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ABSTRACT 11 

Arid continental basins typically contain a spectrum of coeval environments that coexist and interact 12 

from proximal to distal. Within the distal portion, aeolian ergs often border playa, or perennial, desert 13 

lakes, fed by fluvial incursions or elevated groundwaters. Evaporites are common features in these 14 

dryland, siliciclastic dominant settings. However, sedimentary controls upon evaporite deposition are 15 

not widely understood, especially within transitional zones between coeval clastic environments that 16 

are dominantly controlled by larger scale allocyclic processes, such as climate. The sulphur (34S) and 17 

oxygen (18O, Δ17O) isotope systematics of evaporites can reveal cryptic aspects of sedimentary cycling 18 

and sulphate sources in dryland settings. However, due to the lack of sedimentological understanding 19 

of evaporitic systems, isotopic data can be easily misinterpreted. This work presents detailed 20 

sedimentological and petrographic observations, coupled with 34S, 18O and Δ17O data, for the early 21 

Permian Cedar Mesa Sandstone Formation (western USA). Depositional models for mixed evaporitic / 22 
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clastic sedimentation, which occurs either in erg-marginal or lacustrine-marginal settings, are presented 23 

to detail the sedimentary interactions present in terms of climate variations that control them. 24 

Sedimentological and petrographical analysis of the evaporites within the Cedar Mesa Sandstone 25 

Formation reveal a continental depositional environment and two end member depositional models have 26 

been developed: erg-margin and lake-margin. The 34S values of gypsum deposits within the Cedar 27 

Mesa Sandstone Formation are consistent with late Carboniferous to early Permian marine settings. 28 

However, a marine interpretation is inconsistent with sedimentological and petrographic evidence. 29 

Consequently, 34S, 18O and Δ17O values are probably recycled and do not reflect ocean-atmosphere 30 

values at the time of evaporite precipitation. They are most likely derived from the weathering of older 31 

marine evaporites in the hinterland. Thus, the results demonstrate the need for a combination of both 32 

sedimentological and geochemical analysis of evaporitic systems to better understand their depositional 33 

setting and conditions.  34 

Keywords: Aeolian, Cedar Mesa Sandstone, gypsum, playa lakes, Δ17O, δ34S 35 

INTRODUCTION AND BACKGROUND 36 

Dryland continental basins typically contain a spectrum of depositional environments from alluvial fans 37 

and immature fluvial systems within the proximal region (e.g. Blissenbach, 1954; Hooke, 1967; Bull, 38 

1977; Blair & McPherson, 1994; Harvey et al, 2005; Parsons & Abrahams, 2009), through to aeolian 39 

and arid-fluvial systems within the medial (e.g. Langford, 1989; Langford & Chan, 1989; Herries, 1993; 40 

Veiga et al., 2002; Cain & Mountney, 2009; Al-Masrahy & Mountney, 2015; dos Reis et al., 2019; 41 

Formolo Ferronatto et al., 2019, Priddy & Clarke, 2020), and playa lake or lacustrine environments 42 

within the distal region (Tunbridge, 1984; Huerta et al., 2010). In the medial to distal regions of many 43 

dryland continental basins, evaporite deposits are typically recognized along shallow lacustrine margins 44 

(Carter & Pickerill, 1985; Orti et al., 2003; Orti et al., 2007), where they may form a distinct 45 

depositional setting in their own right, or are dispersed within erg-marginal and ephemeral-fluvial 46 

settings (Kocurek, 1988; Porter, 1986; Blakey, 2000; Clemmenson et al., 2000; Tanner & Lucas, 2007).  47 

However, evaporite deposits are not limited to only the distal regions within continental basins. Ancient 48 
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evaporite deposits have been described from proximal regions, typically deposited in association with 49 

springs or alluvial fans in settings characterized by active tectonism and rapid subsidence (Southgate et 50 

al., 1989; Fischer & Roberts, 1991; Helvaci, 1995), and many modern examples, such as the acid saline 51 

lakes of Western Australia, are deposited in topographic lows on cratons (e.g Aerts et al., 2019). 52 

The preserved clastic sediments of medial to distal aeolian and arid lake-marginal basinal settings are 53 

recognized for their potential to act as high-quality hydrocarbon reservoirs or aquifers within the 54 

subsurface (e.g. Glennie et al., 1978), but interdigitated fluvial sediments are known to have detrimental 55 

effects upon reservoir performance (e.g. North & Prosser, 1993). Consequently, the evolution of mixed 56 

arid clastic systems, and the preservation of the sediments they deposit, have been well documented 57 

(e.g. Langford & Chan, 1989; Herries, 1993; Veiga et al., 2002; Mountney & Jagger, 2004). However, 58 

the same cannot be said for mixed evaporitic–clastic systems of arid continental basins. Despite strong 59 

associations between clastic and evaporitic environments, and between the deposits they produce, 60 

evaporitic settings and their sediments are typically studied independently from the coeval siliciclastic 61 

systems (Denison et al, 1998;). Few studies examine the interdependence of one setting upon the other 62 

and the complex sedimentary interactions between them. The studies that have addressed this issue 63 

focus on the geochemistry and hydrology of the system (e.g. Huerta et al., 2010) or look purely at the 64 

sediments (e.g. Benison & Goldstein 2000; Gündogan et al., 2005). Rarely do these studies take a 65 

holistic interdisciplinary approach necessary for a complete understanding of these systems. This is 66 

despite the obvious implications that inter-dispersed clastic sediments have upon the economic potential 67 

of evaporitic deposits themselves, or the detrimental impacts that inter-dispersed evaporitic sediments 68 

have upon clastic reservoirs and aquifers (Warren, 1999, 2006).   69 

Evaporites can preserve geochemical proxies for palaeoenvironmental conditions, palaeoclimate and 70 

evidence of past life that are typically absent from, or poorly preserved in, the siliciclastic deposits of 71 

arid coeval settings. These include proxies for: palaeo-water and palaeo-air temperatures  (Kovalevich, 72 

1975; Petrichenko, 1979; Lowenstein & Spencer 1990; Goldstein & Reynolds, 1994; Roberts & 73 

Spencer, 1995; Benison & Goldstein, 1999), ancient water chemistry (Horita et al., 2002; Lowenstein 74 
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et al., 2005) and atmospheric oxygenation (Blamey et al., 2016; Blättler et al., 2018, Crockford et al., 75 

2019).  76 

The triple oxygen isotope (Δ17O) record, preserved in sedimentary sulphates, can be used to constrain 77 

the coupled evolution of the biosphere and the atmosphere over a geological timescale (Crockford et 78 

al., 2016; 2019) and may be the only geochemical proxy of atmospheric change (Bao, 2015). 79 

Tropospheric oxygen (O2) possesses a mass-independent, negative Δ17O value, which is inherited from 80 

ozone creation and destruction reactions in the stratosphere (Thiemens, 2006). The magnitude of the 81 

negative Δ17O value in tropospheric O2 depends upon atmospheric composition (CO2 and O2 82 

concentrations), as well as levels of gross primary productivity (Yung et al., 1991; Crockford et al., 83 

2018). Detailed geochemical modelling can be used to deconvolve which factors principally control the 84 

atmospheric Δ17O value over Earth history (e.g. Waldeck et al., 2019), but all approaches rest on the 85 

assumption that the Δ17O preserved in sedimentary sulphates is representative of the time period in 86 

question.  87 

The Δ17O value of atmospheric oxygen is transferred to the sulphate anion complex during oxidative 88 

sulphide weathering (Killingsworth et al., 2018). It has been estimated that ca 21 to 34% of the oxygen 89 

atoms in sulphate are derived from atmospheric O2 (Kohl & Bao, 2011), although other estimates place 90 

this as high as 60% (see Waldeck et al., 2019, and references therein) and as low as ca 7% (Thurston et 91 

al., 2010). Once formed, the sulphate complex does not readily undergo oxygen isotope exchange with 92 

other fluids, other than under highly acidic, or high pressure/temperature, conditions (Kusakabe & 93 

Robinson, 1977; Chiba et al., 1981). As such, it is non-labile and considered to be stable through 94 

relatively shallow, low-temperature diagenesis (Bao, 2015). 95 

Oxygen isotope exchange with water, however, does occur as a result of microbial sulphur cycling, 96 

which is prevalent in the marine (Turchyn & Shrag, 2004) and, as is being increasingly recognized, in 97 

the continental realm (Benison & Bowen, 2013; Johnson et al., 2015). Although previous studies have 98 

focused mainly on tracking sulphur through microbial sulphur cycling, the fate of sulphate-bound 99 

oxygen – particularly any mass-independent Δ17O signal it may carry – during sulphide oxidation and 100 
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microbial sulphate cycling has been a more recent development (Hemingway et al., 2020). Although 101 

sulphates precipitated from marine waters do carry a significant negative Δ17O value, due to the 102 

propensity of microbial cycling in the marine realm, it is generally acknowledged that the Δ17O value 103 

preserved by marine sulphates is a conservative estimate of the true, atmospheric Δ17O value of the time 104 

period (Crockford et al., 2019).   105 

The fluvial sulphate flux constitutes the sole input into marine sulphate reservoirs (Halevy et al., 2012), 106 

is derived from the oxidative weathering of pyrite (incorporating a contemporaneous atmospheric Δ17O 107 

signal) and dissolution of older calcium sulphates (Halevy et al., 2012; Wortmann & Paytan, 2012). 108 

Thus, in order to use Δ17O values to infer temporal changes in coupled atmosphere–biosphere evolution, 109 

it is necessary to minimise the spatial variability in Δ17O preservation as far as possible. As such, 110 

continental, dryland evaporite sequences could prove an important inventory of atmospherically derived 111 

Δ17O.  112 

This study investigates the environmental, spatial and temporal relationships between evaporitic and 113 

clastic sediments within the arid and dominantly clastic continental settings preserved within the Cedar 114 

Mesa Sandstone Formation, south-eastern Utah, USA. It describes and interprets multi-scale 115 

relationships between evaporitic and clastic sediments using an outcrop lithofacies analysis augmented 116 

by petrographic and XRD data.  Triple oxygen and sulphur isotope analyses, conducted on evaporite 117 

samples, provide further insight into possible depositional controls upon the system and demonstrate 118 

the value of examining evaporitic deposits in the context of their coeval clastic setting. Generic 119 

depositional models that account for the observations within a clastic–evaporitic depositional setting 120 

are developed, from which the possible larger scale allocyclic controls and their effects upon the 121 

preserved deposits are discussed.  122 

GEOLOGICAL SETTING AND PREVIOUS WORK 123 

The early Permian (Cisuralian) Cedar Mesa Sandstone Formation of the Western USA was deposited 124 

within the Paradox Basin: an oval shaped, Carboniferous flexural foreland basin formed by loading in 125 
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response to the uplift of the Ancestral Rocky Mountains (ARM), and defined in shape by the 126 

depositional extent of the evaporites of the Paradox Formation (Mallory, 1960; Condon, 1997; Barbeau, 127 

2003). 128 

Exposed across much of southern Utah (Fig. 1), the dominantly clastic sediments of the Cedar Mesa 129 

Sandstone Formation form part of a 4 km thick late Pennsylvanian to mid-Permian basin fill that was 130 

derived principally from the Uncompahgre Uplift of the Ancestral Rocky Mountains that were present 131 

to the north-east of the basin (Loope, 1984). The age of the formation is given by U-Pb detrital zircon 132 

studies (Dickinson & Gehrels, 2003), vertebrate fossils and trackways (Lockley & Madsen Jr, 2008; 133 

Gay et al., 2020) and lateral and vertical relationships with other formations and coeval deposits that 134 

can be dated from well constrained palaeontological data (Condon, 1997; Lucas & Krainer, 2005). 135 

Originally described as the deposits of an aeolian system (McKnight, 1940; Baker, 1946), the formation 136 

was later reinterpreted to be of shallow marine origin from the presence of broken shell fragments in 137 

the cross-stratification (Baars, 1962; 1979; Mack, 1977; 1979). However, from grainfall–grainflow 138 

couplets that form foresets of large-scale cross-stratification (Loope, 1984), and from further continental 139 

indicators including rhizoliths (Stanesco & Campbell, 1989), an aeolian origin for the sediments was 140 

reaffirmed by the 1980s (Loope, 1984) and is widely accepted today (Lanford & Chan, 1989; Mountney 141 

& Jagger, 2004).   142 

The Cedar Mesa Sandstone Formation is one of four lithostratigraphical units that comprise the Cutler 143 

Group in the distal portion of the Paradox Basin. The oldest unit of the Cutler Group – the lower Cutler 144 

beds – is an informal lithostratigraphical subdivision that comprises aeolian, fluvial and shallow marine 145 

sediments (Jordan & Mountney, 2010) related to repeated cyclic transgressions driven by alternations 146 

between an arid and humid climate (Jordan & Mountney, 2012). The lower Cutler beds are overlain 147 

conformably by the predominantly wet aeolian sediments of the Cedar Mesa Sandstone Formation 148 

(Mountney & Jagger, 2004), that are, in turn, conformably overlain by the terminal fluvial fan sediments 149 

of the Organ Rock Formation (Cain & Mountney, 2009). Finally, aeolian sediments of the De Chelly 150 

Sandstone form the youngest division of the Cutler Group in the distal parts of the basin (Blakey, 1996; 151 

Dubiel et al., 1996; Condon, 1997; Stanesco et al., 2000). 152 
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To the north-east of the basin (Fig. 1A), sediments of the Cedar Mesa Sandstone Formation have a 153 

complex interfingering relationship with coeval sediments of the Cutler Group that were shed south-154 

westerly into the basin from the Uncompaghre Uplift to form proximal to medial alluvial fan and fluvial 155 

deposits (Mack, 1977; Mountney & Jagger, 2004). To the north-west of the basin, aeolian sediments of 156 

the Cedar Mesa Sandstone interfinger with shallow-marine limestone indicating the location of the 157 

palaeoshoreline (Fig. 1) (Loope, 1984). 158 

The aeolian sediments of the Cedar Mesa Sandstone represent the deposits of a north-east – south-west 159 

trending coastal erg system that developed along the shoreline, and was supplied with sediment sourced 160 

from the local marine shelf (Loope, 1984; Blakey, 1988; Blakey et al., 1988). The erg extended 100 km 161 

south, with sediments of the erg centre preserved 130 km west of Blanding near Hite (Fig.1), in south-162 

eastern Utah (Langford & Chan, 1993; Mountney, 2006). Major flooding surfaces that are preserved in 163 

the aeolian strata to the south-east of Canyonlands National Park (Fig.1) subdivide the erg sediments as 164 

the dune-fields became progressively smaller and more isolated away from the erg centre (Langford & 165 

Chan, 1989). Major dune field sediments of the erg are separated by the sediments of wet interdunes, 166 

which grade into sabkha-like evaporitic deposits towards the south-east (Fig.1) (Blakey, 1988; Blakey 167 

et al., 1988; Peterson, 1988; Condon, 1997; Huntoon et al., 2000; Mountney & Jagger, 2004; Langford 168 

& Massad, 2014; Pettigrew et al., 2019). 169 

Sabkha-like evaporitic deposits of the Cedar Mesa Sandstone Formation are exposed around the town 170 

of Bluff in south-eastern Utah. They show sedimentary features including nodular evaporites and 171 

enterolithic growth structures interbedded with aeolian sands and fine-grained clastic sediments. These 172 

strata have been interpreted as the product of deposition in inland sabkhas associated with playa lakes 173 

of the coeval aeolian erg (e.g. Glennie, 1972), but sulphur isotope values (δ34S) of gypsum from the 174 

succession fall within the narrow marine range of Permian δ34S values (Claypool et al., 1980; Stanesco 175 

& Campbell, 1989) and suggest a marine influence on the depositional environment. However, carbon 176 

(δ13C) and oxygen (δ18O) analysis of limestones within the succession only partly fall within the 177 

common marine range (Hudson, 1977). Consequently, the evaporitic sediments of the Cedar Mesa 178 

Sandstone were interpreted to be the product of a sabkha environment that was, in part, fed by marine 179 
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waters via unspecified methods, with mixing of fresh and marine waters under conditions of intense 180 

evaporation (Stanesco & Campbell, 1989). 181 

Recent work suggests an environment isolated from marine waters (Langford & Massad, 2014; 182 

Pettigrew et al., 2019), based on abundant evidence of freshwater vegetation and mud cracks (Langford 183 

& Massad, 2014) and distinct carbonate microfacies of continental origin (Pettigrew et al., 2019). The 184 

carbonate microfacies are interpreted to have formed due to microbial processes within either arid or 185 

humid aeolian interdunes, saline pans around the edge of desert lakes, and in, or around, an inland 186 

evaporitic lake that showed evidence of periodic contraction and expansion (Pettigrew et al., 2019). 187 

METHODS 188 

Ten detailed sedimentary logs were measured through canyons running perpendicular to the strike of 189 

the sediments at approximately 3 km intervals along a 15 km long north – south transect. No subsurface 190 

core exists for the study area. The logs have a cumulative sediment thickness of 7.5 km and form the 191 

basis of the lithofacies within this study. A further two logs (one 60 km to the south of Bluff, and one 192 

100 km to the north of the town) were measured to show the spatial variability in sediments preserved, 193 

and to provide regional context. The logs were correlated to one another using the top and base of the 194 

Cedar Mesa Sandstone Formation as markers, and by tracing prominent units between logs using 195 

continuous outcrop.  196 

From log 1.4 (Road Canyon), in the middle of the study area (Figs 1 and 2), evaporites were sampled 197 

from every evaporitic bed, and from nodules and veins within clastic deposits. The mineralogy of these 198 

samples was characterized using X-Ray diffraction (XRD), and triple oxygen and sulphur isotope 199 

analyses were conducted upon them. A further ten evaporitic samples were collected from logs 1.4 to 200 

1.8 and were cut dry to produce 30 μm thick, unstained thin sections that were subsequently examined 201 

for evaporitic textures. 202 

Samples for X-Ray Diffraction (XRD) analyses were milled to a fine powder using an agate ball mill. 203 

The XRD analyses were performed at the University of St Andrews using a Philips PW1830 204 
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Diffractometer (Co Kα X-ray source), Philips PW1710 Diffractor Control unit, and operating conditions 205 

of 30 kV and 30 mA (Koninklijke Philips N.V., Amsterdam, The Netherlands). Samples were scanned 206 

from 3 to 70° 2θ using a step size of 0.01° and a counting time of 1 second per step.  207 

The extraction and purification of sulphate for stable isotope analysis is described fully in the 208 

Supplementary Information. Measurements of δ34S (Table. 3) were made from SO2 gas using a Thermo 209 

FlashSmart Elemental Analyser (EA) combined with a MAT 253 isotope-ratio mass spectrometer 210 

(IRMS; Thermo Fisher Scientific, Waltham, MA, USA) at the University of St Andrews (Warke et al., 211 

2020). SO2 was generated by combustion of barite samples (0.14 –0.19 mg) and vanadium pentoxide 212 

powder (1–2 mg) combustion in the presence of O2 at 1020°C. SO2 was separated from other gases using 213 

a Gas Chromatography (GC) column after combustion products were carried via helium stream through 214 

tungsten oxide catalysts and copper wire (to reduce excess O2) and a magnesium perchlorate trap (ca 215 

20°C) to remove water. Sample isotopic compositions were calibrated to Vienna Canyon Diablo Troilite 216 

(V-CDT) scale by bracketing barite samples with the international reference standards IAEA-SO5, 217 

IAEA-SO6 and NBS-127, and are reported in the standard delta notation where: 218 

34S = 1000 * [ ((34S/32S)sample / (34S/32S)V-CDT) -1 ]    (1) 219 

Long-term analytical uncertainty is better than 0.3‰ (1).  220 

Triple oxygen isotope analysis was performed using a laser fluorination method at the OASIC 221 

laboratory at Louisiana State University (LSU). The protocol is described elsewhere (e.g. Crockford et 222 

al., 2018) and is outlined fully in the Supplementary Information. Sample gases were measured with 223 

respect to internal standard LSU-O2 which is calibrated to Standard Mean Ocean Water (SMOW). 224 

Long-term analytical uncertainty is better than 0.05‰ (1). Measurements of δ17O and δ18O were made 225 

on purified O2 using a duel inlet MAT 253 isotope-ratio mass spectrometer (IRMS) and are presented 226 

in the standard delta notation where: 227 

XO = 1000 * [ ((XO/16O)sample / (XO/16O)SMOW) -1 ]    (2) 228 

In Eq. 2, ‘x’ can equal 17 or 18. ∆17O values were calculated from δ17O and δ18O values where: 229 
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17O = 1000 * [ln(1+17O/1000) – (0.528 * ln(1+18O/1000))]   (3) 230 

As the laser fluorination method causes a mass-dependent fractionation, 18O values were separately 231 

evaluated by converting barite to CO gas at 1450°C using a Thermal Conversion Elemental Analyzer 232 

(TCEA). Measurements of 18O (Table 3) were made on CO gas using a MAT253 IRMS (isotope ratio 233 

mass spectrometer; Thermo Fisher Scientific, Waltham, MA, USA) at the OASIC laboratory at LSU. 234 

Long-term analytical uncertainty on 18O is better than 0.5‰ (1) (Peng et al., 2011).   235 

RESULTS 236 

Lithofacies analysis of logged sections (Fig. 2) reveal fifteen lithofacies deposited by subaqueous, sub-237 

aerial and evaporitic processes that form commonly occurring deposits typical of the arid environment. 238 

Log data for evaporitic lithofacies are augmented with results of XRD analysis and thin-section 239 

observations. The XRD data are summarized in Table 1 and discussed in the text, with all XRD spectra 240 

shown in the Supplementary Information (Appendix). The distinctive features of each of the fifteen 241 

lithofacies and their interpretations are summarized in Table 2. They have been grouped into nine 242 

discrete facies associations based on the dominant depositional process and deposits preserved, each of 243 

which is described in detail below. 244 

Aeolian deposits 245 

Dune associations (AD) 246 

Deposits within the study area are composed of laterally extensive tabular bodies with relatively flat 247 

basal bounding surfaces. Lateral extents are over tens of metres, although stratigraphic thicknesses are 248 

limited (ca 5 m). Deposits of this type are dominantly composed of tabular cross-bedded sandstones 249 

(Sxb) with planar foresets (1 to 5 cm in thickness), and rare occurrences of trough cross-bedded 250 

sandstones (Stxb) with tangential foresets of similar thickness (1 to 5 cm) (Fig. 3A). The deposits lack 251 

large-scale set or coset development, with sets 1 to 5 m and cosets no greater than 10 m in thickness. 252 

Planar cross-bedded and trough cross-bedded sets typically interfinger with inversely graded, ballistic-253 

rippled sandstone (Sxr), structureless sandstone (Sm) and gypsum facies (G) along the toesets of the 254 
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foresets, with small-scale (<50 cm) soft-sediment deformation also a typical feature. The foresets are 255 

sporadically disturbed by evaporite deposits in the form of nodules and veins (Fig. 3B). 256 

Interpretation: 257 

Cross-bedded sandstones that display tangential foresets, formed of lamination couplets of structureless 258 

to reverse graded sandstone with a thin veneer of finer grained sandstone, represent aeolian dune 259 

deposits formed by alternating grainfall and flow processes. This indicates reasonably well developed 260 

dune-forms with lee-slope slip-faces close to, or at, the angle of repose (Hunter, 1977; Kocurek, 1981; 261 

1991; 1996; Langford & Chan, 1989; Mountney, 2006). Dunes were dominantly straight-crested 262 

transverse forms, preserving planar cross-bedded sets with planar set-bounding surfaces. Sporadically, 263 

sinuous-crested transverse forms developed, or straight-crested forms broke up or evolved into sinuous-264 

crested bedforms under autogenic processes, due either to changes in migration rate, sediment supply 265 

or wind direction (Rubin & Hunter, 1984). The presence of ballistic wind ripples interfingering with 266 

the toesets of cross-bedding suggests the presence of dune plinths upon which ballistic ripples 267 

dominated.  Soft-sediment deformation, typically preserved near the base of the deposits, indicate dunes 268 

migrated in the presence of a water table close to, or at, the surface (McKee et al., 1971; Doe & Dott, 269 

1980; Horowitz, 1982; Mountney & Thompson, 2002). The presence of gypsum preserved along the 270 

base of foresets or toeset surfaces, indicates that solute-rich water was drawn up preferential flow 271 

pathways in the sediments of the advancing dune as a result of capillary action. 272 

Sandsheet associations (SH) 273 

Deposits of this type consist of thin, sheet-like, laterally extensive, tabular bodies with flat basal and 274 

top surfaces. The deposits have lateral extents over distances greater than tens of metres with limited 275 

thicknesses (1 to 2 m), and consist primarily of inversely graded, ballistic-rippled (Sxr) (Fig. 3C and D) 276 

or structureless sandstones (Sm), with sporadic crudely developed cross-bedded sandstones (Sxb). 277 

Deposits typically grade laterally and vertically into dune and interdune deposits and contain gypsum 278 

nodules and veins that deform the bases of the deposits. 279 

Interpretation: 280 
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Deposits primarily composed of ballistic-ripple strata (Sxr) or structureless sandstones (Sm) indicate 281 

aeolian sandsheets in which limited grain-size variations do not distinguish the bounding surfaces of 282 

individual cross-laminated sets (Kocurek, 1981). The sandsheets developed under conditions where 283 

sediment supply was insufficient for full-scale dune development (Kocurek & Nielson, 1986; Biswas, 284 

2005), resulting in only minor crude cross-bedding. Soft sediment deformation indicates a water table 285 

close to the surface, with deformation resulting from water table fluctuations and loading of the 286 

sandsheet by the following dune deposits (McKee et al., 1971).  287 

Standing water deposits 288 

Interdune associations (ID) 289 

Deposits of this type consist of either lensoidal bodies that pinch out over distances of less than one 290 

metre, or tabular bodies with larger lateral extents over tens of metres. In each case, thicknesses are no 291 

greater than 2 m. Deposits comprise structureless sandstones (Sm), oscillatory current rippled siltstone 292 

and sandstone (Swr) and sand-rich carbonates (Lsm). Deposits grade vertically and laterally into dune 293 

(AD) and sandsheet (SH) deposits, with sporadic examples occurring in relationship with ponded water 294 

(PA) and displacive gypsum (DG) associations. Rhizoliths, bioturbated sediment and mottling are 295 

present throughout (Fig. 4C), with sporadic occurrences of convolute-bedded sandstone (Scu), 296 

gypsum/anhydrite nodules and efflorescent crusts. 297 

Interpretation: 298 

Associations of this type are interpreted as the deposits of wet and saline interdunes. Carbonate deposits 299 

have accumulated in long-lived shallow ponds of standing water above the depositional surface, close 300 

to an aeolian dune field that supplied clastic sediment to the interdune (Loope 1981; 1984; Langford & 301 

Chan, 1989; Pettigrew et al., 2019). The isolated nature of the deposits signifies laterally restricted 302 

interdunes developing in an enclosed or semi-enclosed setting, either as a result of floodwaters trapped 303 

between surrounding sinuous-crested dunes, or by rises in the water table in topographical depressions 304 

(Loope, 1984; Purvis 1991; Mountney & Jagger, 2004). Oscillatory-ripples are formed from wind shear 305 

over the shallow water of the interdune setting (Martell & Gibling, 1991). Rhizoliths and mottling 306 
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indicate the short-lived presence of water at the surface, probably as a result of fluctuations in the 307 

elevation of the water table.    308 

Ponded waters associations (PA) 309 

Deposits of this type are characterized by laterally extensive (>10 m) tabular bodies with planar basal 310 

surfaces, but thicknesses are highly variable, with deposits ranging between 0.2 to 10 m thick. Deposits 311 

are composed primarily of sandstones displaying symmetrical oscillatory-ripples (Swr) (Fig. 4B), fine-312 

grained carbonates (Lm) with sporadic rounded gypsum nodules and minor parallel-laminated siltstones 313 

(Ssl).  Ponded water sediments typically grade vertically and laterally into interdune (ID), unconfined 314 

flow (UF) and suspension settlement (SS) deposits. Rhizoliths, bioturbated sediment, mottling and 315 

gypsum nodules are typical features. The rhizoliths are horizontal to sub-vertical and the bioturbated 316 

sediment consists of thin (<10 cm) branched vertical and horizontal tube-like burrows.  317 

Interpretation: 318 

A dominance of wave-ripple sandstones and fine-grained carbonates suggests a shallow ponded water 319 

setting. Wave-ripples have been generated by wind shear across the water surface (Martell & Gibling, 320 

1991) to produce symmetrical ripples. Fine-grained carbonate facies suggest variations in clastic 321 

content and prolonged conditions of low-energy standing water (Tucker, 1978; Platt & Wright, 1991 322 

Pettigrew et al., 2019) with frequent reworking by wave action. The low diversity of fossil species 323 

within the carbonates, coupled with gypsum nodules, suggests an arid, highly saline and probably 324 

restricted environment (Cecil, 1990; Flügel, 2004), with the development of rhizoliths indicating 325 

surface stabilization around edges of long-standing quiet water bodies (Platt & Wright, 1991; Owen et 326 

al., 2008).  327 

Stratified waters/suspension settlement associations (SS) 328 

Deposits of this type comprise laterally extensive tabular bodies with planar basal surfaces. Lateral 329 

extents are commonly over tens of metres whereas stratigraphic thicknesses range from 1 m to tens of 330 

metres, with the thickest deposits present in the southern portion of the study area (Figs 1C and 8). The 331 

deposits are dominantly composed of black to purple coloured siltstones to very fine-grained sandstones 332 
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(Ssl) (Fig. 4A) intercalated sporadically with oscillatory-rippled sandstones (Swr) (Fig. 4B), fine-333 

grained carbonates (Lm) and horizontally-laminated pedogenic facies (Sfo) (Fig. 4D). The siltstones 334 

are typically structureless, mottled, with a sporadically high organic content. Deposits grade laterally 335 

into pedogenic facies (Sfo) and typically grade vertically with unconfined flow (UC), or ponded water 336 

(PA) deposits.  337 

Interpretation: 338 

Fine-grained siltstones that lack internal sedimentary structures indicate deposition in lakes that were 339 

perennial and of greater extent than Ponded Water or Interdune settings, and in which the sediments 340 

settled mostly from suspension (Fielding, 1984; Tanner & Lucas, 2007). Sporadic evidence for high 341 

organic content within siltstones could indicate depths sufficient enough to cause thermal stratification 342 

(Boehrer & Schultze, 2008). Intermittent intercalation with wave-ripples (Swr) shows a shallowing of 343 

the water level, potentially caused by climate fluctuations, and an increasing influence from wind shear 344 

(Martell & Gibling, 1991). The occurrence of horizontally laminated pedogenic facies suggests 345 

stabilization around the margins of a long-standing body of water (Eberth & Miall, 1991). 346 

Flowing water deposits 347 

Unconfined flow associations (UF) 348 

Deposits of this type consist of thin, sheet-like, laterally extensive bodies with relatively flat to slightly 349 

concave-upward, erosional, basal surfaces. Lateral extents are highly variable and range from 1 m to 350 

tens of metres, which often branch into thinner sheet-like units, and vertical extents are no greater than 351 

1.5 m.  This association comprises cross-bedded sandstones (Sfxb) with sporadic mud clasts, arranged 352 

into multiple low-angle cross-bedded sets (Fig. 4E) (up to 1 m thick), planar laminations (Sfpl) of 0.5 353 

to 1.0 cm thick (Fig.4F) and sporadic climbing-ripple laminated sandstone (Sfrl). Preservation of the 354 

full, fining upward succession is rare and the association often grades into suspension settlement 355 

siltstones, ponded water deposits or pedogenic facies.  356 

Interpretation: 357 
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The flat erosional bases, laterally extensive geometries and sedimentary fill of these associations 358 

represents characteristic non-channelized flow incorporating either splay-type or sheetflood-type 359 

architectures (Tunbridge, 1981; Sneh, 1983; Stear, 1985; Miall, 1985; North & Davidson, 2012; Priddy 360 

et al., 2019; Priddy & Clarke, 2020). A dominance of low-angle cross-bedding and planar-laminated 361 

sandstones that stack into fining upward vertical successions indicates a transition from lower-flow 362 

regime to upper-flow regime conditions and structures, within high velocity flows that waned quickly 363 

(Bridge, 1993; Mitten et al., 2020), whereas thin units that split and branch represent the margins of 364 

individual sheetfloods as a result of a rapid reduction in depth associated with an ephemeral, sand-rich 365 

sheet flood (Miall 1985; 1996). 366 

Chemically precipitated deposits 367 

Bedded gypsum/anhydrite associations (BG) 368 

Deposits of this type have a flat basal surface, and consist of thin, flat bodies. Observed lateral extents 369 

are variable, ranging between 0.5 to 5.0 m with vertical extents typically less than 5 m. The deposits 370 

consist almost entirely of white to peach (5R 8/3), very fine-grained, crystalline gypsum (G), with 371 

outcrop-scale alabastrine and porphyroblastic textures resembling white marble, interbedded with thin 372 

beds of siltstones (Ssl). The evaporitic sediments are crudely bedded with sporadically laminated layers 373 

of peach coloured elongate gypsum crystals and large botryoidal gypsum nodules (up to 50 cm in 374 

height) which bifurcate up from a stem and branch into a cauliflower-like appearance (Fig. 5A). They 375 

comprise a matrix of alabastrine gypsum with very minor amounts of anhydrite and quartz. Three 376 

distinct textures are recognized: (i) randomly organized angular gypsum (<1 mm) surrounded by brown 377 

mudstone clasts, with frequent veins filled with satin spar gypsum (Fig. 5B); (ii) spherical and sub-378 

rounded patches of sand (gypsum and some quartz) (Fig. 5C); and (iii) thin (<1 to 3 mm) undulating 379 

beds of bladed gypsum with vertical textures and rare swallowtail crystal morphology (Fig. 5B and C). 380 

The bedded gypsum deposits (BG) grade vertically and laterally into suspension settlement (SS), 381 

ponded waters (PA) and displacive gypsum (DG) deposits, and occur sporadically in association with 382 

unconfined flow (UF) and interdune (ID) deposits. 383 
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Interpretation: 384 

These deposits result from the accumulation of primary gypsum and anhydrite by precipitation in 385 

shallow, saline waters (Kendall, 1981; Handford, 1991; Warren, 1991) where modern studies indicate 386 

that the three textures observed are typically present together (Benison et al., 2007). Laminated layers 387 

with elongate crystals are indicative of selenite, signifying bottom-growth of crystals within standing 388 

brines (Benison & Goldstein, 2000, Benison & Goldstein, 2001). Selenite has been dehydrated to 389 

anhydrite during burial diagenesis and rehydrated to secondary gypsum during exhumation (Gundogan 390 

et al., 2005). Siliciclastic sediment intercalated with the bedded evaporite crystals indicates coeval 391 

clastic deposition by either fluvial, lacustrine or aeolian processes (Foster et al., 2014). 392 

Displacive gypsum/anhydrite associations (DG) 393 

These deposits consist of thin undulating bands of laterally extensive bodies with undulating basal and 394 

top bounding surfaces. Lateral extents range from 1 m to tens of metres and thicknesses range from 0.5 395 

to 2.0 m. The deposits are dominantly composed of crystalline gypsum (G) with alabastrine and 396 

porphyroblastic textures, and minor amounts of anhydrite, celestine and quartz (Table 1) (Fig 6B to D). 397 

The evaporites comprise a matrix of interlocking alabastrine crystals (<1 mm) with randomly orientated 398 

large (1.5 to 4.0 mm) cubic to sub-cubic halite crystals filled with a clear cement with bladed cement 399 

crystals present along the edges (Fig. 6E). Small gypsum nodules (up to 20 cm in thickness) and 400 

laminated-bands of enterolithic convoluted folds (Fig. 6C and D), polygonal hummocks (Fig. 6A) and 401 

chicken-wire structures (Fig. 6B) are common features within these deposits. The nodules are 402 

interbedded either with thin beds (up to 20 cm thick) of pastel blue, very fine to fine-grained, parallel-403 

laminated gypsum-bound sandstone (Gspl) within a gypsiferous matrix and cement, or with very fine 404 

to fine-grained pedogenic (Sfr) facies with frequent gypsum nodules and veins.  405 

The displacive gypsum (DG) deposits grade vertically and laterally into bedded gypsum (BG) 406 

suspension settlement (SS), ponded waters (PA) deposits, and typically occur in association with 407 

unconfined flow (UF) and interdune (ID) deposits. 408 

Interpretation: 409 
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Interbedded gypsum-bound sandstone with intercalated gypsum nodules and veins relate to saline pan 410 

and saline mudflat deposition along the margins of saline lakes (Lowenstein & Hardie, 1985). 411 

Enterolithic and chicken-wire structures indicate very early diagenetic (synsedimentary) displacive 412 

growth of anhydrite nodules which were partly or completely hydrated to secondary gypsum under 413 

post-depositional conditions (i.e. early and/or late diagenesis) and the exhumation process (Butler, 414 

1970). Polygonal hummocks form tepee structures due to desiccation of saline waters and fracturing of 415 

salt crusts into polygonal shapes (Warren, 2016), the presence and preservation of such structures 416 

suggests a calm, low-energy environment (Lokier & Steuber 2008; 2009). The matrix textures (Fig. 6E) 417 

suggest that the host sediment that was originally mud (potentially gypsum-rich mud) with early 418 

diagenetic displacive halite crystals. The largest halite crystals (Fig. 6E) show euhedral cubic to sub-419 

cubic habits and are randomly oriented within the finer matrix.  The displacive halite crystals appear to 420 

have been dissolved (Casas & Lowenstein, 1989; Benison et al., 2015), forming crystal moulds that 421 

were later filled with anhydrite or gypsum bladed cement crystals along the edges. The remainder of 422 

the crystal mould has been filled with a clear halite cement. The interlocking crystal mosaic present 423 

within the fine matrix indicates that the original mud underwent neomorphism.   424 

Brecciated gypsum/anhydrite associations (BrG) 425 

These deposits consist of thick laterally extensive (up to 10 m) lensoidal bodies with flat to undulating 426 

basal surfaces. Observed thicknesses range from 1 to 5 m and deposits of this type are especially 427 

prevalent at the top of the formation. The deposits are composed almost entirely of weathered mounds 428 

(Fig. 7A and B) of white to peach, very fine-grained brecciated gypsum (G) with minor anhydrite (Table 429 

1), and minor components of arid pedogenic facies (Sfr), carbonates (Lm) and gypsum-bound sandstone 430 

(Gspl). The matrix of the gypsum deposits is composed of elongate rectangular selenite crystals with 431 

rounded ends (1 to 10 mm in horizontal thickness) (Fig.7C). Carbonate deposits are thin (<40 cm) and 432 

show wavy laminations, typically interbedded with thin (<20 cm) deposits of gypsum-bound sandstone 433 

(Gspl). Pedogenic facies are also typically thin (<50 cm) with frequent gypsum nodules and veins. 434 

Deposits of this type (BrG) occur in vertical and lateral relationship with dune (AD) and sandsheet (SH) 435 

deposits. 436 
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Interpretation: 437 

Brecciated gypsum deposits are interpreted as gypsum dunes resulting from the deflation of gypsum 438 

sediment formed in lacustrine and playa lakes during more humid climatic conditions (Szynkiewicz et 439 

al., 2010). During the onset of more arid conditions, desiccation of these playa lakes led to the formation 440 

of microbial mats, present in the form of carbonate laminations (Pettigrew et al., 2019). Aeolian 441 

reworking of desiccated lake beds produced gypsiferous dune deposits controlled by a near-surface 442 

groundwater table (Szynkiewicz et al., 2010) and arid soils (Sfr) around lake edges (e.g. Lawton & 443 

Buck, 2006). The weathered appearance of the gypsum dunes results from their poor consolidation 444 

compared to their clastic counterparts and is a post-depositional burial, dissolution and compaction that 445 

destroyed primary bedding fabrics, (Fenton et al., 2014). The dune sediment matrix shows 446 

characteristics of aeolian deposits of gypsum/anhydrite that have been slightly altered by diagenesis 447 

(hydration–dehydration reactions) and that compare with morphologies of modern gypsum sand dunes 448 

and sand flats, such as those at White Sands in New Mexico, in the Rio Grande Rift (Wilkins & Currey, 449 

1997; Anderson et al., 2002; Langford, 2003; Kocurek et al., 2007; Szynkiewicz et al., 2010) and the 450 

Olympia Undae Dune Field (Mars) (Langevin et al, 2005; Fishbaugh et al., 2007). 451 

Spatial distribution of deposits 452 

Spatial analysis of the deposits indicates a general increase in the relative proportion of ‘water derived’ 453 

deposits southward over the study area (Fig. 8). In the north, logs 1.0 to 1.3 (covering a transect 454 

approximately 60 km long from Canyonlands to the south of US95) demonstrate dominantly aeolian 455 

deposits of dune and sandsheet, with subordinate interdunes, and indicate a dry to sporadically damp 456 

setting throughout times when deposition of the Cedar Mesa was controlled by aeolian processes. South 457 

of US163, log 1.9 demonstrates dominantly lacustrine deposits of suspension settlement and unconfined 458 

flow associations and indicates a perennial lake throughout Cedar Mesa times. From US163 northward 459 

for approximately 30 km (logs 1.4 to 1.8; the central part of the studied area), the Cedar Mesa contains 460 

aeolian and standing water deposits mixed with chemically precipitated and flowing water deposits in 461 

varying proportions, showing the interbedded and competing nature of the aeolian and lacustrine 462 

settings. 463 
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DEPOSITIONAL SETTINGS 464 

Dry and saline sandflats 465 

In the north of the study area between Canyonlands and Blanding (logs 1.0 to 1.3) (Fig. 2), thick 466 

accumulations of dune associations (AD) and laterally extensive sandsheet (SS) deposits dominate the 467 

successions, with minimal accumulations of evaporitic associations. Whereas, in the rest of the study 468 

area, between Blanding and Bluff (logs 1.4 to 1.8), the deposits of aeolian dunes (AD) are small, 469 

isolated, typically evaporite-rich, haloturbated and interbedded with evaporate-rich interdunes (ID) and 470 

arid palaeosols that typically display evaporite nodules, gypsum veins and efflorescent crusts. 471 

A dominance of dune and sandsheet associations in the north (Canyonlands to Blanding) suggests 472 

deposition in a dry sandflat setting most probably at the edge of the main Cedar Mesa erg. Dune deposits 473 

lack salt influence and are comparatively larger than those in the south with trough cross-bedding 474 

arranged into multiple sets and cosets. Limited interdune and sandsheet deposits are preserved between 475 

dune sediments (Mountney & Jagger, 2004; Vackiner et al., 2011; Antrett, 2013). 476 

However, between Blanding and Bluff, the deposits represent a saline sandflat environment, sometimes 477 

referred to as a wet aeolian or saline aeolian sabkha (Warren, 2016). Small isolated dunes migrated over 478 

saline saturated ground waters, with a saline water table in contact with, or above, the depositional 479 

surface (Driese, 1985; Warren, 2016; Zuchuat et al., 2019). The deposits of the saline sandflats show 480 

varying degrees of salt preservation, however haloturbation is typical, even where little capillary salt is 481 

preserved (Warren, 2016). Overprinting by extensive disruptive evaporite crystal growth can modify or 482 

destroy primary depositional features (Ahlbrandt & Fryberger, 1981; Warren, 2016) which typically 483 

consist of subaqueous current and wave ripples, wavy and contorted bedding, adhesion structures, 484 

bioturbation, desiccation cracks, megapolygons (Warren & Kendall, 1985), deflation surfaces and 485 

wind-ripple lamination (Martin & Evans, 1988; Goodall et al., 2000; Mountney & Thompson, 2002; 486 

Warren, 2016). 487 
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Wet interdune/arid outwash plain  488 

This setting is characterized by thick deposits of ponded water (PA) and interdune (ID) associations 489 

interbedded with minor occurrences of unconfined flow (UF), stratified waters (SS) and dune 490 

associations (AD). Dune deposits are typically straight crested (Sxb) and interbedded laterally and 491 

vertically with interdune deposits of massive sandstone (Sm), oscillatory current rippled sandstone 492 

(Swr) and rooted palaeosols (Sfr). 493 

These deposits represent a wet interdune/arid outwash plain. Sporadic occurrences of dune deposits 494 

separated from one another by wide interconnected wet interdunes suggests a setting with a degree of 495 

aridity but limited aeolian sediment supply, such as at the edge of larger dune field. These areas typically 496 

have higher water tables during humid periods, forming ponded water deposits and carbonates 497 

(Pettigrew et al., 2019). Occasional higher energy events input clastic material through unconfined 498 

flows to interdune areas reworking sediment (Howell & Mountney, 1997; Mountney, 2006). 499 

Perennial lake  500 

This setting is characterized by thick stratified water associations (SS) primarily comprising deposits of 501 

siltstone (Ssl) interbedded with lacustrine carbonates (Lm and Lsm), oscillatory current rippled 502 

sandstone (Swr) and palaeosols (Sfo) with sporadic unconfined flows (UF). 503 

These deposits thicken towards the south and indicate a regionally-extensive low-energy, shallow 504 

lacustrine setting influenced by the sporadic input of sand-rich water from unconfined surface run off. 505 

Organic rich siltstones indicate relative longevity and sufficient depths of a perennial lake for thermal 506 

stratification. Wave ripples suggest periods of lake level fluctuations as shallowing water levels 507 

increased the influence of wind shear and/or wave action reworking along the margins of the lake 508 

(Bridge & Demicco, 2008). The lake margin deposits grade into humid palaeosols indicating 509 

stabilization around the lake edge. 510 
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Ephemeral saline lake-saline pan/mudflat 511 

The deposits of ephemeral saline lakes are characterized by bedded gypsum (BG) with minor, laterally 512 

restricted deposits of the ponded water (PA) associations which grade into displacive (DG) and 513 

brecciated gypsum (BrG) associations of a saline pan/mudflat. 514 

This setting represents saline pan and mudflat environments with ephemeral saline lakes which formed 515 

during arid periods via the evaporation and desiccation of previously long-lived lakes. In the main 516 

submerged areas of the lake, during desiccation (Lowenstein & Hardie, 1985) the earliest precipitates 517 

nucleate as thin rafts of connected platy euhedral cumulate halite crystals at the water–air interface that 518 

are held by surface tension until they grow too large and sink (Schreiber & Kinsman, 1975; Castens-519 

Seidell, 1984; Last, 1984; Alderman, 1985; Hardie et al., 1985; Lowenstein & Hardie, 1985; Smoot & 520 

Lowenstein, 1991). As evaporation of the lake progresses, salts are concentrated in the remaining water 521 

to form smaller ephemeral saline lakes in which sulphate and calcium concentrate in shallow waters. 522 

This facilitates the precipitation of bottom-nucleating, vertically-elongated gypsum crystals (e.g. 523 

Kendal, 1978; Last, 1984; Smoot & Lowenstein, 1991).  The fibrous/prismatic gypsum grows 524 

perpendicularly to the substrate in contact with the brine (bottom-growth) (Kendall & Harwood, 1996). 525 

These crystals increase in size and gradually became a mosaic, formed by displacive growth in very 526 

shallow water and/or in the capillary fringe-groundwater zone, as a result of either a fall in water levels 527 

or subaerial exposure (e.g. Warren, 2006). Complete desiccation of the saline lake produces polygonal 528 

fractures in the salt pan that typically fill with detrital evaporitic or clastic sediment. They preserve as 529 

efflorescent crusts (Smooth & Castens-Seidell, 1994) with crack fills, or so-called ‘tepee structures’ 530 

where the fill incorporates displacive evaporites (Warren, 1983; Lowenstein & Hardie, 1985; Lokier & 531 

Steuber, 2009). 532 

Saline mudflats form in dominantly emergent settings and are characterized by fine-grained clastic 533 

sediments, typically clay minerals such as montmorillonite and illite (Brooks & Ferrell, 1970). These 534 

sediments are deposited by settlement following influxes of sediment-laden floodwater into shallow 535 

ephemeral lakes. With lake contraction, the sediments are exposed. Saline mudflats have little (if any) 536 

vegetation and have a saline groundwater table only centimetres to tens of centimetres below the surface 537 
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which may fluctuate up and down in response to climate. Variations in ground water levels and 538 

circulation promote subsurface phreatic evaporite growth as random crystals or nodules, or as 539 

concentrated thick layers, displacing surrounding sediment to form chickenwire and enterolithic 540 

structures (Smoot & Lowenstein, 1991; Boggs & Boggs, 2009; Warren, 2016). On the surface of the 541 

mudflats, precipitation from the evaporation of saline ground waters forms efflorescent evaporites, 542 

either as powdery undulating surfaces or as hard crystalline crusts (Smoot & Lowenstein, 1991; Warren, 543 

2016). Subaerial exposure and desiccation of gypsum in the vadose zone results in fractures and the 544 

reworking of fragments by water inflow (Kendall & Harwood, 1996; Abrantes Jr et al., 2016).  545 

SUMMARY DEPOSITIONAL MODELS 546 

Two models showing the intermediate environments between a desert erg and desert lake have been 547 

distilled from the depositional settings. Within each model, clear variations in sedimentology and 548 

characteristics of more humid or more arid conditions can be recognized (Fig. 9). 549 

Dune-dominant, erg-marginal system 550 

During times of relatively higher humidity, the erg-marginal system is characterized by a wet, marginal, 551 

aeolian erg interacting with unconfined run off (e.g. Mountney & Jagger, 2004) that feeds small saline 552 

lakes and interdunal areas (Fig. 9). Evaporite development was limited, with sufficient surface water 553 

for vegetation and soil formation. 554 

Throughout subsequent arid periods accompanied by a drop on the groundwater table, aeolian dunes 555 

increased in magnitude and frequency as they became contiguous with the central erg. They formed 556 

dune fields, dominated by straight-crested dunes evolving through time into sinuous-crested forms with 557 

well-developed dune plinths, within dry sandflats. The facies belt graded distally into a saline sandflat 558 

setting, in which small-scale, sinuous-crested, aeolian dunes migrated over saline-rich damp or wet 559 

interdunal areas. Locally the solute-rich substrate allowed for the direct precipitation of evaporites and 560 

carbonates, intercalated with aeolian calibre clastic sediments, to form saline interdune deposits. 561 

However, evidence for the evaporitic nature of the system as a whole is limited primarily to displacive 562 
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gypsiferous nodules and haloturbation in aeolian bedforms. A wet solute-rich substrate severely limited 563 

sediment supply to dunes and consequently led to isolated barchanoid duneforms with laterally 564 

interconnected saline interdunes. 565 

Although water played a role in the formation of sediments within the erg-margin, the dominant 566 

sediment transport processes are wind-driven. Fluctuations in the availability of water at the surface 567 

during arid-humid cycles probably resulted from oscillations in the water table, rather than from 568 

sustained surface flow from outside the system that fed significant and long-standing bodies of water. 569 

Lake-marginal system 570 

At a time of relatively higher humidity, the lacustrine-marginal system is characterized by the 571 

dominance of lacustrine deposits (Fig. 9). A thick lacustrine succession, which predominantly settled 572 

from suspension, is interbedded with either surface run off or carbonate sediments depending on the 573 

rate of water input and the magnitude of its clastic load. Around the lake margins, any aeolian dunes 574 

were small-scale, barchanoid and strongly isolated between sheetflood-like deposits of fluvial origin 575 

and vegetated overbank. 576 

During subsequent periods of relatively higher aridity, the lake contracted until extensive saline pans 577 

and mudflats developed over the edges of the lacustrine depression, associated with the development of 578 

localized ephemeral saline lakes. In the lake, the lack of clastic input from unconfined surface run off 579 

during periods of increased aridity is coupled with the concentration of dissolved salts as the water 580 

evaporated. This led to the deposition of evaporitic sediments dominated first by halite rafts, formed on 581 

the lake surface, and later by bottom nucleating gypsum. Enterolithic and displacive salts grew around 582 

the edges of the evaporitic lake due to capillary and phreatic growth from the infiltration of saline 583 

groundwater, forming pervasive saline mudflats. Finally, subaerial exposure and desiccation of saline 584 

cumulates led to the formation of polygonal growth structures coupled with reworking of cumulates by 585 

wind-action into aeolian-gypsum dunes. Aeolian dunes deposits are limited despite the increased 586 

aridity. Surface and enterolithic mineral growth in these areas severely limits the exposed sediment that 587 
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is available for aeolian transport, and traps much wind-blown sediment on damp surfaces. 588 

Consequently, the dune field shows little to no growth as the lacustrine environment dried out. 589 

SULPHUR (Δ34S) AND TRIPLE OXYGEN (∆17O) ISOTOPE 590 

RESULTS 591 

In Log 1.4, measured sulphate δ34S values range from +13.4  0.3‰ to +14.5 0.3‰, δ18O values range 592 

from +12.8  0.5‰ to +16.69  0.5‰, and values of ∆17O range from -0.27  0.05‰ to -0.06  0.05‰ 593 

(Table 3, Fig. 10). There is no clear relationship between gypsum facies and either δ34S, δ18O or ∆17O 594 

values. In the case of ∆17O values, some of the most negative values identified occur in veins. There is 595 

no clear stratigraphic variation in ∆17O values (Fig. 10). In the lower portion of Log 1.4 (approximately 596 

0 to 20 m; n = 5) δ34S and ∆17O values co-vary with less negative ∆17O values corresponding to less 597 

negative δ34S values (Fig. 10). Throughout the rest of the section, however, there is no discernible 598 

covariation between δ34S and ∆17O values. 599 

Stratigraphic variation in δ34S can be only tentatively identified given the ca 1‰ range in the dataset, 600 

which is small in comparison to the error margins on each measurement. However, two shifts from 601 

relatively larger to smaller δ34S values can be visually identified between 0 m and 55 m ,and also 602 

between 55 m and 104 m (Fig. 10). These upward trends in δ34S values are matched by similar trends 603 

in δ18O values which decrease gradually over the same intervals (Fig. 10). 604 

Interpretation of isotopes  605 

A coupled and gradual upward decrease in δ34S and δ18O values suggests the existence of at least two 606 

evaporative cycles within the logged section, with the decreasing values reflecting Rayleigh 607 

fractionation effects within a closed system (Raab & Spiro, 1996). In such a scenario it seems likely 608 

that some freshening of the closed system occurred at ca 55 m. Above ca 55 m, δ34S and δ18O values 609 

return to those seen at ca 0 m (Fig 10). These trends, however, can only be tentatively identified as the 610 

δ34S values at the base and top of the lower cycle (0 to 55 m) are within error of one another (Fig. 10). 611 

There is more distinction in the upper cycle, but the range of δ34S values remains <1.1‰ (Fig. 10). The 612 
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δ18O profile of Log 1.4 mirrors the trends in δ34S but values at the top and bottom of each cycle are, 613 

considering error, distinct from one another.      614 

The mean δ34S value of 14.0‰ (n = 28 ; 1 = 0.3) is broadly in accordance with the marine δ34S curve 615 

during the early Permian, or late Carboniferous periods (Fig. 11A; Claypool et al., 1980; Kampschulte 616 

& Strauss; 2004). Therefore, the simplest interpretation of the δ34S values in Log 1.4 is that they 617 

represent precipitation of gypsum from marine waters. Such an interpretation has been favoured by 618 

previous workers (Stanesco & Campbell, 1989).  619 

It is important to note that mass-independently fractionated isotopic signatures, like Δ17O within 620 

sedimentary sulphate, are not affected by mass-dependent processes – like evaporation – unless the 621 

sulphate anion complex is disturbed, for example in microbial sulphate reduction (Bao et al., 2015). In 622 

such cases, any non-zero Δ17O value would be erased. Although the range of Δ17O values is 623 

comparatively small (ca 0.21‰) with respect to the range of δ34S values, such values are typical of 624 

evaporitic sulphates that preserve an atmospheric signal inherited from tropospheric O2 and imparted to 625 

sulphate during sulphide oxidation. For the purposes of comparison, modern tropospheric O2 has a Δ17O 626 

of -0.47‰ (Pack et al., 2017) but the authors would expect only a fraction of that signal (i.e. ca 21 to 627 

34%) to be transferred to sulphate during sulphide oxidation (Kohl & Bao, 2011). The only processes 628 

known to cause mass-independent fractionation of oxygen isotopes and generate negative Δ17O values 629 

in atmospheric O2 are ozone creation and destruction reactions (Thiemens, 2006). The Δ17O values 630 

measured here, which are as low as -0.27‰, show an unambiguous atmospheric signature.  631 

There are relatively few measurements of Phanerozoic Δ17O values, but most studies to date have 632 

focused on Cambrian and Permian marine and non-marine evaporites (Bao, 2005; Bao et al., 2008) 633 

reflecting the uneven distribution of evaporites over time (Warren, 2016). Published Permian Δ17O 634 

values range anywhere from +0.02 to -0.16‰ (n = 26) and are restricted to the mid to late Permian 635 

Period (Bao, 2005; Bao et al., 2008); there are no noted measurements from the early Permian Period. 636 

Hence, the negative Δ17O values measured in the Cedar Mesa Sandstone Formation: (i) show an 637 

unambiguous atmospheric fingerprint within sulphate; and (ii) are some of the most negative Δ17O 638 
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values measured in the Permian Period, and in the Phanerozoic Eon in general. The measurements 639 

herein, therefore, could provide important new insight into the temporal variability of Δ17O over the 640 

Phanerozoic. However, it is important that the source and age of the sulphate complex analysed is 641 

accurately known with respect to the age of the sulphate-hosting formation, as discussed below.       642 

DISCUSSION 643 

Lithofacies analysis of outcrop, augmented by thin section and XRD analyses, suggest a fully 644 

continental setting for the evaporite-rich sediments of the Cedar Mesa sandstone in the vicinity of Bluff, 645 

Utah. Deposition occurred within a transitional zone between a well-established aeolian erg and a saline 646 

lake, with the dominance of one depositional setting over the other controlled by variations in aridity. 647 

A continental interpretation for the deposits is further supported by the recent published work of 648 

Langford & Massad (2015) and Pettigrew et al. (2019). 649 

However, isotopic analyses of evaporitic samples collected for this study suggest a marine influence 650 

upon deposition of these sediments. The range of measured δ34S values (+13.4 to +14.5‰) fall within 651 

error of late Carboniferous to early Permian marine values (i.e. +14.6  0.7‰; Kampschulte & Strauss, 652 

2004) despite a distinct lack of lithofacies relationships and fossil content that typify successions 653 

affected by marine influence or seawater incursions. This apparent conflict between the geochemical 654 

and sedimentological data of this study, and the implications for interpreting erg-marginal evaporitic 655 

depositional settings in general, are discussed in following sections.  656 

Isotopic signatures: continental or marine? 657 

Interpreting the isotopic signatures within evaporites is typically problematical due to recycling of 658 

marine signatures (see Taberner et al., 2000), lack of petrographic analyses to assess the impact of 659 

diagenesis, and the use of isotopic values from continental gypsum deposits to construct seawater curves 660 

(see Denison et al, 1998). The presence of halite and/or gypsum is not an indicator of marine 661 

environments or parent waters, although some workers now use those same curves to attribute a marine 662 

origin to halite/gypsum. There is a wide range of δ34S and strontium isotope (87Sr/86Sr) values within 663 
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saline lakes, with values that overlap with seawater signatures. Benison & Bowen (2013) reported δ34S 664 

values from 17.0 to 20.4 within modern saline lakes in Western Australia, compared to modern seawater 665 

δ34S values of 20.3(0.3)‰. Therefore, although δ34S values derived for this study overlap with the 666 

marine curve, this does not necessarily imply that they precipitated from seawater. It is, therefore, 667 

inaccurate to use only the isotopes from evaporite minerals to infer marine influence and interpret 668 

ancient seawater chemistry if it cannot independently demonstrate (for example, through macro-facies 669 

and micro-facies analysis) that the depositional setting has experienced marine incursions.  670 

Another possibility that explains the observed δ34S values equally well is that the sulphate in the gypsum 671 

facies has been recycled from an older marine evaporite deposit (Palmer et al., 2004). This requires that 672 

there is a suitable unit in the hinterland. In the case of the Cedar Mesa Sandstone, this may be the late 673 

Pennsylvanian (ca 311 to 306 Ma) Paradox Formation (Trudgill, 2011) which contains abundant 674 

deposits of marine evaporites (Nuccio & Condon, 1996) and may have been exposed during deposition 675 

of the Cedar Mesa.  676 

Evaporites within the Paradox Formation possess a δ34S value of +13.3‰ (n = 1; Claypool et al., 1980). 677 

Other studies, with larger datasets, have estimated that similarly aged marine evaporites would be likely 678 

to have δ34S values ranging from +14.6(0.7) to +15.1(1.7)‰ (n = 26; Kampschulte & Strauss, 2004). 679 

The mean δ34S value measured in this study, +14.0‰ (1σ = 0.4‰; n = 28), lies between the two and 680 

within error of both late Carboniferous and early Permian evaporites and marine evaporites of similar 681 

age to the Paradox Formation (Kampschulte & Strauss, 2004) (Fig. 11A).  682 

Thus, it is not sufficient to argue, on the basis of ambiguous sulphur isotope values, that evaporites in 683 

the Cedar Mesa Sandstone Formation were deposited following marine incursions as has been 684 

previously proposed (Stanesco & Campbell, 1989). There are no macro-facies or micro-facies evidence 685 

supporting marine influence, and significant evidence arguing against it. The most parsimonious 686 

explanation, that reconciles the sedimentological, stratigraphic and isotopic evidence, is that the 687 

sulphate within the early Permian Cedar Mesa Sandstone Formation was derived from the dissolution 688 

of the older marine evaporites of the late Carboniferous Paradox Formation. Additionally, the recycling 689 
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of sulphate from the older Paradox Formation may explain why δ34S and Δ17O values in the Cedar Mesa 690 

Sandstone Formation show no systematic stratigraphic trend or relationship with climatic condition 691 

and/or facies. 692 

Controls on deposition, tectonics versus climate 693 

In the absence of marine input to explain the presence of evaporitic strata of the Cedar Mesa Sandstone, 694 

other controls upon their deposition should be considered. Tectonics and climate are the primary 695 

controls on continental depositional systems (Vail et al., 1991; Quigley et al., 2007), controlling both 696 

the type and amount of sediment supplied to the basin and the rate at which accommodation is created 697 

and filled (Vail et al., 1991). Tectonic activity creates elevated landscapes, as well as generating 698 

structural lows and depocentres, while climate influences the discharge and sediment availability. 699 

Tectonic and thermal subsidence are recognized as primary controls on sabkha/playa lake formation by 700 

generating tectonic sagging in which water can pool and subsequently evaporate (e.g. Mertz & Hubert, 701 

1990). 702 

However, deposition of the Cedar Mesa Sandstone Formation coincided with a reduction in the 703 

subsidence rate of the Paradox Basin, and thus an accompanying reduction in the rate at which 704 

accommodation space was generated. A maximum of approximately 2.7 km of sediment was deposited 705 

at an estimated sedimentation rate 84 m/Myr by the end of the Pennsylvanian Epoch (Huntoon et al., 706 

1996; Nuccio & Condon, 1996). By contrast,  approximately 1.8 km of sediment was deposited at a rate 707 

of 40 m/Myr during the Permian Period that overfilled the basin. (Huntoon et al., 1996; Nuccio & 708 

Condon, 1996; Condon, 1997; Barbeau, 2003). The overfilled state resulted in a basinward progradation 709 

of facies belts due to limited accommodation space (Mountney & Jagger, 2004). This may indicate that 710 

basin-scale tectonics had negligible effect on the preserved deposits, acting only as a means of 711 

generating accommodation through a relatively constant subsidence rate.  712 

Glacio-eustatic processes have been recognized as a driving mechanism for the controls on the central 713 

and marginal erg deposits of the Cedar Mesa Sandstone (Mountney & Jagger, 2004) where twelve 714 

separate erg sequences can be identified within the aeolian sediments (Mountney, 2006). The sequences 715 
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reflect 412 kyr Milankovitch eccentricity cycles, which forced cyclic changes in climate (Mountney, 716 

2006). It follows that the Cedar Mesa Sandstone was probably influenced by periods of humid–arid 717 

climate variations during the early Permian Period, which resulted in periods of contraction and 718 

expansion within the lacustrine system in the south of the study area (Figs 8 and 9). Arid climatic 719 

intervals led to the development of saline mudflats associated with ephemerally saturated carbonate 720 

ponds and saline pans in the south of the study area, and the development of aeolian features 721 

predominantly in the north. The presence of diagenetic halite (Fig. 6E) is an indirect proxy for saltier 722 

and drier conditions than have previously been attributed to the depositional environment and 723 

palaeoclimate of the Cedar Mesa, and is consistent with age-equivalent rocks elsewhere in western 724 

equatorial Pangea (Parrish, 1993; Kessler et al., 2001; Ricardi-Branco, 2008; Tabour et al., 2013; 725 

Falcon-Lang et al., 2015). 726 

Despite a probable dominance of climatic controls upon deposition of sediments of the Cedar Mesa 727 

Sandstone, the influence of localized structure upon the position of evaporite deposits within the basin 728 

cannot be fully discounted. Large-scale and deep-seated faults of Pre-Cambrian age that bound the study 729 

area, and that have been purported to be active during Permian times (Kelley, 1955; Huntoon, 1993; 730 

Davis, 1999; Mynatt et al., 2009; Hilley et al., 2010), may have produced localized lows into which 731 

surface water was focused to produce wetter conditions, even during arid climatic phases, in which erg-732 

marginal evaporitic environments developed (Pettigrew et al., 2019). It is also not beyond the realms 733 

of imagination to suggest that displacement on these faults may have brought older marine 734 

Carboniferous evaporites into contact with the water table, or to surface (Fig. 11), and that this scenario, 735 

coupled with diapiric exposures of evaporitic sediments in the proximal basin (Trudgill, 2011; Venus 736 

et al., 2015), may have contributed to the recycling of the isotopic signature. At present however, the 737 

authors have no direct geological evidence to support this hypothesis.      738 

Implications for using ∆17O as a palaeoatmospheric proxy in non-marine evaporites 739 

The presence of a dominant late Carboniferous to early Permian marine δ34S signal in the gypsum 740 

deposits analysed here, coupled with the sedimentological constraints precluding marine influence, 741 

suggests that the sulphate incorporated into Cedar Mesa was recycled from an older marine evaporite 742 
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succession. This is entirely reasonable given that the global fluvial sulphate flux is known to be derived 743 

from pyrite oxidation and dissolution of calcium sulphate minerals (Halevy et al., 2012; Wortmann & 744 

Paytan., 2012). The geology of the hinterland exerts a strong influence on the isotopic composition of 745 

fluvial sulphate (Burke et al., 2018; Waldbeck et al., 2019). Given that the Paradox Formation may 746 

have been uplifted and possibly even exposed in the footwalls  of faults during the Permian Period 747 

(Kelley, 1955; Huntoon, 1993; Davis, 1999; Mynatt et al., 2009; Hilley et al., 2010; Pettigrew et al., 748 

2019), it seems probable that the hinterland and local area contained a significant proportion of late 749 

Carboniferous evaporites. The dissolution of these evaporites, and their incorporation into short-lived, 750 

short-distance (tens of kilometres) fluvial systems in the Paradox Basin, may have led to a fluvial 751 

sulphate flux that was dominated by sulphate recycled from older evaporite deposits.   752 

However, δ34S and ∆17O values in the Cedar Mesa Sandstone may not only record recycling of older 753 

evaporite signals. Contemporaneous sulphide oxidation in other areas of the drainage basin may also 754 

have delivered sulphate to the depositional environments via fluvial systems. It might be expected that 755 

this sulphate flux would have a less positive (fluvial) δ34S value (Burke et al., 2018) and a more negative 756 

∆17O value (Waldbeck et al., 2019), producing coupled δ34S and ∆17O trends; however, with the 757 

exception of the lowermost portion of Log 1.4, this is not evident. Additionally, δ34S values in the Cedar 758 

Mesa Sandstone are consistent with late Carboniferous–early Permian seawater δ34S values. If anything, 759 

the average δ34S value in the Cedar Mesa Sandstone (+14.0‰) is marginally higher than the known 760 

Paradox Formation value (+13.3‰; Claypool et al., 1980). It is likely that significant mixing of a 761 

sulphide oxidation flux into the fluvial sulphate would have lowered the bulk-rock δ34S value.   762 

Therefore, this process is considered to be a fairly insignificant sulphate source in comparison to the 763 

recycling of older marine evaporites. This is in line with other studies that have found limited evidence 764 

for alteration of evaporite-derived bulk rock δ34S values by oxidative sulphide weathering in this study 765 

area (Breit et al., 1990).    766 

The findings of this study hold very important implications for the interpretation of Δ17O in continental 767 

sulphates, as they too must also have been recycled. As discussed above, continental evaporites could 768 

represent a better target for studies attempting to reconstruct coupled biosphere–atmosphere interaction 769 
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using Δ17O as the sulphate in such depositional settings would be: (i) closer to the site of initial sulphide 770 

oxidation; and (ii) subjected to less microbial sulphur cycling as is common in the marine realm (i.e. 771 

gradual erasure of bulk rock Δ17O anomalies by oxygen isotope exchange with water). In this regard, 772 

continental sulphates hold important potential as terrestrial analogues for sulphate evaporites in 773 

extraterrestrial arid environments. In such settings, the erasure/absence of Δ17O anomalies predicted by 774 

abiogenic processes may constitute an unexplored indicator of sulphur cycling by micro-organisms.       775 

This work has shown that, in environments where there is no evidence of marine influence (and 776 

sedimentological evidence against it) and where a high proportion of fluvial sulphate is thought to be 777 

derived from Ca-sulphate dissolution, the age of the sulphate complex may significantly pre-date the 778 

age of the deposit. In the case of the Paradox Formation and the Cedar Mesa Sandstone Formation the 779 

depositional age difference may be of the order of 20 to 30 Myr, spanning the Carboniferous–Permian 780 

boundary, but for other continental evaporite successions such a time gap may be longer. If the 781 

interpretations herein are correct, future studies of the Paradox Formation should reveal significant 782 

negative ∆17O values.   783 

Therefore, in terms of temporal ∆17O evolution, ∆17O values in the Cedar Mesa Sandstone Formation 784 

may more accurately reflect the atmosphere of the late Carboniferous Period. Even fewer ∆17O values 785 

are known from the Carboniferous Period (n = 13); mid to late Pennsylvanian ∆17O values range from 786 

0 to -0.15‰ (Bao, 2005; Bao et al., 2008). Hence, the dataset presented here provides an important new 787 

constraint on late Carboniferous ∆17O values. 788 

 789 

CONCLUSIONS 790 

By using the Cedar Mesa Sandstone Formation of the Paradox Basin as a case study, this work has 791 

demonstrated that evaporites within a transitional setting between desert ergs and saline lakes exhibit 792 

unique sedimentological characteristics. The relationships may be summarized by separate models of 793 

erg-margin and lacustrine-margin systems. Erg-margin systems represent small-scale saline interdunes 794 
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hosted between and around dominantly aeolian sediments. Lacustrine-margin systems represent 795 

evaporitic development in saline pan and mud flats around an arid saline lake. These settings develop 796 

in response to the dominance of either an aeolian erg-margin setting or a lacustrine dominant lake-797 

margin setting due to climatic fluctuations between arid and humid conditions.  798 

Sulphur isotope systematics, coupled with detailed sedimentological constraint on depositional 799 

processes, shows that marine isotopic signals recorded within gypsum/anhydrite deposits are recycled 800 

from older, underlying marine evaporites. This implies that the ∆17O ‘atmospheric fingerprint’ within 801 

these early Permian non-marine deposits does not date to the time of deposition. Rather, the ∆17O values 802 

reflect late Pennsylvanian atmospheric conditions; older ∆17O values have been recycled into younger 803 

evaporites. Therefore, in dryland settings, the heightened potential for sulphate weathering and 804 

reprecipitation, raises the possibility that the age of a sulphate complex and the age of the host evaporite 805 

deposit could be decoupled from one another.  This holds important implications for studies attempting 806 

to reconstruct temporal ∆17O trends from non-marine evaporites. 807 

There are, to the authors’ knowledge, no ∆17O values published from either the late Carboniferous or 808 

early Permian periods. Therefore, provided the temporal caveats outlined above are applied, the ∆17O 809 

data presented here can be used to constrain coupled biosphere–atmosphere evolution during the 810 

Phanerozoic Eon. They can be included in ∆17O compilations because the source of the recycled signals 811 

has been constrained. This, however, may not be the case for all non-marine evaporites.  812 

To avoid misleading interpretations of secular ∆17O change, isotopic data must be closely integrated 813 

with sedimentological processes, basin evolution, regional geology and evaporite paragenesis. Such 814 

contextual work should be conducted in future ∆17O studies targeting non-marine evaporites so that the 815 

temporal fidelity of ∆17O signals can be verified. 816 
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Figure 1 (A) Reconstructed paleogeography of the Cedar Mesa Sandstone Formation during the early 1309 

Permian Period (after Blakey et al., 1988). Location of the dune field is marked in dark yellow, with 1310 

the location of evaporitic sediments shown in purple against an inferred land surface (light yellow). 1311 

Present day state boundaries are superimposed and the study area is highlighted. (B) Stratigraphy of the 1312 

study area from Pennsylvanian to Triassic times. Unconformities are marked with an undulating line 1313 

(after Barbeau, 2003). (C) Study area and log localities pictured with roads, national parks and state 1314 

boundaries. Palaeogeographical location of the sabkha facies (purple) and Uncompahgre Uplift (red) 1315 

are also shown (after Blakey et al., 1988). 1316 
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 1317 

Figure 2 Correlation of all logs within the study area. Logs are correlated from top of the lower Cutler 1318 

beds to base of the Organ Rock Formation. Traceable units within the Cedar Mesa Sandstone Formation 1319 

are shown with dashed lines. Logs are arranged along a roughly north – south transect. Distance between 1320 

each log is shown. Lithofacies and deposit keys are shown in the figure. 1321 

Table 1 X-ray diffraction (XRD) sample numbers against log depth, with evaporite texture and XRD 1322 

phases identified 1323 
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Sample No. Log Depth 

(m) 

Evaporite Texture/Description XRD phases identified 

1 2 Vein within sandstone gypsum, quartz, anhydrite 

2 3 Nodule gypsum, quartz, boracite 

3 5 Vein within saline pan  gypsum, quartz, celestite 

4 7.5 Vein gypsum, quartz 

5 12.5 Vein gypsum 

6 16 Interbedded with limestone gypsum, quartz, anhydrite 

7 16 Nodule within palaeosol gypsum, quartz, anhydrite, magnesian 

calcite, feldspar 

8 21 Vein within sandstone gypsum, quartz 

9 26.5 Interbedded gypsum and limestone gypsum, quartz, rutile 

10 27 Massive gypsum 

11 28 Massive  gypsum 

12 30 Massive  gypsum, quartz 

13 33.5 Enterolithic growth  gypsum, anhydrite 

14 35.5 Enterolithic growth  gypsum, quartz, calcite 

15 39.5 Massive gypsum, anhydrite 

16 42 Tepee structure gypsum, quartz 

17 42.5 Massive  gypsum, quartz, anhydrite 

18 43 Massive  gypsum, quartz, anhydrite 
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19 43 Massive  gypsum, quartz 

20 49 Interbedded with sandstone gypsum, quartz, calcite 

21 50 Interbedded with sandstone gypsum, quartz, potassium sulfate 

22 51.5 Interbedded with sandstone gypsum, quartz 

23 55.5 Massive gypsum, quartz 

24 65 Nodule within interdune sandstone gypsum, quartz 

25 66 Nodule within palaeosol gypsum, quartz 

26 70 Nodule  gypsum, quartz, boracite 

27 70 Nodule gypsum, quartz, anhydrite 

28 89.5 Nodule within saline pan gypsum, quartz, rutile 

29 91.5 Nodular gypsum gypsum anhydrite, muscovite 

30 96.5 Massive  gypsum, celestite 

31 97 Massive gypsum 

32 97.5 Massive gypsum 

33 98.5 Massive  not determined  

34 99.5 Massive  gypsum 

35 101 Massive gypsum 

36 102.5 Massive gypsum 

 1324 

Table 2 Lithofacies of the Cedar Mesa Sandstone Formation 1325 

Facies Code Lithology Sedimentary Structures Interpretation 
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Planar cross-

bedded 

sandstone 

Sxb Grey to orange, fine to medium-

grained, well sorted & well rounded 

sandstone. 

Planar cross-bedding with 

mm/cm scale alternations in 

grainsize occurring in single or 

multiple sets <10 cm, with 
localised soft sediment 

deformation. 

Alternating laminations of grain fall and flow 

and migration of wind-blown straight-crested 

dune-scale bedforms and dune trains. Soft 

sediment deformation formed as a result of 
slumping of dune lee slope and/or 

haloturbation. 

Trough cross-
bedded 

sandstone 

Stxb Grey to orange, fine to medium-
grained, well sorted & well rounded, 

sandstone. 

Trough cross-bedding with 
mm/cm scale alternations in 

grainsize occurring in single or 

multiple sets. 

Alternating laminations of grain fall and flow 
and migration of wind-blown sinuous-crested 

dune-scale bedforms and dune trains. 

Ballistic ripple 

Sandstone 
Sxr Yellow, orange to white, fine to 

medium-grained, well sorted, sub to 

well–rounded, sandstone. 

Horizontal laminations with 

bimodal sorting (pinstripe) with 
sporadic shallowly climbing 

(<8°) rippleform laminae. 

Saltation of fine-grained sand, which 

accumulates along the saltation wavelength. 
Reptation of coarser grains over accumulated 

grains, results in inverse grading. Rippleform 

present where grain-size differentiation 
enables internal foreset laminae to be 

distinguished. 

Structureless 

Sandstone 

Sm Grey to orange, fine to medium-

grained, well sorted & well rounded, 

sandstone. 

Structureless with localised 

desiccation cracks and root 

traces (rhizoliths). 

Rapid suspension settling of wind-blown 

sediment in areas affected by surface water, 

followed by drying. 

Plane parallel 

laminated to 
oscillatory 

current rippled 

siltstone and 

sandstone 

Swr Dark brown siltstone-to fine-grained 

moderately sorted & sub-rounded, 

siltstone and sandstone. 

Parallel laminations with a 

sporadic undulose texture and 

symmetrical cross lamination.  

Low energy, sub-aqueous setting, where the 

deposits have settled out of suspension. 
Undulose and oscillation-current ripples form 

in response to wind action on shallow waters. 

Fine-grained 

carbonate 

Lm Dark grey to blue, carbonate 

mudstone/wackestone. 

Sporadically blocky or 

stylotised with sporadic 
ostracod microfossils and 

nodular red microcrystalline 

chert. 

Sub-aqueous precipitation of carbonate. The 

high matrix-content reflects a low energy in 

the system at the time of deposition. 

Clastic-rich 

carbonate 
Lsm Dark grey to blue carbonate 

wackestone/ packstone with >10% fine 

grained sand within a carbonate mud 

matrix. 

Sporadically blocky or 

stylotised. 

Sub-aqueous precipitation of allochthonous 

carbonate with siliciclastic input from 

neighbouring environments. 

The lower proportion of matrix with respect to 
Facies Lm reflects slightly higher energy in 

the system at the time of deposition. 
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Gypsum G White to peach crystalline gypsum. Massive or laminated bands of 

enterolithic convoluted folds or 

polygonal hummocks. 

Precipitation from shallow saline waters and 

displacive growth of evaporites within saline 

saturated sediment. 

Gypsum-bound 

sandstone 
Gspl Light grey, very fine to fine-grained, 

moderate to poorly sorted, sub-rounded 

sandstone within a gypsiferous matrix 

and cement.  

Parallel laminated to massive, 

often contorted by small 

gypsum nodules. 

Flow of saline fluid and subsequent 

precipitation of gypsum in the pore space as 

water evaporated at the ground surface. 

Horizontally 

laminated 

mudstone and 
siltstone (Damp 

Pedogenic) 

Sfo Purple to light brown, silt to fine-

grained, mudstone and siltstone.  

Fining upwards horizontal 

laminations, mottled.  

Vegetation stabilisation and sediment 

binding; product of palaeosol  

Presence of primary sedimentary features 

indicates a relatively immature palaeosol most 
likely in proximity to fluvial channels or 

confined bodies of water  

Structureless 

Fines mudstone 

and siltstone 

(Dry Pedogenic) 

Sfr Light brown, grey to yellow very fine to 

fine-grained, moderately to well-sorted, 

sub-rounded mudstone and siltstone.  

Structureless, sporadic gypsum 

and calcrete nodules and veins. 

Vegetation stabilisation and sediment 

binding; product of palaeosol development. 

Parallel 

laminated 

siltstone and 

sandstone 

Ssl Dark brown to black, siltstone to very 

fine-grained sandstone,  

Structureless to faint parallel- 

laminations with normal 

grading and high organic 

content. sporadic mottling 

Suspension fall out within low energy waters. 

High organic content indicates either thermal 

stratification or anoxic conditions. 

Planar cross-
bedded 

sandstone 

Sfxb Brown medium-grained moderately 

sorted & sub-rounded sandstone. 

Planar cross-bedding with 
normal grading, in single or 

multiple sets, sporadic mud 

clasts. 

Migration of straight-crested dune-scale 
bedforms and dune trains sub aqueously under 

lower flow regime conditions. 

Plane parallel-

stratified 

sandstone  

Sfpl Grey to brown, fine to medium-grained, 

moderately sorted, sub-rounded, 

sandstone 

Plane parallel-stratification Plane beds deposited under upper-flow regime 

conditions.  

 

Climbing-ripple 
laminated 

sandstone 

Sfrl Grey to brown, fine to medium-grained, 

moderately sorted, sandstone 

Sub-critically climbing 

asymmetrical cross-lamination 

Lower flow regime ripple– scale bedform 

migration. 

 1326 

 1327 
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 1328 

Figure 3 Key features of aeolian sediments. (A) Small trough cross bedding (Stxb) highlighted with 1329 

arrow. (B) Gypsum rich dune facies (Sxb) with white gypsum alone bounding surfaces (arrowed). (C) 1330 

Ballistic ripple sandstone (Sxr) with bimodal sorting (Bi arrowed) and undulating laminations (Ui 1331 

arrowed). (D) Ballistic ripple sandstone (Sxr) with shallowly climbing rippleform laminae (Tr arrowed) 1332 

between grainfall deposits (Gfa arrowed) 1333 
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 1334 

Figure 4 The key features of  standing water (A) to (D) and flowing water deposits (E) and (F). (A) 1335 

Parallel laminated siltstone and sandstone (Ssl) with planar laminations (Plam arrowed) and mottled 1336 

appearance (Mt arrowed). (B) Plane parallel laminated to oscillation-current rippled siltstone and 1337 

sandstone (Swr). (C) Structureless Sandstone (Sm) with root traces (Rt arrowed). (D) Horizontally 1338 

laminated mudstone- and siltstone (Sfo) with parallel laminations (Plam arrowed). (E) Planar cross-1339 

bedded sandstone (Sfxb) with multiple cross-bedded sets (Xb arrowed) and erosional base (Eros). (F) 1340 
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Plane parallel-stratified sandstone (Sfpl) overlying thin beds of Sfxb with mud clasts (Pb arrowed) and 1341 

erosional base (Eros) 1342 

 1343 

Figure 5 Key features of bedded gypsum/anhydrite deposits.  (A) Bottom growing botryoidal nodules. 1344 

(B) Thin section showing undulating beds of bladed gypsum with vertical textures (orange arrow). (C) 1345 

This section showing alabastrine matrix of gypsum with: quartz sand grains (green arrow), undulating 1346 

bladed vertical gypsum (orange arrow), veins filled with satin spar (purple arrow) and brown mud clasts 1347 

(red arrow). 1348 
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 1349 

Figure 6 Key features of displacive gypsum/anhydrite deposits.  (A) Tepee structure (Tp arrow) formed 1350 

within gymsum (G). (B) Chicken wire texture in gypsum (G). (C) Enterolithic gypsum folds (arrowed) 1351 

in background gypsum (G). (D) Multiple enterolithic folds in bed of gypsum (G). (E) Thin section 1352 

showing poroproplastic gypsum matrix (orange arrow) with multiple diagenetic displacive halite 1353 

crystals (red arrow) bladed gypsum cement crystals (yellow arrow) and mud clasts (green arrow). 1354 
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 1355 

Figure 7 Key features of brecciated gypsum/anhydrite deposits: (A) massive and slumped appearance 1356 

in outcrop of gypsum (G); (B) crudely cross-bedded appearance of massive brecciated gypsum (G); (C) 1357 

this section showing elongate gypsum crystals (orange arrow) and rounded edges (red arrow) 1358 
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 1359 

Figure 8 Plot of relative proportions of aeolian, standing water, chemically precipitate and flowing 1360 

water deposits in each log across the study area. Log number is shown along the bottom (see Fig. 1 for 1361 

location) with percentage of each within each log plotted along the vertical axis.  1362 
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 1363 

Figure 9 Depositional models showing the sedimentology and depositional settings of either the erg 1364 

margin or lacustrine margin setting during either humid (A) or arid (B) times. 1365 

Table 3 δ34S, δ18O and ∆17O measurements of gypsum/anhydrite samples from Log 1.4. 1366 

Sample 

No. 

Depth 

(m) 

∆17O error 

∆17O 

δ18O Error 

δ18O 

δ34S Error 

δ 34S 
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1 2 -0.13 0.02 15.46 0.50 14.29 0.30 

2 3 -0.06 0.01 14.35 0.50 13.94 0.30 

4 7.5 -0.26 0.22 n.d. n.d. 13.73 0.30 

5 12.5 -0.22 0.01 14.27 0.50 14.00 0.30 

6 16 -0.20 0.04 16.69 0.50 14.00 0.31 

9 26.5 -0.23 0.06 n.d. n.d. 13.80 0.30 

10 27 -0.09 0.03 15.18 0.50 13.88 0.30 

11 28 -0.13 0.07 16.32 0.50 13.55 0.30 

12 30 -0.22 0.03 15.79 0.50 13.87 0.30 

13 33.5 -0.27 0.04 15.66 0.50 14.62 1.14 

15 39.5 -0.27 0.01 n.d. n.d. 13.93 0.30 

16 42 -0.20 0.02 14.50 0.50 14.03 0.36 

17 42.5 -0.09 0.02 14.46 0.50 13.92 0.30 

18 43 -0.22 0.04 14.18 0.50 13.57 0.38 

19 43 -0.15 0.02 14.18 0.50 13.43 0.30 

20 49 -0.10 0.02 13.89 0.50 13.90 0.30 

22 51.5 -0.23 0.04 12.80 0.50 n.d.  n.d. 

23 55.5 -0.08 0.03 15.66 0.50 14.53 0.30 

24 65 -0.16 0.02 15.02 0.50 14.33 0.30 
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26 70 -0.20 0.02 15.56 0.50 14.22 0.30 

27 70 -0.16 0.02 15.19 0.50 14.39 0.30 

28 89.5 -0.12 0.02 14.33 0.50 13.89 0.30 

29 91.5 -0.15 0.00 15.05 0.50 13.88 0.30 

31 97 -0.19 0.03 15.53 0.50 14.02 0.30 

32 97.5 -0.13 0.02 15.48 0.50 14.50 0.30 

33 98.5 -0.09 0.02 14.28 0.50 13.82 0.30 

34 99.5 -0.19 0.04 15.37 0.50 14.38 0.30 

35 101 -0.14 0.01 13.49 0.50 13.72 0.30 

36 102.5 -0.14 0.00 13.82 0.50 13.74 0.30 

 1367 
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 1368 

Figure 10 Isotope results plotted against log 1.4. δ34S is plotted in green with error bars, δ18O is plotted 1369 

in purple with error bars. Δ17O is plotted in orange with error bars. Red circle next to sedimentary log 1370 

indicates sample location of isotopic and XRD data point, star indicates XRD sample only. For 1371 

sedimentary facies key see Fig. 2. 1372 
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 1373 

Figure 11 (A) Mean δ34S of the Cedar Mesa Sandstone and Paradox Formation plotted against marine 1374 

range during the Carboniferous and Permian (blue) (after Kampschulte & Strauss, 2004). (B) Schematic 1375 

diagram showing possible pathways for marine sulphate flux into the continental basin via fault action, 1376 

or through halokinesis and surface run off. 1377 
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