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Abstract: Articular cartilage is considered to have limited regenerative capacity, which has led to
the search for therapies to limit or halt the progression of its destruction. Perlecan, a multifunctional
heparan sulphate (HS) proteoglycan, promotes embryonic cartilage development and stabilises the
mature tissue. We investigated the immunolocalisation of perlecan and collagen between donor-
matched biopsies of human articular cartilage defects (n = 10 × 2) that were repaired either naturally
or using autologous cell therapy, and with age-matched normal cartilage. We explored how the
removal of HS from perlecan affects human chondrocytes in vitro. Immunohistochemistry showed
both a pericellular and diffuse matrix staining pattern for perlecan in both natural and cell therapy
repaired cartilage, which related to whether the morphology of the newly formed tissue was hyaline
cartilage or fibrocartilage. Immunostaining for perlecan was significantly greater in both these repair
tissues compared to normal age-matched controls. The immunolocalisation of collagens type III
and VI was also dependent on tissue morphology. Heparanase treatment of chondrocytes in vitro
resulted in significantly increased proliferation, while the expression of key chondrogenic surface
and genetic markers was unaffected. Perlecan was more prominent in chondrocyte clusters than in
individual cells after heparanase treatment. Heparanase treatment could be a means of increasing
chondrocyte responsiveness to cartilage injury and perhaps to improve repair of defects.

Keywords: human articular cartilage; perlecan; heparan sulphate; heparanase; cartilage repair;
natural repair; chondrocytes

1. Introduction

Articular cartilage can withstand compressive, tensile and shear loading and provides
efficient articulation of diarthrodial joints. If left untreated, damaged articular cartilage in a
joint can lead to osteoarthritis (OA) and ultimately joint failure [1,2]. Cell-based therapies
have been developed to promote cartilage repair and the regeneration of complex articular
structure to help patients with damaged or degenerate cartilage [3,4].

It is commonly reported that adult articular cartilage has a limited capacity for self-
regeneration [5]; however, a growing body of evidence from in vitro and in vivo models
suggests that in some cases, cartilage can undergo some form of natural repair [6,7]. A
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bovine explant model of cartilage healing showed that both young and mature animals
produced an outgrowth of tissue from the artificially damaged sites, but with young tissues
generating more hyaline-like cartilage [6]. In humans, magnetic resonance imaging (MRI)
observation of the knees of healthy subjects showed that some cartilage defects (tibial and
patellar) reduced in size or were completely filled between a baseline scan and a two year
follow up [7]. A natural healing response was also seen in some cartilage lesions of subjects
with anterior cruciate ligament (ACL) injuries 6–56 months after reconstructive surgery to
repair the ligament damage [8]. The mechanisms by which articular cartilage repairs itself
is poorly understood, but is believed to involve an interplay between cellular, biochemical
and mechanical factors [9–11].

Perlecan, also known as heparan sulphate proteoglycan-2, is a modular, multifunc-
tional proteoglycan with an ability to promote chondrocyte proliferation, differentiation
and matrix synthesis through its interactions with a large repertoire of ligands includ-
ing growth factors, morphogens and extracellular matrix (ECM)-stabilising glycopro-
teins [12,13]. One of the glycosaminoglycans contained in perlecan, heparan sulphate
(HS), is a vital extracellular component. Its cleavage causes matrix remodelling through
the release of HS-bound cytokines, growth factors, morphogens, proteases and inhibitory
proteins which regulate many cellular pathological and physiological processes [14,15].
Perlecan, through its HS chains, has chondrogenic properties and is able to regulate cell
signalling, matrix assembly and new tissue formation [12,16,17]. These attributes make
perlecan an important candidate molecule when trying to understand how cartilage repairs
itself. Hence, harnessing these attributes could also be beneficial in promoting the repair
of damaged articular cartilage in human joints. Heparanase is an endo-β-glucuronidase
cleaving the β(1,4)-glycosidic linkages between GlcN and GlcA in heparan sulphate (HS),
and is the only known mammalian enzyme displaying this glycolytic activity [18].

Interactions between perlecan and collagen type VI have been well established [19]
and, like perlecan, collagen type VI is believed to be involved in chondrocyte adhesion,
integrity and matrix interactions [20,21]. Collagen type III is another minor collagen found
in articular cartilage and has been suggested to have a role in reinforcing the cartilage
matrix as part of a healing response to matrix damage [22,23].

In the present study, we have immunolocalised perlecan and types III and VI collagen
for the first time in donor-matched samples of naturally and cell therapy repaired articular
cartilage of the human knee. We have also investigated whether the phenotype and
proliferation of cultured human chondrocytes was affected by the removal of cell surface
HS. We hypothesise that the distribution of perlecan in repaired adult cartilage mimics its
distribution in embryological cartilage.

2. Materials and Methods
2.1. Tissue Samples and Histology

The National Research Ethics Service (11/NW/0875) gave ethical approval and in-
formed written consent was obtained from patients undergoing autologous cell therapy for
cartilage defects in their knee (n = 10, aged 29–51 years). This procedure entails harvesting
~200 mg macroscopically healthy cartilage, usually from the trochlea, from which chondro-
cytes are isolated and culture expanded in monolayer, prior to re-implantation in the defect
site, usually on the patella or lateral/medial femoral condyles (LFC/MFC) [3]. At approxi-
mately 12 months post-implantation, full-depth cartilage biopsies with subchondral bone
(1.8 mm diameter) were obtained using a juvenile bone-marrow biopsy needle from both
the harvest site (naturally repaired) and the defect site where the cells had been implanted
(cell-treated repair). The location of these was ensured via the use of knee maps [24], where
the location of each procedure is recorded at the time of original surgery. Macroscopically
healthy cartilage was also obtained from the knees of five cadavers (aged 21–63 years) and
four donors undergoing total knee arthroplasty for OA (aged 51–81 years). A description
of the donor demographics and tissue samples used in the following experiments can be
found in Table 1. Healthy cadaveric cartilage from donors 11–14 was obtained within 24 h
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of death from the UK Human Tissue Bank with approval by the Trent Research Ethics
Committee (UK). Full-depth core biopsies of other samples (from TKR and natural and cell
therapy repair patients) of cartilage and underlying bone were snap frozen within 2–4 h of
harvesting in liquid nitrogen-cooled hexane and stored at −196 ◦C until cryosectioning.
Cores were embedded into tissue-freezing medium (Leica) and cryosectioned at 7 µm
thickness onto poly-L-lysine-coated slides. Cryosections were then stained with either
haematoxylin and eosin (H&E) or toluidine blue for the assessment of general morphology
and proteoglycan content of the cartilage, respectively. Collagen fibre organisation and
orientation were assessed under polarised light. The quality of the repaired cartilage was
assessed and scored semi-quantitatively using both the International Cartilage Repair
Society II Histology Score (ICRS II) [25] and the Oswestry Score [26], where a higher score
in each system represents better-quality cartilage.

Table 1. Donor demographics and samples.

Donor. Gender Age Surgical Intervention Tissue Used
(Experiments)

Tissue Location

Natural Repaired Cell Therapy
Repaired

1 F 42 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea LFC

2 M 22 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea MFC

3 M 41 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea LFC

4 M 29 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea Patella

5 M 30 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea Patella

6 M 34 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea MFC

7 F 36 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea Patellar

8 M 51 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea MFC

9 M 37 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea Patella

10 M 43 Follow-up arthroscopy Naturally and cell
repaired cartilage (IHC) Central Trochlea Trochlea

11 Unknown 21 Cadaver Healthy cartilage (IHC) MFC

12 Unknown 30 Cadaver Healthy cartilage (IHC) MFC

13 Unknown 40 Cadaver Healthy cartilage (IHC) MFC

14 Unknown 50 Cadaver Healthy cartilage (IHC) MFC

15 M 63 Cadaver Healthy cartilage (IHC) MFC

16 M 71 TKR
Chondrocytes

(heparanase treatment,
FC, RT-qPCR)

LFC/MFC
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Table 1. Cont.

Donor. Gender Age Surgical Intervention Tissue Used
(Experiments)

Tissue Location

Natural Repaired Cell Therapy
Repaired

17 F 81 TKR
Chondrocytes

(heparanase treatment,
FC, RT-qPCR)

LFC/MFC

18 F 51 TKR
Chondrocytes

(heparanase treatment,
FC, RT-qPCR)

LFC/MFC

19 M 74 TKR
Chondrocytes

(heparanase treatment,
FC, RT-qPCR)

LFC/MFC

20 M 22 Cadaver
Chondrocytes

(heparanase treatment,
FC, RT-qPCR)

LFC/MFC

FC = flow cytometry, IHC = immunohistochemistry, TKR = total knee replacement, ACI = autologous chondrocyte implantation,
LFC = lateral femoral condyle, and MFC = medial femoral condyle.

2.2. Immunohistochemistry

Cryosections were brought to room temperature and treated with 4800 U/mL
hyaluronidase (Sigma, Merck Life Science UK, Dorset, UK) for 2 h and fixed with 4%
formaldehyde for 10 min. Slides were washed 3 times in phosphate buffered saline (PBS)
between all steps and all steps were performed at room temperature. Goat and horse
serum were used to block non-specific binding of the primary mouse and rabbit antibodies,
respectively (30 min). Sections were then incubated with mouse monoclonal primary
antibodies against perlecan (clone A74, Abcam, Cambridge, UK), collagen type III (clone
FH-7A, Abcam) and a polyclonal rabbit antibody to bovine collagen type VI (kindly gifted
by Shirley Ayad, University of Manchester, UK) for 60 min, then incubated with biotiny-
lated goat anti-mouse and horse anti-rabbit secondary antibodies (Vectastain Elite ABC
kit, Vector Laboratories, Upper Heyford, UK) for monoclonal and polyclonal primary
antibodies, respectively, for 30 min. An isotype-matched IgG was used in place of the
primary monoclonal antibodies (R&D, Cat No MAB002) as a negative control and normal
rabbit serum (Abcam, Cat no ab7487) for the polyclonal, and 0.3% hydrogen peroxide
in methanol was used to block endogenous peroxidase activity (30 min). The Vectastain
Elite ABC kit (Vector Laboratories) was used to enhance labelling and the ImmPACT®

DAB Peroxidase substrate (Vector Laboratories) was used to reveal staining. The sections
were dehydrated in serial solutions of 70%, 90% and 100% isopropanol (2 min each) and
cleared in xylene (2 × 5 min). The slides were mounted in Pertex (CellPath, Newtown, UK)
before imaging.

A semi-quantitative score was developed to assess the immunolocalisation and degree
of staining for perlecan in the superficial, mid, and deep zones of the cartilage biopsies.
Each zone was scored separately as 0 = no staining, 1 = pericellular staining, 2 = mixture of
pericellular and matrix staining, or 3 = matrix staining. Each sample was then given an
overall score which was a summation of the scores for the three zones. A high overall score
equates to a more widespread matrix immunostaining, whereas a low score equates to
more restricted pericellular staining throughout the tissue. Image analysis was performed
using FIJI-ImageJ software (Version 1.5), using the Colour Deconvolution and Threshold
plugins to establish the levels of perlecan staining as a percentage of the total area of
the section.
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2.3. Isolation and Culture of Chondrocytes

Chondrocytes were isolated from macroscopically normal cartilage taken from four
patients having arthroplasty and one cadaver (Table 1), as previously described [27].
In brief, cartilage tissues were minced and digested for 16 h with collagenase type II
(250 IU/mg dry weight, Worthington, New Jersey, USA) at 37 ◦C. The extracted cells, were
seeded at 5000 cell/cm2 in complete culture media containing Dulbecco’s Modified Eagle’s
Medium/F-12 (DMEM/F-12) with 1% (v/v) penicillin/streptomycin (P/S) and 10% (v/v)
foetal calf serum (all Life Technologies, Loughborough, UK). Chondrocytes were passaged
at 70–80% confluence and cultured to passage 2 (P2).

2.4. Heparanase Treatment of Chondrocytes and Live Cell Imaging

At P2, chondrocytes were seeded into 12-well plates at or in chamber slides (with
8 chambers) 5200 cells/cm2, and treated with complete media supplemented with or
without 200 ng/mL of recombinant active human heparanase (Bio-Techne, Abingdon, UK;
20 ng of enzyme results in >50% of optical density (OD) reduction as measured by heparan
sulphate release from human syndecan-4) for 48 h. The 12-well plate was placed in a
Cell-IQ (ChipMan Technologies, Tampere, Finland) live imaging platform to acquire phase
contrast images of all wells, every ten minutes, during the 48-h culture. A built-in analysis
software in the Cell-IQ was used to determine the number of cells in each image to produce
growth curves of cells treated with heparanase, in comparison to control cells with no
enzyme. The mean and standard deviation of the cell counts from three fields of view from
three separate repeat wells were taken. After 48 h, the cells were harvested and prepared
for multichromatic flow cytometry and real-time quantitative polymerase chain reaction
(RT-qPCR) analysis.

The cells within the chamber slides were washed three times with PBS, fixed with
paraformaldehyde for 10 min and chamber slides were stored at 4 ◦C until used for
immunocytochemistry.

2.5. Immunocytochemistry and Toluidine Blue Staining of Heparanase-Treated Chondrocytes

Chamber slides were brought to room temperate and the PBS replaced with 0.2%
Tween 20 for 10 min to permeabilise the cells. After three washes with PBS, the same stain-
ing protocol used for immunohistochemistry (see Section 2.2) was followed to reveal the
presence of perlecan on the adherent cells, with the addition of a haematoxylin counterstain
(diluted 1:3) for 5 s before the slides were mounted in Pertex.

To visualise the presence of glycosaminoglycans, chamber slides were brought to room
temperate and the PBS replaced with toluidine blue for 30 s, then washed with distilled
water for 5 min. The slides were dehydrated in 70%, 90% and 100% isopropanol (2 min
each) and cleared in xylene (2 × 5 min). The slides were mounted in Pertex for imaging.

2.6. Multichromatic Flow Cytometry

A panel of 12 surface markers was used in multichromatic flow cytometry to assess
the phenotype of the cells. The harvested cells were blocked with human IgG (Grifols,
Cambridge, UK) for 1 h, washed with PBS and incubated for 30 min with antibodies against
the mesenchymal stromal/stem cell (MSC) markers CD73, CD90 and CD105 putative
chondropotency markers CD151, CD166, FGFR3, CD44 and integrins CD29, CD49a, CD49b
CD49c, CD51/CD61 (all BD Biosciences, except for FGFR-3 which was sourced from R&D
Systems). The matching isotype controls for each antibody were also prepared according
to manufacturer’s recommendations. At least 5000 cells were measured per marker via a
FACS Canto II cytometer and analysis was performed using the FACS Diva software.

2.7. RNA Extraction and Reverse Transcription Quantitative Polymerase Chain
Reaction (RT-qPCR)

To determine the effects of the heparanase treatment on gene expression, RNA was
extracted using the RNeasy® mini kit (Qiagen, Manchester, UK) and cDNA was generated
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using a High-Capacity cDNA Reverse Transcriptase Kit® (Applied Biosystems, Lough-
borough, UK) according to the manufacturers’ protocols. RT-qPCR was performed on a
QuantStudio 3 real-time PCR system (Applied Biosystems) using SYBR green QuantiTect
primer assays (Qiagen) to assess the gene expression of Sox-9 (SOX9), aggrecan (ACAN),
collagen type II (COL2A1), fibroblast growth factor receptor 3 (FGFR3), collagen type
X (COL10) and activin receptor-like kinase (ALK-1). Peptidylprolyl Isomerase A (PPIA)
and TATA-box binding protein (TBP) were used as reference genes and the delta-delta
Ct method was employed to determine the relative fold change in gene expression levels
between heparanase-treated and untreated cells.

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 7. The Shapiro–Wilk
test was used to determine the normality of data. T-tests and Pearson’s test were used
to compare and correlate histology and immunohistochemistry scores, respectively. A
two-way ANOVA with multiple comparisons was used to analyse the growth kinetics of
the cells treated with heparanase and a paired, one-sample t-test for the fold change in
gene expression. A p-value ≤ 0.05 was considered statistically significant.

3. Results
3.1. Morphological Structure of Healthy and Repaired Cartilage

The general morphology of the repaired tissue biopsies was very variable, more
so for the naturally repaired samples than the cell therapy repaired samples. Overall,
donor-matched natural and cell therapy repaired samples showed no distinguishable
trend or correlation in terms of tissue morphology (Figure 1). Of the naturally repaired
biopsies, 3/10 were predominantly hyaline and 4/10 fibrocartilage, 1/10 was a mixture
of hyaline and fibrocartilage and 2/10 were a fibrous morphology. Of the cell therapy
repaired biopsies, 7/10 were fibrocartilage and 3/10 were of a mixed hyaline/fibrocartilage
morphology with no discernible differences in tissue morphology noted with varying
anatomical location of the repair cartilage site. The ICRS overall histology score was not
significantly different between naturally repaired and cell therapy repaired samples (mean
scores of 5.6 ± 1.9 SD and 5.1 ± 0.8 SD, respectively, p = 0.393). Matrix metachromasia was
generally better in the cell therapy repaired cartilage samples than in the naturally repaired
ones. Cell morphology was marginally better in the cell therapy repaired biopsies, but not
significantly different to the naturally repaired biopsies. Vascularisation was observed in
6/10 naturally repaired biopsies, but not in the cell therapy repaired or normal samples.

3.2. Perlecan and Collagen Types III and VI Have a Diffuse Immunolocalisation in Repair
Cartilage Tissues

Perlecan was localised in a discrete manner in the pericellular matrix around chondro-
cytes in healthy cartilage (Figure 2A,B). However, in naturally and cell therapy repaired
cartilage staining for perlecan was seen in a pericellular location in some biopsies, diffusely
throughout the matrix in others or both patterns within others. Where fibrocartilage was
more abundant, perlecan was more diffuse in the cartilage matrix with some strong stain-
ing around chondrocytes, which was strikingly different to healthy cartilage as illustrated
in Figure 2C,D, showing donors 10 and 9, respectively. In both natural and cell therapy
repaired tissues where hyaline cartilage was visible, perlecan was mostly localised in the
pericellular regions, but more prominently than in normal cartilage (Figure 2E, showing
donor 2). The more elongated cells within fibrocartilaginous repair tissue were generally
weak or moderately stained for perlecan, compared to the more rounded chondrocytes in
hyaline cartilage (both repair and normal cartilage) which had strong pericellular perlecan
immunostaining. Disorganised fibrous tissue was associated with weak matrix perlecan
staining. Isotype controls are shown in Figure S1.
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Figure 1. Representative histology images of cartilage repair biopsies from the same donor. Natural
repair (A) and cell therapy repair (B) cryosections were stained with haematoxylin and eosin (H&E)
to assess general morphology and toluidine blue (TB) to assess proteoglycan content; both samples
demonstrated good to excellent matrix metachromasia. Polarised light was used to assess collagen
fibre orientation and determine tissue morphology. The natural repair cartilage demonstrated a
mostly hyaline (h) morphology whilst the cell therapy repair cartilage was mostly fibrocartilage (f).
Scale bars 500 µm.

The perlecan immunohistochemistry scores were similar between the two repair
tissues, with no noticeable trend when comparing individual donor-matched samples
(Figure 3A). Image analysis of the percentage of perlecan staining in the tissues showed
that naturally repaired and cell therapy repaired cartilage had significantly more staining
than the healthy tissues (p = 0.017 and p = 0.018, respectively, Figure 3B). Interestingly, an
increase in the perlecan score significantly correlated with a better-quality cell therapy
repair, as defined by the ICRS II ‘overall score’ parameter (r = 0.75, p = 0.03, Figure 3C).
Perlecan was also strongly localised around small blood vessels that were visible in 6 of the
10 naturally repaired. No blood vessels were observed in either the cell therapy repaired
cartilage samples, or the healthy cartilage.
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Figure 2. Immunohistochemistry of perlecan. Monoclonal antibodies (A74) were used to detect the
presence of perlecan in cryosections of core biopsies. (A,B) Heathy cartilage (n = 5) from cadavers
all showed distinct pericellular staining for perlecan with a typically hyaline morphology. (C,D)
Naturally repaired cartilage (n = 10) from the harvest site of autologous cell therapy donors showed
heterogenous staining patterns, some having both widespread matrix and pericellular staining ((C),
donor 10), whilst in others there was diffuse matrix staining throughout ((D), donor 9). (E,F) Cell
therapy repaired (CT, n = 9) cartilage also showed a heterogenous localisation for perlecan, similar to
the naturally repaired tissues. The sample depicted in (E) (donor 2) shows pericellular staining for
perlecan in repair tissue with hyaline cartilage morphology, but not as discretely as in the healthy
tissues. The sample depicted in (F) (donor 7) shows predominantly matrix immunolocalisation of
perlecan. Scale bars show 300 µm for low magnification images and 100 µm for high magnification
inserts. Isotype controls found in Supplementary Figure S1A–C.
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Figure 3. Analysis of tissue morphology and perlecan staining. (A) The perlecan immunohistochemistry score gives a
general idea of the localisation (pericellular, non-pericellular, mixed) of perlecan in the deep, middle and superficial zones
of cartilage. The zones were scored as 0 = no staining, 1 = pericellular staining, 2 = mixture of pericellular and matrix
staining, or 3 = matrix staining. The final perlecan score shown here is the summation of the scores for the three zones in
each sample. No difference was found between the donor-matched natural and cell therapy repaired tissues. Data show
the median with interquartile range. (B) Threshold image analysis confirmed a higher percentage of perlecan staining in
naturally repaired and CT repaired cartilage than in health cartilage. Perlecan was significantly more prominent in the
repair tissues compared to controls. (C) Regression analysis showed a positive correlation between the ICRS score and
perlecan immunohistochemical score (r = 0.75, p = 0.03) for cell therapy repaired, but not naturally repaired tissues (r = −0.4,
p = 0.25).

Collagen types III and VI generally exhibited a diffuse staining pattern throughout
the interterritorial matrix, covering 94.3 ± 8.9% (range 70–100) and 95.2 ± 7.1% (range
80–100) of the section area, respectively (Figure 4C,D). However, where there was hyaline
cartilage present in the repair tissues (Figure 4B), the staining pattern in these regions for
both collagen types III and VI was similar to what is typically observed in healthy cartilage
(Figure 4A) [28,29], with the pericellular matrix being immunonegative for collagen type III
and immunopositive for collagen type VI and the territorial matrix being immunopositive
for collagen type III and immunonegative for collagen type VI.
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Figure 4. Immunohistochemistry of collagen types III and VI. Monoclonal and polyclonal antibodies
were used to detect the presence of collagens type III and VI, respectively, in cryosections of core
biopsies. For the repair tissues, two donor-matched samples of natural and cell therapy (CT) repaired
cartilage are shown as representative examples (B + C = donor 7, D + E = donor 9). (A) Healthy
cartilage showing interterritorial staining for collagen type III and pericellular staining for type
VI (donor 15). (B,C) In this instance of hyaline-like cartilage in naturally repaired cartilage, the
collagen type III was localised in the interterritorial region while collagen type VI was localised in the
pericellular matrix. (D,E) Both collagens type III and VI are diffused in the matrix of fibrocartilage.
Scale bar = 500 µm. Isotype controls found in Figure S1D,E.

3.3. Heparanase Increases the Proliferation of Chondrocytes

No discernible difference in morphology was observed in chondrocytes cultured in
monolayer which had been treated with 200 ng/mL of heparanase compared to untreated
controls after 48 h (Figure 5A). Separate and combined growth plots are shown for the
individual donor cell populations tested in Figure 5B. Whilst there is variation between
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donors, a combined assessment of the cell populations showed that, for the first 20 h, the
heparanase-treated and control chondrocytes showed similar growth rates, but diverged
from 24 h onwards with treated cells showing significantly higher proliferation rates than
untreated control cells between 32 and 48 h (Figure 5B, bottom right plot).
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Figure 5. Morphology and growth kinetics of chondrocytes after treatment with heparanase (n = 5). (A) Phase contrast
images were acquired for control and heparanase-treated chondrocytes every 10 min at precise locations for 48 h. The
representative images shown are of chondrocytes from donor 20 at t = 0 h and t = 48 h. (B) Growth kinetics of chondrocytes
were established using a live cell imaging platform and analysis software during the 48 h heparanase treatment period.
Individual plots are shown for donors 16 to 20 with mean and SD of cell counts from three FOV from three separate wells.
The combined data for all five donors at every time point are also shown (bottom right). FOV = field of view. ** p < 0.05,
*** p < 0.01.

3.4. Stromal/Stem Cell and Chondropotency Markers and Genes Are Not Affected by Heparanase

Flow cytometry demonstrated that the positivity of stromal/stem cell markers, CD73,
CD90 and CD105 (Figure 6A), and the chondrogenic markers CD44, CD151, CD166, FGFR3
were unaffected by heparanase treatment (Figure 6B), although CD166 and FGFR3 showed
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a high level of variability between donors. For the integrins, donor variability was also
observed with CD49a, CD49b, CD49c and CD51/61, but not CD29, with no statistical differ-
ence between treated cells and controls for any of the integrins (Figure 6C). Chondrocytes
from donor 17, the oldest donor, showed a marked heparanase-induced increase in CD166
and a noticeable decrease in CD49a, CD49b and CD49c compared to the cells from the
other donors.

Biomolecules 2021, 11, x FOR PEER REVIEW 11 of 21 
 

3.4. Stromal/Stem Cell and Chondropotency Markers and Genes Are Not Affected by Heparanase 

Flow cytometry demonstrated that the positivity of stromal/stem cell markers, 

CD73, CD90 and CD105 (Figure 6A), and the chondrogenic markers CD44, CD151, 

CD166, FGFR3 were unaffected by heparanase treatment (Figure 6B), although CD166 

and FGFR3 showed a high level of variability between donors. For the integrins, donor 

variability was also observed with CD49a, CD49b, CD49c and CD51/61, but not CD29, 

with no statistical difference between treated cells and controls for any of the integrins 

(Figure 6C). Chondrocytes from donor 17, the oldest donor, showed a marked hepara-

nase-induced increase in CD166 and a noticeable decrease in CD49a, CD49b and CD49c 

compared to the cells from the other donors. 

 

Figure 6. Flow cytometry analysis of the effects of heparanase treatment on surface markers of chondrocytes (n = 5). Re-

sults are shown as the percentage of positive cells for a particular marker on heparanase-treated chondrocytes and the 

matching control. Fluorochrome-conjugated antibodies were used to detect (A) stem cells markers, (B) integrins and (C) 

chondrogenic markers. No significant differences were observed. Matched samples are represented by the same colour 

dot; donor 16 (black), donor 17 (red), donor 18 (blue), donor 19 (green), and donor 20 (yellow). 

Figure 6. Flow cytometry analysis of the effects of heparanase treatment on surface markers of chondrocytes (n = 5). Results
are shown as the percentage of positive cells for a particular marker on heparanase-treated chondrocytes and the matching
control. Fluorochrome-conjugated antibodies were used to detect (A) stem cells markers, (B) integrins and (C) chondrogenic
markers. No significant differences were observed. Matched samples are represented by the same colour dot; donor 16
(black), donor 17 (red), donor 18 (blue), donor 19 (green), and donor 20 (yellow).

Although the relative fold change in chondrogenic gene expression was not statistically
significant between the heparinase-treated and untreated chondrocytes, there was a general
decrease in SOX9 expression (median= −1.17), and increased expressions for ACAN
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(median = 1.1), COL2A1 (median =1.2), and FGFR3 (median = 1.1) following heparanase
treatment (Figure 7). The relative fold change in expression of the hypertrophic genes
COL10 (median = 1.6) and ALK-1 (median= 2.4) was also increased following heparanase
treatment, but this was not statistically significant (Figure 7).
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Figure 7. Analysis of the effects of heparanase treatment on gene expression of chondrocytes
in monolayer culture (n = 5). Results are presented as log-fold change in the expression of the
chondrogenic genes SOX9, collagen type II, aggrecan, FGFR3 and hypertrophy genes collagen type X
and ALK1 in chondrocytes that were treated with heparanase compared to the untreated controls.
Matched samples are represented by the same colour dot; donor 16 (black), donor 17 (red), donor 18
(blue), donor 19 (green), and donor 20 (yellow). Error bars indicate medians and interquartile ranges.

3.5. Perlecan and Toluidine Blue Staining Is More Prominent in Chondrocyte Clusters

There was immunostaining for perlecan in some cultured cells, some apparently in the
cytoplasm and also associated with the cell membrane. This appeared strongest when cells
were in clusters, which were more common in cultures without exposure to heparanase
(Figure 8A).

Metachromasia with toluidine blue staining for glycosaminoglycans was mostly
weak with no consistent difference in pattern between control and heparanase condi-
tions (Figure 8B). However cell, clusters, where present, tended to have stronger toluidine
blue staining.
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Figure 8. Immunocytochemistry and toluidine blue staining of heparanase-treated chondrocytes (two representative donor
examples shown). (A) Chondrocytes cultured in chamber slides were treated with heparanase for 48 h and stained for
perlecan (n = 4). Chondrocytes in untreated controls tended to remain in clusters that stained more intensely for perlecan
compared to heparinase-treated chondrocytes. (B) Toluidine blue staining revealed no noticeable trend. However, cell
clusters in both controls and heparanase conditions had stronger staining than individual cells. Scale bars = 50 µm.
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4. Discussion

Cell-based therapies have shown some degree of success in restoring damaged carti-
lage [30,31], but no study to date has described the presence of the proteoglycan perlecan in
either the natural repair or cell therapy repair of cartilage in humans. Perlecan contributes
to processes that are essential to the functioning of chondrocytes such as cell attachment,
differentiation and production of extracellular matrix components [12,13], which makes
it an ideal candidate molecule to assess in the formation of new cartilage. There is a
longstanding biological paradigm that once damaged, articular cartilage cannot heal itself.
However, evidence is now mounting to indicate that actually, to a limited extent, articular
cartilage does have an innate ability to repair [2,32], although the mechanism and pathways
are poorly defined. To our knowledge, this study is the first to assess and compare the
differences in perlecan immunolocalisation in matched patient cartilage samples that were
repaired either naturally or with autologous cells, while assessing the effects of heparanase
on the phenotype of human chondrocytes in vitro.

The variety of tissue morphologies observed in the repair tissues, i.e., fibrous, hyaline,
fibrocartilage and a mixture of the two, demonstrates the unpredictable and variable nature
of cartilage repair. Some of these differences could be donor dependent, but since the
repair tissues have been collected from two different sources (one from the harvest site
and the other post-treatment with cell therapy), the repair could have been the result of
two different biological mechanisms. Furthermore, the lack of an identifiable pattern of
morphology in donor-matched natural and cell therapy repaired tissues could be due to
differences in the microenvironment of the location where these defects were found. The
high incidence of vascularisation present in the naturally repaired biopsies is of concern,
as in its native state, cartilage is avascular. One could hypothesise that there may be a
temporary invasion of blood vessels as a means of instigating the repair processes and over
time with tissue remodelling and maturation, this vascularisation may disappear. Synovial
infiltrates are often vascularised and usually associated with poor cartilage repair [33], but
a recent study has provided evidence of the contribution of synovial cells in the repair of
cartilage surface injuries in mice [34]. Adhesions identified by MRI (which are likely to be
vascularised) have been shown to correlate with better histological features of cartilage
repair twelve months after ACI [35].

Perlecan was immunolocalised in the pericellular matrix in healthy cartilage, which
was is in line with previous findings [16]. In contrast, the immunolocalisation of perlecan in
the repair tissue differed depending upon the type of tissue morphology present, for exam-
ple, in areas of hyaline cartilage, perlecan appeared to have a more “normal” pericellular
appearance whereas in areas of fibrocartilage, it was more associated within the intert-
erritorial extracellular matrix. The latter appears to resemble the disposition of perlecan
observed in foetal patella, femoral condyle and tibial plateau tissues [36]. This, combined
with the fact that perlecan is a marker of early chondrogenic activity [37], suggests that
embryological mechanisms could be contributing to the repair of damaged adult cartilage,
either naturally or post-cell therapy. This is further evidenced by the observation that in
cell therapy repaired samples, perlecan is associated with better tissue morphology and
increased proteoglycan content, more resembling normal, healthy cartilage. (One slight
caveat in comparing this immunolocalisation between healthy and surgical samples, how-
ever, is that there was some disparity in times between ex-vivo collection and processing;
for healthy donors, time to fixation was ~24 h + 2–4 h but for surgical samples it was much
quicker (2–4 h).)

Fibrocartilage commonly forms in repair sites following cell therapy, at least in biopsies
obtained ~12 months post-treatment [25]. Whilst the aim of cell therapy in the treatment
of cartilage defects is the formation of hyaline cartilage, there is evidence that the initial
repair tissue which forms is remodelled [38] and does indeed mature towards hyaline
cartilage with time post-treatment [39]. The distribution of perlecan seen in our study
is perhaps further evidence of this, with the more diffuse and widespread location seen
in fibrocartilage resembling that of developing or rudimentary cartilages, some of which
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subsequently mature to form hyaline cartilage with its definite pericellular staining pattern.
The strong vascular localisation of perlecan in the naturally repaired tissues is expected,
confirming reports of its role in angiogenesis [40,41].

In healthy articular cartilage, collagen type III has a diffuse localisation in the territorial
regions around the chondrocytes, i.e., beyond the pericellular capsule [28]. We found this
pattern only in the repair tissues where some hyaline-like cartilage was present, suggesting
more matured repair or regeneration. Collagen type III is often associated with collagen
type I and is abundant in damaged tissues that are attempting to repair [28,42].

Collagen type VI is a microfibrillar collagen, accounting for approximately 1% of total
collagen in adult articular cartilage [43]. Predominantly located in the pericellular matrix
(PCM) in developing and mature cartilage, collagen type VI has been demonstrated to
be integral for regulating chondrocyte swelling and contributing to the biomechanical
integrity of the PCM; indeed, it also binds to the chondrocyte membrane via the RGD
sequences [44–47]. During osteoarthritis, however, the localisation of collagen type VI
changes to more interterritorial matrix expression, possibly reflecting increased degradation
of the collagen fibrils [48,49]. The diffuse pattern of immunolocalisation of collagen type
VI in the majority of the repair tissues tested in our study is similar to that of perlecan
and indicates an immature PCM in regenerating cartilage. Despite our observations of
collagen types III and VI immunlocalisation in repair tissue being similar to those found
in OA, it is also possible that they are indicative of an immature, developing cartilage
rather than degeneration. Both perlecan and collagen type VI have shown to be pivotal
to the biomechanical function of the PCM [50]. As a result, and due to the ability of
cartilage to detect and respond to mechanical loading, perlecan in particular could be
an active participant in the loading-related aspects of cartilage repair and remodelling.
Perlecan’s role of “mechanosensing” in tissue maintenance has been demonstrated in
bone [51,52], while its ability to influence the elastic modulus of the PCM has been proven
in cartilage [50].

Given the unique glycolytic capability of heparanase, this enzyme has been proposed
to be a valuable therapeutic target in repair biology [53,54]. The fragments released from
the HS by the action of heparanase are often more bioactive than the native molecule [55,56].
For example, when heparanase cleaves HS from perlecan in the basement membrane it
releases bound FGF2, which promotes angiogenesis, wound healing and tumour forma-
tion [57,58]. In our study, we tested the effects of heparanase on chondrocytes in terms
of cell morphology, proliferation, and the expression of surface and genetic markers. Al-
though no noticeable difference in cell morphology was noted, chondrocytes treated with
heparanase showed higher proliferation compared to the untreated controls. This finding
corroborates a previous study showing a heparanase-induced increase in proliferation and
migration of the ATDC5 chondrocyte cell line [59], and supports the theory that the removal
of HS encourages an increase in cell proliferation. Further investigations are needed to
determine whether this stimulation of chondrocytes by heparanase is reproduced in vivo,
and what the pathophysiological implications are, notably in the modulation of tissue
repair. One should also consider the source/s of the HS that has been depleted, as perlecan
is not the only HS-containing proteoglycan found in cartilage.

The flow cytometry analysis conducted in our experiment produced the first data look-
ing at the effects of heparanase treatment on the expression of a comprehensive panel of
surface markers in human chondrocytes. Exposing human chondrocytes to exogenous hep-
aranase did not influence the expression of either surface stem cells markers (CD70, CD90
and CD105), or chondrogenic markers (CD44, CD151 and CD166). Interestingly, another
study in mice MSCs has shown similarly that the inhibition of endogenous heparanase has
no effect on these stem cells markers [60].

Of the five chondrocyte populations tested for their response to heparanase, three of
them showed a marginal increase in FGFR3 as assessed by flow cytometry, while the gene
expression of FGFR3 was stable. This is of particular interest in the context of cartilage
repair, since signalling through the FGFR3 pathway is essential to chondrocyte function
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during chondrogenesis. During the embryological development of cartilage rudiments,
FGFR1c, FGFR2c, FGFR3c and perlecan are employed by mesenchymal cells to promote
the production of extracellular matrix production [17,61,62]. FGF-18 has also been shown
to signal through FGFR3 in the cartilaginous development of the human foetal spine [63].
Furthermore, a mouse knockout model revealed that the deletion of domain I in HS
improved the symptoms of OA and preserved the expression of FGFR3 with disease
progression [64]. We hypothesise that the positivity of FGFR3 on reparative cells in the
de novo formation of cartilage could be an essential mediator of natural and CT repaired
tissues. Additional work would, however, be needed to investigate this further.

Integrins are a family of cell adhesion receptors that are vital to the interactions
between chondrocytes and the cartilage extracellular matrix, that is mediated through
the binding of matrix components such as collagen types II and VI, vitronectin and fi-
bronectin [65]. The heparanase treatment of chondrocytes in our study did not affect CD29,
which is the β1 integrin subunit. CD29 couples with the α1 integrin subunit (CD49a) to
form the α1β1 complex, and facilitates the binding of collagen types II and VI [66,67]. The
reduced positivity of CD49a in four of the five cell populations treated with heparanase
suggests a possible interaction between HS and the integrins that warrants further char-
acterisation in cartilage repair. The heterogeneity of the expression of integrin subunits
CD49b(α2), CD49c(α3) and the complex CD51/61(αV/β3) in response to heparanase, may
be indicative of the versatility of chondrocytes when interacting with their pericellular
environs and extracellular matrix. The marked lower levels in CD49a, CD49b and CD49c
detected in chondrocytes from the oldest donor (donor 17) after heparanase treatment
could reflect the age-induced decrease in integrins in cartilage that has been previously
shown [68].

We tested the effects of heparanase on the expression of key chondrogenic genes and
found no significant change in the expression of SOX9, collagen type II and aggrecan. This
differed from a previous study that showed an increased gene expression for collagen type
II and aggrecan after heparanase treatment, but this was using a more appropriate 3D
culture system [59]; even in our monolayer system, heparanase had no inhibitory effect on
chondrocytes. The marginal increase in expression of the hypertrophic genes for collagen
type X and ALK-1 could be an indirect effect of the increased cell proliferation and is not
conducive to the repair of hyaline articular cartilage. This observation should act as a
reminder that the mechanisms triggered by the removal of HS would need to be controlled
to avoid undesirable matrix formation [69].

The strong immunolocalisation of perlecan in chondrocyte cell clusters suggests that
the pericellular matrix of these cells may still be intact, or at least being maintained, in some
monolayer cultures with close cell contact. This finding confirms previous studies showing
pronounced perlecan staining in clusters found in OA cartilage [70,71]. It was found
that domain IV-3 of perlecan was responsible for chondrocyte clustering, by mediating a
decrease in ERK1/2 signalling [72]. The presence of perlecan persisted despite after the
assumed removal of HS in our study, which could indicate that the heparanase-induced
response from chondrocytes is due to the loss of HS from perlecan, and not perlecan itself.
Such observations were made in a mouse study where a Hspg2 exon 3 null strain continued
to produce perlecan without the native HS [13].

The present study is not without its limitations. For example, we acknowledge that
a bigger sample size would make this study more robust; however, we are confident,
based on our experiences, that the tissue morphologies presented here are in line with our
previous observations. The naturally and cell therapy repaired tissues that we studied
formed at different locations in the joint. This may have limited the direct comparison of the
two cartilages, for instance due to differences in biomechanical forces betweeen different
regions of the knee joint [73,74]. Regarding the in vitro cell experiments, chondrogenic
differentiation may have provided additional insight into the effects of heparanase on
chondrocyte function. It is also important to note that the enzymatic activity of heparanase
is not specifically targeted to the HS on perlecan and that other HS proteins such as agrin,
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syndecan 1 and syndecan 4 may also be affected by heparanase [75,76]. This study does
not identify an exact pathway or mechanism per se whereby perlecan influences cartilage
repair, but it does indicate that it appears to be an integral player and so worthy of further
investigation.

5. Conclusions

To conclude, we demonstrate that the HS proteoglycan, perlecan, is clearly present
in repair tissue formed both via cell therapy repair of chondral defects and also naturally
occurring repair tissue. The localisation of perlecan, as well as type III collagen, which
is often found in developing or repairing tissue, is more diffuse for both molecules in
the fibrocartilaginous tissue which forms initially, than in the more mature repair tissue.
This more mature repair tissue has morphology resembling hyaline cartilage with has
more of the typical cell-associated staining pattern seen in adult articular cartilage. The
co-localisation of perlecan and collagen type VI and its biomechanical role in the PCM
in repair cartilage remains unclear and further research could reveal a key mechanism
that incorporates the different loading forces in the articular joint. The strong perlecan
staining observed in chondrocyte clusters could be mediated via its domain IV-3 and the
suppression of Erk1/2 signalling. We have also shown that heparanase treatment increases
the proliferation of chondrocytes, without altering their phenotypical features, at least,
as assessed in this study. Taken together, it is plausible to assume that perlecan has an
important role in cartilage repair. Further work is required to fully comprehend how
heparanase influences different types of repair, and whether this enzyme can be harnessed
to enhance the quality of de novo cartilage repair in vivo.
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