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Abstract 

Previously work from our lab has predicted that Ca2+ release from intracellular Ca2+ 

stores occurs into a Na+/Ca2+ exchanger (NCX)-associated cytosolic nanodomain 

enclosed within the membrane complex. In this study, we aimed to test the hypothesis 

that Ca2+ release initially accumulates into an NCX-associated cytosolic nanodomain. 

We further aimed to examine whether Ca2+ accumulation within this nanodomain could 

be responsible for triggering the first stage of platelet activation - the platelet shape 

change. Experiments were also performed to assess whether CD34+-cultured 

megakaryocytes might utilize the NCX in a similar manner to platelets to start to 

establish this as a model system in which the structures of the cytosolic nanodomain 

could be assessed in the future. 

In this study, we investigated whether removal of Ca2+ by the NCX is affected by DM-

BAPTA loading. Experiments demonstrated that DM-BAPTA slowed but did not 

prevent NCX-mediated Ca2+ removal from Ca2+ released from intracellular stores. This 

effect could also be observed at the single-cell level. The NCX-mediated removal from 

DM-BAPTA-loaded cells was disrupted by disorganization of the dense tubular system 

by nicergoline, suggesting its presence within the membrane complex. Examination of 

the subcellular distribution of the NCX3 protein in human platelets demonstrated the 

presence of the NCX3 in a location consistent with being at the membrane complex. 

These data therefore provided the first demonstration of an NCX-associated cytosolic 

nanodomain in line with our hypothesis.  

Additional experiments demonstrated that NCX inhibition triggers a Ca2+-dependent 

shape change in DM-BAPTA-loaded platelets. Furthermore, this appeared to be 

dependent upon the function of the IP3 receptor. These data therefore provide 

functional evidence for the close association of these two Ca2+-transporting proteins 
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in a nanodomain of platelets. In addition, these data suggested that Ca2+ accumulation 

within the cytosolic nanodomain might be responsible for the rapid activation of the 

platelet shape in human platelets.  

Investigations into the applicability of CD34+-cultured megakaryocytes as a model 

system in which to study platelet Ca2+ signalling demonstrated that megakaryocytes 

utilise NCX to regulate their thrombin-evoked Ca2+ signals. This effect was altered by 

changes in the cytokine level concentrations as well as the addition of calciferol to the 

platelet. These results demonstrate that whilst megakaryocytes also use NCX to 

critically control their signalling, this effect is modulated by the developmental condition 

of the megakaryocytes.  

These data therefore are consistent with our previous hypothesis that the NCX3 is 

principally localised at the membrane complex, where it forms a close association with 

the IP3 receptor. The experiments on shape change suggests that localising different 

Ca2+-effectors in the membrane complex or in other subregions of the cell may play a 

key role in controlling the latency of activation of these process in platelets. These data 

support the possibility that the membrane complex is a key regulator of Ca2+ signalling 

in platelets, and may provide a useful target for future anti-platelet agents.  



17 
 

1.    Introduction 

1.1. Principles of thrombosis and haemostasis 

1.1.1 Platelets and the haemostatic systems of the body 

Platelets are small disc-shaped anucleate cell fragments that play a key role in 

maintaining the integrity of the blood circulation. Platelets are present at a high-density 

of 1.5-4x108 cells.mL-1 in the blood of healthy adults. They circulate in the bloodstream 

for around 10 days before being removed by the reticuloendothelial system of the liver 

and spleen (Broos et al., 2011; Gale, 2011).  In this time, the platelets circulate in a 

resting, quiescent form which prevents platelet interaction with other platelets, blood 

cells or the endothelial lining.  However, when a blood vessel becomes damaged, 

nearby platelets become activated where they can then coordinate the controlled 

clotting of the blood, thus preventing excessive blood loss from the damaged vessel   

(Broos et al., 2011; Kumar & Abbas, 2015). 

The formation of a blood clot at the site of damage in an injured blood vessel is called 

haemostasis (Fig 1.1). Haemostasis is a highly-regulated physiological process that 

requires the coordinated action of platelets, clotting factors, and endothelial cells 

leading to a creation of a thrombus.  The thrombus prevents excessive bleeding at the 

injured site, whilst also maintaining normal blood flow in circulation  Broos et al., 2011; 

Gale, 2011). This process is normally prevented by the endothelium, which produces 

a number of substances such as nitric oxide, prostacyclin, anti-thrombin III, 

thrombomodulin, and Tissue Factor Pathway Inhibitor, which inhibits platelet activation 

and prevents aberrant activation of the blood coagulation cascade (Ignarro et al., 

1987; Palmer et al., 1987; Furie & Furie, 2008). 
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Upon vascular injury, the sub-endothelial extracellular matrix becomes exposed to the 

blood, which contains several adhesive ligands such as collagen, laminin, fibronectin, 

and thrombospondin  which  platelets can adhere to through cell surface receptors 

(Farndale et al., 2003; Kumar & Abbas, 2015). In addition to cell arrest, platelet 

adhesion via these receptors triggers platelet activation through the stimulation of 

signal transduction pathways through G-protein coupled receptors and tyrosine kinase 

cascades (Broos et al., 2011). This activation triggers platelet spreading upon the 

surface of the injured vessel, where they can then recruit further platelets via 

production of thromboxane A2 (TxA2) and secretion of autocrine signalling molecules 

from their dense granules.  These soluble ligands activate other circulating platelets, 

recruiting them to the developing thrombus through binding to the adherent platelets. 

This leads to the formation of a platelet plug, which blocks the damaged blood vessel 

and prevents further blood loss (Varga-Szabo et al., 2008). Finally, the platelet 

aggregate also presents a catalytic surface for the activation of the blood coagulation 

cascade, which facilitates the deposition of an insoluble fibrin mesh around the 

aggregate which helps strengthen the clot and prevents it been washed away by the 

flowing blood (Walker, 1980; Esmon & Owen, 1981; Fulcher et al., 1984; Guinto & 

Esmon, 1984; Mann et al., 1990; Shen & Dahlback, 1994; Cramer et al., 2010).  
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Figure 1.1: Basics of Haemostasis and Platelet Plug Formation. Upon vascular injury, the sub-

endothelial matrix is exposed to the plasma. This allows platelets to bind to collagen either directly, or 

indirectly via von Willebrand Factor (vWF), forming a monolayer of activated platelets on the surface of 

the damaged wall. These activated cells can then release adenosine diphosphate (ADP), adenosine 

triphosphate (ATP), serotonin (5-HT) and TxA2 – which can help activate other circulating platelets 

helping to recruit them to the developing thrombus, via activation of integrin αIIbβ3 and crosslinking of 

platelet via this fibrinogen receptor. After formation of the thrombus, thrombin can be generated via 

activation of the extrinsic blood coagulation cascade through the release of tissue factor from the 

subendothial wall. A sub-population of activated platelets in the thrombus help target this thrombin 

generation to the surface of the clot by facilitating a catalytic surface for the assembly of the 

prothrombinase and tenase complex on the surface of the platelets.  This activation of the blood 

coagulation cascade results in further platelet recruitment and stabilisation of the clot via the production 

of fibrin, which helps to provide mechanical strength to the blood clot. Reproduced from (Jennings,L.K 

2009 and Brass et al 2003). 
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1.1.2 Too much or too little platelet activation causes pathological outcomes. 

 

Appropriate control of the platelet activation process is key to ensure appropriate 

localisation and extent of activation of the haemostatic process. However, if it is 

activated inappropriately then this can lead to serious haematological disorders. A 

bleeding diathesis (excessive bleeding) ensues when platelets fail to react sufficiently 

at the sites of vascular injury leading to a failure to rapidly prevent further blood loss. 

As outlined in figure 1, there are a number of known inherited platelet disorders which 

are related to either the platelet’s inability to bind to adhesive ligands in the sub-

endothelial matrix, to other platelets or coagulation factors (Fig 1.2), or to trigger 

effective intracellular signalling cascades which lead to their activation and ability to 

coordinate thrombus formation (Fig 1.2). 

In contrast, unwanted platelet activation in undamaged blood vessels is called 

thrombosis. This uncontrolled platelet activation is a principal event in many 

cardiovascular diseases such as myocardial infarction, stroke, and venous 

thromboembolic disorders. In the last two decades, these cardiovascular diseases 

have been the most common cause of death in the world (World Health Organization, 

2002). Thus understanding how platelets change from a quiescent to an active form 

upon exposure to damaged blood vessels, and how platelets work together to form a 

thrombus could help us to identify and treat causes of abnormal blood clotting events.  
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Figure 1.2:  A summary of key molecular defects found in the platelets of patients with inherited 

bleeding disorders. Reproduced from Nurden & Nurden (2015). 
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1.2 The cellular biology of human platelets 

1.2.1 Platelet structure 

As shown in Figure 1.3, the structure of a resting platelet is mainly composed of three 

important structural components; the platelet plasma membrane, a highly-regulated 

cytoskeleton and a range of intracellular organelles and secretory granules. Each of 

these systems plays a key role in platelet structure and function.  

1.2.2 The platelet plasma membrane 

The plasma membrane is composed of a phospholipid bilayer in which cholesterol, 

glycolipids, and glycoproteins are firmly embedded (van Joost et al.,1990; White,  

1993). The membrane also contains a large number of proteins such as ion channels, 

transporters and G-protein coupled receptors that are key to platelet activation (see 

section 2). However, the plasma membrane is not a homogenous structure but also 

contain lipid rafts rich in cholesterol and sphingolipid which play an important role in 

portioning platelet signalling pathways, as well as controlling intracellular trafficking of 

proteins (Bodin et al., 2003;  Kaushansky et al., 2010). 

The platelet plasma membrane can be seen to be covered in a dense external 

glycocalyx of around 20-30 nm in thickness. This structure is composed of membrane 

glycoproteins, glycolipids, mucopolysaccharides, and adsorbed plasma proteins 

(White, 1993). In resting platelets, the heavy negative charge of glycosaminoglycans 

and lipids provides an electrostatic repulsive force that prevents platelets from 

adhering to one another, as well as to endothelial cells (Coller, 1983). However, this 

lining also provides the first point contact of platelets with the Sub-endothelial matrix, 

so the presence of a number of glycoproteins in this structure is also crucial for the 

ability of platelets to bind and trigger platelet aggregation at the site of injury in a blood 

vessel (see section 2). 
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Figure 1.3: Ultrastructure of the resting platelet. The cortical microtubule bundle maintains the 

discoid shape of resting platelets. The platelet plasma membrane has a dense glycocalyx, which is 

made up of a number of glycoproteins including some which are essential for normal platelet adhesion 

and activation.  The plasma membrane also becomes invaginated forming the structured called the 

open canalicular system (OCS). Platelets also contain the dense tubular system (DTS), which is the 

platelet equivalent of the smooth endoplasmic reticulum and is the major intracellular store of Ca2+.The 

OCS and DTS are found closely apposed to one another in an eccentric cellular location known as the 

membrane complex. Platelets also contain secretory granules (α granules and Dense granules) that 

contain platelet agonists, growth factors, and components of the coagulation cascade.  These granules 

can be secreted upon platelet activation influencing the cells around them. 
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1.2.3  Open Canalicular System 

In addition to the surface membrane, the platelet plasma membrane also invaginates 

into the interior of the cell, creating an internal space which is continuous with the 

extracellular fluid. Electron microscopy studies have previously shown that this 

membrane network displays numerous branching points and extends from one side of 

the platelet to the other (van Nispen tot Pannerden et al., 2010).  This invaginated 

membrane system is referred to as the open canalicular system (OCS) (Behnke, 1970; 

White, 1972;). This structure is similar to the t-tubule system of striated muscle cells 

(White, 1968), and therefore provides a volume of isolated extracellular fluid which can 

communicate with the external area of the platelet. As individual channels of the OCS 

have a diameter on the order of magnitude of tens of nanometres  van Nispen tot 

Pannerden et al., 2010) it has been very difficult to study and so this has limited study, 

however the OCS is thought to play a number of roles in platelet. 

Following adhesion, the surface plasma membrane of resting platelets increases in 

size rapidly due to filopodia formation and platelet spreading, leading to a rapid 

increase in the area of the surface membrane of platelets. This rapid increase in size 

of plasma membrane happens faster than would be possible by independent synthesis 

of new plasma membrane. Therefore the OCS is thought to act as a membrane 

reservoir which can be rapidly externalised, alongside that of exocytosed secretory 

granules, to allow platelet spreading upon activation (Ruggeri, 2002). 

The OCS has also been shown to be the principal point of exocytosis of the granules 

from the platelet – however there is still some controversy over whether this is the sole 

route of exocytosis or whether there is also a role for release across the surface 

membrane (Mark et al., 1980; White, 1972). This exocytosis of autocoids into the OCS 
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may help facilitate autocrine activation of platelets by their own granule contents by 

allowing adenosine nucleotides to accumulate within this small, isolated pericellular 

volume (Fogelson & Wang, 1996). 

The OCS has also been shown to be a site of clearance of platelet glycoproteins after 

platelets stimulation. Electron microscopy studies indicate that the open canalicular 

system membrane may sequester the glycoprotein Ib-V-IX (GPIb-V-IX) complex from 

the platelet surface upon platelet activation with thrombin (George et al.,1986; 

Michelson, 1992; Nurden et al., 1994). Similar results have also been shown for 

glycoprotein VI (GPVI), the P2Y1 purinergic receptor as well as integrin αIIbβ3 (Suzuki 

et al., 1992; Nurden et al., 1994; Nurden et al., 2003; Suzuki et al., 2003). These data 

suggest that control of receptor transport into and out of the OCS may play a role in 

altering platelet reactivity to agonists. 

1.2.4 Dense Tubular System 

The dense tubular system (DTS) is a closed network of residual smooth endoplasmic 

reticulum from the megakaryocyte parent cell. In resting platelets the DTS appears as 

thin elongated membranes, but it has been shown to be rapidly reorganised upon 

agonist stimulation leading to it taking on a rounded, vesicular form (Ebbeling et al., 

1992) suggesting that it is responsive to platelet activation. The DTS in platelets is 

known to be the major site for synthesis of thromboxane’s and prostaglandins, as well 

as the principal site of intracellular Ca2+ release upon agonist-evoked stimulation 

(Sage et al., 2011; see section 1.3.5). From these finding it is clear that the DTS plays 

a crucial role in mediating platelet activation (Gerrard et al., 1976; Carey et al., 1982; 

Ebbeling et al., 1992). 
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1.2.5 Membrane Complex 

Although the OCS and DTS are independent membrane systems involved in 

regulating platelet functions in different ways, previous electron microscopy studies of 

platelets have also found that these two membrane structures can also be found to lie 

in direct opposition to one other in a single eccentric location within the cell.  This area 

of close association of the OCS and DTS is known as the membrane complex (Fig 

1.4). This interaction between an invaginated membrane system and the intracellular 

Ca2+ stores is an analogous structure to the diad and triad made up of t-tubule system 

and sarcoplasmic reticulum of cardiac and skeletal muscle (Ezerman & Ishikawa, 

1967; Hagopian & Spiro, 1967).  More recently, it has become clear that tight 

interactions between the surface membrane and cortical endoplasmic reticulum can 

also be observed in smooth muscle cells, where these composite membrane systems 

have been termed as nanojunctions (van Breemen et al., 2013). In all of these cell 

types, the close interaction between the intracellular Ca2+ stores and the plasma 

membrane has been shown to play a key role in regulating Ca2+ signalling by allowing 

the creation of highly-localised Ca2+ signals within subregions of the cells  (van 

Breemen et al., 2013). These localised Ca2+ signals can create activation of specific 

Ca2+ dependent pathways in isolation from other Ca2+-regulated processes in these 

cells (van Breemen et al., 2013).  Recently evidence for a similar role for the 

membrane complex in controlling human platelet activation through regulating 

cytosolic Ca2+ signalling in these cells has also been recently presented (Sage et al., 

2013; Walford et al., 2016; See Section 1.3.7). 
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Figure 1.4. 3D reconstruction of the platelet membrane complex from an electron 

tomography study of human platelet ultrastructure. (A,B) series of images showing the 

close interaction between the open canalicular system and dense tubule system. (C) From 

each EM slice the DTS (yellow) and OCS (blue) can be traced, leading to the 3D reconstruction 

compiled from all the slices taken through the platelet of the OCS (D), DTS and the membrane 

complex (F). Figure reproduced from (van Nispen tot Pannerden et al., 2010) 
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1.2.6 Platelet cytoskeleton 

The platelet cytoskeleton in the resting platelet is highly-organised and plays a key 

role in mediating both the resting discoid state of the cell, as well as the extensive 

change in morphology upon platelet activation to allow it to spread over the damaged 

sub endothelial matrix. The system is principally made up of both microtubules and 

actin-based cytoskeleton.  

Microtubules are comprised of hollow cylindrical polarized polymers made up of αβ 

tubulin dimers which are in constant dynamic equilibrium of assembled and 

disassembled microtubules. Four different tubulin isoforms (β1, β2, β4, β5) are found 

in platelets out of which the β1 tubulin isoform is the most dominant type and specific 

for megakaryocytes and platelets (Crawford, 1994; Hartwig, 2007; Italiano & Hartwig, 

2007).  In the resting platelet, much of the tubulin present within the cell can be seen 

to be found tightly associated with the intracellular face of the platelet plasma 

membrane. This cortical microtubule polymer is rolled up into a number of coils to give 

the appearance of a thick ring of microtubules which circumnavigates the cortical 

region of the platelet. Previous work has demonstrated that this cortical microtubule 

bundle appears as closely knitted filaments when observed in cross-section (White, 

1968; White & Rao, 1998; Italiano et al., 1999).The diameter of the coiling of the 

cortical microtubule bundle has been shown to be maintained by the antagonistic 

interaction of kinesin and dynein molecular motors in the resting platelet, whereas 

upon platelet activation microtubules start to coil due to a net force from the movement 

of dynein (Diagouraga et al., 2014). This is thought to contribute to the change of 

platelets from their resting discoid shape to a spherical conformation.  
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In addition to microtubules, platelets contain a dense actin cytoskeleton. An individual 

platelet consists of 2 million actin molecules expressed in constant dynamic 

equilibrium between monomeric (G-actin) and polymeric (F-actin) forms.  In resting 

platelets, around 40 percent of actin present in platelet is found in the polymerized F-

actin form creating around 2000-5000 linear actin filaments and the remaining 60 

percent are free in the cytosol or stored as 1:1 complex with β4-thymosin in the platelet 

cytoplasm, where they can be mobilised to create new actin filaments or elongations 

that drive cell spreading over the subendothelial matrix upon platelet activation 

(Hartwig & DeSisto, 1991; Safer & Nachmias, 1994; Nachmias, 2008). 

1.2.7  Secretory granules 

Upon activation, platelets secrete a number of bioactive substances from three types 

of granule; dense granules, α-granules and lysosomes. Deficiency of either the dense 

granules or α-granules is known to lead to bleeding disorders in human patients – with 

patients lacking dense granules in Hermansky-Pudlak syndrome and δ-storage pool 

disorder (Gunay-Aygun et al., 2004), and α-granules in the Gray platelet syndrome. 

These clinical findings suggest that secretions of these two granules are essential for 

platelets role in haemostasis. The α- and dense granules can be distinguished in 

imaging studies though their distinct features - α-granules are larger in diameter 

around 200 nm, more abundant 50-80/platelet compared to dense granules which are 

around 20 nm in diameter 3-8 inside the platelet (Mc Nicol & Israels, 1999; Harrison & 

Cramer 1993; Reed, 2007) The contents of each of these granules are distinct, leading 

to them providing different roles in normal haemostatic function. Dense granules are 

rich in autocrine signalling molecules such as ADP, ATP and serotonin that play a 

principal role in increasing the thrombus growth by activation and recruiting circulating 

platelets to the growing thrombus (Nesbitt et al., 2003). In contrast, the α-granules 
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store and release a variety of substances including adhesive proteins (vWF, 

fibrinogen, fibronectin), coagulation factors (Factor V), growth factors (PDGF, IGF-1, 

TGFβ), serine protease inhibitors (alpha 2-macroglobulin, alpha 2-antiplasmin), 

chemokines (CXCL4), and angiogenesis regulatory proteins (endostatin and VEGF) 

(White, 1993; Italiano et al., 2008).  

In addition to the release of their luminal contents, insertion of membranes of these 2 

granules into the OCS and surface membranes may alter platelet function, as these 

granules also contains transmembrane proteins including GLUT-3 for the α-granule, 

MRP4 for the dense granule (Jedlitschky et al., 2004), and P-selectin for both granules 

(Youssefian et al., 1997). In addition the insertion of lipids may play a key role in 

mediating platelet spreading over the subendothelial lining. Unlike most other cells, 

upon activation platelets significantly increase their surface area as they spread. As 

de novo synthesis of lipids it is too slow to account for this expansion, it was 

hypothesised that insertion of lipids from platelet granules could account for this 

increase in the area of the surface membrane.In support of this previous studies have 

shown that exocytosis of α-granules forms a reservoir of membrane in order to 

contribute towards expansion of plasma membrane and help facilitate platelet 

spreading on the damaged vessel wall (Peters et al., 2012).   

1.3 Thrombus formation requires an agonist-dependent rise in cytosolic 

Ca2+ concentration in platelets  

When the blood vessel is injured, platelets are recruited to the damaged vessel wall 

where they undergo a series of activation events which results in the building of the 

thrombus (Figure 1.4).  The first stage is adhesion to the damaged sub-endothelial 

wall. Platelets bind directly to collagen through glycoprotein VI (GPVI) and integrin 
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α2β1, as well as indirectly via glycoprotein Ib-IX-V- (GPIb-IX-V) and integrin αIIbβ3- 

binding to vWF. vWF acts as an initial point of adhesion for platelets, especially under 

high shear conditions, where the initial tethering of platelets to vWF appears to be 

essential to thrombus formation in these conditions (Savage et al., 1998). The bonds 

formed between vWF and GPIbα are unstable because they both form and dissociate 

rapidly, hence the adhesion formed by interaction between GPIbα and vWF is not very 

firm - resulting in transient tethering and slow translocation of platelets across the 

damaged vessel wall (Nieswandt & Watson, 2003; Figure 1.5). Similarly, platelets also 

bind to collagen directly via glycoprotein VI, which also supports the initial tethering to 

the subendothelial matrix.  These initial interactions trigger platelet signalling which 

can lead to the activation of integrin αIIbβ3 and integrin α2β1 into high-affinity states, (Fig 

1.5). These activated integrins can then trigger stable adhesion bound to collagen and 

vWF through these activated receptors (Mangin et al., 2003; Nieswandt & Watson 

2003; Kasirer-Friede et al. 2004; Marshall et al. 2004). Previous studies have 

demonstrated that this conversion from reversible to firm adhesion is dependent upon 

a maintained rise in the cytosolic Ca2+ concentration [Ca2+]cyt (Mazzucato et al., 2002; 

Nesbitt et al., 2002). These adherent platelets are then able to activate other 

circulating platelets through their ability to secrete autocoids from their dense granules 

and produce TxA2. Both dense granule secretion and TxA2 are dependent on an 

agonist-evoked rises in [Ca2+]cyt (Rink et al., 1982). This triggers simultaneous Ca2+ 

signals in both the circulating and adherent platelets. The circulating platelets forms a 

network with adherent platelets via GPIb/V/IX binding to surface expressed vWf. In 

response to this interaction Ca2+ signals elicited from adherent platelets serves as a 

nuclei to tether circulating platelets and secrete ADP whilst exposing its activated 

integrin αIIbβ3 on the surface. The engagement between integrin αIIbβ3 and the platelet 



32 
 

expressed vWF triggers further ADP release and elicits additional Ca2+ signals in 

nearby platelets thereby triggering integrin αIIbβ3 activation in these cells, allowing the 

two activated cells to cohere to one another – thus  promoting platelet aggregation. 

These simultaneous agonist-evoked rises in [Ca2+]cyt have been shown to be required 

for thrombus growth (Nesbitt et al., 2003). This likely occurs due to the need to have 

activated integrin αIIbβ3 on both cells, which can then bind fibrinogen to the surface 

of both platelets, cross (Weisel et al., 1992) linking them and thus leading to platelet 

aggregation. The activation of this fibrinogen receptor on the platelets has been shown 

to be dependent upon Ca2+-dependent activation of the Ca2+ and DAG regulated 

guanine nucleotide exchange factor I (CalDAG-GEFI) which can trigger integrin 

activation via an activation of the GTPase Rap1b (Stefanini et al., 2009). Previous 

work has showed that prolonged rises in Ca2+ are also essential in facilitating thrombus 

growth. Both Mazzucato et al., (2002) and Nesbitt et al., (2003) demonstrated that the 

longer a Ca2+ signal lasted, the longer a platelet could bind to vWF under flow, and the 

more likely it was to adhere irreversibly. In addition to binding to the sub-endothelial 

matrix, prolonged Ca2+ signals also appear to be important in in facilitating platelet 

binding to a growing thrombus (Mazzucato et al., 2002; Nesbitt et al. 2003). 
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Figure 1.5: Mechanisms of platelet adhesion to the subendothelial matrix.  Upon vascular 

damage the GPIbα – VWF interactions at high shear rates > 500 s-1mediates the initial contact or 

tethering of platelets to the extracellular matrix. Next activation is triggered by GPVI collagen 

interactions that change the integrin to high affinity state resulting in release of agonist such as ADP 

and TXA2.This GPVI mediated activation may be caused by initial GPIbα – VWF interactions but 

mandatory along with integrin up regulation for initial adhesion. Finally activated α2β1 and αIIbβ3 

mediates firm adhesion of platelets to the collagen in turn resulting in a continued GPVI signalling, 

enhanced release, phosphatidylserine exposure and procoagulant activity. Agonists ADP and 

TXA2mediates thrombus size and growth by activating integrins on adherent platelets and activating 

additional platelets. Reproduced from Nieswandt & Watson, (2003). 
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Van Gestel et al., (2002) monitored thrombus formation in vivo in anaesthetised rabbits 

and showed that platelets that formed part of a thrombus underwent shape change 

and degranulation in combination with a prolonged rises in [Ca2+]cyt (van Gestel et al., 

2002).  Whereas platelets that form emboli exhibited reduced, transient Ca2+ signals, 

and in turn demonstrated neither degranulation nor shape change. This is in line with 

more recent work which demonstrated that platelets need to have simultaneous rises 

in Ca2+ to aggregate together (Nesbitt et al. 2003).  

Once the thrombus is formed it also needs to trigger the localised activation of the 

blood coagulation cascade to help create thrombin which in turn both helps activate 

more platelets (Furie & Furie, 2008) as well as create fibrin strands to help stabilise 

the thrombus (Furie & Furie, 2008). This is achieved through the exposure of anionic 

phospholipids such as phosphatidylserine on the surface of the platelet. Previous 

studies have shown that this only occurs on a subset of platelet within the thrombus 

(Munnix et al., 2007). This subgroup of platelets are called pro-coagulant platelets, 

and are characterised by having high, sustained rises in [Ca2+]cyt (Kulkarni & Jackson, 

2004). These data suggested that maintaining Ca2+ signals at higher levels is essential 

in determining both the extent of thrombus formation as well as the extent of activation 

of the blood coagulation cascade. Failure to trigger phosphatidylserine exposure is 

seen in patients with Scott’s syndrome, who suffer from a bleeding diathesis (Suzuki 

et al., 2010).  Recent work has demonstrated that these patients have a loss of a Ca2+-

dependent lipid scramblase called TMEM16F (Yang et al., 2012).  

From the above outline description of thrombus formation, it is possible to see that 

platelets contain a number of Ca2+-regulated processes which allow them to mediate 

their haemostatic functions.  Therefore understanding both how resting platelets keep 

their [Ca2+]cyt  low to prevent unwanted activation, and how [Ca2+]cyt are maintained at 
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high levels upon blood vessel damage will allow us to understand how thrombus 

formation is controlled. 

1.3.1 Resting platelets keep cytosolic Ca2+ concentration low 

In the undamaged circulation, platelets circulate in a quiescent, discoid state.  From 

the initial stages of platelet adhesion to the final stages of clot retraction, all platelet-

mediated events in blood clotting have a requirement for a rise in the [Ca2+]cyt However 

in a resting platelet, [Ca2+]cyt  is kept at very low at around 50-100 nM (Rink & Sage, 

1990). The ability of platelet to tightly control the concentration of resting [Ca2+]cyt within 

their cytosol is essential in ensuring that platelets do not begin to aggregate inside 

undamaged blood vessels. At rest, platelets mediate tight control over their [Ca2+]cyt 

levels through their ability to exclude this divalent cation from this cell compartment 

through removing Ca2+ across their plasma membranes and sequestering it into their 

intracellular organelles. 

1.3.2 Ca2+ Removal 

Two subsets of proteins work cooperatively to remove Ca2+ across the plasma 

membrane they are: The plasma membrane Ca2+ ATPase (PMCA) and the Na+/Ca2+ 

exchanger (NCX). PMCA is ubiquitously expressed with high expression found in a 

number of cells including erythrocytes, platelets, spermatozoa, heart, vascular 

smooth, muscle, kidney, skeletal muscle, stomach, intestine and brain (Okunade et al 

., 2004; Stauffer et al ., 1995; Brandt et al ., 1992; Howard et al ., 1993; Jones et al ., 

2010; Oceandy et al ., 2007; Pande et al., 2006; Schuh et al ., 2004). PMCA4 isoform 

was reported to play an important structural role in tethering neuronal nitric oxide 

synthase (nNOS) to a highly segregated microdomain within the cardiac cell 

membrane. This structural role was later identified as the nNOS dependent 
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mechanism through which PMCA4 regulated β-adrenergic induced cardiac 

contractility (Mohamed et al ., 2011). Recent studies investigating the PMCA4 isoform 

in mouse models have confirmed its physiological function in regulating sperm motility 

and male fertility (Schuh et al ., 2004).           

The platelet Ca2+ homeostasis is maintained by two ion transporters (PMCA, NCX) 

playing different roles, possessing different kinetic properties and Ca2+ affinities 

(Johansson & Haynes, 1988; Valant et al., 1992). The PMCA is better suited for 

maintenance of basal [Ca2+]cyt because it possess a higher affinity for Ca2+ than the 

NCX, whereas in stimulated platelets the NCX plays a greater role in restoring [Ca2+]cyt 

to resting levels due to its higher capacity for Ca2+ transport (Johansson et al.,1992). 

The main agent for Ca2+ efflux in platelets at rest is PMCA due to its high affinity, low 

capacity transport mechanisms. Platelets are known to express two isoforms of PMCA 

- PMCA1b and PMCA4b (Dean, 2010). However expression of PMCA1b is much lower 

than PMCA4b, suggesting that this is the predominant isoform in these cells (Dean, 

2010)  The PMCA has been shown to be predominantly localised to the OCS, with a 

particular association at the membrane complex (Cutler  et al., 1981). Although this 

transporter was traditionally thought to play a role in preventing platelet activation, 

previous work has shown that this transporter is more than a passive regulator of 

platelet function, with studies demonstrating that it can be localised to the filopodial 

region, through is interaction with the actin cytoskeleton – thus suggesting a potential 

to control platelet spreading on the sub-endothelium (Dean & Whiteheart, 2004). In 

addition to it’s control over its spatial localisation, further studies have demonstrated 

the PMCA activity can also be controlled through the action of Protein kinase A, Src 

family kinases, calpain, small GTPases and phosphoinositide’s (Dean et al., 1997; 

Rosado & Sage, 2000; Wan et al., 2003). Alterations in this regulation have been 
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shown to potentially be responsible for the elevated agonist-evoked Ca2+ responses 

seen in patient groups who demonstrate platelet hyperactivity, such as those with 

hypertension and type II diabetes mellitus (Blankenship et al., 2000; Rosado et al., 

2004).  These results therefore suggest the potential for PMCA activity to be a key 

negative regulator of platelet activity in resting platelets 

Platelets have been reported to possess at least two isoforms of Na+/Ca2+ exchangers 

(NCX) NCX1 and NCX3 (Roberts et al., 2012). Of these NCX3 is likely to be the 

dominant isoform as NCX1 expression has not been consistently discovered in 

western blot studies or proteomic screens of human platelets (Lewandrowski et al., 

2009;  Harper et al., 2010; Burkhart et al., 2012; Roberts et al., 2012). Previous work 

has demonstrated that the NCX accounts for rapid Ca2+ removal upon platelet 

activation (Valant et al., 1992; Sage et al., 2013) suggesting that like other cells, this 

exchanger plays a key role in mediating Ca2+ removal upon activation and not in 

resting cells (Blaustein & Lederer, 1999). Unlike the PMCA, little has been reported 

about the platelets regulation by post-translational modification or its ultrastructural 

localisation within the cell. In addition to the NCX isoforms described above, platelets 

have also been reported to contain a K+-dependent NCX (NCKX), NCKX1 (Kimura et 

al., 1993).  The NCKX isoforms provide an exchanger whose mode of exchange is 

less influenced by changes in cytosolic Na+ concentration ([Na+]cyt) – however little is 

known about the importance of this exchanger in human platelet physiology.  

1.3.3 Ca2+ Sequestration 

In addition to Ca2+ removal across the plasma membrane, resting- and agonist-evoked 

rises in [Ca2+]cyt are also negatively regulated by sequestration of this divalent cation 

into intracellular Ca2+ stores. Previous measurements suggest that these stores 
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contain an average concentration of around 200 μM inside them (Sage et al., 2011) 

demonstrating that active transport mechanisms must be used to allow Ca2+ to be 

taken up against the concentration gradient present between these stores and the 

cytosol. 

Previous studies in human platelets have suggested that there are at least two 

intracellular Ca2+ stores in platelets; a DTS-localised Ca2+ stores as well as an acidic 

Ca2+ stores (Rosado, 2011). These stores have distinct cellular mechanisms to control 

Ca2+ sequestration into them, as shown by their distinct pharmacological properties 

(Ruiz et al., 2004, Sage et al., 2011) which relates to the distinct molecular 

mechanisms available for them to take up Ca2+. Both stores appear to possess a 

specific sarco / endoplasmic reticulum (SR) calcium transport ATPase (SERCA) 

isoform unique to that pool. The ability of platelet to sequester into these two distinct 

Ca2+ stores can be differentiated by their distinct sensitivity to thapsigargin and TBHQ 

(2, 5-di-(t-butyl)-1,4-hydroquinone; Rosado 2011). Sequestration of Ca2+ into the 

dense tubular system requires the SERCA2b isoform and is characterised by its 

sensitivity to low concentrations of the SERCA inhibitor thapsigargin, and its 

insensitivity to TBHQ. In contrast, the acidic Ca2+ stores are pharmacologically 

characterised by the presence of SERCA3 isoform which can be distinguished by its 

sensitivity to TBHQ, and its relative insensitivity to thapsigargin. Through both 

pharmacological and immunolocalisation studies, previous studies have confirmed 

that these two SERCA pumps are found within two distinct Ca2+  stores in human 

platelets (Papp et al., 1991; Papp et al., 1992; Lopez et al., 2005). Currently the exact 

location(s) of the acidic Ca2+ stores in platelets is unknown but it is likely to include 

one or more of the platelet secretory granules (Ruiz et al., 2004; Rosado, 2011). 
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Inside the platelet SERCA has been shown to act as a negative regulator of both 

resting and agonist-evoked rises in [Ca2+]cyt by sequestering Ca2+into the intracellular 

stores (Sage et al., 2011).The ability of SERCA to reduce [Ca2+]cyt can also be altered 

by post-translational modifications such as phosphorylation by PKA, PKC and 

nitrosylation that have been shown to accelerate SERCA-mediated Ca2+ reuptake into 

stores (Tao et al., 1992; Trepakova et al., 1999). However, SERCA is not the only 

mechanism for sequestering Ca2+ present in the intracellular Ca2+ stores – previous 

studies demonstrated that in the absence of SERCA activity, platelets are still able to 

sequester Ca2+ into their intracellular organelles (Sage et al., 2011).  This effect is not 

present when platelets are exposed to the protonophore, nigericin, which suggests 

there is a Ca2+/H+ exchange mechanism present in the acidic stores of these cells.  

Further work will be required to identify the molecular identity of this exchanger which 

may be the activity of a single exchanger or a coupled-transport system requiring two 

or more Ca2+- and H+-dependent exchangers (Sage et al., 2011) 

1.3.4 A rise in cytosolic Ca2+ concentration is required to trigger platelet 

activation 

From the above description, it is possible to see that upon blood vessel damage 

platelets are exposed to a range of adhesive ligands (e.g. vWF, collagen, and 

fibrinogen) and soluble ligands (e.g. ATP, ADP, 5-HT, thrombin, TxA2) which trigger 

platelet activation. They do this through their ability to bind to an array of specific cell 

surface receptors, which in turn can trigger platelet activation through triggering an 

increase in [Ca2+]cyt (Rink & Sage, 1990). Like other cells this can be brought about in 

two ways, through release of Ca2+ from intracellular Ca2+ stores and via Ca2+ entry 

across the plasma membrane. 
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1.3.5 Ca2+ release  

As stated above human platelets consist of two distinct intracellular Ca2+ stores which 

can be mobilised upon agonist stimulation -  a DTS-localised Ca2+ store and an acidic 

Ca2+ store which is likely to be one or more of the platelet secretory granules 

(lysosome, α- and dense granule; Rosado, 2011).  In addition to their distinct 

sequestration mechanisms, these two stores are also mobilised in response to the 

creation of two different second messenger systems.  

The principal agonist-sensitive Ca2+ store is contained within the DTS, which is able 

to release Ca2+ via the opening of IP3 receptors (IP3Rs; Sage et al., 2011). Nearly all 

platelet agonist release Ca2+ from this store through the stimulated breakdown of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG) triggered by the activation of phospholipase C (PLC). However, 

how the pathway by which this is triggered is distinct for soluble agonists such as 

thrombin, ADP, TxA2 and platelet-activating factor (PAF), and adhesive ligands such 

as collagen, fibrinogen and vWF (Rink & Sage, 1990).  Soluble agonists trigger the 

activation of the Gq protein via G-protein coupled receptors, which then goes onto 

trigger an increase in activity of PLCβ (Heemskerk & Sage, 1994).  In contrast, 

adhesive ligands trigger the activation of src family kinases which then go on to trigger 

the activation of phospholipase Cγ (Senis et al., 2014). 

Previous work has identified all three known isoforms of IP3Rs in human platelets 

(Rosado & Sage, 2000). Controversy prevails over the isoforms subcellular 

localisation in human platelets with some reports stating that type I, II and III IP3Rs 

being present in both intracellular- and plasma membrane-associated platelet 

fractions (Bourguignon et al., 1993; Quinton & Dean, 1996; El-Daher et al., 2000). 
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However, the consensus appears to be that type III isoform is localised in plasma 

membrane, type I isoform appears to be predominantly intracellular while the type II 

isoform might split between both these locations. Therefore, based on these 

suggestions that type I and type II  IP3Rs may be involved in Ca2+ release, whilst type 

III IP3R may be involved in mediating Ca2+ entry (El-Daher et al., 2000), although no 

evidence yet exists to show that this latter pathways occurs physiologically. In addition 

to the basic regulation of this Ca2+-permeable ion channel by IP3, IP3R-mediated Ca2+ 

release has also been shown to be positively regulated by allosteric Ca2+ binding to 

the IP3R leading to Ca2+-induced Ca2+ release in these cells (van Gorp et al., 1997; 

Sage et al., 2011). In addition, nitric oxide may mediate its negative effects on platelet 

Ca2+ signalling through inhibition of the type I IP3R via its ability to increase cGMP 

rises and activate Protein Kinase G, which in turn phosphorylates the associated 

protein, IRAG (van Gorp et al., 1997).   

In addition to the DTS platelets also contain, a secondary Ca2+ acidic store which has 

been previously shown to release Ca2+ in response to a rise in cytosolic NAADP 

(Nicotinic acid adenine dinucleotide phosphate; Lopez et al., 2006). In contrast to IP3, 

NAADP appears to only be made to strong platelet agonists such as collagen and 

thrombin (Coxon et al., 2012). However, the manner by which this second messenger 

is created in platelets upon receptor stimulation is currently unclear.  Recent work has 

demonstrated a role for the TPCN2 channel in mediating NAADP-dependent Ca2+ 

release from the dense granule of platelets – suggesting that this Ca2+ release may 

play a key role in modulating dense granule secretion (Ambrosio et al., 2015). 
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1.3.6 Ca2+ entry 

Platelets possess three main Ca2+-permeable ion channels through which Ca2+ can 

enter the platelet upon agonist binding. These are the store-operated channel, a 

TRPC6-containing second messenger-operated channel, and the P2X1 purinoreceptor. 

When cells are activated they release Ca2+ from their intracellular stores, leading to a 

decrease in the Ca2+ concentration inside their organelles. This drop in intracellular 

Ca2+ stores is then able to elicit the activation of a plasma membrane-localised Ca2+-

permeable ion channels – known as store-operated channels (SOC).  In non-excitable 

cells, such as human platelets, store-operated Ca2+entry (SOCE) is a key mechanism 

of Ca2+ entry (Rink & Sage, 1990).  Recent work has identified two important proteins 

in mediating the activation of this pathway – these are STIM1 (stromal interaction 

molecule 1) and Orai1.  

STIM1 is a transmembrane protein resident in the endoplasmic reticulum of all cells, 

and has a Ca2+-binding EF hand domain which extends in the lumen of this organelle 

which allows it to sense changes in Ca2+ concentration of the intracellular stores.  

When the stores are filled with Ca2+, STIM1 binds a Ca2+ ion and is unable to activate 

the SOC. However when Ca2+ stores empty upon opening of IP3Rs, Ca2+ debinds from 

STIM1 eliciting a change in conformation which allows it to bind to and activate the 

SOC. Patients with mutations in the STIM1 molecule causing it to take a constitutively 

active form are found to have higher basal Ca2+ signals, reduced SOCE and a mild 

bleeding tendency, showing that this channel plays a key role in underlying platelet 

activation (Misceo et al., 2014; Markello et al., 2015). This is in line with data from 

STIM1 knockout mice, who are found to have reduced agonist-evoked Ca2+ signals as 

well as impaired thrombus formation (Varga-Szabo et al., 2008). Orai1 has been 

discovered to be an essential component of the platelet SOC – with Orai1 knockout 
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mice found to have a similar phenotype to the STIM1 knockout mouse with defective 

SOCE, reduced agonist-evoked Ca2+ signalling and impaired thrombus formation 

(Braun et al., 2009; Gilio et al., 2010). Putative SOC blockers were found to also inhibit 

functional responses in human platelets (van Kruchten et al., 2012). However 

intriguingly there are no features of haemostatic defects in patients with Orai1 and 

STIM1 mutations – suggesting that these channels are less essential to normal 

function in humans compared to mice (McCarl et al., 2009, Picard et al., 2009). 

Platelets have also been shown to elicit a rise in intracellular Ca2+ in response to the 

DAG created by receptor-dependent activation of PLC (Hassock et al., 2002). This 

DAG dependent pathway is thought to be elicited through TRPC6, which is relatively 

highly-expressed in these cells (Tolhurst et al., 2008). However recent work in TRPC6-

knockout mice has elicited conflicting evidence regarding the likelihood that this 

channel plays any significant functional role within platelets (Paez Espinosa et al., 

2012; Ramanathan et al., 2012; Harper et al., 2013). In contrast, work in human 

platelets has suggested a role in modulating platelet dense granule secretion and 

aggregation (Lopez et al., 2015; Vemana et al., 2015). Recent work has suggested 

that TRPC6 is absent from the plasma membrane of resting human platelets, and may 

be inserted upon platelet activation, which may explain some of these discrepancies 

(Harper et al., 2013). 

Platelets also express the ionotropic P2X1 receptor, which is a non-selective cation 

channel which allows Ca2+ entry in the presence of extracellular ATP (MacKenzie et 

al., 1996). Upon vascular damage ATP is secreted by dense granules, injured 

endothelial cells and damaged red blood cells. Secreted ATP immediately interacts 

with P2x1 receptors leading to Ca2+ influx, shape change, granule centralisation and 

finally platelet activation (Mahaut-Smith et al., 2004, Mahaut-Smith et al., 2011). Unlike 
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other Ca2+ mobilising systems in human platelets the P2x1 purinoreceptor is not 

inhibited by elevated cytosolic cyclic nucleotides elicited by the endothelial-derived 

platelet inhibitors (Mahaut-Smith et al., 2011). In vitro measurements of the Ca2+ influx 

mediated by this channel only yielded small responses, however this could possibly 

be due to desensitisation of P2x1 purinoreceptor when platelets are extracted from the 

human body due to the reduced ability to remove ATP and ADP by ectonucleotidases 

present both in plasma as well as circulating leukocytes and endothelial cells (Robson, 

2001; Rolf et al., 2001; Heptinstall et al., 2005). A previous report has also suggested 

that P2x1 receptors may function to amplify Ca2+ signals which may play a key role in 

facilitating effecting thrombus formation under the high shear stress conditions found 

in small arteries and arterioles (Jones et al., 2014).  

 

1.3.7 Ca2+ Effectors 

A rise in [Ca2+]cyt in human platelets triggers a range of changes in the structural and 

functional properties of platelets. These effects are mediated via a number of distinct 

Ca2+ effector proteins which bind Ca2+ and trigger the activation of a range of 

responses which underlie these changes in platelet structure and function.  

Shape change is known to be the first measurable response elicited by platelets upon 

exposure to physiological agonists. Upon activation, platelets undergo a marked 

change in their morphology from the discoid form found in resting cells, into a spherical 

form. This shape change has been shown to be mediated through both Ca2+-

dependent and independent pathways (Paul et al., 1999). The Ca2+-dependent 

pathway involves binding of this divalent cation to calmodulin, which can then bind to 

and trigger the activation of the myosin light chain kinase (MLCK).  This turn 
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phosphorylates and activates myosin eliciting the shape change (Daniel et al., 1984). 

However, previous studies have also demonstrated the possibility of a Ca2+-

independent pathway in which  RhoA kinase phosphorylates p160ROCK, which acts to 

inhibit the myosin phosphatase,leading to and myosin light chain phosphorylation thus 

triggering shape change independent of the Ca2+/Calmodulin-dependent pathway. 

(Nakai et al., 1997; Bauer et al., 1999).  This data is based on the demonstration that 

agonist-evoked shape change is resistant to loading of the platelets with the fast Ca2+ 

chelator, dimethyl-BAPTA. 

In addition to this initial shape change, platelets can also further change their 

morphology through rearrangements of the actin cytoskeleton in a Ca2+-dependent 

manner which help the platelet to spread over the sub-endothelial matrix. For instance 

gelsolin plays an important role in Ca2+-regulated actin severing during platelet 

activation (Witke et al., 1995; Goshima et al., 1999). Rodriguez Del Castillo et al., 

(1992) demonstrated that scinderin, another Ca2+-dependent actin filament-severing 

protein might involve in regulation of platelet actin network mechanisms. 

Ca2+ also plays a role in the recruitment of platelets to the growing thrombus through 

controlling the release of autocrine stimulants. This includes facilitating the production 

of TxA2 via the ability of Ca2+ to activate cytosolic PLA2 (Borsch-Haubold et al.,1995). 

In addition Ca2+ also plays a key role in triggering the secretion of platelet granules as 

Ca2+-dependent proteins such as calpain, protein kinase C and Munc13-4 are thought 

to be critically involve in regulating platelet granule secretion (Croce et al., 1999; Strehl 

et al., 2007; Ren et al., 2010, Boswell et al., 2012; Golebiewska & Poole, 2013). 

Platelet aggregation requires the activation of the fibrinogen receptor, integrin αIIbβ3, 

onto the platelet surface to facilitate platelet-platelet adhesion in the growing thrombus. 
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Ca2+-binding proteins such as CalDAG-GEFI and CIB1 are thought to be involved in 

mediating the activation of this integrin (Naik et al., 2009; Stefanini et al., 2009). 

Lastly in all mammalian cells including blood platelets phospholipids are 

asymmetrically arranged between the outer and inner leaflets of plasma membrane. 

However localised activation of the coagulation cascade requires platelet expression 

of acidic phospholipids such as phosphatidylserine on the extracellular face of the 

platelets. When platelets undergo agonist induced activation the phospholipid 

symmetry is disrupted by a scrambling process and they expose phosphatidylserine 

on their surface to allow the localised recruitment and activation of clotting factors 

involved in triggering the activation of the coagulation cascade. Failure to trigger this 

scrambling is found in patients with Scott’s syndrome, who suffer from a mild bleeding 

disorder.  Recent studies have identified a role for TMEM16F as a protein that supports 

Ca2+-dependent phospholipid scrambling (Yang et al., 2012; van Kruchten et al., 2013; 

Fujii et al., 2015) 

1.3.8 Platelets can selectively respond to cytosolic Ca2+ signals 

The previous discussion above has demonstrated that Ca2+ functions as an important 

secondary messenger in the platelet activation cascade, as increased cytosolic Ca2+ 

concentration is accountable for activation of all stages of platelet activation including 

adhesion, shape change, secretion, aggregation and transition to a procoagulant 

phenotype through its ability to activate a number of distinct Ca2+-dependent effectors 

(Grette, 1962; Born, 1972; Heptinstall, 1976). This central role of Ca2+ has attracted 

researchers to try to identify the molecular mechanisms that generate and modulate 

these agonist-evoked rises in platelet cytosolic Ca2+, in the hope of discovering novel 

targets for anti-thrombotic drugs that can function by blocking specific Ca2+ entry 
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pathways.  But all of the main Ca2+-permeable channels detailed above are not 

selectively expressed in platelets, and as such opens up the likelihood of non-specific 

interactions with other cells leading to unwanted side effects. Furthermore, using 

blockers that significantly inhibit all agonist-evoked Ca2+ rises could put the patient at 

risk of bleeding defects.   

Previous studies have demonstrated that individual platelets respond heterogeneously 

within the thrombus in vivo suggesting that platelets are able to selectively activate 

each of the different Ca2+-dependent effectors mentioned in the previous section.  

Munnix et al., (2007) demonstrated that both in vitro and in vivo models of thrombus 

formation there were distinct sub-populations of platelet demonstrating either 

activation of integrin αIIbβ3 or exposure of phosphatidylserine, thus suggesting that 

within the growing thrombus platelets segregate into discrete microdomains or patches 

with aggregatory or procoagulant functions (Munnix et al., 2007). More recently Stalker 

et al., (2013), demonstrated that platelets within the growing thrombus could be 

defined by the degree of platelet activation and packing density. For instance, the inner 

core is composed of densely-packed thrombin activated platelets with P-selectin 

surface expression (indicative of granule secretion), restricted plasma entry and 

heavily influenced by contact dependent signalling. Conversely the outer shell is 

composed of loosely arranged platelets with no P-selectin expression or fibrin mesh, 

and is highly permeable to plasma. Therefore, these data suggest that platelets within 

the platelet aggregate can be differentially activated to create these different sub-

populations (Stalker et al., 2013).  

These data thus suggest that Ca2+-dependent functions must be able to be selectively 

activated within the platelets.  If we can understand how platelets are able to use Ca2+ 

signalling pathways to selectively activate specific Ca2+-dependent functions, then this 
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might help us design treatments that can selectively block certain Ca2+-dependent 

effects inside the platelets. For example, the differences in duration of Ca2+ signal in 

procoagulant and pro-aggregatory platelets suggest that being able to limit the 

duration of Ca2+ signals could reduce the proportion of procoagulant platelets in a 

thrombus, without affecting the recruitment of pro-aggregatory platelets. Therefore any 

anti-platelet drug that limits the duration of Ca2+ signalling could reduce the extent of 

activation of the blood coagulation system and thereby prevent thrombi from occluding 

blood vessels without significantly increasing the bleeding risk posed by anti-

thrombotic medication currently.     

1.3.9 Platelets can create localised Ca2+ signals 

Studies in other cell types (such as neurons and striated muscle cells) have 

demonstrated that they are able to create selective responses to Ca2+ signals by co-

localising Ca2+ channels and Ca2+ effectors in spatially-distinct microdomains of the 

cell (Gabella, 1971; Devine et al., 1972; Verboomen et al., 1992). However, the small 

size of the platelet would appear to preclude this possibility, as elementary calcium 

signals observed in these other cell types are significantly bigger than the size of the 

platelet. For example, Ca2+ puffs generated from the opening of a single cluster of 

IP3Rs averages about 5 μm, whilst the platelet is only 2 μm in diameter (Niggli & 

Shirokova, 2007). As platelets are reported to contain around 5000 copies of the 

various IP3 receptor isoforms alone, it would appear that platelets should not be able 

to compartmentalise Ca2+ signalling, as Ca2+ signals would be expected to spread 

throughout the entire platelet cytosol.   

Despite these apparent structural difficulties previous single cell imaging studies have 

presented evidence for a link between localized Ca2+ signals with redistribution of 
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signalling receptors and effector proteins in activated human platelets (Ariyoshi  

Salzman, 1996). In addition, previous work by Tsunoda et al., (1988) also reported 

Ca2+ gradients in resting platelets. These data support the existence of a specialised 

mechanism able to controlling the spread of Ca2+ signals in platelets, which allows 

them to use the localised signals to selectively control its Ca2+-dependent functions. 

1.3.10 Nanojunctions permit the creation of isolated cytosolic Ca2+ 

nanodomains  

When the membranes of two organelles are tethered in close apposition (10-30nm 

wide), these structures are termed as nanojunctions. In striated and smooth muscle 

cells, nanojunctions made up of close appositions (within ≈20 nm) of specialised 

portions of the plasma membrane and the sarcoplasmic reticulum are responsible for 

controlling the spatial spread of Ca2+ signals. Both the ultrastructure and electrostatic 

properties of nanojunction generates an environment of restricted Ca2+ diffusion that 

facilitates the creation of a cytosolic nanodomain (van Breemen et al., 2013). By 

creating a local environment that is able to slow Ca2+ diffusion, they can create 

cytosolic nanodomains in which control of Ca2+ concentration can be locally controlled 

by the channels and transporters localised here, and Ca2+ effector proteins localised 

here can be selectively activated. Human platelets possess an analogous 

nanojunction to those seen in muscles cells, called the membrane complex. This 

structure is made up of the close apposition of the main platelet intracellular Ca2+ store, 

the DTS, and the invaginated plasma membrane of the OCS. As such the MC may 

create the cellular architecture needed to facilitate selective platelet activation.  

In recent studies from our lab, we have provided initial evidence for a key role for the 

membrane complex in triggering agonist-evoked Ca2+ signalling in human platelets.  



50 
 

This work proposed that Ca2+ release from intracellular Ca2+ stores occurs initially into 

a cytosolic nanodomain enclosed within the membrane complex from which diffusion 

is restricted into the bulk cytosol. From this cytosolic nanodomain, the Ca2+ is spread 

via removal by the Na+/Ca2+ exchanger (NCX) into the OCS, where it can accumulate. 

Due to the tiny volume of the lumen of the OCS, Ca2+ is spread pericellularly through 

the lumen of this system and then recycled back into the cytosol through Ca2+-

permeable ion channels (as shown in Fig 1.6). The Na+/Ca2+ exchanger (NCX) is 

hypothesised to be resident in the OCS within membrane complex. One of the 

predictions of this model of agonist-evoked Ca2+ signalling is that the platelet 

possesses two functional cytosolic subcompartments for Ca2+ signalling the bulk 

cytosol and that encompassed within the membrane complex. Through selective 

partitioning of Ca2+-dependent effectors between these sub compartments, this could 

therefore explain selective activation of Ca2+-dependent processes in platelets.  In this 

project we aimed to provide evidence of the presence of a cytosolic nanodomain which 

controls Ca2+ signalling in human platelets. 

1.4 Megakaryocytes as a model system for studying the platelet membrane 

complex 

Platelets are relatively small in size ranging from 2-4 µm in diameter therefore it is 

extremely challenging to view subcellular events with the platelet under confocal 

microscopy. Additionally platelets lack a nucleus precluding genetic modification and 

are difficult to patch clamp due to their ability to undergo contact-induced activation 

when exposed to the glass patch pipette and the high sheer pressure required to seal 

the patch (Hussain & Mahaut-Smith, 1999; Tolhurst et al., 2005). 
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Since megakaryocytes are the larger precursor cells of platelets (around 20 - 100 µm 

in diameter) they might be an appropriate model system in which to study platelet 

signalling events. Previous work has shown that CD34+-cultured megakaryocytes start 

to develop a number of Ca2+-transporting proteins found in platelet such as TRPC and 

Orai1 channels (Ramanathan & Mannhalter, 2015).   

A recent study has also demonstrated that NCX function can be found in cultured 

megakaryocytes, and that the expression of this exchanger can be modulated by 

culturing in the presence of 1,25-dihydrocholecalciferol (calcitriol; Schmid et al., 2015). 

Therefore, megakaryocytes contain much of the same Ca2+-transporting as platelets. 

Megakaryocytes also contain analogous cellular structures to platelets.  During the 

earliest stages of megakaryopoiesis, the developing cells start to make an invaginated 

membrane system analogous to the platelet OCS, called the demarcation membrane 

system (DMS). The DMS was initially called this as it was initially thought to delineate 

small territories, from which platelets would be produced, however recent studies have 

suggested this is not the case (Behnke, 1968; Nakao & Angrist, 1968).  Like the OCS, 

the DMS has been found to be continuous with the extracellular environment and 

creates an intricate membrane system which spreads throughout the interior of the 

megakaryocyte. Furthermore recent work has demonstrated a close association of the 

DMS with the smooth endoplasmic reticulum – creating  a nanojunction in 

megakaryocytes analogous to the platelet membrane complex (Eckly et al., 2014; 

White 1972). These data suggest the possibility that those megakaryocytes may also 

use this structure to control their Ca2+ signalling.  Based on these findings we can 

conclude that megakaryocytes might present a model system in which we can 

investigate development, structure and function of the platelet membrane complex. 

However there is very limited data about the structure of the ER-DMS nanonjunction 
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in these cells and how they might relate to the MC.  Similarly there is no information 

regarding the  spatial localisation of Ca2+ channels and transporters in these cells. 

Therefore, in this project we will examine the role of the NCX in the Ca2+ signalling  

 

Figure 1.6 The pericellular Ca2+ recycling hypothesis. Reproduced from Sage et al., (2013). Upon 

thrombin stimulation the IP3 receptors are activated and cause Ca2+ release from dense tubular system. 

Nanojunctions have restricted Ca2+ diffusion due to its geometrical structure in nanometer scale. 

Additionally, the cytosol is equipped with a high Ca2+ buffering capacity that reduces the Ca2+diffusion 

therefore Ca2+ released from the dense tubular system is unable to diffuse effectively from the 

membrane complex to the bulk cytosol. Instead the Ca2+ is removed from this nanodomain by the NCX 

working in forward mode activity, thereby, transporting it into the pericellular region within the open 

canalicular system. The elevated pericellular Ca2+ concentration cause the Ca2+ to recycle back into the 

bulk cytosol down its concentration gradient through Ca2+-permeable ion channels. cause a dense 

granule secretion that in turn would create a rise in the bulk [Ca2+]cyt. 
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of megakaryocytic cells cultured from human CD34+ cells, and examine whether this 

can be modulated by culture in the presence of calcitriol. These will provide an initial 

assessment of whether NCX may participate in a similar pericellular Ca2+ recycling 

system in human megakaryocytes. 

1.5  Aims of the current project 

Previous work in our lab has hypothesised that platelets release Ca2+ from their 

intracellular stores into a specialised cytosolic nanodomain which is closely apposed 

to the NCX in the OCS membrane (Sage et al., 2013; Walford et al., 2015). In this 

study we aimed to begin to test this hypothesis and thereby provide the first 

experimental evidence for the presence of an NCX-associated cytosolic nanodomain 

in human platelets. In addition we also aimed to assess the role this cytosolic 

nanoomain plays in regulating Ca2+-dependent changes in platelet function.   

Due to the difficulty in imaging and genetically-interfering with the membrane complex 

in human platelets, there is also currently a need to find a model system in which to 

try to study this cellular architecture. Due to the close similarity of the proteins and 

structures found in human platelets and megakaryocyts, we hypothesised that CD34+-

may use the NCX to control NCX to control agonist-evoked Ca2+ signalling in a similar 

manner to human platelets. The aim of this would be to provide initial evidence for a 

pericellular Ca2+ recycling system similar to that found in the platelet in these cells, 

such that it would be possible to use CD34+-cultured human megakaryocytes as a 

model system in which to study the platelet MC in the future.   
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2.  Materials and Methods 

2.1  Materials 

Calcitriol, Hoechst 33342, Fura-2/AM and SBFI/AM were obtained from Cambridge 

Biosciences (Cambridge, UK). Thrombin was from Merck Chemicals (Nottingham, 

UK). Fluo-4 K+ salt was from Invitrogen (Paisley, UK). KB-R7943, SN-6, Cytochalasin 

D, Nicergoline and Y-27632 were from Tocris Bioscience (Bristol, UK). Apyrase, 

Methyl-β-cyclodextrin, DNAse I, 5-5′-Dimethyl-BAPTA/AM, 2-APB, ML-7 and Poly-L-

Lysine solution were from Sigma Aldrich (Gillingham, UK). Human CD34+ cells from 

bone marrow were obtained from Lonza (Blackley, UK), Serum-Free Expansion 

Medium II (SFEM II) was from StemCell Technologies (Cambridge, UK). Fetal calf 

Serum was from Labtech International Ltd. (Lichfield, UK) Interleukin-6 (IL-6), 

Interleukin-9 (IL-9), Stem cell factor (SCF) and Thrombopoietin (TPO) were from 

Peprotech Inc. (Hamburg Germany). Primary - Goat NCX3 (C-15) antibody was from 

Insight Biotechnology (Wembley, UK), Secondary - Preabsorbed Alexa Fluor555-

conjugated Donkey anti-goat antibody from Abcam (Cambridge, UK), Sheep anti- 

mouse IgG HRP conjugated antibody GE Healthcare (little Chalfont, UK). Nunc 8-well 

chambered cover slides were obtained from R+D systems (Rochester, NY). All other 

reagents were of analytical grade. 

2.2 Methods for human platelet studies 

2.2.1  Human Platelet Preparation 

This study was approved by Keele University Research Ethics Committee. Healthy, 

drug free volunteers donated blood after giving written informed consent. Blood was 

collected via venepuncture and mixed  with one-sixth volume of acid citrate dextrose 
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anticoagulant (ACD; 85 mmol L-1 sodium citrate, 78 mmol L-1 citric acid, and 111 mmol 

L-1  glucose). This blood was then subjected to centrifugation for 8 min at 700g. Platelet 

rich plasma (PRP) was then collected from above the buffy coat and immediately 

treated with 100 µmol.L-1 aspirin and 0.1 U.mL-1 apyrase. 

2.2.2 Monitoring Cytosolic Ca2+ concentration ([Ca2+]cyt) in washed platelet 

suspensions 

Fura-2/AM was added to PRP to a final concentration of 2.5 µmol.L-1 and then 

incubated for 45 min at 37°C. Washed platelets were extracted by centrifugation of 

platelet rich plasma PRP at 350g for 20 min, and the platelet pellet was subsequently 

resuspended in HEPES-buffered saline (HBS; 145 mmol.L-1 NaCl, 5 mmol.L-1 KCl, 1- 

mmol.L-1 MgSO4, 10 mmol.L-1 HEPES (N-2-hydroxyethylpiperazine-N’-

2ethanesulfonic acid), 5 mmol L-1 KCl, 1 mmol L-1 MgSO4, pH 7.45) which was 

supplemented on the day with 10 mmol.L-1 D-glucose, 0.1% [w/v] bovine serum 

albumin (BSA), 200 µmol.L-1 CaCl2 and 0.1 U.mL-1 apyrase (supplemented HBS). 

Fluorescence was recorded from these 1.2 mL magnetically-stirred aliquots of platelet 

suspension at 37°C using a Cairn Research spectrophotometer (Cairn Research, 

Faversham, U.K.) with excitation wavelengths set at 340 and 380 nm, and emission 

wavelengths recorded between 470-550 nm. All [Ca2+]cyt changes were monitored 

using the 340/380 nm fluorescence ratio, and calibrated according to the method of 

Grynkiewicz et al., (1985). Thrombin-evoked changes in [Ca2+]cyt were quantified by 

the integration of the change in fluorescence records from basal with respect to time 

for 3.5 minutes after thrombin addition. 
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2.2.3 Monitoring cytosolic Na+ concentration ([Na+]cyt) in washed platelet 

suspensions 

PRP was subjected to centrifugation at 350 g for 20 min, and platelet pellets were 

resuspended in HBS supplemented with 10 mmol.L-1 D-glucose, 200 µmol.L-1 CaCl2 

and 0.1 U.mL-1 apyrase (BSA-free supplemented HBS). The SBFI/AM stock was 

prepared by mixing 10% pluronic F-127 dissolved in dimethylsulfoxide (DMSO) 

resulting in a 5 mmol.L-1 stock solution. This was then added to washed platelets to 

give a final concentration of 10 µmol.L-1, and incubated for 45 min at 37°C. After this 

incubation, 10% [v/v] ACD was added to the washed platelets prior to centrifugation 

at 6000 g for 1 min. The platelet pellet was then resuspended in supplemented HBS 

to a final density of 2x108 cells.mL-1 and SBFI fluorescence was measured using a 

Cairn Research spectrophotometer as stated for Fura-2 above. Agonist-evoked 

changes in [Na+]cyt were monitored using the SBFI 340/380 nm fluorescence ratio. 

Since previous studies have already described a small quenching effect of KB-R7943 

on SBFI (Harper & Sage, 2007), the fluorescence ratios were normalised to a 

percentage of the maximum fluorescence. This was done by comparison of the 

recorded value to the basal fluorescence (F0) recorded prior to thrombin addition and 

a maximum fluorescence value obtained after treatment with each sample with 50- 

µmol.L-1 gramicidin at the end of each run (Fmax), using the following equation: 

% 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 = 100 × (
𝐹 − 𝐹0

𝐹𝑚𝑎𝑥 − 𝐹0
) 

Thrombin-evoked changes in [Na+]cyt were quantified by the integration of the change 

of the records of percentage maximum fluorescence from basal with respect to time 

for 3.5 minutes after thrombin addition. 
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2.2.4 Monitoring extracellular Ca2+ concentration in washed platelet 

suspensions ([Ca2+]ext) 

Immediately prior to the start of the experiment, Fluo-4 K+ salt was added to 1.2 mL 

aliquots of washed human platelets to a final concentration of 2.5 µmol.L-1 [Ca2+]ext  

was monitored under constant magnetic stirring at 37°C using a Cairn Research 

Spectrophotometer with the excitation wavelength set at 480 nm, and emission 

wavelengths collected between 500-550 nm. Thrombin-evoked changes in [Ca2+]ext 

were quantified by the integration of the change in fluorescence records from basal 

with respect to time for 3.5 minutes after thrombin addition.  

 

2.2.5  Imaging of agonist-evoked changes in [Ca2+]ext in single human platelets 

Ca2+ removal into the pericellular region of individual platelets was monitored in 

washed platelet suspensions to which Fluo-4 K+ salt had been added. Washed 

platelets were collected by centrifugation of PRP at 350 g for 20 min and resuspended 

in supplemented HBS at a density of 2x108 cells. mL-1. Washed platelets were then 

treated with a variety of compounds, before being allowed to settle for 5 min at room 

temperature on poly-L-lysine-coated Nunc chambered cover slides. Excess cell 

suspension was removed and replaced with supplemented HBS to which 1 mmol.L-1 

EGTA and 5 μmol.L-1 Fluo-4 K+ salt was added. Transmitted light and fluorescent 

images were recorded using a Fluoview FV 1200 laser scanning confocal microscope 

(Olympus, UK) with a 60x oil immersion objective using a 100-µm confocal aperture. 

Fluorescence images were recorded at a frequency of 0.5 Hz for 5 min using an 

excitation wavelength of 473 nm and collecting emitted light between 520-560 nm. 
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2.2.6 Immunofluorescent imaging of NCX3 in single platelets  

Unstimulated, washed human platelet suspensions were treated with either 100- 

µmol.L-1 nicergoline or an equal volume of its vehicle, DMSO, for 10 min at 37°C under 

continuous magnetic stirring. Treated platelets were then fixed by addition of 3% [w/v] 

formaldehyde and stored at 4°C until use. Fixed platelets were washed by 

centrifugation in minifuge at 6000 g for 1 min and resuspended in HBS containing a 

1:1000 dilution of Horseradish Peroxidase-conjugated Sheep anti-mouse secondary 

antibody and 5 mg.mL-1 BSA and incubated for 30 min at room temperature to block 

non-specific antibody binding sites. Cells were recollected by centrifugation platelets 

resuspended in HBS containing a 1:25 dilution of goat NCX3 antibody and 5mg.mL-1 

BSA. Antibodies were incubated at room temperature for 30 min. Cells were 

recollected by centrifugation and resuspended in HBS containing a 1:1000 dilution of 

pre-absorbed Alexa Fluor 555-conjugated Donkey anti-goat antibody and 5mg.mL-1 

BSA. The platelet were incubated with this fluorophore-conjugated secondary 

antibody at room temperature for 30 min. Cells were recollected one last time by 

centrifugation and resuspended in HBS containing 5 mg.mL-1 BSA. Labelled cells were 

loaded onto poly-L-lysine-coated Nunc Chambered cover slides and allowed to adhere 

to the surface for 10 min at room temperature. Platelet suspension was then removed 

and slides were washed with HBS containing 5 mg.mL-1 BSA. Fluorescent images 

were captured using a Fluoview FV1200 laser scanning confocal microscope 

(Olympus, UK) with a PLAPON 100x oil immersion objective. Images were recorded 

at a frequency of 0.5 Hz for 5 min with excitation at 473 nm and emission light at 520-

560 nm were collected. 
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2.2.7  Monitoring platelet shape change using light transmission aggregometry 

Washed platelets were collected by centrifugation of PRP at 350 g for 20 min and 

resuspended in supplemented HBS. Cells were pre incubated with their assigned 

treatments under magnetic stirring at 37°C. Treated cells had external Ca2+ chelated 

by addition of 1 mmol.L-1 EGTA, and 450 μL was then transferred into aggregometer 

cuvettes (Kartell, Italy). Readings were taken under continuous magnetic stirring at 

37°C using a 2 channel Chronolog light transmission aggregometer (Labmedics, 

Oxfordshire, UK). Readings were made against a baseline level of an aggregometer 

cuvette containing supplemented HBS. 

 

2.3 Methods used for human megakaryocyte studies 

2.3.1 Culturing human megakaryocytes from human CD34+ cells  

Human CD34+ cells were resuscitated from liquid nitrogen following the 

manufacturer’s instruction.  Liquid cultures were set-up by plating CD34+ cells in 24- 

well plates at a density of 2x104 cells.mL-1 in SFEMII medium (Stem cell Technologies) 

containing 30-50ng.mL-1 TPO, 1 ng.mL -1 SCF, 7.5-20 ng.mL-1 IL-6 and 13.5ng.mL -1 

IL-9. Cells were cultured in a humidified environment containing 5% CO2 and O2. On 

day 2 and day 5 cultures were gently mixed and supplemented with with fresh SFEMII 

containing the same cytokine cocktail as described above. Cells were used in 

experiments between day 7 and day 9 of the culture in line with previous studies 

demonstrating CD34+ cell maturation into human megakaryocytic cell lineages (Dr A. 

Al-Ghannam and Dr A.G.S. Harper, personal communication).  
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2.3.2  Single cell imaging of morphological changes in CD34+-cultured human 

megakaryocytes: 

On day 7 megakaryocytes cultures were supplemented with 0.1 U.mL-1 apyrase and 

incubated with 1 μmol.L-1 Fluo-5N/AM, for 2 hours and 5 μg.ml L-1 Hoechst 33342 for 

1 hour at 37°C. Cells were then recollected by centrifugation at 6000 g for 1 min and 

finally resuspended in supplemented HBS to a cell density of 5x104 cells.mL-1. Cells 

were then allowed to adhere to poly-L-lysine-coated Nunc chambered cover slides for 

30 min prior to imaging in the presence of 5 μmol.L-1 Rhod-5N K+  salt. Fluorescent 

images were captured using a Fluoview FV1200 laser scanning confocal microscope 

(Olympus, UK) with a PLAPON 100x oil immersion objective. Images were recorded 

at a frequency of 0.5 Hz for 5 min with excitation at 473 nm and emission light at 520-

590 nm were collected. The mean Fluo-5N and Rhod-5N fluorescence levels of all the 

cells scanned in the field were compared between control and treated conditions for 

both dyes. The emission wavelength of (BA 490-525 nm) and excitation wavelength 

of (473 nm) were collected for Fluo-5N and emission wavelength of (BA 560-620 nm) 

and excitation wavelength of (543 nm) were collected for Rhod -5N accordingly. 

2.3.3  Monitoring [Ca2+]cyt from CD34+-cultured human megakaryocytes 

Experiments were performed from cells taken after 7-9 days of culture. Cells were 

loaded with 2.5 µmol.L-1 Fura 2/AM in the presence of 0.1 U.mL-1 apyrase for 1 h at 

37°C. By centrifugation 8400 g for 1 min and resuspended in supplemented HBS to a 

final cell density of 5x104 cells.mL-1. Cells were treated with 50µmol.L-1 KB-R7943, SN-

6 or an equivalent volume of DMSO under continuous magnetic stirring for 10 min at 

37°C. 100 μL aliquots of each sample were transferred into 96-well plates and the 

extracellular Ca2+ was either increased to a final concentration of 1 mM, or removed 
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by chelation by addition of 1 mM EGTA. Fluorescence was then recorded using a 

BioTek Synergy 2 microplate reader using a 360 nm excitation wavelength filter and 

collected using a 440 nm emission filter. The recorded value to basal fluorescence, 

recorded before thrombin addition were compared and a maximal fluorescence value 

was obtained after treatment of each sample with 10% triton at the end of each run. 

Changes in [Ca2+]cyt was quantified by the incorporation of the change in fluorescence 

records from basal with respect to time for 5 minutes after thrombin addition.   

 

2.3.4  Monitoring [Na+]cyt from CD34+-cultured human megakaryocytes   

Experiments were performed from cells taken after 7-9 days of culture. SBFI/AM was 

prepared by mixing 10% [w/v] pluronic F-127 dissolved in DMSO resulting in a 5- 

mmol.L-1 stock solution. On day 9 of the culture, cells were treated with 0.1 U.mL-1 

apyrase and washed by centrifugation at 8400 g for 1 min. Washed cell pellets were 

resuspended in BSA-free supplemented HBS and SBFI stock solution was added to 

give a final concentration of 10 µmol.L-1 SBFI/AM. Cells were incubated for 40 min at 

37°C. Labelled CD34+ cells were then washed by centrifugation at 8400 g for 1 min 

and resuspended in supplemented HBS to a final concentration of 5x104 cells.mL-1. 

Cells were treated with 50 µmol.L-1 KB-R7943, SN-6 or an equivalent volume of DMSO 

under continuous magnetic stirring for 10 min at 37°C. 100 μL aliquots of each sample 

were transferred into 96-well plates and the extracellular Ca2+ was then either 

increased to a final concentration of 1 mmol.L-1, or removed by chelation by addition 

of 1 mmol.L-1 EGTA. Fluorescence was then recorded using a BioTek Synergy 2 

microplate reader using a 360 nm excitation wavelength filter and collected using a 

440 nm emission filter. The fluorescence ratios were normalised to a percentage of 
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the maximum fluorescence by comparison of the basal fluorescence (F0) values 

recorded prior to thrombin addition. Following this a maximum fluorescence value was 

obtained after treatment with each sample with 50 µmol.L-1 gramicidin at the end of 

each run (Fmax), using the following equation: 

% 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 = 100 × (
𝐹 − 𝐹0

𝐹𝑚𝑎𝑥 − 𝐹0
) 

Changes in [Na+]cyt was quantified by the integration of the change of the records of 

percentage maximum fluorescence from basal with respect to time for 5 minutes after 

thrombin addition.  

2.3.5 Fixed Cell Imaging of NCX3 antibody in single Megakaryocyte 

demarcation membrane system. 

Megakaryocytes samples from day 7 of the culture were fixed by addition of 3% [w/v] 

formaldehyde and stored at 4°C until use. Megakaryocytes were washed by 

centrifugation at 8400 g for 1 min and resuspended in a blocking solution made up of 

HBS containing 1:1000 dilution of mouse IgG secondary antibody and 5 mg.mL-1 BSA 

and incubated for 30 min at room temperature. Cells were  washed again by 

centrifugation at 8400 g for 1 min and resuspended in HBS containing a 1:25 dilution 

of goat NCX3 antibody stock and 5mg.mL-1 BSA and incubated at room temperature 

for 30 min. Cells were recollected by centrifugation at 8400 g for 1 min and 

resuspended in HBS containing a 1:1000 dilution of Alexa Fluor 555-conjugated 

Donkey anti-goat antibody and 5 mg.mL-1 BSA and incubated at room temperature for 

30 min. Cells were recollected again by centrifugation at 8400 g for 1 min and finally 

resuspended in HBS containing 5 mg.mL-1 BSA to a density of 1 x 105 cells.mL-1. 

Labelled megakaryocytes were transferred to the chambered cover slides and allowed 
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to adhere to substrate for 10 min. Megakaryocyte suspension was then removed and 

slides were washed with HBS containing 5 mg.mL-1. Fluorescent images were 

captured using a Fluoview FV 1200 laser scanning confocal microscope (Olympus, 

UK) with a 100x oil immersion objective. Images were recorded at a frequency of 0.5 

Hz for 5 min with excitation at 473 nm and emission light at 520-590 nm was collected. 

 

2.4  Statistical Comparison 

Results are reported as the mean ± SEM of the number of independent observations 

(n) made. Statistical significance was assessed using either Student’s paired t-test or 

a one way ANOVA test followed by a post hoc Tukey test was performed to calculate 

the statistical significance.  P < 0.05 was considered statistically significant. 
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3. Results 

3.1 Identification and characterisation of a cytosolic nanodomain in DM- 

BAPTA-loaded human platelets  

3.1.1 Thrombin-evoked rises in extracellular Ca2+ concentration ([Ca2+]ext)can 

be observed in the absence of any detectable rise in cytosolic Ca2+ 

concentration ([Ca2+]cyt) in human platelets.  

Previously our lab has presented a pericellular recycling hypothesis which suggested 

that Ca2+ is released from the DTS into a cytosolic nanodomain enclosed within the 

confines of the MC (Sage et al., 2013).  This model further suggested that Ca2+ in the 

MC can then be removed into the OCS by the action of the NCX (Sage et al., 2013). 

This work therefore predicts that platelets possess two functional cytosolic sub- 

compartments for Ca2+ signalling; the bulk cytosol and the nanodomain encompassed 

within the MC.  To examine whether it was possible to identify such an NCX-associated 

cytosolic nanodomain in human platelets, we have examined the Ca2+ responses of 

platelets loaded with Dimethyl BAPTA (DM-BAPTA). DM-BAPTA is, a fast Ca2+ 

chelator whose high Ca2+ affinity and rapid on-rate of binding can efficiently completely 

buffer Ca2+ rises in the bulk cytosol. However due to its inability to instantaneously 

bind Ca2+,this divalent cation is still able to diffuse around 20 nm before it is efficiently 

buffered by this chelator.  Therefore, DM-BAPTA is unable to buffer Ca2+ within around 

20 nm of the Ca2+ channel pore (Parekh, 2008; Neher & Almers, 1986; FIG 3.1). This 

is around the same distance found between the membranes in other cell types  (van 

Breemen et al., 2013), including the MC of platelets (van Nispen tot Pannerden et al., 

2010). DM-BAPTA-loading will thus buffer Ca2+ rises in the bulk cytosol, but not within 

the cytosolic nanodomains contained within any present nanojunction. Therefore, if 

Ca2+ is released from the DTS into a restricted cytosolic nanodomain within the MC,  
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Fig 3.1 A model of how DM-BAPTA- regulates spatial spread of Ca2+ from microdomain                            

In DM-BAPTA-loaded cells, the thrombin-evoked rise in bulk [Ca2+]cyt is prevented. But Ca2+ entry or 

release into nanojunction could occur reasonably unaffected. The presence of NCX in the open 

canalicular system functions in forward mode direction extruding Ca2+  release from DTS into the 

pericellular region creating pericellular Ca2+ hotspot. DM-BAPTA is a fast Ca2+ chelator whose high Ca2+  

affinity and rapid on-rate binding efficiently buffers Ca2+ rise in bulk cytosol. Very close to the 

microdomain it is unable to immediately bind Ca2+ within around 20 nm of its point of entry but could 

restrict the spatial spread of Ca2+ signals determined by its on-rate. (Parekh, 2008).    
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Figure 3.2 Thrombin-evoked rises in [Ca2+]ext can be observed in the absence of any detectable 
rise in [Ca2+]cyt in human platelets. (A) Fura-2-loaded human platelets suspended in supplemented 
HBS were pre incubated with either 30 µmol.L-1 dimethyl-BAPTA/AM, or an equivalent volume of its 
vehicle, DMSO, for 10 min at 37°C. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA and 
then 1 min later stimulated with 0.5 U.mL-1 thrombin. (B-D) Washed human platelets suspended in 
supplemented HBS were pre-treated with 30 µmol.L-1 dimethyl-BAPTA/AM (C,E), or an equivalent 
volume of its vehicle, DMSO (B,D), for 10 min at 37°C. Cells were also treated with either 50 µmol.L-1 

KB-R7943 (D,E), or an equivalent volume of its vehicle, DMSO (B,C), for the last 5 min of this incubation. 
A final concentration of 2.5 µmol.L-1 Fluo-4 salt was then added immediately before the experiment. 
Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA (not shown) and then 1 min later stimulated 
with 0.5 U.mL-1 thrombin.  
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where it is removed by the NCX, the presence of DM-BAPTA-loading should not 

significantly prevent thrombin-evoked Ca2+ removal from the cell. Experiments were 

performed to examine the effect of DM-BAPTA loading on Ca2+ removal in thrombin-

stimulated platelets. All experiments were performed in the absence of extracellular 

Ca2+ to isolate Ca2+ signals elicited by intracellular Ca2+ release from the intracellular 

stores, from those elicited by Ca2+ entry across the plasma membrane. 

Previous experiment in our lab have showed that pre incubation of cells with 30  

µmol.L-1 DM-BAPTA/AM for 10 min at 37°C could prevent thrombin-evoked cytosolic 

Ca2+ rises detected in the bulk cytosol by Fura-2 (Sage et al., 2013).  These results 

were confirmed in positive control experiments on each donor, with DM-BAPTA-

loading abolishing any notable rise in [Ca2+]cyt when platelets were stimulated with 

thrombin in the absence of extracellular Ca2+ (1.0 ± 0.6 % of control; n = 4; P < 0.05; 

Fig 3.2A). But even in the absence of any observable thrombin-evoked rise in [Ca2+]cyt, 

it was still possible to see a rise in  [Ca2+]ext, although it occurs slower than in control 

cells (69.7% ± 10.5% of untreated controls; n = 7; P < 0.05; Fig 3.2B,C). This is 

consistent with our previous finding that DM-BAPTA-loading slows thrombin-evoked 

Ca2+ release, suggesting that this prevents calcium-induced calcium release (Sage et 

al., 2013).These results therefore suggest that Ca2+ release from intracellular stores 

principally occurs into a nanodomain of cytosol which is unaffected by DM-BAPTA-

loading and too small to be detected by Fura-2.    

The pericellular recycling hypothesis also suggested that Ca2+ removal from this 

nanodomain would be dependent on activity of the NCX.  Therefore, experiments were 

also simultaneously performed to examine the effect of pre incubating platelets with 

the NCX inhibitor, KB-R7943.  Previous work in our labs have demonstrated that this 
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compound is able to significantly inhibit forward-mode exchange in human platelets in 

a manner which does not directly blocking Ca2+ permeable ion channels in the plasma 

membrane or intracellular stores (Sage et al., 2013). Pre-treatment with KB-R7943, 

reduced the thrombin-evoked rises in [Ca2+]ext in cells not treated with DM-BAPTA to 

37.5% ± 3.3% of control (n = 7, P < 0.05, Fig 3.2B,D), in line with our previous findings 

(Sage et al., 2013). Similarly pre-treatment with KB-R7943 elicited a significant 

reduction in thrombin evoked rise in [Ca2+]ext in DM-BAPTA-loaded cells (35.4% ± 

7.7% of control; n = 7; P < 0.05; Fig 3.2C,E). These data demonstrate that Ca2+ 

removal from the cytosolic nanodomain is largely blocked by treatment with NCX 

inhibitor. 

To further these findings, additional experiments were performed to examine the effect 

of KB-R7943 on thrombin-evoked rises in [Na+]cyt. If NCX-mediated Ca2+ removal is 

blocked, then KB-R7943 should reduce thrombin-evoked rises in Na+ due to the influx 

of Na+ brought in on this exchanger. In line with this model, KB-R7943-pretreatment 

was able to significantly inhibit thrombin-evoked rises in [Na+]cyt in DM-BAPTA-loaded 

platelets (28.6 ± 10.1% of control; n = 6; P < 0.05; Fig 3.3). Thus suggesting that Ca2+ 

removal is elicited from the cytosolic nanodomain by forward mode activity of the NCX, 

as previous suggested by our earlier studies (Harper et al., 2009; Sage et al., 2013).  

These results support our hypothesis that Ca2+ release initially accumulates within an 

NCX-associated cytosolic nanodomain that is functionally restricted from the bulk 

platelet cytosol. 
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Figure 3.3 Thrombin-evoked rises in [Na+]cyt  are inhibited by pretreatment with KB-R7943 in DM-
BAPTA-loaded human platelets. SBFI-loaded human platelets suspended in supplemented HBS 
were preincuated with 30 µmol.L-1 dimethyl-BAPTA/AM for 10 min at 37°C. Cells were also treated with 
either 50 µmol.L-1 KB-R7943, or an equivalent volume of its vehicle, DMSO for the last 5 min of this 
incubation. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA and then 1 min later stimulated 
with 0.5 U.mL-1 thrombin.  
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3.2  Nicergoline-induced disruption of the subcellular localisation of the DTS 

inhibits thrombin-evoked rises in [Ca2+]ext and [Na+]cyt in DM-BAPTA-loaded 

platelets. 

Recently we have demonstrated that pre-treatment of nicergoline disrupts pericellular 

Ca2+ accumulation through triggering a microtubule-dependent reorganisation of the 

DTS (Walford et al., 2015). If the cytosolic nanodomain in which Ca2+ release from the 

DTS is tightly coupled to NCX-mediated removal is contained within the MC, then 

nicergoline-induced disorganisation of the DTS should be expected to inhibit the 

thrombin-evoked rise in [Ca2+]ext in DM-BAPTA-loaded cells, as the stores are further 

away from the NCX such that Ca2+ can be buffered by DM-BAPTA before reaching 

the plasma membrane. Experiments were therefore performed to examine whether 

nicergoline-induced disruption of the DTS is able to affect thrombin-evoked rises in 

[Ca2+]ext. Dimethyl-BAPTA loading prevented thrombin-evoked rise elicited in the 

absence of extracellular Ca2+ signals to (3.8 ± 1.6 % of control; n = 4; P < 0.05; Fig 

3.4A). Pre-treatment with nicergoline significantly inhibited thrombin-evoked rises in 

[Ca2+]ext in cells from the same donors to 51.0 ± 19.6 % of control (n = 9; P < 0.05; Fig 

3.4B,C). 

If nicergoline-induced DTS reorganisation removes the resident IP3R away from the 

vicinity of the NCX in the plasma membrane, then nicergoline should also block the 

NCX-mediated thrombin-evoked rises in [Na+]cyt elicited by forward mode exchange in 

DM-BAPTA-loaded platelets. Experiments demonstrated that nicergoline pre-

treatment blocked thrombin-evoked rises in [Na+]cyt in DM-BAPTA-loaded platelets 

stimulated in the absence of extracellular Ca2+ to 43.1± 14.1 % of control (n = 6; P < 

0.05; Fig 3.5), in line with our proposed mechanism of action of nicergoline whereby it 

spatially decouples these Ca2+ transporting proteins in the cytosolic nanodomain.   
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Figure 3.4 Nicergoline-induced disruption of the subcellular localisation of the DTS inhibits 
thrombin-evoked rises in [Ca2+]ext in DM-BAPTA-loaded platelets. (A) Fura-2-loaded human 
platelets suspended in supplemented HBS were preincuated with either 30 µmol.L-1 dimethyl-
BAPTA/AM, or an equivalent volume of its vehicle, DMSO, for 10 min at 37°C. Extracellular Ca2+ was 
then chelated with 1 mmol.L-1 EGTA and then 1 min later stimulated with 0.5 U.mL-1 thrombin. (B,C) 
Washed human platelets were suspended in supplemented HBS were pre-treated with 30 µmol.L-1 
dimethyl-BAPTA/AM as well as either 100 µmol.L-1 nicergoline (B), or an equivalent volume of its 
vehicle, DMSO (C) for 10 min at 37°C. A final concentration of 2.5 µmol.L-1 Fluo-4 salt was then added 
immediately before the experiment. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA (not 
shown) and then 1 min later stimulated with 0.5 U.mL-1 thrombin.  
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Figure 3.5 Thrombin-evoked rises in [Na+]cyt  are inhibited by pre-treatment with nicergoline in 

DM-BAPTA-loaded human platelets.. SBFI-loaded human platelets suspended in supplemented HBS 

were preincubated with  30 µmol.L-1 dimethyl-BAPTA/AM  and either, 100 µmol.L-1 Nicergoline, or an 

equivalent volume of its vehicle, DMSO for  10 min at 37°C. Extracellular Ca2+ was then chelated with 

1 mmol.L-1 EGTA and then 1 min later stimulated with 0.5 U.mL-1 thrombin.  
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These results show that NCX-mediated Ca2+ removal from the DM-BAPTA-insensitive 

cytosolic nanodomain is reliant on the normal positioning of the DTS.  These results 

therefore support the hypothesis that the cytosolic nanodomain is present within the 

MC (Sage et al., 2013; Walford et al., 2016) 

 

3.3  Disruption of the actin cytoskeleton does not prevent Ca2+ removal from 

the cytosolic nanodomain, but instead significantly potentiates it. 

Previous studies have demonstrated a role for the platelet actin cytosokeleton in 

regulating platelet Ca2+ signalling (Bourguignon et al., 1993; Ariyoshi & Salzman, 

1996; Rosado et al., 2000; Harper & Sage, 2006; Harper & Sage, 2007). It was thus 

considered whether the actin cytoskeleton may play a role in scaffolding the 

membrane complex and thus facilitate the Ca2+ removal from the platelet cytosolic 

nanodomain. Therefore, experiments were conducted to examine whether disruption 

of the actin cytoskeleton could interfere with Ca2+ removal from DM-BAPTA-loaded 

platelets.  These experiments were performed using a prolonged incubation with the 

actin polymerisation inhibitor, cytochalasin D, which has been shown to reduce the F-

actin content of platelets as well as cause the breakdown of the cortical actin ring into 

localised foci of F-actin (Rosado, Graves et al. 2000; Rosado and Sage 2000). 

Consistent with our previous experiments, the positive control experiments again 

demonstrated that pre-incubating platelets with DM-BAPTA prevented any significant 

thrombin-evoked rises in [Ca2+]cyt (3.8 ± 1.7 % of control; n = 4; P < 0.05; Fig 3.6A) 

Pre-treatment of DM-BAPTA-loaded platelets from the same donor with Cytochalasin 

D elicited a significant potentiation of the thrombin-evoked rise in [Ca2+]ext to  156.0 ± 

19.6 % of untreated, DM-BAPTA-loaded control cells (n = 12; P < 0.05; Fig 3.6B). 

These data suggest that the actin cytoskeleton has an inhibitory effect on thrombin- 
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Figure 3.6 Cytochalasin D significantly potentiates thrombin-evoked rises in [Ca2+]ext in DM-
BAPTA-loaded human platelets. (A) Fura-2-loaded human platelets suspended in supplemented HBS 
were preincuated with either 30 µmol.L-1 dimethyl-BAPTA/AM, or an equivalent volume of its vehicle, 
DMSO, for 10 min at 37°C. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA and then 1 min 
later stimulated with 0.5 U.mL-1 thrombin. (B) Washed human platelets were suspended in 
supplemented HBS were pre-treated with either 10 µmol.L-1 cytochalasin D or an equivalent volume of 
DMSO, for 40 min at 37°C. All cells were also pre-treated with 30 µmol.L-1 dimethyl-BAPTA/AM for the 
final 10 min of the preincubation with cytochalasin D or DMSO. A final concentration of 2.5 µmol.L-1 

Fluo-4 salt was then added immediately before the experiment. Extracellular Ca2+ was then chelated 
with 1 mmol.L-1 EGTA (not shown) and then 1 min later stimulated with 0.5 U.mL-1 thrombin. 
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evoked Ca2+ signalling exerted within the nanodomain.  These findings would be 

consistent with the findings of Harper & Sage (2006), who demonstrated that PAR4 

was found at higher levels in the platelets treated with cytochalasin D, suggesting that 

they may elicit greater production of IP3 to the same dose of thrombin. These data also 

suggest that dynamically unstable sections of the cortical cytoskeleton are unlikely to 

play a role in scaffolding the membrane complex. 

 

3.4 Disrupting lipid rafts inhibits thrombin-evoked rises in [Ca2+]ext in DM-

BAPTA-loaded platelets 

Cholesterol-rich lipid rafts are present in platelet membranes at physiological 

temperatures and combine to form microdomains that play a role in scaffolding 

together signalling cascades required for normal platelet activation (Gousset et al., 

2002). Earlier studies have from our lab demonstrated that lipid rafts play a key role in 

mediating thrombin-evoked rises in [Ca2+]cyt both in the presence and absence of 

extracellular Ca2+ (Brownlow et al., 2004).  This was thought to be related to its effect 

on the ability to facilitate coupling of IP3R in the DTS and TRPC1 in the plasma 

membrane (Brownlow et al., 2004), although more recent work has disproved this 

hypothesis (Harper & Sage, 2007). However Gousset et al., (2002) and Grgurevich et 

al., (2003) confirmed that disruption of the lipid rafts by treatment with the cholesterol 

sequestering compound, methyl-β-cyclodextrin (MBCD) resulted in eversion and 

diminishment of the OCS (Gousset et al., 2002; Grgurevich et al., 2003). These data 

therefore suggested the possibility that lipid rafts are essential for holding together the 

OCS and the proteins contained here, and as such could be essential for scaffolding 

together the membrane complex by providing a platform for the creation of a 

multimolecular protein complex which holds the DTS and OCS together. Experiments 
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were therefore performed to examine whether lipid raft disruption prevented thrombin-

evoked rises in [Ca2+]cyt in DM-BAPTA-loaded cells. Positive control experiments 

demonstrated that dimethyl-BAPTA-loaded platelets from the same donor showed no 

notable rise in [Ca2+]cyt when stimulated with thrombin (2.2 ± 1.1% of control; n = 4; P 

< 0.05; Fig 3.7A). When platelets were pre-treated with the lipid raft disrupting drug, 

MBCD, thrombin evoked rises [Ca2+]ext were reduced in DM-BAPTA-loaded cells to 

61.0 ± 12.3 % of control  (n = 9; P < 0.05; Fig 3.7B). These data suggested that 

disruption to the OCS caused by depletion of the lipid rafts disrupt Ca2+ removal from 

the cytosolic nanodomain.   
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Figure 3.7 MBCD significantly inhibits thrombin-evoked rises in [Ca2+]ext in DM-BAPTA-loaded 
human platelets. (A) Fura-2-loaded human platelets suspended in supplemented HBS were pre 
incubated with either 30 µmol.L-1 dimethyl-BAPTA/AM, or an equivalent volume of its vehicle, DMSO, 
for 10 min at 37°C. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA and then 1 min later 
stimulated with 0.5 U.mL-1 thrombin. (B) Washed human platelets were suspended in supplemented 
HBS were pre-treated with either 10 mmol.L-1 MBCD or an equivalent volume of DMSO, for 30 min at 
37°C. All cells were also pre-treated with 30 µmol.L-1 dimethyl-BAPTA/AM for the final 10 min of the pre 
incubation with MBCD or DMSO. A final concentration of 2.5 µmol.L-1 Fluo-4 salt was then added 
immediately before the experiment. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA (not 
shown) and then 1 min later stimulated with 0.5 U.mL-1 thrombin.  
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3.5  Disruption of lipid rafts with MBCD appears to interfere with platelet Ca2+ 

signalling by dissipating the Na+ gradient across the plasma membrane.  

To further examine whether lipid raft disruption might reduce thrombin-evoked Ca2+ 

removal in DM-BAPTA-loaded cells by interfering with the normal recruitment of the 

NCX to this subcellular domain in the DTS, experiments were performed to examine 

whether MBCD pre-treatment could interfere with forward mode NCX activity in DM-

BAPTA loaded cells by examining thrombin-evoked rises in [Na+]cyt in chelated cells. 

After MBCD pre-treatment there was a significant increase in the basal SBFI 

fluorescence when compared to the DMSO-treated control (193.3 ± 5.8% of control; n 

= 5; P < 0.05; Fig 3.8A). Furthermore, treatment with either thrombin or the Na+ 

ionophore gramicidin, at the end of the run was unable to further increase the 

fluorescence ratio, with the maximum fluorescence observed being 150.6 ± 12.2% of 

control in MBCD-treated cells (n = 5; P < 0.05; Fig 3.8A). As gramicidin should saturate 

the SBFI with Na+ eliciting the same response in both treatment conditions, a greater 

maximum fluorescence suggests the possibility that MBCD interferes with the normal 

functioning of the SBFI dye 

To examine if this difference was due to an auto fluorescence of the MBCD, further 

experiments examined the direct effect of MBCD addition on SBFI fluorescence were 

directly observed.  As can be seen in (Fig 3.8B), addition of 10 mmol.L-1 MBCD to 

SBFI-loaded platelets triggered a small initial rise in the fluorescence ratio, followed 

by a slower rise to the maximum fluorescence ratio over the course of the 30 min 

incubation period.  Both the fast and slow responses are associated with reciprocal 

changes in the emissions of the dye at 340 nm and 380 nm in line with this being a 
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rapid increase in [Na+]cyt, rather than an artefact elicited by an auto fluorescence of the 

MBCD.   

This was further supported by additional checks which showed that adding MBCD to 

a sample of HBS at a final concentration of 10 mmol.L-1 elicited only a marginal 

increase in the 340 nm and 380 nm fluorescence (data not shown). The lack of effect 

of MBCD on resting [Ca2+]cyt (Brownlow et al., 2004) suggests that the effect of MBCD 

is selective for Na+ ions. These data therefore suggest that MBCD inhibits thrombin-

evoked Ca2+ signalling by dissipating the Na+ gradient across the plasma membrane, 

and thus exerting effect on thrombin-evoked Ca2+ signalling through an indirect 

inhibition of the Na+/Ca2+ exchanger. The ability of MBCD to raise basal Na+ over a 

long time scale as well as increase the maximal fluorescence seen after gramicidin 

treatment seen would suggest an effect of this drug is not on facilitating Na+ entry but 

preventing Na+ removal.  It may be that MBCD decouples the Na+/K+-ATPase from 

Na+-permeable channels leading to the changes in [Na+]cyt observed.  However further 

experiments will be required to clarify this effect.   
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Figure 3.8 Pre-treatment with MBCD dissipates the Na+ gradient across the plasma membrane 
in DM-BAPTA-loaded human platelets. (A) SBFI-loaded human platelets suspended in supplemented 
HBS 10 mmol.L-1 MBCD or an equivalent volume of DMSO, for 30 min at 37°C. All cells were also pre-
treated with 30 µmol.L-1 dimethyl-BAPTA/AM for the final 10 min of the preincubation with MBCD or 
DMSO. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA and then 1 min later stimulated with 
0.5 U.mL-1 thrombin. (B) SBFI-loaded human platelets suspended in supplemented HBS and pre-
warmed for 10 min at 37C.  Cells were then exposed to either 10 mmol.L-1 MBCD or an equivalent 
volume of DMSO. 
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3.6  DM-BAPTA-loading does not prevent the production of pericellular Ca2+ 

hotspots in thrombin-stimulated human platelets 

Previous studies have demonstrated that it is possible to observe pericellular Ca2+ 

signals in single platelets stimulated with thrombin (Sage et al., 2013; Walford et al., 

2016). These thrombin-evoked pericellular Ca2+ rises were found to occur within the 

boundaries of the cell and appeared to spread away from the source in a directionally-

restricted manner, consistent with their creation in the OCS. In addition, they were 

found to originate within a specific sub-region of the cell – which was hypothesised to 

be linked to the membrane complex (Sage et al., 2013). If the pericellular hotspots are 

being created by NCX-mediated Ca2+ removal from a cytosolic nanodomain enclosed 

within the membrane complex, then they should be resistant to DM-BAPTA-loading. 

Therefore, experiments were performed to examine whether pericellular Ca2+ hotspots 

could be observed in DM-BAPTA-loaded cells, and whether any signal could be 

blocked by pre incubation with the NCX inhibitor, KB-R7943.    

Examination of control cells showed that pericellular Ca2+ hotspots could be observed 

in the majority of DM-BAPTA-loaded cells during the recording period after thrombin 

stimulation (66.1 ± 5.8% of cells per field; n = 7; P < 0.05; Fig 3.9 A, C). This is slightly 

lower than previous observations of untreated platelets where over 90% of platelets 

were shown to exhibit a signal (Sage et al., 2013; Kang et al., 2014;  Walford et al., 

2016). In addition, the signals appeared to be of lower amplitude and more spatially 

restricted than in previous studies. In our studies very few platelets it was rare to see 

any spread of Ca2+ away from the pericellular Ca2+ hotspot across the other side (5.4 

± 2.5 % of cells per field; n = 7), in contrast to our previous observation of that half of 

the cells in a field on untreated platelets showed this behaviour (Walford et al., 2015) 
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Figure 3.9 Thrombin-evoked pericellular signals are resistant to DM-BAPTA loading in untreated 
human platelets (A-C) but are significantly inhibited when pretreated with KB-R7943 (D). Washed 
human platelets were suspended in supplemented HBS were pre-treated with 30 µmol.L-1 dimethyl-
BAPTA/AM. Cells were also treated with either 50 µmol.L-1 KB-R7943 (D)  or an equivalent volume of 
its vehicle, DMSO (B,C), for the last 5 min of this incubation. Platelets were added to poly-lysine-coated 
chambered cover slides and allowed to adhere for 5 minutes. Extracellular Ca2+ was then chelated by 
addition of 1 mmol.L-1 EGTA and Fluo-4 salt was added a final concentration of 2.5 µmol.L-1.  Cells 
were then stimulated with 0.5 U.mL-1 thrombin and observed for 5 minutes. (D) Bar charts illustrates 
that in DM-BAPTA loaded platelets 66.1% of cells showed pericellular Ca2+ hotspots while the 
percentage of cells showing pericellular Ca2+ hotspot was significantly reduced to 39.7% in KB-R7943 
treated cells.   

 

D
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These differences in the frequency and characteristics of the pericellular Ca2+ signal 

in DM-BAPTA-loaded cells can be reconciled by the previous demonstration that DM-

BAPTA-loading significantly slows thrombin-evoked Ca2+ release from intracellular 

stores, by interfering with a process of Ca2+-induced Ca2+ release (Sage et al., 2013).  

When cells were pre incubated with the NCX inhibitor, KB-R7943, the proportion of 

cells showing a pericellular Ca2+ hotspot was significantly reduced to 39.7 ± 3.1% of 

cells per field (n = 10; P < 0.05).  In addition, Ca2+ spread from the source was also 

reduced (1.6 ± 1.3 % of cells per field; n = 7; P > 0.05; Fig 3.9D), although this was 

not significantly different. Thus, these data suggest that the creation of the pericellular 

hotspot is relatively insensitive to DM-BAPTA-loading, but its amplification and spread 

across the cell is. This is consistent with a model that the Ca2+ enters the pericellular 

space at the membrane complex, but through its recycling back into the cell can trigger 

further Ca2+ release which can then be removed from the cell and amplify the Ca2+ 

signal allowing for Ca2+ spread from the pericellular hotspot.   

3.7 Subcellular localisation of NCX3 isoform in fixed human platelets. 

Recent hypothesis from our lab suggest that NCX 3 isoform coupled with IP3 receptor 

could be specifically located in the cytosolic nanodomain enclosed within the 

membrane complex (Sage et al., 2013). Proteomic studies and western blot analysis 

have both indicated NCX3 expression within the platelet plasma membrane 

(Lewandrowski et al., 2009; Harper et al., 2010; Roberts  et al., 2012). But no data 

exist for subcellular localization of NCX3 isoform within the platelet. Therefore, 

experiments were performed in fixed cells to examine whether NCX3 was found in the    
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Figure 3.10 NCX3 appears to be localised in a manner consistent with its presence within the 
open canalicular system.  Fixed platelets were pre incubated with a blocking buffer of HBS containing 
1 mg.mL-1 BSA and a 1:100 dilution of a mouse secondary antibody for 30 min at room temperature.   
Cells were washed and then resuspended into HBS containing 1 mg.mL-1 BSA and either a 1:25 (E,F), 
1:50 (C,D), 1:100 (A,B) dilution of an Goat NCX3 primary antibody or no antibody (G,H) for 30 min at 
room temperature.  Cells were then washed again and incubated in HBS containing 1 mg.mL-1 BSA and 
a 1:1000 dilution of a fluorophore-conjugated secondary antibody for 30 min at room temperature.  Cells 
were washed and resupended into HBS containing 1 mg.mL-1 BSA.  The labelled cells were allowed to 
settle for 10 min on poly-L-lysine –coated chambered slide. Fluorescent images were captured using a 
Fluoview FV 1200 laser scanning confocal microscope (Olympus, UK). Images for fluorescence alone 
(left) or overlaid over the transmitted light image (right) are shown. The results presented are 
representative of 3 experiments respectively. 
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surface membrane or in a location within the platelet boundary indicative of its 

localisation within the OCS.  

A pilot study utilising a range of dilutions of the fluorescently-labelled secondary 

antibody (1:100, 1:1000, antibody free control) was performed on cells from two 

different donors to identify the appropriate secondary antibody concentration to utilise 

for NCX3 localization experiments. These experiments identified that whilst 1:1000 

showed no significant non-specific antibody binding compared to the antibody free 

control, cells treated with a 1:100 dilutions could be observed to have a significant 

fluorescence after treatment (data not shown). Therefore, the 1:1000 dilution was 

utilised in optimisation studies for the primary antibody.  

Previous studies have demonstrated the presence of NCX3 using a primary antibody 

raised to an extracellular epitope of this exchanger (Harper et al., 2010). Therefore, 

experiments initially tested incubating platelets for 30 min at room temperature with 

three different dilutions of a primary antibody (1:100, 1:50, 1:25) and a primary 

antibody free control to determine the optimal antibody concentration to use for further 

immunofluorescent studies. 1:25 dilution was found to consistently show 

immunofluorescent labelling on the surface of the platelet, whereas at 1:50 the effect 

was more inconsistent.  Therefore 1:25 dilution was used for all subsequent studies.  

Fluorescent imaging of the labelled cells found that cells possessed a varied bright 

punctate distribution of NCX3 protein predominantly within the platelet margin 

indicating its origin of the open canalicular system (Fig 3.10 E,F). These results are 

consistent with our previous work that predicted a functional role for NCX 3 protein 

preferentially located in cytosolic nanodomain within membrane complex and 

orchestrating pericellular Ca2+ accumulations (Sage et al., 2013; Walford et al., 2016). 
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3.8  Nicergoline-induced reorganization of the DTS affects the subcellular 

localization and distribution of NCX3 in human platelets 

The close proximity of the two membrane systems at the membrane complex would 

suggest the need for a protein scaffold to hold these structures in alignment.  This 

protein scaffold may therefore play a role in holding NCX3 in its normal location.  

Therefore, experiments were performed to examine whether the microtubule-

dependent reorganisation of the DTS could alter the localisation of NCX3 within the 

platelets. Consistent with our previous experiment, control cells showed a punctate 

distribution away from the surface membrane, and in an eccentric location consistent 

with the exchanger primarily being found at the MC (Fig 3.11A-B). Pre-treatment with 

nicergoline elicited a more spread distribution of fluorescence throughout the interior 

platelet boundaries indicating that NCX3 localisation is affected by the nicergoline-

induced disruption to the cortical microtubules and DTS (Fig 3.11E-F). The primary-

free control cells did not show any fluorescent binding (Fig 3.11C-D). Quantitative 

analysis of this alteration in NCX3 fluorescence revealed that the mean skew of the 

pixel fluorescence distribution of all the DMSO-treated cells was significantly greater 

than found in nicergoline-treated cells (2.5 ± 0.2 and 1.6 ± 0.4 in DMSO- and 

nicergoline-treated cells respectively; n = 4; P < 0.05) indicating that nicergoline 

induces a more homogenous distribution of NCX3 through these cells.  

These results therefore suggest that NCX3 localisation requires an intact cortical 

microtubule bundle and/or DTS localisation to hold it in place. These results suggest 

the possibility that a common scaffolding system could hold both the intracellular Ca2+ 

stores and NCX3 together at the MC. Nicergoline-induced rearrangement of the NCX3 

distribution could therefore prevent accumulation of Ca2+ in the pericellular space and 

therefore inhibit thrombin-evoked rises in [Ca2+]cyt (Walford et al., 2016). 
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Figure 3.11 Nicergoline disrupts the normal localisation of NCX3 within resting platelets. Washed 
human platelets were pre-treated wither either 100 µmol.L-1 nicergoline (E,F), or an equivalent volume 
of its vehicle, DMSO (A,B) for 10 min at 37°C. Cells were then fixed with 3% [w/v] formaldehyde and 
stored at 4°C until use. Fixed platelets were preincubated with a blocking buffer of PBS containing 1 
mg.mL-1 BSA and a 1:100 dilution of a mouse secondary antibody for 30 min at room temperature.   
Cells were washed and then resuspended into PBS containing 1 mg.mL-1 BSA and either a 1:25 dilution 
of an NCX3 primary antibody (E-F) or no antibody (C,D) for 30 min at room temperature.  Cells were 
then washed again and incubated in PBS containing 1 mg.mL-1 BSA and a 1:1000 dilution of a 
fluorophore-conjugated secondary antibody for 30 min at room temperature.  Cells were washed and 
resupended into PBS containing 1 mg.mL-1 BSA.  The labelled cells were allowed to settle for 10 min 
on poly-L-lysine –coated chambered slide. Fluorescent images were captured using a Fluoview FV 
1200 laser scanning confocal microscope (Olympus, UK). 
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4. Investigating the functional effects of a cytosolic nanodomain in platelets 

The presence of a cytosolic nanodomain which is specialised to regulate Ca2+ 

signalling functionally isolated from the bulk cytosol, provides a potential mechanism 

for altering the Ca2+responsiveness of the various Ca2+-dependent processes involved 

in controlling platelet activation. The pericellular Ca2+ recycling model hypothesises 

that Ca2+ is released first in the tiny volume of the cytosolic nanodomain, from where 

it spreads to the bulk cytosol via pericellular recycling from the OCS. If Ca2+ effectors 

are preferentially localised in either the cytosolic nanodomain and the bulk cytosol, this 

could alter both their sensitivity to agonist-evoked Ca2+ signals. For instance, Ca2+ 

effector proteins preferentially localised in the cytosolic nanodomain would be 

expected to be activated by any stimuli that triggered Ca2+ release due to the 

accumulation of large amounts of Ca2+ in this tiny volume, whereas those effectors 

found predominantly in the bulk cytosol may need a stronger signal to be triggered 

due to the need for the Ca2+ to escape the nanodomain and spread into the large 

volume of this cellular sub compartment.  In addition, Ca2+ effectors present in the 

nanodomain would be expected to be activated with a shorter latency than those in 

the bulk cytosol due to the shorter diffusion distance of Ca2+ from the stores into this 

compartment. 

To test this hypothesis, we have examined the properties of the platelet shape change 

in DM-BAPTA-loaded platelets in which Ca2+ signalling can only occur within the 

cytosolic nanodomain. Previous studies have demonstrated that unlike thrombin-

evoked granule secretion and aggregation, shape change initiated by this ligand is 

resistant to DM-BAPTA-loading (Davies et al., 1989; Paul et al., 1999) suggesting that 

Ca2+ effectors for this process could be localised within the nanodomain.  In addition, 

platelet shape change is triggered with a short latency by all platelet agonists. These 
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data therefore suggest that Ca2+ effectors involved in triggering the platelet shape 

change such as calmodulin (Hathaway et al., 1981, Dandona et al., 1996) might be 

localised within the cytosolic nanodomain. To examine this possibility experiments 

have been performed to examine whether interfering with Ca2+-signalling system scan 

alter the shape change response of DM-BAPTA-loaded platelets. 

4.1 Blockade of NCX activity induces shape change in unstimulated DM-

BAPTA-loaded human platelets, and maintains the thrombin-evoked response. 

As described above, blockade of the NCX with KB-R7943 prevents Ca2+ removal from 

DM-BAPTA-loaded platelets suggesting that this exchanger is responsible for 

controlling the Ca2+ concentration found in this sub-region. These results suggest that 

blocking this exchanger should enhance and prolong agonist-evoked Ca2+ signals in 

this cellular sub compartment, and thus potentiate any Ca2+-dependent responses 

observed. Thus we examined the effect of pre-treating platelets with KB-R7943 on the 

shape change observed in DM-BAPTA-loaded platelets. As KB-R7943 is poorly 

soluble when added directly to solutions, KB-R7943 (or an equivalent volume of its 

vehicle, DMSO) was solubilised at high concentrations into HBS by magnetic stirring 

at 37°C. This pre-solubilised KB-R7943 was then added to the washed platelet 

suspension to give final concentrations of 25 μmol.L-1 and 50 μmol.L-1. The addition of 

these drug-containing solutions caused an initial increase in light transmittance (shown 

as a drop in the trace) due to its effect of diluting the platelet suspension. No further 

effect was seen in platelets treated with DMSO-containing HBS (decrease in light 

transmittance = -0.0% ± 0.2% of basal; n = 9; Fig 4.1A, B). However, when platelets 

were exposed to KB-R7943, there was a rapid, dose-dependent decrease in light 

transmittance, consistent with this drug initiating a shape change (decrease in light 
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Fig 4.1 Blockade of NCX activity induces shape change in unstimulated DM-BAPTA-loaded 
human platelets, and maintains the thrombin-evoked response. Washed human platelets 
suspended in supplemented HBS were pre incubated with 30 µmol.L-1 dimethyl-BAPTA/AM for 10 min 
at 37°C. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA. Cells were the treated with HBS 
containing either KB-R7943 or an equivalent volume of DMSO, to give a final concentration of either 50 
µmol.L-1 (A) or 25 µmol.L-1 (B) KB-R7943.  2 min later cells were stimulated with 0.5 U.mL-1 thrombin. 
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transmittance = 5.6% ± 0.3% and 8.5% ± 0.3% of basal for 25 μmole.L-1 and 50 

μmole.L-1 KB-R7943 respectively; both n = 9; both P < 0.05 compared to DMSO 

control; Fig 4.1). This KB-R7943-induced shape change has previously also been 

observed in the absence of prior DM-BAPTA-loading (Harper, 2007). These data 

suggest that blocking NCX-mediated removal in unstimulated platelets can elicit an 

increase in the Ca2+ concentration within the cytosolic nanodomain which can trigger 

the onset of shape change.  

After the pre-incubation period with KB-R7943 or DMSO, platelets were stimulated 

with thrombin. As shown in Fig 4.1, thrombin-induces a rapid decrease in light 

transmittance consistent with the onset of the platelet shape change in DMSO-treated 

platelets, which then slowly returns towards baseline over the course of the 

observation period.   In cells treated with KB-R7943 there is a further decrease in light 

transmittance, which then declines only slightly towards basal during the observation 

period.  This decrease in light transmittance compared to the baseline level at the end 

of the recording period was significantly reduced in DMSO-treated cells (decrease in 

light transmittance = 5.2% ± 0.4% of basal; n = 9; Fig 4.1) compared to KB-R7943-

treated cells than in the control cells (decrease in light transmittance = 14.5% ± 0.7%, 

and 12.6% ± 0.8% of basal for 25 μmole.L-1 and 50 μmole.L-1 KB-R7943-treated cells 

respectively; both n = 9; both P< 0.05 compared to DMSO control; Fig 4.1). These 

data suggest that the shape change is reversible in DM-BAPTA-loaded cells 

stimulated with thrombin in the absence of extracellular Ca2+ due to Ca2+ being 

removed from the cytosolic nanodomain by NCX.  When this transporter is blocked, 

Ca2+ remains elevated in this cellular sub compartment and allow the Ca2+-dependent 

shape change to be prolonged. 
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4.2   Pretreatment of DM-BAPTA-loaded platelets with the myosin light chain 

kinase inhibitor, ML-7, prevents KB-R7943- and thrombin-evoked shape change.  

Platelet shape change is mediated at least partially through a Ca2+dependent 

signalling pathway. This pathway involves Ca2+-binding to calmodulin, which in turn 

can bind to and activate myosin light chain kinase (MLCK; Adelstein et al., 1973; 

Hathaway & Adelstein, 1979; Adelstein, 1982). This Ca2+/Calmodulin dependant 

signalling pathway is the principal mechanism by which the platelet shape change is 

elicited when stimulated by physiological agonists such as thrombin (Daniel et al., 

1981; Hathaway et al., 1981; Daniel et al., 1984). A number of studies have shown 

that ML-7, a synthetic inhibitor of myosin light chain kinase, is able to inhibit this 

calcium-dependent myosin light chain phosphorylation of the myosin light chain, and 

thus  shape change, in thrombin-activated platelets (Itoh et al., 1992). If the KB-R7943- 

and thrombin-induced shape changes are mediated by a rise in Ca2+ concentration 

ML-7 should prevent these platelet responses. Experiments were therefore performed 

to investigate whether pre-treatment with ML-7 was able to prevent the effects of, KB-

R7943-preteatment and thrombin-stimulation in DM-BAPTA-loaded cells. As can be 

seen in Fig 4.2, ML-7 almost completely abolished the thrombin-evoked shape change 

in DM-BAPTA-loaded cells pretreated with DMSO (decrease in light transmittance = 

10.9 % ± 0.9% and 1.1% ± 0.4% of basal in DMSO- and ML-7 treated cells 

respectively; n = 6; P < 0.05 Fig 4.2A).  Similarly, in KB-R7943-treated cells, ML-7 also 

almost completely blocks both the KB-R7943- and thrombin- shape change (decrease 

in light transmittance = 13.0 % ± 1.5% and 1.0% ± 0.3% of basal in DMSO- and ML-7 

treated cells in presence of KB-R7943 respectively; n = 6; P<0.05; Fig 4.2B). These 

results suggest that KB-R7943 mediates platelet shape change triggering activation  
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Fig 4.2 Pretreatment with ML-7 inhibits KB-R7943- and thrombin-induced shape change in DM-
BAPTA-loaded platelets. Washed human platelets suspended in supplemented HBS were 
preincubated with 30 µmol.L-1 dimethyl-BAPTA/AM and either 25 µmol.L-1 ML-7 or an equivalent volume 
of its vehicle, DMSO, for 10 min at 37°C (A). Extracellular Ca2+ was then chelated with 1 mmol.L-1 
EGTA. Cells were the treated with HBS containing either KB-R7943 (B) or an equivalent volume of 
DMSO (B), to give a final concentration of 50 µmol.L-1 KB-R7943.  2 min later cells were stimulated with 
0.5 U.mL-1 thrombin. 
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of the Ca2+-dependent MLCK by raising the Ca2+ concentration within the cytosolic 

nanodomain of DM-BAPTA-loaded cells. 

4.3  Pre-treatment with the Rho-kinase inhibitor, Y-27632, has no significant 

effect on KB-R7943-evoked shape change in DM-BAPTA-loaded platelets. 

In addition to the Ca2+-dependent activation of MLCK, previous studies have 

demonstrated reported the presence of a Ca2+-independent signalling pathway for the 

activation of platelet shape change (Paul et al., 1999). This pathway involves the 

activation of Rho Kinase, which indirectly increases the myosin light chain 

phosphorylation by decreasing the myosin phosphatase activity (Nakai et al., 1997; 

Bauer et al., 1999). Experiments were therefore performed to examine whether this 

signalling pathway may play a role in eliciting shape change in response to KB-R7943 

or thrombin-stimulation in DM-BAPTA-loaded platelets. These experiments showed 

that pre-treatment with Y-27632 had no effect on thrombin-stimulation in DMSO-

treated cells (decrease in light transmittance = 10.6% ± 2.0% and 11.4% ± 1.3% of 

basal in DMSO- and Y-27632-treated cells respectively; n = 6; P > 0.05; Fig 4.3A), or 

any effect on KB-R7943- (8.1% ± 1.5% and 11.1% ± 0.7% in DMSO- and Y-27632-

treated-cells respectively; n = 6; P > 0.05; Fig 4.3B) or thrombin-induced shape change 

in KB-R7943-treated platelets. (13.6% ± 2.0% and 14.1% ± 0.7% in DMSO- and Y-

27632-treated-cells respectively; n = 6; P > 0.05; Fig 4.3B) These data confirm that 

the shape changes elicited in these cells are elicited by the Ca2+-dependent MLCK 

pathway.  
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Fig 4.3 Pretreatment with Y-27632 has no significant effect on KB-R7943- and thrombin-induced 
shape change in DM-BAPTA-loaded platelets. Washed human platelets suspended in supplemented 
HBS were pre incubated with 20 µmol.L-1 Y-267632 or an equivalent volume of its vehicle, DMSO, for 
10 min at 37°C (A). All cells were also incubated with 30 µmol.L-1 dimethyl-BAPTA/AM for the last 10 
min of this incubation. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA. Cells were the 
treated with HBS containing either KB-R7943 (B) or an equivalent volume of DMSO (B), to give a final 
concentration of 50 µmol.L-1 KB-R7943.  2 min later cells were stimulated with 0.5 U.mL-1 thrombin 
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4.4  The IP3R inhibitor, 2-APB, inhibits KB-R7943- and thrombin-induced 

shape change in DM-BAPTA loaded cells.   

The previous experiments demonstrated that the NCX inhibitor KB-R7943 may trigger 

platelet shape change by preventing Ca2+ removal from the cytosolic nanodomain.   

However, for there to be an accumulation in response to a blockage of this Ca2+ 

removal pathway there must also be a constant entry of Ca2+ into this domain which 

is counteracted by the action of the NCX.  As all the experiments reported here occur 

in the absence of extracellular Ca2+, this suggests that the DTS is the most likely 

source of this Ca2+. This might either be through Ca2+ blips from individual IP3Rs or 

the known Ca2+ leak pathway from the DTS, which has been suggested to be mediated 

through proteins, such as the presenillins and Sec61 complexes.  To attempt to initially 

identify the possible source of Ca2+ for the KB-R7943-mediated shape change, 

experiments were performed to examine the effect of the IP3R inhibitor, 2-APB.  This 

compound has previously been used to block IP3R in human platelets (Driver et al., 

2001) .  As shown in Fig 4.4B, pre-treatment with 2-APB at concentrations previously 

shown to significantly inhibit thrombin-evoked Ca2+ release, significantly inhibited KB-

R7943-induced evoked shape change in DM-BAPTA-loaded platelets (8.1% ± 1.2% 

and 1.0% ± 2.4% in DMSO- and 2-APB-treated-cells respectively; n = 6; P < 0.05).  2-

APB was also found to significantly reduce the peak shape change response observed 

after thrombin (12.5% ± 1.5% and 1.5% ± 2.3% in DMSO- and 2-APB-treated-cells 

respectively; n = 6; P < 0.05),  as well as the maintained level of shape change seen 

at the end of the experiment in KB-R7943 treated cells (11.7% ± 1.4% and 2.8% ± 

2.4% in DMSO- and 2-APB-treated-cells respectively; n = 6; P < 0.05; Fig 4.4B).  

These data indicate that the IP3R is important for mediating Ca2+ release into the 

cytosolic Ca2+ nanodomain in which the NCX resides. 
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Surprisingly 2-APB was found to have no significant effect on the magnitude of 

thrombin-induced shape change in DMSO-treated control cells (9.6% ± 0.7% and 

6.5% ± 1.5% in DMSO- and 2-APB-treated-cells respectively; n = 6; P > 0.05; Fig 

4.4A).  However, the latency to peak height after thrombin stimulation was significantly 

prolonged in 2-APB-treated cells (43.1 ± 4.8s and 84.7 ± 12.6s in DMSO- and 2-APB-

treated-cells respectively; n = 6; P <0.05; Fig 4.4A). These results were surprising as 

thrombin-evoked Ca2+ signalling is largely mediated via IP3 production (Sage et al. 

2011). However previous studies have demonstrated that 2-APB is a selective inhibitor 

of IP3R1 (Saleem et al., 2014) and so does not affect the IP3R2 and IP3R3 isoforms 

also known to be present in platelets(Quinton & Dean, 1996; El-Daher et al., 2000). 

As IP3R3 is only found in the plasma membrane it cannot play a role in mediating Ca2+ 

release. Together these results suggest that the 2-APB-sensitive IP3R1 may be the 

main mechanism for Ca2+ release at the membrane complex. However, the IP3R2 

isoforms and/or the NAADP receptor may also contribute to this Ca2+ release, thus 

accounting for why a shape change can still be observed in 2-APB-treated cells, even 

though it is significantly delayed. These results suggest that the type I IP3R is the 

principal means of eliciting Ca2+ release in the cytosolic nanodomain – further studies 

will be needed to consider this effect more closely. 
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Fig 4.4 Pre-treatment with 2-APB has no significant effect on KB-R7943- and thrombin-induced 
shape change in DM-BAPTA-loaded platelets. Washed human platelets suspended in supplemented 
HBS were preincubated with 30 µmol.L-1 dimethyl-BAPTA/AM for the 10 min at 37°C. For the last 5 min 
of this incubation cells were also treated with either 100 µmol.L-1 2-APB or an equivalent volume of its 
vehicle, DMSO(A). Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA. Cells were the treated 
with HBS containing either KB-R7943 or an equivalent volume of DMSO, to give a final concentration 
of 50 µmol.L-1 KB-R7943 (B).  2 min later cells were stimulated with 0.5 U.mL-1 thrombin. 
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4.5 Nicergoline pre-treatment prevents thrombin-induced shape change in 

DM-BAPTA-loaded cells. 

The previous experiments have suggested that in DM-BAPTA-loaded platelets that 

the thrombin-evoked shape change is mediated through the accumulation of Ca2+ 

within the cytosolic nanodomain, which triggers the activation of MLCK.  If the cytosolic 

nanodomain is required for eliciting the activation of MLCK then pre-treatment with 

nicergoline should prevent the thrombin-evoked shape change. As shown in Fig 4.5, 

nicergoline pre-treatment nearly abolished thrombin-evoked shape change in human 

platelets (decrease in light transmittance = 7.3% ± 1.7% of basal and 0.5% ± 0.4% of 

basal in DMSO- and nicergoline-treated respectively; n = 6; P < 0.05 Fig 4.5). These 

data provide initial evidence that the membrane complex may play a key role in 

allowing selective activation of calmodulin over other Ca2+ effectors in human platelets.    
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Fig 4.5 Pretreatment with nicergoline inhibits thrombin-induced shape change in DM-BAPTA-
loaded platelets. Washed human platelets suspended in supplemented HBS were preincubated with 
30 µmol.L-1 dimethyl-BAPTA/AM and either 100 µmol.L-1 nicergoline or an equivalent volume of its 
vehicle, DMSO for 10 min at 37°C. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA. Cells 
were the treated with HBS containing either KB-R7943 or an equivalent volume of DMSO, to give a final 
concentration of 50 µmol.L-1 KB-R7943.  2 min later cells were stimulated with 0.5 U.mL-1 thrombin. 
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4.6  ML-7 and Y-27632 inhibit thrombin-evoked rises in [Ca2+]ext in DM-BAPTA-

loaded platelets  

The previous experiments demonstrated that Ca2+ release into the cytosolic 

nanodomain can trigger the activation of shape change via activation of MLCK.  Here 

we considered whether MLCK is a passive mediator of Ca2+ signalling, or can work to 

shape the elicited Ca2+ signalling by providing feedback to the cell. Positive control 

experiments demonstrated pre incubating platelets with DM-BAPTA prevented 

thrombin-evoked [Ca2+]cyt  signals (1.5 ± 0.8 % of control; n= 7;  P < 0.05; Fig 4.6A) 

Pre incubating DM-BAPTA-loaded platelets from the same donor with both 25 µmol L-

1 ML-7 significantly inhibited thrombin-evoked rises in [Ca2+]ext  to 39.0 ± 16.6 % of 

control (n = 7;  P < 0.05; Fig 4.6B). These results suggest that MLCK may also be a 

regulator of platelet Ca2+ signalling, and this may partly underlie the inhibitory effect of 

ML-7 on the thrombin-induced shape change.  However additional work will need to 

be performed due to previous results which suggest that this compound may also be 

an inhibitor of TRPC6 (Shi et al., 2007; Lei et al., 2014) 
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Figure 4.6 ML-7 pretreatment inhibits thrombin-evoked rises in [Ca2+]ext in DM-BAPTA-loaded 
platelets. (A) Fura-2-loaded human platelets suspended in supplemented HBS were preincubated with 
either 30 µmol.L-1 dimethyl-BAPTA/AM, or an equivalent volume of its vehicle, DMSO, for 10 min at 
37°C. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA and then 1 min later stimulated with 
0.5 U.mL-1 thrombin. Washed human platelets were suspended in supplemented HBS were pre-treated 
with 30 µmol.L-1 dimethyl-BAPTA/AM as well as either 25 µmol.L-1 ML-7 (B), or an equivalent volume of 
its vehicle, DMSO (B) for 10 min at 37°C. A final concentration of 2.5 µmol.L-1 Fluo-4 salt was then 
added immediately before the experiment. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA 
(not shown) and then 1 min later stimulated with 0.5 U.mL-1 thrombin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



103 
 

Similar experiments were also performed examining the effect of the Rho Kinase 

inhibitor, Y-27632. Positive control experiments demonstrated pre incubating platelets 

with DM-BAPTA significantly prevented the thrombin-evoked [Ca2+]cyt  signals to (1.9 

± 1.1 % of control; n = 4; P < 0.05; Fig 4.7A). Surprisingly, pre incubating DM-BAPTA-

loaded platelets from the same donor with 30 µmol.L-1 Y-27632 resulted in a significant 

reduction in thrombin-evoked rise in [Ca2+]ext to 53.2± 13.9 % of control (n = 7; P < 

0.05; Fig 4.7B). These results therefore support the ML-7 results and suggest the 

possibility that activation of myosin via phosphorylation of the myosin light chain may 

play a role in facilitating Ca2+ signalling in the cytosolic nanodomain 
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Figure 4.7 Y-27632 pretreatment inhibits thrombin-evoked rises in [Ca2+]ext in DM-BAPTA-loaded 
platelets. (A) Fura-2-loaded human platelets suspended in supplemented HBS were preincubated with 
either 30 µmol.L-1 dimethyl-BAPTA/AM, or an equivalent volume of its vehicle, DMSO, for 10 min at 
37°C. Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA and then 1 min later stimulated with 
0.5 U.mL-1 thrombin. (A) Washed human platelets were suspended in supplemented HBS were pre-
treated with either 20 µmol.L-1 Y-27632 (B), or an equivalent volume of its vehicle, DMSO (B), for 10 
min at 37°C. 30 µmol.L-1 dimethyl-BAPTA/AM for the final 10 min of the incubation at 37°C. A final 
concentration of 2.5 µmol.L-1 Fluo-4 salt was then added immediately before the experiment. 
Extracellular Ca2+ was then chelated with 1 mmol.L-1 EGTA (not shown) and then 1 min later stimulated 
with 0.5 U.mL-1 thrombin  
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5. Investigating the role of the Na+/Ca2+ exchanger in regulating agonist-evoked 

Ca2+ signalling in CD34+-derived human megakaryocytes. 

The study of the platelet membrane complex is limited by its nanometer dimensions 

which preclude any direct live cell imaging, as well as our inability to try to selectively 

dismantle it by genetic disruption of potential scaffolding molecules. These limitations 

have led to us conducting pilot studies into the potential usefulness of culture-derived 

megakaryocytes as a model for platelet Ca2+ signalling. This seems plausible given 

that number of similar Ca2+-signalling proteins such as Orai1, STIM1, TRPC6, P2X1 

and PAR receptors have been found to be expressed in these cells (Di Buduo et al., 

2014). Similarly more recent evidence has shown that megakaryocytes also possess 

a nanojunction akin to the platelet membrane complex, with the smooth endoplasmic 

reticulum and demarcation membrane system being shown to be closely apposed 

(Eckly et al., 2014). If similar roles for the NCX in regulating agonist-evoked Ca2+ 

signalling can be demonstrated in these human megakaryocytic cell lineages, then it 

might be possible to use the larger and genetically-accessible human megakaryocyte 

as a model system in which to test ideas on the proteins that mediate Ca2+ signalling 

or provide a mechanical scaffold to hold this structure together.  

 

5.1  Cultured CD34+ cells exhibit development of features of mature 

megakaryocytes as well as an extensive network of intracellular Ca2+ stores.  

These morphological features are not affected by culturing with calcitriol. 

Previous studies have demonstrated the effectiveness of culturing human 

megakaryocytic lineages from bone marrow- and cord-derived CD34+ cells in liquid 
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culture (Pineault et al., 2013) We have utilised the method of Pineault et al., (2013) to 

culture human megakaryocytic lineages from these cells. Recent work in our 

laboratory have defined that the use of a liquid culturing incorporating a cytokine 

cocktail of TPO, IL-6, IL-9 and SCF is able to induced cells with a number of features 

of mature megakaryocytic cells within 7-9 days of initiation of the liquid culture.  These 

features include a significant expansion in diameter to above 20 μm, development of 

a multi-lobular nucleus and demarcation membrane system, and increased expression 

of cell surface markers of this lineage such as CD41a and CD42b (A. Al-Ghannam 

and A.G.S. Harper, personal communication).   

Previous studies have provided evidence for an increase in Na+/Ca2+ exchange activity 

in cells additionally exposed to calcitriol (1,25-dihydroxycholecalciferol) in the latter 

stages of the culture system. Initial studies were conducted to examine whether the 

inclusion of calcitriol into the culture system can alter the normal development of the 

CD34+ cells. Cells were cultured for 4 days in the conditions previously described with 

Pineault et al., (2013). On this day the cultures were further supplement with either 

calcitriol or an equivalent volume of its vehicle DMSO, and these cells were then 

cultured for a further 3 days.  On Day 7 the cells were loaded with the nuclear dye, 

Hoechst 33342, and an indicator of intracellular Ca2+ stores, Fluo-5N (Sage et al., 

2011). These cells were then imaged in the presence of Rhod-5N as an indicator of 

the extracellular fluid to help visualise the demarcation membrane system using an 

analogous method to (Mahaut Smith et al., 2003) Fluo-5N fluorescence in both DMSO- 

and Calcitriol-treated megakaryocytes had a punctate distribution demonstrating a 

widespread distribution of the stores throughout the cells. The mean Fluo-5N 

fluorescence level was same in both culture conditions, with no significant difference 

in both DMSO- and calcitriol-treated cells (264.0 ± 65.8 and 355.0 ± 75.0 arbitrary 
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units for DMSO- and calcitriol-treated cells respectively; n = 4; P = 0.45; Fig 5.1) 

Similarly Rhod -5N fluorescence was found widely distributed within the inner 

boundary of the megakaryocytes consistent with the presence of a DMS in both cell 

significantly difference in both DMSO- and calcitriol-treated cells (612.4 ± 218.0 and 

620.0 ± 167.2 arbitrary units for DMSO- and calcitriol-treated cells respectively; n = 4; 

P = 0.97; Fig 5.1). Hoechst 33342 fluorescence indicated the presence of bi- or multi-

lobular nuclei characteristic of more mature megakaryocytic lineages in both the 

DMSO- and Calcitriol-treated cell populations. These results demonstrate that 

calcitriol pre-treatment has no detectable effect on the development of the intracellular 

structures within the CD34+-cultured megakaryocytes. 
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Fig 5.1 Treatment with calcitriol has no significant effect on the morphology of CD34+-cultured 
human megakaryocytes. Megakaryocytic CD34+ cell cultures were supplemented on day 4 with either 
100 nM calcitriol (E-H), or an equivalent volume of sterile DMSO(A-D).  On Day 7 cells were loaded 
with Fluo-5N and Hoechst 33342. Cells were washed and resuspended into supplemented HBS 
containing 1 mmol.L-1 CaCl2 and 5 μmol.L-1 Rhod-5N salt.  Cells were allowed to adhere and spread on 
poly-L-lysine-coated coverslips. Fluorescence was then monitored with a Fluoview FV 1200 laser 
scanning confocal microscope. Fluo-5N fluorescence (D, H; green image), Rhod 5N fluorescence (B,F 
; red image), Hoechst fluorescence (C, G; blue image) and transmitted light (A,E) images of cells are 
shown. 
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5.2 Pre-treatment with NCX inhibitor, KB-R7943, alters thrombin-evoked Ca2+ 

signalling in CD34+-derived megakaryocytic cells. 

Ca2+ signalling plays a key role in regulating human megakaryocytic function (Di 

Buduo et al., 2014). Previous studies have demonstrated that maturing 

megakaryocytes from CD34+ cells develop thrombin-evoked Ca2+ signalling (den 

Dekker et al., 2001). To see if these cells may elicit Ca2+ signalling in an analogous 

manner to human platelets, experiments were performed to examine whether pre-

treatment of CD34+-cultured megakaryocytic cells with KB-R7943 elicits similar effects 

to those previously seen in the presence and absence of extracellular Ca2+ (Sage et 

al., 2013).  

When stimulated in the absence of extracellular Ca2+. KB-R7943 pre-treatment yielded 

a significant reduction in thrombin-evoked rise in [Ca2+]cyt to 63.2 ± 10.4 % of control 

(n = 7; P < 0.05; Fig 5.2A), in line with our previous findings in human platelets (Sage 

et al., 2013). Whereas KB-R7943 pre- treatment had no significant effect on thrombin-

evoked rises in [Ca2+]cyt elicited in the presence of extracellular Ca2+ (96.6 ± 13.1 % of 

control; n = 12; P > 0.05; Fig 5.2B).This lack of  consistent effect on thrombin-evoked 

signalling was unexpected as the data would have expected some effect.   

We therefore considered whether the results were due to a maturation-dependent 

effect on NCX expression and/or function, as similar experiments have suggested that 

megakaryocyte maturation can alter the Ca2+ signalling proteins they express (den 

Dekker et al., 2001). This suggests the possibility that the variability in the level of 

maturation of the megakaryocyte between cultures may account for the lack of  
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Figure 5.2 Pretreament with KB-R7943 alters thrombin-evoked rises in [Ca2+]cyt in CD34+-cultured 
human megakaryocytes in a maturation-dependent manner. Megakaryocytic CD34+ cell cultures 
were initiated in which the cells were exposed to either 30 ng.mL-1 TPO and 7.5 ng.mL-1 IL-6 (A,B) or 
50 ng.mL-1 TPO and 20 ng.mL-1 IL-6 (C,D).On day 7-9 of the culture cells were loaded with Fura-2. 
Cells were then washed and resuspended in supplemented HBS. Extracellular Ca2+ was then either 
raised to 1 mmol.L-1 (A,C) or chelated by addition of 1 mmol.L-1 EGTA (B,D).  Cells were then stimulated 
with 0.5 U.mL-1 thrombin 
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consistent effect of KB-R7943 on the cells treated in the presence of extracellular Ca2+ 

. Initial experiments to assess this possibility therefore examined the effect of KB-

R7943 when the concentration of TPO and IL-6 cells were cultured in was increased 

to 50 ng.mL-1 and 20 ng.mL-1 respectively to try to better standardise maturation of the 

megakaryocytes across cultures. Under these conditions a significant potentiation of 

the thrombin-evoked rise in [Ca2+]cyt to 142.7± 18.2 % of control (n = 6; P < 0.05; Fig 

5.2C) was observed in cells treated in the presence of extracellular Ca2+. In contrast, 

KB-R7943 pre-treatment in the absence of extracellular Ca2+ did not cause any 

consistent effect in thrombin evoked rise in [Ca2+]cyt (123.8 ± 29.1 % of control 

respectively; n = 6; P > 0.05; Fig 5.2D). These results suggest the possibility that 

greater maturation favours greater forward mode NCX activity as inhibition of the NCX 

removes the consistent inhibition in the absence of extracellular Ca2+, and triggers a 

consistent potentiation in the presence of this cation. How this increased NCX activity 

is brought about is unclear, but may be due to a change in expression of the receptor 

or a molecular which regulates its activity.  Further work will be needed to examine 

this further. 

5.3 KB-R7943 inhibits thrombin-evoked rises in [Na+]cyt in CD34+-derived 

megakaryocytic cells. 

Interference with NCX function should impact on both thrombin-evoked rises in 

[Ca2+]cyt and [Na+]cyt. If KB-R7943 is blocking forward mode exchange then it should 

reduce thrombin-evoked rises in [Na+]cyt, whereas if reverse mode exchange is being 

inhibited then it should potentiate this parameter. To confirm the previous findings of 

an effect of forward-mode activity, experiments were also performed to examine the 

effect of KB-R7943 pre-treatment on thrombin-evoked rises in [Na+]cyt in 

megakaryocytes treated with the higher doses of cytokines. Pre-treatment of  
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Figure 5.3 Pre-treatment with KB-R7943 inhibits thrombin-evoked rises in [Na+]cyt in CD34+-

cultured human megakaryocytes. Megakaryocytic CD34+ cell cultures were loaded with SBFI on 

day 7-9 of the culture. Cells were then washed and resuspended in supplemented HBS. Extracellular 

Ca2+ was then either raised to 1 mmol.L-1 (A) or chelated by addition of 1 mmol.L-1 EGTA (B).  Cells 

were then stimulated with 0.5 U.mL-1 thrombin  
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megakaryocytes with KB-R7943 in the presence and absence of extracellular Ca2+ 

appeared to almost abolish the thrombin evoked rise in [Na+]cyt in four out of the five 

experiments, and significantly inhibit in the other. These data would appear to indicate 

that KB-R7943 is inhibiting forward mode exchange as KB-R7943 prevents Na+ entry 

into the cell, thus indicating that Ca2+ must be moving out in the opposite direction.  

These data also indicate that the forward mode NCX activity isthe only significant Na+ 

entry triggered into the megakaryocyte under these conditions. 

The abolishment of the Na+ rise in KB-R7943-treated cells is surprising as it would be 

likely that other Na+-permeable channels such as TRPC6 would also be activated by 

thrombin stimulation (Tolhurst, Carter et al. 2008).These results may suggest the 

possibility that this NCX inhibitor may be having off-target effects on other cells (Kraft 

2007). However the previous data on rises in [Ca2+]cyt showed that Ca2+ was not 

significantly blocked in all occasions by pre-treatment with KB-R7943, suggest that 

Ca2+-permeable ion channels are not significantly affected by treatment with this drug. 

(Fig 5.3A,B). These data suggest that an off-target effect on TRPC channels is unlikely 

to account for all the data, and that the drugs are inhibiting forward mode activity of 

the NCX. The most likely reason for being unable to pick up any rises in KB-R7943-

treated cells is that this microplate-based assay only has a limited dynamic range and 

so is not sufficiently sensitive enough to pick up the small residual Na+ entry which 

remains after blockade of the NCX. Repeating these experiments with higher cell 

number may help us better identify the Na+-permeable pathways in cultured 

megakaryocytes. 
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5.4  Replacement of extracellular sodium with NMDG alters thrombin-evoked 

Ca2+ signalling in megakaryocytes 

As NCX inhibitors are known to have non-specific effects on other targets, experiments 

were also performed to examine the effect of inhibiting NCX function elicited by 

replacement of Na+ in the extracellular medium with an equimolar amount of the non-

permeant organic cation, NMDG (Harper & Sage, 2007). Replacement of extracellular 

Na+ with NMDG was shown in initial experiments to significantly reduce thrombin-

evoked Na+ rises, in line with the loss of the transmembrane sodium gradient (25.3 ± 

16.1% and 7.4± 5.0% of control when stimulated in the presence and absence of Ca2+ 

respectively, n = 7; P < 0.05; Fig 5.4 A,B),. Replacement of extracellular Na+ with 

NMDG potentiated thrombin-evoked Ca2+ signals elicited in the absence of 

extracellular Ca2+ to 162.3% ± 38.4% of control (n = 8; P < 0.05; Fig 5.4C). However 

there was no consistent effect of Na+ replacement on thrombin-evoked rises in [Ca2+]cyt  

when the megakaryocytic cells were stimulated in the presence of extracellular Ca2+ 

(118.4% ± 19.1% of control when stimulated in the presence and absence of Ca2+ 

respectively, n= 8; P > 0.05; ; Fig 5.4D). Both KB-R7943 and NMDG appear to elicit a 

tendency towards potentiating the thrombin- evoked Ca2+ signals observed in cells 

treated with the higher cytokine concentrations.  This would also be consistent with 

the observed inhibitor effect of KB-R7943 on thrombin-evoked rises in [Na+]cyt.  

However, the pattern of inhibition is not consistent when observed in the presence and 

absence of extracellular Ca2+.  This in consistency may be due to the limitations of the 

use of a single wavelength microplate-based assay. Alternatively it may indicate that 

megakaryocytes have a mixture of both forward and reverse mode activity in response 

to stimulation, as KB-R7943 preferentially inhibits reverse mode (Watano et al., 1996) 

variable blocking of forward mode activity may allow this effect to predominate in some  
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Figure 5.4 Na+ replacement affects thrombin-evoked Ca2+ signalling in CD34+-cultured 
megakaryocytes. Megakaryocytic CD34+ cell cultures were loaded with either SBFI (A,B) or Fura-2 
(C,D) on day 7-9 of the culture. Cells were then washed and resuspended in either supplemented HBS 
or an HBS in which Na+ was replaced with an equimolar amount of NMDG. Extracellular Ca2+ was then 
either chelated by addition of 1 mmol.L-1 EGTA (A,C) or raised to 1 mmol.L-1 (B,D).  Cells were then 
stimulated with 0.5 U.mL-1 thrombin 
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runs leading to the inconsistent effects.  Further work will be required to examine these 

possibilities more closely. 

5.5  Calcitriol differentially affects thrombin-evoked Ca2+ signalling elicited in 

the presence and absence of extracellular Ca2+ in CD34+-derived 

megakaryocytic cells.  

Previous studies demonstrated that genetic knock-out of the klotho protein can lead 

to an upregulation of NCX-mediated activity in megakaryocytes from these mice 

(Schmid et al., 2015).  Klotho is a type 1 transmembrane protein highly expressed in 

kidney parathyroid glands, and epithelial cells of choroid plexus of brain but not 

expressed in platelets or megakaryocytes (Kuro-o et al., 1997; Okada et al., 2000; 

Yoshida et al., 2002; Kurosu et al., 2005; John et al., 2011). Klotho is a negative 

regulator of the endogenous formation of Calcitriol, and therefore its remove leads to 

excessive production of this compound. Calcitriol has been shown to be a negative 

regulator of agonist-evoked rises in [Ca2+]cyt in both platelets and megakaryocytes 

(Kuro-o et al., 1997; Tsujikawa et al., 2003; Borst et al., 2014). This effect on 

megakaryocytes appears to be due to an up-regulation of NCX activity which is 

capable of downregulating the net Ca2+ signal seen from store-operated Ca2+ entry 

(Schmid et al., 2015). 

Experiments were performed to investigate whether supplementation of the 

megakaryocyte liquid culture with calcitriol for the last 72 hours of the culture can alter 

the thrombin-evoked Ca2+ signals. Calcitriol elicited a significant reduction in the 

thrombin-evoked [Ca2+]cyt rises seen in the absence of extracellular Ca2+ to 76.6 ± 6.4 

% of control  (n = 6; P<0.05; Fig 5.5A).   In contrast, initial studies performed with Ca2+  
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Figure 5.5 Calcitriol alters thrombin-evoked Ca2+ signals both in the presence and absence of 
extracellular Ca2+ in CD34+-derived megakaryocytic cells. Megakaryocytic CD34+ cell cultures were 
supplemented on day 4 with either 100 nmol.L-1 calcitriol, or an equivalent volume of sterile DMSO.  On 
Day 7 cells were loaded with Fura-2, washed and resuspended in supplemented HBS in which 
extracellular Ca2+ was either chelated by addition of  1 mmol.L-1 EGTA (A) or raised to 1 mmol.L-1 (B).  
Cells were then stimulated with 0.5 U.mL-1 thrombin 
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in the extracellular medium showed that calcitriol treatment tended to increase 

thrombin-evoked Ca2+ signals to 117.1± 35.0 % of control (n = 4; P = 0.73; Fig 5.5B), 

although further repetitions of this work will be required to confirm this preliminary 

finding. 

 These results suggest that up regulation of NCX activity leads to a net increase in 

forward mode NCX activity in the absence of extracellular Ca2+, as would be expected 

in line with previous studies of the effects of calcitriol in platelets (Borst et al., 2014). 

In contrast, our preliminary studies in the presence of extracellular Ca2+ suggests that 

in physiological conditions calcitriol may potentiate thrombin-evoked signalling, 

possibly via encouraging reverse mode activity. However additional experiments 

would be needed to confirm that appropriate changes in localised [Na+]cyt or the 

membrane potential occur to make this thermodynamically possible. 

5.6  Calcitriol has no significant effect on NCX3 expression and localisation in 

megakaryocytes.  

Experiments were performed to investigate whether pre-treatment with Calcitriol 

increases the basal expression or subcellular distribution of NCX3 in the CD34+-

cultured megakaryocytes. To examine this cells were fixed from cultures pre-treated 

with either Calcitriol or DMSO and stained using the immunolabelling approaches 

defined for platelets in chapter 4.  

Fluorescent imaging of NCX3-labelled megakaryocytes found fluorescence 

predominantly found associated within bright puncta within the inner regions of the 

cell. This labelling was not due to non-specific binding of the secondary antibody as 

primary free control samples taken from each of the cultures did not show any 

significant staining (Fig 5.6).  As the samples were not permeabilised prior to antibody,  
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Figure 5.6 NCX3 appears to be localised within the demarcation membrane system of CD34+ 
derived megakaryocytes. (A-D) Day 4 cells were treated with DMSO (A, B) or 100 nmol.L-1 calcitriol 
(C, D or no antibody (E,F)). On Day 7 cells were fixed and incubated with NCX 3 antibody followed by 
a fluorophore-conjugated secondary antibody. Cells were washed and resuspended in supplemented 
HBS. The labelled cells were allowed to settle for 10 min on poly-L-lysine –coated chambered slide. 
Fluorescent images were captured using a Fluoview FV 1200 laser scanning confocal microscope 
(Olympus, UK) with a PLAPON 100x oil immersion objective. Images for fluorescence alone (left) or 
overlaid over the transmitted light image (right) are shown. The results presented are representative of 
3 experiments respectively. 
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these results suggest that the NCX3 is likely to be found within the demarcation 

membrane system. However, Calcitriol treatment did not affect the mean fluorescence 

found within the cell (668.7 ± 45.4 vs 673. ± 45.4 for DMSO- and Calcitriol-treated cells 

respectively n = 5; P> 0.05). These results demonstrate that Calcitriol-treatment has 

no effect on the basal expression of NCX3 in the cultured megakaryocytes.  

There was however some indication that the intensity of individual puncta may be 

brighter in calcitriol-treated cells suggesting that while NCX3 expression is unchanged 

there may be a greater concentration of these exchangers in some sub regions of the 

cell. To examine this, the skew of the pixel fluorescence distribution was measured for 

all cells, as a higher skew would indicate more outliers in the distribution indicative of 

an accumulation in a specific subcellular location. Although there was a tendency to 

more outliers in the pixel fluorescence distribution of cells, this effect was not 

significantly different overall (Skew = 1.7 ± 0.2 for DMSO-treated cells and 1.9 ± 0.2 

for Calcitriol-treated cells; n = 5; P> 0.05). 

Previous studies have demonstrated that Calcitriol upregulates Na+/Ca2+ exchanger 

activity in megakaryocytes (Schmid et al., 2015). Our data here suggests that this 

change may not be due to an increased expression of the NCX3 isoform in the cultured 

megakaryocytes. Instead this effect may be due to either changed expression of other 

NCX-regulating proteins or upregulation of expression of a distinct NCX isoform such 

as NCX1, which has previously been reported to have a low level of expression in 

human platelets (Roberts et al., 2012). Further work will be required to define this 

effect more closely. 
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6. Discussion 

6.1   Human platelets contain a functionally-isolated cytosolic nanodomain 

which links intracellular Ca2+ release with the Na+/Ca2+ exchanger 

Previous work in our lab has demonstrated that human platelet Ca2+ signalling utilises 

a pericellular Ca2+ recycling system. This model hypothesises that Ca2+ release from 

intracellular Ca2+ stores occurs initially into a cytosolic nanodomain enclosed within 

the membrane complex.  This hypothesis arose from a previous quantitative analysis 

of recorded Na+ and Ca2+ fluxes observed out of platelets, which suggested that NCX 

removal must be intimately associated with Ca2+ release from intracellular stores 

(Sage et al., 2013). However, despite the data providing circumstantial evidence for 

such a nanodomain being present in human platelets, no direct data thus far exists for 

it.   

 The work in this thesis has provided the first evidence for the presence of a cytosolic 

Ca2+ nanodomain in human platelets. Experiments consistently demonstrated that 

stimulating DM-BAPTA-loaded platelet with thrombin in the absence of extracellular 

Ca2+ prevents any notable rises in cytosolic Ca2+ concentration. Despite there being 

no notable Ca2+ rises in these cells, it was still possible to observe an NCX-mediated 

Ca2+ removal from these cells. This is possible as Dimethyl BAPTA buffers Ca2+ rapidly 

and thus spatially restricts the spread of free Ca2+ from its point of entry into the cytosol, 

however it does not bind it instantly allowing Ca2+ signals within the nanodomain of 

cytosol surround the Ca2+-permeable channel (Neher & Almers, 1986; Stern, 1992; 

Deisseroth et al., 1996; Neher, 1998; Parekh, 2008). This therefore suggests that Ca2+ 

release from the intracellular stores must be intimately associated with the NCX to 

prevent it from being buffered by BAPTA before it reaches this exchanger. Previous   
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Fig 6.1 A model of how DM-BAPTA-loading affects human platelet Ca2+ signalling (A) In untreated 
platelets, Ca2+ release from the dense tubular system occurs into cytosolic nanodomain enclosed within 
the membrane complex. The NCX present in this cytosolic nanodomain functions in forward mode 
direction to remove the Ca2+ into open canalicular system. Ca2+ accumulated in the open canalicular 
system then recycles back into the cytosol through Ca2+ permeable ion channels. This recycled Ca2+  
helps maintain an elevated [Ca2+]cyt as well as facilitate triggering of dense granule secretion (B) DM-
BAPTA is a fast Ca2+ chelator efficiently buffers Ca2+ in the bulk cytosol but will not affect Ca2+ signals 
within about 20 nm of its point of entry into the cytosol. In DM-BAPTA-loaded cells, the thrombin-evoked 
rise in bulk [Ca2+]cyt is prevented. However Ca2+ entry or release into enclosed areas of the cytosol, 
such as those in the MC, could occur relatively unaffected. This allows the NCX to continue to remove 
Ca2+ released from the DTS into the pericellular region in DM-BAPTA-loaded cells creating a pericellular 
Ca2+ hotspot. 
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work by other investigators have suggested that this apposition of the IP3R and NCX 

must be within 10-20 nm (Neher & Almers, 1986; Stern, 1992; Deisseroth et al., 1996; 

Neher, 1998; Parekh, 2008) to allow Ca2+ transport to be unaffected by the presence 

of DM-BAPTA.  As the MC is the only location in which the DTS and plasma membrane 

come into close enough contact.  This provides a clear indication that the transporters 

must be localised to the MC (White, 1972; van Nispen tot Pannerden et al., 2010). 

Disorganisation of the DTS structure in platelets by pre-treating with nicergoline, 

significantly reduced the thrombin-evoked rise in [Ca2+]cyt, in line with a destabilisation 

of the normal close relationship between the intracellular stores and the plasma 

membrane creating the cytosolic nanodomain that has been identified here. 

The punctate localisation of the NCX3 antibody inside the boundaries of the platelet 

suggests that NCX3 is found predominantly in specific sites within the OCS. From our 

previous data this would be consistent with NCX3 antibody being found at the 

membrane complex. An interesting finding was that pretreatment of platelets with 

nicergoline disrupts this distribution leading to a more homogenous distribution of 

fluorescence throughout the inner reaches of the cell.  This suggests that the 

microtubule-dependent localisation of the DTS also has a knock-on effect on the 

distribution of the OCS-localised NCX3.  These results would therefore suggest the 

presence of a multimolecular complex that helps bind NCX3 into this localisation within 

the cell. Further work will be required to identify the identity of this scaffold of proteins 

that hold this protein in place. 

Examination of single cell images of the pericellular Ca2+ signal showed that DM-

BAPTA-loaded platelets could still generate Ca2+ hotspots, although they were often 

weaker and smaller than signals seen previously. In addition, pericellular Ca2+ signals 

very rarely spread through the platelets. These results therefore suggest that BAPTA-
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loading also prevents calcium-induced calcium release (CICR) which is likely 

responsible for augmenting thrombin-evoked Ca2+ release (Somasundaram et al., 

1997; van Gorp et al., 2002; Sage et al., 2013) and this prevents the platelet from 

creating stronger pericellular signals which are then able to spread effectively down 

their concentration gradient.  This therefore creates a situation in which we can study 

the functional properties of the Ca2+ rise in this nanodomain in isolation. 

6.2  A role for the cytosolic nanodomain in controlling platelet shape change 

Many platelet functional responses are inhibited by DM-BAPTA-loading thereby 

demonstrating that Ca2+ rises in the cytosolic nanodomain alone are not sufficient to 

elicit functions such as granule secretion or platelet aggregation (Paul et al., 1999). 

However previous studies have found that one of the platelet shape change is 

insensitive to buffering with this intracellular Ca2+ chelator, therefore we examined the 

effect of manipulations of the Ca2+ concentration within the microdomain. By utilising 

pharmacological inhibitors of IP3R and the NCX, we have found that both of these 

transporters are likely to be responsible for controlling Ca2+ in this cytosolic through 

their ability to modulate the shape change responses seen in these cell types.  Further 

work will be required to see if other channels and transporter might also be able to 

contribute to this effect.   

Our experiments utilising ROCK and MLCK inhibitors have demonstrated a selective 

role for the Ca2+-dependent MLCK response in mediating the thrombin-evoked shape 

change in our cells. These results therefore confirm that modulation in the Ca2+ 

concentration within this nanodomain is responsible for the functional effects we see.  

It will also be interesting to examine whether other Ca2+ effectors could be selectively 

localised at this nanodomain 
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6.3  To what extent are culture-derived megakaryocytes a model for human 

platelet Ca2+ signalling? 

The pilot studies examining the role of NCX in human megakaryocytic function suggest 

that like platelets, agonist-evoked rises in [Ca2+]cyt in human megakaryocytes are 

closely regulated by the action of the NCX.  This appears to be principally due to 

inhibition of forward mode activity facilitating Ca2+ removal, which is similar to what 

was previously observed in human platelets (Harper et al., 2009; Sage et al., 2013).  

However, unlike human platelets, the overall effect of blocking this Ca2+ removal is to 

potentiate the elicited Ca2+ signal rather than the inhibition observed in platelets 

(Harper et al., 2009; Sage et al., 2013).  This suggests that Ca2+ removal could be 

linked to Ca2+ release in these cells, but that Ca2+ recycling back into the cell is not 

required to help maintain Ca2+ signals or trigger autocrine stimulation of these cells as 

seen in platelets (Sage et al., 2013) 

Our labelling data indicates that NCX3 may be localised in numerous puncta deep 

within the demarcation membrane system. Given the recent demonstration that the 

demarcation membrane system closely couples with portions of the smooth 

endoplasmic reticulum, this binding would leave open the possibility that the NCX3 is 

similarly localised within the megakaryocyte equivalent of the platelet membrane 

complex (Eckly et al., 2014). Therefore, further studies examining Ca2+ removal from 

DM-BAPTA-loaded megakaryocytes may be useful as it may be possible to use the 

cultured megakaryocyte model in which to study the development of the platelet 

membrane complex and the Ca2+ signalling systems localised within it.  Such a system 

may be valuable for helping to further our understanding of this poorly understood 

feature of platelet morphology.  
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The effect of calcitriol and higher cytokine concentration on megakaryocyte sensitivity 

to NCX inhibitors, suggests that NCX regulation changes significantly during 

development of the megakaryocyte. These effects may be brought about by a number 

of different ways including altering expression of NCX3 or other NCX isoforms, altering 

expression of regulators of [Na+]cyt such as the Na+/K+-ATPase and TRPC channels, 

or altering expression of other molecules known to affect NCX function (e.g. ATP, PKC 

and PKA activity). Further work will be required to distinguish these affects.   

6.4  Future Plans  

Here we have provided evidence for the presence of an NCX-associated cytosolic  

nanodomain involved in regulating Ca2+ signalling in human platelets. We have 

demonstrated that this nanodomain is probably enclosed within the membrane 

complex of the platelet. Although these results indicate the possibility that NCX3 could 

be localised at the MC, electron microscopy studies will be needed to confirm this.  

As nicergoline can disrupt the distribution of NCX3, it appears that the distribution of 

this exchanger is determined by its connection with the cortical microtubules and/or 

the DTS as part of a larger complex. Therefore, further experiments will also be 

needed to identify the mechanisms that help create the punctate distribution within 

platelets.   These may be due to chaperone proteins holding the NCX3 at the MC, or 

could be due to its recruitment to specific domains within the plasma membrane.  Our 

early results suggested the possibility of the NCX3 being localised within lipid rafts, 

but the effects of MBCD on the Na+ gradient makes this difficult to identify.  Western 

blotting of isolated lipid raft sub fractions of platelets may allow us to better examine 

this hypothesis.  
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This and previous work has suggested some interesting avenues for further 

investigation. For instance, the sensitivity of platelets to 2-APB pre-treatment of the 

KB-R7943- induced shape change suggests that IP3R1 is likely the principle mediator 

of Ca2+ release into this nanodomain.  It will also be interesting to find whether IP3R2 

is potentially localised at the membrane complex. Since this and previous data has 

suggested the close apposition of the IP3R and NCX, Fluorescence resonance energy 

transfer imaging could be used to confirm this close co-localisation of IP3R coupled 

with NCX in human platelets. Our work on the platelet shape change has indicated the 

possibility that certain subgroups of platelet effector proteins such as calmodulin may 

be found localised with the cytosolic nanodomain contained within the MC. Further 

work will be required to examine whether there is a preferential localisation of 

calmodulin and/or its downstream effector, MLCK in the same sub region as we have 

found for NCX3.  It would also be useful to examine whether other effectors such as 

CalDAG-GEFI are also localised here, as this may provide a basis for characterising 

the potential effect of MC-disrupting drugs on human platelet function. 

The initial work in culture-derived megakaryocytes has indicated that it could provide 

a good model for studying human platelet Ca2+ signalling. However, a wider 

characterisation of the NCX system in these cells is required.  For instance, 

experiments exploring the expression of NCX1, and whether calcitriol is able to 

upregulate its function may be useful to allow us to reconcile some of the 

inconsistencies of the data presented here.  In addition, examining whether other 

indirect modulators of NCX function, such as Na+/K+-ATPase, are involved in 

mediating the effect of calcitriol on megakaryocyte Ca2+ signalling.   
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6.5 Conclusion 

This work has provided evidence to support the hypothesis that platelet possess a 

cytosolic nanodomain made up by the close association of the dense tubular system 

with the platelet plasma  membrane.  This work therefore has shown that platelets 

possess at least 2 distinct cytosolic sub regions – a cytosolic nanodomain probably 

contained within the membrane complex and the bulk cytosol surrounding this. This 

could potentially have important consequences for how Ca2+ coupling to the effector 

systems may occur in these cells. The work presented on the shape change has 

supported the hypothesis that specific Ca2+-dependent functions may be localised 

within the cytosolic nanodomain.  These therefore suggest that preferential localisation 

of effectors in either the cytosolic nanodomain or in the bulk cytosol could affect their 

ability to respond to agonist-evoked Ca2+ signalling.  This work suggests that 

disrupting the membrane complex could alter the normal Ca2+ signalling of platelets 

as well as disrupting the coupling of this signal to its downstream pathways necessary 

for activating the platelets.  These data therefore support the idea that a MC-disrupting 

drug could present a new method for creating anti-platelet drugs.   
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