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Abstract: Concerns over growing greenhouse gas (GHG) emissions and fuel prices have prompted
researchers to look into alternative energy sources, notably in the transportation sector, accounting
for more than 70% of carbon emissions. An increasing amount of research on electric vehicles (EVs)
and their energy management schemes (EMSs) has been undertaken extensively in recent years
to address these concerns. This article aims to offer a bibliometric analysis and investigation of
optimized EMSs for EV applications. Hundreds (100) of the most relevant and highly influential
manuscripts on EMSs for EV applications are explored and examined utilizing the Scopus database
under predetermined parameters to identify the most impacting articles in this specific field of
research. This bibliometric analysis provides a survey on EMSs related to EV applications focusing on
the different battery storages, models, algorithms, frameworks, optimizations, converters, controllers,
and power transmission systems. According to the findings, more articles were published in 2020,
with a total of 22, as compared to other years. The authors with the highest number of manuscripts
come from four nations, including China, the United States, France, and the United Kingdom,
and five research institutions, with these nations and institutions accounting for the publication
of 72 papers. According to the comprehensive review, the current technologies are more or less
capable of performing effectively; nevertheless, dependability and intelligent systems are still lacking.
Therefore, this study highlights the existing difficulties and challenges related to EMSs for EV
applications and some brief ideas, discussions, and potential suggestions for future research. This
bibliometric research could be helpful to EV engineers and to automobile industries in terms of
the development of cost-effective, longer-lasting, hydrogen-compatible electrical interfaces and
well-performing EMSs for sustainable EV operations.

Keywords: energy management; optimization; converter; controller; battery storage; electric vehicle

1. Introduction

The demand for urban mobility is rapidly increasing [1]. CO2 concentrations in
2012 were roughly 40% higher than in the mid-1800s, based on the International En-
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ergy Agency [2,3]. Electric vehicles (EVs) offer significant promise in terms of reducing
transportation-related energy and emissions [4,5]. Due to the growing concerns over global
warming, the development of EV applications has recently received much attention because
of its benefits in decreasing CO2 and GHG. EVs require a low-emission electric motor and
advanced power electronics technology as well as improved energy management methods
for energy sources and storage systems such as fuel cells (FCs), supercapacitors (SCs), and
batteries to achieve adequate driving performances [6–9]. Energy management schemes
(EMSs) benefit EVs by improving reliability, flexibility, and power quality [10]. To meet
transit power supply and demand, the development of EVs with adequate energy and
power density to achieve suitable driving performances, and the connection of FC sources
to SC storage systems, is critical [11]. When sufficient fuel (gases and hydrogen) is available,
FCs sources can provide an uninterruptible power supply. Due to the time responsiveness
of the gas supply system, these energy sources can have a relatively slow transient dynamic.
On the other hand, supercapacitor energy storage systems may provide high instantaneous
power for short periods but have a lower energy density than other traditional storage
elements such as batteries [12–14].

In the literature, many EMSs for EV applications have been described [15–17]. Op-
timization, filters, controllers, and rule-based techniques are the four types of methods
that can be categorized. Neural Networks, Fuzzy Logic, and State Machines are the most
common rule-based methods [16,18]. Each rule or state is defined either heuristically
or experimentally for State Machine control [16]. Furthermore, Fuzzy Logic rule-based
techniques attach membership functions to the inputs and outputs to attain the necessary
performance. The performance of rule-based techniques is linked to the system’s knowl-
edge. The basic idea of controller-based EMSs is to employ control rules to correct the
error between desired and actual states. Backstepping control [19], Sliding control [20],
H-infinity control [21], Passivity control [22], Flatness-based control [23], Proportional–
Integral (PI) control [24], and so on are examples of energy management-based controllers.
Even when the operating point is unknown, these approaches can precisely estimate the
reference while accounting for system losses. Filter techniques use a frequency decoupling
strategy that considers the energy system’s dynamic properties and physical features. Fast
Fourier Transform methods [25], the Wavelet technique [26], and Low-Pass filter meth-
ods [27] are mostly used to accomplish this. When the system frequencies are accurately
determined, the filter-based management method is straightforward and may greatly
increase the lifetime of EV applications. Optimization-based approaches have recently
been investigated for dealing with complicated management objectives (lifetime, efficiency,
cost, etc.). The desired references are obtained via minimizing an instantaneous cost func-
tion in such techniques. Particle Swarm Optimization [28], Optimal Power Distribution
Control [29], Adaptive Optimal Control [30], Neural Networks [24], Stochastic Dynamic
Programming [31], and Model Predictive Control [32] are some of the techniques men-
tioned in the literature. These techniques are complicated and involve many calculations,
slowing down the energy management system’s response time.

Bibliometrics is a research strategy that uses library and information science to of-
fer information and analysis in various formats, such as statistics and quantitative ap-
proaches [33,34]. Bibliometrics is a vital research topic because it provides specific and
historical data that may be utilized to forecast future research trends [35,36]. Universities,
instructors, researchers, and professors can use bibliometric studies to assess the quality of
research using a variety of important indicators such as h-indexes, impact factors, citations,
and current standing. Gingras [37] addressed the influence of bibliometric analysis on
research direction and proposed some criteria for developing a suitable assessment pro-
cedure at a specific size of research plan and analysis. Andres [38] detailed the steps for
conducting bibliometric analysis with many real-world samples and interpreted the results.
In the bibliometric study, the authors also explained the significance of Scientometric
investigations. The current condition of publishing activity in EMSs for EV application is
examined in this article using a bibliographic analysis. Numerous bibliometric techniques
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have been used in recent years to assess the research progress in various fields, such as
healthcare simulation [39], Pediatric Surgery [40], drug repurposing [41], technological
innovation [42], Strategic Management [43], Industrial Ecology [44], climate engineering
research [45], applications of artificial intelligence [46], Computers and Industrial En-
gineering [47], quantum electronics [48], engineering nanomaterials [49], and software
engineering [50].

There are a couple of bibliometric analyses performed on the EV applications related
topics such as life cycle cost analysis for EVs [51], bibliometric analysis on EVs [52], EV
reliability [53], next-generation vehicles [54], fuzzy optimization-based EVs energy tech-
nologies [55], carbon emissions from the transport sector [56], autonomous vehicles [57],
and the development of China’s EV battery industry [58]. As per our knowledge, no
bibliometric analysis on EMSs for EV applications has been conducted so far. As a result,
this paper outlines the first bibliometrics analysis of EMSs for EVs, which was carried
out during the last eleven years (from 2010 to September 2021) to examine the assess-
ments, research community, and current developments in this area. The following findings
emphasize the paper’s key contributions.

• A brief summary of EMSs for EV applications is presented regarding the number of
articles published to date. The analysis is carried out on a yearly basis, subsequently
includes a discussion.

• The most prolific authors, the most productive university, and the nation dominating
the publishing are all used to analyze EMSs for EV.

• The keywords and themes that were utilized for content analysis and gap analysis
are evaluated.

• Publication document types such as original papers, systematic and non-systematic
reviews, and book chapters are investigated. In addition, the journals’ impact factors
and publisher distributions are investigated.

• The amount of researcher collaboration is determined. The number of authors in the
articles and the connection between diverse universities and nations are also used to
assess the team.

• The most influential authors, universities, institutions, and nations with the most
published research are identified. This is critical for determining the productivity of
authors, organizations, and nations in the research sector and improving research
output and collaboration among authors.

The bibliometric review aims to find the top 100 most relevant publications in the field
of EMSs for EV applications. As a result, a comprehensive report on these publications’
facts, critical debates, analyses, contributions, and flaws is provided. The following are
some of the advantages that the article will provide.

• A better understanding of the history and evolution of EMSs for EV applications will
be available to future researchers.

• A comparative analysis of the most relevant articles for EMS in the EV applications
field, which will aid in the future construction of existing knowledge and practice,
will be given.

• Finally, this bibliometric analysis will include fruitful recommendations for the prospects
and developments of EMSs for EV applications.

This bibliometric analysis is arranged as follows: Section 1 offers an overview of the
EMSs, bibliometric study, research gaps, and contributions; Section 2 presents a detailed
overview of the surveying methodologies used in bibliometric analysis; and Section 3
presents a comprehensive analysis on the selected papers on EMSs for EV applications.
Section 4 discusses the various issues, challenges, and problems. The future trends and
recommendations are highlighted in Section 5, followed by conclusions in Section 6.
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2. Surveying Methods

A statistical, bibliometric study of the Scopus database (www.scopus.com), was uti-
lized to conduct this research. Since it contains a higher number of articles than other
databases, such as Web of Science [59], the Scopus database was chosen as a source in this
study’s bibliometric analysis. Due to the lack of reliable results, Google Scholar was not
evaluated in this study [60]. The “energy management schemes” study was recorded in the
Scopus database at the end of September 2021. Figure 1 depicts the bibliometric analysis
methodologies employed in the Scopus database. As indicated in the picture below, the
procedure was divided into six stages:
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2.1. Selection and Exclusion Criteria

Some predefined criteria were used to select the articles from a specific Scopus
database. Table 1 represents the primary search keyword codes used for the article search
of the Scopus database. The following are the criteria for article inclusion and exclusion for
the 100 most relevant manuscripts in the field of EMSs for EV applications:

• The primary criteria for including manuscripts were the following keywords: energy
management system, converter, controllers, optimization, and EVs. Some articles were
excluded from this list based on the irrelevancy of the field.

• For the objectives of the study, articles published in the English language between
2012 and 2021 were examined.

Table 1. Keyword codes used to search for potential manuscripts in the Scopus database.

Stages Filter Keyword Codes Number of
Manuscripts

1st stage Energy Management system,
Electric vehicle applications

TITLE-ABS-KEY (energy AND management AND system
AND for AND electric AND vehicle AND applications) 2704

2nd stage English
TITLE-ABS-KEY (energy AND management AND system

AND for AND electric AND vehicle AND applications)
AND (LIMIT-TO (LANGUAGE, “English”))

2612

www.scopus.com
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Table 1. Cont.

Stages Filter Keyword Codes Number of
Manuscripts

3rd stage Subject area

TITLE-ABS-KEY (energy AND management AND system
AND for AND electric AND vehicle AND applications)

AND (LIMIT-TO (LANGUAGE, “English”)) AND
(LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO

(SUBJAREA, “ENER”) OR LIMIT-TO (SUBJAREA,
“COMP”) OR LIMIT-TO (SUBJAREA, “MATH”) OR

LIMIT-TO (SUBJAREA, “ENVI”) OR LIMIT-TO
(SUBJAREA, “PHYS”) OR LIMIT-TO (SUBJAREA, “MATE”)

OR LIMIT-TO (SUBJAREA, “CHEM”))

2589

4th stage Year range (2010–2021)

TITLE-ABS-KEY (energy AND management AND system
AND for AND electric AND vehicle AND applications)

AND (LIMIT-TO (LANGUAGE, “English”)) AND
(LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO

(SUBJAREA, “ENER”) OR LIMIT-TO (SUBJAREA,
“COMP”) OR LIMIT-TO (SUBJAREA, “MATH”) OR

LIMIT-TO (SUBJAREA, “ENVI”) OR LIMIT-TO
(SUBJAREA, “PHYS”) OR LIMIT-TO (SUBJAREA, “MATE”)

OR LIMIT-TO (SUBJAREA, “CHEM”)) AND (LIMIT-TO
(PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR
LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR,

2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO
(PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) OR
LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR,

2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO
(PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2011) OR

LIMIT-TO (PUBYEAR, 2010))

2285

2.2. Screening Procedures

As there are vast numbers of articles published in the various journals, the following
criteria were applied to select the most relevant articles from the Scopus database.

• Based on the primary selection, a total of 2704 (n = 2704) articles were chosen.
• By applying “English Language”, a sum of 2612 (n = 2612) publications were filtered.
• Then, a total of 2589 (n = 2589) manuscripts were selected by limiting the subject areas.
• After limiting the year ranges from 2010 to 2021, a total of 2285 articles were filtered.
• The final selection was based on relevancy; a sum of 110 (n = 110) was selected.
• After manually removing irrelevant articles, a total of 100 (n = 100) manuscripts from

the Scopus database published in various journals were selected for the final evaluation.

2.3. Research Trend

Researchers are currently demonstrating interest in developing more efficient EMSs
for EV applications [6,61]. They used a variety of approaches to find suitable EMSs for EV
applications to ensure more efficient energy management. Figure 2 depicts the trend in
research from 2010 to 2021. Overall, the number of papers produced every year due to the
primary screening of the chosen database increased. Figure 2 shows that as the number of
published papers rises, so does the number of researchers with related research interests.
From 2019 through 2021, a total of 927 manuscripts were published. In comparison, there
were 1774 papers published in the nine years leading up to 2018. In the first nine years of
publication (2010–2018), 65% of all papers were published, while papers produced between
2019 and 2021 account for 35% of the total. According to the graph, the last three years
show a linear growth of publications in EMSs related to EV applications.
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2.4. Data Extraction

By utilizing the Scopus database, information on manuscripts was extracted based on
the following variables: names of the authors; doi of the manuscript; keywords list; year of
publication; the name of the manuscript’s publisher; type of manuscript; the name of the
publication country based on the first author’s affiliations; the total number of citations;
the number of citations in the last five years. Following the data analysis from the chosen
article, observations were made to present a clearer picture of EMSs for EV applications.

2.5. Study Characteristics and Outcomes

From the primary search, the Scopus database yielded a sum of 2704 manuscripts.
By applying numerous filtering methods, the most relevant 100 articles were chosen and
listed in Table 2 with the names of the authors; the doi of the manuscripts; the keywords
lists; the years of publication; the names of the manuscripts’ publishers; the types of the
manuscripts; the names of the publication countries based on the firsts authors’ affiliations;
the total number of citations; and the total number of citations in the last five years. The
total number of citations for the chosen manuscripts is 4903 (mean 49.52; median 14; and
citation range 0 to 673). Furthermore, 11 of the 100 manuscripts were cited over 100 times.

Table 2. The most relevant 100 manuscripts in the field of EMSs for EV applications.

Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

1 [62] BMS, EV, LIB, SOC Review RSERF Elsevier
Ltd 2017 Malaysia 673

2 [63]
BMS, BT,

Charge/discharge,
EV, SOC, SOH

Article IEM IEEE 2013 United
States 487

3 [6]
EV, ESS,

Hybridization,
Power electronics

Review RSERF Elsevier
Ltd 2017 Malaysia 384

4 [64]
EL, Forgetting factor,

Kullback–Leibler
divergence, PM, RL

Article APEND Elsevier
Ltd 2018 China 222

5 [65] EV, EMS, LIB, SOC Review IEEE Access IEEE 2018 Malaysia 211

6 [66] EV, EMS, HESS Article APEND Elsevier
Ltd 2014 China 206
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Table 2. Cont.

Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

7 [67] CC, EV, LIB,
TD, TMS Review JPSOD Elsevier

B.V. 2017 China 186

8 [68]
EV, EM, ES,

Optimization,
Real-time

Article APEND Elsevier
Ltd 2016 France 163

9 [69]
EMS, EV, Charg-
ing/Discharging,

Photovoltaic System
Article ITCED IEEE 2013 South

Korea 131

10 [70] Eco-driving, EV,
Optimal control Article COEPE Elsevier

Ltd 2014 France 126

11 [71]

Asynchronous
machine, dc-link
voltage control,

converter, EM, FC,
HEV, LIB, SC

Article ITVTA IEEE 2012 France 105

12 [72]
DP, EMS, Global

optimization,
Modeling, PHEV

Article Energies MDPI AG 2015 China 94

13 [61]

BMS, EV, Charge
Equalization

Controller, Drive
Train Architecture

Review RSERF Elsevier
Ltd 2017 Malaysia 85

14 [73]

EV, HESS, LIB,
Integrated

optimization,
Operation cost

Article ENEYD Elsevier
Ltd 2018 China 82

15 [74] BMS, ES, EV,
LIB, SOC Review Energies MDPI AG 2019 South

Korea 80

16 [75]
Brushless DC motor

drive, EV, ES,
FC, EMS

Review RSERF Elsevier
Ltd 2017 United

States 80

17 [76]

Fuel consumption,
PHEV, Quadratic

programming,
Simulated

annealing, SOH

Article APEND Elsevier
Ltd 2015 United

States 80

18 [77]

Electricity retailer
and smart grid, HSS,

PEV, Selling price
determination

Article ECMAD Elsevier
Ltd 2017 Iran 77

19 [78] Driving pattern,
EMS, OC, PHEV Article IETTE IEEE 2014 United

States 72

20 [79]

Energy saving,
Environmental
sustainability,

Metro-transit system,
PEV, Regenerative

braking

Article EPSRD Elsevier
Ltd 2011 Italy 72
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Table 2. Cont.

Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

21 [80]

EM, fuel economy
benefits, heavy duty
diesel engines; HEV,
online optimization

Article IETTE IEEE 2015 United
Kingdom 66

22 [81]
EV, LIB, MPC, PAC,

Remaining discharge
energy

Article APEND Elsevier
Ltd 2015 China 64

23 [82]
Chevrolet Volt, NN,
genetic algorithm,

HEM
Article ITVTA IEEE 2019 China 61

24 [83]
EV, EV tools, Grid
tools, Smart grid;

V2G tools, VT
Review APEND Elsevier

Ltd 2016 Australia 61

25 [84]

Battery lifetime, EV,
EMS, HESS,
Pontryagin’s

minimum principle

Article TSTE IEEE 2018 China 57

26 [85]
Batteries, EMS, SC,
fully active parallel

topology, EV
Article ITVTA IEEE 2017 Canada 53

27 [86]
Basic operation

mode, EMS,
Modeling, PHEV

Article Energies MDPI AG 2013 China 53

28 [87]

Autonomous EV,
EM, Cyber-physical

systems,
Event-based control,

Wireless sensor
networks

Article CMPJA
Oxford

University
Press

2013 China 50

29 [88]
Battery, EM,

Flatness, FC, Fuzzy
logic, HV, SC

Article ECMAD Elsevier
Ltd 2019 Tunisia 39

30 [89]

EMS, HEV,
Q-learning,

Reinforcement
learning

Article APEND Elsevier
Ltd 2020 United

States 38

31 [90] battery life, EV,
EM, HESS Article ITPEE IEEE 2020 China 38

32 [91]

BMS, HEV, SOC,
global positioning
system, Petri net,

rule-based strategy

Article TASE IEEE 2017 Egypt 38

33 [92]
Battery, EM, PHEV,
Component sizing,

Optimization
Article Energies MDPI AG 2012 United

Kingdom 37

34 [93] EV, ES, LIB,
SOC, SOH Review JEECS ASME 2019 India 35

35 [94]
Deep reinforcement

learning, DP, EM,
MPC, Generalization

Article ITVTA IEEE 2019 China 34
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Table 2. Cont.

Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

36 [95]

Driving cycle
identification, EV,

EMS, Haar wavelet
transform

Article Energies MDPI AG 2016 China 32

37 [96]

EV, ES, fuzzy logic
control, genetic

algorithm,
optimization

Article IJERD John Wiley
& Sons Ltd 2018 Brazil 30

38 [97] EV, EMS, FC, SC,
Grey wolf optimizer Article IJHED Elsevier

Ltd 2019 Algeria 25

39 [98]

EMS, FC,
Multi-objective

optimization, PHEV,
Velocity forecasting

Article JPSOD Elsevier
B.V. 2020 France 24

40 [99]
DC–DC converter,

DTC-SVM, EV,
FC, PM

Article JPSOD Elsevier
B.V. 2020 Algeria 23

41 [100]

EMS, HEV,
Markov chain,

Operation-mode
prediction

Article JCROE Elsevier
Ltd 2018 China 23

42 [101]
Aircraft engine, EM,

HEV, Propulsion,
Vehicle sizing

Review AATEE

Emerald
Group

Holdings
Ltd.

2014 United
States 23

43 [102]

HESS, EV,
Perturbation

observer, Robust
fractional-order

sliding-mode control

Article JPSOD Elsevier
B.V. 2020 China 21

44 [103]
ECMS, EM, HEV,
OC, Pontryagin’s

minimum principle
Article APEND Elsevier

Ltd 2017 United
States 21

45 [104]

Engine on/off
control, Estimation

distribution
algorithm,

Pontryagin’s
minimum principle

Article ENEYD Elsevier
Ltd 2018 China 18

46 [105]

EV, EM, OC, gain
scheduling,

linearization
techniques, real-time

simulation

Article IETTE IEEE 2015 France 18

47 [106]
EV, EMS, FC, SC,

permanent-magnet
synchronous motor

Article ETEP John Wiley
& Sons Ltd 2017 Algeria 17

48 [107]

ANN, forecasting,
Battery degradation
cost model, ES, EV,

Stochastic
programming

Article SETA Elsevier
Ltd 2020 Iran 16
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Table 2. Cont.

Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

49 [108]

Adaptive equivalent
consumption
minimization
strategy, MPC,

PHEV

Article ENEYD Elsevier
Ltd 2020 China 14

50 [109]

Adaptive controller,
Battery, EV, EMS,

Semi-active hybrid
energy storage

system, SC

Article Energies MDPI AG 2019 South
Korea 14

51 [110]

Continuously
variable

transmission, EV,
HESS, SC

Article ENEYD Elsevier
Ltd 2019 China 14

52 [111]
Energy optimization,

PHEV, RL, PM,
Q-learning

Article TNNLS IEEE 2020 United
States 13

53 [112]

Automotive
applications, OC,

internal combustion
engines, nonlinear

control systems

Article ITVTA IEEE 2018 Spain 13

54 [113]

Dynamic
programming, MPC,

PEV, NN,
Pontryagin’s

minimum principle

Article ENEYD Elsevier
Ltd 2020 China 12

55 [114]

HEV, Hybrid sliding
mode controller,
Invasive weed
optimization

Article EST Elsevier
Ltd 2018 Iran 11

56 [115]

Demand side
management,

Energy, EM, HEMS,
PEV, V2G

Article Energies MDPI AG 2019 Canada 10

57 [116]

fuzzy logic control,
HESS, EMS, PHEV,

SC, wavelet
transform

Article IEEE Access IEEE 2018 China 10

58 [117]

Dynamic
programming, EV,
EM, OC, Stochastic

systems

Article IJAP SAE Inter-
national 2013 Germany 10

59 [118]

EM, HESS, PEV,
Temperature

uncertainty, Wavelet
transform

Article APEND Elsevier
Ltd 2019 Australia 9

60 [119]

Diesel engine
modelling, EM, FC,
HEV, Multivariable

control systems,
Robust feedback

control

Article IJVDD Inderscience
Publishers 2012 United

Kingdom 9
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Table 2. Cont.

Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

61 [120]

EMS, RL, Markov
chain, Stochastic
model prediction
control, Velocity

prediction

Article ENEYD Elsevier
Ltd 2020 China 8

62 [121]
Direct refrigerant

cooling, EV,
LIB, EMS

Article ESD Elsevier
B.V. 2020 China 8

63 [122]

fuel consumption,
Grey wolf optimizer,

HEV, rules-based
energy management

Article TICOD
SAGE Pub-

lications
Ltd

2020 Tunisia 8

64 [123]

EV, EMS, FC,
HEV, Energetic

macroscopic
representation

Article MCSID Elsevier
B.V. 2020 France 8

65 [124]

Intelligent energy
management,
Multi-agent;

Proton Membrane
Exchange fuel cell,

Real-time, SC

Article Energies MDPI AG 2019 Tunisia 8

66 [125]

EV, Loop Heat Pipe,
Lumped parameter,

Thermal
management

Article ATENF Elsevier
Ltd 2018 United

Kingdom 8

67 [126]

Connected and
automated vehicles,
hierarchical model
predictive control,

thermal
management

Article IETTE IEEE 2021 United
States 7

68 [127]
Battery degradation,

EV, EM, HESS,
Sizing

Article ENEYD Elsevier
Ltd 2020 United

Kingdom 7

69 [128]

EMS, FC, HEV,
Hierarchical
clustering,

Rule learning

Article JCROE Elsevier
Ltd 2020 China 7

70 [129]

Back propagation
NN, EMS, HEV,

Compound
structured

permanent-magnet
motor

Article Energies MDPI AG 2018 China 7

71 [130]

Dual droop control,
EV, HESS,

Frequency diving
coordinated control

Article JMPSCE Springer 2015 China 7

72 [131]
Construction vehicle,

EM, FC, MPC,
NN, Wavelet

Article ENEYD Elsevier
Ltd 2020 China 6
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Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

73 [132]

Distributed energy
management, V2G,

greedy-based
algorithm, mixed
integer non-linear

programming

Article IEEE Access IEEE 2020 United
Kingdom 5

74 [133]
Algorithm,

Classification, EMS,
HEV, Optimization

Review Energies MDPI AG 2020 China 4

75 [134]

Batteries, EMS, FC,
EV, Fuzzy inference
system, Hull moving

average

Article Energies MDPI AG 2019 China 4

76 [135]

Equivalent
Consumption
Minimization

Strategy, equivalent
factor, fuzzy logic

Article JIFS IOS Press 2017 China 4

77 [136]
Advanced model,

battery lifetime, EV,
EMS, HESS, LIB, SC

Article ITIED IEEE 2021 France 3

78 [137]
BMS, EV, LIB,

Cost estimation,
Fiber optic sensor

Review Sensors MDPI AG 2021 United
States 3

79 [138] Charging (batteries),
EV, EE, EM, EPTN Article RPG John Wiley

& Sons Inc 2020 Denmark 3

80 [139]
Bidirectional power

flow, DC–DC
converters, EV, SC

Article EENGF Springer 2020 Brazil 3

81 [140] Battery, EV, EMS, SC,
Jaya algorithm Article IJERD John Wiley

& Sons Inc 2020 Turkey 3

82 [141]

SOC, DC, EM, FC,
HEV, Pattern
recognition,

Supervisory control

Article IJEHV Inderscience
Publishers 2010 Iran 3

83 [142]

Fuzzy based EM,
HESS, FC, Super
twisting sliding

mode control

Article EST Elsevier
Ltd 2021 Pakistan 2

84 [143]

Bidirectional DC–DC
converter, EV, FC,
Real time digital

simulator

Article JPE

Korean
Institute of

Power
Electronics

2011 United
States 2

85 [144]

EV, EE, NN, Fuzzy
logic, Intelligent

controllers,
Regenerative

braking

Review Energies MDPI AG 2021 Estonia 1
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Rank Ref. no. Keywords Type of
Article

Abbreviated
Journal Name

Publisher
Name Year Country Citation

86 [145]

ES, EV, Isolated
power grids,

Transport
decarbonization,

V2G

Article Energies MDPI AG 2021 Portugal 1

87 [146]

battery swapping
station, EV, V2G,
stochastic model
predictive control

Article IJERD John Wiley
& Sons Ltd 2021 China 1

88 [147]

EV, EM, Energy
consumption,
Supply chain,

Vehicle routing
problem

Article Energies MDPI AG 2021 United
States 1

89 [148]

Commercial
building, EV, retired

electric vehicle
battery, Risk
management

strategy

Article ECMAD Elsevier
Ltd 2021 China 1

90 [149]

Auxiliary power
unit, Charging
strategy, Cost

analysis, EM, HESS

Review RSERF Elsevier
Ltd 2021 Australia 0

91 [150]
Coolant, direct

cooling system, EV,
LIB, two-phase flow

Review IJERD John Wiley
& Sons Ltd 2021 China 0

92 [151]

Cost optimization,
EV, EM, HESS, NN,
Variable perception

horizon

Article APEND Elsevier
Ltd 2021 United

Kingdom 0

93 [152]
Deep Q learning,

HEV, MPC,
Prioritized replay

Article ENEYD Elsevier
Ltd 2021 China 0

94 [153]

Dynamic
programming,

Electrified
powertrain, EMS,

OC, HEV

Article Energies MDPI AG 2021 Italy 0

95 [154]

Battery,
Gain scheduled,

Linear parameter
varying, SC

Article ITCNE IEEE 2021 France 0

96 [155] Energy harvesting,
EM, HEV, SC Article Energies MDPI AG 2021 Greece 0

97 [156] hybrid sources,
LIB, SC Review IJERD John Wiley

& Sons Ltd 2021 China 0

98 [157]

EMS, MPC,
integrated power

system, load power
prediction

Article IEEE Access IEEE 2021 China 0
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Publisher
Name Year Country Citation

99 [158]

Adaptive equivalent
consumption

minimum strategy,
equivalent factor,

PHEV

Article IJERD John Wiley
& Sons Ltd 2021 China 0

100 [159]

DC–DC converter;
EV; intelligent
controller; BSS;

modulation
techniques;

metaheuristic
optimization

Review Electronics MDPI AG 2021 Malaysia 0

AB = Automotive Batteries, ANN = Artificial Neural Network, BMS = Battery Management Systems, BP = Battery Pack, BSOC = Battery
State of Charge, BESS = Battery Energy Storage Systems, CA = Cost Analysis, CR = Cost Reduction, CS = Control System, DP = Dynamic
Programming, EB = Electric Batteries, EE = Energy Efficiency, ED = Electric Discharges, EM = Energy Management, EMC = Electric
Machine Control, EP = Energy Planning, EPTN = Electric Power Transmission Networks, EV = Electric Vehicle, EMS = Energy Management
Systems, ES = Energy Storage, ESS = Energy Storage Systems, EU = Energy Utilization, FC = Fuel Cells, FE = Fuel Economy, FL = Fuzzy
Logic, HESS = Hybrid Energy Storage Systems, HV = Hybrid Vehicles, HEV = Hybrid Electric Vehicles, LIB = Lithium-ion Batteries,
MPC = Model Predictive Control, NN = Neural Networks, OCS = Optimal Control Systems, OC = Optimal Control, PCS = Predictive
Control Systems, PHEV = Plug-in Hybrid Electric Vehicles, PHV = Plug-in Hybrid Vehicles, PM = Power Management, REM = Real-time
Energy Management, RL = Reinforcement Learning, SC = Solar Cells, SOC = State of Charge, SM = Storage Management, SS = Stochastic
Systems, SB = Secondary Batteries, SC = Supercapacitor, TC = Temperature Control, VA = Vehicle Applications, V2G = Vehicle-to-grid.

3. Analytical Discussion

The analysis of the most relevant article in any specific field of study is critical for un-
derstanding and categorizing current research trends and providing an overall idea about
the influential journals and publications. We aimed to provide transparent information
about the most important fields of research manuscripts and recent research developments
in EMSs for EV applications with this study.

3.1. Citation Analysis of the Selected Most Relevant Manuscripts

Table 2 shows the 100 most relevant articles in the field of EMSs for EV applications,
as extracted from the Scopus database and analyzed to deliver further information for
future researchers. It can be observed that Table 2 illustrates the number of citations for the
100 manuscripts, whose citation numbers range between 0 and 673; the first 6 manuscripts
received more than 200 citations, while the first 11 manuscripts had more than 100 citations.
Hannan et al. generated the manuscripts with the highest citations in 2017.

The most cited article in the field of EMSs for EV applications is “A review of lithium-
ion battery state of charge estimation and management system in EV applications: Chal-
lenges and recommendations” [62] produced by Hannan et al., which received 673 citations
and was published in the journal “Renewable and Sustainable Energy Reviews” in 2017.
This study estimates the lithium-ion battery state of charge (SOC) and examines its manage-
ment system in the context of future EV applications. Moreover, the need for a lithium-ion
battery management system (BMS) is discussed, ensuring a dependable and safe operation
while also assessing the battery’s state of charge (SOC). The SOC is a critical statistic,
according to the study, since it indicates the remaining available energy in a battery,
which gives an indication of charging/discharging strategies and protects the battery from
overcharging/over-discharging. According to the citation, “Battery management system:
An overview of its application in the smart grid and EVs” is a review paper by Rahimi-Eichi
et al. that evaluates battery management issues based on smart grids and EV [63]. In 2013,
the work was published in the journal “IEEE Industrial Electronics Magazine”, and it
received 487 citations. “Review of energy storage systems for EV applications: Issues and
challenges” [6] was the third most cited manuscript published in the “Renewable and Sus-
tainable Energy Reviews” journal in 2017. Hannan et al. authored the manuscript, which
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received 384 citations. This manuscript examines energy storage system (ESS) technologies
in detail, including classifications, features, structures, power conversion, and assessment
procedures, as well as their benefits and drawbacks in EV applications. Furthermore, this
article examines several classes of ESS based on their energy forms, composition materi-
als, and methodologies in terms of the average power delivery overcapacity and overall
efficiency displayed within their life expectancies. Articles with an average citation per
year (ACY) of 21.6 or higher are considered the most important in the EMS field. Those
included in Table 2 provide a more profound knowledge of the topic.

3.2. Allocation of the Selected 100 Manuscripts over the Year

In Figure 3, the allocation of the 100 stated articles in EMSs for EV applications between
2010 and 2021 is illustrated. The numbers of papers published in the years 2010 and 2011
are 1 and 2, respectively. Based on Figure 3, the number of manuscripts published in 2020
was the highest, while it was the lowest in 2010; the figures are 22 and 1, respectively. With
12 manuscripts each, the number of papers generated in 2018 and 2019 is the same. Overall,
the articles published from 2019 to 2021 indicate an increasing trend, but those—published
from 2010 to 2016 show a fluctuating trend.
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3.3. Co-Occurrence Keyword Analysis

Table 2 delivers a broad notion of the selected research area, while Figure 4 shows
co-occurrence keywords from the most relevant manuscripts picked from the selected
database. Figure 4 demonstrates the internal network among all keywords, which is gener-
ated by using the VOSviewer software. The influence of the keywords controls the volume
of the circle and label, while the connecting line among the keywords is revealed as a
conjunctive connection. Different colors are used to describe different clusters depending
on the area of expertise. The adaptive controller, battery, battery degradation cost model,
battery management system, charge equalization controller, coolant, cost estimation, deep
neural network, dual droop control, EV, energy storage, genetic algorithm, home energy
management system, hydrogen fuel consumption, integrated energy management strategy,
integrated optimization, isolated power grids, Jaya algorithm, optimization, parameter
match, risk management strategy, sector-coupling, smart grid, state of charge, tempera-
ture monitoring, thermal management, thermal runaway, transport decarbonization, and
variable perception horizon are in the red cluster, which illustrates the strong bond among
them. The blue cluster represents different sorts of energy management strategies such
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as the adaptive controller, wavelet transform, hybrid energy storage system, vehicle rout-
ing problem, simulation, supercapacitor, charging strategy, auxiliary power unit, battery
lifetime, energy harvesting, hybrid power systems, autonomous EV, event-based control,
demand-side management, equivalent factor, fuzzy logic, propulsion, energy management,
online optimization, and energy efficiency that are considered to smooth energy transi-
tion. It can be noticed that environmental sustainability, regenerative braking, intelligent
controllers, polynomial control, speed control, current control method, fuel cell, dc/ac
converter, dc-link voltage control, multi-objective optimization, asynchronous machine,
dc/dc converter, neural network, Pontryagin’s minimum principle, gain scheduling, real-
time simulation, fuel economy, pattern recognition, driving cycle, and optimal control
are directly connected to the energy controller, which is represented in the purple clus-
ter. The optimizations are directly related to look-ahead control, dynamic programming,
generalization, model predictive control, deep reinforcement learning, uncertain systems,
multivariable control systems, robust feedback control, load power prediction, hybrid EV,
fuel efficiency, deep q learning, global optimization, modeling, and basic operation mode,
which are in the green cluster. Finally, plug-in hybrid EV, quadratic programming, state
of health, fuel consumption, grey wolf optimizer, rules-based energy management, deep
q-learning, reinforcement learning, the Markov chain, energy loss, the forgetting factor,
power transition probability matrices, and Kullback–Leibler divergence are strongly linked
to EV storage efficiency, which is represented by the yellow cluster.

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 38 
 

among them. The blue cluster represents different sorts of energy management strategies 
such as the adaptive controller, wavelet transform, hybrid energy storage system, vehicle 
routing problem, simulation, supercapacitor, charging strategy, auxiliary power unit, bat-
tery lifetime, energy harvesting, hybrid power systems, autonomous EV, event-based con-
trol, demand-side management, equivalent factor, fuzzy logic, propulsion, energy man-
agement, online optimization, and energy efficiency that are considered to smooth energy 
transition. It can be noticed that environmental sustainability, regenerative braking, intel-
ligent controllers, polynomial control, speed control, current control method, fuel cell, 
dc/ac converter, dc-link voltage control, multi-objective optimization, asynchronous ma-
chine, dc/dc converter, neural network, Pontryagin's minimum principle, gain scheduling, 
real-time simulation, fuel economy, pattern recognition, driving cycle, and optimal con-
trol are directly connected to the energy controller, which is represented in the purple 
cluster. The optimizations are directly related to look-ahead control, dynamic program-
ming, generalization, model predictive control, deep reinforcement learning, uncertain 
systems, multivariable control systems, robust feedback control, load power prediction, 
hybrid EV, fuel efficiency, deep q learning, global optimization, modeling, and basic op-
eration mode, which are in the green cluster. Finally, plug-in hybrid EV, quadratic pro-
gramming, state of health, fuel consumption, grey wolf optimizer, rules-based energy 
management, deep q-learning, reinforcement learning, the Markov chain, energy loss, the 
forgetting factor, power transition probability matrices, and Kullback–Leibler divergence 
are strongly linked to EV storage efficiency, which is represented by the yellow cluster. 

 
Figure 4. Co-occurrence keywords analysis by VOSviewer from the Scopus database. 

Table 3 reveals the topmost 15 keywords from the chosen database used in multiple 
publications between 2010 and 2021. The current literature gaps can be discovered by 

Figure 4. Co-occurrence keywords analysis by VOSviewer from the Scopus database.

Table 3 reveals the topmost 15 keywords from the chosen database used in multiple
publications between 2010 and 2021. The current literature gaps can be discovered by
analyzing the topmost keywords, and insight into the recent research field can be obtained.
“Energy Management Systems”, “Electric Vehicles”, and “Secondary Batteries” are the
three most prevalent terms in Table 2. The values for “Energy Management Systems” and
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“Electric Vehicles” are 42 and 35, respectively, while “Secondary Batteries” have a figure of
31. “Energy Management Systems”, “Electric Vehicles”, “Optimization”, and “Controllers”
were also the most popular terms in the recent two years, reflecting the growing interest in
EMSs for EV applications. The total allocation of keywords and the graphical depiction of
Table 3 are depicted in Figure 5. Based on the analysis of Table 3 and Figure 5, the following
conclusions can be made:

• Scholars are now concerned about energy storage efficiency and minimizing carbon’s
impact on the climate while enhancing the system’s efficiency.

• There has been a tremendous rise in EMS and EV application research.
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According to Tables 2 and 3, it is clear that the scholars are currently interested in EMSs
for EV application development, particularly in control and optimization technologies,
topics that have received a lot of citations in the last 5 years and have a lot more ACY than
the topic of general energy efficiency in storage systems.
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Table 3. Top-most 15 keywords from the selected 100 manuscripts between 2010 and 2021.

Top Keywords 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Frequency

Energy Management
Systems [79] [69] [66] [105] [68,95] [61,62,75,

77,85]
[64,65,73,84,
100,114,125]

[82,88,94,97,
105,109,118,

124,134]

[89,107,123,132,
133,138,140]

[142,145,148,149,
151,154–156] 42

Electric Vehicles [141] [143] [71,92,119] [80,86] [76] [91,103,
106,135]

[64,73,84,100,
112,114,129]

[88,94,109,
124]

[89,122,123,128,
131,133,139]

[142,149,152,153,
155] 35

Secondary Batteries [143] [71,92] [86] [66] [76,80,81,
105,130] [95] [61,62,85,

91,103]
[64,73,84,104,

116]
[88,109,118,

134] [123,140] [142,149,151] 31

Charging (batteries) [141] [86] [80,81,130] [62,91,103] [84,104,129] [74,88,93,109,
115]

[98,99,107,111,
120,122,128,138]

[142,146,149,157,
158] 29

Energy Efficiency [119] [66] [80,81] [68] [91] [64] [88,110] [89,99,122,131,
133,138–140]

[144,149,150,150,
158] 22

Hybrid Energy
Storage Systems [66] [130] [68] [64,73,84,116] [109,110,118] [90,99,102] [136,142,149,151,

156] 18

Plug-in Hybrid
Vehicles [92] [86] [72,76] [135] [64,104,116] [82,118] [108,111,113,

120] [158] 15

Fuzzy Logic [66] [85,91,135] [96,116] [88,109,118] [90,99] [142,144] 13

Model Predictive
Control [101] [81] [94] [98,108,113,120,

131] [126,146,152,157] 12

Optimization [92] [80] [68] [73,96] [118] [89,122,127,131,
133] [144] 12

Controllers [141] [66] [61] [114] [109] [102,120] [142,144,154] 10

DC–DC Converters [143] [71] [106] [118] [90,102,123,139] [154] 9

Stochastic Systems [117] [77] [100,114] [107,120,132] [146,148] 9

State of Charge [62] [84] [74,93] [120] [160–162] 8

Electric Power
Transmission

Networks
[83] [77] [132,138] [145,146] 6
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3.4. Bibliometric Analysis of Average Citations per Year and Study Type

Table 4 shows the top ten manuscripts with the greatest ACY in the last five years.
Moreover, Table 4 also demonstrates the contributions, achievements, research gaps, and
future directions in the top ten selected manuscripts. The most frequent research gaps
include a lack of working capability in the real-world environment, a lack of accurate and
robust SOC estimation under real-time EV drive cycles, short lifetime and limited load
capacity, high cost, marginal safety, small voltage, and low energy density. In line with
this, numerous key factors were identified including expenses, safety measures, sizing,
power electronics interfaces, energy and power management, proper disposal, recycling,
and material support. To overcome the above-mentioned knowledge gaps from different
studies related to EMS in EVs, further investigation is required. The article by Hannan et al.
has the highest ACY of 133.6, which is also ranked first in the total number of citations,
followed by the second article by Rahimi-Eichi et al., which has an ACY of 73.8. As the
research interests of scholars change over time, the ACY rank varies in relation to the
overall citation rank.

Table 4. “Average citation per year (ACY)” of top 10 articles.

Rank Ref. ACY Citation Rank
Based on Table 2

Abbreviated
Keywords Contributions Research Gaps/Future

Directions

1 [62] 133.6 1 BMS, EV,
LIB, SOC

This research examines the
estimation of Li-ion battery

SOC and its EMS in the
context of future
EV applications.

• Lack of working
capability in real
applications.

• SOC estimation is only
possible when the EVs
are not moving.

2 [63] 73.8 2
BMS, BT,

Charge/discharge,
EV, SOC, SOH

This study evaluates the
performance of BMS
concerning reliability,

safety, and cost.

• Various batteries have
distinct constraints on the
charge receiving due to
their different chemistries
and architectures.

3 [6] 76.2 3
EV, ESS,

Hybridization,
Power electronics

This research assesses the
different composition

materials and
methodologies of ESS

based on average power
delivery, capacity, and

efficiency within
their lifetime.

• Crucial factors such as
expenses, safety
measures, sizing, power
electronics interface,
energy and power
management, proper
disposal, recycling, and
material support are
not considered.

4 [65] 52.5 5 EV, EMS,
LIB, SOC

The reinforcement learning
(RL)-based real-time
power-management
approach is used to

achieve the optimal power
distribution between the

battery and SC.

• As the outcomes of this
paper are satisfactory and
efficient, this technique
can be implemented for
practical purposes.

5 [67] 46.25 7 CC, EV, LIB,
TD, TMS

This article presents a
thorough examination of

the current status of Li-ion
battery technology,

covering basics,
architectures, and overall
performance evaluation.

• Short battery life and
limited load capacity.

• High cost and
marginal safety.

• Small voltage and low
energy density.
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Table 4. Cont.

Rank Ref. ACY Citation Rank
Based on Table 2

Abbreviated
Keywords Contributions Research Gaps/Future

Directions

6 [64] 44.4 4

EL,
Forgetting factor,
Kullback–Leibler

divergence,
PM, RL

A dynamic degradation
model for the LiFePO4
battery is developed to

quantitatively examine the
impact of different control

techniques in terms of
minimizing battery

deterioration.

• The calculation of the
number of battery cells
and SC modules in
obtaining accurate HESS
sizing is challenging.

7 [66] 34.8 6 EV, EMS, HESS

This research explores the
available literature on two

levels: the cell level and
the level of the

battery module.

• Heat transfer
enhancement is not
always the greatest
option for dealing with
temperature
inconsistency.

8 [68] 30.4 8
EV, EM, ES,

Optimization,
Real-time

The study discusses
real-time EMS for EVs

with HESS that includes a
battery and supercapacitor.

• λ-control is
better-suitable for
a high supercapacitor
voltage range.

9 [74] 26 15 BMS, ES, EV,
LIB, SOC

The paper develops a
hardware prototype to

execute building energy
management and an

EV-charging
scheduling algorithm.

• The effects of PV output
and electricity
consumption forecast
errors along with the
vehicle-to-grid
performance should
be addressed in
future research.

10 [70] 21.6 10 Eco-driving, EV,
Optimal control

This study investigates
EMS issues in EVs that

conform with online
standards for eco-driving.

• In future research, this
method can be
implemented in real-time
EV applications to
provide online assistance
to the driver.

Table 5 demonstrates the categories of the manuscripts that were selected as the most
relevant. The category of experimental works, development studies, and performance
assessments has the most articles (62.62%), followed by systematic and non-systematic
reviews (16.16%), and problem formulations and simulation analyses (9%). There is a
correlation between research categories, year ranges, and citation ranges. The largest
number of publications (62) from the specified Scopus database of the most relevant
articles, with a citation range (1–222), are focused on experimental work, development, and
performance assessment-based analysis during the eight-year period up to 2021. From 2016
through 2021, the most common types of articles were technical overviews, observational
articles, problem-formulation articles, and simulation analyses.
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Table 5. Types of the most relevant 100 manuscripts in Scopus database.

Study Types Numer of
Manuscripts Year Range Citation Range

Experimental work, development, and
performance assessment 62 2010–2021 1–222

Review (systematic/nonsystematic) 16 2011–2021 0–673

Problem formulation and
simulation analysis 9 2016–2021 0–187

State of the art technical overview 7 2014–2021 0–384

Case study, meta-analysis, and survey 4 2016–2019 7–163

Technical and observational overview 3 2012–2018 11–212

The most common keywords from the selected 100 most relevant papers are listed
as follows, along with most recent articles using these keywords: Energy Management
Systems [79,163–165], Electric Vehicles [166,167], Secondary Batteries [168,169], Charging
(batteries) [170], Energy Efficiency [171,172], Hybrid Energy Storage Systems [84,167,173],
Plug-in Hybrid Vehicles [167], Fuzzy Logic [174], Model Predictive Control [175], Opti-
mization [159,176], Controllers [61,109], DC–DC Converters [177], Stochastic Systems [178],
Electric Power Transmission Networks [179,180], and State of Charge [181–183].

3.5. Bibliometric Evaluation of Journals, Publishers, and Countries

Figure 6 shows the proportion of papers published by thirteen individual publishers.
Elsevier published the greatest proportion of articles among the selected papers (42%). IEEE
occupy the second position with 21%, followed by Multidisciplinary Digital Publishing
Institute with 17%, the John Wiley & Sons, Inc. with 7%, and Inderscience Publishers with
2%. The remaining papers were published by SAGE Publishing (1%), Oxford University
Press (1%), ASME (1%), Emerald Group (1%), SAE International (1%), IOS Press (1%),
Springer (1%), and the Korean Institute of Power Electronics (1%). Researchers are attempt-
ing to create new technologies and techniques that may be an alternative for the existing
conventional fossil-based vehicle system because of their significant potential positive
environmental impacts as well as the current research emphasis focusing mostly on EVs.
Refs [77,85,88,108,134,152,163] investigate models based on EMSs for EV applications.

The numbers of manuscripts published in the various journals and their impact
factors (IF) are shown in Figure 7. All 100 of the most popular articles were published in
42 different publications. The top five journals with the largest number of publications
published 46.46% of the 100 most relevant articles, with impact factors ranging from
0.975 to 14.982. The “Energies” journal published the most papers (16), followed by
“Applied Energy” with 10 articles; nevertheless, “Energy” and “International Journal of
Energy Research” both published nine and six articles, respectively. The Renewable and
Sustainable Energy Reviews journal contained five articles from the selected database. The
journals “IEEE Access”, “IEEE Transactions on Control Systems Technology”, and “Journal
of Power Sources” each contained four manuscripts. The impact factors of these journals
ranged from 0.975 to 14.982, according to the Journal Citations Report 2020. The journal
“Renewable and Sustainable Energy Reviews” had the highest IF of 14.982. In comparison,
with the same rate of publishing, the “IEEE Transactions on Vehicular Technology” journal
had the lowest IF of 5.978.
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Figure 6. Distribution of 100 manuscripts across the different publishers.

3.6. Document Authorship Analysis

Table 6 represents the details of authors who published three or more papers. From
the top 100 most relevant papers, 10 authors contributed more than three articles. With five
manuscripts from the 100 most relevant manuscripts retrieved from the Scopus database,
Zheng Chen of the Queen Mary University of London, United Kingdom, is the author with
the most publications. Zheng Chen has an h-index of 25 with a total of 2687 citations. With
four manuscripts, M.A. Hannan placed in the second position. His current affiliation is
Universiti Tenaga Nasional, Malaysia, with an h-index of 40. With the same number of
articles, Yonggang Liu, whose current affiliation is Chongqing University, China, gained
the third position. The rest of the authors—Hongwen He, Md Murshadul Hoque, Guang Li,
Jiangqiu Li, Azah Mohamed, Minggao Ouyang, and Yuanjian Zhang—produced three
articles. China has the most authors (n = 5), whereas the United Kingdom and Malaysia
have three and two, respectively. Minggao Ouyang of the Tsinghua University, China,
has the most citations (19,265) and the highest h-index (68), followed by Jiangqiu Li and
Azah Mohamed with 10,896 and 10,056 citations, respectively. They are from Tsinghua
University, China, and Universiti Kebangsaan Malaysia, respectively. In contrast, the
lowest citation (209) number was obtained by Yuanjian Zhang from Queen’s University
Belfast, United Kingdom, with an h-index of 9. Figure 8 represents the co-authorship
analysis conducted using VOSviewer. The highest number of authors who participated in
these selected manuscripts are from China, followed by the USA.
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Table 6. Topmost 10 author profiles based on the number of manuscripts.

Rank Author Name Current
Affiliation

Country
Name

Number of
Manuscripts

Total Number
of Citation

h-Index Authors
Position

1 Chen, Zheng Queen Mary
University of

London

United
Kingdom

5 2687 25 First author = 2
Senior author = 1

Co-author = 2

2 Hannan, M. A. Universiti
Tenaga

Nasional

Malaysia 4 7192 40 First author = 3
Co-author = 1

3 Liu, Yonggang Chongqing
University

China 4 1061 18 First author = 2
Senior author = 2

4 He, Hongwen Beijing
Institute of
Technology

China 3 8708 42 Co-author = 3

5 Hoque, Md
Murshadul

Monash
University

Australia 3 1163 11 First author = 1
Co-author = 2

6 Li, Guang Queen Mary
University of

London

United
Kingdom

3 1219 21 Co-author = 3

7 Li, Jiangqiu Tsinghua
University

China 3 10,896 53 Co-author = 3

8 Mohamed,
Azah

Universiti
Kebangsaan

Malaysia

Malaysia 3 10,056 42 Senior author = 1
Co-author = 2

9 Ouyang,
Minggao

Tsinghua
University

China 3 19,265 68 Senior author = 1
Co-author = 2

10 Zhang,
Yuanjian

Queen’s
University

Belfast

United
Kingdom

3 209 9 First author = 1
Co-author = 2

It was found that different authors have distinct fields of study. Zheng Chen of the
Queen Mary University of London, United Kingdom, is primarily interested in Plug-in
Hybrid Vehicles, Powertrains, and Energy Management [184–187]. He also wrote two
manuscripts about EV applications, “Prediction of vehicle driving conditions with the
incorporation of stochastic forecasting and machine learning and a case study in energy
management of plug-in hybrid electric vehicles” [187] and “Stage of Charge Estimation of
Lithium-Ion Battery Packs Based on Improved Cubature Kalman Filter with Long Short-
Term Memory Model” [186]. M.A. Hannan from Universiti Tenaga Nasional, Malaysia, de-
veloped the following recent manuscripts on EMSs for EV applications: “Techno-Economic
Analysis and Environmental Impact of Electric Buses” [188], “Fuzzy Based Charging-
Discharging Controller for Lithium-ion Battery” [189], and “Energy Storage Integrated
Microgrid Performance Enhancement” [190]. Yonggang Liu from Chongqing University,
China, has a primary research interest in Plug-in Hybrid Vehicles, Powertrains, and En-
ergy Management [191–193]. “A survey on key techniques and development perspectives
of equivalent consumption minimization strategy for hybrid electric vehicles” [193] and
“Prediction of vehicle driving conditions with the incorporation of stochastic forecasting
and machine learning and a case study in energy management of plug-in hybrid electric
vehicles” [187] are the manuscripts recently produced by Yonggang Liu.

Figures 9 and 10 represent a graphical representation of the top ten countries that
dominate the EMSs for the EV applications, and co-occurrence country analysis performed
using VOSviewer, respectively. China is in the leading position based on the number of
manuscripts in EMSs for EV applications, with a total of 44, followed by the USA, with 16.
With 12 manuscripts, France is in third place. Figure 10 also demonstrates that China has
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the highest number of collaborations with other countries. Regarding funding sponsors,
the “National Natural Science Foundation of China” is in the first position with 22 sponsors,
whereas the “National Key Research and Development Program of China” and the “China
Scholarship Council” sponsored 8 and 7 manuscripts, respectively.
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Following the discussion and analysis of the topmost 100 most relevant manuscripts
from the chosen database, it was discovered that there had been a trend toward publishing
both “review” and “technical” papers in recent years. “Energy Management Systems”,
“Electric Vehicles”, “Secondary Batteries”, “Energy Efficiency”, “Hybrid Energy Storage
Systems”, and “Plug-in Hybrid Vehicles” are six areas of study that are gaining high
interest. Different researchers have performed various types of literature evaluations and
techniques in the fields of economic advantages of EV applications, EMSs, optimization
and control for cost reduction, the flexibility of system operations, and the reducing of
carbon emissions [77,85,88,108,134,141,144,152,163,194,195].

4. Issues and Challenges of EMSs in EVs

The EV applications have many key components that influence the EMS’s depend-
ability and efficiency. However, to overcome the problems of HEV EMS reliability and
efficiency, several factors must be solved. The difficulties and challenges on EMSs for EV ap-
plications are split into the following categories and explored in the following sub-sections.

4.1. Optimal EV Design and Power Distribution Challenges

In ref [142,149,152,153,155], the authors explored various issues related to optimal EV
design and power distribution. However, the power flow and EV design need further
improvement. Managing the power flow and satisfying the market’s high expectations
are critical in vehicle energy management systems that use a hybrid or a mix of several
energy sources. The configuration and controller design are two major issues because of the
complexity and difficulty of the integration needed among the other current systems in the
vehicle [196]. When the EMSs are intended to reduce hydrogen consumption and enhance
the fuel cell’s life expectancy, which relates to design optimization, power distribution
among various components becomes more difficult. Power splits have become a major
worry due to frequent charging from the fuel cell to the battery and variations in fuel cell
output power, both of which have an impact on the battery and fuel cell’s performance
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and service life [197,198]. To ensure the dependability of EV applications, the EMSs must
be further studied and improved in terms of hardware or real-time applications.

4.2. Battery Thermal Management Issues

In [142,146,149,157,158], various authors discussed the issues concerning the thermal
management of batteries. High temperature is generated because of chemical reactions,
and this is a major issue that affects all batteries. Unusual temperatures harm the chemical
characteristics of batteries and cause significant reductions in their efficiency. The tem-
perature control system is also crucial for secondary batteries. In most cases, the battery
must function at both low and high temperatures. Due to the lowered rate of chemical
reactions and the transformation of active chemicals due to temperature, the charging
and discharging currents and the battery’s power handling capabilities are reduced by the
impact of the low temperature [199]. On the contrary, the higher temperature in the battery
creates certain challenging circumstances that induce aberrant chemical behavior and even-
tually lead to the battery exploding. Although some power may be saved by stimulating
processes with the Arrhenius effect, a higher current creates a higher temperature, which
leads to thermal runaway owing to positive temperature feedback. To avoid the battery’s
thermal runaway, specific measures must be implemented. Compared to other popular
batteries, the capacity of the Li-ion battery increases as the temperature rises at the expense
of the battery’s life. Therefore, further attention is needed to address the battery’s thermal
issues to achieve better efficiency.

4.3. Battery Storage Life Cycle and Aging Issues

In [142,145,148,149,151,154–156], numerous authors investigated the battery storage
life cycle and aging issues. The loss of battery cell function due to voltage and heat impacts
has been studied; nevertheless, this loss reduces the battery’s longevity. It’s worth noting
that running a battery cell outside its normal working range results in irreversible capacity
loss. This anomaly has a cumulative impact, reducing battery life and possibly causing
total and irreversible loss of usage [200]. Owing to anode plating, the lifespan reduces
slowly at low temperatures (below 10 ◦C), but it drops dramatically at high temperatures
(over 60 ◦C) due to chemical breakdown. As a result, the optimal operating temperature
range should neither be too large nor too narrow. Hence, further investigation is suggested,
particularly the conducting of feasibility studies to reduce the impact of cell function on
battery life.

4.4. Power Electronic Controller and Converter Issues

In [90,102,123,139], different authors examined power electronics controller and con-
verter issues including switching loss, high ripple current, voltage stress, high voltage
gain, high impedance, optimization integration, and complex control techniques. The
fuel cell generates low DC voltage by regulating the fuel cell to a level with the DC bus
voltage through an appropriate DC–DC converter [201] with three distinct energy sources.
As a result, in an EV, a power electronic interface is required. Open circuit failures pull
increments of fuel cell stack ripple currents and add additional stress to inductors; thus,
precautions must be taken before its growth. Driver failure, improper gate voltage, device
damage, and excessive voltage, current, and transients are possible problems [202]. The
DC–DC converter in the fuel cell system must be boosted, and the storage device requires
a bidirectional DC–DC converter [203]. As a result, for the battery and SC, buck-boost con-
verters are commonly employed [204]. Therefore, further studies are required to develop
an efficient controller and converter for EV applications.

4.5. Environmental and Decarbonization Issues

In [145], Torabi et al. focused on the environmental and decarbonization issues for
EVs. Further research should be conducted on the impacts of EVs in terms of reducing
carbon emissions. Automobile electrification, such as EVs, HEVs, and PHEVs, is becoming
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more popular as oil costs rise and the demand for large amounts of energy for sustainable
transportation grows. Toyota estimated that by 2020, EVs would account for more than 7%
of global transportation [205]. Li-ion batteries generate CO2 and GHGs during their manu-
facturing and disposal, despite their positive influence on the environment by lowering the
number of oil-based cars [206]. In a previous study, the US EPA examined Li-ion batteries
for their use of nickel- and cobalt-based cathodes, as well as solvent-based electrode pro-
cessing, and found significant environmental impacts, such as resource depletion, global
warming, ecological toxicity, and human health effects, among other things [207]. Accord-
ing to this study, people involved in the manufacturing, processing, and use of cobalt
and nickel metal compounds may be at risk for respiratory, pulmonary, and neurological
disorders [207]. This danger can be mitigated by using a Li-ion battery recycling method to
save natural resources and minimize the usage of nickel and cobalt [207,208]. Thus, the
impact of EVs on the environment and towards achieving sustainable development goals
(SDG) needs to be further enhanced.

4.6. Standard Regulation and Policy Issues

Policy and regulation are important issues in EV industries. In [82], Liu et al. dis-
cussed various regulations and policy-related issues. Clean development mechanisms
(CDM), carbon trading (CT), and joint implementation (JT) are the three main elements
within the Kyoto Protocol that the UN has defined to cost-effectively meet their emission
reduction objectives [209]. Many measures have been implemented to decarbonize Eu-
rope’s electricity industry. By utilizing a linear dynamic optimization model, the economic
implications of the alternative energy strategy for Europe’s power sector to cut greenhouse
gas emissions by 80 to 95% by 2050 as compared to 1990 were calculated [210]. By 2050,
Europe will convert to a 100% renewable energy system using the energy system transition
model developed by Lappeenranta University of Technology [211]. Although a few effec-
tive initiatives have been undertaken to promote EVs, the long-term planning of EV use,
including standardization, laws, enforcement, regulation, financial incentives, and policies,
needs further attention.

5. Future Trends of EMSs in EV Applications

Based on a rigorous review of the existing notable articles, this bibliometric study de-
livered several major and selective proposals for future research towards the advancement
of EMSs in EV applications.

• The global acceptance of EMSs in EV applications was discussed in terms of achieving
SDG in the transportation sector. Nonetheless, various issues related to EMSs in EV
applications, such as short driving ranges, battery lifetimes, long charging times, high
initial costs, poor vehicles, and ineffective EV-based policies, need to be carefully
examined. Further research is recommended to develop an efficient EMSs design
with better operational mechanisms, encouraging market regulations and global
collaborations for efficient EV operations.

• The existing converter designs implemented in EMSs suffer from various issues such
as current stress, low impedance, high ripple current, and sensitive duty cycles. In this
regard, further investigations are needed to optimize the converter design to achieve
high frequency and low losses. Additionally, optimization based on mechanical design
is suggested to obtain high robustness, mechanical strength, and power density.

• The application of enhanced control techniques towards achieving various benefits
such as bidirectional power management, fast-tracking, and high efficiency can be
observed in EMSs. Nevertheless, the implemented control technique suffers from
various disadvantages such as lengthy training durations, computational complexity,
and suitable hyperparameter adjustment. Therefore, further exploration is required to
address control technique issues.

• Due to the implementation of EMSs in EV application for controlling battery heating
and cooling, the reliability and stability of battery operation are improved significantly.
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However, the efficiency of EVs is reduced due to the existence of thermal issues and
deep-diving range loss. Additionally, the occurrence of thermal effects due to the
electrochemical process results in poor EMSs accuracy and stability. To minimize the
dynamic instability issues, the utilization of super capacitors in the battery storage
system can be observed. Additionally, the optimization scheme in EMSs technology
could effectively reduce battery aging and power curtailment issues.

• The performance of EMSs in EV applications can be improved by accurately esti-
mating various states of batteries, such as SOC, SOH, and RUL, respectively. The
inaccurate measurement of battery SOC would result in charging issues. Further, the
inappropriate measurement of SOH and RUL would lead to early replacement of
batteries, delays in battery replacement, explicit failure events, and further increases in
cost. Therefore, further investigation should be conducted regarding the application
of deep learning techniques for better estimation accuracy. Additionally, the applica-
tion of multi-scale and co-estimation techniques in BMS technology would increase
efficiency and minimize computational cost.

• The implementation of algorithm hybridization schemes was shown to be beneficial,
with better accuracy and effectiveness than non-hybridized techniques. The develop-
ment of the hybridization technique takes place by performing the integration of two
or more intelligent techniques. The hybridized intelligent techniques may comprise
an integrated intelligent algorithm with an optimization model or a combination
of two intelligent models. However, hybridization schemes suffer from operational
complexity and long training times, and they require human expertise and high com-
putational processors to conduct the desired operations. Hence, further explorations,
which aim to develop an efficient hybrid model while considering practicability issues,
are needed.

• Even though substantial progress towards SDG and decarbonization has been ac-
complished with EMS-based EV applications, environmental issues such as soil and
groundwater contamination need to be considered. Inaccurate battery disposal would
result in health hazards from water as well as air. To prevent inappropriate disposal of
batteries in the environment, adequate measures in terms of recycling and reusability
should be carried out.

• To improve the performance capability and robustness of EMSs in EV applications, the
implementation of real-time monitoring consists of sensors, data processors, and cloud-
based technology. The performance of EMSs in EVs can be observed by acquiring real-
time data in the form of voltage, current, impedance, temperature, etc. Additionally,
the state estimation of the battery can be performed and stored in the cloud database.
The effectiveness of the EMSs can be improved with suitable data extraction, data
processing, and prediction in real-time applications.

6. Conclusions

The use of advanced EMSs in EVs is essential to achieve optimal power distribution
and improve the cost, efficiency, lifespan, and effectiveness of EV batteries with regard
to battery monitoring and management systems, charge and discharge controls, state es-
timation, energy storage safety, and protection. Thus, this study identified the 100 most
relevant publications on EMSs for EV applications from the Scopus’ database to assess the
recent trends, performance, applications, issues, and problems. Many studies were also
presented, including the distribution of 15 popular keywords—in terms of the most cited
articles—by year, nation, publisher, and journal, and the grouping of studies by research
field and study type. The primary goal of this article was to provide an overview of aca-
demic research trends and recognize the features and progress of EMSs in EV applications
identified in high-impact research publications. Many challenges and possible solutions
were also discussed for the EMSs for the EV applications related to this article in terms of
the achievement of system flexibility and system cost reduction for EV applications.
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The most relevant 100 articles were included in this bibliometric analysis to provide
insights into the history, current approach of researchers in scientific investigation, and chal-
lenges related to EMSs for EV applications. There are several advantages to determining
the characteristics of the most relevant publications, including:

• The systematic/non-systematic study and investigation of the most referenced manuscripts
provide insights into the history and evolution that has shaped contemporary knowl-
edge and practice.

• The characteristics of the most relevant articles in EMSs for EV applications can
provide future researchers with a clear picture.

• The bibliographical analysis may give researchers an excellent perspective on a dy-
namic and expanding study area, inspiring various dedicated researchers to employ
contemporary and new technologies to enhance a specific research field.

• Researchers and journal editors may use the most relevant article analysis to assist
them in evaluating submitted manuscripts.

In conclusion, it is expected that valuable information, discussions, knowledge, and
analysis on prominent EMS papers on EV applications between 2010 and 2021 would not
only assist in enhancing EV operations but would also provide valuable guidelines and
suggestions for automobile engineers and researchers towards achieving decarbonization
targets and SDGs.
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