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Abstract 10 

There has been considerable debate and concern as to whether there is a replication crisis in the scientific 11 

literature. A likely cause of poor replication is the multiple comparisons problem. An important way in 12 

which this problem can manifest in the M/EEG context is through post hoc tailoring of analysis windows 13 

(a.k.a. regions-of-interest, ROIs) to landmarks in the collected data. Post hoc tailoring of ROIs is used 14 

because it allows researchers to adapt to inter-experiment variability and discover novel differences that 15 

fall outside of windows defined by prior precedent, thereby reducing Type II errors. However, this approach 16 

can dramatically inflate Type I error rates. One way to avoid this problem is to tailor windows according to 17 

a contrast that is orthogonal (strictly parametrically orthogonal) to the contrast being tested. A key 18 

approach of this kind is to identify windows on a fully flattened average. On the basis of simulations, this 19 

approach has been argued to be safe for post hoc tailoring of analysis windows under many conditions. 20 

Here, we present further simulations and mathematical proofs to show exactly why the Fully Flattened 21 

Average approach is unbiased, providing a formal grounding to the approach, clarifying the limits of its 22 

applicability and resolving published misconceptions about the method. We also provide a statistical power 23 

analysis, which shows that, in specific contexts, the fully flattened average approach provides higher 24 
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statistical power than Fieldtrip cluster inference. This suggests that the Fully Flattened Average approach 25 

will enable researchers to identify more effects from their data without incurring an inflation of the false 26 

positive rate. 27 

Non-technical Summary 28 

It is clear from recent replicability studies that the replication rate in psychology and cognitive neuroscience 29 

is not high. One reason for this is that the noise in high dimensional neuroimaging data sets -30 

signal. A classic manifestation would be selecting a region in the data volume where an effect is biggest and 31 

then specifically reporting results on that region. There is a key trade-off in the selection of such regions of 32 

interest: liberal selection will inflate false positive rates, but conservative selection (e.g. strictly on the basis 33 

of prior precedent in the literature) can reduce statistical power, causing real effects to be missed. 34 

We propose a means to reconcile these two possibilities, by which regions of interest can be tailored to the 35 

pattern in the collected data, while not inflating false-positive rates. This is based upon generating what we 36 

call the Flattened Average. Critically, we validate the correctness of this method both in (ground-truth) 37 

simulations and with formal mathematical proofs. 38 

Given the replication crisis , there may be no more important issue in psychology and cognitive 39 

neuroscience than improving the application of methods. This paper makes a valuable contribution to this 40 

improvement. 41 

Introduction 42 

A number of papers in cognitive neuroscience or related disciplines have questioned the reliability of the 43 

statistical methods and practices being employed, and their consequences for the replicabilityi of findings in 44 

the published literature [Nieuwenhuis et al, 2011; Vul et al, 2009; Bennett et al, 2009; Open Science 45 

Consortium, 2015; Kriegeskorte et al, 2009; Eklund et al, 2016; Luck & Gaspelin, 2017; Brooks et al, 2017; 46 

Skocik et al, 2016; Lorca-Puls et al, 2018]. In one way or another, these articles are highlighting difficulties 47 

associated with handling the multiple comparisons problem, whether in the implementation of the 48 

methods employed or the practices of experimentalists [Kriegeskorte et al, 2009; Brooks et al, 2017]. The 49 
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latter of these (experimental practice) may be particularly pernicious, since it rests upon research team 50 

practices that are unlikely to be reported in an article. For example, if a laboratory routinely tries various 51 

pre-processing settings, but only reports the analysis that yielded the smallest p-value, it is very hard to 52 

assess the reliability of a finding unless one can somehow count the number of settings triedii. 53 

 54 

Figure 1: ERPs from two Rapid Serial Visual Presentation (RSVP) experiments at the Pz electrode. The top 55 

panel experiment was published in [Bowman et al, 2013]. The lower panel shows unpublished data. The 56 

experiments use very similar presentation paradigms, with name stimuli in both cases; see appendix 1 for 57 

details. Even though the design differences between the two experiments are small, the timing and form of 58 

the P3b component is very different. Of particular interest here is that the Target P3bs (red lines) were very 59 

different in the two experiments, as were the Probe P3bs (green lines). For example, the blue region marks 60 

the peak of the Probe P3b in the second experiment (lower panel), which misses the corresponding Probe 61 
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P3b peak in the first experiment (upper panel). In fact, the misalignment of the P3b effects in the two 62 

experiments is so great that the P3b in the second experiment is aligned with the negative rebound to the 63 

P3b peak in the first experiment. Additionally, the purple region marks the peak of the Probe P3b in the 64 

upper panel, which clearly precedes the peak in the lower panel. 65 

In response to this, many have argued for systematic procedures that force scientists to pre-specify the 66 

settings (or more formally the hyper-parameters) of their analyses (such as pre-processing settings), before 67 

starting to collect data. A prominent proposal is registered reports [e.g., Chambers et al, 2014], whereby a 68 

journal accepts to publish a paper on the basis of a prior statement of the experiment, its methods, 69 

materials and procedures, whether a significant result is eventually found or not. For neuroimaging studies, 70 

this may include specifying the region-of-interest (ROI) where effects are going to be tested for in the data 71 

(e.g. electrodes and time periods). This is an excellent strategy for controlling the false positive rate in the 72 

literature, and will surely increase the replicability of published studies. However, some naïve approaches 73 

to pre-registration have limitations, especially in the context of complex neuroimaging data sets. 74 

In particular, within Event Related Potential (ERP) research, it is often difficult to know exactly where in 75 

space (i.e. electrodes) and time an effect will arise, even if one has a good idea from previous literature of 76 

the ERP component that responds to the manipulation in question. Small changes in experimental 77 

procedures, or of participant group, can have a dramatic effect on the latency, scalp topography and, even, 78 

the form of a component. For example, Figure 1 shows ERP grand averages from two studies that used very 79 

similar stimulus presentation procedures and timing; see Appendix 1 for details. Certainly, the upper panel 80 

experiment was as good a precedent for the lower panel experiment (which came later) as could be found 81 

within the literature or the trajectory of the research programme of which they were a part [Bowman et al, 82 

2013; Bowman et al, 2014]. Despite the similarity between the experimental paradigms, the timing and 83 

form of the P3 components are very different. This can, for example, be seen with the Probe condition (the 84 

green time series), where the P3 peak in the lower panel actually arises approximately 200 ms later, during 85 

the negative rebound phase of the P3 in the upper panel; see blue region. There are many potential 86 

reasons for these differences, some of which are discussed in Appendix 1. However, critically for this paper, 87 
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the ERP landmarks (e.g. peaks) are very different in these two closely related experiments. This is a 88 

particularly compelling demonstration of the problems of using prior precedent to define an ROI in ERP 89 

analysis, since the data sets for both these experiments were collected by the same team with the same 90 

basic pre-processing and analysis methods. A change in team, which is the norm when comparing studies in 91 

the literature, should only make the disparity between ERPs greater. Additionally, although we have 92 

focussed on misalignment in time, a prior precedent may also misalign in space, i.e. on the scalp. 93 

While pre-registration is a highly important response to the replicability crisis, if one is limited to using 94 

previous studies for defining fixed position regions-of-interest (i.e. using prior precedent) within the pre-95 

registration approach, the Type II error rate (i.e. missed effects) may increase and make it more difficult to 96 

detect novel effects or effects that are subject to significant inter-experiment variationiii. The opportunity to 97 

report exploratory analyses within the pre-registration framework clearly helps with this problem. For 98 

example, one could perform an exploratory whole-volume analysis. However, such a finding is likely to have 99 

less statistical power than an ROI analysis Statistical Power  and 100 

would, by virtue of being labelled exploratory, not have the same status as a successfully demonstrated 101 

pre-registered finding.  102 

One approach to overcoming the limitations of a priori ROI selection is to use a data driven method, which 103 

uses features of the collected data to place the ROI. Although data driven approaches may, at first 104 

consideration, seem incompatible with pre-registration, if the method and properties of the approach are 105 

chosen in advance of the study then it can be performed without inflating the Type I error rate [e.g., Brooks 106 

et al., 2017]. 107 

An elegant way to do this is via a contrast that is orthogonal to the contrast of the effect of interest [e.g. 108 

Friston et al, 2006; Brooks et al, 2017]. Thus, a first selection contrast is applied to identify the region at 109 

which to place the analysis window, and then a distinct test contrast is applied at that region. As long as 110 

these two contrasts are, in a very specific sense, orthogonal (in fact, parametrically contrast orthogonal  111 

see the mathematical formulation later in this paper), they will have the property that for null data, there 112 

will be no increased probability of the test contrast being found significant iv in a window/ROI determined 113 
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by the selection contrast, than in any other region not selected. The logic here then is that comparisons can 114 

be accumulated, as long as they are not accumulated with regard to the effect being tested. 115 

Brooks et al, 2017 proposed a particularly simple orthogonal contrast approach, called the aggregated 116 

average. A central concern of the current paper is to explain why this approach does not inflate the type-I 117 

error rate. With classical frequentist statistics, maintaining the false positive rate of a statistical method at 118 

the alpha level ensures the soundness of the method. Statistical power (one minus the type II error rate) is, 119 

of course, also important; that is, we would like a sensitive statistical procedure that does identify 120 

significant results, when effects are present. 121 

Brooks et al (2017) provided a simulation indicating that the aggregated average approach to window 122 

selection is more sensitive than a fixed-window prior precedent approach when there is latency variation of 123 

the relevant component across experiments. This is, in fact, an obvious finding: with a (fixed-window) prior 124 

precedent approach, the analysis window cannot adjust to the presentation of a component in the data, 125 

but it can for the aggregated average. 126 

A more ch -univariate 127 

approaches, such as, the parametric approach based on random field theory implemented in the SPM 128 

toolbox [Penny et al; 2011] or the permutation-based non-parametric approach implemented in the 129 

Fieldtrip toolbox [Maris and Oostenveld; 2007, Oostenveld, et al; 2011]. This is because such approaches do 130 

adjust the region in the analysis volume that is identified as signal, according to where it happens to be 131 

present in a data set. However, because mass-univariate analyses familywise error correct for the entire 132 

analysis volume, their capacity to identify a particular region as significant reduces as the volume becomes 133 

larger. In contrast, the aggregated average approach is not sensitive to volume size in this way, implying 134 

that it could provide increased statistical power, particularly when the volume is large. One contribution of 135 

 136 

However, there are subtleties to the correct application of the aggregated average approach and the 137 

orthogonal contrast method in general. A thoughtful presentation of potential pitfalls can be found in the 138 

supplementary material of [Kriegeskorte et al, 2009]. As reported there, showing that the contrast vectors 139 
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for Region-Of-Interest (ROI) selection and test are orthogonal is not sufficientv to ensure orthogonality of 140 

the results of applying the contrasts, with a particular experimental design (i.e. design matrix) and data set. 141 

Kriegeskorte et al argued that three properties need to hold to ensure the false positive rate is not inflated. 142 

These are, 1) contrast vector orthogonality: ROI selection and test contrast vectors need to be orthogonal 143 

(i.e. the dot product of the vectors is zero), 2) balanced design: the experimental design (i.e., design matrix) 144 

needs to be balanced (e.g. trial counts should not be different across conditions), and 3) absence of 145 

temporal correlations: temporal correlations should not exist between the data samples to be modelled. 146 

The second of these is important, since different trial counts between conditions can arise for many 147 

reasons, such as artefact rejection or since condition membership is defined by behaviour (e.g. whether 148 

responses are correct or incorrect). With careful experimental design, the third of these (temporal 149 

correlations) can be avoided in many M/EEG studiesvi. However, dependences across trials/ replications can 150 

sometimes arise, such as from very low frequency (across trial) components (e.g. the Contingent Negative 151 

Variation [Chennu et al, 2013]) or learning effects across the time-course of an experiment. We will return 152 

to these three proposed safety properties (contrast vector orthogonality, balanced design and absence of 153 

temporal correlations) a number of times during this article. 154 

Our objective here is to further characterise, demonstrate the validity and statistical power of, and show 155 

the generality of a simple orthogonal contrast approach that we recently introduced [Brooks et al, 2017], 156 

which we named the Aggregated Grand Average of Trials (AGAT). The treatment of this issue here is more 157 

general than in [Brooks et al; 2017], in the sense that we accommodate analyses in which the random 158 

effect (i.e. unit over which inference is performed) could be trials, items, participants, etc. The problem that 159 

160 

section for further details. Accordingly, in this paper, we call the orthogonal contrast approach we are 161 

advocating, the Fully Flattened Average, to capture the generality of our focus. Software implementing this 162 

orthogonal contrast approach is available at, 163 

https://sites.google.com/view/brookslab/downloadsresourcesstimuli/agat-method. 164 
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To fulfil the objectives of this paper, we will first review the Fully Flattened Average (FuFA) approach in 165 

section . Then, in section  , we will investigate in 166 

simulation, what seems at first sight to be an oddity of the Fully Flattened Average approach in the context 167 

of unbalanced designs. This is the fact that simple averaging would cause the condition with fewer 168 

replications to have more extreme amplitudes than the condition with more replications (since noise is 169 

reduced through averaging). Of itself, such averaging would bias differences of peak amplitudes (or 170 

differences of mean amplitudes in maximum windows) across unbalanced conditions and inflate false-171 

positive rates. We will show in simulations why this averaging bias does not in fact inflate false positives for 172 

the FuFA appraoch, because there is effectively a second bias that works in perfect opposition to this bias 173 

due to averaging. Furthermore, we will show that this perfect opposition of the two biases does not obtain 174 

for the most obvious, and often used, means to obtain an aggregated average, which we call the Average 175 

with Intermediate Averages (AwIA) approach (see section  ). Thus, we 176 

show that overall, when both biases are considered, FuFA is not biased, but AwIA is. Following this, in 177 

section  , we present simulations that suggest that these bias 178 

freeness properties generalise to data sets with temporal correlations across replications. We then give 179 

formal background to the new Fully Flattened Average (FuFA) method and the properties it should satisfy 180 

(see section FuFA is Unbiased  ), before presenting a formal mathematical 181 

treatment of the FuFA and AwIA methods. This will enable us to verify mathematically that the FuFA is not 182 

biased under reasonable assumptions (see section FuFA is Unbiased  ), 183 

providing a fully general verification of the method, compared to the more limited scope of the simulations. 184 

This will show that an orthogonal contrast approach does not need to meet the balanced design 185 

assumption. Finally, in section , we will also show that the FuFA approach can increase 186 

statistical power over cluster-based family-wise error correction, the de-facto standard data-driven 187 

statistical inference procedure employed in neuroimaging. 188 

Background 189 

Aggregated Averages 190 
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If we assume a simple statistical test, such as a t-test, is to be performed between two conditions in an 191 

M/EEG experiment (or other spatiotemporal dataset), then perhaps the simplest attempt at an orthogonal 192 

contrast is to just collapse across the two conditions by averaging waveforms. Assuming that the 193 

waveforms have similar features and similar latencies of features, this will produce an average with any 194 

landmark (e.g. a peak) that is common to the two conditions still present. Importantly, under the null 195 

hypothesis, large differences between conditions should be as likely to occur at any position in the data, 196 

with pure sampling error determining whether those differences do or do not fall at key common 197 

landmarks, such as peaks. We call the resulting time-series an Aggregated Average due to the aggregation 198 

of data across conditions. One can then select windows/ regions of interest on this aggregated average, 199 

without, it is hoped, biasing (i.e., inflating the Type I error rate for) the t-contrast of interest under the null 200 

hypothesis [Brooks et al, 2017]. 201 

 202 

Figure 2: Two possible methods for generating an aggregated average. 203 
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There is, though, an important subtlety to how this aggregated average is constructed. Specifically, we 204 

differentiate two aggregation procedures, which are shown in Figure 2. The first involves a hierarchy of 205 

averaging, as would be performed in a classic ERP processing pipeline, producing what could be called, the 206 

Average with Intermediate Averages (AwIA). This involves averaging replications (e.g. trials/epochs) within 207 

each condition to form condition averages and then averaging condition averages to produce the AwIAvii.  208 

In contrast, the second of these procedures aggregates at the replications level, flattening the averaging 209 

hierarchy to one level (although an alternative to flattening is to take weighted averages, as we will 210 

elaborate on later). An aggregated average is then generated from this flattened set, producing what could 211 

be called the Fully Flattened Average (FuFA). 212 

Importantly, the AwIA and FuFA are only the same if replication counts are equal across conditions, i.e. in 213 

balanced-design experiments. As we will justify in simulation and proof, it turns out that only the FuFA is 214 

unbiased for use in selecting regions-of-interest, i.e. does not inflate the false positive rate, in the presence 215 

of an unbalanced design. 216 

Notation 217 

Although we defer our formal treatment of orthogonality of contrasts until section FuFA is 218 

Unbiased  , to frame our discussion, we present some basic General Linear Model 219 

(GLM) notation here. We focus on the two-sample (independent) t-test case. Using the terminology in 220 

[Penny et al, 2011; Pernet et al, 2011], we define  to be the t-test contrast vector, i.e. 221 

 222 

and  denotes the standard two-sample t-test design matrix, i.e. 223 

 224 

where the first column is the indicator variable for condition 1 and the second for condition 2. X defines 225 

that we have two conditions, and  that we seek to test the difference of means of these conditions. The 226 
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dependent variable (i.e. the data) would be expressed here as a (column) vector of samples that run down 227 

the entire course of the experiment. For example, these could be all the samples of a particular time-space 228 

point, e.g. a time relative to stimulus onset and a particular electrode in space, in a mass-univariate analysis 229 

[Penny et al, 2011; Pernet et al, 2011]. Alternatively, samples could be mean amplitudes across intervals of 230 

a particular size, e.g. average amplitude in a 100ms window, as is common in the traditional ERP approach 231 

[Luck et al, 2014]. The resulting data vector, denoted y, runs across all conditions. 232 

Unbalanced conditions could result, for example, from replication count asymmetry. For example, the 233 

following design matrix indicates three data samples in condition 1 and four in condition 2. 234 

 235 

Given such a design matrix, the simplest ROI selection contrastviii that one could apply would correspond to 236 

the contrast vector, 237 

 238 

This is the AwIA contrast under the standard processing pathway; that is, the ROI is selected using the 239 

average of the averages of the two conditions. 240 

We can, though, also formulate the FuFA in this setting. Consider the design matrix  above. Under the 241 

 contrast, data-samples associated with the first condition (the smaller one) contribute more to the 242 

aggregated average than those from the second. In contrast, in the FuFA, all data-samples contribute 243 

equally to the aggregated average. Such equality of contribution can be obtained in the GLM setting by 244 

simply taking a weighted average, when building the aggregated average from its condition averages. 245 

Accordingly, we define the FuFA selection contrast vector as, 246 

 247 
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where  is the number of data-samples in the first column of the design matrix) and 248 

 the number of data-samples in condition 2, while  (the number of rows in the design 249 

matrix). In this contrast, the smaller condition is down weighted, relative to the bigger one, ensuring that 250 

each replication (whether in the larger or smaller condition) contributes equally to the aggregated average. 251 

How then do the previously discussed candidate safety properties, arising from [Kriegeskorte et al, 2009] 252 

manifest in this GLM model? 253 

1) Contrast vector orthogonality: this would hold, if the dot product of the selection and test vectors was 254 

zero.  255 

2) Balanced design: as previously discussed, this would hold if the design matrix was balanced, i.e.  256 

in the above illustration.  257 

3) Absence of temporal correlations: this would hold if the data, which would become the dependent 258 

variable in the GLM regression, contained no correlations down its time-course; this amounts to there 259 

being no - sample-to-sample, i.e. between replications in an M/EEG experiment. 260 

With regard to these properties,  and  are indeed orthogonal (the dot product of the vectors is zero), 261 

however,  and  are in fact not orthogonalix. We will return to this issue of contrast vector 262 

orthogonality in section FuFA is Unbiased  . 263 

With regard to temporal correlations, with careful experimental designs, in most cases in the M/EEG 264 

context, temporal correlations across data samples (which are replications/trials in M/EEG) can be 265 

avoidedx. However, as previously discussed, such structure in replications can arise in particular 266 

experimental contexts. Accordingly, we include a consideration of the consequences of temporal 267 

correlations across replications, at least partly to inform Kriegeskorte e ; see 268 

subsection  of Appendix 2. 269 

Unbalanced Designs  Simulations 270 

Statistical Bias 271 
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We are interested in identifying statistical bias, with the term used in the standard statistical sense, induced 272 

by procedures for selecting regions-of-interest in M/EEG studies. Specifically, a bias exists if the estimate of 273 

a statistic arising from a statistical procedure is systematically different to the population measure being 274 

estimated. For us, the measure of interest will be the difference of mean amplitudes in an ROI between two 275 

conditions, where the key point for this paper is how these ROIs are identified. 276 

This paper is on false positive 277 

(i.e. type I error) rates. In our false positive simulations, in a statistical sense, the difference of mean 278 

amplitudes in a selected ROI measure will be, by construction, zero at the population level, since the null 279 

hypothesis will hold. We will, then, be assessing the extent to which two distinct methods for identifying 280 

regions-of interest (according to maximum mean amplitudes) create a tendency across many simulated null 281 

experiments for the mean amplitude for one condition to be larger than the mean amplitude for the other. 282 

If a given method does this, then the method has a bias. This is because the selection of the ROI will be 283 

consistently associated with a difference between conditions that is (in a statistical sense) different from 284 

zero. This would not arise from an unbiased procedure under the null hypothesis. 285 

In our previous work [Brooks et al, 2017], we have directly assessed false positive rates, by running 286 

statistical tests on each simulated data set and then counting up the number of p-values that end up below 287 

the critical alpha level, which is typically 0.05 [e.g. Figure 2 in Brooks et al, 2017]. Each such data set with a 288 

significant p-value is a false-positive, and in the limit, if the method is functioning correctly, the percentage 289 

of such false-positives should be 100 x alpha (i.e. typically 5%). Identification of a bias of the kind discussed 290 

above would be expected to induce an inflation or deflation, of the rate of false positives (making it 291 

different to 5%).  292 

An Oddity 293 

A key aspect of the FuFA approach is that (unlike the AwIA) it is bias-free for unbalanced designs. This 294 

might, at first sight, seem surprising because, in unbalanced designs, the simple averaging associated with 295 

generating condition averages will induce an amplitude bias between the Small (i.e. fewer replications) and 296 
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Large conditions. That is, the average waveform in the Large condition will have less extreme amplitudes 297 

generated by noise, than that of the smaller condition.  298 

This difference in extreme values will, in turn, introduce a tendency towards differences between the 299 

conditions that are (in a statistical sense) different from zero. Condition differences that are (statistically 300 

speaking) above zero under the null would translate into a higher Type I error rate.  We call this the Simple 301 

Averaging Bias. For example, Figure 3 shows the simple averaging bias, as does figure 5, which compares 302 

the time-series of a single replication and of an average of many replications in our simulations. However, 303 

despite this bias at one point in the FuFA process, overall ROI selection using the FuFA does not inflate the 304 

Type I error rate. To somewhat pre-empt our findings, this is because there are in a sense two biases, which 305 

in the case of the FuFA, counteract each other, but in the case of the AwIA accumulate. 306 

The second bias arises because the FuFA itself is more like the condition with more data samples (i.e. large 307 

condition) than the condition with fewer (i.e. small condition). Indeed, it even becomes almost identical to 308 

the Large condition when the asymmetry is big. This can be seen, for example, in Figure 4, particularly Panel 309 

B, where the FuFA subpanel (b), is almost identical to the Large condition average, subpanel f. Accordingly, 310 

the window selection performed on the FuFA will be biased towards the Large condition (i.e. with more 311 

replications). That is, it will, in a statistical sense (i.e. across many samplings), identify a window that is 312 

closer to the true maximum window placement of the Larger than of the Smaller conditionxi. Critically, 313 

these two biases, which we will call, the simple averaging bias and the window selection bias, act in 314 

opposite directions in the FuFA and thereby counter-act each other. 315 

We will first illustrate this notion that there are two biases  confirm this 316 

with a null hypothesis simulation of the two methods (see section Simulation of FuFA and AwIA . In this 317 

way, our simulations will clarify why the bias introduced by simple averaging does not generate an overall 318 

bias in the FuFA approach. 319 

Construction of Simulations 320 
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We present null hypothesis simulations of the FuFA and AwIA, while varying the replication count 321 

asymmetry between two conditions. The simulations have the following main characteristics. 322 

replication time-series comprise 2200 time points; 323 

the same signal was included in every replication time-series; 324 

(coloured) noise time series were overlaid on top of the signal; these noise time series were generated 325 

according to the human temporal frequency spectrum, using the algorithm devised by [Yeung et al, 326 

2004], which was employed in [Brooks et al, 2017] and in [Zoumpoulaki et al, 2015], we give details in 327 

Appendix 3; 328 

each simulated data set comprised two conditions, which we call Small and Large according to the 329 

number of replications; 330 

in all cases, the null hypothesis held; that is, the replications in the two conditions were in a statistical 331 

sense, the same, i.e. were drawn from the same distribution, with the only difference being due to 332 

sampling variability of noise; 333 

Two Biases n integration window of 100ms width for illustrative purposes (i.e. our 334 

dependent measure is average amplitude across a 100 ms window), but then in the full simulation in 335 

Simulations of FuFA and AwIA , peak amplitude will be taken as the dependent measure, i.e. 336 

an integration window of size one was employedxii; and 337 

in the full simulations, we ran the two aggregated average methods on the peak. 338 

 339 
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Figure 3: Illustration of (simple) averaging bias. Two conditions with different replication counts were 340 

generated according to the properties introduced in section  The Small condition has three 341 

replications and the Large 30. A deliberately large asymmetry is considered for clarity of illustration. Panel 342 

A: Single replications are depicted overlaid in the upper two subpanels. Averages for these two conditions 343 

are depicted in the lower two subpanels. As would be expected, the Small condition average exhibits more 344 

noise and thus, more extreme values than the Large condition average. Accordingly, its highest mean 345 

amplitude is higher than for the Large condition, as illustrated with the red horizontal line. The blue dashed 346 

vertical lines indicate the highest amplitude 100 ms interval. Panel B: The property illustrated in Panel A 347 

that more averaging reduces extreme values, both highest (most positive) and lowest (most negative) 348 

amplitude, is illustrated more generally. The simulation of Panel A was run 100 times. In each simulation, 349 

we calculated the mean activity in a 100ms window at all possible locations at which the window could be 350 

placed on the average. We did this separately for the Small and Large conditions. Within each condition, we 351 

then sorted the window means from highest (leftmost) to lowest (rightmost) in panel B. This vector of 352 

highest to lowest mean amplitudes was then averaged across the 100 simulations, to obtain a (central 353 

tendency) estimate of the sequence of mean amplitudes in descending order. This was done for both Large 354 

and Small conditions and plotted in Panel B.  355 

Two Biases 356 

As previously discussed, there are two distinct ways in which an unbalanced (i.e. more data in one 357 

condition than another) design has a differential effect on the inference process. We call these: 358 

1. (simple) averaging bias, and 359 

2. window selection bias. 360 

We discuss these in turn. 361 

Simple Averaging Bias. The averaging bias is independent of whether a FuFA or AwIA is used, and arises 362 

simply because extreme amplitudes reduce when more replications contribute to an average. This is 363 

illustrated in figure 3, where we compare the averages generated from a Small and a Large condition. The 364 
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null-hypothesis holds, since, as just discussed, the same signal is included in both conditions, and noise with 365 

the same properties, is overlaid on both. The only difference, in a statistical sense, between the two 366 

conditions is the number of replication time-series they comprise. 367 

As can be seen in figure 3, averaging reduces extreme values; indeed, this is the logic of the Event Related 368 

Potential (ERP) method in the first place  noise is averaged out, revealing the underlying signal. This is 369 

particularly clear in Panel B of figure 3, where mean amplitudes in 100ms windows are more extreme in the 370 

Small condition, apart, of course, at the point of cross-over. Accordingly, the difference in mean amplitudes 371 

in maximal windows between Small and Large conditions will be biased: in general, the max window mean 372 

amplitudes of Small will be higher than for Large, even though the null hypothesis holds by construction. 373 

Importantly, because the aggregated average processes (both FuFA and AwIA) select the highest amplitude 374 

windows in the aggregated grand average (or lowest amplitude for negative polarity components), they will 375 

be biased (in this averaging sense) and the condition with fewer replications will (in a statistical sense) have 376 

higher amplitudes. 377 

 378 

 379 
  380 
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 381 

Figure 4: Illustration of bias due to window selection using the same simulation run as in Panel A of figure 3. 382 

The top panel of this figure (Panel A), depicts how the FuFA and AwIA are generated. That is, the FuFA is an 383 

average of the union of all the replications from the two conditions. In contrast, the AwIA is an average of 384 

two time-series: the average of the Small condition and the average of the Large condition. The union in 385 

this case would contain two time-series, which are then averaged. Panel B shows that the FuFA and AwIA 386 

procedures generate very different time-series. Specifically, the key landmarks (e.g., maximum/minimum 387 

points) of the AwIA tend to correspond to those of the Small condition average. This is because the Small 388 

condition average has more extreme amplitudes, due to the (simple) averaging bias389 

less extreme amplitudes of the Large condition average, when the AwIA is generated. In contrast, the FuFA 390 

tends to be more like the Large condition average, since all single-replications contribute equally to it and 391 

there are more single-replications in the Large condition. This tendency can be seen in the window 392 

placements. Windows are placed in the FuFA, AwIA, average Small and average Large, with, in each case, 393 

the 100ms window with the highest mean amplitude selected, and shown by the blue dashed vertical lines. 394 
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The AwIA window ends up at a similar position to in the Small condition average, while the FuFA window 395 

ends up at a similar position to in the Large condition average. 396 

To be clear, the aggregated average methods will not typically select the highest window in either Small or 397 

Large conditions, since the form of these aggregated averages is influenced by both conditions, however, it 398 

will tend to select a window that is high amplitude in both conditions (since the aggregated average is 399 

comprised from them). In this sense, the aggregated average methods will tend to select windows in the 400 

component conditions that are high amplitude amongst the possible windows, and, all else equal, these will 401 

tend to be higher in the Small condition than in the large condition. 402 

Window Selection Bias. The window selection bias arises, since the aggregated averages are differentially 403 

impacted by the constituent conditions according to their replication count. This is illustrated in Figure 4, 404 

where (the top) Panel A shows how the AwIA and FuFA are generated, and (the bottom) Panel B shows the 405 

selection bias. That is, the FuFA is more like the average of the Large condition, while the key (extreme 406 

value) landmarks of the AwIA are more like those of the Small condition. This is reflected in the placement 407 

of the maximum 100ms mean amplitude windows on each waveform in Panel B. The selected maximum 408 

window in the FuFA is in a very similar position to that in the Large condition average, while the window in 409 

the AwIA is in a similar position to that in the Small condition. In this sense, FuFA window selection tends to 410 

bias towards the Large condition, while the AwIA window selection biases towards the Small condition. 411 

These would indeed create biases, since in either case, AwIA and FuFA, a tendency will be generated for 412 

one condition to have a mean amplitude in the selected window that is closer to that of its true max 413 

window than it is for the other condition. If all else were equal, this would create a bias towards the 414 

condition with window closer to its true max, yielding a higher mean amplitude. As a result, the difference 415 

of selected mean amplitudes would be (statistically speaking) different to zero under the null hypothesis. 416 

Critically, as previously stated, the (simple) averaging bias and the window selection bias work in the same 417 

direction, and thus, accumulate, for the AwIA: they both bias towards the Small condition. That is, in a 418 

statistical sense, a window will be selected closer to the true maximum window placement of the Small 419 

condition, which, additionally, intrinsically has more extreme values than the Large conditionxiii. 420 
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In contrast, and also as previously stated, the averaging and window selection biases work in opposite 421 

directions for the FuFA: (simple) averaging biases towards the Small condition, but window selection biases 422 

towards the Large condition. In addition, the biases are driven by the same across condition ratio of data-423 

samples, are hence, equal and opposite, and accordingly, cancel.  424 

 425 

Figure 5: Illustrative data generated under null-hypothesis simulation. The left side shows a typical single 426 

replication, while the right side shows a typical average, here generated from 30 replications. In both cases, 427 

we present the same data in two different ways. First, (at the top) scalp topographies through time are 428 

presented, with the two topography sequences using the same colour scale to aid comparison. Second, (at 429 

the bottom) the time-series at each electrode are presented overlaid in the same plot. The two main plots 430 

have the same scale to aid comparison between amplitudes of single replication and average. Consistent 431 

with the averaging bias, the single replication contains much more extreme deflections (both positively and 432 
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negatively). This can be seen in the more extreme colours in the left-hand scalp topographies, and the 433 

larger amplitudes in the left-hand overlaid time-series plot. The reduction in extreme amplitudes evident 434 

on the right side due to averaging, has enabled the signal to emerge. This can be seen as a positive 435 

deflection at the centre of the grid, at time-points 1001 and 1201, and a negative one also at the centre of 436 

the grid, in the time-range 1801-2200. As would be expected, the overlaid time-series plot of the average 437 

shows the signal landmarks in the same time periods, see particularly, inset plot on the right. 438 

Simulations of FuFA and AwIA 439 

To confirm this intuition, we present null hypothesis simulations of the FuFA and AwIA, while varying the 440 

replication count asymmetry between the two conditions. The simulations have the properties outlined in 441 

 442 

each time point is an 8x8 spatial grid (corresponding to 64 sensors); 443 

a signal time-series was placed at each sensor of the central 2x2 region of the overall 8x8 grid; 444 

445 

at each point in the grid; 446 

spatial smoothing with a Gaussian kernel (of width 0.5) was applied on the grid at each time point; 447 

each simulated data set comprised 100 replications, divided into two conditions  Small and Large  448 

according to the following asymmetries: 10/90, 20/80, 30/70, 40/60, 50/50; 449 

we determine the amplitude at the time-space-point (i.e. point in time by electrode volume) selected 450 

from FuFA or AwIA in the average of the Small and of the Large, i.e. our regions of interest are peaks. 451 

Data generated from this simulation are shown in figure 5, both a single replication (on left) and an average 452 

from 30 replications (on right). As would be expected, the common signal across replications emerges 453 

through averaging, with reduction of noise amplitudes. 454 

The results of these simulations are shown in figure 6. This shows clearly that the AwIA is biased by 455 

replication-count asymmetry. For example, in panel A, the amplitudes at the AwIA peak are bigger for the 456 

Small than the Large condition (see solid lines), so, the difference of the two (red vertical arrow) will be 457 
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non-zero. In addition, this bias systematically reduces as replication-counts come into balance, i.e. as one 458 

moves from left to right in panel A. 459 

 460 

 461 

Figure 6: Results of simulations. The null-hypothesis was simulated for five replication count asymmetries, 462 

from highly unbalanced (10/90) to fully balanced (50/50), with the dependent measure being peak 463 
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amplitudes of condition averages. Panels A and B show results for AwIA, while Panels C and D show results 464 

for FuFA. Panels A (for AwIA) and C (for FuFA) show the main results. Dashed lines show peak amplitudes 465 

for Small and Large, i.e. when the peak amplitude is read-directly off from the condition averages, without 466 

any involvement of an aggregated average. The difference between these lines is the (simple) averaging 467 

bias (see green arrow), which is identical for AwIA and FuFA and in both cases, reduces to zero when 468 

replication counts are balanced (50/50). Solid lines show amplitudes for Small and Large469 

location is selected from the aggregated average (AwIA for Panel A and FuFA for Panel C). Thus, the 470 

difference between solid lines is the overall bias of the method (as indicated by red arrows). In (C), these sit 471 

on top of each other, showing that there is no overall bias, while only when replication counts are 472 

equalised (i.e. 50/50), do the solid lines coincide in (A). 473 

We show, with blue and purple arrows, the amount the amplitude is reduced as a result of going via the 474 

aggregated average. Each of these is presented as a reduction,i.e. how much less the amplitude is at the 475 

time-point found from the aggregated average than at the true condition peak. 476 

The length of the blue and purple arrows reflects the degree to which the aggregated average 477 

. As illustrated in figure 4, the AwIA is more like the Small condition, while the FuFA is 478 

more like the Large condition. Accordingly, the reduction due to AwIA (see Panel A) is less for Small than for 479 

Large, while the reduction due to FuFA (see Panel C) is dramatically more for Small than for Large. In both 480 

cases, this difference in reductions itself reduces until parity is reached at full balance (50/50), see Panels A 481 

and C. This difference in these two reductions (one for Small, the other for Large) is the window selection 482 

bias. 483 

As previously indicated, the (overall) bias (i.e. difference between solid lines) due to employing an 484 

aggregated average process is shown with the red arrows. For the AwIA, Panel A, this (overall) bias is 485 

substantial at large replication-count asymmetries, but as would be expected, progresses to zero with fully 486 

balanced designs. In contrast, for the FuFA, save for sampling error, there is no (overall) bias at any 487 

asymmetries. 488 
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Panels B and D summarise biases for AwIA (respectively FuFA). The (simple) averaging bias is the same for 489 

AwIA and FuFA, see green arrows and lines. But, while the window selection bias (difference of amplitude 490 

reductions, Large minus Small; light purple line), has a small effect in the same direction as the averaging 491 

bias for AwIA, it is equal and opposite to the averaging bias for FuFA. The overall bias, red arrows and lines, 492 

is substantial with large replication-count asymmetries for AwIA, but absent for all replication-count 493 

asymmetries for FuFA. Standard errors of the mean are shown.  494 

Panel E: Overall bias is the sum of the (simple) averaging bias and window selection bias (which itself is a 495 

difference of reductions for Large and Small). 496 

As previously discussed, and elaborated on in the caption of figure 6, the simple averaging bias (green 497 

arrow) and the window selection bias (purple minus blue arrows) accumulate for the AwIA, see Panel A, 498 

generating a substantial overall bias (red arrow) at big replication-count asymmetriesxiv. This is summarised 499 

in Panel B. 500 

In contrast, the FuFA is free from bias at all asymmetries. This is summarised in Panel D, where it is evident 501 

that the averaging bias (which is the same for both FuFA and AwIA), is (perfectly) counteracted by the 502 

window selection bias. Accordingly, save for sampling error, the Overall Bias (the Red line) is zero at all 503 

asymmetries. 504 

Interestingly, it is not just that the amplitudes at the FuFA peak are equal (i.e. the Overall Bias is zero), but 505 

those amplitudes are constant across replication asymmetries. In other words, it is not just that the solid 506 

lines in panel (C) of figure 6 are equal across all replication-count asymmetries, but they are also horizontal. 507 

There is, then,  it does not matter what the asymmetry 508 

is, the condition average peak amplitude at the FuFA peak is always the same, statistically speaking. 509 

Temporal Correlations  Simulations 510 

The third of the candidate safety properties suggested by the simulations of [Kriegeskorte et al, 2009], is 511 

avoidance of temporal correlations between data samples. As previously discussed, in the context of ERP 512 

analysis, this issue does not concern correlations along the trial (or ERP) time-series, since the unit of 513 
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replication is a trial, not a time-point within a trialxv. Thus, with careful experimental design and high-pass 514 

filtering of the unsegmented data, in most cases, it should be possible to avoid dependencies from trial-to-515 

trial and thus between data samples, e.g. the mean amplitude in the same window in different trials. 516 

However, for completeness, we present simulations here that consider whether temporal correlations are 517 

the problem they are suggested to be by the third of candidate safety properties. 518 

Clarifying this issue can have value for the cases in which temporal correlations along replication data 519 

samples are unavoidable. For example, there can be carry-over effects from trial-to-trial due to learning 520 

through the course of an experiment, or perhaps because of the presence of low frequency components, 521 

such as the contingent-negative variation [e.g. Chennu et al, 2013]. In particular, it may be that the 522 

presence of such low-frequency components has relevance to the experimental question at hand, 523 

rendering it inappropriate to filter them out. 524 

We focus specifically here on a simple case in which correlations are consistent throughout the course of 525 

the experimentxvi. To simulate this, we simply smooth down the replication data samples at each time-space 526 

point of our data segment. That is, for each time-space point, there will be as many replication data 527 

samples as there are time-series replications in the experiment, and we convolve these replications with a 528 

Gaussian kernel in a sequence defined by the order 529 

in which replication time-series were generated in the simulation. We interpret this as the order replication 530 

time-series arose in the experiment. 531 

 532 
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Figure 7: Form of design matrices used in simulations. The matrices have a repeating structure, with 10 533 

replications per block. Each block contains N1 replications of condition Small followed by N2 of condition 534 

Large. The proportion of N1 to N2 is varied to simulate replication-count asymmetry, from N1=1 and N2=9 535 

(high asymmetry) to N1=5 and N2=5 (fully symmetric). 536 

In more detail, our basic simulation framework is unchanged from that presented in section 537 

FuFA and  with the following exceptions. 538 

1) As just discussed, we smooth down replications at each time-space point. 539 

2) We employ a repeating design matrix, which is divided into blocks, such that each block contains 10 540 

replications; see figure 7. 541 

3) To implement replication-count asymmetry, each block itself is subdivided as follows: 10/90: 1 Small 542 

replication, 9 Large replications; 20/80: 2 Small & 8 Large replications; 30/70: 3 Small & 7 Large replications; 543 

40/60: 4 Small & 6 Large replications; and 50/50: 5 Small & 5 Large replications, where in each of these 544 

cases, the number of replications for Small equals N1 in figure 7, and the number for Large N2. In all cases, 545 

there are 10 blocks overall. 546 

4) Both aggregated average of peak methods are run, FuFA and AwIA, thereby identifying a (time-space) 547 

position of peak for FuFA and for AwIA. 548 

5) Amplitudes are calculated from the Small average and the Large average at the position of the peak of 549 

both FuFA and AwIA identified under 4) above. 550 

The results of these simulations are shown in figure 8. These simulations show very similar patterns to 551 

those in figure 6  compare panel A in figure 8 with panel A in figure 6, and panel B in figure 8 with panel C 552 

in figure 6. In particular, the overall measure of interest is the difference between the two solid lines (the 553 

condition amplitudes at the aggregated average peaks), which show evidence of an asymmetry bias for the 554 

AwIA (panel A), but not for the FuFA (panel B). Thus, in the specific smoothing case considered here, we 555 

found no evidence that temporal correlations generate a bias beyond that already present with unbalanced 556 

designs for the AwIA method. In particular, no evidence of a bias was found for either AwIA or FuFA when 557 
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replication-counts were balanced (the 50/50 case, furthest to the right on the x-axis in figure 8), which was 558 

the case considered in the simulations by [Kriegeskorte et al, 2009]. We consider this disparity between our 559 

findings and K560 

with a proof of the bias-freeness of the FuFA method with constant temporal correlations in section 561 

 in Appendix 2. 562 

 563 

Figure 8: Results of simulations with smoothing down replication data samples. The null-hypothesis was 564 

simulated for five asymmetries, from highly unbalanced (10/90) to fully balanced (50/50). Panel A shows 565 

results for AwIA, and Panel B results for FuFA. In both panels, dashed lines show peak amplitudes for the 566 

two conditions, Small and Large, i.e. when the peak amplitude is read-directly off from the condition 567 

average, without any involvement of an aggregated average. The difference between these lines is the 568 

(simple) averaging bias, which is identical for AwIA and FuFA and in both cases, reduces to zero when 569 

replication-counts are balanced (50/50). Solid lines show amplitudes for Small and Large, when the location 570 

of the amplitude is selected as a peak from the aggregated average (AwIA for Panel A and FuFA for Panel 571 

B). In sum, the smoothing employed here has had little effect on the major patterns present in these 572 

figures. That is, the AwIA (panel A here) still exhibits a bias, which increases with replication-count 573 

asymmetry (i.e. moving from right to left along x-axis), while there is no apparent bias for FuFA (panel B 574 

here) at any asymmetry. This can be seen by comparing solid lines (condition amplitudes at aggregated 575 

average peaks), the difference of which is the overall bias. 576 
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Why the FuFA is Unbiased  Formal Treatment 577 

We present a mathematical verification that the FuFA approach is bias-free in key situations, and that the 578 

AwIA is only bias-free when the design is balanced. 579 

The formal treatment is framed in terms of the general linear model (eqn 1) and its ordinary least squares 580 

solution (eqn 2): 581 

                                                                    (eqn 1) 582 

                                   (eqn 2) 583 

where  and  are  parameter vectors,  an  design matrix,  an  data vector and  an 584 

 error vector. Thus, there are  parameters and  data samples.  is the inferred estimate of the 585 

parameters, . 586 

Then, as per our discussion in section ,  is the selection contrast weight vector, which defines 587 

the contrast used to select a window, and  is the test contrast weight vector. 588 

We focus on the 2-sample independent t-test. Consequently,  is the t-test contrast weight vector, i.e. 589 

 590 

Then, for selection contrasts, we introduce the FuFA selection contrast weight vector, which performs a 591 

weighted average. 592 

 593 

where the smaller condition is down weighted, compared to the bigger one, ensuring that each replication 594 

(whether in larger or smaller condition) contributes similarly to the aggregated average. Finally, the AwIA 595 

selection contrast weight vector is defined as, 596 

 597 

In the general case, the application of two contrasts, and , will be parametrically contrast orthogonal if 598 

and only if, 599 
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 600 

That is, the covariance between parameters, as expressed by the  covariance matrix , defines 601 

the dependencies between inferred parameters, which determine how the application of the two contrasts 602 

can impact each other. Note, parametric contrast orthogonality (see [Cox & Reid, 1987] for a discussion of 603 

parametric orthogonality) encapsulates the property that even if two parameters covary, if that 604 

 applied, orthogonality can still 605 

obtain. 606 

From here, under ordinary least squares, we can use eqn 2 to derive the following, 607 

 608 

Then, using  and that transpose is an identity operation over a symmetric matrix, which 609 

 will be, we can derive, 610 

 611 

In the cases we are considering here, the null hypothesis will hold, since the question for this paper is 612 

whether the false positive (i.e. type 1 error) rate is inflated. Consequently, we can assume that the data 613 

vector, , has a particular form. That is, focussing on the t-test case, there will be no difference of means 614 

between the two conditions, apart from due to sampling error. Accordingly, the term  will generate the 615 

data covariance matrix of error noise in the data (which might be generated by pooling errors across space 616 

(electrodes) or time-space points). We denote this  matrix, where  is the number of replication 617 

samples, as , i.e. 618 

 619 

From here, we can give the key orthogonality property, which is as follows. 620 

Proposition 1 621 

Under the null hypothesis, parametric contrast orthogonality holds between  and  if and only if 622 

, which  holds, if and only if, 623 
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(eqn 3)624

As previously discussed, in standard ERP analyses (with EEG or MEG), inference is across replications, not 625 

time-points within a trial (or along the entire, unsegmented, time-series of an experiment, as is typical of 626 

fMRI analyses). In this context, unless temporal correlations have been elicited between replications 627 

through the experiment time-course (e.g. due to learning effects),  would be a diagonal matrix (i.e. with all 628 

off-diagonal elements zero, reflecting the absence of correlations between different replication samples). 629 

In this context, parametric contrast orthogonality reduces to the following equation (see the proof of 630 

proposition 2 for this derivation). 631 

                                                                 (eqn 4) 632 

As previously discussed, for completeness, we will also include a consideration of the consequences of 633 

temporal correlations across replications Repeating Design Matrices and Temporal 634 

Correlations  in Appendix 2. 635 

Unbalanced Block Design Matrices 636 

Following on from our simulation results in section  of FuFA and AwIA  we mathematically 637 

verify the main results concerning freedom from bias in unbalanced designs, with two 638 

matrices. Thus, we show here that our simulation results generalise, by proving that in all relevant cases, 639 

the pattern we observed in our simulations holds. We will do this by showing that equation 3 holds for  640 

for all cases we consider, while for  it only holds with balanced designs. 641 

We assume a design matrix, , of the form, 642 

 643 

where the first column is the indicator variable for condition 1 and the second for condition 2. X has N 644 

rows, which can be divided into two blocks  upper for condition 1 and lower for condition 2. In the 645 
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balanced case, these two blocks have the same number of rows: , while in the unbalanced case, the 646 

upper block has rows and the lower , such that . Without loss of generality, we assume 647 

that . For example, the following design matrix indicates three replication data samples in 648 

condition 1 and four in condition 2. 649 

                                                        (example 1) 650 

Proposition 2 651 

Consider a 2-sample independent t-contrast, with contrast vector , in which the noise in the two 652 

conditions is generated from the same stochastic process, replications are statistically independent of one 653 

another and X is a two block design matrix in which . Then, under the null-hypothesis, parametric 654 

contrast orthogonality, i.e. eqn 3, holds for the FuFA, i.e. 655 

 656 

That is, window selection via the FuFA does not bias the statistical test. 657 

Proof 658 

Assume a two-block design matrix, such as that shown in example 1. Lack of temporal correlations down 659 

replications ensures there is no loss of generality associated with assuming a two-block design matrix. 660 

We first note that eqn 3 can be significantly simplified. Since there are no temporal correlations down 661 

replications, , the data covariance matrix, has a very simple form. Specifically, it is an  diagonal 662 

matrix, with the variance of the white noise giving the elements on the main diagonal. 663 

 664 

Eqn 3, then, simplifies as follows, 665 
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666

 667 

 668 

 669 

 670 

We need to show then that , which holds if and only if . We 671 

do this by simply evaluating the left hand side of this equation. 672 

So, assuming the upper block of  contains  rows, the lower block  and , we have, 673 

 674 

with which we can derive the result we seek through substitution and evaluationxvii. 675 

                   (line XX) 676 

        677 

QED 678 

ion of unbalanced designs as a 679 

hindrance to obtaining orthogonality of test and selection contrasts is resolved by employing the FuFA, 680 

rather than the AwIA. 681 

We can also show that parametric contrast orthogonality only holds for the AwIA when . 682 

Proposition 3 683 
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Consider a 2-sample independent t-contrast, with contrast vector , in which the noise in the two 684 

conditions is generated from the same stochastic process, replications are statistically independent of one 685 

another and X is a two block design matrix in which . Then, under the null-hypothesis, 686 

   if and only if    . 687 

i.e. the AwIA approach is only unbiased for balanced designs. 688 

Proof 689 

This proof follows the deductions of the proof of proposition 2 up to line XX, where we have, 690 

 691 

From here, we can derive the following, 692 

 693 

 694 

  695 

 696 

 697 

 698 

 699 

QED 700 

Finally, do note that although the FuFA approach is parametrically contrast orthogonal, as shown in 701 

proposition 2, the contrast weight vectors are not orthogonal, unless the design is balanced, viz, 702 

. Accordingly, the first proposed safety property of [Kriegeskorte et al, 2009] 703 

is not strictly required. 704 
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Statistical Power 705 

A central concern of this paper is the type-I error rate. With classical frequentist statistics, maintaining the 706 

false positive rate of a statistical method at the alpha level ensures the soundness of the method. A failure 707 

to control the type-I error rate is what is suggested by a replication crisis, i.e. results are being published 708 

with the stamp of significance against a standard 0.05 threshold, however, the percentage of published 709 

studies that do not replicate is much larger than 5%. 710 

Statistical power (one minus the type II error rate) is, of course, also important; that is, we would like a 711 

sensitive statistical procedure that does identify significant results, when effects are present. This is the 712 

question that we consider in this section. Specifically, we extend the assessment of statistical power made 713 

in [Brooks et al, 2017]. In these new simulations, there is no trial-count asymmetry, as a result, in this 714 

section, we talk in terms of the aggregated average, rather than the FuFA, since FuFA and AwIA are the 715 

same in this context.  716 

[Brooks et al, 2017] provided a simulation indicating that the aggregated average approach to window 717 

selection is more sensitive than a fixed-window prior precedent approach when there is latency variation of 718 

the relevant component across experiments. This is, in fact, an obvious finding: with a (fixed-window) prior 719 

precedent approach, the analysis window cannot adjust to the presentation of a component in the data, 720 

but it can for the aggregated average/ FuFA. 721 

-univariate 722 

approaches, such as, the parametric approach based on random field theory implemented in the SPM 723 

toolbox [Penny et al; 2011] or the permutation-based non-parametric approach implemented in the 724 

Fieldtrip toolbox [Maris and Oostenveld; 2007, Oostenveld, et al; 2011]. This is because such approaches do 725 

adjust the region in the analysis volume that is identified as signal, according to where it happens to be 726 

present in a data set. However, because mass-univariate analyses familywise error correct for the entire 727 

analysis volume, their capacity to identify a particular region as significant reduces as the volume becomes 728 

larger. In contrast, the aggregated average approach is not sensitive to volume size in this way, implying 729 

that it could provide increased statistical power, particularly when the volume is large. 730 
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Thi731 

generation approach, map it to the 10-20 electrode montage that is standard in EEG work, and then 732 

er inference procedure and the aggregated average 733 

approach. The decision to focus on a cluster-734 

EEG/MEG research, where it is effectively a de facto standard. 735 

Details of the simulations are as follows. 736 

We generated simulated EEG data, in the way described earlier (c.f. 737 

 sub738 

 with the following changes. 739 

1. A 9x9, rather than 8x8, spatial grid is used, since it is more naturally mapped to the 10-20 system, 740 

with the centre of the grid mapped to Cz. 741 

2. Signal time-series were included in the centre of the grid, at positions 4,4; 4,5; 4,6; 5,4; 5,5; 5,6; 6,4; 742 

6,5; and 6,6.  743 

3. As previously, we had two conditions; here, each comprised 20 replications. The difference 744 

between conditions was generated by scaling the signal in the first condition by 0.2 and the second 745 

by 0.15. This contrasts with our other simulations in this paper, in which there was, in a statistical 746 

sense, no difference between the two conditions, as the null was being simulated. 747 

4. We spatially smoothed the data with a Gaussian kernel of width 0.8; this meant that taking the 748 

peak in our aggregated average approach reflected an integration over a relatively broad region of 749 

the scalp. 750 

5. We mapped the 9x9 spatial grid to the 10-20 electrode montage as follows, 751 

a. Grid position 4,3 to Fp1; 5,3 to Fpz; 6,3 to Fp2; 3,4 to F7; 4,4 to F3; 5,4 to Fz; 6,4 to F4; 7,4 752 

to F8; 3,5 to T7; 4,5 to C3; 5,5 to Cz; 6,5 to C4; 7,5 to T8; 3,6 to P7; 4,6 to P3; 5,6 to Pz; 6,6 753 

to P4; 7,6 to P8; 4,7 to O1; 5,7 to Oz; and 6,7 to O2. 754 

Grid locations not mapped to an electrode were discarded. 755 

Examples of the time-domain data generated by our simulations are shown in figures 9. 756 



36 
 

  757 

Figure 9: Illustrative data generated for statistical power simulations. In all rows, we present the same EEG 758 

data in two different ways. On the left, scalp topographies through time are presented, with all three 759 

topography sequences using the same colour scale to aid comparison. On the right, time-series at each 760 

electrode are presented overlaid in the same plot. The first row shows a typical singe-replication for 761 

condition 1; the same plot for a condition 2 replication would look similar, since the amplitude difference of 762 

the signal is swamped by noise. The second row shows a typical condition 1 average (ERP), here generated 763 

from 20 replications and the third row shows the same, but for condition 2. All the main time-series plots 764 
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have the same scales to aid comparison between amplitudes of a single replication and averages. As would 765 

be expected, the single replication contains much more extreme deflections (both positively and 766 

negatively). This can be seen in the more extreme colours in the top-row scalp topographies, and the larger 767 

amplitudes in the corresponding overlaid time-series plot. The reduction in extreme amplitudes evident on 768 

the right side due to averaging, has enabled the signal to emerge. This can be seen as a positive deflection 769 

at the centre of the grid, at time-points 1001 and 1201, and a negative one also at the centre of the grid, in 770 

the time-range 1801-2200. As would be expected, the overlaid time-series plot of the average shows the 771 

signal landmarks in the same time periods, see particularly, inset plots on the right. Condition 1 has higher 772 

signal amplitude than condition 2. 773 

 774 

Figure 10: time-frequency plots of example statistical power data simulations. We show typical plots of 775 

condition 1 and condition 2, as well as of the aggregated average. As can be seen, since the main time-776 

frequency feature appears at the same point for both condition 1 and condition 2, the aggregated average 777 

plot also reflects this dominant feature. 778 

We then performed the following analyses on each simulated data set. 779 
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1. We first performed a time-domain analysis on the simulated data, in the fashion discussed in 780 

section Simulations of FuFA and  781 

2. We then performed a time-frequency decomposition of the simulated data in Fieldtrip. As an 782 

illustration, in figure 10, we show the results of our frequency domain analysis of the data 783 

presented in figure 9. 784 

3. The time-frequency analysis had the following properties. 785 

a. We filtered to identify the 3 to 30 hz frequency range. 786 

b. Wavelet decomposition was performed, with a five cycle wavelet. 787 

c. To enable low-frequency wavelet estimation, we pre-pended and post-pended buffer 788 

periods of coloured noise according to the human frequency spectrum; see Appendix 3. For 789 

both pre- and post-pending, these periods were twice the length of the main analysis 790 

segment. 791 

d. 792 

period before stimulus onset. 793 

4. We performed the same statistical inference procedure on both time and frequency domains. 794 

5. At the first (samples) level, we performed a two-sample independent t-test and then, at the second 795 

level, we applied a cluster-based familywise error correction, with Monte-Carlo resampling (2000 796 

resamplings), according to the Fieldtrip electrode neighbourhood template eiec1020_neighb.mat. 797 

6. For the cluster inference, the result of each simulated data set that we were interested in was the 798 

p-value of the largest positive cluster mass. 799 

7. The aggregated average was constructed by taking the union of replications of the two conditions 800 

and then averaging (note, there was no trial-count asymmetry, so this is the same as averaging the 801 

average of each condition ). The time-space point 802 

of the maximum amplitude in this average was taken as the ROI in the time-domain. The same 803 

basic procedure was performed in the frequency domain, although only after a time-frequency 804 

analysis was performed on the union of replications. In this case, the selected ROI was the time-805 

space position of the maximum power in the resulting volume. 806 
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8. The aggregated average result of each simulated data set was the uncorrected p-value of the two-807 

sample independent t-test at the selected point/ROI on the aggregated average. 808 

The results we report are from 40 runs of the simulation code and, as a result, we show 40 data points for 809 

each of the simulation conditions we explore. These conditions were time domain+aggregated; time 810 

domain+cluster; frequency domain+aggregated; and frequency domain+cluster. 811 

Our results are presented as probit-transformed p-values. Probit maps p-values to a minus to plus infinity 812 

range, enabling differences between small p-values to be easily observed. Results are shown in figure 11. 813 

Panel A provides the main summary of our findings. We can see that the two aggregated conditions exhibit 814 

more extreme negative going probit values, and the difference between aggregated and cluster was larger 815 

in the frequency domain. 816 

We also run a 2x2 ANOVA  with probit-transformed p-values as dependent variable, and factors domain 817 

(time vs frequency) and method (aggregated vs cluster). The main effect of domain was not significant 818 

(F(1,156) = 0.44, p = 0.51, partial_eta2 = 0.0027), but the main effect of method was highly significant 819 

(F(1,156) = 57.51, p<0.0001, partial_eta2 = 0.2610), and the 2x2 interaction also came out significant 820 

(F(1,156) = 5.9, p = 0.0163, partial_eta2 = 0.0349). These findings are consistent with the box-plots. In 821 

particular, the effect sizes (which are not dependent upon the number of simulated data sets generated, 822 

which is effectively arbitrary and could be easily extended) showed a large effect of method, with the 823 

aggregated average exhibiting substantially more statistical power (i.e. lower p-values for the same data 824 

set), and also an interaction that suggests that the benefit of the aggregated average approach is larger for 825 

the frequency than the time domain. 826 

The findings here serve as a proof of principle that the aggregated average approach can increase statistical 827 

power over cluster-based FWE-correction, which is the de facto standard in the field. In addition, and 828 

perhaps most importantly, the aggregated average approach maintains its statistical power when an extra 829 

dimension (here frequency) is added to the analysis volume. This is not a surprising finding, since the 830 

statistical power of cluster-inference falls as the analysis volume increases in size. This is simply because the 831 

probability of a particular size of (observed) cluster arising under the null increases as the volume increases. 832 
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On the other hand, the aggregated average approach presented here will not do well if an effect exhibits a 833 

polarity reversal between conditions. Indeed, cluster-inference could find a large effect when for a 834 

particular period, condition 2 is -1 times condition 1. In contrast, the aggregated average would be zero in 835 

that period. Further discussions of the pros and cons, assumptions underlying and usage guidelines for the 836 

aggregated average, can be found in Table 4 of [Brooks et al, 2017]. 837 

 838 

Figure 11: Simulation results, expressed as probit transformed p-values. [A] Main results depicted as box-839 

plots for time-domain aggregated average, time-domain cluster-based analysis, frequency domain 840 

aggregated average and frequency domain cluster-based analysis. Red markers indicate the median; 841 

bottom and top edges of boxes indicate the 25th and 75th percentiles, respectively; whiskers extend to 842 

most extreme non-843 

would expect, the aggregated average and cluster analysis generate correlated results. Note, the brown 844 
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line is not a line of best fit, it is simply the identity line: Y=X. Data sets in which the aggregated average 845 

gives a smaller p-value than cluster inference appear below the Y=X line and those where cluster inference 846 

does better appear above it. The 0.05 p-value threshold corresponds to a probit transformed value of -847 

1.6449. We show where this threshold sits with green and blue dashed lines. As a result, the points in the 848 

green region are significant by cluster inference and blue by aggregated average. Time domain aggregated 849 

has 25/40 significant, time domain cluster has 14/40, frequency domain aggregated has 32/40, and 850 

frequency domain cluster has 12/40. These scatter plots show again that, for these simulations, the 851 

aggregated average is more effective, giving more statistical power, than cluster-inference, and that this is 852 

especially the case in the frequency domain.Discussion 853 

This paper has presented simulated and formal grounding for a simple method, the Fully Flattened Average 854 

(FuFA) approach, to place analysis windows in M/EEG data without inflating the false-positive rate. The 855 

reason why we believe that the FuFA approach is so effective is because, as demonstrated, it does not 856 

-857 

components of interest, which often arise at a similar time region in all conditions in a particular 858 

experiment. Indeed, the FuFA method works particularly well if the component of interest is strong in all 859 

conditions, just with an amplitude (but little latency) difference; see [Brooks et al, 2017] for a 860 

demonstration of this. In this way, it keeps the type 2 error rate relatively low. This is confirmed by our 861 

statistical power simulations, which showed that with realistic generated EEG data sets, the aggregated 862 

average/ FuFA approach has higher statistical power than Fieldtrip cluster-inference. Furthermore, this 863 

benefit was even greater when analysis was in the frequency domain, which adds a dimension and thus size 864 

to the analysis volume. The results of these simulations reflect the trade-offs with respect to statistical 865 

power between the aggregated average and cluster-inference methods. It is, though, certainly the case that 866 

the aggregated average will tend to do better when 1) the volume is large, and 2) effects ride on the top of 867 

large components, which have the same polarity and similar latencies in different conditions. 868 

For the generality of the results presented, we have considered a broad framing of aggregated averages, 869 

thereby enabling our findings to apply whatever the unit of inference  trial, participant, item, etc. Our 870 
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previous article on the problem of window and ROI selection [Brooks et al, 2017], though, specifically 871 

focussed on inference across participants and placing windows on the grand average across all participants. 872 

To make the link to this earlier work completely clear, if participants are the unit of inference, the FuFA 873 

becomes the Aggregated Grand Average of Trials and the AwIA becomes the Aggregated Grand Average of 874 

Grand Averages, the concepts discussed in [Brooks et al, 2017]. 875 

With regard to the generality of the FuFA approach, it is important to note that it applies as much to within 876 

as it does to across participant designs. Our work concerns the number of trials/repetitions that are 877 

incorporated into an average, i.e. in an Event Related Potential (ERP). Even though statistics are run at the 878 

participant level, the ERP for each participant is generated by averaging trials. If there are disparities of 879 

trail-counts entering these averages, the problem we highlight will still obtain with a within-participant 880 

design. To put it in other terms, although statistical inference is performed on participant-level 881 

observations, observations at that level are generated from observations at the trial-level, where 882 

asymmetries of observation counts can arise. 883 

As an illustration, imagine a simple within-participants experiment, where we have N participants and two 884 

conditions; and all participants complete both conditions. We then run a *paired* t-test, i.e. the simplest 885 

within participants test, but we vary the trial-counts going into the ERPs between the two conditions. We 886 

obtain the bias shown in figure 12. Trial count asymmetry runs on the x-axis and false positive rate on the y-887 

axis. As you can see, it does not matter whether the experiment is paired or unpaired, there is always an 888 

increasing bias (i.e. increasing false-positive rate) as the asymmetry increases for the averaging that is not 889 

flattened (i.e. the AwIA). This bias is eradicated when the flattened average is taken (which is the FuFA 890 

approach). The pattern is almost identical for paired and unpaired t-tests, i.e. within or across-participant 891 

experiments. 892 

Another way of thinking about the issue is that the amplitude of the noise relative to the signal in a 893 

participant-level ERP is affected by the number of trials contributing to that ERP. In this way, trial-level 894 

observations impact participant-level observations. 895 
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  896 

Figure 12: Results of simulation of null, incorporating a within-participant test. The simulation involved two 897 

levels of noise. The inter-trial noise source was independently generated on each trial, but the same 898 

algorithm was used across trials, participants, and conditions (see Brooks, Zoumpoulaki, & Bowman, 2017). 899 

Inter-participant noise was generated independently for each participant.  The exact same noise was added 900 

to every trial (in both conditions) for the participant. The results of this simulation (noise-only data) clearly 901 

showed that the pattern of Type I error rates was not substantially different between paired and unpaired 902 

data sets (compare dark bars to lighter coloured bars). There is clear evidence of inflation of the false 903 

positive rate when a non-flattened average is taken (i.e. the AwIA). This inflation is eradicated when the 904 

flattened average (i.e. the FuFA) is taken. The plot in this figure is for noise-only data, but we include a 905 

similar simulation incorporating a within-participant experiment with a strong N170 signal present in 906 

appendix 4. The N170 results again show similar results for paired and unpaired data. 907 

Parametric contrast orthogonality, see equation 3, gives assurance that selection and test contrasts when 908 

applied within the context of a particular general linear model inference are orthogonal. However, in a 909 

Human Brain Mapping poster, Ridgway [Ridgway, 2010] identified an additional pitfall that arises when 910 

statistical tests are applied to both the selection and the test contrasts, and which corresponds to a 911 

difficulty previously identified in the statistics literature [Hurlburt & Spiegel, 1976]. The essence of the 912 
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problem is that even if the inferred selection and test contrasts are parametrically orthogonal, non-913 

orthogonality can creep back in through the error variance. For example, if windows/ROIs are selected 914 

according to an F-test, and then an F-test is also applied on the test contrast, the denominators of these 915 

two F-tests (i.e. the mean squared error) will be driven by the same variance. This biases towards 916 

windows/ROIs in which variance is lower, which could arise under the null simply from sampling error. This 917 

will reduce test statistic p-values, increasing the rate of false-positives. 918 

This difficulty can, though, be avoided if the error variance does not contribute to the selection of 919 

windows/ROIs. For example, selection could be made using an unstandardized effect, e.g. the numerator of 920 

an F-test, or the application of a simple contrast, which is the approach focussed on in this paper. 921 

A further point of note is that the mathematical findings in this paper are more general than the simulation 922 

results. Our simulations are specific to selecting extreme values, e.g. the maximum or minimum. That is, 923 

our simulation results suggest that the FuFA approach is unbiased specifically in the context of selecting 924 

maxima (e.g. peaks) or minima (e.g. troughs). However, the propositions we prove in our formal treatment 925 

are statements of the orthogonality of the FuFA and a t-contrast. Thus, it does not matter what landmark 926 

one seeks to pick in the FuFA, for example, window selection could focus on zero crossing points, the 927 

orthogonality result will still apply. 928 

The most common type of EEG experiment is one in which participants are the random effect. As just 929 

discussed, when this is the case, the FuFA becomes an Aggregated Grand Average of Trials, as introduced in 930 

[Brooks et al, 2017]. In this context, the typical approach would be to perform window selection at the 931 

grand average level. However, in contrast, a different aggregated average could be determined for each 932 

participant, tuning to the data of each participant separately, without requiring a distinct functional 933 

localizer [Friston et al, 2006] or functional profiler [Alsufyani et al, 2018]. Such an approach is sound, and 934 

could, for example, maintain statistical power in the context of high variability in component latency across 935 

individuals, but relative consistency within individuals, i.e. across conditions. 936 

Returning to pre-registration, as previously discussed, the registration of fixed windows runs the risk of 937 

inflating type II error rates. One obvious solution to this is to allow pre-registration of an orthogonal 938 
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contrast procedure, with the bounding search region for a particular component pre-specified, but not the 939 

actual integration window position. In this way, the benefits of pre-registration with regard to controlling 940 

false-positive rates could be combined with a data-driven procedure for window identification to ensure 941 

that type II error rates are not dramatically inflated. 942 

We can also think in broader terms about the FuFA procedure and orthogonality in general. Windows/ROIs 943 

are just one example of a set of hyper-parameters that need to be set when performing an M/EEG analysis. 944 

Other such hyper-parameters include, filter settings; artefact rejection procedures; re-referencing, e.g. to 945 

mastoid or ensemble average; frequency bands for a time-frequency analysis; even classifier hyper-946 

parameters, such as type of kernel used (see [Skocik et al, (2016] for a discussion of this). If any such hyper-947 

parameter is optimized to give a desired effect, the false positive rate will be inflated. In essence, the 948 

problem is putting the analysis pipeline in a loop with the output of that pipeline, viz p-values, F-values or t-949 

values.  Would it be possible, then, to apply the same aggregated average, or more generally, 950 

parameterized contrast orthogonalization, to setting these other hyper-parameters? This is an important 951 

line for future research. 952 

An alternative way to resolve the problem of post-hoc fishing in analysis hyper-parameters is to partition 953 

the collected data, tune hyper-parameters on one part and test on a separate part. In the context 954 

considered in this paper, this would amount to selecting windows/ROIs on one part of the data, but then 955 

testing and reporting on the other part. And to be clear, with such partitioning, one really can tailor hyper-956 

parameters on one part, without invoking an orthogonal contrast of any kind. This is because, in a statistical 957 

sense, the noise in the selection partition is different to the noise in the testing partition, so any advantage 958 

obtained by fitting hyper-parameters in one partition to the noise, i.e. over-fitting, will not benefit the 959 

testing in the other partition. Classic examples of such data partitioning are functional localisers [Saxe et al, 960 

2006] and cross validation [Kriegeskorte et al, 2009]. 961 

Certainly, a technique such as cross validation is an important tool in the analysis toolbox, particularly, 962 

when there are no precedents at all for the landmarks that should be expected in a data set. In particular, 963 

the orthogonality approach breaks down if it is unclear how to even pre-specify the properties of the 964 
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selection contrast (e.g. the polarity of the component being searched for, or in what general {bounding} 965 

region of the analysis segment it might appear in), which for the method to not inflate false-positives need 966 

to be pre-defined. However, all data partitioning carries a cost, which is a loss of statistical power. That is, if 967 

data sets are split, the final test result to be reported has to be assessed on a subset of the whole data, 968 

reducing power. A key benefit of the parametric contrast orthogonality approach is that all data contributes 969 

to the reported statistical test. This benefit becomes all the more pronounced as the expense of collecting 970 

data increases, e.g. when moving from behavioural experiments to EEG (which is somewhat more 971 

expensive) to MEG/fMRI/PET (which are a lot more expensive). 972 

Conclusions 973 

In the absence of any further explanation, statements in M/EEG papers of the 974 

reviewers and readers. At the 975 

least, some sort of justification on the basis of prior literature should be given for window/ROI placements. 976 

The FuFA approach, and parametric contrast orthogonalization in general, offers an alternative that enables 977 

windows/ROIs to be tuned, in a data-driven manner, to the landmarks of a particular data set without 978 

incurring a false positive inflation. The aggregated average approach can be sensitive to replication and 979 

noise asymmetries between conditions, but, as verified in this paper, the former is resolved by using the 980 

FuFA. In conclusion, then, the FuFA approach provides a method to dip twice into the data, without double 981 

dipping in contrast space. 982 
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Appendix 1: Prior Precedent in ROI Placement  an Example 1058 

Focussing on Event Related Potential (ERP) research, it is often difficult to know exactly where in a data 1059 

volume an effect will arise, even if one has a good idea of the component that responds to the 1060 

manipulation in question. For example, small changes in experimental procedures, or of participant group, 1061 

can have a dramatic effect on the latency, scalp topography and, even, the form of a component. 1062 

Figure 1 presents a case in point. The grand averages of two experiments are aligned in time and compared. 1063 

The studies used very similar stimulus presentation procedures and timing. In both cases, Rapid Serial 1064 

Visual Presentation (RSVP) was used, with a single critical item occurring in each RSVP stream. Those critical 1065 

items could either be Irrelevants, Probes or Fakes/Targets. Both experiments used name stimuli, for both 1066 

filler distractors (which create the RSVP stream) and critical stimuli. In both experiments, the Irrelevant was 1067 

a randomly selected stimulus, the identity of which was not told to the participant; the Fake/Target was a 1068 

stimulus the participant was told to search for in the streams; and the Probe was a stimulus that was 1069 

incidentally salient to the participant, but for which they had no instruction. Stimuli in the top panel were 1070 

imuli in the lower panel were first and 1071 

second names, which appeared as temporally adjacent frames (i.e. doublets) in the RSVP streams. The 1072 

Probe in the lower-panel experiment was a celebrity-1073 

adjacent frames. In neither experiment did the Irrelevant elicit an evoked response; see black time series. 1074 

The Fake/ Target elicited the largest P3bs; see red time series. Clear P3b patterns were also observed for 1075 

the Probes. 1076 

The most substantive difference between the two is that in the top-panel experiment, RSVP items were 1077 

first names, while in the lower-panel experiment, first and second names were presented as doublets (i.e. 1078 

as temporally adjacent frames), somewhat similarly to the lag-1 case in the attentional blink phenomenon 1079 

[Wyble et al, 2009; Bowman & Wyble; 2007]. Certainly, the upper panel experiment was as good a 1080 
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precedent for the lower panel experiment (which came later), as could be found within the literature or the 1081 

trajectory of the research programme of which they were a part. 1082 

Despite the similarity between the experimental paradigms, the timing and form of the P3 components are 1083 

very different. This can, for example, be seen with the Probe condition (the green time series), where the 1084 

P3 peak in the lower panel actually arises during the negative rebound to the P3 in the upper panel. There 1085 

are many reasons why these differences might obtain. For example, there is likely to be more temporal 1086 

jitter, i.e. latency variation in the presentation of the component at the single trial level, in the lower panel-1087 

experiment, causing the component at the grand-average level to be broader [Chennu et al, 2009]. 1088 

Additionally, a somewhat broader component might have been expected in the lower experiment, since, as 1089 

just discussed, Probes and Targets were first-second name doublets. However, such doublets are most like 1090 

the lag-1 case in the attentional blink phenomenon, which does generate a broader P3, but only marginally 1091 

so; see for example, [Craston et al, 2009]. 1092 

Appendix 2: Repeating Design Matrices and Temporal Correlations 1093 

As discussed in the main body of the paper, for completeness, we consider the consequences of temporal 1094 

correlations across replications. We focus on a single common case, whereby a) design matrices have a 1095 

regular interleaved form, as shown in figure 13, and b) the strength and nature of the temporal correlations 1096 

are constant along the replications. 1097 
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 1098 

Figure 13: Form of design and covariance matrices considered in assessment of orthogonality of FuFA in the 1099 

presence of temporal correlations. In these investigations, the design matrix is assumed to have a regular 1100 

interleaved structure, with two alternating conditions (of possibly different numbers of samples). The 1101 

temporal correlations in the data can be characterised with a covariance matrix, in which each point in the 1102 

matrix shows the extent to which (in a statistical sense) different replication samples covary. The length of 1103 

the design matrix ( ) corresponds to the length of the experiment. The covariance matrix is square, with 1104 

number of rows and number of columns equal to the experiment length (i.e. ). The covariance matrix 1105 

shown here has a regular form, in which temporal correlations (which get bigger as the colour becomes 1106 

more red) are consistent across the course of the experiment, i.e. there is constant smoothness down the 1107 

replications. What we call the lead-in/lead-out regions are shown with yellow arrows. The sum down any 1108 

column of the data covariance matrix is the same apart from in the lead-in and out regions. 1109 

We also include a lead-in and lead-out period, shown with yellow arrows in figure 13. The key property that 1110 

holds after the lead-in and before the lead-out periods is that the sum down any column is, in a statistical 1111 
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sense, the same as down any other column. This property does not hold in the lead-in and -out periods, 1112 

meaning, as will become clear, they would not be accommodated by the proof we will give. 1113 

The following is our key result when temporal correlations are present. 1114 

Proposition 4 1115 

Consider a t-contrast in which the noise in the two conditions is generated from the same stochastic 1116 

process, replications exhibit a constant correlation structure, i.e. the data covariance matrix has a fixed 1117 

dispersion around the main diagonal, as per figure 13, and lead-in and -out portions of the design matrix 1118 

are excluded. In addition, the design matrix has the form shown in figure 13, where, without loss of 1119 

generality, . Then, under the null-hypothesis, parametric orthogonality holds, i.e. 1120 

                                         (eqn 3) 1121 

that is, window selection via the FuFA does not bias the statistical test. 1122 

Proof 1123 

Assuming a design matrix of the form shown in figure 13, there must exist a  s.t. 1124 

. Then, we can write our two contrasts as follows, 1125 

 1126 

 1127 

We now turn to evaluating the left hand side of equation 3 in the context we are considering. We can 1128 

evaluate relevant terms as follows: 1129 

 1130 
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 1131 

 1132 

From these we can derive one part of the term we are interested in, i.e., 1133 

  1134 

In the same vein, we can derive further parts of the full term. 1135 

                1136 

We now give two definitions, with the first being the ( ) data covariance matrix. 1137 

 1138 

 1139 

 1140 

We can now evaluate . 1141 
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 1142 

1143 

 1144 

 1145 

Our key relationship (equation 3), equates this term, which is a re-expression of , with zero. So, we can 1146 

assign this term to zero, multiply both sides by , express as averages and re-arrange to give us the 1147 

following: 1148 

1149 

 1150 
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which can be rewritten as, 1151 

                  (eqn 4) 1152 

Now, for any the term  -1153 

-1154 

columns of  have the same sum. Furthermore, any average across column sums for any set of relevant columns of , 1155 

will also be equal to the sum of a single column. If we let that sum equal , then it is straightforward to see that, 1156 

1157 

 1158 

Thus, we have shown that eqn 4 holds, and thus eqn 3.                                  QED 1159 

[Kriegeskorte et al, 2009] argued that temporal correlations in the data prevent the orthogonal contrast 1160 

approach. Here, we have shown that, at least in a particular (but common) case, in which temporal 1161 

correlations are constant, the FuFA approach ensures parametric contrast orthogonality. Our expectation is 1162 

that the finding of a bias in the temporal correlations case in [Kriegeskorte et al, 2009] arises since they did 1163 

not exclude lead-in and lead-out periods, implying that the bias they observe was due to what might be 1164 

thought of as edge effects. 1165 

Appendix 3: Noise Generation Process 1166 

The EEG noise time series for each individual trial was generated by summing 50 sinusoids with randomly 1167 

(without replacement) chosen frequencies (integer values 1-125 Hz) and random phases (with replacement, 1168 

different across frequencies and trials), 0- Yeung, Bogacz, Holroyd, & Cohen, 2004]. Each sinusoid was 1169 

an EEG power spectrum (Figure 14; source 1170 

http://www.cs.bris.ac.uk/~rafal/phasereset/) and normalized to the 1 Hz amplitude. The resulting noise 1171 

waveform was multiplied by 20 µV to increase its overall amplitude. 1172 
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 1173 

Figure 14: Power spectrum of EEG data used to scale the amplitudes of sinusoids in the creation of EEG 1174 

noise. 1175 

Appendix 4: Further Type I Error Simulation Incorporating Within-Participant Design 1176 

Figure 15 shows the results of a null simulation containing an N170 signal that does not change between 1177 

condition and participant. A within-participants design is simulated in the form of a paired t-test. The 1178 

simulation shows that the AwIA (not flattened) generates a similar inflation of the false positive rate 1179 

whether a paired or unpaired t-test is performed. The FuFA resolves this inflation. 1180 
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 1181 

Figure 15: Results of simulation of null incorporating a within-participant test. This simulation involves two 1182 

levels of noise: one that creates variability across participants and the other that creates variability across 1183 

trials within a participant. This second source was overlaid on top of the first. An N170 signal was also 1184 

included, but was identical in all conditions and participants, as required of a simulation of the null. There is 1185 

evidence of inflation of the false positive rate when a non-flattened average is taken (i.e. the AwIA), 1186 

although this only becomes severe with large asymmetries. Importantly, the inflation is very similar 1187 

whether a paired or unpaired t-test is run. This inflation is eradicated when the flattened average (i.e. the 1188 

FuFA) is taken. 1189 

 1190 

i There is inconsistency in usage of the terms reproducibility and replicability [Barba, 2018], so we make clear that we 
are using replicability to mean a study that arrives at the same finding as a previous study through the collection of 
new data, but using the same methods as the first study. 
ii Actually it is even difficult to do this accurately when you know the number of settings tried, since different settings 
will be somewhat correlated; although, a Bonferoni correction would control false-positive (i.e. type I error) rates, but 
with the likely cost of inflated type II error rates. 
iii This is the standard trade-off between type I and type II error rates. For example, many different strategies could be 
introduced, which would effectively make the threshold for judging significance more stringent, e.g. use of a routine 
alpha level of 0.01, rather than 0.05. This will though increase the probability that type II errors are made, viz real 
effects will be missed. 
iv In fact, a stronger property would hold, viz that the distribution of possible p-values for the test contrast under the 
null hypothesis is uniform. 
v Actually, for the fully flattened average method we are advocating it will not even be necessary. 
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vi In the context of ERP analysis, this issue does not concern correlations along the trial (or ERP) time-series, since the 
unit of replication is a trial, not a time-point within a trial. The standard fMRI analysis is different  first level inference 
is typically performed (by fitting a general linear model) along the entire experimental time-course, without a unit of 
trial [Penny et al, 2011]. Thus, in the fMRI context, temporal correlations (from one image to the next) are a typical 
feature. 
vii Of course, experiments with further levels of hierarchy, e.g. trials, then participants, then conditions would involve a 
further level of intermediate averages in the AwIA approach and of flattening in the FuFA approach. 
viii ple, in the classic 
definition of ANOVA, a contrast is a vector, the elements of which add up to zero. Our aggregated averages necessary 
use vectors that do not add up to zero. For simplicity of presentation, we use the term contrast in this broader way, 
while acknowledging here this small abuse of terminology.  
ix That is, the following holds, 

 
and, 

 
x This is in contrast to the fMRI case, where first level inference is performed along the time-course of the experiment, 
with what would be trials in the M/EEG context being integrated into a single data time series. 
xi This observation that the FuFA is more like the large than the small condition stands against the belief that just by 
taking an average weighted by the proportion of contributing trials will generate an aggregated average in which the 
two conditions are equally represented. It is more complicated than that and best thought of as two counteracting 
biases. 
xii Such a narrow window was used, since our earlier simulations (Brooks et al; 2017) have shown that the greatest bias 
with unsound methods can be observed for single time-point windows, making it an appropriate test of bias freeness.  
xiii In guidance for publication in Neuroimage Clinical, orthogonal contrasts are considered and their use discussed, e.g. 
analysis of interactions in regions that also show main effects. This approach is said to be vulnerable to non-
independence, i.e. bias. for example if groups are of unequal sizes, any main effect across the groups will be biased 
towards effects that occur in the larger group (Kriegeskorte et al., 2009 oiser et al, 2016]. For the reasons we 
present here, while unbalanced experiments may render the main effect non-independent, in fact our simulations 
suggest that the bias works in the opposite direction, i.e. towards the smaller condition. Furthermore, our FuFA 
approach offers the potential to resolve such biases due to unblanacedness with orthogonal contrasts. 
xiv These characteristics of the AwIA also resonate with the findings in Brooks et al (2017) (figure 3D in that paper) that 
it correlates increasingly strongly with the difference wave as replication count asymmetry increases. The explanation 
for this finding is that as replication count asymmetry increases, the AwIA becomes increasingly like the Small 
condition, since the Small condition has more extreme values (as is inherent to the window selection bias), and the 
difference wave is increasingly dominated by the Small condition as asymmetry increases. In contrast, the FuFA does 
not increasingly correlate with the difference wave, since it is not dominated by the Small condition. In this paper, we 
move beyond the correlation finding in Brooks et al (2017) by actually demonstrating a bias in respect of the 
dependent variable  the difference of peak amplitudes. 
xv As previously discussed, the standard fMRI analysis is different  first level inference is typically performed along the 
entire experimental time-course, without a unit of trial [Penny et al, 2011].  
xvi The restriction to consistent correlations is certainly a limitation. This may particularly be so if the FuFA method is 
applied to fMRI, where, as just discussed, inference is performed along the data time-series, the smoothness of which 
may be impacted by stimulus presentations, with the order of those presentations varying across conditions. 
xvii The following derivation is resonant of the central idea of the simulation work presented earlier, viz that two biases 
work in opposition. That is, the on diagonal terms of the 2x2 diagonal matrix, reflect the simple averaging bias, i.e. the 
number of items comprising the two conditions   and , and indeed, this matrix appears identically for the FuFA 
(this proposition) and the AwIA  see the corresponding point in the proof of proposition 3. Additionally, the vector 

 reflects the window selection bias, i.e. the weighted average method by which the FuFA can be generated. 

Importantly, the  and  terms cancel here for the FuFA, but they do not when the vector becomes  for the 
AwIA in proposition 3. 


