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Abstract

We report the discovery and validation of four extrasolar planets hosted by the nearby, bright, Sun-like (G3V) star
HD 108236 using data from the Transiting Exoplanet Survey Satellite (TESS). We present transit photometry,
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reconnaissance, and precise Doppler spectroscopy, as well as high-resolution imaging, to validate the planetary
nature of the objects transiting HD 108236, also known as the TESS Object of Interest (TOI) 1233. The innermost
planet is a possibly rocky super-Earth with a period of -

+3.79523 0.00044
0.00047 days and has a radius of 1.586± 0.098 R⊕.

The outer planets are sub-Neptunes, with potential gaseous envelopes, having radii of -
+2.068 0.091

0.10 R⊕, 2.72± 0.11
R⊕, and -

+3.12 0.12
0.13 R⊕ and periods of -

+6.20370 0.00052
0.00064 days, -

+14.17555 0.0011
0.00099 days, and -

+19.5917 0.0020
0.0022 days,

respectively. With V and Ks magnitudes of 9.2 and 7.6, respectively, the bright host star makes the transiting
planets favorable targets for mass measurements and, potentially, for atmospheric characterization via transmission
spectroscopy. HD 108236 is the brightest Sun-like star in the visual (V ) band known to host four or more transiting
exoplanets. The discovered planets span a broad range of planetary radii and equilibrium temperatures and share a
common history of insolation from a Sun-like star (Rå= 0.888± 0.017 Re, Teff= 5730± 50 K), making
HD 108236 an exciting, opportune cosmic laboratory for testing models of planet formation and evolution.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet detection methods (489);
Exoplanet atmospheres (487); Exoplanet dynamics (490)

1. Introduction

As the number and diversity of the known exoplanets continue
to grow, we are gaining a better perspective on our own solar
system. Based on the discovery of more than 4000 exoplanets44 to
date (Akeson et al. 2013), two common types of exoplanets are
the larger analogs of Earth (super-Earths)45 and smaller analogs
of Neptune (sub-Neptunes) (Fressin et al. 2013; Fulton et al.
2017). Their wide range of orbital architectures and atmo-
spheric properties (Rein 2012; Kite et al. 2020) motivate further
investigation of these small exoplanets in order to accurately
characterize their demographic properties.

Transiting exoplanets hosted by bright stars enable detailed
characterization such as measurements of radius, mass, bulk
composition, and atmospheric properties. Furthermore, multi-
planetary systems offer laboratories to study how planet
formation, evolution, and habitability depend on amount of
insolation, while controlling for the age and stellar type (Pu &
Wu 2015; Weiss et al. 2018a, 2018b).

The Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2014) is a spaceborne NASA mission launched in 2018 to
survey the sky for transiting exoplanets around nearby and
bright stars. It builds on the legacy of NASA’s Kepler space
telescope (Borucki et al. 2010), launched in 2009, which was
the first exoplanet mission to perform a large statistical survey
of transiting exoplanets. One of the goals of the TESS mission
is to discover 50 exoplanets with radii smaller than 4 R⊕ and
coordinate their mass measurements via precise high-resolution
spectroscopic follow-up. This will enable accurate inferences
about the bulk composition and atmospheric characterization of
small exoplanets.

In this work, we present the discovery and validation of four
exoplanets hosted by HD 108236, also identified as the TESS
Object of Interest (TOI) 1233. We use the TESS data in sectors
10 and 11 (i.e., UT 2019 March 26 to UT 2019 May 21), as
well as ground-based follow-up data, to validate the planetary
nature of the transits detected in the TESS data and precisely
determine the properties of the planets and their host star.

HD 108236 is the brightest Sun-like (G-type) star and one of
the brightest stars on the sky to host at least four transiting planets.
This makes it an especially useful system for comparative studies
of the formation and evolution of its transiting planets in the
future. Furthermore, its planets are favorable targets for atmo-
spheric characterization via transmission spectroscopy. With a

super-Earth and three sub-Neptunes, the HD 108236 system
constitutes a major contribution to the mission goal of TESS.
HD 108236 is also the first multiplanetary system delivered by
TESS with four validated transiting planets.
This paper is organized as follows. In Section 2, we

characterize the host star HD 108236. In Section 3, we present
the data collected on the system to discover and validate the
planets. We then characterize the planets in Section 4, and we
discuss our results and conclude in Section 5.

2. Stellar Characterization

Characterization of an exoplanet, i.e., determination of its
mass,Mp, radius, Rp, and equilibrium temperature, Teq, requires
determination of the same properties of its host star. Therefore,
we first study and characterize the host star to estimate its
radius, Rå, mass, Må, and effective temperature, Teff, as well as
its surface gravity, log g, metallicity, [Fe/H], sky-projected
rotational velocity, v isin , and spectroscopic class.
HD 108236 is a bright main-sequence star with a TESS

magnitude of 8.65 in the Southern Ecliptic Hemisphere, falling in
the Centaurus constellation with an R.A. and decl. of 12:26:17.78,
–51:21:46.99 (186°.574063, −51°.363052). Having a parallax of
15.45± 0.05 milliarcseconds (mas) as measured by the Gaia
telescope in its Data Reduction 2 (DR2; Bailer-Jones et al. 2018;
Gaia Collaboration et al. 2018), the host star is 64.6± 0.2 pc
away. Based on the same Gaia DR2 catalog, it has a proper
motion of −70.43± 0.06 mas yr−1 and −49.87± 0.04mas yr−1

along R.A. and decl., respectively, and a velocity along our line of
sight of 16.78± 0.02 km s−1. Although we will be referring to the
star as HD 108236 throughout this work, some other designations
for the target are TIC 260647166, TOI 1233, and HIP 60689.
Since photometric transit observations only probe the planet-to-

star radius ratio, the stellar radius needs to be determined precisely
in order to infer the radii of the transiting planets. The stellar
radius can be inferred using two independent methods. First, a
high-resolution spectrum of the star can be used to derive the
stellar parameters, by fitting it with a model spectrum obtained by
linearly interpolating a library of template spectra (Coelho et al.
2005). The resulting effective temperature and the distance to the
star then yield the stellar radius via the Stefan-Boltzmann law. We
used this method to characterize the star based on the high-
resolution spectrum described in Section 3.4.1, obtaining the
stellar radius and effective temperature as 0.894± 0.022 Re and
5618± 100K, respectively.
An independent method of inferring the effective temper-

ature and radius of the host star is to model its brightness across

44 https://exoplanetarchive.ipac.caltech.edu
45 Throughout this paper, we refer to a planet as a super-Earth or sub-Neptune
if its radius is smaller than 1.8 R⊕ and between 1.8 and 4 R⊕, respectively.
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broad bands over a larger wavelength range, known as the
spectral energy distribution (SED). This yields a semiempirical
determination of the stellar radius, as well as independent
constraints on stellar evolution model parameters such as the
stellar mass, metallicity, and age. Toward this purpose, we used
the broadband photometric magnitudes of HD 108236 provided
in Table 1 to model the stellar SED of HD 108236 following
the methodology described in Stassun & Torres (2016) and
Stassun et al. (2017, 2018). To constrain the distance to the
star, we used the Gaia DR2 parallaxes, adjusted by 82 μas to
account for the systematic offset reported by Stassun & Torres
(2018). We retrieved the BT and VT magnitudes from Tycho-2;
the Strömgren ubvy magnitudes from Paunzen (2015); the
JHKS magnitudes from the Two Micron All Sky Survey
(2MASS; Cutri et al. 2003; Skrutskie et al. 2006); the W1, W2,
W3, and W4 magnitudes from WISE (Wright et al. 2010); and
the G, GBP, and GRP magnitudes from Gaia (Bailer-Jones et al.
2018; Gaia Collaboration et al. 2018). Together, the available
photometry spans the full stellar SED over the wavelength
range 0.35–22 μm as shown in Figure 1.

We performed a fit using Kurucz stellar atmosphere models
(Castelli & Kurucz 2003), with the effective temperature, Teff,
metallicity, [Fe/H], and surface gravity, log g, adopted from the
TIC (Stassun et al. 2019) as initial guesses. The only additional
free parameter was the extinction (AV), which we restricted to be
less than or equal to the maximum line-of-sight value from the
dust maps of Schlegel et al. (1998). The resulting fit is excellent
(Figure 1), with a reduced χ2 of 2.3 and best-fit AV= 0.04± 0.04,

Teff= 5730± 50K, log g= 4.5± 0.5, and [Fe/H]=−0.3± 0.5.
Integrating the (unreddened)model SED gives the bolometric flux
at Earth, Fbol= (5.881± 0.068)× 10−9 erg s−1 cm−2. Taking the
Fbol and Teff together with the Gaia DR2 parallax gives the stellar
radius, Rå= 0.888± 0.017 Re. Finally, we can use the empirical
relations of Torres et al. (2010) and a 6% error from the empirical
relation itself to estimate the stellar mass, Må= 0.97± 0.06Me;
this, in turn, together with the stellar radius, provides an empirical
estimate of the mean stellar density, ρå= 1.94± 0.16 g cm−3.
Based on these properties, the spectral type of HD 108236 can be
assigned as G3V (Pecaut & Mamajek 2013).
In an alternative, isochrone-dependent approach, we also

used EXOFASTv2 (Eastman et al. 2019) to constrain the stellar
parameters. We relied on the observed SED and the MESA
isochrones and stellar tracks (Choi et al. 2016; Dotter 2016).
This approach forces the inference to match a theoretical star
based on stellar evolution models. We imposed Gaussian priors
on the Gaia DR2 parallax. We added 82 μas to the reported
value and 33 μas in quadrature to the reported error, following
the recommendation of Stassun & Torres (2018). We also
imposed an upper limit on the extinction of 0.65 using the dust
map of Schlafly & Finkbeiner (2011). In addition, we applied
Gaussian priors on Teff and [Fe/H] from the analysis of the
high-resolution spectrum described in Section 3.4.1.
The derived stellar parameters from all approaches are

summarized in Table 2. When characterizing the transiting
planets in the remainder of this paper, we use the stellar radius
and the effective temperature of 0.888± 0.017 Re and
5730± 50 K, respectively, as inferred from the isochrone-
independent approach based on the SED.

3. Discovery and Validation of Planets Hosted by
HD 108236

In this section, we will describe the detection of transit signals
consistent with transiting planets hosted by HD 108236 and the
follow-up data we collected to rule out alternative hypotheses.
Table 3 summarizes the observations we carried out using the
resources of the TESS Follow-up Observing Program (TFOP) to
validate the planetary origin of the transits and characterize the
planets and their host star. The subgroups of TFOP involved in

Table 1
Stellar Information

Identifying Information

Name TOI 1233, HD 108236
TIC ID 260647166

Parameter Value Reference

Astrometric Properties
Right ascension (deg) 186.574063 Gaia DR2
Declination (deg) −51.363052 Gaia DR2
μα (mas yr−1) −70.43 ± 0.06 Gaia DR2
μδ (mas yr−1) −49.87 ± 0.04 Gaia DR2
Distance (pc) 64.6 ± 0.2 TIC v8
RV (km s−1) 16.78 ± 0.02 km s−1 Gaia DR2
Photometric Properties
TESS (mag) 8.6522 ± 0.006 TIC v8
B (mag) 9.89 ± 0.02 TIC v8
V (mag) 9.25 ± 0.01 TIC v8
BT (mag) 10.04 ± 0.02 Tycho-2
VT (mag) 9.313 ± 0.014 Tycho-2
Gaia (mag) 9.08745 ± 0.0002 Gaia DR2
GaiaBP (mag) 9.43555 ± 0.000737 Gaia DR2
GaiaRP (mag) 8.60563 ± 0.000643 Gaia DR2
J (mag) 8.046 ± 0.024 2MASS
H (mag) 7.703 ± 0.029 2MASS
Ks (mag) 7.637 ± 0.031 2MASS
WISE 3.4 (mag) 7.613 ± 0.029 WISE
WISE 4.6 (mag) 7.673 ± 0.021 WISE
WISE 12 (mag) 7.638 ± 0.017 WISE
WISE 22 (mag) 7.51 ± 0.098 WISE

Note. In the table, mas stands for milliarcseconds. We use the following
references: TESS Input Catalog version 8 (TIC v8; Stassun et al. 2019), Gaia
DR2 (Gaia Collaboration et al. 2018), Tycho-2 (Høg et al. 2000), 2MASS
(Cutri et al. 2003), and WISE (Wright et al. 2010).

Figure 1. SED of HD 108236. Black symbols and their vertical error bars
represent the photometric measurements that were previously available on the
system. The horizontal bars represent the effective width of the passband.
Overplotted with the blue line is our best-fit Kurucz atmosphere model,
allowing us to characterize the star.
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this program were ground-based photometry (SG1), reconnais-
sance spectroscopy (SG2), high-resolution imaging (SG3), and
precise Doppler spectroscopy (SG4).

3.1. TESS

TESS is a spaceborne telescope with four cameras, each with
four charge-coupled devices (CCDs) with the primary mission of
discovering small planets hosted by bright stars, enabled by its
high-precision photometric capability in space (Ricker et al.
2014). The Science Processing Operations Center (SPOC)
pipeline (Jenkins et al. 2016) regularly calibrates and reduces
TESS data, delivering simple aperture photometry (SAP; Twicken
et al. 2010; Morris et al. 2017) light curves and presearch data
conditioning (PDC; Smith et al. 2012; Stumpe et al. 2012, 2014)
light curves that are corrected for systematics. Then, it searches for
periodic transits in the resulting light curves using the Transiting
Planet Search (TPS; Jenkins 2002; Jenkins et al. 2017) to search
for planets. Unlike the box least-squares (BLS; Kovács et al.
2002), which also searches for transit-like pulse trains while not

taking into account the correlation structure of noise, TPS
employs a noise-compensating matched filter that jointly
characterizes the correlation structure of the observation noise
while searching for periodic transits. Finally, it delivers the
statistically significant candidates as threshold crossing events
(TCEs). As members of the TOI working group, we regularly
classify these TCEs as planet candidates and false positives. When
vetting TCEs as planet candidates, we use the SPOC validation
tests (Twicken et al. 2018; Li et al. 2019), such as:

1. the eclipsing binary discrimination test to detect the
presence of secondary eclipses and compare the depths of
odd and even transits to rule out inconsistencies;

2. the centroid offset test to determine whether the centroid
of the difference (i.e., out-of-transit minus in-transit)

Table 2
Stellar Characterization

Parameter Value

High-resolution Spectroscopy
CHIRON
Teff (K) 5638
log (g) 4.39
[Fe/H] −0.22
v sin i (km s−1) <4.7 (95% CL)
LCO/NRES
Teff (K) 5618 ± 100
log (g) 4.6 ± 0.1
[Fe/H] −0.26 ± 0.06
v sin i (km s−1) <2 (95% CL)
M* (Me) 0.853 ± 0.047
R* (Re) 0.894 ± 0.022
Broadband Photometry
Isochrone-independent
Teff (K) 5730 ± 50
log (g) 4.5 ± 0.5
[Fe/H] −0.3 ± 0.5
Av 0.04 ± 0.04
Fbol (erg s

−1 cm−2) 5.881 ± 0.068 × 10−9

M* (Me) 0.97 ± 0.06
R* (Re) 0.888 ± 0.017
ρ* (g cm3) 1.94 ± 0.16
Isochrone-dependent Approach via EXOFASTv2
Teff (K) 5721 ± 60
log (g) 4.492 ± 0.032
[Fe/H] −0.253 ± 0.062
Age (Gyr) 5.8 ± 4.1
Av 0.04 ± 0.04
L* (Le) 0.747 ± 0.03
M* (Me) 0.877 ± 0.05
R* (Re) 0.88 ± 0.017
ρ* (g cm3) 1.82 ± 0.15

Note. Different methods yield consistent models of the host star. The difference
between our adopted stellar parameters (i.e., based on an isochrone-
independent model of the broadband photometry) and those of the EXOFAST
results can be attributed to the tight isochrone priors of the latter. The difference
with the NRES results is largely due to the differences in the information
content of broadband photometry and high-resolution spectra. CL stands for
confidence level.

Table 3
Observations Conducted as Part of the Follow-up of HD 108236 after the

Detection of Transits by TESS

Date Telescope/Instrument

Imaging
2020-01-14 Gemini/Zorro
2020-03-12

2020-01-07 SOAR/HRCam

Reconnaissance Spectroscopy
2020-01-28
2020-01-24
2019-08-03 SMARTS/CHIRON
2019-07-04
2019-07-02

2019-06-12 LCOGT/NRES

2019-06-23
Precise Doppler spectroscopy
2019-07-12
2019-07-15
2019-07-16
2019-07-18
2019-07-20
2019-08-08 Magellan II/PFS
2019-08-09
2019-08-11
2019-08-13
2019-08-17
2019-08-20
2019-08-21

Photometric
Date Telescope Instrument TOI

2020-03-17 LCOGT-CTIO Sinistro 1233.01*

2020-03-17 MEarth-South Apogee 1233.01
2020-03-11 LCOGT-CTIO Sinistro 1233.03
2020-03-11 LCOGT-CTIO Sinistro 1233.02
2020-03-11 MEarth-South Apogee 1233.02
2020-03-03 MEarth-South Apogee 1233.01
2020-03-02 LCOGT-SAAO Sinistro 1233.01
2020-02-02 LCOGT-SAAO Sinistro 1233.02
2020-01-31 LCOGT-SAAO Sinistro 1233.03
2020-01-11 LCOGT-SAAO Sinistro 1233.04
2020-01-11 LCOGT-CTIO Sinistro 1233.02

Note. An asterisk in the last column denotes a tentative detection of a transit on
target.
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image is statistically consistent with the location of the
target star;

3. a statistical bootstrap test to estimate the false-positive
probability of the TCE when compared to other transit-
like features in the light curve; and

4. an optical ghost diagnostic test to rule out false-positive
hypotheses such as instrumental noise, scattered light, or
blended light, based on the correlations between the
model transit and light curves derived from the core
photometric aperture and a surrounding halo.

3.2. Discovery of Periodic Transits Consistent with Planetary
Origin

HD 108236 was among the list of targets observed by TESS
with a cadence of 2 minutes and also included in the TESS
Guest Investigator (GI) Cycle I proposal (G011250; PI: Walter,
Frederick). It was observed by TESS Camera 2, CCD 2 during
Sector 10 (UT 2019 March 26–2019 April 22) and TESS
Camera 1, CCD1 during Sector 11 (UT 2019 April 22–2019
May 21). The TESS data were processed by the SPOC pipeline.
Then, Sector 10 and 11 TESS data and derived products such
as the SAP and PDC light curves, including those of
HD 108236, were made public on 2019 June 1 (data release
14) and 2019 June 17 (data release 16), respectively.

The first detection of a TCE consistent with a planetary
origin from HD 108236 was obtained in Sector 10 TESS data.
The TCE had a period of 14.178 days. However, the light curve
also had other transit-like features unrelated to the detected

TCE, which promoted HD 108236 to a potentially high-
priority, multiplanetary system candidate. Sector 11 TESS data
triggered three TCEs, one of which had the same period as that
from Sector 10. However, the transits of the other TCEs had
inconsistent depths. These initial TCEs from individual sectors
were vetted as planet candidates with the expectation that a
joint TPS analysis of two sectors of TESS data would resolve
the ambiguities on the multiplicity and periods of the planet
candidates. The multisector data analysis at the end of Sector
13 resulted in the detection of four TCEs with periods of 14.18,
19.59, 6.20, and 3.80 days and signal-to-noise ratios (S/Ns) of
15.3, 16.2, 11.4, and 8.7, respectively. The PDC light curve of
HD 108236 from these two sectors is shown in Figure 2.
Subsequently, we released alerts on these four TCEs (i.e.,
TOI 1233.01, TOI 1233.02, TOI 1233.03, and TOI 1233.04)
with planet candidate dispositions on 2019 August 26. For the
moment, we will refer to these TCEs that have been vetted as
planet candidates using the TOI designations.

3.3. Vetting of the Planet Candidates

Time-series photometry of a source is inferred from
photoelectrons counted in a grid of pixels on the focal plane.
The finite point-spread function (PSF) causes nearby sources to
be blended. The focus-limited PSF (FWHM of ∼1 to −2
pixels) and the large pixel size (∼21″) of TESS imply that the
resulting time-series photometry of a given target will often
have contamination from nearby sources.

Figure 2. Normalized light curve of HD 108236 measured by TESS, reduced by the PDC pipeline, and detrended by our pipeline, shown with gray points. The top
and bottom panels show the Sector 10 and 11 data, respectively. The data show stellar variability, especially in Sector 11, which is taken into account for both sectors
by our red-noise model as discussed in Section 3.9. Magenta, orange, red, and green colors highlight the transits of the discovered planets b, c, d, and e. Throughout
the paper we use the same color scheme to denote the planets.
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Blended light from nearby sources can decrease the depth, δ,
of a transit by
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where δ′ is the diluted transit depth and FB and FT are the
fluxes of the blended and target source, respectively. Here D is
dilution, and f ≡ FB/FT is the flux ratio of the blended and
target objects. The SPOC pipeline corrects the PDC light
curves for this dilution of the transits.

The TESS image of HD 108236 from Sector 10 is shown in
Figure 3, along with several archival images of the target,
including the Science and Engineering Research Council
(SERC) J image taken in 1979, the SERC-I image taken in
1983, and the Anglo-Australian Observatory Second Epoch
Survey (AAO-SES) image taken in 1994. The apertures that are
used to extract the TESS light curves are also shown for
Sectors 10 (red) and 11 (purple). Some of the relatively bright
neighbors of HD 108236 are TIC 260647148, TIC 260647113,
TIC 260647110, and TIC 260647155, which are 77″, 95″,
108″, and 122″ away and have TESS magnitudes of 13.89,
13.73, 12.94, and 11.67, respectively. Due to the large aperture
used to collect light from the bright target HD 108236, the total
flux from blended sources is roughly f= 1.2% of the photons
coming from HD 108236.

Detection of periodic transits in photometric time-series data
can be due to any of the following:

1. an instrumental (systematic) effect;
2. the primary (i.e., brightest) star being eclipsed by a

companion star (i.e., eclipsing binary);
3. a foreground or background star (i.e., gravitationally not

associated with the target) aligned with the target being
eclipsed by a stellar companion or transited by a planet;

4. the primary or one of the fainter (secondary) stars in a
hierarchical multiple star system eclipsing each other or
being transited by a planet;

5. a nearby star (i.e., gravitationally not associated with the
target) being eclipsed by a stellar companion or transited
by a planet;

6. a star being transited by a planet.

Therefore, we individually considered and ruled out the
alternative hypotheses in order to ensure that the planetary
classification for the origin of the detected transits was not a
false positive.

The first false-positive hypothesis was that the transits could
be due to an instrumental effect. The orbital periods of
TOI 1233.03 and TOI 1233.04 were close to the multiples of

the momentum dump period, which occurred every 3.125 days
for Sectors 10 and 11, according to the TESS Data Release
Notes.46 However, the detected transits did not fall near the
momentum dumps. In addition, the transit shapes were
inconsistent with that of the typical momentum dump artifact
(i.e., sudden drop followed by a gradual rise). The difference
images also did not show any evidence of scattered light in the
vicinity of HD 108236 during the observations of interest.
Furthermore, there were many individual transits detected,
which made it extremely unlikely that they were produced by
unrelated systematic events. This ruled out the instrumental
origin of the detected transits.
The transit model fit performed by the SPOC pipeline on the

TESS data indicated that the transit was not grazing and that
the depth and shape of the transits were consistent with being
of planetary nature. This was also confirmed later with our
transit model as discussed in Section 3.9. The SPOC data
validation also showed that the apparent positions of the TCEs
were all within 1 pixel of HD 108236. Nevertheless, the
periodic dimming could be due to any of the sufficiently bright
sources in the aperture, since transits or eclipses from nearby or
physically associated companion stars could be blending into
the aperture. In general, dynamical measurements such as
transit timing variations (TTVs) could break this degeneracy.
However, the small number of transits and the limited baseline
(∼60 days) of the detection data did not yet allow TTVs to be
used for vetting.
As a result, follow-up observations were needed to rule out

the remaining false-positive hypotheses that the transits are on
a target other than the brightest target (i.e., primary). In the
remainder of this section, we summarize the data we collected
to rule out these false-positive hypotheses.

3.4. Reconnaissance Spectroscopy

Upon TESS detection, we obtained reconnaissance
spectroscopy follow-up data on HD 108236 using the resources
of the SG2 subgroup of TFOP at the Cerro Tololo Inter-
American Observatory (CTIO) in Chile, including the Network
of Robotic Echelle Spectrographs (NRES) of the Las Cumbres
Observatory and the CTIO high-resolution spectrometer
(CHIRON), as detailed in Table 4.

3.4.1. LCO/NRES

The NRES (Siverd et al. 2016) instrument at Las Cumbres
Observatory Global Telescope (LCOGT; Brown et al. 2013)
consists of four identical, high-precision spectrographs in the

Figure 3. Archival and TESS images of HD 108236. The TESS image is from Sector 10 taken during 2019. Overplotted on the TESS image are the two apertures that
are used to extract the light curves during Sectors 10 (red) and 11 (purple).

46 https://archive.stsci.edu/tess/tess_drn.html
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optical band (i.e., 390–860 nm). We used LCO/NRES at the
CTIO in Chile to collect two high-resolution spectra of
HD 108236. Each one of these two observations consisted of
three consecutive 20-minute stacked exposures. The raw data
were then processed by the NRES data reduction pipeline, which
included bias and dark corrections, optimal extraction of the one-
dimensional spectrum, and the wavelength calibration with ThAr
lamps. The resulting calibrated spectra were analyzed using
SpecMatch47 (Petigura 2015; Petigura et al. 2017), by
accounting for the Gaia parallax and using Isoclassify
(Huber et al. 2017) to infer the physical parameters of the host
star. Specifically, a 95% confidence level upper bound of
2 km s−1 was placed on the sky-projected stellar rotation.

3.4.2. SMARTS/CHIRON

We observed HD 108236 with the CHIRON instrument
(Tokovinin et al. 2013)mounted on the 1.5 m Small and Moderate
Aperture Research Telescope System (SMARTS) telescope at
CTIO, Chile. We obtained five spectra using SMARTS/CHIRON
on different nights. The exposure time was 100 s, and each
observation contained three exposures. We used the image slicer
mode and obtained a spectral resolution of R∼ 80,000. No lithium
absorption line was observed in the resulting spectra, indicating
that the star is not young. Furthermore, no stellar activity was
observed in the Hα line. The stellar characterizations obtained
based on the LCO/NRES and SMARTS/CHIRON data are
shown in Table 2.

3.4.3. Ruling Out Aligned Eclipses and Transits

The cross-correlation function and the least-squares decon-
volution (LSD) line profile inferred from the reconnaissance
spectra rule out a well-separated or even partially blended
secondary set of lines, constraining any spatially blended
companion with different systemic velocities to be fainter than
5% of the primary at 3σ in the TESS band. This flux ratio is
linked to the difference of the magnitudes of the blended

source, mB, and the target source, mT, as

- = -m m f2.5 log , 2B T 10 ( )

which implies that the SG2 data rule out spatially blended
sources that have different systemic velocities and that are
brighter than TESS magnitude 11.9.
Furthermore, through transit geometry, the undiluted depth,

δ≡ (Rp/Rå)
2, of a full (i.e., nongrazing) transit is linked to full

and total transit durations. The total transit duration Ttot is the
time interval during which at least some part of the transiting
object is occluding the background star, whereas the full transit
duration Tfull is the time interval during which the transiting
object is fully within the stellar disk. Therefore, modeling of
the full and total transit durations based on the observed transits
allows the estimation of dilution of a transit caused by its
neighbors. We inferred the dilution consistent with the
observed TESS transits using a methodology similar to that
discussed in Section 3.9. The marginal posterior of the dilution
requires any blended source to be brighter than TESS
magnitude 12.1 at 2σ to produce the observed TESS light
curve. Therefore, combined with the constraint from the SG2
data, this rules out the hypothesis that the transits could be
produced by a faint foreground or background binary.
Furthermore, the fact that there are multiple TCEs on the same
target implies that the alignment of unassociated background or
foreground eclipses or transits is very unlikely (Lissauer et al.
2012).

3.5. Precise Doppler Spectroscopy

The reconnaissance spectroscopy data justified further
follow-up of the target to obtain precise radial velocities using
the SG4 resources of TFOP (see Table 4).

3.5.1. Magellan II/PFS

We used the Planet Finder Spectrograph (PFS) instrument
(Crane et al. 2006, 2008, 2010) on the 6.5 m Magellan II (Clay)
telescope (Johns et al. 2012) at Las Campanas Observatory in
Chile to obtain high-precision radial velocities of HD 108236
in 2019 July and August. PFS is an optical, high-resolution
echelle spectrograph and uses an iodine absorption cell to
measure precise radial velocities as described in Butler et al.
(1996). We obtained a total of 12 radial velocity observations
(with exposure times ranging from 15 to 20 minutes) and an
iodine-free template observation of 30 minutes, yielding a
typical precision of 0.64–1.5 m s−1. Our PFS velocities are
listed in Table 5.
HD 108236 is also a target in the Magellan-TESS Survey

(MTS; J. T. Teske et al. 2021, in preparation), which measures
precise masses of ∼30 planets with Rp< 3 R⊕ detected in the
first year of TESS observations. Additional precise radial
velocity observations made with PFS will be used to place
constraints on the masses of the HD 108236 planets in the near
future.

3.5.2. Ruling Out Stellar Companions

Table 5 summarizes the radial velocity measurements
collected by the SG2 and SG4 subgroups of TFOP. The radial
velocities obtained using NRES data are consistent with those
from Gaia DR2 (Bailer-Jones et al. 2018; Gaia Collaboration
et al. 2018), whereas radial velocities inferred from CHIRON
observations have a systematic offset.

Table 4
SG2 and SG4 Spectroscopic Observations Performed on HD 108236

Telescope SMARTS
Instrument CHIRON
Spectral resolution (R) 80,000
Wavelength coverage 4500–8900 Å
(S/N)/resolution element 44.2
S/N wavelength 5500 Å

Telescope LCOGT
Instrument NRES
Spectral resolution (R) 48,000
Wavelength coverage 3800–8600 Å
(S/N)/resolution element 41.6
S/N wavelength 5500 Å

Telescope Magellan II
Instrument PFS
Spectral resolution (R) 130000
Wavelength coverage 3800–6900 Å
(S/N)/resolution element 125
S/N wavelength 5600 Å

47 https://github.com/petigura/specmatch-syn
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Figure 4 shows the radial velocity data from NRES,
CHIRON, and PFS after subtracting the mean within each
data set. Among the three data sets, the PFS data have the
smallest uncertainties (∼1 m s−1). However, they also display
variations larger than the uncertainties. This is likely caused by
the Doppler shifts due to planets validated in this work.

The rms of the radial velocity data from NRES, CHIRON,
and PFS is 55, 50, and 3 m s−1, respectively. Using the rms of
the PFS radial velocity data, we can place a 3σ upper limit of
1450M⊕ on the mass of a companion on a circular orbit around
HD 108236 with an orbital period less than 1000 days and an

orbital inclination of 90°. Furthermore, assuming circular
orbits, the PFS data allow us to rule out stellar masses for the
objects that have been observed by TESS to transit HD 108236.
This is because the observed rms of the PFS data is much
smaller than the expected radial velocity semi-amplitude
(∼1 km s−1) from a stellar object having a mass larger than
∼13.6 times the Jovian mass.
We note that we did not use the 12 precise radial velocity

measurements from PFS to measure the masses of any of the
four planets validated in this work. We leave this to a future
work (J. T. Teske et al. 2021, in preparation), where a larger set
of precise radial velocity measurements from PFS will be used
to accurately measure the masses of the validated planets.
The currently available radial velocity data cannot rule out

stellar companions at arbitrary orbital periods, eccentricities, and
inclinations. Therefore, a remaining false-positive hypothesis
would be a hierarchical system containing planets transiting the
primary or the secondary. However, the transiting planets would
also have to be giants in this case, in order to compensate for the
dilution from the companion star. If more than one such giant
planet orbited the companion star, the system would be
dynamically unstable. The multiplicity of the transiting objects
in the system makes this false-positive hypothesis unlikely.
Furthermore, as has been shown in Latham et al. (2011), Lissauer
et al. (2012), and Guerrero et al. (2020), it is much less likely for a
planet candidate to be a false positive in a multiplanetary system
than in a system with a single planet. We therefore discarded this
false-positive hypothesis based on the observation of four
independent TCEs.

3.6. High-resolution Speckle Imaging

In order to rule out aligned foreground or background stars at
close separations, high-resolution images are needed. To obtain
high-resolution images in the presence of atmospheric
scintillation, we used the speckle imaging technique by taking
short exposures of the bright target to factor out the effect of
atmospheric turbulence. For this purpose, we used the
resources of the SG3 subgroup of TFOP and obtained high-
resolution speckle images of HD 108236 with SOAR/HRCam
and Gemini/Zorro, as detailed in Table 6.

Table 5
Radial Velocity Data Collected as Part of Reconnaissance (SG2) and Precision

(SG4) Spectroscopy

Time (BJD) RV (km s−1) 1σ RV Uncertainty (km s−1)

NRES

2,458,647.567839 16.93 0.07
2,458,658.456917 16.82 0.11

CHIRON

2,458,666.59558 15.283 0.027
2,458,668.62232 15.385 0.027
2,458,698.51351 15.391 0.042
2,458,872.85177 15.416 0.036
2,458,876.83875 15.319 0.034

Time (JD) DRV (m s−1) 1σ DRV uncertainty (m s−1)

PFS

2,458,676.50493 5.31 0.68
2,458,679.53299 −1.25 0.84
2,458,680.53958 −0.21 0.80
2,458,682.51067 2.14 0.92
2,458,684.51457 −2.52 0.87
2,458,703.50490 −1.00 1.30
2,458,705.47891 −4.38 1.04
2,458,707.48948 2.00 1.08
2,458,709.49288 −1.73 1.01
2,458,713.49567 −1.85 1.25
2,458,716.47714 0.00 1.01
2,458,717.49043 4.66 1.50

Note. DRV: differential radial velocity.

Figure 4. Differential radial velocities of HD 108236 measured as part of the SG2 and SG4 subgroups, modeled using a sinusoidal (i.e., noneccentric) model. NRES,
CHIRON, and PFS data are shown with the colors olive, cyan, and brown, respectively. The data from each instrument are shown after subtracting the weighted mean.
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3.6.1. SOAR/HRCAM

Diffraction-limited resolution was obtained via speckle
interferometry by using the High-Resolution Camera (HRCam;
Tokovinin et al. 2010; Ziegler et al. 2020) at the 4.1 m SOAR
telescope by processing short-exposure images taken with high
magnification on UT 2020 January 7. The autocorrelation
function and the resulting sensitivity curve are presented in the
left panel of Figure 5. A contrast of 5 mag is achieved at a
separation of 0 2.

3.6.2. Gemini/Zorro

We obtained speckle interferometric images of HD 108236 on
UT 2020 January 14 and UT 2020 March 12 using the Zorro48

instrument on the 8 m Gemini South telescope at the summit of
Cerro Pachon in Chile. Zorro simultaneously observes in two
bands, i.e., 832± 40 nm and 562± 54 nm, obtaining diffrac-
tion-limited images with inner working angles of 0 017 and
0 026, respectively. Both data sets consisted of 3 minutes of
total integration time taken as sets of 1000 0.06 s images. Each
night’s data were combined and subjected to Fourier analysis,
leading to the production of final data products including

speckle reconstructed imagery. The right panel of Figure 5
shows the 5σ contrast curves in both filters for data collected on
UT 2020 March 12 and includes an inset showing the 832 nm
reconstructed image. The speckle imaging results in both
observations agree, revealing HD 108236 to be a single star to
contrast limits of 5.5–8 mag within a sky-projected separation
between 1.3 and 75 au.
These high-resolution images rule out wide stellar binaries that

would not be spatially resolved in ground-based, seeing-limited
photometry with a PSF of ∼1″. In addition, using the Dartmouth
isochrone model (Dotter et al. 2008), they imply that a bound
companion to HD 108236 would have to be less massive than
0.10–0.15Me, depending on the age of the system.

3.7. Seeing-limited (Ground-based) Transit Photometry

After ruling out binaries and chance alignments for the target,
we then proceeded with ruling out the possibility that the transits
detected by TESS could be on nearby stars. HD 108236 is the
brightest source within a few arcminutes in its vicinity. Given the
depth of the transits observed by TESS (0.302± 0.031 ppt,49

-
+0.517 0.040

0.036 ppt, 0.889± 0.053 ppt, and 1.175± 0.069 ppt), the
transit depth would have to be deeper by a certain amount as
given by Equations (1) and (2) if the transit was not on
HD 108236, but rather on a fainter nearby target. In order to
rule out the hypothesis that any of the transits could be on a
nearby target, we collected seeing-limited (i.e., with a PSF
FWHM of ∼1 arcsecond) photometric time-series data during a
predicted transit for each planet candidate (i.e., TOIs 1233.01,
1233.02, 1233.03, and 1233.04) using the resources of the SG1
subgroup of TFOP, including the LCOGT and MEarth
telescopes. Table 7 lists these observations. As will be
discussed in Section 3.7.4, one of these observations (UT
2020 March 17) resulted in a tentative detection of a transit on
target.

3.7.1. LCOGT

We used LCOGT (Brown et al. 2013) of 1 m class telescopes
to obtain ground-based transit light curves of all four planet

Table 6
High-resolution Imaging Data Collected on HD 108236

Telescope SOAR
Instrument HRCam
Filter 879 ± 289 nm
Image type Speckle
Pixel scale (arcsecond) 0.01575
Estimated PSF (arcsecond) 0.06364

Telescope Gemini
Instrument Zorro
Filter 832 ± 40 nm, 562 ± 54 nm
Image type Speckle
Pixel scale (arcsecond) 0.01
Estimated PSF (arcsecond) 0.02

Figure 5. The 5σ sensitivity curve of speckle imaging by SOAR/HRCam (left) and Gemini/Zorro (right). The inset on the left shows the two-dimensional
autocorrelation function, whereas the inset on the right is a reconstructed image of the field. The data rule out bright neighbors and companions to HD 108236, which
would be fully spatially blended in the TESS images.

48 https://www.gemini.edu/sciops/instruments/alopeke-zorro/ 49 We use ppt as a shorthand notation for parts per thousand.
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candidates of HD 108236. We used the TESS Transit
Finder, which is a customized version of the Tapir
software package (Jensen 2013), to schedule our transit
observations. Specifically, observations were taken from the
CTIO and South African Astronomical Observatory (SAAO)
LCOGT locations. Both telescopes are equipped with a
4096× 4096 pixel Sinistro camera whose pixel scale is
0 389, resulting in a 26′× 26′ field of view. We achieved a
typical PSF FWHM of 2 3, which is about 30 times smaller
than the TESS PSF. Each image sequence was calibrated using
the standard BANZAI pipeline (McCully et al. 2018), while the
differential light curves of HD 108236 and its neighboring
sources were derived using the AstroImageJ software
package (Collins et al. 2017).

Table 7 summarizes our eight successful transit observations
from LCOGT taken between UT 2020 January 11 and UT 2020
March 17. Explicitly, we collected data during two, three, two,
and one transit of TOIs 1233.01, 1233.02, 1233.03, and 1233.04,
respectively. All light curves were obtained with either 20 s or
60 s exposures in either the y or zs bands to optimize photometric
precision. Photometric apertures were selected by the individual
SG1 observer based on the FWHM of the target’s PSF in order
to maximize the photometric precision. In each light curve we
tested all bright neighboring sources within 2 5 of HD 108236.
Then, we either tentatively detected the expected transit event on
the target (i.e., on UT 2020 March 17 with LCOGT-CTIO) or
were able to rule out transit-like events on all nearby targets
down to the faintest neighbor magnitude contrasts reported in
Table 7 (i.e., during all other observations). For each planet
candidate, all known Gaia DR2 stars within 2 5 of HD 108236
that are bright enough to cause the TESS detection were ruled
out as possible sources of the TESS detections.

3.7.2. MEarth-South

MEarth-South employs an array of eight f/9 40 cm Ritchey-
Chrétien telescopes on German equatorial mounts (Irwin et al.
2015). During the data acquisition for this work, only seven of

the telescopes were operational. Data were obtained on three
nights: UT 2020 March 3 (egress of TOI 1233.01), UT 2020
March 11 (full transits of TOI 1233.02 and TOI 1233.03), and
UT 2020 March 17 (full transit of TOI 1233.01). Figure 6
shows the in-focus and defocused fields of the MEarth-South
observation on UT 2020 March 17.
All observations were conducted using the same observa-

tional strategy. Exposure times were 35 s, with six telescopes
defocused to half flux diameter of 12 pixels to provide
photometry of the target star, and one telescope observing in
focus with the target star saturated to provide photometry of
any nearby or faint contaminating sources not resolved by the
defocused time series. Observations were gathered continu-
ously starting when the target rose above 3 air masses (first
observation) or evening twilight (other observations) until
morning twilight. Telescope 7 used in the defocused set had a
stuck shutter, resulting in smearing of the images during
readout, but this did not appear to affect the light curves. The
defocused observations were performed with a pixel scale of
0 84. A photometric aperture with a radius of 17 pixels was
used to extract the photometric time series. Data were reduced
following standard procedures for MEarth photometry (Irwin
et al. 2007).

3.7.3. Ruling Out Nearby Eclipses and Transits

During the predicted transit of each planet candidate (i.e.,
TOI 1233.01, TOI 1233.02, TOI 1233.03, and TOI 1233.04),
light curves of all nearby stars were extracted and checked for
any transits with a depth that could cause the relevant transits in
the TESS light curves. No such transit was observed for any of
the planet candidates. These data ruled out the hypotheses that
any of the transits detected by TESS could be off-target by
ensuring that no nearby star transited at the predicted transit
time.
Upon collecting the above time series and ruling out transits

on nearby targets, we finally concluded that the planetary
nature of the transiting objects was validated. Thus, in the

Table 7
Ground-based Photometric Time-series Observations Made on HD 108236 during the Predicted Transits Based on the TESS TCEs

Date Telescope Camera Filter Pixel PSF AR Transit FN Duration Obs
(UT) (arcsecond) (arcsecond) (Pixel) (Mag) (minutes)

TOI 1233.01
2020-03-02 LCOGT-SAAO-1 m Sinistro zs 0.39 2.0 20 Full 8.1 341 376
2020-03-03 MEarth-South Apogee RG715 0.84 2.1 8.5 Egress 9.9 587 577
2020-03-03 MEarth-Southx6 Apogee RG715 0.84 8.0 17 Egress 5.5 588 3621
2020-03-17 LCOGT-CTIO-1 m Sinistro zs 0.39 2.5 15 Full n/c 384 434
2020-03-17 MEarth-South Apogee RG715 0.84 2.1 8.5 Full 9.9 620 608
2020-03-17 MEarth-Southx6 Apogee RG715 0.84 8.1 17 Full 5.5 620 3819
TOI 1233.02
2020-01-11 LCOGT-CTIO-1 m Sinistro y 0.39 1.8 10 Ingress 8.0 223 148
2020-01-31 LCOGT-SAAO-1 m Sinistro y 0.39 2.6 15 Egress 8.3 309 174
2020-03-11 MEarth-Southx6 Apogee RG715 0.84 7.9 17 Full 5.5 610 3759
2020-03-11 MEarth-South Apogee RG715 0.84 1.9 8.5 Full 11 609 584
2020-03-11 LCOGT-CTIO-1 m Sinistro zs 0.39 2.0 11 Full 7.7 455 507
TOI 1233.03
2020-02-02 LCOGT-SAAO-1 m Sinistro zs 0.39 3.1 10 Full 8.6 296 192
2020-03-11 LCOGT-CTIO-1 m Sinistro zs 0.39 1.8 15 Full n/c 452 507
TOI 1233.04
2020-01-11 LCOGT-SAAO-1 m Sinistro zs 0.39 3.0 6 Full 9.2 205 143

Note. FN stands for the faintest neighbor, and the column values indicate the magnitude difference of the faintest neighbor checked for an NEB. In this column, (n/c)
indicates “not checked” since transit-like events on nearby targets in the field at the same ephemeris were ruled out previously.
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remainder of this paper we will refer to these transiting planets
as HD 108236b, HD 108236c, HD 108236d, and HD 108236e
(or simply as planet b, c, d, and e), ordered with respect to
increasing distance from the host star, HD 108236. Note that
these four planets correspond to TOIs 1233.04, 1233.03,
1233.01, and 1233.02, respectively.

3.7.4. Ground-based Detection of a Transit

A transit of planet d was tentatively detected on UT 2020
March 17 at a 1m LCOGT-CTIO telescope. The photometric
time-series data had a relatively short pre-transit baseline.
Therefore, we excluded these observations from the global orbital
model in Section 3.9, in order to avoid biasing the fit. However,
we fitted the LCOGT-CTIO data separately and inferred a transit
duration of 3.8± 0.2 hr and a transit depth of 1.1± 0.2 ppt, which
are consistent with those inferred from the TESS data. The
inferred mid-transit time was 2,458,571.3365± 0.0035 BJD,
indicating a transit arrival 14 minutes late compared to the linear
ephemeris model based on the TESS data. The associated light
curve is shown in Figure 7.

3.8. Archival Ground-based Photometry

HD108236 has also been observed by the Wide Angle Search
for Planets South (WASP-South) survey (Pollacco et al. 2006) in
SAAO, South Africa. WASP-South, an array of eight wide-field
cameras, was the southern station of the WASP transit-search
project (Pollacco et al. 2006). It observed the field of HD 108236
in 2011 and 2012, when equipped with 200mm, f/1.8 lenses, and
then again in 2013 and 2014, equipped with 85mm, f/1.2 lenses.
It observed on each clear night, over a span of 140 nights in each
year, with a typical 10-minute cadence, and accumulated about
58,000 photometric measurements on HD 108236. We searched
the data for any rotational modulation using the methods from
Maxted et al. (2011). We found no significant periodicity between
1 and 80 days, with a 95% confidence upper limit on the

amplitude of 1 mmag. We did not detect any transits in the WASP
data, consistent with the expected small transit depths of
0.302± 0.031, -

+0.517 0.040
0.036, 0.889± 0.053, and 1.175± 0.069

ppt. Planet e had the deepest expected transit; however, its
relatively long period likely precluded any detection. The shallow
transits of the inner planets also made them undetectable. To
determine which region of the parameter space of transiting
planets can be ruled out with the WASP data set, we performed
injection-recovery tests using allesfitter, which will be
introduced in Section 3.9. We injected planets over a grid of

Figure 6. Photometric image of the field in the vicinity of HD 108236 as observed by MEarth-South on UT 2020 March 17. The left panel shows the image in focus as
collected by one of the MEarth-South telescopes, where HD 108236 is saturated owing to its brightness. The right panel shows the defocused image as observed by the
other six MEarth-South telescopes. In these images the PSF is broader, unsaturating HD 108236 and allowing precision photometry on the target.

Figure 7. Detrended follow-up light curve of HD 108236 during the transit of
planet d as measured by LCOGT-CTIO, where the transit was tentatively
confirmed to be on target. The transit arrived 14 minutes late, which is expected
given the ephemeris uncertainty of ∼1 hr. The vertical line shows the mid-
transit time of the transit that was expected based on the linear ephemeris
inferred from the TESS data. The gray and red points denote the raw and
binned data, and the blue line is the posterior median transit model.
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periods of 10.1, 15.1, ..., 140.1 days and radii of 8, 8.5, ..., 22R⊕.
For each planet, we tried to recover the injected signal using
Transit Least Squares (TLS; Hippke & Heller 2019). We find that
∼50% of transiting planets with radii 1.3–2RJ and periods less
than 100 days could have been found in the WASP data. The
recovery rate drops to ∼20% for planets with radii ∼1 RJ and
periods less than 100 days. In contrast, planets much smaller than
Jupiter or those on periods longer than 100 days would remain
undetected in the WASP data.

3.9. Transit Model

Following the vetting of the planet candidates, we modeled
the TESS PDC light curve to infer the physical properties of the
orbiting planets. In order to model the photometric time-series
data, we used allesfitter (Günther & Daylan 2019, 2020).
The parameters θ of our forward model M are presented in
Table 8. We assumed a transit model with a linear ephemeris.
We assumed a generic, eccentric orbit. For limb darkening, we
used a transformed basis q1 and q2 of the linear u1 and
quadratic u2 coefficients as (Kipping 2013)

= +q u u , 31 1 2
2( ) ( )

=
+

q
u

u u
0.5 . 42

1

1 2
( )

We modeled this red noise along with any other stellar
variability in the data using a Gaussian process (GP) with a
Matérn 3/2 kernel as implemented by celerite (Foreman-
Mackey et al. 2017).

When modeling the TESS data, we use the PDC light-curve
data product from the SPOC pipeline. We provide the posterior
in Table 10 for nuisance parameters, Table 11 for the
parameters of planets d and e, and Table 12 for the parameters
of planets b and c. Although our nominal results come from
allesfitter, we have also repeated the analysis using
EXOFASTv2 (Eastman et al. 2019) as a cross-check in order to

confirm consistency. EXOFASTv2 has a dynamical prior that
avoids orbit crossings and ensures dynamical stability of the
analyzed system. A notable result from this analysis were
additional constraints on the eccentricities of the planets
enabled by the Hill stability prior. The inferred eccentricities
were smaller than 0.287, 0.197, 0.164, and 0.149 at a
confidence level of 2σ for planets b, c, d, and e, respectively.
We show in Figure 8 the light curve of each planet folded

onto its orbital period and centered at the phase of the primary
transit, after masking out the transits of the other planets.
Because the orbital period of planet d is close to the orbital
period of TESS around Earth (∼13.7 days), a large gap is
formed in its phase curve. Figure 9 then shows the individual
phase curves, along with the posterior median transit model
shown with the blue lines.

4. The HD 108236 System

In this section, we review the main properties of the planets
discovered to be transiting HD 108236. The HD 108236 system is
depicted in Figure 10. The transiting planets b, c, d, and e orbit the
host star on orbits with semimajor axes of 0.0469± 0.0017 au,
0.0651± 0.0024 au, 0.1131± 0.0040 au, and 0.1400± 0.0052
au, respectively. Compared to our solar system, the discovered
planets orbit rather closer to their host star, HD 108236, forming a
closely packed, compact multiplanetary system.
HD 108236b is a hot super-Earth with a radius of 1.586±

0.098 R⊕. Being the innermost discovered planet of the system,
it has a period of -

+3.79523 0.00044
0.00047 days, making it the hottest

known planet in the system with an estimated equilibrium
temperature of -

+1099 18
19 K. The other three known planets in the

system are HD 108236c, HD 108236d, and HD 108236e. These
are sub-Neptunes with radii -

+2.068 0.091
0.10 R⊕, 2.72± 0.11 R⊕, and

-
+3.12 0.12

0.13 R⊕ and periods -
+6.20370 0.00052

0.00064 days, -
+14.17555 0.0011

0.00099

days, and -
+19.5917 0.0020

0.0022 days, respectively. Their equilibrium
temperatures are -

+932 16
17 K, -

+708 12
13 K, and -

+636 11
12 K, respectively,

under the assumption of an albedo of 0.3.
Figure 11 compares the inferred radii of the validated planets

b, c, d, and e to the occurrence rate of planets as a function of
planetary radius. Planet b is especially interesting for studies of
photoevaporation, since its radius of 1.586± 0.098 R⊕ falls
within a relatively uncommon radius range known as the radius
valley (Fulton et al. 2017). The radius valley is thought to be
depleted owing to photoevaporation caused by the stellar wind
of the host star (Owen & Wu 2017). However, the location of
this radius valley has been shown to be a function of insolation
flux (Van Eylen et al. 2018). Larger rocky planets can exist in
more extremely irradiated environments. With an equilibrium
temperature of -

+1099 18
19 K, planet b is consistent with being part

of the population of small, rocky planets just below the radius
valley. In contrast, planets c, d, and e are typical sub-Neptunes.

4.1. Bright Host

HD 108236 is one of the brightest stars that host four or
more planets. As shown in the top row of Figure 12, it is the
third-brightest (behind Kepler 444, Campante et al. 2015; HIP
41378, Vanderburg et al. 2016) and the fourth-brightest star
(behind Kepler 444, HIP 41378, and Kepler 37; Barclay et al.
2013) in the V and J bands, respectively, that is known to host
at least four planets. However, out of these, only Kepler 37 is a
Sun-like star, making HD 108236 the brightest Sun-like star in
the visual band to harbor at least four transiting planets. This

Table 8
Parameters of the Transit Forward Model

Parameter Explanation Prior

q1; TESS First limb-darkening parameter 1 uniform
q2; TESS Second limb-darkening parameter 2 uniform
logσTESS Logarithm of the scaling factor for relative flux

uncertainties
uniform

slog GP;TESS Amplitude of the Gaussian process Matérn 3/2
kernel

uniform

rlog GP;TESS Timescale of the Gaussian process Matérn 3/2
kernel

uniform

D0;TESS Dilution of the transit depth due to blended light
from neighbors

fixed

Rn/Rå Ratio of planet n, Rn, to the radius of the host star,
Rå

uniform

(Rå + Rn)/an Sum of the stellar radius Rå and planetary radius
Rn

uniform

cosin Cosine of the orbital inclination, i uniform
T0;n Mid-transit time about which the linear ephemeris

model pivots, i.e., epoch, in BJD
uniform

Pn Orbital period of planet n in days uniform
we cosn d Square root of the eccentricity times the cosine of

the argument of periastron
uniform

we sinn d Square root of the eccentricity times the sine of
the argument of periastron

uniform
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property of HD 108236 makes it an interesting and accessible
target from an observational point of view regarding future
mass measurements, photometric follow-up, and atmospheric
characterization of its transiting planets.

The bottom row of Figure 12 also shows the radial velocity
semi-amplitude (at fixed planet mass and orbital period) divided

by the square root of the host star brightness in the V and J bands,
respectively, which are denoted by ¢KV and ¢KJ . The x-axes are
normalized so that the top target has the value of 1. Being a Sun-
like star, HD 108236 falls to the seventh rank, when the
comparison is made in the J band, since low-mass stars generate
a larger radial velocity signal for a given companion.

Figure 8. Detrended PDC light curve folded at the posterior median period of each planet after masking out the transits of other planets. Close-in views of the transits
are also given in Figure 9.

Figure 9. Phase curves of the four discovered planets. Blue lines indicate the posterior median of the transit model fitted to the data.
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4.2. Mass Measurement Potential of the Transiting Planets

The expected radial velocity semi-amplitudes of the four
validated planets based on the predicted masses are in the range
of 1.3–2.4 m s−1. Given the brightness of the host star, this
implies that the system has good potential for mass measure-
ments in the near future. There are ongoing efforts to measure
the masses of all validated transiting planets hosted by
HD 108236.

Given the current absence of mass measurements of the
planets, we use the probabilistic model of Chen (2017) in order
to predict the masses of the validated planets. This model takes
into account the measurement, sampling, and intrinsic scatter of
known planets in the mass–radius plane. As a result, the large
uncertainties of the resulting mass predictions are dominated by
this intrinsic system-to-system scatter and not by the posterior
radius uncertainties of the planets validated in this work.

The masses of planets b, c, d, and e are predicted as 4± 2M⊕,
5± 3 M⊕, 8± 5 M⊕, and 10± 6 M⊕, respectively. Hence,
planet b is likely a dense, rocky planet, whereas planets c, d, and
e are sub-Neptunes with a hydrogen and helium envelope whose

radius increases going from planet c to e. Atmospheric escape of
volatiles is likely to be strongest for the innermost planet b and
should decrease toward the outermost planet e.

4.3. Atmospheric Characterization Potential

Once the radius, mass, and, hence, bulk composition of a
planet are determined, the next step in its characterization is the
determination of its atmospheric properties. The available data
on HD 108236 do not yet allow the atmospheric characteriza-
tion of its planets. However, sub-Neptunes orbiting HD 108236
are favorable targets for near-future atmospheric characteriza-
tion as we discuss below.
Given the expected launch of the James Webb Space Telescope

(JWST), the transmission spectrum metric (TSM; Kempton et al.
2018),

µ


R T

M R
TSM , 5

p
3

eq

p
2

( )

ranks the relative S/N of different planets assuming observa-
tions made with the Near Infrared Imager and Slitless
Spectrograph (NIRISS; Maszkiewicz 2017) of JWST, assum-
ing a cloud-free, hydrogen-dominated atmosphere.
The largest uncertainty in predicting the TSMs of the

planets orbiting HD 108236 arises from the current unavail-
ability of their mass measurements. We use the predicted
masses of planets b, c, d, and e in Equation (5) to obtain
preliminary estimates of their TSMs. Based on the brightness
of the host star, it is expected that the masses of all validated
planets will be measured to better than 40%. Therefore,
comparing the TSMs of the validated planets to those of all
known sub-Neptunes retrieved from the NASA Exoplanet
Archive50 Planetary Systems Composite Data with mass
measurement uncertainties better than 5σ, we find that the
sub-Neptunes HD 108236c, HD 108236d, and HD 108236e fall
among the top 20. The super-Earth (planet b) is not included in
this TSM ranking, because it is not expected to have a
hydrogen-dominated atmosphere. We once again emphasize
that these rankings are based on the predicted masses and the
actual rankings will depend on the mass measurements of the
planets.
The logarithms of the relative TSMs of the planets are

plotted against their radii in Figure 13, along with those of the

Figure 10. Inclined view of the HD 108236 system. The horizontal axis denotes the distance from the host star, HD 108236, which is shown on the left with a black
circle. The four planets HD 108236b, HD 108236c, HD 108236d, and HD 108236e are shown with magenta, orange, red, and green, respectively. Shown on the far
right with gray is Mercury as it would look if it orbited HD 108236 at its current orbital period. The radii of the planets and the star are scaled up by a factor of 50 and
5, respectively. The elliptical appearance of the orbits is due to the viewing angle and does not make any implication about the orbital eccentricities.

Figure 11. Radii of the planets transiting HD 108236 compared to the
completeness-corrected occurrence rate of planets with orbital periods less
than 100 days (Fulton et al. 2017). The posterior median and 68% credible
interval of radii of the planets hosted by HD 108236 are highlighted with
vertical lines and bands, respectively. Planet b falls within the radius valley
(Fulton et al. 2017).

50 https://exoplanetarchive.ipac.caltech.edu/
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known exoplanets (black points) retrieved from the NASA
Exoplanet Archive, where the overall normalizations of the
TSMs are arbitrary. We only show those known planets that
have a measured mass with an uncertainty better than 40%. The
three sub-Neptunes of the HD 108236 system are found to be
favorable targets for comparative characterization of sub-
Neptune atmospheres.

It is worth noting that the TSM ranking of the HD 108236
sub-Neptunes improves with decreasing equilibrium temper-
ature, despite the fact that lowering the temperature acts to
reduce the pressure scale height.

As can be seen in Equation (5), the TSM is proportional to
the third power of Rp, while inversely proportional to Mp.
Although it also scales with Mp, the Rp dependence of Mp is
weaker than Rp

3. Therefore, the TSM is more sensitive to an
increase in planetary radius than a drop in equilibrium
temperature. In the HD 108236 system, the radii of planets c,
d, and e increase with decreasing equilibrium temperature. As a
result, the predicted TSM increases from planet c to e.

Furthermore, although HD 108236 is a relatively bright
target, its brightness is below the limiting magnitude of
NIRISS/JWST (J magnitude of ∼7; Beichman et al. 2014),

making it an appealing transmission spectroscopy target for the
instrument.
We also note that planets orbiting HD 108236 span a broad

range of radius and equilibrium temperature. Figure 14 shows
the distribution of radii and equilibrium temperatures of known
planets retrieved from the NASA Exoplanet Archive and those
of the planets orbiting HD 108236. The wide range of radii and
equilibrium temperatures manifested by the planets allows
controlled experiments of how stellar insolation affects the
photoevaporation of the volatile envelopes of the orbiting
planets by controlling for the stellar type and evolution history
(Owen & Campos Estrada 2020).

4.4. Dynamics

In a multiplanetary system, the displacement from a mean
motion resonance (MMR),

D =
¢ -

-
P

P

j k

j
1, 6( )

of adjacent planet pairs characterizes the proximity of the pair
to an MMR, where P′ and P are the orbital periods of the outer

Figure 12. Comparison of HD 108236 to other systems with at least four transiting exoplanets. Top: histograms of the V-band (left) and J-band (right) magnitudes of
systems that were previously known to host at least four transiting exoplanets. The magnitudes of HD 108236 are highlighted with dashed vertical black lines. Bottom:
radial velocity semi-amplitude (at fixed planet mass and orbital period) divided by the square root of the host star brightness in the V (left) and J (right) bands, denoted
by ¢KV and ¢KJ . The x-axes are normalized such that the largest value is 1. We highlight the top five previously known systems retrieved from the NASA Exoplanet
Archive. In the bottom panels, the exoplanet labels are placed to the upper left of the corresponding points. HD 108236 is highlighted with crosses.
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and inner planets, respectively, j is the nearest integer to the
orbital period ratio, and k is the order of the nearest MMR.
Proximity to an MMR results in TTVs with a coherence
timescale (i.e., superperiod) of Pttv such that

=
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1
. 7

ttv
( )

The HD 108236 system consists of closely packed planets.
However, no pair of the validated planets is on an MMR. The
proximities and superperiods of the known adjacent pairs in the
HD 108236 system are shown in Table 9.

For the first-order interaction between a pair, where k= 1,
the amplitude of the TTVs, V and V′, can be estimated using the
analytical solution (Lithwick et al. 2012)
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where f and g are coefficients, μ and μ′ are the masses of the
planets normalized by that of the host star, and Zfree* is the
conjugate of the complex sum of eccentricity vectors.
No planet pairs in the HD 108236 system are in or near a

strong MMR, precluding the generation of large resonant
TTVs. However, nonresonant (chopping) TTVs with small
amplitudes induced by synodic interactions are possible.
Assuming circular orbits and using the predicted masses yield
a TTV of ∼5 minutes for both planets d and e. We also
confirmed this analytical prediction using an N-body dynamical

Figure 13. Logarithm of TSM vs. radius distribution of the sub-Neptunes
orbiting HD 108236 and known transiting planets with mass measurements
better than 5σ as retrieved from the NASA Exoplanet Archive. Planets c, d, and
e of HD 108236 are among the top 20 known sub-Neptunes when ranked with
respect to their TSMs.

Figure 14. Equilibrium temperatures and radii of known planets retrieved from
the NASA Exoplanet Archive, shown with black points. Planets orbiting
HD 108236 are highlighted, which span a broad and representative range of
radius and equilibrium temperature.

Table 9
Proximities to MMRs of Adjacent Planet Pairs in the HD 108236 System

Pair P′/P j:j-k Δ Pttv (days)

b,c 1.63473 5:3 −0.01916 64.75626
c,d 2.28506 9:4 0.01558 101.08835
d,e 1.37870 4:3 0.03403 143.61021

Note. The second and third columns list the orbit period ratios and nearest
MMR, while the fourth and fifth columns estimate the proximity to resonance
and the coherence period, respectively. The outer pair are near a first-order
resonance where we noted the estimated TTV amplitude in the last two
columns, as described in the text.

Table 10
Posterior of the Fitting Nuisance Parameters

Parameter Value Unit Fit/Fixed

D0;TESS 0.0 fixed
q1;TESS -

+0.23 0.11
0.19

fit

q2;TESS -
+0.43 0.29

0.36
fit

slog TESS −7.4845 ± 0.0090 log rel. flux. fit
slog GP;TESS −8.56 ± 0.13 fit

rlog GP;TESS −1.27 ± 0.28 fit

Table 11
Posterior of the Fitting Parameters for Planets b and c

Parameter Value Unit Fit/Fixed

Rb/Rå 0.01638 ± 0.00095 fit
(Rå + Rb)/ab -

+0.0895 0.0025
0.0028

fit
icos b -

+0.037 0.022
0.015

fit

T0;b -
+2458572.1128 0.0036

0.0031 BJD fit

Pb -
+3.79523 0.00044

0.00047 d fit

we cosb b −0.00 ± 0.50 fit

we sinb b - -
+0.03 0.31

0.27
fit

Rc/Rå -
+0.02134 0.00083

0.00094
fit

(Rå + Rc)/ac -
+0.0647 0.0019

0.0021
fit

icos c -
+0.022 0.014

0.013
fit

T0;c -
+2458572.3949 0.0020

0.0025 BJD fit

Pc -
+6.20370 0.00052

0.00064 d fit

we cosc c −0.01 ± 0.49 fit

we sinc c - -
+0.11 0.29

0.23
fit
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simulation (Lissauer et al. 2011) of HD 108236 with a length of
5000 days. We note that the planets could have higher TTVs
when the circular orbit assumption is relaxed. Hence, with
sufficient transit timing precision, planets d and e are likely to
be amenable to mass measurements via TTV observations
enabled by long-term transit photometry follow-up (Deck &
Agol 2015).
Potential three-body resonances due to a hypothetical planet

x.—The orbital gaps between planets b and c and between
planets c and d are large enough for low-mass planets to exist
on stable orbits, as is common among multiplanetary systems
discovered by the Kepler telescope. There are many adjacent
pairs in the Kepler data set close to the 3:2 MMR, which
invokes the possibility of a missing planet in the apparent 9:4
near-resonant gap between the middle pair of HD 108236.

Table 12
Posterior of the Fitting Parameters for Planets d and e

Parameter Value Unit Fit/Fixed

Rd/Rå 0.02805 ± 0.00095 fit
(Rå + Rd)/ad -

+0.0375 0.0010
0.0012

fit

icos d -
+0.0136 0.0078

0.0065
fit

T0;d -
+2458571.3368 0.0013

0.0015 BJD fit

Pd -
+14.17555 0.0011

0.00099 d fit

we cosd d - -
+0.03 0.48

0.51
fit

we sind d - -
+0.04 0.27

0.21
fit

Re/Rå -
+0.0323 0.0011

0.0012
fit

(Rå + Re/ae -
+0.03043 0.00089

0.00100
fit

icos e -
+0.0118 0.0073

0.0052
fit

T0;e 2458586.5677 ± 0.0014 BJD fit
Pe -

+19.5917 0.0020
0.0022 d fit

we cose e -
+0.01 0.54

0.50
fit

we sine e -
+0.02 0.29

0.23
fit

Table 13
Posterior of the Inferred Parameters for Planets b and c

Property Value

Rå/ab -
+0.0881 0.0025

0.0027

ab/Rå 11.35 ± 0.34
Rb/ab -

+0.001443 0.000092
0.000100

Rb (R⊕) 1.586 ± 0.098
Rb (Rjup) 0.1415 ± 0.0087
ab (Re) 10.08 ± 0.36
ab (au) 0.0469 ± 0.0017
ib (deg) -

+87.88 0.87
1.3

eb -
+0.20 0.14

0.30

wb (deg) 190 ± 140
btra;b 0.38 ± 0.24
Ttot;b (h) -

+2.30 0.11
0.16

Tfull;b (h) -
+2.20 0.12

0.16

ρå;b (cgs) 1.92 ± 0.17
Teq;b (K) -

+1099 18
19

dtr;b;TESS (ppt) 0.302 ± 0.031

Pb/Pc -
+0.611768 0.000098

0.000092

Pb/Pd 0.267731 ± 0.000038
Pb/Pe 0.193716 ± 0.000031
Rå/ac -

+0.0634 0.0018
0.0020

ac/Rå 15.78 ± 0.49
Rc/ ac -

+0.001354 0.000067
0.000076

Rc (R⊕) -
+2.068 0.091

0.10

Rc (Rjup) -
+0.1845 0.0081

0.0089

ac (Re) 14.01 ± 0.51
ac (au) 0.0651 ± 0.0024
ic (deg) -

+88.72 0.74
0.82

ec -
+0.18 0.14

0.34

wc (deg) 210 ± 120
btra;c -

+0.33 0.21
0.25

Ttot;c(h) 2.913 ± 0.095
Tfull;c(h) -

+2.754 0.094
0.100

ρå;c (cgs) 1.93 ± 0.18
Teq;c (K) -

+932 16
17

dtr;c;TESS (ppt) -
+0.517 0.040

0.036

Pc/Pb -
+1.63461 0.00025

0.00026

Pc/Pd 0.437636 ± 0.000052
Pc/Pe 0.316650 ± 0.000046

Table 14
Posterior of the Inferred Parameters for Planets d and e and the Host Star

Property Value

Rå/ad -
+0.0365 0.0010

0.0011

ad/Rå -
+27.39 0.82

0.78

Rd/ad -
+0.001024 0.000046

0.000048

Rd (R⊕) 2.72 ± 0.11
Rd (Rjup) 0.2423 ± 0.0097
ad (Re) 24.31 ± 0.87
ad (au) 0.1131 ± 0.0040
id (deg) -

+89.22 0.38
0.45

ed -
+0.17 0.12

0.30

wd (deg) -
+190 130

140

btra;d -
+0.35 0.21

0.19

Ttot;d (h) -
+3.734 0.049

0.066

Tfull;d (h) -
+3.491 0.057

0.061

ρå;d (cgs) 1.93 ± 0.17
Teq;d (K) -

+708 12
13

dtr;d;TESS (ppt) 0.889 ± 0.053

Pd/Pb 3.73509 ± 0.00053
Pd/Pc 2.28501 ± 0.00027
Pd/Pe -

+0.723548 0.000097
0.000090

Rå/ae -
+0.02948 0.00086

0.00097

ae/Rå -
+33.9 1.1

1.0

Re/ ae -
+0.000951 0.000043

0.000049

Re (R⊕) -
+3.12 0.12

0.13

Re (Rjup) -
+0.279 0.011

0.012

ae (Re) 30.1 ± 1.1
ae (au) 0.1400 ± 0.0052
ie (deg) -

+89.32 0.30
0.42

ee -
+0.20 0.13

0.30

we (deg) -
+170 130

150

btra;e -
+0.36 0.23

0.20

Ttot;e(h) -
+4.013 0.057

0.080

Tfull;e(h) -
+3.712 0.069

0.063

ρå;e (cgs) 1.92 ± 0.18
Teq;e (K) -

+636 11
12

dtr;e;TESS (ppt) 1.175 ± 0.069

Pe/Pb 5.16220 ± 0.00084
Pe/Pc 3.15806 ± 0.00046
Pe/Pd -

+1.38208 0.00017
0.00019

Limb-darkening u1;TESS -
+0.40 0.24

0.22

Limb-darkening u2;TESS -
+0.06 0.27

0.36

ρå;combined (cgs) 1.93 ± 0.17
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While the parameter space for such missing planets is fairly
large, we note that resonant chains of three bodies, as is present
in systems like TRAPPIST-1 (Gillon et al. 2017) and Kepler-80
(Xie 2013), could be present in HD 108236 owing to yet-
undetected planets. This undetected planet x could have either a
period of Px= 9.364 days, which would satisfy

» - +n n n0 2 5 3 , 10c x d ( )

where nx is the orbital frequency of the hypothetical planet, or a
period of Px= 9.150 days, which would satisfy

» - +n n n0 3 2 . 11x d e ( )

The resulting 3:2 resonance between this hypothetical planet x
and planet d would result in additional TTVs.

To search for evidence of such an additional planet in the
TESS data, we used allesfitterʼs interface to remove the
remnant stellar variability from the PDC light curve using a
cubic spline and recursive sigma clipping via wotan (Hippke
et al. 2019). Then, we ran a TLS search (Hippke & Heller 2019)
on this flattened light curve. We recovered all four transiting
planets b, c, d, and e. We also detected several additional
periodic transit-like signals above an S/N threshold of 5. The
most statistically significant of these detections has an epoch of
2,458,570.6781 BJD, period of 10.9113 days, transit depth of
0.23 ppt, S/N of 8.0, signal detection efficiency (SDE) of 6.9,
and false-alarm probability of 0.01. We therefore present this as
a tentative fifth planet candidate in the HD 108236 system.
However, given the large false-positive probability and its
dependence on the detrending method, we concluded that
instrumental origin cannot be ruled out for this planet
candidate. In particular, the stellar density consistent with the
transits of this candidate is 0.4± 0.3 g cm−3, which is
inconsistent with the stellar density (1.9 g cm−3) inferred in
Section 2. This implies that the candidate is likely due to
systematics. Given the larger false-positive probabilities of the
other TLS detections (i.e., larger than 0.01), we discarded them
as likely due to systematics in the TESS data.

TTV analysis of TESS transits.—In order to infer the TTVs
consistent with the TESS data, we performed a light-curve
analysis independent of that discussed in Section 3.9 using
exoplanet (Foreman-Mackey et al. 2020) by relaxing the
assumption of a linear ephemeris. The resulting TTVs are
shown in Figure 15. Table 15 also tabulates the mid-transit
times of the transits detected in the TESS data. We did not
detect any significant TTVs given the temporal baseline and
timing precision of the transits observed by TESS. Never-
theless, using these TTVs, we were able to constrain the mass
of planet e to be lower than 31 M⊕ at 2σ via the dynamical
simulation, which is consistent with the mass predicted via
Chen (2017).

Stability.—To further test the dynamical integrity of the
system, we conducted N-body integrations using the Mercury
Integrator Package (Chambers 1999). Our method is similar to
that adopted by Kane (2015, 2019) in the study of compact
planetary systems discovered by Kepler. The innermost planet
of our system has an orbital period of ∼3.8 days. To ensure
perturbative accuracy, we therefore used a conservative time
step for the simulations of 0.1 days, which is ∼1/40 of the
period of the innermost planet. We ran the simulation for 107

yr, equivalent to ∼109 orbits of the innermost planet. For the
masses of planets b, c, d, and e, we assumed fiducial values of
3.5, 4.7, 7.2, and 11.1 M⊕, respectively. The results of the
simulation are represented in Figure 16 by showing the

Figure 15. Measured TTVs of the discovered planets in the HD 108236 system.
The measured mid-transit times are consistent with a linear ephemeris model. No
TTV for planet e was measured, since only two transits were observed.

Table 15
Measured Mid-transit Times of Planets b, c, and d in the TESS Data

Mid-transit Time (BJD –2,457,000) 1σ Uncertainty (days)

Planet b

1572.107037 0.006751046
1575.898507 0.007962894
1579.697924 0.007157883
1587.294548 0.00576889
1591.096759 0.005991691
1594.894048 0.00481626
1598.673998 0.005489018
1602.468591 0.007256515
1606.273666 0.007104524
1613.856271 0.007697341
1617.658793 0.006202734
1621.451437 0.00614042

Planet c

1572.391729 0.002815299
1578.601024 0.002967442
1584.802628 0.004321249
1591.013683 0.004541912
1603.409944 0.004748817
1609.618876 0.005754455
1615.815326 0.004564704
1622.029226 0.003369172

Planet d

1571.335310 0.00213619
1585.514907 0.002414469
1599.688154 0.002331228
1613.864821 0.002721803

Note. All times are provided in BJD after subtracting 2,457,000.
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histogram of the eccentricities of the four planets for the entire
simulation. The results show that the system is dynamically
stable, even considering the nonzero eccentricities for such a
compact system. However, there is significant transfer of
angular momentum that occurs between the planets with time.
The two innermost planets have eccentricities that oscillate
between 0 and ∼0.13, which can result in substantial changes
in the climate of the atmospheres (Kane & Torres 2017; Way &
Georgakarakos 2017), known as Milankovitch cycles (Spiegel
et al. 2010). The two outermost planets, d and e, remain near
their starting eccentricities and so are largely unperturbed
through the orbital evolution.

5. Discussion and Conclusion

Systems with multiple planets provide a test bed for models
of planet formation, evolution, and orbital migration. Roughly
one-third of the planetary systems discovered by the Kepler
telescope are multiplanetary (Borucki et al. 2011). The inferred
valley in the radius distribution of known, small planets (Fulton
et al. 2017) is possibly due to the photoevaporation of volatile
gases on close-in planets or core-powered mass loss (Ginzburg
et al. 2018). These processes can leave behind a rocky core and
a small (less than 2 R⊕) radius, while the unaffected population
constitutes gas giants with radii larger than 2 R⊕. Furthermore,
if photoevaporation is indeed the mechanism that causes the
radius valley, then adjacent planets in multiplanetary systems
should have similar radii, since they have had similar
irradiation histories. The planets of HD 108236 are consistent
with this model, since the radius ratios of adjacent planets are
1.3, 1.3, and 1.1, respectively.

Regarding its coplanar and compact nature, the orbital
architecture of the HD 108236 multiplanetary system is also
consistent with those of the multiplanetary systems discovered by
the Kepler telescope. The CKS sample of exoplanets exhibited a
correlation between the size and spacing of the planets (Fang &
Margot 2013; Weiss et al. 2018b), which is also demonstrated in
the HD 108236 system. That is, adjacent planets are found to have
similar sizes, and their period ratios are correlated. Furthermore, in
the CKS sample, the period ratios of adjacent planets were
observed to cluster just above 1.2, with very few period ratios of
adjacent planets below 1.2. This can either be due to in situ
formation at these period ratios or due to subsequent orbital
migration. In either case, it was determined that this period ratio

defines a stability region (Weiss et al. 2018b), as pairs with
a period ratio smaller than 1.2 become dynamically unstable
owing to Hill or Lagrange instability. With period ratios of

-
+1.63461 0.00025

0.00026, 2.28501± 0.00027, and -
+1.38208 0.00017

0.00019, planets
discovered in this work also respect this dynamical constraint.
In short, HD 108236 offers an excellent laboratory for

studying planet formation and evolution, as well as atmo-
spheric characterization, while controlling for the stellar type
and age. The sub-Neptunes HD 108236c, HD 108236d, and
HD 108236e will be favorable targets for atmospheric
characterization via transmission spectroscopy with the JWST
and HST. The brightness of the host, its similarity to the Sun,
and the potentially yet-unknown outer companions make the
system a high-priority target for characterization. The target
will be reobserved in the extended mission of TESS during
Cycle 3, Sector 37 (UT 2021 April 2 to UT 2021 April 28),
which will enable improved TTV measurements and searches
for new transiting planets in the system. HD 108236 will also
be among the targets observed by CHEOPS for improved
radius characterization.
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