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Abstract: Shape memory polymers (SMPs) as a relatively new class of smart materials have gained
increasing attention in academic research and industrial developments (e.g., biomedical engineer-
ing, aerospace, robotics, automotive industries, and smart textiles). SMPs can switch their shape,
stiffness, size, and structure upon being exposed to external stimuli. Electrospinning technique can
endow SMPs with micro-/nanocharacteristics for enhanced performance in biomedical applications.
Dynamically changing micro-/nanofibrous structures have been widely investigated to emulate
the dynamical features of the ECM and regulate cell behaviors. Structures such as core-shell fibers,
developed by coaxial electrospinning, have also gained potential applications as drug carriers and
artificial blood vessels. The clinical applications of micro-/nanostructured SMP fibers include tis-
sue regeneration, regulating cell behavior, cell growth templates, and wound healing. This review
presents the molecular architecture of SMPs, the recent developments in electrospinning techniques
for the fabrication of SMP micro-/nanofibers, the biomedical applications of SMPs as well as future
perspectives for providing dynamic biomaterials structures.

Keywords: shape memory polymers; electrospinning; molecular architecture; micro-/nanostructures;
actuation methods; biomedical applications

1. Introduction

Stimuli-responsive materials have recently gained increasing attention in academic
research and industrial developments as a relatively new class of materials that switch
between a temporary and a permanent shape in response to a specific stimulus, including
heat, pH-change, electrical or magnetic field, ultrasonic waves, and light. The main feature
of shape memory polymers (SMPs) is to memorize the original shape of the structure before
being exposed to a trigger and then reform after deformation (in the absence of the trigger)
without any mechanical work. To achieve shape memory effects, a chemical architecture
should be designed based on molecular switching segments and net-points [1,2]. Recent
advances in SMPs have demonstrated a wide range of potential applications as their
chemical structures and physical properties are highly adjustable to process needs [3,4].
SMPs studied as smart materials can be applied in various areas, including biomedical
fields [5], fashionable textiles [6], aerospace [7], sensors [8], etc.

Nanotechnology, as a highly interdisciplinary research field, emphasizes the design of
nanosized structures, including organic/inorganic nanoparticles, nanofibers, nanotubes,
nanofoams, and nanopatterns. Electrospinning transformed SMPs’ scales down to the
nanoscales, after the introduction of electrospun polyurethane-based SMP nanofibers in
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2005 [9]. SMP nanofibers have drawn great consideration in technologies and science due to
their distinctive properties, in addition to good shape recoveries, such as high surface area
per volume unit, small diameters, high porosity, and low density. In virtue of such features,
micro-/nanofibers have been extensively applied in the fields of filtration membranes,
supercapacitors, and sensors, as well as biomedicine [8,10–12].

SMP micro-/nanofibers combine shape memory property and fiber characteristics
which provide multifunctional structures. Interestingly, micro-/nanofibers present en-
hanced shape memory properties, compared to shape memory films [13]. Zhang et al. [14]
discovered that SMP microfibrous membranes exhibited a considerably faster shape re-
covery rate compared to the SMP films of the same materials in the same conditions.
That was attributed to the quicker heating/cooling rate of the fibers due to their larger
specific surface areas. Moreover, SMP micro-/nanofibers can mimic the fibrillar features
of ECMs and enable cell proliferation and migration as tissue engineering scaffolds [15].
Additionally, other structures, such as core-shell structures, developed by coaxial electro-
spinning have shown great potentials as drug carriers, artificial blood vessels, and wound
dressings [16–19].

Besides, cell behaviors, including proliferation, differentiation, and alignment, are
influenced by the dynamical behavior of ECM, signals transmitted by neighboring cells,
growth factors, and cytokines [20–22]. The dynamic behavior of ECM can regulate cell func-
tions and accelerate tissue regeneration [23]. By endowing SMPs with micro-/nanoscale
features, the interaction between the microenvironment and cells can be properly tuned and
controlled. For instance, researchers have recently developed micro-/nanofiber platforms
and micropatterned structures with reversible interactions to regulate cell behaviors and
tissue formation [24,25]. Moreover, the shape memory property allows the polymers to be
implanted and fill irregular defects through minimally invasive surgery.

SMPs have been developed over the last three decades [26], as shown in Figure 1. The
development of biodegradable SMPs [27], the multishape SMPs [28], two-way SMPs [29,30]
and the electrospinning of SMPs for the biomedical applications [31] occurred in the 2000s.
During the past decade, there has been a tremendous progress in biomedical advances
using the remote actuation of SMP fibers [32] as well as the regulation of cells’ behavior
through taking advantage of SMPs’ fibrous structures [33].
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While general principles of SMPs, their material chemistry, and structures have been
extensively reviewed previously [5,34,35], the current review mainly focuses on recent
advances in the preparation of shape memory micro-/nanofibrous structures via electro-
spinning, and sheds light on their biomedical applications in minimally invasive surgery,
drug delivery, bone repairs, vascular grafts, wound dressing, and cell regulation.

2. Architecture of SMPs

SMPs are comprised of a permanent and a temporary shape resulted from a com-
bination of the molecular chemistry and a programming procedure [36]. The required
chemical architecture involves net-points and molecular switches with a sensitivity to a
stimulus. In the same sense, SMPs can also be considered as copolymers with hard and
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soft segments acting as fixed and reversible phases, respectively. The fixed phase prevents
the flowing of the polymer chains upon applying stress while the reversible phase experi-
ences deformation and behaves as a molecular switch. This phase freezes the temporary
shape during stimulation while it returns to the original shape when the stimulation is
switched [8]. The molecular mechanisms of SMPs architecture illustrated in Figure 2 can
be applied to any kinds of SMPs. In this scheme, SMPs are made up of both net-points and
molecular switches. This fixed phase (i.e., net-points) can be achieved by the introduction
of crystalline phases, chemical crosslinks, chain entanglements, interpenetrating networks,
or interlocked supramolecular complexes. Switch parts are responsible for shape fixity
and recovery upon applying an external stimulus. The crystalline, liquid crystalline, and
amorphous phases, supramolecular entities, light-reversible couplings, and percolating
cellulose-whisker networks have been introduced as the switch units in SMPs [36]. The re-
versible phase fixes the temporary shape through glass transition, crystallization, isotropic
transition, supramolecular interactions, and reversible covalent or noncovalent bonds.

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 25 
 

 

 
Figure 2. The overall schematic of the molecular architecture for SMPs consisting of switching 
segments and net-points. 

3. Triple and Multiple SMPs 
Triple SMPs possess two temporary states in addition to the permanent shape. The 

SMPs transform from the first to the second temporary shape by stimulating, and another 
stimulation makes the deformation back to the permanent shape. These types of SMPs are 
common among thermoresponsive SMPs and there are two main strategies to design 
them: i) a broad thermal transition temperature (Ttrans) and (ii) multiphase designation, in 
which each phase proposes a separate transition [39]. However, the polymerization-in-
duced phase separation can also be considered in making a multiphase morphology [40]. 
Mather et al. utilized this strategy to induce a triple SMP composite based on poly (ε-
caprolactone) (PCL) and epoxy [41]. Block copolymers also provide a possibility to pre-
pare a nanophase separated polymer morphology and consequently offer two separate 
thermal transitions needed for triple SMPs [42]. According to this strategy, Gao et al. pre-
pared a gradient polymeric structure which caused a gradual shifting of the glass transi-
tion temperature (Tg) and consequently a broad glass transition [43]. 

In addition, Li et al. could achieve a quintuple-SMP using a semi-interpenetrating 
network with extended crystalline and glass transition segments. This provided multi-
gradient Tg and a melting temperature as transition temperatures for multistep shape 
changes in one shape memory cycle [44]. 

Polymer composites containing different phases can also be utilized individually to 
create multishape SMPs. For instance, an SMP epoxy matrix reinforced by PCL fibers in-
duced two thermal transitions (i.e., Tg of the matrix and Tm of the PCL fiber) [45]. Zhang 
et al. could also electrospun Nafion, comprising perfluoro ether sulfonic acid side chains 
and polytetrafluorethylene backbone, via adding a small amount of poly (ethylene oxide) 

Figure 2. The overall schematic of the molecular architecture for SMPs consisting of switching
segments and net-points.

Shape memory Polyurethanes (SMPUs) are the most prominent type of SMPs for
biomedical applications because of their biocompatibility, biodegradability, easily manip-
ulated structure, and transition temperature near to body temperature [37]. SMPUs are
segmented block copolymers with hard and soft separated segments. The soft switching
segments are generally composed of long-chain diols such as polyester or polyether polyols,
whereas the hard permanent segments are mainly formed by the reaction of short-chain
diols including chain extenders with diisocyantes as physical crosslinkers [36,38].
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Shape memory behavior can be caused by different states of molecular chains under
various stimulations. In other words, the shape memory effect (SME) of such materials can
be divided into three different categories of (i) one-way SME, (ii) multiple-SME, and (iii)
two-way (reversible) behavior, depending on the different shape-recovery mechanisms
described in the following sections.

3. Triple and Multiple SMPs

Triple SMPs possess two temporary states in addition to the permanent shape. The
SMPs transform from the first to the second temporary shape by stimulating, and another
stimulation makes the deformation back to the permanent shape. These types of SMPs are
common among thermoresponsive SMPs and there are two main strategies to design them:
(i) a broad thermal transition temperature (Ttrans) and (ii) multiphase designation, in which
each phase proposes a separate transition [39]. However, the polymerization-induced
phase separation can also be considered in making a multiphase morphology [40]. Mather
et al. utilized this strategy to induce a triple SMP composite based on poly (ε-caprolactone)
(PCL) and epoxy [41]. Block copolymers also provide a possibility to prepare a nanophase
separated polymer morphology and consequently offer two separate thermal transitions
needed for triple SMPs [42]. According to this strategy, Gao et al. prepared a gradient
polymeric structure which caused a gradual shifting of the glass transition temperature
(Tg) and consequently a broad glass transition [43].

In addition, Li et al. could achieve a quintuple-SMP using a semi-interpenetrating net-
work with extended crystalline and glass transition segments. This provided multigradient
Tg and a melting temperature as transition temperatures for multistep shape changes in
one shape memory cycle [44].

Polymer composites containing different phases can also be utilized individually to
create multishape SMPs. For instance, an SMP epoxy matrix reinforced by PCL fibers
induced two thermal transitions (i.e., Tg of the matrix and Tm of the PCL fiber) [45].
Zhang et al. could also electrospun Nafion, comprising perfluoro ether sulfonic acid side
chains and polytetrafluorethylene backbone, via adding a small amount of poly (ethylene
oxide) [46]. This electrospun SMP, showed a broad transition temperature and could be
designed to memorize five shapes at different transition temperatures, providing potential
applications for sensors, smart textiles, actuators, and artificial skins.

4. Reversible SMPs

The SME explained so far is a one-way SME that is missing the reversibility of the
shape. It means that when the SMP recovers its permanent shape, another step is necessary
to apply to reconstruct the temporary shape. A suitable shape memory material has to
be able to switch between its shape reversibly several times without applying an external
reshaping process. Therefore, the temporary shape should reform itself upon terminating
the stimulus. This kind of SMPs is called reversible or two-way SMP [35]. Despite the
increasing knowledge about designing SMPs, two-way SMMs are still scarce. To obtain
such SMPs, an internal driving force for the reverse transformation is compulsory. The
switching phases are based on reversible mechanisms which the most common ones will
be discussed in the following sections.

4.1. Reversible Thermally Induced SMPs

Thermally induced SMPs are the most widely studied type of SMPs [35]. A de-
sign strategy for reversible thermally induced SMPs is based on liquid crystalline elas-
tomers (LCE) which undergo a transition between an isotropic and anisotropic phase
(Figure 3a). In other words, two-way SMPs of LCEs result from the combination of the elas-
tic characteristic of the network and the arrangement of mesogenic units [47]. For instance,
Mather et al. [48] synthesized a two-way SMP based on a liquid crystalline monomer
polymerized by acyclic diene metathesis and crosslinked.
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Semicrystalline networks (SCN) have been considered as another strategy for re-
versible SMPs due to their simple chemistry and easy tailoring of the transformation
temperatures. Mather et al. [30] reported a crosslinked poly (cyclooctene) as an SCN that
undergoes a crystallization induced elongation during cooling across the melting temper-
ature in the presence of constant tension (Figure 3b). The elongation was reversed and
melting induced contraction appeared upon heating above the melting temperature.

Two layered polymeric networks formed with the aid of adhesives instead of by
covalent linkages have been investigated as another strategy for thermally induced two-
way SMPs (Figure 3c). These two polymer layers can be made of one-way SMPs as well
as a layer of one-way SMP with an elastomer layer [29,49]. There are also other works for
the fabrication of two-way shape memory composites without using SMP components.
As an example, Tamagawa et al. fabricated a two-way SMP using two ordinary polymers
without the shape memory property [50].

The most recent strategy for the preparation of thermally induced two-way SMPs is
the use of the interpenetrating network (IPN) of the elastomeric and crystalline polymers
introduced by Wu et al. [51]. IPN is made of a combination of at least two polymeric
networks with a molecular interlacing within the matrix and no covalent bonds between
the networks (Figure 3d) [52]. A variety of methods are used to synthesize the IPNs, but
the photopolymerization of monomers or oligomers is the most common technique used
to prepare IPN [51].

Thermoresponsive SMPs typically require a programming process in addition to
the molecular architectures. The programming is based on a cyclical thermomechanical
process which has been used and reported by several authors [51,53–55]. For instance,
two-way PCL-based SMPs were created via combining the electrospinning method and
sol–gel crosslinking reactions and were subsequently programmed for the shape memory
behavior [54].
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4.2. Reversible SMPs Based on Thermo- and Light-Activated Covalent Bonds

The switching phases required for reversible SMPs can also form via reversible cova-
lent bonds. Particularly, the Diels–Alder and Retro-Diels–Alder reactions are well-known
for this purpose. The most common forms of thermoreversible Diels–Alder reactions
include the furan-maleimide, anthracene-maleimide, and dithioester diene DA adducts as
shown in Figure 4a [56]. Raquez et al. [57] and Alexandre et al. [58] synthesized four-arm
star shaped PCL, functionalized with anthracene, maleimide, and furan moieties, and
subsequently reactive extrusion created crosslinked networks. Besides the end groups
functionalization with Diels–Alder reactions, Yoshie et al. synthesized a polymer using
furan moieties in the polymer chains [59] crosslinked it with bismaleimides to achieve a
SMP based on reversible Diels–Alder moieties [60]. Another reversible covalent interaction
to design SMPs is disulfides. Rowan et al. synthesized a poly-disulfide, which could
perform self-healing by light radiation and SME using thermal treatment [61].

Supramolecular interactions such as ionic interactions, hydrogen bonds, or metal-
ligand interactions can also be utilized instead of reversible covalent bonds for designing
SMPs. Due to easy adjusting of the strength of bindings and straightforward creation of
multifunctional polymers, hydrogen bonds can be utilized for the preparation of SMPs [62].
Wang et al. synthesized a four-arm star shaped PCL with the hydrogen bonding and
added four-arm polydioxanone with hydroxyl end groups. This system could show a
shape memory behavior as a result of hydrogen bonds as well as an interpenetrating
network [63].

In addition to hydrogen bonds, ionomers were also investigated as a supramolecular
interaction. The most common approaches are sulfonated polymers neutralization with
zinc salts [64] and ionic groups integration via carboxylic acids [65].

Besides the above-mentioned supramolecular interactions, metal–ligand interactions
also provide reversibility for the design of SMPs. Rowan et al. prepared a permanent
covalent network, created by a thiolene reaction with tetrafunctional thiol crosslinker, and
a reversible phase, was subsequently achieved by complexing the ligand with europium
ions [66].

Development in photoactivated covalent chemistry has increased the interest for the
design of SMPs based on light-triggered covalent bonds SMPs for biomedical application
because of their easier remote actuation compared to thermal actuation. The most general
example for light activated SMPs is the photodimerization of cinnamic acid derivates as
reversible elements introduced by Leindlein et al. [67]. Nagata et al. prepared the polyester,
containing cinnamic acid in the main chain, which could stimulate the prepared gel upon
exposure to ultraviolet (UV) light [68,69].

Coumarins can undergo photocrosslinking and reversible transitions based on cy-
cloaddition reactions for the designation of photoinduced SMPs. He et al., further improved
this idea via combining the dimerization of coumarin with hydrogen bonds to obtain a
photoswitchable structure [70].

Photoisomerization reactions can be also employed for the preparation of photo-
induced SMPs. The most important example of these reactions is a cis–trans isomerization
of azobenzene moieties upon light exposure [71]. In that case, White et al. synthesized an
azobenzene-containing diacrylate, as a crosslinker which can recover the original shape
after light illumination [72]. Besides the azobenzene as a photoisomerization, the spiropy-
ran isomerization reaction can also be utilized. Liu et al. examined the shape recovery of
spiropyran doped ethylene-vinyl-acetate copolymer based on the isomerization of spiropy-
ran [73].

Moreover, Miao et al. used the concept of topological isomerizable network to design
a light-triggered SMP based on polyethylene glycol diacrylate (PEGDA) offering ester
bonds [74]. The ester bonds could undergo transesterification reaction with the pendent
hydroxyls as shown in Figure 4b.
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5. Stimulus-Responsive Methods

The stimulation methods play a leading role for the practical applications of SMPs
where various triggers including light, heat, pH, moisture, water, and electrical and mag-
netic fields, and have been successfully utilized in research studies [36,47].

The most widespread and straightforward type of stimulation is the direct thermal
activation of SMPs based on two thermal transitions: (i) the melting temperature and
(ii) the glass transition temperature. The melting transition temperature can be utilized in
chemically and physically crosslinked polymers as well as in semicrystalline networks. This
type of SMPs presents (multi)block copolymers with a low melting phase, as a switching
segment, and a high melting phase, as a permanent network. Similarly, the glass transition
can be utilized in physically crosslinked thermoplastics as well as chemically crosslinked
thermosets. Most melting-temperature-based (Tm-Based) SMPs investigated are based
on polyolefins, polyethers, and polyesters with a soft phase of low melting temperature,
while their crystalline hard phase remains untouched at an elevated temperature [35]. In
these cases, the switching temperature depends on the degree of branching as well as the
crosslinking density.

The polymers typically demonstrate a glass transition below the room temperature.
Thus, polymeric materials with a Tg above 25 ◦C can be utilized as Tg-based SMPs. In
comparison to Tm-based SMPs, Tg-based SMPs show a slower shape recovery due to
the broad glass transition. Consequently, Tg-based SMPs are not ideal candidates for
applications where a quick shape recovery process is required. However, the slow shape
recovery process is attractive for biomedical applications [75].

By increasing the crosslinking density, higher glass transition temperatures and conse-
quently, higher switching temperatures can be achieved. Recently, thermosetting shape
memory cyanate polymers have been investigated with a glass transition temperature
higher than 250 ◦C [76]. Therefore, these materials show high thermal stability and excellent
shape recovery and shape recovery.

The direct thermal actuation of SMPs can somewhat limit the range of their applica-
tions due to the need to control the temperature using a heat source such as an oven or
water bath. Nanotechnology has been assumed to solve this difficulty in obtaining various
indirect thermal actuation. Adding nanoparticles into the SMPs matrix can create heat
within the construct using a remote energy source. Indirect heating methods including ap-
plying magnetic, electrical fields, microwaves, UV, and NIR irradiations can meet the needs
of many practical applications by offering remote controlling the temperature. The most
common nanofillers used in different SMPs are Fe3O4, Au, Ag, Ni, CNTs, SiC, graphene
oxide, and cellulose nanocrystals [10,77–81]. Molecular vibration in these systems plays the
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role of generating heat indirectly. For example, magnetic fillers have been widely employed
for the heat activation of SMPs where the energy is induced by altering a magnetic field,
and the concentration and size of the particles determine the magnitude of the energy
conversion and the final temperature of the SMP [82,83].

In addition to the direct and indirect thermal stimuli described so far, there are
other activation methods with the potential for future applications, including ultrasonic
waves [84,85], mechanical pressure [86], and water- or solvent-induced activations based
on chemical bindings and physical swelling [87–89]. The addition of organic salts can
endow SMPs with water-induced shape recovery through the dissolution of water soluble
salts and the formation of porosity within the SMP construct [90]. In another research
paper, a moisture-responsive fibrous membrane was prepared by Dallmeyer et al. using
electrospinning of Kraft lignin fractions to have a two-way SME [91].

Researchers have also designed SMP composites with multiple simultaneous acti-
vation mechanisms to precisely tune shape memory performances [92]. A recent study
demonstrated a polystyrene-based SMP composite filled with CNT, Fe3O4, and pure
polystyrene which could present a selective actuation in the exposure of an alternating
magnetic field [93]. Such SMPs could be applied for applications requiring complex recon-
figurable structures. This system exhibited not only a selective activation but also multiple
shape changing functions with three distinct defined shapes.

6. SMPs with Biomimetic Micro-/Nanofibrous Structures

At the beginning of the development of SMPs, they were applied in balk forms which
could narrow their field of applications [36,94]; but, with the development of nanotechnol-
ogy, the requirements of many potential applications have been fulfilled. Nanofabrication
techniques that have been used to achieve the necessary micro-/nanostructures include
foaming, spin coating, electrospinning, 3D or 4D printing, and transfer printing. These
methods have allowed SMPs to form nanofibers [95], porous films [86], micropatterns [96],
micro or nanoparticles [97], and foams [98]. SMPs in these forms can extend their potential
applications in biomedical fields.

Many types of natural and synthetic polymers can be utilized for synthesizing biomimetic
SMPs. Natural polymers, such as alginate [99,100], chitosan [101,102], and collagen [103]
have been applied for the fabrication of porous SMP scaffolds. Synthetic polymers, like
PCL [32,104,105], poly (D, l-lactide) (PDLLA) [106–108], polyurethane (PU) [10,14,109], poly
(lactic-co-glycolic acid) (PLGA) [110,111], epoxy polymers [112,113] and polyacrylates [114,115],
can be usually crosslinked by chemical interactions or polymer chains with a high glass
transition temperature (Tg) to form permanent networks for SMPs. Polymer components
with the melting temperature (Tm) or low Tg prepare the switching network of the SMPs.
To improve the SMP properties and functionalize them for the biomedical applications,
they can also be combined with drugs, and various nanoparticles such as hydroxyapatite
(HAp) [107,116,117], multiwalled carbon nanotubes (MWNTs) [32,118], cellulose [119,120],
and graphene oxide (GO) [10,79].

Although biomimetic SMPs have biocompatibility, for particular applications, such as
absorbable scaffolds, biodegradability is also essential because biodegradation eliminates
the second surgery for removing the construct after the treatment. However, the challenge
is how to match the required time for degradation with the performance period of SMP
materials. Therefore, biodegradable SMPs should be designed with a tunable degradation
rate, maybe through the variation of the SMP compositions [121,122].

In addition, micro-/nanofibrous structures can endow the SMPs with flexibility, easy
deformation, and controlled porosity and offer significant potential for cell growth ap-
plications [106]. Cells are typically cultured on static surfaces; recently, researchers have
reported cell culturing on fibrous scaffolds programmed to alter their morphology dur-
ing cell culture. For example, a polyurethane based SMP as a nanofibrous scaffold has
been used to examine the hypothesis that the alignment of SMP fibers can regulate the
morphology and behavior of the cells attached to the dynamic surface [33].
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7. Development of Electrospinning Process for SMPs

Combining the SME with a micro-/nanofibrous structure endows the polymers with
some distinctive properties for many applications [106]. SMPs with micro-/nanofibrous
structures can be produced using electrospinning process [24], extrusion spinning [123], or
melt spinning [124]. Among these methods, SMP fibers prepared by electrospinning can
have various diameters in the micro-/nanoscale and homogenous morphologies through ad-
justing the operating parameters, the solution properties, and the environmental condition.

Electrospun fibers usually have characteristics of uniform diameter, round cross sec-
tion, and smooth surface. SMPs can be electrospun into different fibrous morphologies,
including nonwoven fibers [13], aligned fibers [125], core/shell fibers [126], and fibers with
a functional particle filling [32] by making some changes to the conventional electrospin-
ning equipment.

7.1. Conventional Electrospinning Process

Electrospinning technology has been introduced as the most efficient method to con-
vert polymers into continuous fibers [127]. During electrospinning, the polymer solution
droplets overcome the surface tension and create a conical shape under the electrostatic
interaction. The electrostatic force stretches a jet flow and divides into ultrathin fibers which
can be collected after the solvent evaporation [128,129]. The distance between the nozzle
tip and collector, applied voltage, flow rate, and solution parameters such as viscosity and
conductivity, have critical effects on electrospun fibers’ characteristics [130,131].

Due to the mentioned advantages, fibrous SMPs have been increasingly investi-
gated [132–135]. Cha et al. electrospun a synthesized polyurethane-based SMP for the first
time in 2005, which revealed a shape recovery of more than 80% [9]. Leng’s group could
fabricate nonwoven SMP nanofibers via the electrospinning method from Nafion and poly
(ethylene oxide) solutions with shape recovery ratios and shape fixity ratios of more than
90%. It was confirmed that SMP fibers were stable after the stretching recovery [134].

Hu et al. also fabricated SMPU fibers and found that after several cycles of thermo-
mechanical programming the shape recovery was increased to 98% [12]. Zhang et al. also
found that microfibers have quicker shape recovery than SMPU films when heated, which
can be attributed to the high-specific surface area of fibrous SMPs. [14]. Recently, Lendlein’s
group prepared a microscaled nonwoven scaffold by electrospinning of a copolymer, con-
sisting of crystallizable poly-pentadecalactone as hard segments and PCL as switching
segments, with potential applications in biomedicine [136].

To fulfill the requirements of various applications, the electrospinning parameters can
be adjusted to fabricate various structures like aligned fibers, beaded fibers, ribbons, and
porous fibers [24,33,137].

Yoo et al. [138] investigated the shape memory behavior and mechanical properties of
a PCL-based SMP in the form of randomly oriented fibers. Zhou’s group [32] fabricated
shape memory aligned fibers using a high-speed drum to collect the fibers. Tseng et al. [33]
also used aligned fibers to investigated the cell behavior on membranes made of different
oriented fibers [137]. Furthermore, the moisture-responsive Kraft lignin-based fibers pre-
pared by electrospinning, were reported by Dallmeyer et al. [91] to have a two-way SME.
In another study, porous water-responsive SMP, containing poly (ethylene glycol), PCL,
and poly (dimethylsiloxane) were fabricated by electrospinning process which showed
good shape fixity and shape recovery when immersed in water [139]. A conductive SMP
based on poly (lactic acid) was prepared by combining electrospinning process with vapor
polymerization. The poly (lactic acid)-based SMP was electrospun and then coated by
conductive polypyrrole using the vapor polymerization to prepare a conductive SMP
which can be utilized as sensors and actuators [140].

Moreover, the size of the pores in the SMP membranes prepared by electrospinning
was investigated by Ahn et al. [141]. Following the temperature changes, the pore size
can change. This phenomenon proved that the SMP fibers can form smart membranes to
selectively separate particles via controlling the temperature.
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7.2. Coaxial Electrospinning

While traditional electrospinning was limited to the polymers featuring good spinnabil-
ity, the coaxial electrospinning method provided a simple way to use the polymers without
spinnability in fibrous structure [142]. By using two or multiple nozzles in a concentric
geometry, a coaxial electrospinning system can be set up and a core-sheath structure of the
fibers can be achieved based on the formation of a charged compound jet of concentrically
flowing solutions. After the preparation of the core-shell fibers, one can selectively dissolve
core polymer in an appropriate solvent to obtain hollow fiber structures. As an example,
Lendlein et al. [143] prepared SMP hollow fibers based on copolyetheresterurethae by
coaxial electrospinning technique and poly (ethylene glycol) as the sacrificial core.

Zhang et al. applied coaxial electrospinning method to prepare a core/shell fibrous
composite using epoxy as the core and PCL as the shell [126]. The obtained fibers exhibited
excellent shape memory performance with enhanced mechanical properties for potential
biomedical applications.

SMP fibers with core-shell structure and bead-on-string structure have also been
fabricated by designing the spinneret containing two coaxial capillaries [19]. The core-
shell nanofibrous SMP exhibited good antibacterial activity against Gram-negative and
Gram-positive bacteria. The antibacterial mechanism was based on amino groups of shell
materials and the high surface area of nanofibers. Therefore, the prepared core/shell
nanofibers could be applied as antibacterial nanofibrous SMPs.

7.3. Electrospinning of SMPs with Functional Fillers

Besides preparing the SMPs’ nanofibrous structures, some functional materials, such
as carbon nanotubes, graphene oxide [10], cellulose nanoparticles [119], HAps [116], epoxy
resin [112,113], and magnetic particles [32,55] (Fe3O4, Au, Ni, etc.) can be incorporated in
the fibers during electrospinning to endow the fibers with a multishape memory property,
on-demand actuation using external stimulations, electrical conductivity, self-healing prop-
erties, and antimicrobial properties. As an example, Gong et al. reported the incorporation
of Fe3O4 into the SMP nanofibers which were able to be triggered by the magnetic field, as
a remote control [32]. Magnetic nanoparticles can absorb magnetic energy from a magnetic
field applied and produce local heat which results in the thermal actuation and deformation
of the SMP scaffold.

With the development of electrospinning of SMPs with diverse functional fillers, dif-
ferent stimuli have been achieved in recent studies [32,139,144]. As mentioned previously,
among the various actuation methods the, direct and indirect thermal actuation of SMP
micro-/nanofibers were the most commonly studied. For instance, Zhou et al. [32] fabri-
cated PCL-based SMP nanofibers as the matrix and multiwalled carbon nanotubes coated
with Fe3O4 as the reinforced filler, which could be triggered both by a magnetic field and
hot water. Additionally, Sabzi et al. utilized dual electrospinning for simultaneous spinning
of poly(lactic acid) and poly(vinyl acetate) to prepare two separated thermal transitions
for the SMP composite. Consequently, the SMP fibers presented a triple shape memory
property. Additionally, they incorporated graphene nanoplatelets into the composite to
enhance the triple SME [145].

In some studies, postmodifications were applied to modify the functionality of SMP
fibers, such as enhancing the mechanical properties and electrical conductivity [16,140].
Therefore, both the fillers and postmodification process such as coating provide the fibers
with improved properties.

7.4. Electrospinning along with UV Irradiation

UV irradiation of photo cross-linkable polymers is a polymerization method that forms
semicrystalline reversible phase and chemically cross-linked net-points. The obtained
polymers show an exceptional thermal-induced SME with shape fixity and shape recovery
higher than 90% [146]. Photocuring can be utilized before, after, or simultaneously with
the electrospinning process. In Yao et al.’s work, the photo prepolymerization method
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was employed to make a cross-linked polymer, which improved the stability of polymer
network and induced the SME in the final electrospun membrane [147].

Researchers also used electrospinning with subsequent UV curing to achieve a SMP
fibrous scaffold. As an example, Iregui et al. obtained a fiber-based structure with SME
using electrospinning of a blend of diglycidyl ether of bisphenol-A (DGEBA) and PCL
followed by UV radiation. The construct demonstrated shape memory properties over
several cycles, with shape fixity ratios and shape recovery ranging between 95–99% and 88
and 100%, respectively [17]. Zhang et al. also presented a three-step fabrication process
consisting of electrospinning, photocrosslinking, and programming to produce a reversible
PCL-based fibrous SMP [148]. In another study, Jiang et al. used two photocrosslinkable
polymers a non-stimuli-responsive thermoplastic polyurethane and a thermoresponsive
copolymer of N-isopropyl acrylamide to produce a highly porous bilayer nanofibrous
mat as a superfast actuator with large scale movements (Figure 5a). They observed a
very fast actuation rate (less than a second) for the produced constructs and claimed that
their method can be generally used for the fabrication of self-folding bilayer 3D structures
suitable for 3D bioscaffolds and superfast actuators [95].

Figure 5. (a) Conventional electrospinning method with subsequent UV crosslinking (with per-
mission from Wiley, Copyright 2015 [95]); (b) electrospinning and simultaneous photocrosslinking
(Reprinted with permission from ref. [55]. Copyright 2019 Elsevier).

In some manufacturing procedures, UV irradiation has been applied in parallel with
the electrospinning process to crosslink the polymer network for the production of shape
memory fibers [32,149]. Zare et al. used this process to fabricate a 3D porous structure via
crosslinking PCL-dimethacrylate within electrospun fibers (Figure 5b) [55].

Table 1 summarizes the recent studies on the fabrication of SMP micro-/nanofibrous
structures using electrospinning processes.

8. Biomedical Applications for SMP Fibers

Electrospun SMP structures combine the shape memory property with fiber fea-
tures such as large specific surface area, high porosity, and permeability. Polymer chains
usually have higher mobility and therefore a lower Ttrans and enhanced SME within elec-
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trospun fibers compared to the polymer films due to lower constraints-imposed neighbor
chains [13,150]. Additionally, SMP fibers exhibit a faster shape recovery rate compared
to the films during the same heating/cooling process, corresponding to the large specific
surface area and porous structure of fibers [14]. Such properties make a suitable candidate
for tissue engineering (such as bioscaffolds and cell supports). Furthermore, SMP fibers
with specific structures such as core-shell structures have a great potential to be used as
drug carriers and artificial blood vessels [16–19].

Shape memory porous scaffolds responding to temperature, water, magnetic field, NIR
irradiation, and ultrasound stimuli have superior properties for biomedical applications.
Among them, thermoresponsive SMP scaffolds with a transition temperature ~36–38 ◦C
have gained more attention as they can easily transform to their original shape around
body temperature.

SMP micro-/nanofibrous structure have extensively been used as bone tissue engi-
neering scaffolds for treating bone defects by providing an appropriate substrate for cell
growth [151]. The ideal bone scaffold should be designed to precisely occupy bone defects
with irregular geometries. As SMP scaffolds can be designed to deform as desired, and
then recover their original shape after stimulation, these scaffolds are suitable candidates
for filling irregular bone defects via minimally invasive surgery. Furthermore, therapeutic
drugs and growth factors can be encapsulated within such SMP scaffolds and released over
an extended period. Liu et al. [104] fabricated a growth factor encapsulating SMP scaffold
which deformed into a temporary architecture and subsequently recovered its original
shape after implantation in the body. Inorganic nanoparticles, such as calcium phosphates
and HAps, can also be utilized in the form of composites with SMPs or in the coatings of
SMP fibers to fabricate SMP bone scaffolds [116,117].

Biodegradable and biocompatible SMP fibers of poly (d,l-lactide-co-trimethylene
carbonate) were fabricated by electrospinning for bone tissue engineering [106]. The re-
searchers investigated the morphology of osteoblasts on these electrospun nanofibrous
scaffolds to verify the application of these scaffolds in healing various bone defects and in
bone regeneration. Zare et al. also synthesized and characterized a PCL based SMP and
fabricated 3D sponge-like scaffold using simultaneous electrospinning and photocrosslink-
ing as bone tissue engineering scaffolds [55]. As another example, Torbati et al. prepared
light emitting SMP fibers of poly (vinyl acetate) shrunk upon heating or immersing in wa-
ter [152]. Baker et al. introduced a SMP fiber graft for the stabilization of segmental defects
where the self-deploying graft could expand and contract during the surgical operation
in a mouse segmental defect model in vivo. After 12 weeks, the graft could consequently
integrate with the native bone and improve the defect stability (Figure 6) [153].
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In a recent study, Wang et al. constructed a self-forming multichannel nerve conduit
based on a degradable SMP fibrous scaffold. The electrospun SMP nanofibers mat was
initially prepared in a plane form suitable for cell loading and then triggered by a physical
temperature to transform to its final tubular form automatically to make a multichannel
conduit (Figure 7). The promising results of the cell proliferation and repair of rat sciatic
nerve defects evidenced the considerable potential of smart fibers in peripheral nerve
regeneration [154].
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Many micro-/nanostructures developed as ECM replacements are almost static (al-
though they degrade over time) and thus, fail to match the dynamic physiological condi-
tions in vivo. Notably, SMPs can endow the bioscaffolds with dynamic shifting functions
to regulate cell behaviors and promoting tissue growth. Recent works on SMP fibrous
structures for biomedical applications have been summarized according to the chemical
compositions, fabrication techniques, actuation methods, and their biomedical applications
in Table 1. This summary proves the growing interest over time in the electrospinning
of SMPs with various developed electrospinning techniques for tissue engineering, drug
delivery, actuators, wound healing, and cell regulation. Due to the importance of regulating
cell behavior, further details have been separately discussed in the following section.

Table 1. A summary of recent works on SMP fibrous structures for biomedical applications.

SMP Components Stimulation Fabrication Method Application Research Team

Poly (ε-caprolactone)
Polydimethylsiloxane 37 ◦C Simple electrospinning Medical shrinkable

tubing and wire
Hsieh et al.,
2020 [155]

Poly (lactide-co-trimethylene
carbonate) 37 ◦C Simple electrospinning Peripheral

Nerve Repair
Wang et al.,
2020 [154]

Poly (3-Hydroxybutyrate-co-3-
Hydroxyvalerate) Modified

Poly(l-Lactide)
37 ◦C Simple electrospinning Bone tissue engineering Wang et al.,

2020 [156]

D,l-lactide-co-glycolide diol
poly (ε-caprolactone) diols

poly-l-lactide diol
42 ◦C Simple electrospinning Drug delivery Bil et al.,

2020 [157]

Poly (ε-caprolactone)
Hydroxyapatite 37–45 ◦C Simple electrospinning Drug carrier Lv et al.,

2020 [117]

Polyurethane
Hydroxyapatite 50 ◦C Simple electrospinning Tissue engineering Nahavandizadeh

et al., 2020 [116]
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Table 1. Cont.

SMP Components Stimulation Fabrication Method Application Research Team

Polyurethane 65 ◦C Simple electrospinning Actuator Guan et al.,
2020 [158,159]

Poly
(lactide–glycolide–trimethylene

carbonate)
37 ◦C Simple electrospinning Regulating

cell behavior
Chen et al.,
2019 [160]

Polylactic acid
Cellulose nanocrystals 57.1 ◦C Simple electrospinning Biology

basic membranes
Peng et al.,
2019 [119]

Poly (ε-caprolactone)
Epoxy 42 ◦C Electrospinning + UV

irradiation
Sensors

and membranes
Iregui et al.,
2019 [161]

Poly (ε-caprolactone)
Polyethylene oxide 39 ◦C Electrospinning + UV

irradiation Tissue engineering Zare et al.,
2019 [55]

Poly (ε-caprolactone) 37 ◦C Simple electrospinning Regulating
cell behavior

Niiyama et al.,
2019 [162]

Poly (lactic acid) 40 ◦C Simple electrospinning Tissue engineering Leones et al.,
2019 [163]

Poly (lactic acid)
Poly (vinyl acetate) 38–41 ◦C Dual electrospinning Bone tissue engineering Sabzi et al.,

2019 [164]

Poly (ε-caprolactone)
Clay montmorillonite Epoxy 40 ◦C Simple electrospinning Tissue engineering Dong et al.,

2018 [165]

Poly (ε-caprolactone)
Gelatin methacrylate 37 ◦C Simple electrospinning Vascular grafts Zhao et al.,

2018 [166]

Poly (lactic acid) 70 ◦C Simple electrospinning Sensors and actuators Zhang et al.,
2018 [140]

Poly (lactic acid) Electricity Coaxial electrospinning Actuator Zhang et al.,
2018 [140]

Poly (ethylene glycol)
Poly (ε-caprolactone)

Poly (dimethylsiloxane)
Water & Heat 35 ◦C Simple electrospinning Tissue engineering Ang et al.,

2017 [139]

Poly (ε-caprolactone) 55 ◦C Simple electrospinning Sensors and actuators Pandini et al.,
2017 [54]

Poly (lactic acid) 37 ◦C Simple electrospinning Regulating
cell behavior

Wang et al.,
2017 [137]

Poly (ε-caprolactone)
Poly (ethylene glycol) 37 ◦C Simple electrospinning Bone graft substitutes Baker et al.,

2016 [153]

Poly (lactide-trimethylene
carbonate)

Hydroxyapatite
43.5 ◦C Coaxial electrospinning Bone tissue engineering Bao et al.,

2016 [107]

Poly (vinyl alcohol)
Polyether block amide Elastomer 85 ◦C Simple electrospinning Sensors and actuators Shirole et al.,

2016 [167]

Ethylene glycol
Ethylene oxide

Polypropylene oxide
38.06 ◦C Simple electrospinning Tissue engineering Budun et al.,

2016 [168]

Triethoxysilane-terminated poly
(ε-caprolactone) 37 ◦C Electrospinning +

sol–gel Tissue engineering Merlettini et al.,
2016 [169]

Polydimethylsiloxane
Poly (ε-caprolactone) 38 ◦C Simple electrospinning Nerve tissue

engineering
Dan et al.,
2016 [170]

Poly (ε-caprolactone)
Polyethylene oxide 55 ◦C Simple electrospinning Tissue engineering Yao et al.,

2015 [171]
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Table 1. Cont.

SMP Components Stimulation Fabrication Method Application Research Team

Poly (N-isopropylacrylamide) 35 ◦C Simple electrospinning Actuator Jiang et al.,
2015 [95]

Poly (ε-caprolactone)
Epoxy 63.8 ◦C Simple electrospinning Self-healing capability Yao et al.,

2015 [172]

Poly (ε-caprolactone) diol
Graphene oxide 37.48 ◦C Simple electrospinning Wound healing Tan et al.,

2015 [10]

Co-polyetherester-urethane 40–45 ◦C Coaxial electrospinning Tissue engineering Zhang et al.,
2015 [143]

Poly (ε-caprolactone)
Epoxy 42.3 ◦C coaxial electrospinning Tissue engineering Zhang et al.,

2015 [126]

Poly (vinyl acetate)
Poly (ε-caprolactone) 16 and 55 ◦C Dual electrospinning Sensors and actuators Birjandi et al.,

2015 [173]

Poly (ε-caprolactone)
Graphene 50 ◦C Simple electrospinning Sensors and actuators Yoo et al.,

2014 [138]

Poly (lactide trimethylene
carbonate) 39.7 ◦C Coaxial electrospinning Drug delivery Xianliu et al.,

2014 [174]

Poly (vinyl acetate) 50 ◦C Simple electrospinning Sensors and actuators Torbati et al.,
2014 [153]

Poly (lactide-trimethylene
carbonate) 39 ◦C Simple electrospinning Bone tissue engineering Bao et al.,

2014 [106]

Polyacrylonitrile (PAN) Electricity Simple electrospinning Tissue engineering Zhang et al.,
2014 [175]

Poly (ε-caprolactone)
Polyethylene oxide Water Simple electrospinning Water

responsive actuator
Gu et al.,

2013 [176]

Poly (ε-caprolactone) diol 36.5 ◦C Simple electrospinning Electroactive
application

Rana et al.,
2013 [177]

POSS polylactide/caprolactone
copolymer 40 ◦C Simple electrospinning Regulating

Cell behavior
Tseng et al.,

2013 [33]

Epoxy
Poly (ε-caprolactone) 30 and 60 ◦C Simple electrospinning Sensors and actuators Fejos et al.,

2013 [178]

Lignin Moisture Simple electrospinning Actuator Dallmeyer et al.,
2013 [91]

Poly (ε-caprolactone)
multiwalled carbon nanotubes

Fe3O4

40 ◦C
Magnetic field Simple electrospinning Tissue engineering Gong et al.,

2012 [32]

Poly (ω-pentadecalactone)
Poly (ε-caprolactone) 53 ◦C Simple electrospinning Tissue engineering Matsumoto et al.,

2012 [136]

Poly (ε-caprolactone) diol 45.5–47.5 ◦C Simple electrospinning Tissue engineering Chen et al.,
2012 [13]

Poly (ε-caprolactone) diol 38 ◦C Simple electrospinning Intelligent clothing Chung et al.,
2011 [109]

Poly (p-dioxanone)
Poly (ε-caprolactone) 32–35 ◦C Simple electrospinning Tissue engineering Kratz et al.,

2011 [179]

Poly (ε-caprolactone) 50.5 ◦C Simple electrospinning Actuator Zhang et al.,
2011 [14]

Poly ferrocenyl methyl
vinyl silane Electricity Simple electrospinning Electric Actuator McDowell et al.,

2010 [180]
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Table 1. Cont.

SMP Components Stimulation Fabrication Method Application Research Team

4-vinyl- benzyl chloride
glycidyl methacrylate UV irradiation Simple electrospinning Smart drug delivery Fu et al.,

2009 [181]

Poly (ε-caprolactone) diol 50 ◦C Melt spinning Sensors and actuators Meng et al.,
2008 [182]

Polyester polyol-based
polyurethane 55 ◦C Melt spinning Sensors and actuators Kaursoin et al.,

2007 [124]

Poly (ε-caprolactone) diol 36.20 ◦C Wet spinning Tissue engineering Meng et al.,
2007 [183]

9. Regulation of Cell Behaviors Using Biomimetic SMP Nanofibers

Biological cells can respond to the dynamically changing ECM microenvironment,
which is called topological perception [184]. This capability of cells can affect their mor-
phology, proliferation, differentiation, migration, and gene expression [185]. Therefore,
substrates with nanotopography similar to the natural ECM may influence cell behaviors
and accordingly, cell adhesion and cell alignment [186]. Typically, the topography of the
substrates is static and passive, unable to mimic the dynamic geometry of the cell cul-
ture microenvironments [184]. Meanwhile, dynamic structures can switch their surface
geometric properties under stimulation and further affect the interactions with the cells.

The dynamic changes of SMP architecture can simulate the ECM and subsequently
affect the cells’ alignment and motility. Tseng et al. [33] evaluated the SME on the stem cells’
alignment where the cells were initially cultured on a fibrous SMP scaffold at 30 ◦C. At this
temperature, the fiber arrangement remained unchanged. By heating to body temperature,
the SMP transition led to the shape change of the scaffold and the fibers alignment. While
the cells were aligned well along the direction of the stretched fiber before the transition, as
shown in Figure 8, after the transition, the cells randomly grew in different directions.
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Zhao et al. produced SMP electrospun nanofibers based on PCL/gelatin methacryloyl
(GelMA) [166] that could transform from a temporary planar shape to a tubular confor-
mation upon increasing the temperature to ~37 ◦C. Human umbilical vein endothelial
cells (HUVECs) cultured on the planar scaffold were spread on the inner surface of the
tubular-shaped scaffold and formed a 3D cellular structure. Their results showed that
the use of PCL/GelMA-based SMP for 3D cell culture could considerably improve the
attachment, migration, and spreading of cells and the subsequent endothelialization, where
confocal images confirmed the formation of a tubular alignment of HUVECs after the
shape transition of SMP scaffolds. The regulation of cell behaviors using biomimetic SMP
nanofibers have been reported by several research groups, as summarized in Table 2.

The dynamic behavior of SMP scaffolds may also alter cells via imposing different
mechanical forces, including mechanical stresses and contractile tensions. Although cells
can respond to the mechanical stresses, these forces can affect the biological signals, mor-
phology, and functions of the cells [187]. Therefore, the effects of the residual stresses
released during the shape transition of SMPs on the regulation of cell behaviors and tissue
growth still have to be further evaluated in vitro and in vivo.

Table 2. A summary of recent studies on the regulation of cell behaviors using biomimetic
SMP nanofibers.

Research Group Micro-/Nanofibrous SMP Analyses of Cell Behavior

Chen et al.,
2019 [160] Poly(lactide–glycolide)/chitosan Regulating cell adhesion,

proliferation, and morphology

Niiyama et al.,
2019 [162]

Poly(ε-caprolactone) with
hexamethylene

diisocyanate/1,4-butanediol

Altering human mesenchymal stem
cell alignment and orientation

Tseng et al., 2013 [33]
POSS containing

polylactide/caprolactone
copolymer

Controlling cell alignment
and morphology

Wang et al.,
2020 [156]

Poly(3-Hydroxybutyrate-co-3-
Hydroxyvalerate) Modified

Poly(l-Lactide)

Enhanced osteogenesis-inducing
ability in bone mesenchymal

stem cells

Wang et al.,
2018 [188]

Poly(D,L-lactic acid-co-trimethyl
carbonate

Providing the necessary support
and guidance for motor
neuron differentiation

Improving the viability of
embryonic stem cells and their

differentiation toward
motor neurons

Zhao et al.,
2018 [166]

Poly-ε-caprolactone and gelatin
methacrylate

Supporting homogeneous
endothelial cell attachment Offering

a visible approach for facile
3D endothelialization

Wang et al.,
2017 [137]

Poly-DL-lactic acid-based
polyurethane

On-command guidance of
polarized cell motility

and alignment

10. Conclusions and Future Challenges

In the present review, recent progress in the architecture, triggering methods, and
biomedical applications of SMP micro-/nanofibers fabricated by the electrospinning pro-
cess were summarized. The biomimetic SMPs with dynamical fibrous structures suitable
for regulating cell behaviors, drug delivery, bone repair, scaffolding, and wound healing
were described. These SMP scaffolds can be implanted via minimally invasive surgery to
fill nonuniform defects.
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Despite considerable progress in the synthesis and fabrication of SMPs, several chal-
lenges still remain to be addressed in the future.

(i) Two-way or reversible SMPs have greater potential compared to one-way SMPs.
The evaluation of two-way reversible SMPs in the form of micro-/nanostructures for
biomedical fields should be investigated.

(ii) The shape recovery rate of most SMP micro-/nanofibers is uncontrollable when
responding to an external stimulus. Thus, it is necessary to optimize parameters controlling
the dynamic changes of the constructs particularly for the regulation of cell behaviors.

(iii) Although many research papers have evaluated the cell behaviors after culturing
on SMP fibrous scaffolds to analyze the dynamic changes of fibers in vitro, it is still a
challenge to evaluate the effects of the recovery process and degradation rate on cells
in vivo, especially for bone repair and skin tissue regeneration.

(iv) Due to the wide applications of thermoresponsive SMP fibers, the chemical com-
positions of such SMP must be optimized to achieve the accurate transition temperatures
based on particular applications.

(v) Additionally, manufacturing technologies are necessary to be developed for mak-
ing unique structures and properties of SMPs. Developments in manufacturing tech-
nologies, notably a combination of electrospinning and 3D printing technology simplifies
the SMP production and enables the fabrication of complicated fibrous constructs using
appropriate SMPs.

Overall, micro-/nano-SMPs structures have shown great potentials to serve biomedi-
cal applications. However, their wide-spread clinical applications require extensive preclin-
ical investigations intertwined with advances of high-precision fabrication technologies
and material chemistry.
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