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Glycosphingolipid expression 
at breast cancer stem cells 
after novel thieno[2,3‑b]pyridine 
anticancer compound treatment
Sandra Marijan1, Anita Markotić1, Angela Mastelić1, Nikolina Režić‑Mužinić1, 
Lisa Ivy Pilkington  2, Johannes Reynisson3 & Vedrana Čikeš Čulić  1*

Glycosphingolipid expression differs between human breast cancer stem cells (CSC) and cancer 
non-stem cells (non-CSC). We performed studies of viability, type of cell death, cancer stem cell 
percent and glycosphingolipid expression on CSC and non-CSC after treatment of MDA-MB-231 and 
MDA-MB-453 triple-negative breast cancer cells with a newly developed thienopyridine anticancer 
compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-
2-carboxamide, 1). Compound 1 was cytotoxic for both breast cancer cell lines and the majority of 
cells died by treatment-induced apoptosis. The percent of cancer stem cells and number of formed 
mammospheres was significantly lower. Glycosphingolipids IV6Neu5Ac-nLc4Cer and GalNAc-GM1b 
(IV3Neu5Ac-Gg5Cer) not reported previously, were identified in both CSCs and non-CSCs. IV6Neu5Ac-
nLc4Cer had increased expression in both CSCs and non-CSCs of both cell lines after the treatment 
with 1, while GM3 (II3Neu5Ac-LacCer) had increased expression only on both cell subpopulations 
in MDA-MB-231 cell line. GalNAc-GM1b, Gb4Cer (GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) and GM2 
(II3Neu5Ac-GalNAcβ1-4Galβ1-4Glcβ1-1Cer) were increased only in CSCs of both cell lines while 
GD3 was decreased in CSC of MDA-MB-231 cell line. Due to its effect in reducing the percentage of 
cancer stem cells and number of mammospheres, and its influence upon several glycosphingolipid 
expressions, it can be concluded that compound 1 deserves attention as a potential new drug for 
triple-negative breast cancer therapy.

The thieno[2,3-b]pyridines were initially discovered as potential inhibitors of phospholipase C (PLC) isoforms by 
virtual high throughput screen (vHTS)1. Recently, we described glycoconjugate GM3 and CD15s expression in 
MDA-MB-231 triple negative breast cancer stem cell subpopulation cultured with 3-amino-5-oxo-N-naphthyl-
5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide, which was developed as a putative PLC inhibitor. A 
close structural analogue of 3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quin-
oline-2-carboxamide, or compound 12 was chosen for this study due to its enhanced potency against the MDA-
MB-231 cell line and its mechanism of action has been investigated3,4. Due to their ability to self-renew and to 
regenerate the primary tumour phenotypic heterogeneity, cancer stem cells are important therapeutical targets5. 
CSCs are defined with their CD44+/CD24− or CD133+ phenotype6. It is believed that CSCs are involved in therapy 
resistance in various cancers, including triple-negative breast cancers, i.e., breast cancers that do not express the 
genes for estrogen receptor, progesterone receptor and the human epidermal growth factor receptor-27.

Glycosphingolipids (GSLs), consisting of a hydrophobic ceramide and hydrophilic carbohydrate residues, are 
an important component of cell plasma membranes. They regulate numerous cellular processes like adhesion, 
proliferation, apoptosis, recognition, modulation of signal transduction pathways and cancer metastasizing8,9. 
GSLs are classified based on their structure. Gangliosides have been characterized by the presence of a com-
mon core structure Galβ1-4Glcβ1-1Cer and/or ganglio-N-tetraosyl core (Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-
1Cer), and one or two α2-3NeuAc linked to internal or terminal Gal, or both10. Due to their sialic acid content 
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(NeuAc), gangliosides are acidic GSLs. In addition to gangliosides with ganglio-N-tetraosyl core, neolacto-series 
gangliosides were described, with a Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer core structure. They are terminally 
α2-3 or α2-6-sialylated, forming IV3Neu5Ac-nLc4Cer, and IV6Neu5Ac-nLc4Cer gangliosides, respectively11,12. 
Globo-series GSLs are a major component of human erythrocytes, termed “globoside” since its representative, 
Gb4Cer was obtained as a globular precipitate10. Globotriaosylceramide, Gb3, was found to have the structure 
Galα1-4Galβ1-4Glcβ1-Cer, and this structure is the inner core of all globo-series GSLs13,14. Liang et al. described 
greatly reduced levels of Fuc(n)Lc4Cer and Gb3Cer, and much higher levels of GD2 (Galβ3GalNAcβ3Galα4Ga
lβ4GlcβCer), GD3 (II3(Neu5Ac)2-LacCer), GM2, and GD1a in breast CSCs in comparison to cancer non-stem 
cells15. Approximately 50% of invasive ductal carcinomas overexpress GD3, 9-O-acetyl-GD3, and 9-O-acetyl-
GT316. GD2+ subpopulation shows more mesenchymal stem cell features in breast phyllodes tumors17. Gb5 
(GalNAcβ4Galβ4GlcβCer) is a potential marker of breast CSCs18. During induced epithelial–mesenchymal transi-
tion, Gg4 (gangliotetraosylceramide) and its synthase B3GALT4 are significantly reduced19.

Considering the role of CSCs in tumor relapse and resistance, the aim of this study was to investigate the 
effect of newly synthesized thieno[2,3-b]pyridine anticancer agent 1 on CSC glycosphingolipid expression. Six 
gangliosides GM3, GD3, GM2, GalNacGM1b, IV3Neu5Ac-nLc4Cer, and IV6Neu5Ac-nLc4Cer and three neutral 
GSLs (Gg3Cer, Gb4Cer, and nLc4Cer) were examined. GSL expression was compared between CSCs and non-
CSCs. Cell metabolism and the type of cell death after administration of derivative 1 were assessed using the 
MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and double cell staining (Annexin-V-
Fluorescein isothiocyanate (FITC) and propidium iodide (PI)), respectively. The mammosphere formation assay 
has been used for determination of cancer stem cell activities in breast cancer cell lines20. According to Croker 
et al.21, MDA-MB-231 population consist of 80% CSCs (CD44+CD24−). In addition to this canonical lethal CSC-
like MDA-MB-231, non-stem breast cancer MDA-MB-453 cells22 were studied in their response to new inhibitor.

Methods
Chemistry and cell line.  3-Amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]
quinoline-2-carboxamide (compound 1) (Fig. 1) was dissolved in dimethyl sulfoxide (DMSO). Cancer cell lines 
MDA-MB-231 and MDA-MB-453 were grown in a humidified incubator at 37 °C and 5% CO2 in Dulbecco’s 
Modified Eagle Medium (DMEM, Sigma-Aldrich, Steinheim, Germany) containing 10% fetal bovine serum and 
1% antibiotics.

Cytotoxic activity assay.  Cell metabolism was measured with MTT to estimate cell viability23. Equal 
numbers of cells were plated in five replicates and allowed to attach overnight. Cells were then treated with com-
plete media or individual solutions of 1 at 50 nM, 0.25, 0.5, 1 and 5 µM in complete media, in five repetitions, for 
4, 24, 48 and 72 h. Following treatment, cells were incubated with 0.5 mg/ml MTT in media for 1 h and then the 
media was removed and DMSO was added. Absorbance was measured at 570 nm24.

Flow cytometric analyses.  Equal numbers of cells were seeded in 6-well plates and treated with 2 µM 
1 and then analysed for apoptosis. After treatment with 1, the cells were trypsinized, washed with phosphate 
buffered saline (PBS) and resuspended in 100 µl of the binding buffer containing 5 µl Annexin-V-FITC and/or 
5 µl of PI (Annexin-V-FITC Apoptosis Detection Kit I, BD Biosciences). The cells were incubated for 15 min at 
room temperature in the dark and thereafter analysed by flow cytometry (BD Accuri C6, BD Biosciences). The 
percentages of apoptotic cells (Annexin-V positive cells) were analysed using the FlowLogic Software (Inivai) 
and presented as mean ± standard deviation (SD).

MDA-MB-231 cells treated with 1 for 48 h, as well as the controls, were stained with anti-CD44-FITC (BD 
Biosciences), anti-CD24-phycoerythrin (PE, eBioscience, Inc. San Diego, CA, USA) and anti-GSL antibodies. The 
primary antibodies against GM3 (mouse IgM) and GD3 (mouse IgG3) were from Cosmo Bio Co. (Tokyo, Japan) 
and produced by laboratory of Dr. J. Müthing, respectively25. All other anti-GSL antibodies (against Gb4Cer, 
nLc4Cer, IV3Neu5Ac-nLc4Cer, IV6Neu5Ac-nLc4Cer, GM2, Gg3Cer (gangliotriaosylceramide, GalNAcβ1-4Galβ1-
4Glcβ1-1Cer) and GalNAc-GM1b) were chicken polyclonal antibodies being produced and characterized by the 
laboratory of Dr. J. Müthing26. Binding of primary anti-GSL antibodies was detected with secondary antibodies 
conjugated with eFluor 660 fluorochrome (Abcam).

In addition to three antibodies used for MDA-MB-231 cells, MDA-MB-453 cells were stained with 
anti-CD133-PE/Cy7 (BioLegends, San Diego, USA).

Data acquisition of triple and fourfold stained samples was performed on a BD Accuri 6 cytometer and 
analysed using the FlowLogic Software. CD44+ cells and CD133+ were gated and CSC were determined. 

Figure 1.   The structure of the newly synthesized anticancer agent (compound 1). Note Compound 1, 3-amino-
5-oxo-N-naphthyl-5,6,7,8-tetrahydrothieno[2,3-b] quinoline-2-carboxamide.
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Glycosphingolipids Gb4Cer, nLc4Cer, IV3Neu5Ac-nLc4Cer, IV6Neu5Ac-nLc4Cer, GM3, GD3, GM2, Gg3Cer and 
GalNAc-GM1b were determined on CSCs (CD44+CD24−) and non-CSCs (CD44−/CD24+, CD44+CD24+ and 
CD44−/CD24−) in the MDA-MB-231 and CSCs (CD133+) and non-CSCs (CD133−) in the MDA-MB-453 cell line.

Mammosphere forming assay.  Cells derived from MDA-MB-231 and MDA-MB-453 cell lines were 
plated in 6-well low attachment suspension culture plates (Corning® Costar® Ultra-Low Attachment Multiple 
Well Plate, Thermo Fisher Scientific, Waltham, MA, USA) at a density of 3.5 × 104 viable cells/well. Cells were 
grown in 2 ml MammoCult Medium Human Kit, supplemented with Proliferation Supplement 0.1 mg/ml, Hepa-
rin Solution 4 µg/ml, Hydrocortisone Stock Solution 0.48 µg/ml (all StemCell Technologies, Vancouver, Canada) 
and antibiotics (1% penicillin/streptomycin, Sigma-Aldrich, Steinheim, Germany). After 7 days of incubation, 
mammospheres larger than 50 μm were counted with an Motic AE31E Inverted Microscope (Thermo Fisher 
Scientific, Waltham, MA, USA) and pictured with Industrial Digital Camera (Lacerta GmbH, Austria).

Statistical analysis.  For statistical analyses t-test with unequal variances, one-way ANOVA followed by 
post-hoc Tukey test or Kruskal–Wallis followed by Dunn’s post-hoc test was performed using statistical software 
GraphPad Prism 7.0 (San Diego, CA, USA) with the significance set at P < 0.05.

Ethics approval and consent to participate.  Not applicable.

Consent for publication.  Not applicable.

Results
Compound 1—cytotoxicity.  Cell viabilities, after 4, 24, 48 and 72 h treatment with 1, detected with the 
MTT assay are shown in Fig. 2. In the MDA-MB-231 cell line Compound 1 was shown to be cytotoxic in 0.5 µM 
concentration after only 4 h of treatment and ten times lower concentration (50 nM) resulted in cytotoxicity 
after 48 h. But maximal cytotoxicity was only achieved for 47% of the cells, 72 h after treatment with 5 µM of 1 
(Fig. 2A). In the MDA-MB-453 cell line, concentration of 250 nM of 1 showed cytotoxicity after 48 h and the 
maximum of cytotoxic effect was after 72 h after treatment with 5 µM of 1 (Fig. 2B).

Compound 1—mechanism of cell death.  To determine whether the MTT findings are due to cell death 
or cell cycle arrest, we subsequently determined the type of cell death induced by 48 h treatment with 2 µM of 
compound 1. The majority of cells died by treatment-induced apoptosis in both cell line as shown in Fig. 3. 

Figure 2.   Cell viability after compound 1 treatment. Notes Cells were treated with a different concentration 
of compound 1 for 4, 24, 48 and 72 h in the MDA-MB-231 (A) and in the MDA-MB-453 cell line (B) and cell 
metabolism evaluated by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Data 
are expressed as a mean from experiment performed in triplicate ± SD. Columns, mean of viable cells; bars, SD 
(standard deviation); *P < 0.05; **P < 0.01; ***P < 0.001. SD standard deviation.
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Compound 1 treated cells showed significant increase in early apoptosis (Annexin-V+PI− subpopulation) in 
MDA-MB-231 and in MDA-MB-453 cells compared with non-treated cells, as shown in Fig. 3A, B.

Mammosphere formation.  To determine whether the MDA-MB-231 and MDA-MB-453 cancer stem 
cells are sensitive to compound 1, the number of mammospheres was counted. After treatment with compound 
1 the number of mammospheres was significantly decreased in both MDA-MB-231 (Fig. 4A) and MDA-MB-453 
(Fig. 4B) cell line for 52% and 99%, respectively.

Cancer stem cells.  In breast cancer cell lines, such as MDA-MB-231, a subset of markers, including 
CD44+/CD24− has been shown to enrich CSC27. Treatment with 1 resulted in a statistically significant decrease 
of the CD44+/CD24− subpopulation from 89.9% (untreated control) to 55.5% (Fig. 5A). In the MDA-MB-453 
breast cancer cell line, expression of CD44 is very low and CD44+/CD24− subpopulation is not considered CSC 
subpopulation6, and this subpopulation significantly increases after treatment with 1 (Fig. 5C). Much more reli-
able marker of CSCs in the MDA-MB-453 cell line is CD133. After treatment with 1, a significant decrease of 
CD133+ subpopulation from 48.3% in untreated control to 19.4% was obtained (Fig. 5B).

Expression of terminally sialylated gangliosides at CSCs and non‑CSCs.  Glycosphingolipid 
expression was then studied in CSC (defined as CD44+/CD24− subpopulation in MDA-MB-231 cell line, and 
CD133+ in MDA-MB-453 cell line), with the aim of checking whether the cytotoxic effects of 1 are mediated via 
different GSL membrane content. In addition, GSL expression was determined in non-CSCs, being detected as 
three subpopulations CD44+/CD24+, CD44−/CD24− and CD44−/CD24+ in MDA-MB-231 cell line and CD133− 
in MDA-MB-453 cell line. Expression of each GSL per one cell is represented with geometric mean fluores-
cence intensity (GMI). The portion of the cells that are GSL positive is an interesting parameter, however of less 
impact in comparison to GMI. The terminal sugar residue of gangliosides GM3, GD3, IV3Neu5Ac-nLc4Cer and 
IV6Neu5Ac-nLc4Cer is sialic or N-acetyl-neuraminic and the last step of ganglioside GM2 and GalNAc-GM1b 
synthesis is transfer of GalNAc residue. Therefore, GM2 and GalNAc-GM1b expression was analysed (see next 
section) together with neutral GSLs Gg3Cer and Gb4Cer (globotetraosylceramide, GalNAcβ1-3Galα1-4Galβ1-
4Glcβ1-1Cer), that also contain terminal GalNAc residue.

Figure 3.   Apoptosis after compound 1 treatment. Notes Percentage and dot plots of apoptotic cells without and 
with 1 treatment for 48 h in the MDA-MB-231 (A) and in the MDA-MB-453 cell line (B). Data represent are 
expressed as a mean from experiment performed in triplicate ± SD. Columns, mean of cells; bars, SD; *P < 0.05; 
***P < 0.001. SD standard deviation.
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In MDA-MB-231 cell line, the percentage of GM3 positive cells was increased, whilst IV6Neu5Ac-nLc4Cer 
positive cells decreased within both cell subpopulations, CSC and non-CSC (Fig. 6A, B, upper row). Only the 
CSC population showed an increased percentage of GD3 positive cells after treatment with compound 1 (Fig. 6A, 
upper row). Expression of IV3Neu5Ac-nLc4Cer was not affected by treatment with compound 1. Compound 1 
increases expression of IV6Neu5Ac-nLc4Cer in both CSC and non-CSC (Fig. 6C, upper row), while non-CSC 
GD3 was decreased (Fig. 6D, upper row).

In MDA-MB-453 cell line, the percentages of GM3, IV3Neu5Ac-nLc4Cer and IV6Neu5Ac-nLc4Cer positive 
cells were significantly increased only in CSC subpopulation, whilst IV6Neu5Ac-nLc4Cer positive cells decreased 
within non-CSC (Fig. 6A, B, lower row). Percentage of GD3 positive cells was not affected by treatment with 
compound 1 (Fig. 6A, B, lower row). Compound 1 increases expression of IV3Neu5Ac-nLc4Cer in both CSC 
and non-CSC cells, while expression of GD3 was increased only in CSC subpopulation, and expression of 
IV6Neu5Ac-nLc4Cer in non-CSC cells (Fig. 6C, D, lower row).

Expression of gangliosides and neutral GSLs with terminal GalNAc residue at CSCs and 
non‑CSCs.  The percentage of GM2 positive cells was decreased within both cell subpopulations, CSC and 
non-CSC in MDA-MB-231 cell line (Fig. 7A, B, upper row), whilst only CSC populations showed an increased 
percentage of GalNAc-GM1b, Gg3Cer, and Gb4Cer positive cells after treatment with compound 1 (Fig. 7A, 
upper row). Compound 1 significantly increases the expression of GalNAc-GM1b, Gb4Cer and GM2 (Fig. 7C, 
upper row) in CSC and not significantly the expression of GM2 in non-CSC of MDA-MB-231 cell line (Fig. 7D, 
upper row).

In MDA-MB-453 cell line, percentages of GM2, GalNAc-GM1b, Gg3Cer, and Gb4Cer positive cells were 
significantly increased only in CSC subpopulation, whilst percentage of GM2 was slightly decreased in non-CSC 
subpopulation (Fig. 7A, B, lower row). Compound 1 significantly increases the expression of GM2, GalNAc-
GM1b, Gg3Cer, and Gb4Cer in CSC subpopulation (Fig. 7D, lower row), while expression of these GSLs was not 
affected by treatment with compound 1 in CSC of MDA-MB-453 cell line (Fig. 7C, lower row).

Expression of neutral GSL with terminal Gal residue at CSCs and non‑CSCs.  There was no differ-
ence in the percentage of nLc4Cer positive cells in both CSC and non-CSC after treatment of MDA-MB-231 cells 
with compound 1 (Fig. 8A, B, upper row). Also, the expression of nLc4Cer was not affected by compound 1, in 
both cell subpopulations of this cell line (Fig. 8C, D, upper row).

The percentage of nLc4Cer positive cells was significantly increased in CSC subpopulation in MDA-MB-453 
cell line treated with compound 1 (Fig. 8A, lower row), and not affected in non-CSC− subpopulation (Fig. 8B, 

Figure 4.   Mammosphere formation after compound 1 treatment. Notes Number of mammospheres without 
and with compound 1 treatment for 7 days in the MDA-MB-231 (A) and in the MDA-MB-453 cell line (B) and 
photos with × 100 magnification (scale bar, 200 μm) in the MDA-MB-231 (C) and in the MDA-MB-453 cell 
line (D). Mammospheres with a size over 50 μm were evaluated. Data represent are expressed as a mean from 
experiment performed in triplicate ± SD. Columns, mean of cells; bars, SD; **P < 0.01. SD standard deviation.
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lower row). The expression of nLc4Cer was increased in non-CSC subpopulation treated with compound 1 
(Fig. 8D, lower row), while expression of nLc4Cer was not affected by treatment with compound 1 in CSC of 
MDA-MB-453 cell line (Fig. 8C, lower row).

Discussion
We found that newly developed anticancer compound, 3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-
5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide (compound 1; Fig. 1) was cytotoxic for both breast 
MDA-MB-231 and MDA-MB-453 cancer cells. In comparison to related 3-amino-5-oxo-N-naphthyl-5,6,7,8-
tetrahydrotieno[2,3-b]quinoline-2-carboxamide, reported earlier2, compound 1 was more cytotoxic. Halving 
of MDA-MB-231 cell viability was achieved with fivefold lower concentration after 4 h of treatment (5 µM 
compared to 25 µM). Both compounds are not lipophilic promiscuous inhibitors but target a specific receptor28. 
The molecular weight for compound 1 (385.867 g/mol) is in the so called ‘sweet spot’ for drug development29.

Determination of the type of cell death showed that 1-induced cell death of breast cancer cells occurred mainly 
by apoptosis and the percentage of CSC subpopulation was significantly lower after treatment with 1. For the first 
time, we report IV6Neu5Ac-nLc4Cer and GalNAc-GM1b GSL expression, in both breast CSCs and non-CSCs. 
After treatment with compound 1, a significant increase in IV6Neu5Ac-nLc4Cer expression in both cell sub-
populations of both MDA-MB-231 and MDA-MB-453 cell lines was observed and increase of GM3 only on both 
cell subpopulations in MDA-MB-231 cell line. Increase of GalNAc-GM1b, Gb4Cer and GM2 was only observed 
in CSCs of both cell lines, whilst non-CSCs of MDA-MB-231 cell line expressed lower GD3 after compound 1 
treatment. Expression of GD3 on non-CSCs of MDA-MB-453 cell line was not affected by compound 1 treatment.

Glycosphingolipids that were increased in both CSCs and non-CSCs after compound 1 treatment of MDA-
MB-231 cells are acidic GSLs: gangliosides GM3 and IV6Neu5Ac-nLc4Cer. Sialic or N-acetyl-neuraminic acid 
(Neu5Ac) is added in the last step of their synthesis (Fig. 9A). The last step of GalNAc-GM1b, Gb4Cer and GM2 
synthesis, that were increased only at CSCs after compound 1 treatment, includes GalNAc addition. GalNAc 
residue must be activated by binding to UDP-GalNAc. That is achieved mostly by conversion of UDP-GlcNAc to 
UDP-GalNAc (Fig. 9B). Fructose-6-P is common metabolite of glycolysis and UDP-GalNAc synthesis. Neu5Ac, 

Figure 5.   CSCs after compound 1 treatment. Notes Percentage of CD44+CD24− CSCs after treatment 
with compound 1 for 48 h in MDA-MB 231 (A) and in the MDA-MB-453 cell line (B) and CD133+ CSCs 
in the MDA-MB-453 cell line (C). Data represent are expressed as a mean from experiment performed in 
triplicate ± SD. Columns, mean of cells; bars, SD; *P < 0.05, ***P < 0.001. CSCs cancer stem cells, SD standard 
deviation.
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needed for acidic GSL synthesis, and UDP-GalNAc share UDP-GlcNAc as common precursor (Fig. 9B)30. In 
non-treated MDA-MB-231 cells, we found a 23-fold higher GalNAc-GM1b expression in non-CSCs compared 
to CSCs, together with increased Gb4Cer and IV6Neu5Ac-nLc4Cer, all containing GalNAc as last sugar residue 
(Fig. 9A, C). In addition, gangliosides GM2 and GM3, were increased in non-treated non-CSCs, but not so dra-
matically as GalNAc-GM1b. These results indicate that glycolysis could be slower in non-treated non-CSCs in 
comparison to CSC, giving more precursors for UDP-GalNAc and Neu5Ac synthesis. Therefore, the findings at 
CSCs after compound 1 treatment of MDA-MB-231 cells, increased GM3, IV6Neu5Ac-nLc4Cer, GalNAc-GM1b, 
Gb4Cer, and GM2, could indicate CSC glycolysis slowdown. Cancer stem cells of glioma are more glycolytic 
than non-CSCs due to a mitochondrial voltage-dependent anion channel that controls the phenotype transition 
between glioma stem cells and non-stem cells31. The channel is highly expressed in non-CSC relative to CSC and 
coupled to a glycolytic rate-limiting enzyme platelet-type of phosphofructokinase on mitochondrion to inhibit 
kinase-mediated glycolysis required for CSC maintenance.

During tumorigensis, distinct GalNAc transferases (GALNTs) can be differently expressed. Glycosylation 
of E-cadherin with GalNAc starts in the Golgi apparatus by glycosyltransferases called GALNTs32. E-cadherin 
combines mechanotransduction and EGFR signaling to regulate junctional tissue polarization and tight junction 
positioning33, GALNT3 preserves the epithelial state in trophoblast stem cells. The loss of GALNT3 expression 
diminishes O-GalNAc glycosylation and causes epithelial–mesenchymal transition32. Due to replacement of 
E-cadherin by N-cadherin in the mammary gland, fibrocystic changes and tumor formation occur34. N-cadherin 
causes FGFR upmodulation which results in epithelial-to-mesenchymal transition (EMT) and stem/progenitor 
like properties35. We can speculate that GALNT responsible for GalNAc-GM1b synthesis is sensitive to similar 
effectors as GALNT3. There is no data in literature concerning GalNAc-GM1b expression in cancer stem cells. 
We found lower GalNAc-GM1b in CSCs compared to non-CSC MDA-MB231. This finding is in accordance with 
the results of Guan et al. During induced epithelial–mesenchymal transition of breast cells, there is significantly 
reduced Gg4 and its synthase B3GALT419. Neutral glycosphingolipid Gg4 is a direct precursor of GM1b. GM1b is 
further a direct precursor of GalNAc-GM1b, as it is presented in Fig. 9A. On the other hand, GALNT14 shows the 
opposite effects. It catalyzes O-glycosylation of EGF-containing fibulin-like extracellular matrix protein 2. This 
significantly increases the invasion ability of breast cancer cell lines (MCF-7 and MBA-MD-231)36,37. GALNT14 

Figure 6.   Percentage and geometric mean fluorescence intensity of terminally sialylated ganglioside positive 
cell subpopulations. Notes Percentage of CSCs in the MDA-MB-231 and in the MDA-MB-453 (A) and non-
CSCs in MDA-MB 231 and in the MDA-MB-453 cell lines (B). Geometric mean fluorescence intensity of CSCs 
in MDA-MB 231 and in the MDA-MB-453 (C) and non-CSCs in the MDA-MB-231 and in MDA-MB-453 
cell lines after treatment with compound 1 in duration of 48 h. Data are expressed as a mean from experiment 
performed in triplicate ± SD. Columns, mean of viable cells; bars, SD; *P < 0.05; **P < 0.01, ***P < 0.001. CSC 
MDA-MB-231, CD44+CD24− cells of the MDA-MB-231 cell line; CSC MDA-MB-453, CD133+ cells of the 
MDA-MB-453 cell line; non-CSC MDA-MB-231, CD44+/CD24+, CD44−/CD24− and CD44−/CD24+ cells of 
the MDA-MB-231 cell line; non-CSC MDA-MB-453, CD133− cells of the MDA-MB-453 cell line; Neu5Ac, 
N-acetylneuraminic acid. The designation of the gangliosides follows the IUPAC-IUB recommendations51 and 
the nomenclature of Svennerholm52. IV3Neu5Ac-nLc4Cer; IV6Neu5Ac-nLc4Cer; GlcNAcβ1-3Galβ1-4Glcβ1-
1Cer; GM3, II3Neu5Ac-LacCer; GD3, II3(Neu5Ac)2-LacCer; GMI, geometric mean fluorescence intensity; SD, 
standard deviation.
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is related to the chemosensitivity of breast cancer. Osterix, a zinc finger-containing transcription factor, decreases 
chemosensitivity and enhances anti-apoptosis by upregulating GALNT1438. Osterix has also important roles in 
facilitating breast cancer invasion39.

In our study, treated CSCs acquired a phenotype closer to non-treated non-CSCs. Malignancy is not only 
defined by tumour-specific molecules, or their genes, but it can be caused by disorganization of cell membrane 
components40. Glycosphingolipids are important cell membrane components being able to influence final cell 
behaviour. Gb3Cer plays an essential role in the maintenance of epithelial cancer cell properties. Depletion 
of Gb3Cer by deletion of the key enzyme lactosylceramide 4-alpha-galactosyltransferase (A4GALT) induces 
epithelial-to-mesenchymal transition, enhances chemoresistance, and increases CD44+/CD24− cells41. The cholera 
toxin-induced mesenchymal-to-epithelial transition occurred only in cells with functional A4GALT. Cholera 
toxin is able to induce transition after binding to its receptor, Gb3Cer42. Liang et al. described greatly reduced 
levels of Gb3Cer in breast CSCs in comparison to cancer non-stem cells (non-CSCs)15. Whilst we did not deter-
mine Gb3Cer, the enzyme A4GALT was obviously active in our study because Gb3Cer is direct precursor of 
Gb4Cer and Gb4Cer was found elevated in CSCs after treatment with compound 142. We have not found elevated 
GM2 and GD3 in CSCs as was earlier reported15. Our study used MDA-MB-231 and MDA-MB-453 breast CSCs 
and non-CSCs while Liang et al. used a model of epithelial–mesenchymal transition induction of immortalized 
human mammary epithelial cell–Twist-estrogen receptor (HMLE-Twist-ER)15. They proved increased GM2 and 
GD3 in organic solvent extract of GSLs using methods of Orbitrap-Fourier transform (FT) mass spectrometry 
(MS) and high-performance liquid thin layer chromatography (HPTLC)-immunostaining. That means, GSLs 
from the plasma membrane and from Golgi are included in final findings. Their flow-cytometry results have 
not proved elevated GM2 and CSCs. The percentage of GD3 was reported as elevated, but due to their gating 
strategy, they had excluded the most GD3 positive cells from analyses of their CSC markers (CD44+/CD24−)15. 
Therefore, our final results are not comparable.

Sialylation is involved in cell fate decision during development, reprogramming and cancer progression43. 
Sialylated GM3 and IV6Neu5Ac-nLc4Cer were increased in CSCs after compound 1 treatment of both MDA-
MB-231 and MDA-MB-453 cell lines. Ganglioside GM3 is typically located in specialized membrane microdo-
mains called lipid-rafts44. Enhanced GM3 lipid raft content disturbs insulin receptor function causing insulin 
resistance and finally diabetes type 245. In a similar manner, change of the GM3 content in cell membranes could 

Figure 7.   Percentage and geometric mean fluorescence intensity of cell subpopulations positive for ganglioside 
and neutral GSLs with terminal GalNAc residue. Notes Percentage of CSCs in the MDA-MB-231 and in 
the MDA-MB-453 (A) and non-CSCs in MDA-MB 231 and in the MDA-MB-453 cell lines (B). Geometric 
mean fluorescence intensity of CSCs in MDA-MB 231 and in the MDA-MB-453 (C) and non-CSCs in the 
MDA-MB-231 and in MDA-MB-453 cell lines after treatment with compound 1 in duration of 48 h. Data 
are expressed as a mean from experiment performed in triplicate ± SD. Columns, mean of viable cells; bars, 
SD; *P < 0.05; **P < 0.01, ***P < 0.001. CSC MDA-MB-231, CD44+CD24− cells of the MDA-MB-231 cell line; 
CSC MDA-MB-453, CD133+ cells of the MDA-MB-453 cell line; non-CSC MDA-MB-231, CD44+/CD24+, 
CD44−/CD24− and CD44−/CD24+ cells of the MDA-MB-231 cell line; non-CSC MDA-MB-453, CD133− cells 
of the MDA-MB-453 cell line; globotetraosylceramide or Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer; 
gangliotriaosylceramide or Gg3Cer, GalNAcβ1-4Galβ1-4Glcβ1-1Cer; GM2, II3Neu5AcGg3Cer; GalNAc-GM1b, 
IV3Neu5Ac-Gg5Cer; GM1b, IV3Neu5Ac-Gg4Cer; gangliotetraosylceramide or Gg4Cer, Galβ1-3GalNAcβ1-
4Galβ1-4Glcβ1-1Cer; GMI, geometric mean fluorescence intensity; SD, standard deviation.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:11876  | https://doi.org/10.1038/s41598-020-68516-y

www.nature.com/scientificreports/

influence co-localized fibroblast growth factor (FGF) receptor action, that is involved in cancer pathogenesis46: 
low level of GM3 activates and high level inhibits FGF signal transduction47. Therefore, we could assume that 
increased GM3 in CSCs, after treatment with compound 1, contributes to inhibition of FGF signaling and thereby 
reduces cancer progression. Sialylation of the nLc4Cer to form IV6Neu5Ac-nLc4Cer is catalysed by enzyme sialyl 
transferase to nLc4Cer (ST6Gal). An increase in infiltrating lymphocytes is influenced by high expression of 
ST6Gal-II in triple negative breast cancers that correspond to our breast cancer model48. Triple negative breast 
cancer lymphocyte infiltration correlates with better overall survival and better chemotherapeutic responses49.

Concerning findings in MDA-MB-453 cells, only increased percent of both GalNAc-GM1b+CD44+/
CD24− (data not shown) and GalNAc-GM1b+CD133+ cells after compound 1 treatment (Fig. 7A) corresponded 
to MDA-MB-231 GSL findings. Yang et al., detected 31 patients containing CSCs among 88 primary TNBCs, 
using CD44+/CD24−, aldehyde dehydrogenase family 1 member A1 (ALDH1A1) and CD133 markers. Eight 
cases were positive for both CD44+/CD24− and ALDH1A1, 10 cases were positive for both CD44+/CD24− and 
CD133, 9 cases were positive for both ALDH1A1 and CD133, while only 4 cases showed positivity of all the 
three CSC markers50. Correlation between CSC markers was weak, implying that most breast cancer cells do not 
express these markers concurrently. Knowing that CD133 phenotype is not significantly associated with worse 
progression-free survival, we can assume that CD133 is less reliable CSC marker compared to CD44+/CD24−50. 
Expression of MDA-MB-231 glycosphingolipids found in this study could have higher impact for clinical impli-
cations. Dramatically reduction of GalNAc glycosylation observed in MDA-MB-231 CSCs after compound 1 
treatment, characterized earlier to be enrolled in either epithelial–mesenchymal transition or in its reversal, 
could indicate possible biochemical pathway of CSC reduction by compound 1.

Conclusions
The novel thieno[2,3-b]pyridine anticancer compound 1 was cytotoxic for the breast cancer cells, cell death 
being mediated by apoptosis. The percent of cancer stem cells was significantly lower. Glycosphingolipids 
IV6Neu5Ac-nLc4Cer and GalNAc-GM1b, not reported previously, were identified in both breast cancer stem 
cells and cancer non-stem cells. IV6Neu5Ac-nLc4Cer had increased expression in both cancer stem cells and 
cancer non-stem cells of both MDA-MB-231 and MDA-MB-453 cell lines after treatment with compound 1, 
while GM3 had increased expression only on both cell subpopulations in MDA-MB-231 cell line. GalNAc-GM1b, 
Gb4Cer and GM2 were increased only in cancer stem cells of both cell lines while GD3 was decreased in cancer 
non-stem cells of MDA-MB-231 cell line, 48 h after treatment with 1.

Figure 8.   Percentage and geometric mean fluorescence intensity of cell subpopulations positive for neutral GSL 
with terminal Gal residue. Notes Percentage of CSCs in the MDA-MB-231 and in the MDA-MB-453 (A) and 
non-CSCs in MDA-MB 231 and in the MDA-MB-453 cell lines (B). Geometric mean fluorescence intensity of 
CSCs in MDA-MB 231 and in the MDA-MB-453 (C) and non-CSCs in the MDA-MB-231 and in MDA-MB-453 
cell lines after treatment with compound 1 in duration of 48 h. Data are expressed as a mean from experiment 
performed in triplicate ± SD. Columns, mean of viable cells; bars, SD; *P < 0.05; **P < 0.01. CSC MDA-MB-231, 
CD44+CD24− cells of the MDA-MB-231 cell line; CSC MDA-MB-453, CD133+ cells of the MDA-MB-453 cell 
line; non-CSC MDA-MB-231, CD44+/CD24+, CD44−/CD24− and CD44−/CD24+ cells of the MDA-MB-231 
cell line; non-CSC MDA-MB-453, CD133− cells of the MDA-MB-453 cell line; neolactotetraosylceramide or 
nLc4Cer. GMI, geometric mean fluorescence intensity; SD, standard deviation.
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Due to the demonstrated effect in reducing the percentage of cancer stem cells and number of mammos-
pheres and the shift of CSC to non-CSC glycophenotype, the novel thieno[2,3-b]pyridine anticancer compound 
1 deserves attention as a potential new drug for triple-negative breast cancer therapy.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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