of plateaus for each steady-state regime corresponding to the alternating gener-
alised strain fracture process increases with the load amplitude. The same behaviour is
observed for the plateaus corresponding to the pure steady-state regimes.

• Outside the plateaus, the fracture propagates non-uniformly. Between two steady-state
speeds, we encounter the clustering phenomenon, first observed in [17], where fracture
propagates in regular periodic bursts.

Additionally, with reference to Section 5, we show that the analytical model can be used
to efficiently predict the initial load amplitudes when steady-state failure regimes can appear.
In Table 1, we present data from the MATLAB simulations when the steady-state regimes
are initiated and we supply the classification of each regime. The analytical predictions for
these load amplitudes, based on the right-hand side of (40) and the results of [45, 46], are
also given. We note that there is an excellent match between the analytical results and those
obtained from the numerical scheme implemented in MATLAB.

Note that here we have shown only a finite collection of the predicted speeds is obtained
in the simulations. The intervals of the load amplitude for when these steady-state speeds
can occur have the form [P

min

,P
max

]. For the alternating generalised strain regime, P
min

is
determined using (40) and (41), whereas for the pure steady-state regime it is determined
using the results of [45, 46]. On the other hand, the maximum value P

max

of the load
amplitude for which a steady-state regime can exist may be obtained by analysing the profile
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Figure 10: Snapshots of the transition front steadily propagating, with two different regimes,
through the structure excited by a harmonic load of frequency !

0

= 3.1. In (a) the snapshot
is taken at t = 1012.4 for P = 13.115 and there the alternating generalised strain regime
propagates with the average speed v̄ = 0.6307. In (b) t = 403 with P = 33.484 and this
corresponds to a pure steady-state failure regime with the average speed v̄ = 1.7484. The blue
circles in each panel are based on the analytical results presented in Section 4 and represent
the mass displacements. The crosses indicate those masses situated in the supported region.
The critical displacement for the links in the supported region is w

c

= 1.7919 and the
limits corresponding to this value are shown by horizontal dashed lines. The profiles shown
are obtained from the MATLAB simulations by identifying the nodal displacements and
rotations and using the results of Appendix A to reconstruct the deformation for the massless
beams. In both computations the heterogeneity parameter r = 0.4. (online version in colour)

of the structure based on the analytical solution, as shown in [46]. Here, for particular failure
modes, as the failure speed decreases the distance between P

min

and P
max

becomes smaller
(for instance, see Figure 9). In the case when the analytical model predicts P

min

> P
max

,
which is a physically unacceptable scenario, the corresponding failure regimes cannot be
realised.

Behaviour of the system during the dynamic failure processes

For P = 13.115, Figure 10(a) shows the system undergoing failure at a particular time
t = 1012.4 after the fracture of 600 pairs of transverse links. The failure here propagates
steadily under the alternating generalised strain regime. The average speed of this process
observed from the MATLAB simulations is v̄ = 0.6307. In this case, one can observe the
combination of the feeding and reflected waves behind the transition front. Ahead of this
point, there exists an evanescent wave. We note that at approximately t = 1034.0, when
the next failure occurs, the profile of the structure can be obtained from that shown in
Figure 10(a) mirrored about a horizontal line that corresponds to zero displacement. In
Figure 10(b), we consider a pure steady-state regime resulting from when external load
amplitude P = 33.484. The time when the snapshot is taken is t = 403. The average
steady-state speed achieved is v̄ = 1.7490 and as the failure propagates steadily, the profile
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of the structure local to the transition front is preserved. Figure 10(b) is an example of the
pure steady-state regimes studied in [45, 46] that also occur in the simulations presented
here.

In Figures 10(a) and 10(b), we compare the MATLAB simulation data for the arrange-
ment of the masses along the profiles with the analytical results of Section 4 and [45, 46]. In
Figure 10(a), for the computations based on the analytical results, the inverse Fourier trans-
form of (28) and (29) is computed using (39), ensuring that (33) holds for the feeding wave
phase determined from (32). For the computations in Figure 10(b), the same procedure is
followed based on the results of [45, 46]. We emphasise there is again an excellent agreement
between the MATLAB results and the analytical predictions.

Failure induced by a high frequency. Here, we give an example of when the alternating
generalised strain regime is never realised. In this illustration, !

0

= 5.9 and r = 0.4.
As mentioned earlier in Section 6.2, the analytical model predicts a semi-infinite list of
possible speeds for both the alternating generalised strain regimes and the pure steady-
state regimes (also see the dispersion curves of Figure 5 with the intersection points for
! = 5.9 (= !

0

)). However, we observe only one of the predicted steady-state speeds in the
MATLAB simulations.

Figure 11(a), shows the average speed v̄ as a function of the point load amplitude P .
This particular regime identified is a pure steady-state regime and the average failure speed
is v̄ = 2.3020. The load amplitude interval for where this regime is realised is 46.2172 
P  52.612. There is once again a good agreement with the predictions of analytical model
in [45, 46].

In Figure 11(b), we show the position of failure within the supported region as a function
of the time when P = 46.534, P = 49.7 and P = 51.282. These values are located within
interval defining the plateau for the pure steady-state failure process. For P = 46.534,
we see that the transition front speed is constant and equal to the predicted steady-state
speed v = 2.3020, after approximately 44 breakages. Prior to this, the front propagates
non-steadily in the transient regime. For P = 49.7, the pure steady-state regime is reached
earlier at approximately the 13

th breakage. For P = 51.282, we see the failure inside the
system settles to the steady-state regime after 100 breakages.

For the same amplitudes, in Figure 11(c), we present the instantaneous speed v
i

, defined
by (44), as a function of the position of fracture. The instantaneous speeds again oscillate
about the speed predicted by the analytical model. It is apparent from Figure 11(c) that for
those load amplitudes, situated at the extremes of the steady-state plateau in Figure 11(a),
the failure process will behave irregularly during a large initial period of the failure process.
For P = 49.700, which is situated inside the plateau of Figure 11(a), the process is seen to
converge to a more regular oscillatory behaviour earlier in the failure process.

6.3 Case 2 - stiff supports

Here we analyse the failure process in a structure possessing transverse links that are “stiffer”
than the links along the central axis of the structure.

Stiffer supports and intermediate load frequency. Here the supports in the system are
characterised by the parameter r = 3.4. We first study the case when this structure is
subjected to an oscillating force with a frequency !

0

= 3.1. Although the flexural stiffness
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Figure 11: Failure regimes identified for !
0

= 5.9 and r = 0.4. (a) The average failure speed
is shown as a function of P . The crosses represent results of the MATLAB simulations where
steady-state failure propagation is achieved, whereas as circles correspond to the non-steady
failure regimes. The horizontal dashed lines are the predictions for the steady failure speeds
based on the analytical model. In (b), we show the position of failure inside the supported
part of the structure as a function of time. On the inset in (b), we present magnifications
of the profiles where various non-steady propagation phenomena can be observed that are
associated with the transient failure process. (c) The normalised instantaneous speed v

i

/v
pred

computed using (44) as a function of the failure position. (online version in colour)
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of the transverse links inside the supported region is now larger compared to that of the
beams along the central axis, the list of admissible steady-state speeds for failure, outlined
in Section 6.2, remains the same. The MATLAB simulations described below indicate which
of these regimes are realised.

In Figure 12(a), we show the average speed v̄ as a function of P . We recall the results of
Section 6.2, where the same load frequency was considered and the structure was supported
by transverse links with a lower flexural stiffness. There, it was possible to find six failure
regimes (both alternating generalised strain regimes and pure steady-state regimes) with
different speeds.

When r = 3.4, we only observe one of the predicted steady-state speeds, v = 1.7484,
which corresponds to a pure steady-state regime with the highest possible speed. The regimes
analysed in Sections 2-4 are not observed. In comparing with the computations of Figure 9
for the case of a structure with softer supports, we note that the stiffer supports require larger
load amplitudes to initiate and maintain the failure propagation, as expected. Moreover, the
stiffer supports allow for a larger range of load amplitudes where the highest steady-state
speed can be observed (compare Figure 12(a) with Figure 9). The plateau in Figure 12(a)
is defined by the interval 99.452  P  211.972. This agrees with the predictions based on
the results in [45, 46].

Figure 12(b), shows the position of failure against time for P = 99.687, 195.62 and
211.815, located in the interval defining the plateau for the steady-state regime. For the
load amplitude P = 195.62 the time interval for the initial transient failure process appears
to be small and the steady-state regime is realised with the average speed v̄ = 1.7484. For
P = 99.687, the transition front converges to the steady-state regime after approximately
27 breakages. For the largest amplitude P = 211.815, the steady-state failure process is
achieved after approximately 48 breakages. It is interesting to note that for this larger
load amplitude, the non-steady failure process attributed to the transient regime is visible
and the profile propagates in steps that overlap (see inset of Figure 12(b)). This failure
process is known as a forerunning fracture and was first identified in the study concerning
the separation of a beam from an elastic foundation [39].

In addition, the normalised instantaneous speeds v
i

, calculated using (44), are shown in
Figure 12(c) as a function of the failure position. These computations reveal large fluctua-
tions in the transition front speed about the analytically predicted speed 1.7484, (represented
by unity on the vertical axis in this figure). It is evident that the failure process correspond-
ing to the load amplitudes P = 99.687 and 211.815 (located at the extremes of the plateau
in Figure 12(a)) give large fluctuations in the instantaneous speed of the transition front at
the beginning of the failure process. After some time, for all cases shown, the instantaneous
speeds oscillate about the predicted speed value in a regular manner and the amplitude of
the oscillations decrease as the fracture process develops (see inset of Figure 12(c)).

The example presented here shows that the number of failure regimes observed for dif-
ferent structures subjected to a remote sinusoidal load with a fixed frequency can vary. In
this case, the stiffer supports have reduced the number of possible failure regimes that are
realisable.

High frequency loading of structure with stiff supports. Finally, we consider a structure
with stiff supports and this structure is subjected to a sinusoidal load with a high frequency,
which is located near the upper boundary of the passband for unsupported part of the
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Figure 12: Computations for the failure process in the structure with supports characterised
by r = 3.4 subjected to a load with frequency !

0

= 3.1. (a) The average failure speed
shown as a function of P . Crosses represent the results of the MATLAB simulations where
steady-state failure propagation is achieved. The circles correspond to the non-steady failure
regimes. The horizontal dashed lines are the predictions of the failure speeds from the
analytical model. In (b), we show the position of failure inside the supported part of the
structure as a function of time. (c) The normalised instantaneous speeds based on (44) as a
function of the position of failure. (online version in colour)
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Figure 13: Results showing the behaviour of the transition front in the MATLAB simulations
for r = 3.4 and !

0

= 5.9. In (a), the average failure speed shown as a function of P . The
crosses are the results of the MATLAB simulations where steady-state failure is achieved and
the circles represent the non-steady failure regimes. The plateau indicated in red is for the
alternating generalised strain regime, whereas the blue plateau is for the pure steady-state
regime analysed in [45, 46]. Horizontal dashed lines correspond to the predictions for possible
failure speeds based on the analytical model. In (b), we show the position of failure as a
function of time for load amplitudes situated inside each plateau shown in (a). In (c), the
normalised instantaneous speed distributions v/v

pred

are presented for the data in (b). In
(d), for three load amplitudes in the plateau representing the alternating generalised strain
regime we present the normalised instantaneous speeds of the failure. (online version in
colour)
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structure.
This particular example shows that the alternating generalised strain regime can be

realised in high-frequency loading configurations. In fact, the results of the MATLAB sim-
ulations show there are two regimes encountered, as shown in Figure 13(a). In this figure,
it can be seen that plateaus exist for 90.386  P  105.341 and 218.57  P  376.664.
These intervals again agree well with the analytical predictions. The plateau corresponding
to the alternating generalised strain regime (with predicted speed 1.0344) is very narrow in
comparison to plateau belonging to the pure steady-state regime (having the predicted speed
2.3020). If we compare with the computations of Figure 7 for the same loading frequency,
but for the structure with softer supports, we see the present configuration admits additional
failure regimes at lower speeds.

Figure 13(b) shows how the position of failure varies as a function of time for load
amplitudes chosen inside the plateaus of Figure 13(a). The non-steady behaviour of the
transition front in the transient regime is noticeable and there exists a visible variation
in the failure speed. After this initial period, the system begins to settle to the steady-
state failure process. The instantaneous speed distribution obtained using (44) for the cases
analysed in Figure 13(b) is presented in Figure 13(c). It is again evident that there are
large oscillations in failure speed about the analytically predicted values in the initial period
of the failure process. When the failure process settles, the instantaneous speeds follow a
regular oscillatory pattern about the predicted speed. In this example, the computations
for the pure steady-state regime (P = 279.376) appear converge the fastest to the predicted
speed (see inset of Figure 13(c)) than those for the alternating generalised strain regime.
Finally, we comment on the instantaneous speed distributions, shown in Figure 13(d), for
some load amplitudes within the lowest plateau corresponding to the alternating generalised
strain regime. The instantaneous speeds associated with P = 92.851 and P = 105.177, at the
extremes of the load amplitude interval defining this plateau, clearly require a large duration
of time to settle to the steady-state failure speed. In fact in the case of P = 105.177, several
higher speeds are observed up to the 140th instant of failure. Following this, the instantaneous
speed eventually settles into steady oscillations about the predicted speed from the analytical
model for all cases shown in Figure 13(d).

7 Conclusions
We have developed an analytical model characterising a particular propagation regime in
a flexural system, composed of beams connecting periodically placed masses. The regime
identified corresponds to the scenario where the generalised strains, represented by bending
moments and shear forces in the beam connections, alternate in sign as the failure advances
through the system.

Analytical results characterising the dynamics of the system during its failure and when
possible failure regimes occur have been determined. In particular, the results have been
shown to provide excellent predictions for the behaviour of sufficiently long finite systems
subjected to sinusoidal loads that were modelled with a numerical scheme developed in MAT-
LAB. These simulations revealed that the existence of regimes modelled here is dependent
on the parameters describing the structure and sinusoidal loading. In addition, the failure
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regimes identified in [45, 46] can also be realised together with those studied here in the
MATLAB simulations.

The model can be generalised to consider different types of loading and more complicated
failure criteria, where other types of special failure phenomena may exist. Applications of
the tools developed here are envisaged in civil engineering, where the dynamics and failure
of large multi-structures are considered.
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Appendix

A Derivation of the governing equations in terms of generalised
coordinates of the masses

The displacements W
m

and W±
j

, along the horizontal and transverse beams, respectively,
can be found by solving the equations

d

4W
m

dx̃4

(x̃, t) = 0 , 0 < x̃ < a ,m 2 Z

and
d

4W±
j

dỹ4±
(ỹ±, t) = 0 , 0 < ỹ± < a , j > bV t/ac , j 2 Z ,

for t > 0, x̃ = x � am, ỹ
+

= y and ỹ� = y + a. The function W
m

satisfies the boundary
conditions

W
m

(0, t) = w
m

(t) ,
dW

m

dx̃
(0, t) = �✓y

m

(t) , W
m

(a, t) = w
m+1

(t) ,
dW

m

dx̃
(a, t) = �✓y

m+1

(t) .

The function W+

j

is subject to the conditions

W+

m

(0, t) = w
m

(t) ,
dW+

m

dỹ
(0, t) = ✓x

m

(t) , W+

m

(a, t) = 0 ,
dW+

m

dỹ
(a, t) = 0 ,

whereas W�
j

satisfies

W�
m

(0, t) = 0 ,
dW�

m

dỹ
(0, t) = 0 , W�

m

(a, t) = w
m

(t) ,
dW�

m

dỹ
(a, t) = ✓x

m

(t) .

Thus, from the above we have

W
m

(x̃, t) = �[a(✓y
m

(t) + ✓y
m+1

(t)) � 2(w
m

(t) � w
m+1

(t))]
x̃3

a3

+[a(2✓y
m

(t) + ✓y
m+1

(t)) � 3(w
m

(t) � w
m+1

(t))]
x̃2

a2
� ✓y

m

(t)x̃+ w
m

(t) (A.1)
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and

W+

m

(ỹ
+

, t) = [a✓x
m

(t) + 2w
m

(t)]
ỹ3
+

a3
� [2a✓x

m

(t) + 3w
m

(t)]
ỹ2
+

a2
+ ✓x

m

(t)ỹ
+

+ w
m

(t) ,

(A.2)

W�
m

(ỹ�, t) = [a✓x
m

(t) � 2w
m

(t)]
ỹ3�
a3

� [a✓x
m

(t) � 3w
m

(t)]
ỹ2�
a2

. (A.3)

Note, in the considered phase transition problem, the transverse supports fail at the connec-
tions to rigid interface. In this case, behind the transition front, the transverse beams are
attached to the masses at one end and are free at the other. At the free end, the bending mo-
ments and shear forces are zero. Hence, the displacements along these beams can be shown
to be linear functions of their local y-co-ordinate. Consequently, they do not contribute to
the linear and angular momentum balance of the masses behind the transition front (for
instance, see (2)).

The bending moments in the transverse beams applied about the x-axis can be calculated
via

Mx,±
m

(ỹ±, t) = E
2

I
2

d

2W±
m

dỹ2±
(ỹ±, t) .

The angular momentum balance about the y-axis for a mass in the supported region then
gives

Mx,+

m

(0, t) � Mx,�
m

(a, t) = 0 ,

where the right-hand side is zero as it is assumed all masses have negligible moments of
inertia. This together with (A.2) and (A.3) implies ✓x

m

= 0 in the supported region. The
shear forces in these beams then have the form

Vy,±
m

(ỹ±, t) = �E
2

I
2

d

3W±
m

dỹ3±
(ỹ±, t)

and using (A.2) and (A.3) leads to (6). The internal bending moments and shear forces in
the mth beam aligned with the horizontal axis, (see Figure 2) are computed via

My

m

(x̃, t) = �E
1

I
1

d

2W
m

dx̃2

(x̃, t) and Vy

m

(x̃, t) = �E
1

I
1

d

3W
m

dx̃3

(x̃, t) , (A.4)

respectively. Insertion of (A.1) into these relations yields (4) and (5).

B An oscillating point force in an infinite mass-beam chain

Here, we derive the amplitude associated with the outgoing waves generated by point force in
a mass-beam chain. The force is assumed to have frequency !

0

and amplitude P
0

. According
to the derivation of the governing equations in Section 2.2, the problem may be written as
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(B.1)
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and
3[w

m+1

(t) � w
m�1

(t)] + a[✓y
m+1

(t) + ✓y
m�1

(t) + 4✓y
m

(t)] = 0 , (B.2)

Here the Kronecker delta �
i,j

has been used to represent the position of the force in the
structure. We consider the complex solution of this problem, i.e. we look for the solutions
as

w
m

(t) = Re(w
m

(t)) , ✓y
m

(t) = Re(#y

m

(t)) (B.3)

which allows us to consider the problem in terms of complex functions w
m

and #y

m

:
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and
3[w
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(t) � w
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(t)] + a[#y
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(t) + #y
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Here we non-dimensionalise the equations by introducing
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and we will also assume the solutions take the form
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We drop the “tilde" in going forward and derive the system
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and
� 3[W
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] + 4⇥
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where all variables in the above equations are dimensionless. In the following, the discrete
Fourier transforms are used

WF

=

1X

m=�1
W

m

eikm and ⇥

y,F
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1X

m=�1
⇥

y

m

eikm .

We take the discrete Fourier transform to obtain

[�24(1 + cos(k)) + !2
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+ 12i sin(k)⇥y,F � iP
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= 0 , (B.9)

and
6i sin(k)WF
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= 0 . (B.10)

Combining (B.9) and (B.10) we have
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and applying the inverse discrete Fourier transform yields

W
m

= � i
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)

dk .

For outgoing waves from the source to exist we require that !
0

<
p
48, representing the pass

band of the structure. In this case, in the interval �⇡ < k < ⇡ the chosen load frequency
can be linked with two wave numbers ±k

f

⌥ i0, that define the waves propagating in the
medium. These wavenumbers are simple poles of the kernel in the above integral. The above
is then rewritten as
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where the positive function R
0

is defined in (35) and has no zeros on the real axis. Applying
the residue theorem, under the assumption m ! 1, the integral on the right-hand side has
the asymptote
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, for m ! 1 .

Finally, combining this with (B.6) and (B.3) leads to

w
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Thus, from this we see that the amplitude of the feeding wave in the problem considered in
Section 5 is

A =

P
0
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R
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,

where the variables in this expression are dimensionless.
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