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ABSTRACT
BEBOP is a radial-velocity survey that monitors a sample of single-lined eclipsing binaries, in search of circumbinary planets
by using high-resolution spectrographs. Here, we describe and test the methods we use to identify planetary signals within the
BEBOP data, and establish how we quantify our sensitivity to circumbinary planets by producing detection limits. This process
is made easier and more robust by using a diffusive nested sampler. In the process of testing our methods, we notice that contrary
to popular wisdom, assuming circular orbits in calculating detection limits for a radial velocity survey provides over-optimistic
detection limits by up to 40% in semi-amplitude with implications for all radial-velocity surveys. We perform example analyses
using three BEBOP targets from our Southern HARPS survey. We demonstrate for the first time a repeated ability to reach a
residual root mean squared scatter of 3 m s−1 (after removing the binary signal), and find we are sensitive to circumbinary planets
with masses down to that of Neptune and Saturn, for orbital periods up to 1000 days.

Key words: techniques: radial velocities – stars: low-mass – binaries: eclipsing – software: simulations – planets and satellites:
detection

1 INTRODUCTION

Circumbinary planets are planets which orbit around both stars of
a central binary system. Long postulated (e.g. Borucki & Summers
1984; Schneider 1994), most unambiguous discoveries have only
been made in the past decade thanks to the transit method. In total, 14
circumbinary planets have been identified orbiting 12main-sequence
eclipsing binaries. TheKepler space telescope discovered 12 of these
planets orbiting 10 binaries, (Doyle et al. 2011; Welsh et al. 2012;
Orosz et al. 2012a,b; Schwamb et al. 2013; Kostov et al. 2013,
2014; Welsh et al. 2015; Kostov et al. 2016; Orosz et al. 2019;
Socia et al. 2020), and since two have been discovered in TESS
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photometry: EBLM J0608-68 b/TOI-1338 b (Kostov et al. 2020) and
TIC 17290098 b (Kostov et al. 2021).

Despite these successes, circumbinary configurations remain
largely elusive on account of their longer orbital periods. Martin
(2018) and references therein, show how most circumbinary planets
found to date lie just outside of the circumbinary stability limit, as
described by Holman & Wiegert (1999), which incidentally places
them often close or within the habitable-zones of their parent stars.

Binary-driven orbital precession means that most circumbinary
planets find themselves in transiting configurations only ≈ 25% of
the time (Martin 2017), while their presence would be visible 100%
of the time in radial velocitymeasurements.With sufficient precision,
radial-velocities have the potential to be more efficient at detecting
circumbinary planets than the transit method, particularly since the
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Doppler method is also much less sensitive to orbital inclination and
period (e.g. Martin et al. 2019).
Despite these advantages, no circumbinary planet has been dis-

covered by the Doppler method so far. Only one has been detected
in follow-up, a recent recovery of Kepler-16 b by our project (Triaud
et al. in prep). To unlock more information on circumbinary forma-
tion mechanisms the demographics of circumbinary planets need to
increase, along with accurate physical and orbital parameters.
To this end, Konacki et al. (2009) launched a Doppler survey in an

attempt to detect circumbinary planets with radial velocities alone,
with ‘The Attempt To Observe Outer-planets In Non-single-stellar
Environments’ (TATOOINE) survey. Unfortunately, TATOOINEwas
unable to discover any planetary companions during their survey.
This is likely due to the type of binary stars that were observed.
TATOOINE observed double-lined (SB2) binary star systems. With
spectra from both stars visible within a spectrograph, complex de-
convolution methods need to be applied to recover the individual
components’ velocities with high precision and accuracy. Konacki
et al. (2009) found their best binary target was HD 9939 (𝑉 = 7).
Their ten radial velocity measurements on this target from Keck
HIRES have uncertainties of 1 − 4 m s−1, but they find a residual
root mean squared (RMS) scatter of 7 m s−1. This RMS is calculated
after the data have been fitted for binary Keplerian models, which we
refer to as residual RMS for the remainder of this paper. To achieve
this level of RMS scatter on an SB2 is impressive, though combining
all their data on this target yielded a 99% confidence detection limit
of ∼ 1 MJup (Konacki et al. 2009). Results on other targets typically
yield residual RMS in excess of 10 m s−1 In the end, Konacki et al.
(2010) recommend that single-lined binaries might be the next step
forward, a step that we took.
Martin et al. (2019) introduced our Binaries Escorted By Orbit-

ing Planets (BEBOP) survey. BEBOP currently only targets proven
single-lined (SB1) eclipsing binary targets, where only the spectrum
of the primary star, typically an F or G dwarf, is visible.We note here,
that whilst the binary mass ratios of the BEBOP and TATOOINE
samples are biased towards low and high values, respectively, Martin
(2019) showed that circumbinary planets exist around all mass ratios
with no discernable preference. Our binary sample was identified
while confirming transiting hot Jupiters with the Wide Angle Search
for Planets (WASP) survey (Pollacco et al. 2006; Triaud et al. 2013;
Triaud et al. 2017). First we used the CORALIE spectrograph, on the
1.2 m Euler telescope at La Silla, Chile (Martin et al. 2019), and have
now extended the survey to HARPS, at the ESO 3.6 m telescope, also
in Chile (Pepe et al. 2002a), as well as with SOPHIE, at the OHP
193 cm telescope in France (Perruchot et al. 2008).
In this paper we detail and test our detection and observational

protocols for the BEBOP survey, which have improved since Martin
et al. (2019). To fit our data, we now use a diffusive nested sampler
called kima (Faria et al. 2018). Contrary to our previous method,
we now measure evidence for the presence of a circumbinary planet,
accounting for Ockham’s razor, and can marginalise our results over
as-of-yet undetected planets.With kima, we investigate our detection
sensitivity to circumbinary planets, and we use it to produce robust
detection limits. We also test our detection protocol by injecting
circumbinary planets into our HARPS data and retrieve them with
kima. We show that, after removing the binary signal, we repeatedly
achieve a detection limit for circumbinary planets at masses as low
as Neptune’s, paving our way to actual detections.
This paper is organised as follows. In Sect. 2 we describe our

observing strategy for the BEBOP survey along with statistics of data
gathered to date. Second in Sect. 3 we provide a brief overview of
the kima diffusive nested sampling package, along with justification

of its use within the BEBOP survey. In Sect. 4 the data analysis
and simulation methods used are described. In Sect. 5 we display
the results of our detection limit and simulation recovery analysis,
and discuss the effect of the results on the BEBOP survey before
concluding in Sect. 6.

2 DESCRIPTION OF OUR OBSERVATIONAL PROTOCOL
AND DATA COLLECTION

The current BEBOP sample consists of a total of 113 single-lined
eclipsing binaries which do not exhibit strong stellar activity, or
the presence of a tertiary star. 54 in the Southern hemisphere, with
HARPS, and 59 in the Northern hemisphere, with SOPHIE; obser-
vations still ongoing in each. The Southern sample was established
from the EBLM programme, which identified low-mass eclipsing
binaries from WASP false-positives (Triaud et al. 2013; Triaud et al.
2017; Swayne et al. 2021). The data we use in this paper is exclusively
from our Southern sample, for which we have now accumulated over
1200 HARPS spectra, an average ∼ 23 individual radial-velocity
measurements per target. The southern data are obtained from a pre-
liminary proof-of-concept run (Prog.ID 099.C-0138) and a 78 night
programme seeking planetary candidates that commenced between
April 2018 and March 2020 (Prog.ID 1101.C-0721). BEBOP has
been awarded a further large programme (Prog.ID 106.212H), which
began in September 2020 to confirm a number of candidate planetary
signals, the results of which will be published in future work.

2.1 Observational protocol

All systems are observed as homogeneously in time as is possible,
with 1800s exposures, at an average cadence of one measurement
every ≈ 6 nights except when a system is no longer visible. All
measurements are taken at airmass < 1.6. We attempt to cover as
much of the yearly visibility as is feasible. All measurements are
taken using the Obj_AB mode of HARPS, which places the B fibre
on the sky rather than on a simultaneous Fabry-Pérot calibration
lamp, with the A fibre placed on our science target (Pepe et al.
2002a). Whilst the Obj_AB mode prevents us from reaching the
most accurate mode of HARPS, this gives us a chance to subtract
moonlight contamination from our spectra, which can introduce a
secondary spectral component, something our sample is designed to
avoid. Since most our systems have V magnitudes between 9 and 12,
photon noise rarely reaches down to the 1 m s−1 long-term stability
of the instrument (Lovis & Pepe 2007; Mayor et al. 2009), removing
the need for simultaneous calibration. Calibration of the instrument
is done at the start of night using Fabry-Pérot and Th-Ar calibration
lamps as is now standard on HARPS (Coffinet et al. 2019).
The data is analysed on a bi-monthly basis for quality control

(for instance verifying whether the residual residual RMS around
the binary solution is low enough to allow exoplanet detections).
Exoplanet candidate identification are done only once a year. We
chose on purpose to perform those candidate searches rarely in order
to avoid falling into observer’s bias. A homogeneously observed
dataset also provides more robust detection limits. On account of the
rather long orbital periods expected for circumbinary planets (50+
days; Martin 2018), we are only now reaching the ability to confirm
exoplanetary candidates.
A similar procedure is performed with SOPHIE, on the Northern

sample. It will be more specifically described once SOPHIE data are
presented for publication.
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BEBOP II - Detection limits 3

2.2 Data collection reduction, and outlier removal

Observations are obtained using the HARPS instrument on the ESO
3.6m telescope situated at the La Silla observatory in Chile (Mayor
et al. 2003). Reduction of the spectroscopic data was carried out
by the HARPS pipeline (Lovis & Pepe 2007). A Cross Correlation
Function (CCF; Baranne et al. 1996; Pepe et al. 2002b) is created by
comparing the spectra obtained by the spectrograph with a G2 or K5
template mask spectra (depending on the spectral type of the primary
star in question).We remind here, that our targets are chosen such that
the spectra of the secondary star is too faint to be detected. Typically
our primary stars are > 4 magnitudes brighter than the secondaries.
This allows us to safely ignore the secondary CCF and treat each
system as a single-star system (spectroscopically speaking; Martin
et al. 2019). The correlation is evaluated at 0.5 km s−1 intervals and
the CCF indicates with its lowest point the radial velocity at which
themask correspondsmost closely with the targets’ spectra. The CCF
is fit with an inverted Gaussian profile and its mean recorded as the
radial-velocity.
Various shape metrics are obtained from the CCF itself, such as

the span of the inverse of the mean bisector slope (bisector span) and
the Full Width at Half Maximum (FWHM). These are often used as
indicators of stellar activity (Queloz et al. 2001; Santos et al. 2002)
but mainly they track the quality of our observation and whether any
radial-velocity displacement is caused by a change in the shape of
the CCF, or by a translation of the CCF, which is what we are after.
Eleven systems (9 on HARPS and 2 with SOPHIE) with particu-

larly strong anti-correlation have been dropped from the observing
schedule. A anti-correlation between bisector span and RV is likely
caused by starspots on the surface of the target creating parasitic
signals (e.g. Queloz et al. 2001).
Prior to fitting our radial-velocities we clean any obvious outliers

fromour data. First, we exclude any observationsmistakenly obtained
on a star other than our target. This is often seen as a significant differ-
ence in the spectrum’s signal-to-noise and in the FWHM. Second, we
remove any measurement likely affected by the Rossiter-McLaughlin
effect (e.g. Triaud 2018). To find which measurements are affected,
we fit a Keplerian binary model to the radial-velocities, and from the
fit parameters compute when eclipses would happen.
In a third step, we examine the distribution of all bisector span and

FWHMmeasurements of a given system, and exclude measurements
that are further from the mean by more than 3𝜎. We also perform
target per target visual inspections of these metrics and flag systems
where the bisector span and/or the FWHM appear to show a long
term trend.

2.3 Choice of targets & observation summary

For this paper we select three systems from within the full BEBOP
South sample.We choose our Southern sample for this exercise as we
have obtained more high precision data with a longer baseline than
what is currently available in BEBOP North. We select these three
from the sample for several reasons. The first is that no planetary or
stellar activity signal are currently visible.
Second, we select amongst the systems with the lowest radial-

velocity uncertainty, and lowest RMS scatter, after having removed
the contribution of the secondary star to the radial-velocities of the
primary (that we refer to as residual RMS). We do this to specifically
demonstrate BEBOP’s ability to recover circumbinary planets with
signals of a few m s−1. Of our 41 Southern targets with more than
the average of 23 spectra we have identified 17 with a residual RMS
< 10 m s−1, corresponding to roughly 42% of the sample. While 27

a)

b)

c)

Figure 1. Best fit phased RV models for a) = J0310-31, b) = J1540-09, c)
= J1928-38 with associated residuals. Doppler motion of the primaries seen
here are caused by the secondary stars. Residuals have an RMS = 3.2, 3.8,
and 3.0 m s−1, respectively.

of these targets (66%) have an RMS < 17 m s−1. Three systems are
selected from within these, which we now describe:
1) EBLM J0310-31 (J0310-31 thereafter) has been part of the

preliminary survey for BEBOP on HARPS, and of the first exten-
sive observing campaign. This is the target for which the largest
number of spectra has been obtained. In total, 65 RV data points
are available, obtained between 2017-07-09 and 2020-01-02. These
measurements also have the lowest mean uncertainty of the survey
𝜎RV = 2.13 m s−1. J0310-31’s residual RMS = 3.16 m s−1, which
is one of the smallest we obtain so far. All these make J0310-31 the
ideal target to test our procedures to compute detection limits, as
well as perform injection-recovery tests on. See figure 1 for a phased
plot of our RV data for J0310-31, along with our best fit model and
residuals.
2) EBLM J1928-38 (J1928-38 for short). Its residual

RMS = 2.96 m s−1, better than J0310-31, close to its mean photon
noise uncertainty 𝜎RV = 2.67 m s−1. Only 25 measurements have
been obtained on J1928-38 so far, which makes it more representa-
tive of the current state of the survey than J0310-31 is. These were
collected between 2018-06-04 and 2019-09-14.
3) EBLM J1540-09 (henceforth J1540-09) has𝜎RV = 3.86m s−1,

and RMS = 3.75 m s−1, for 41 available spectra, observed from
2017-04-20 to 2020-03-06.

MNRAS 000, 1–13 (2021)



4 M. R. Standing et al.

These targets were analysed using the kima RV analysis package
(see next section). Their parameters can be found in Table 1. All
data can be accessed in Tables A5 to Table A7. All measurements
for these three systems are used, with no outliers found within those
three datasets.

3 RV ANALYSIS WITH kima

For the analysis of the radial velocities and the calculation of detection
limits, we use the kima package presented in Faria et al. (2018). The
code models the RV timeseries with a sum of Keplerian functions
from 𝑁p orbiting planets, estimating the posterior distributions for
all the orbital parameters.
To sample from the joint posterior distribution, kima uses the Dif-

fusive Nested Sampling (DNS) algorithm from Brewer et al. (2011).
Together with posterior samples, DNS provides an estimate for the
marginal likelihood, or evidence, of the model, which can be used
for model comparison (e.g. Brewer 2014; Feroz et al. 2011). Fixing
the values of 𝑁p in sequence, we can use the ratio of the evidences to
compare models with different number of planets. In addition, since
DNS can be used in a trans-dimensional setting (Brewer & Donovan
2015), the number of planets in the system 𝑁p itself can be a free pa-
rameter in the analysis, and its posterior distribution can be estimated
together with that of the orbital parameters. The posterior probability
for each 𝑁p value then allows for the same model comparison, with
the advantage of being obtained from a single run of the algorithm.
The DNS algorithm samples from amixture of distributions which

is not directly the posterior. A total number of samples 𝑁s from this
target distribution results in a smaller number of effective samples
𝑁eff from the posterior distribution. We obtain 𝑁eff > 20, 000 effec-
tive samples for eachmodel, which is more than enough to accurately
characterize the posterior.
Keplerian parameters are estimated from the effective posterior

samples via the clustering algorithm HDBSCAN (McInnes et al. 2017).
First, crossing orbits are removed from the posterior samples. Those
are proposed Keplerian orbits that cross with each other, or those
with an eccentricity which would cause their orbit to cross into the
instability region of the binary and are therefore unphysical (e.g.
Dvorak et al. 1989; Holman & Wiegert 1999; Doolin & Blundell
2011;Mardling 2013).HDBSCAN is applied on the remaining posterior
samples, highlighting dense regions in parameter space. The cluster
corresponding to the Keplerian signal is plotted with the Corner
package (Foreman-Mackey 2016). Parameters are determined as the
50th percentile of the cluster, with 1𝜎 uncertainties estimated from
the 14th and 84th percentiles.
To decide between competing models that fit our data we use the

Bayes factor. The Bayes factor (BF, here onwards) is the ratio of
the Bayesian evidence of the two competing models, and provides
a measure of the support in favour of one over the other (Robert E.
Kass; Adrian E. Raftery 1995; Trotta 2008). Table 2 adapted from
Trotta (2008) shows how the BF is measured and introduces the
Jeffreys’ scale (Jeffreys 1961) as a measure of evidence strength.
To guide our identification of planetary candidates we follow the

same Jeffreys’ scale, but use custom thresholds that affect what re-
sponse we have to the system. Like Trotta (2008), we use BF = 12 as
a threshold for ’moderate’ evidence. To identify planetary candidates
worthy of additional follow-up (to apply for additional telescope time
for instance), we use BF > 6. Regularly, 3𝜎 marks a detection in As-
tronomy. To make sure we are over that value, we place a threshold at
BF = 35. Any system reaching that level continues to be observed as
any other, but we analyse its data more regularly than once a year. To

visually track increasing evidence for a planetary signal, we place an
additional division at BF = 70. Finally we place our upper threshold
BF = 140, after which observations cease to be blind and we start to
target specific epochs that represent poorly sampled orbital phases, or
alternate solutions (eccentricity, 2 × 𝑃p, etc). We use the thresholds
described here in our insertion/recovery exercise below.
Contrary to a regular planetary system, a circumbinary SB1 sys-

tem is dominated by the reflex motion caused by the secondary star
(typically tens of km s−1) and extremely well constrained by the data.
In addition, we know there cannot be a planet at an orbital period
. 4 𝑃bin due to the instability region (Dvorak et al. 1989; Holman
&Wiegert 1999; Doolin & Blundell 2011; Mardling 2013)1. In con-
trast, we have no idea whether a planet is within the system, or what
its parameters might be. By default kima applies a common prior
for all the orbiting objects (secondary, or planet) in a given model,
which is not well adapted to our case. Particularly, there is no doubt
that there is a secondary star in the system, and as such no need for
the nested sampler to test that hypothesis.
In this context, kima can instead use the so-called known object

mode, where a specific set of priors can be placed on the binary
properties, and another set of priors is used to explore the pres-
ence/parameters of putative planets. At each step kima then fits for
the binary (the known object) and any additional Keplerian signal
present in the data. Using this mode, the nested sampler only com-
putes evidence for ≥ 1 Keplerian function, therefore only testing for
the presence of circumbinary planets (≥ 0 planets).
A typical kima run with 200, 000 saves, resulting in 𝑁eff ≈

25, 000 − 35, 000 posterior samples (depending on data-set) takes
≈ 180 minutes on a standard laptop computer.

4 METHODS & SIMULATIONS

Here, we describe our methods, which are used similarly on all the
systems we monitor in the survey. First, we give a simple parameter-
isation of the model. Then, we detail and justify the priors we use
within kima (see also Table 3). We then demonstrate using kima to
produce robust and fully Bayesian detection limits. Following that,
we perform a more traditional insertion-recovery test of static Kep-
lerian signals to compare with our kima detection limits. We then
test the validity of injecting static Keplerian signals in comparison to
N-body simulations. Finally, we discuss how our process compares
with previous methods for detection limits, both for single and binary
stars.

4.1 Model setup

With kima we assume independent, static Keplerian orbits for the
binary and any circumbinary planets. This neglects the fact that
the orbits of the planet and binary will evolve through three-body
interactions (e.g. Martin & Triaud 2014; Kostov et al. 2014). Martin
et al. (2019) however found such interactions to be negligible with
respect to the CORALIE BEBOP survey.Wewill briefly verify if this
assumption still holdswith ourmore preciseHARPSdata in Sect. 4.4,

1 In practice, the stability limit is dependent on other parameters such as the
eccentricities, orbital alignments, relative orbital phases and mean motion
resonance, as most recently explored by Quarles et al. (2018). It is there-
fore possible that kima would return unstable circumbinary configurations.
However, any such solutions would have their stability rigorously tested with
N-body models prior to claiming a detection.
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Table 1. Updated binary, system and derived parameters for the investigated binary systems. Uncertainties are given in the brackets, as the last two significant
figures, except for 𝜎jit where uncertainties can be significantly asymmetric.

EBLM J0310-31 EBLM J1540-09 EBLM J1928-38
System properties
TIC 89045042 32431480 469755925
TYC 7019-784-1 5600-377-1 7931-842-1
Gaia DR2 5057983496155992448 6317098582556256000 6739146911148825344
𝛼 [deg]1 03:10:22.62 15:40:08.99 19:28:58.85
𝛿 [deg]1 -31:07:35.7 -09:29:02.2 -38:08:27.2
Vmag 9.33(02)2 10.865(38)3 11.20(12)2
Distance [pc]4 147.29(84) 206.0(1.8) 257.7(2.2)
𝑀A [M�]1 1.26(10) 1.18(10) 0.980(80)
Binary parameters
𝑃bin [day] 12.6427937(17) 26.338279(14) 23.322972(22)
𝐾A [km s−1] 27.87218(52) 23.17988(87) 17.26333(52)
𝑒bin 0.308724(19) 0.120452(38) 0.073151(38)
𝜔bin [rad] 3.243410(80) 1.09802(37) 2.39117(75)
𝑇peri [BJD−2, 450, 000] 7934.64483(13) 7839.4468(15) 8258.5885(28)

System parameters
𝛾 [km s−1] 29116.0(10) -55395.95(65) 16558.05(62)
𝜎jit [m s−1] 2.77+0.45−0.41 1.48+1.32−1.45 0.089+1.153−0.085
Derived parameters
𝑀B [M�] 0.408(20) 0.444(23) 0.268(14)
𝑎bin [AU] 0.1260(31) 0.2037(53) 0.1720(44)
Notes: 1 - Martin et al. (2019), 2 - Høg et al. (2000), 3 - Munari et al. (2014), 4 - Gaia Collaboration (2018)

Table 2. Table of Bayes Factors (BF) along with corresponding probability,
sigma values (standard deviations away from the mean of a normal distribu-
tion), and the “Jeffreys’ scale” adapted from Trotta (2008).

BF Probability sigma Evidence strength
. 3 < 0.750 . 2.1 Inconclusive
3 0.750 2.1 Weak
12 0.923 2.7 Moderate
150 0.993 3.6 Strong

where we test the injection and retrieval of N-body simulated RV
signals.
TheKeplerianmodelswe fit to the data are defined by the following

parameters. For the binary we have 𝑃bin (the orbital period), 𝐾A (the
semi-amplitude of the primary star, caused by the secondary), 𝑒bin
(the binary’s orbital eccentricity), 𝜔bin (the argument of periastron)
and 𝜙bin (the starting phase of the orbit). We can calculate the time
of periastron passage from these parameters using 𝑇peri = 𝑡0 − (𝑃 ×
𝜙)/(2𝜋), where 𝑡0 is the chosen epoch. The number of planets in the
system is referred to as 𝑁p. Planetary parameters are defined like for
the binary, but written with a subscript p, e.g. 𝑃p for a planet’s orbital
period.
In addition, we fit for the systemic velocity 𝛾, and for a jitter term,

𝜎jit that rescales the uncertainties on the data. An increase in this
parameter is penalised when computing the likelihood. We can also
fit for offsets in data between instruments, but this not necessary for
the three systems we analyse here.

4.2 Prior distributions

We use priors similar to those laid out in Faria et al. (2020), but
adapted to circumbinary planets. As described in Sect. 3, we treat the
signal produced by the secondary star as a known object, taken to be
obviously present in the data and place tight priors on its parameters.
We only compute Bayesian evidence for any additional signals to the

inner binary. This is an advantage of using kima, both the orbit of the
binary and any additional signal are fit to the data simultaneously,
each posterior sample obtained has a corresponding binary fit. Table 3
shows the prior distributions utilised in our analysis.
The secondary’s orbital parameters prior distributions are based on

values from an initial fit. We take the mode of each binary parameter
and set to the prior to uniformly explore a range around that value.
That range is determined from fitting all of the binaries in our sample.
For instance, we explore ±0.01 day around the orbital period, and
±10 m s−1 around the semi-amplitude (Table 3). While these might
seem tight, the typical precision obtained on 𝑃bin and 𝐾A is 100×
less than the prior ranges we set (see Table 1). As such the binary
priors we chose are wide enough to enclose the true parameters and
their uncertainties.
To search for additional signals besides the binary (i.e. circumbi-

nary planets), we use a uniform distribution for 𝛾, 𝜙, 𝜔, and 𝑁p,
as there is no reason to favour any particular value within these
parameter spaces.
For planetary eccentricities, we utilise a Kumaraswamy distribu-

tion (Kumaraswamy 1980), using values for our shape parameters
as 𝛼 = 0.867 and 𝛽 = 3.03 as justified in Kipping (2013), closely
resembling the Beta distribution described there. A Kumaraswamy
distribution favours lower values but still permits the exploration of
higher eccentricities when the data allows.
The most sensitive parameter to sample when determining robust

detection limits is planetary semi-amplitudes 𝐾p. For this reason, we
use a transformed Log-Uniform (Jeffreys) prior. We cap the upper
range, choosing 100 m s−1 (any signal greater than this would be
obvious in our data). Thanks to various tests, we noticed that setting
a specific lower limit to 𝐾p influenced our ability to recover planets
and estimate robust detection limits. When we set the lower limit too
high (e.g. 1 m s−1) it excludes any signals < 1 m s−1 in strength that
could lie formally undetected in our data, but effectively ignoring
any contribution they may have on other signals and parameters. If
instead we set the limit too low (e.g. 0.01 m s−1), the sampler does

MNRAS 000, 1–13 (2021)



6 M. R. Standing et al.

Table 3. Prior distributions used in RVmodel for binary and planetary signals
in kima

Parameter Unit Prior distribution
Binary Planet

𝑁p 1 U (0, 3) or 1
𝑃 days U (𝑃bin ± 0.01) LU (4 × 𝑃bin, 1 × 103 or 104)
𝐾 ms−1 U (𝐾A ± 10) MLU (0.1, 100)
𝑒 U (𝑒bin ± 0.0005) K (0.867, 3.03)
𝜙 U (0, 2𝜋)
𝜔 U (0, 2𝜋)
𝜎jit ms−1 LU (0.001, 10 × rms)
𝛾 ms−1 U (𝑉𝑠𝑦𝑠 ± 100)

Notes: 𝑁p denotes the Number of Planetary Keplerian signals to fit to the
data. 𝑃bin and 𝑒bin denote the Period and eccentricity of the binary respec-
tively. 𝐾A denotes the semi-amplitude of the primary star, caused by the
secondary. U denotes a uniform prior with an upper and lower limit, LU
is a log-uniform (Jeffreys) prior with upper and lower limits, MLU is a
modified log-uniform prior with a knee and upper limit, and K is a Ku-
maraswamy prior (Kumaraswamy 1980) which takes two shape parameters.

not explore the higher 𝐾p sufficiently (since they become relatively
less likely). This can bias the detection limit to lower 𝐾p due to low
number statistics in the posterior, producing over-confident detection
limits.
Instead of setting a lower value we insert a knee, to give less

priority to signals below a set value. Gregory (2005) advises using
a knee at 1 m s−1, which was 1/10 of their typical RV uncertainty.
As our survey utilises RV data from both SOPHIE, HARPS and
ESPRESSO, our uncertainties approach 1 m s−1, we set our knee to
0.1 m s−1. For values of 0 < 𝐾p < 0.1 m s−1 the distribution acts
as a uniform prior, whereas for 𝐾p ≥ 0.1 m s−1 the priors follow the
usual Jeffreys prior (see Gregory 2005).
For all other parameters we employ Log-Uniform (Jeffreys) priors

since the range of values can span several orders of magnitudes. This
goes for 𝜎jit and 𝑃p.
The lower limit for the 𝑃p prior is set to 4 × 𝑃bin, following the

instability region (see Sect. 3). This is a slightly conservative estimate
for the instability region. For completeness, we explored the effect
of placing a lower limit at 𝑃p < 𝑃bin. Results were similar, with the
only effect being that posterior samples were dispersed over a larger
parameter space resulting in a coarser posterior.
We place the upper limit at 𝑃p = 1 × 103 day, roughly the time-

span of our longest observed systems: J0310-31. For simplicity and
to allow for a fair comparison, this limit is used for all three systems.
We increase the maximum limit to 2 × 104 day to generate detection
limits, as described in Sect. 4.3, and witness how the detectable semi-
amplitude increaseswith increasing orbital period after exceeding the
time-span of the data. When seeking planetary candidates, we prefer
using a maximum period of 1 × 103 day, which saves computational
power and ensures a finer sampling of the posterior. The presence
of a planetary signal with 𝑃p > 1 × 103 day in our data would be
identifiable as an over-density of posterior samples at the upper limit
of this prior. In which case we adjust this limit as required. The limit
on 𝑃p will extended as we accumulate more data.

4.3 Detection limit method

A unique feature of a diffusive nested sampler such as kima is that
when forced to explore higher 𝑁p than is formally detected, the
sampler will produce a map of all signals that are compatible with
the data. Since those proposed signals remain formally undetected,
the posterior naturally produces a detection threshold. In our case

this is made simpler by kima’s known objectmode (see Sect. 3), and
the fact that no planets have been detected in those three systems thus
far. We describe in Sect. 5.3 how we calculate a detection limit when
a planetary signal is already present in the data.
Later, we compare our results to a more traditional insertion-

recovery test, the method of choice to assess detectability and mea-
sure occurrence rates in radial-velocities surveys (Cumming et al.
2008; Konacki et al. 2009; Bonfils et al. 2013; Martin et al. 2019;
Rosenthal et al. 2021; Sabotta et al. 2021).
Using a diffusive nested sampler like kima also provides immedi-

ate advantages over insertion-recovery test. kima samples all orbital
parameters in a fine manner. Particularly, this means that all orbital
phases, all eccentricities and all periastra are sampled when typically
only a small number of phases are tested, and that eccentricities are
nearly always forced to zero. Detection limits obtained with kima
marginalise over more orbital parameters than is computationally
feasible with insertion-recovery tests, and kima assumes Keplerian
signals, rather than sinusoidals (see next section).
To create a detection limit, we run kima with priors as in Table 3

except that we fix 𝑁p = 1. kimamarginalises over all allowed param-
eter space, searching for any possible Keplerian signals producing a
reasonable likelihood, in the process ruling out Keplerians that would
otherwise have been detected.
A key to producing a robust detection limit is to produce a well

sampled posterior. For each system we compute three runs, ensuring
> 20, 000 samples are obtained in each. To gather consistent results
we set the number of saves in kima to 200, 000. The resulting (𝐾p, 𝑃p)
posterior’s density is plotted in Figures 2 and 3 as a greyscale hexbin,
with the detection limit being the top envelope.
To compute the detection limit, we separate the posterior in log-

spaced bins in 𝑃p, andwithin each bin we evaluate themaximum 99th
percentile of the 𝐾p distribution. This is done with the caveat that
≥ 2 posterior samples must lie above the chosen sample in a given
bin. We do this to prevent the detection limit from being affected by
small number statistics in individual bins. We calculate a detection
limit for each of the three runs we perform on each system, which
we show with faded blue lines in Figures 2 and 3. We also draw the
detection limit obtained when combining all posterior samples from
the three runs into a single sample, with a solid blue line. Proceeding
this way allows us to produce a mean detection limit and to obtain a
visual estimate of the uncertainty of that limit for each bin. Overall,
all runs are compatible with one another. We stop computing the
detection limit for all 𝑃p exceeding the first 𝑃p bin where the number
of samples in the top 10% of 𝐾p prior is larger than three, which is
where the posterior is affected by the upper limit set for the 𝑃p prior.

4.4 Injection and Recovery Tests

The seminal (single-star) radial-velocity surveys of Cumming et al.
(2008); Mayor et al. (2011); Howard et al. (2010) used injection
and recovery methods as a means of determining injection limits.
First, all known planets are removed from the data. Then a sinusoid
of varying amplitude, period and phase is used to model a putative
exoplanet, and applied to the data. Following, that, a periodogram
of the data (typically a Generalised Lomb-Scargle) is computed. If
it produces a peak below a certain false alarm probability (typically
< 1%) near the injected period, the simulated planet is considered
“detected”. By reproducing this procedure over a grid of 𝑃p and 𝐾p
inserted signal, it is possible find out for which values the planet
is no-longer detectable. Martin et al. (2019) followed this approach
for the CORALIE BEBOP survey, with one key difference that the
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Figure 2. Hexbin plot denoting the density of posterior samples obtained from three separate kima runs on J0310-31 with 𝑁p fixed = 1, as a grayscale. Faded
blue lines show detection limits calculated from each individual run on the system as described in the text. The solid blue line shows the detection limit calculated
from all posterior samples combined. Coloured symbols indicate the Bayes factor results of injection/recovery tests and correspond to the colour bar on the
right. Circles are for injected static Keplerian sinusoidal signals, whereas triangles are for N-body simulated injected signals. The Keplerian and N-body signals
are injected at the same orbital periods but are represented slightly offset horizontally here for visual clarity. The faded red dashed lines show masses of solar
system planets for comparison.

planet signal was injected to a radial velocity data set where the
binary signal had already been removed.
Whilst this traditional approach may appear similar to ours, in

practice they are distinct. When we use our Bayesian approach with
kima to produce detection limits we answer the question "what is
compatible with the data?", whereas with an insertion-recovery test,
we ascertain "can this specific signal be found?".
Here we create injection-retrieval tests for our three targets. There

are two purposes of this. First, we investigate compatibility between
our Bayesian kima-derived limit and the more traditional approach
of injecting static Keplerian signals. Second, we follow the approach
ofMartin et al. (2019) to inject not just static sinusoids but an N-body
derived signal using rebound, including all dynamical interactions
between the planet and binary, to test the validity of the previous
step.
We add one circumbinary planet signal to the original data, and

do so for a number of planetary semi-amplitudes 𝐾p and orbital
periods 𝑃p. kima is then used to recover any Keplerian signals in
the modified data-set with the resulting Bayes factors providing a
measure of signal recovery success.
The choice of 𝐾p and 𝑃p at which we inject simulated signals is

informed by the data itself. For 𝐾p, values are chosen as multiples of
the residual RMS of each system. Values used can be found for each
system in Tables A1-A4.
For 𝑃p there are three periods we test for all three targets. The first

is 5.9×𝑃bin, which is similar to known circumbinary systems (Martin

2018) and slightly offset from the often unstable 6:1 mean motion
resonance (Quarles et al. 2018). We also test 12 × 𝑃bin and 486 days
(365× 4/3, to avoid but be close to the 1 yr alias). In some cases, we
also simulate specific orbital periods, coinciding with features of the
detection limits described in Sect. 4.3.
Each inserted signal has an eccentricity 𝑒p = 0.01 (small but

non-zero), and argument of periastron 𝜔p = 0.
Then, we run kima as described previously, using priors as in

Table 3, including a uniform prior on 𝑁p = 𝑈 (0, 3), reproducing
how we conduct an open search of the system. Bayes factors are
computed from each run and results are plotted in Figures 2 and 3 as
coloured points. Their values can also be found in Tables A1 to A4.
The binary and putative circumbinary planets for the three cho-

sen periods are then simulated for the J0310-31 system using the
rebound N-body code (Rein & Liu 2012), with the IAS15 inte-
grator (Everhart 1985; Rein & Spiegel 2015). First we remove the
best fit binary model from J0310-31’s observed radial-velocity mea-
surements, producing residuals. Then we use rebound to simulate a
radial-velocity model of the binary and putative planet at each epoch
of observation. We add this model to the residuals. Doing this pre-
serves the scatter, uncertainties and observational cadence obtained
in reality. kima is ran once again on each N-body simulated dataset,
and Bayes factors computed and compared to those resulting from
the injected static Keplerian signals.We discuss the result of this test
in Sect. 5.3. All Bayes factor values are plotted in Fig. 2 as coloured
triangles offset to the right, and can also be found in table A2.
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b)a)

Figure 3. Same as in figure 2 but for three separate kima runs on J1540-09 (a), and J1928-38 (b) with 𝑁p fixed = 1. All injected signals here are static Keplerian
sinusoidal.

5 RESULTS AND DISCUSSION

We begin by providing updated parameters on the three binary sys-
tems investigated. Then, we discuss the calculated detection limits for
each binary system, along with how they compare to our Keplerian
injection and recovery tests. Following this we discuss and present
our results from the comparison between Keplerian and N-body
simulation injection and recovery. We discuss how nested sampling
provides more robust detection limits. Particularly, we describe how
traditional insertion-recovery exercises over-estimate their ability to
retrieve planets by assuming zero eccentricity.

5.1 Updated Binary Parameters

Table 1 shows updated orbital parameters from our most recent data
for the systems investigated in this work.We provide 1𝜎 uncertainties
for each parameter, in parenthesis. Uncertainties are symmetric and
varying only in the second significant figure, where the largest of the
two values were taken. 𝜎jit is the only parameter that demonstrated
an asymmetric distribution (tending to zero), where we consequently
provide asymmetric uncertainties. Values agree with Martin et al.
(2019) to within 1 − 2𝜎 for all parameters other than 𝜔bin and cor-
respondingly 𝑇peri. Improvements in parameter precision of around
70% are be attributed to the increased number of high-precision
measurements acquired using the HARPS spectrograph.

5.2 Detection limit results

Figures 2 and 3 show the results of our detection limit analysis
for EBLM J0310-31, J1540-09, and J1928-39 respectively. The
greyscale hexbins show the density of posterior samples from all
kima runs on the targets. The faded blue lines are the calculated de-
tection limit from three individual run containing 200, 000 saves, and
> 20, 000 posterior samples. The solid blue line is calculated from
all posterior samples combined. Coloured dots represent the results
for each individual injection and recovery test as outlined in Sect. 4.4.
The colour of these points represent the Bayes Factor (BF) discussed
in Sect. 3, and measure the probability of recovery for the injected
Keplerian signals. Every sample in the posterior used to compute de-
tection limits involves a free fit of the binary as a well as a proposed
planetary signal, producing a detection limit that marginalises over
the binary parameters, an essential element for BEBOP.

From these plots, it is evident that different runs of kima produce
consistent detection limits with one another. The only inconsistencies
are due to a low number of samples within a particular bin, a situation
easily resolved by increasing the number of saved posterior samples.
We also note that the posterior below the limit is uniformly sampled
across parameter space, an indication of the reliability of the method
we followed.
The detection limit plots also show many features that are regu-

larly seen in detection limits for exoplanets using the radial-velocity
method. For all three systems we see an increased density of pos-
terior samples, and a consequently raised detection limit near 0.5
and 1 yr orbital periods, corresponding to yearly aliases, caused by
seasonal gaps in observations. In addition, we observe that our de-
tection capability is broadly horizontal for 𝑃p below the timespan
of our data. Then, it increases linearly in log until it hits the upper
limit of the 𝑃p prior. For J0310-31, we reach a mean 𝐾p detection
of 1.49 m s−1, for J1540-09, we get 2.06 m s−1, and 2.15 m s−1 for
J1928-38. For these three systems, we outperform any produced by
the TATOOINE survey (Konacki et al. 2010) despite our systems
being fainter by an average four magnitudes, validating our choice to
monitor single-lined binaries to seek circumbinary exoplanets. These
detection limits can be translated into masses, which are shown by
additional lines in Figures 2 and 3. Typically, we are sensitive to plan-
ets with masses between Neptune’s and Saturn’s for orbital periods
between 50 to 1000 days respectively, a milestone.
Injection-recovery test results are consistent with the detection

limits obtained with kima at almost all orbital periods tested on each
system. The largest deviation can be seen in Fig. 2 for J0310-31 at
74.59 d. Where the detection limit is approximately 2 m s−1 lower
than the recovered injected signal strength. This is the only location
where such a deviation is observed.
Figure 4 is an example of how the value of the Bayes Factor

evolves with the number of posterior samples during a kima run.
Our example is J0310-31 data, with an injected planetary signal with
𝑃p = 227.57 d, and 𝐾p = 3.16 m s−1. The uncertainty on the Bayes
Factor (blue area) is estimated assuming a multinomial distribution.
We use this figure as an indicator for fit convergence, i.e once the
line asymptotes on a BF value the fit has converged.
We also check how often we recover the Keplerian signal we

insert. We find that orbital parameters of injected signals detected
with BF > 35 are typically recovered to within 3𝜎 or 10% of their
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Figure 4. Plot of Bayes Factor (BF) vs number of posterior samples from a
kima run with a 227.57 d, 3.16 m s−1 injected signal in J0310-31. In blue,
we show the cumulative Bayes factor as a function of the number of posterior
samples. The blue line shows the BF values, and and their running uncertainty
are drawn as the shaded blue region. We add one red dot after 10 𝑁p = 0
samples to show the BF value then, with their uncertainties. The horizontal
red line shows the final BF value calculated with all posterior samples.

Figure 5. Hexbin plot of posterior samples for J0310-31 as in figure 2. The
coloured lines here indicate the detection limits calculated with the posterior
samples split into five even phase bins with the black line representing the
phase bin containing 𝜙 = 0.

original values, except those with periods close to one or half a year.
This is true for injected Keplerian signals, as well as the rebound
injected signals.
The chosen phase of the injected Keplerian signal could in prin-

ciple cause the discrepancy between the methods seen at 𝑃p =

74.59 day for J0310-31. Figure 5 shows the same posterior sam-
ples as those in Fig. 2 but split into five different phase bins, with a
detection limit calculated for each. Doing this is simple with kima,
we simply select all posterior sample within a specific phase bin and
reproduce the method in Sect 4.3. As can be seen in the figure, vary-
ing phase has little effect on the detection limit, which is the case for
each target investigated. This consistency seen between phase bins
further demonstrates how robust and consistent our detection lim-
its are. This also highlights the usefulness and importance of using
nested samplers such as kima to compute detectability curves.

5.3 Rebound Simulation Results Comparison

Results from systems simulated usingrebound are shown inFig. 2, as
coloured triangles offset to the right from similar, but Keplerian-only
simulations. The only evident deviation between the two simulations

Figure 6. Plot of residual radial velocity amplitude as a function of time,
after removing a Keplerian binary signal from N-body simulated J0310-31
radial-velocity dataset. Simulated data are computed with rebound including
the binary and an orbiting circumbinary planet with 𝑃p = 74.59 d and
𝐾p = 6.32 m s−1. To reveal the Newtonian perturbation, we plot one point
for each night over the entire duration of our dataset. The blue line depicts
1.3× RMS within bins 45 day wide. We use this line as a visual guide to
the amplitude of the effect. The shaded orange region illustrates the RMS
scatter obtained on the data we collected on J0310-31. The bow-tie shape of
the residuals is caused by apsidal motion of the binary ( ¤𝜔bin), caused by the
planet, which a Keplerian model does not include.

occurs at the shortest period investigated (74.59 day) here the Bayes
factor for the rebound simulated data is higher for 𝐾p = 3.95 m s−1.
The agreement in those results (see TableA2) confirms that assum-

ing Keplerian functions has no obvious detriment to circumbinary
planet detection within our current data just like for any planetary
system so far, and as we had already seen in Martin et al. (2019) with
more imprecise CORALIE data. This simply means that assuming a
static Keplerian signal is sufficient for discovery. However, dynami-
cal fits are known to be useful to constrain the physical and orbital
parameters of circumstellar planetary systems (e.g. GJ 876; Correia
et al. 2010), and would likely be the case for circumbinary systems,
as they have been for HD 202206 (Correia et al. 2005; Couetdic et al.
2010), a system comparable to a circumbinary configuration.
To better understand the non-Keplerian signal, we visualise the

amplitude of the Newtonian interactions in Fig. 6. We use rebound
to simulate nightly RV data, for 𝐾p = 6.32 m s−1 at 𝑃p = 74.59 days
(the shortest period and highest mass planetary signal simulated in
this work, producing the largest Newtonian perturbation), over the
timespan of our data on J0310-31. Figure 6 depicts the residuals after
fitting and removing the Keplerian binary and planetary signals from
the N-body simulated dataset. The residuals show that N-bodymodel
diverges from the Keplerian model due to apsidal precession ( ¤𝜔bin).
However, for the timespan of our current data that divergence remains
comparable to the residuals’ RMS. Assuming Newtonian effects are
non-negligible will likely cease to be valid for longer time-series.

5.4 Post-Newtonian Effects

Radial velocity measurements of binary stars are also affected by
weaker effects, such as tidal distortion, gravitational redshift, trans-
verseDoppler and light time travel effects (Zucker&Alexander 2007;
Konacki et al. 2010; Arras et al. 2012; Sybilski et al. 2013). kima
assumes purely Keplerian functions, ignoring these effects, here we
explore what impact this may have on our fit, and particularly on our
ability to retrieve planets.
We calculate the magnitude of tidal distortion on our RVmeasure-
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ments as inArras et al. (2012), and find their amplitude is< 0.7m s−1
for the three systemswe investigate in this paper, an insignificant con-
tribution to the observed RV scatter. We do note however, that for the
shortest period binaries in the BEBOP survey, the magnitude of this
effect becomes significant (with respect to the RMS of the systems)
and should be accounted for in any further analysis.
Computing equations from Zucker & Alexander (2007) for the

parameters of each of our three systems, we find the magnitude of
transverse Doppler effects to be < 2.2 m s−1, and the peak to peak
variation < 1.6 m s−1. Similarly, we find the magnitude and peak
to peak variation of light time travel effects is < 2.7 m s−1. The
only relativistic effect found to be greater than the RMS on these
systems is that of gravitational redshift, with a maximum amplitude
of 13.9 m s−1 but a peak to peak variation of < 6.5 m s−1.
To better asses the impact of these effects on our work, we simulate

a purelyKeplerian binary signal for J0310-31 using the same cadence
as our observations were obtained in, and add these post-Newtonian
effects. We then fit the data using kima. Figure 7a shows residuals
after removing the best fit Keplerian model of the binary. The resid-
uals have an amplitude of ≈ 0.1 m s−1 and a signal phasing with the
binary (as expected). This shows that most of the post-Newtonian
effects are absorbed by the Keplerian fit.
We now use kima once more, to "search for a planet" in these

residuals, in order to study how the algorithm behaves in the presence
of additional coherent signals. The posterior of that fit is plotted in
figure 7b, and demonstrates the periodicity of these remaining signals
at harmonic periods of the binary with low semi-amplitude.
Individually these effects boast significant amplitudes, but as their

functional forms resemble, and phase, with a Keplerian, only small
differences are produced: Our simulations show that the majority
of the post-Newtonian signals are absorbed into our fit. They are
absorbed primarily into the systemic velocity, and lead to a small
underestimation of the secondary’s semi-amplitude. For J0310-31,
ignoring post-Newtonian effects in this experiment creates an under-
estimated 𝐾A ≈ 4 m s−1, corresponding to a 0.01% deviation. We
conclude that these effects do not affect the detection limits of this
paper greatly, and can be safely ignored for our purposes.

5.5 Detection limits in the presence of planetary signals

Detection limits thus far are all generated from our current data on
systems purposefully chosen with no candidate planetary signals.
The ultimate goal of the BEBOP survey is to detect RV signals of
circumbinary planets in our data. Once a system is found to have a
planetary signal, a detection limit is required to rule out the presence
of additional companions above our calculated mass limit. To this
end, we calculate the detection limit for J0310-31 with our N-body
simulated data-set containing an injected 4.74m s−1, 486 d signal.
A signal of this strength is easily detected in the data (see Tab. A2
for its Bayes factor value). We identify the injected signal as in
Sect. 4.4, with 𝑁p varying uniformly from 0 to 3, as is standard for
the survey. Figure 8 shows the resulting posterior samples, along
with a green dot illustrating the semi-amplitude and orbital period of
the injected signal. To obtain a recovered detection limit we subtract
the Keplerian signal corresponding to the posterior model with the
highest likelihood from the simulated data. Once subtracted, we run
kima again as in Sect. 4.3 and calculate the red recovered detection
limit from the resulting posterior samples. The blue line seen in Fig. 8
is taken from Fig. 2 for reference, and the recovered red line closely
resembles the original blue detection limit. We note that while this
approach is not strictly Bayesian, it recovers the correct detection

a)

b)

Figure 7. a) Phased RV residuals from the best fit model of J0310-31 sim-
ulated binary and additional post-Newtonian effects only. Residuals have an
RMS = 0.07 m s−1. b) Semi-amplitude vs period plot of posterior samples
from a kima run on the residuals seen in plot a). Posterior samples are located
at half, third and a quarter of J0310-31’s binary orbital period.

Figure 8.Hexbin plot of posterior samples obtained from three separate kima
runs on J0310-31 with an additional 486d signal located at the green point,
with 𝑁p free between 0 and 3. The blue line shows the detection limit as
seen in Fig. 2. Faded red lines show detection limits calculated from each
individual run on the system after having removed the most likely 𝑁 = 1
signal from the data. The solid red combines all these posterior samples
together.

limit, and is expected to affect only a few systems (with planets)
within the survey.

5.6 The Dangers of Assuming Circular Orbits

Thanks to our use of kima to produce detection limits we are able
to explore the effect of assuming 𝑒p = 0 on detection limits for
exoplanet radial-velocity surveys.
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Most often detection limits are produced with multiple insertion-
recovery tests. To increase efficiency, and remain computationally
tractable, a number of assumptions are made. Circular orbits are
generally assumed in the inserted signals used to calculate detection
limits because this removes two dimensions: 𝑒p and 𝜔p (e.g. Cum-
ming et al. 2008; Zechmeister et al. 2009; Howard et al. 2010; Bonfils
et al. 2011; Mayor et al. 2011; Bonfils et al. 2013; Martin et al. 2019;
Sabotta et al. 2021)2. In addition, a short number of discrete planet
phases 𝜙p are usually sampled (e.g. 10; Martin et al. 2019 or 12;
Zechmeister et al. 2009; Bonfils et al. 2011, 2013).
Commonly when orbits are assumed circular, investigators invoke

Endl et al. (2002) as a justification. Endl et al. (2002) investigated
the effect of eccentricity on their detection limit for HR 4979, using
insertion and recovery. They test five planetary orbital periods 𝑃p,
each with one corresponding semi-amplitude 𝐾p, and vary 𝑒p over 9
values and 𝜔p over 4, creating 180 (𝑃p, 𝐾p, 𝑒p, 𝜔p) signals3. They
only test one phase angle 𝜙p. At the time, producing these simulations
represented a significant computational effort, however nowadays this
appears as a rather coarse grid. From this exercise, Endl et al. (2002)
conclude that eccentricity can affect detection limit calculations, but
find that their detection limits assuming 𝑒p = 0 are valid for 𝑃p '
365 days, so long as the simulated Keplerian has 𝑒p . 0.5. More
recently Cumming &Dragomir (2010) also concluded that assuming
circular orbits provides a good agreement with upper semi-amplitude
limits for 𝑒p . 0.5 when recovering signals with a periodogram.
These particular results have been invoked to justify the assumption
of circular orbits ever since.
Interestingly, for 𝑃p ≤ 365 days (Endl et al. 2002) find their detec-

tion limit is only valid if the inserted signal has 𝑒 < 0.3. However this
recommendation has not been followed, and assuming circular orbits
for short period is prevalent throughout the literature. From our anal-
ysis, we can show how eccentricity affects the detection limit over
the entire period range. Our kima runs contain > 70, 000 posterior
samples that naturally explore all orbital parameters.
Figure 9 shows the same detection limit for EBLM J0310-31,

as calculated before, in blue using all posterior samples. Alongside
we plot a red detection limit produced in exactly the same way,
except using only samples with 𝑒p < 0.1, and green with 𝑒p < 0.5
(the limit stated by Endl et al. 2002; Cumming & Dragomir 2010).
For the three systems explored in this work, the red detection limit
is systematically lower, by an average of 24.7% or ∼ 1 m s−1 for
periods < 1000 day. The green detection limit is also systematically
lower by an average of 13.3% or ∼ 0.6 m s−1 for the same periods.
Figure 10 demonstrates how the two lower detection limits differ
from the original for J0310-31 with period. We note an increase
in divergence from the original detection limit at 𝑃p exceeding the
timespan of the data (> 1000 day here), to a maximum of 39.9%
at ∼ 4000 days. This maximum difference corresponds to 3.5 m s−1
(∼ 120M⊕)! Our results are consistent withWittenmyer et al. (2006)
who are able to exclude planets with masses & 2 MJup by assuming
𝑒p = 0, and masses & 4 MJup if instead they assume 𝑒p = 0.6 at a
given 𝑃p ∼ 4300 days, a 50% difference, comparable to our 40%.
Here we remind the reader that we assume a Kumaraswamy dis-

tribution as our prior on 𝑒p, which already favours low 𝑒p, as is seen
in observations (Kipping 2013). Even though circumbinary planets
discovered thus far are known to have relatively low eccentricities
(𝑒 < 0.15 Martin 2018), we strongly caution against assuming circu-

2 Circularity is assumed for recovery since most use a periodogram. With
kima the full Keplerian is used for exploration and recovery
3 strangely, Endl et al. (2002) only mention 110 signals

Figure 9.Hexbin plot of posterior samples and blue detection limit for J0310-
31 as in figure 2. The Red and green lines here indicate the same limit
calculated from posterior samples with eccentricities < 0.1 and < 0.5 re-
spectively. Horizontal coloured lines show the mean semi-amplitude of the
three coloured detection-limits out to 1000 days.

Figure 10. Plot of the percentage difference between detection limits cal-
culated with all posterior samples, and posterior samples with eccentricities
< 0.1 and < 0.5 in red and green respectively for J0310-31 from figure 9.
Solid coloured lines represent a running mean taken on the faded coloured
lines.

lar orbits when calculating detection limits in any survey, particularly
at long orbital periods. Fixing 𝑒p = 0 when calculating detection lim-
its over-estimates the success of the program by a significant amount
(up to 120 M⊕ or 0.4 MJup in our case).
This exercise demonstrates the superiority of a diffusive nested

sampler in establishing robust detection limits, which are crucial to
infer the sensitivity of radial-velocity surveys, and consequently, the
occurrence rates of exoplanets.

6 CONCLUSIONS

We analyse high-precision radial-velocities obtained as part of a large
scale, ongoing, radial-velocity survey that seeks circumbinary plan-
ets using radial-velocities obtained with HARPS, ESPRESSO and
SOPHIE, in both hemispheres, on single-lined eclipsing binaries.
This survey is called BEBOP (Binaries Escorted By Orbiting Plan-
ets). We then detail an observing and Bayesian analysis protocol and
test it on data collected for three single-lined binaries within the sur-
vey. Our analysis shows for the first time, a repeated ability to detect
circumbinary planets with masses between Neptune’s and Saturn’s,
for orbital periods within 1000 days with as few as 25 spectra in

MNRAS 000, 1–13 (2021)
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the span of a year. Figure 11 displays a mass vs period plot of the
detection limits from this work (blue) along with confirmed exoplan-
ets (grey circles; NASA exoplanet archive4), transiting circumbinary
planets (magenta diamonds), and Solar System planets for compari-
son. This figure demonstrates our ability to detect sub-Saturn mass
circumbinary planets at periods up to 1000 days. Our data are able to
detect a large fraction of currently known systems. We note though
that many circumbinary planet detections made with eclipse timing
variations are upper limits only.
We also present a method to compute detection limits on radial-

velocity data by using a diffusive nested sampler, without the need to
assume circular orbits as is the norm. We then show that this method
is superior than the usual injection-recovery tests. Assuming circular
orbits when determining detection limits generates over-optimistic
detection limits by an average of ∼ 1 m s−1 (24.7%) at periods
< 1000 day, and up to 120 M⊕ at periods > 1000 day. We therefore
strongly caution against assuming circular orbits when calculating
detection limits, and suggest kima as a way for exoplanet surveys
in general to extract accurate sensitivity limits and occurrence rates
with fewer assumptions.
Thanks to the protocols and tests described in this paper, the BE-

BOP survey is now ready to produce circumbinary planet candidates
following Bayesian evidence, and able to compute occurrence rates
that can be compared to those already established from photometric
methods (Armstrong et al. 2014; Martin & Triaud 2014). Producing
occurrence rates and upper limits on the occurrence of circumbi-
nary planets will be done by simply combining all kima produced
detection limits.
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Figure 11. Mass vs period plot showing the three detection limits from this work as blue lines in comparison to confirmed exoplanets as grey circles, and
transiting circumbinary planets as pink diamonds. Solar System planets are depicted as yellow dots for reference. Circumbinary planets in order of increasing
period; Kepler-47 b, Kepler-413 b, TOI-1338 b, Kepler-38 b, Kepler-35 b, Kepler-64 b, Kepler-1661 b, Kepler-47 d, TIC-1729 b, Kepler-16 b, Kepler-453 b,
Kepler-34 b, Kepler-47 c, Kepler-1647 b. Arrows illustrate planets with upper mass limits with the symbol placed to give a 2𝜎 upper limit.
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APPENDIX A: INJECTION AND RECOVERY RESULTS
AND RADIAL VELOCITY DATA

Here we present the results of our insertion/recovery tests for each
of our three target systems in tables A1 to A4, Numbers in the tables
are Bayes factors calculated from our kima runs. We also present our
RV data on the systems in tables A5 to A7.
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Table A1. J0310-31 Keplerian insertion and recovery results

Semi-amplitudes Periods
5.9 × 𝑃bin = 74.59d 12 × 𝑃bin = 151.71d 18 × 𝑃bin = 227.57d 30 × 𝑃bin = 379.28d 486.67d 400 × 𝑃bin = 5057.12d

10 × RMS = 31.6m s−1 - - - - - inf
3 × RMS = 9.48m s−1 - - - inf - 8.3
2 × RMS = 6.32m s−1 inf - - - - -
1.5 × RMS = 4.74m s−1 39.7 inf - 25.7 5946 0.8
1.25 × RMS = 3.95m s−1 3.2 5860 984.83 - 409.2 -
RMS = 3.16m s−1 - 1070.7 120.6 0.9 44.7 -
0.75 × RMS = 2.37m s−1 - 63.7 16.4 - 7.6 -
0.5 × RMS = 1.58m s−1 - 5.8 2.5 - - -

Table A2. J0310-31 Rebound simulated N-body insertion and recovery results

Semi-amplitudes Periods
5.9 × 𝑃bin = 74.59d 12 × 𝑃bin = 151.71d 486.67d

2 × RMS = 6.32m s−1 inf - -
1.5 × RMS = 4.74m s−1 980 inf 1378.8
1.25 × RMS = 3.95m s−1 60.5 inf 264.5
RMS = 3.16m s−1 5.2 7020 41.5
0.75 × RMS = 2.37m s−1 - 217.4 7
0.5 × RMS = 1.58m s−1 - 11.3 -

Table A3. J1540-09 Keplerian insertion and recovery results

Semi-amplitudes Periods
5.9 × 𝑃bin = 155.4d 12 × 𝑃bin = 316.06d 486.67d 999d

3 × RMS = 11.25m s−1 - inf - -
2.5 × RMS = 9.38m s−1 - inf - -
2 × RMS = 7.5m s−1 inf 637.3 inf inf
1.5 × RMS = 5.63m s−1 2811.7 14.5 1276.8 291
1.25 × RMS = 4.69m s−1 464.5 3.6 223.2 29.5
RMS = 3.75m s−1 72.6 - 23.2 3.7
0.75 × RMS = 2.81m s−1 8.4 - 3.6 -
0.5 × RMS = 1.88m s−1 1.5 - 0.9 0.7

Table A4. J1928-38 Keplerian insertion and recovery results

Semi-amplitudes Periods
5.1 × 𝑃bin = 118.95d 5.9 × 𝑃bin = 137.61d 8 × 𝑃bin = 186.58d 12 × 𝑃bin = 279.87d 486.67d

5 × RMS = 14.8m s−1 - - - - inf
4 × RMS = 11.84m s−1 - inf - inf inf
3 × RMS = 8.88m s−1 2919 1362.6 6413 inf inf
2 × RMS = 5.92m s−1 49.8 21 47.8 58.9 138.4
1.5 × RMS = 4.44m s−1 - 2.4 - 2.9 14.3
1.25 × RMS = 3.7m s−1 2.3 - 2.9 - -
RMS = 2.96m s−1 - - - - 2.4
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Table A5. Journal of Observations containing our HARPS data for J0310-31. Dates are given in BJD - 2,400,000. 𝑉rad are the measured radial velocities with
their uncertainties 𝜎𝑉rad . FWHM is the Full With at Half Maximum of the Gaussian fitted to the cross correlation function, and contrast is its amplitude. bis.
span is the span of the bisector slope. Uncertainties on FWHM and bis. span are 2 × 𝜎𝑉rad .

BJD 𝑉rad 𝜎𝑉rad FWHM contrast bis. span
[km s−1] [km s−1] [km s−1] [km s−1]

57943.892368 35.63948 0.00168 10.93301 31.049 0.02153
57944.923580 24.07411 0.00170 10.95037 31.088 0.02859
57945.885900 8.58139 0.00176 10.92966 31.091 0.01777
57946.876879 -6.07696 0.00185 10.92368 31.127 0.02400
57948.928854 18.35127 0.00199 10.92909 31.150 0.02186
57949.874496 32.36601 0.00376 10.93177 31.081 0.00910
57951.890174 46.34736 0.00245 10.92515 31.176 0.02321
57952.924664 48.32340 0.00184 10.93519 31.078 0.02634
57953.919672 47.93648 0.00224 10.93547 31.070 0.03302
57955.935525 40.23726 0.00148 10.92350 31.114 0.02441
57956.937097 31.73699 0.00242 10.90176 31.215 0.02218
57958.914371 1.85626 0.00250 10.90546 31.207 0.02907
57959.923988 -7.18919 0.00185 10.91742 31.126 0.02583
57960.925502 6.01245 0.00218 10.90108 31.196 0.01583
57962.941783 36.84076 0.00240 10.91809 31.103 0.02995
57967.873028 44.11773 0.00509 10.91773 31.108 0.03909
57968.862759 38.22158 0.00196 10.93156 31.078 0.02316
57970.834614 14.43370 0.00201 10.93765 31.107 0.02358
57971.887207 -3.14864 0.00203 10.90942 31.205 0.02815
57972.859262 -5.30070 0.00212 10.91962 31.137 0.02385
57973.874664 11.99910 0.00246 10.95580 31.021 0.03180
57974.855492 28.50055 0.00207 10.94437 31.112 0.01107
57979.910020 46.38457 0.00172 10.92281 31.125 0.03514
57980.907132 42.15442 0.00189 10.90393 31.195 0.03216
57981.912450 34.81087 0.00166 10.91749 31.142 0.02222
57993.897684 40.01640 0.00175 10.89351 31.237 0.02857
57994.868121 31.71289 0.00204 10.90854 31.176 0.01557
57995.913932 17.82943 0.00210 10.96594 31.005 0.02541
57996.900885 0.89748 0.00326 10.95410 31.062 0.01592
57998.846013 5.86085 0.00207 10.93080 31.128 0.03219
58000.814335 36.31122 0.00184 10.93406 31.090 0.02512
58001.825348 43.67481 0.00173 10.93076 31.065 0.03359
58002.875888 47.45290 0.00195 10.90752 31.138 0.02670
58008.865205 12.69217 0.00302 10.91455 31.160 0.02339
58010.891199 -4.13140 0.00193 10.93348 31.103 0.02658
58011.853533 12.96220 0.00186 10.93126 31.120 0.02981
58012.842881 29.29996 0.00194 10.93123 31.138 0.02439
58013.836117 39.60231 0.00231 10.89094 31.251 0.03815
58021.844325 6.77414 0.00237 10.88521 31.277 0.02190
58022.865563 -6.90867 0.00248 10.90068 31.182 0.02454
58023.861648 0.85340 0.00259 10.87215 31.286 0.01533
58026.843370 42.13524 0.00420 10.85961 31.323 0.03642
58027.851246 46.66027 0.00274 10.96376 30.975 0.03885
58292.935003 45.19779 0.00188 10.85673 31.290 0.03447
58295.939322 46.50750 0.00153 10.87040 31.248 0.02880
58336.906794 23.28586 0.00177 10.85126 31.372 0.01926
58338.851019 -6.42041 0.00176 10.85513 31.308 0.02670
58354.838158 36.55513 0.00227 10.87155 31.222 0.02979
58405.803761 39.90978 0.00460 10.85632 31.338 0.02138
58453.710487 0.74084 0.00138 10.90947 31.141 0.02863
58488.633260 23.11336 0.00169 10.86625 31.319 0.03055
58506.584524 36.86690 0.00139 10.91340 31.117 0.02021
58515.547144 -3.39784 0.00178 10.93431 31.069 0.02643
58519.564335 39.72933 0.00178 10.90851 31.130 0.02260
58692.848790 -6.41913 0.00154 10.90509 31.272 0.03065
58701.837991 40.38147 0.00167 10.91534 31.217 0.02113
58707.811668 23.67250 0.00297 10.91707 31.212 0.02879
58723.756754 47.90169 0.00143 10.91435 31.183 0.02889
58727.806796 35.08783 0.00171 10.91437 31.193 0.02715
58753.740711 28.24276 0.00219 10.92187 31.189 0.02651
58762.749317 48.28098 0.00163 10.91574 31.195 0.03644
58784.717703 36.78734 0.00202 10.89169 31.348 0.01632
58834.649676 29.63072 0.00147 10.95468 31.105 0.02506
58846.646146 19.74657 0.00175 10.95264 31.044 0.02730
58850.565260 48.32348 0.00127 10.92443 31.170 0.03143
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Table A6. Journal of Observations containing our HARPS data for J1540-09. Columns are as in A5

BJD 𝑉rad 𝜎𝑉rad FWHM contrast bis. span
[km s−1] [km s−1] [km s−1] [km s−1]

57863.886017 -34.04435 0.00284 8.28287 34.515 0.03306
57865.839152 -43.91032 0.00232 8.29807 34.391 0.02892
57872.835002 -77.11478 0.00297 8.27285 34.583 0.02351
57875.857985 -74.41238 0.00535 8.29200 34.511 0.01455
57879.754279 -61.45253 0.00319 8.28987 34.441 0.03454
57923.573674 -73.41843 0.00409 8.25559 34.767 0.03070
57934.687091 -51.51693 0.00429 8.25721 34.747 0.03096
57942.695102 -33.38362 0.00351 8.30337 34.065 0.03405
57944.691282 -42.89582 0.00281 8.31499 34.146 0.02189
57945.660293 -49.29063 0.00272 8.30231 34.259 0.03662
57948.624456 -68.11507 0.00343 8.28781 34.553 0.01667
57951.646824 -76.94824 0.00745 8.26195 34.595 0.03799
57959.584739 -57.97578 0.00382 8.28518 34.608 0.03248
57964.618682 -36.33938 0.00429 8.31324 34.080 0.04210
57969.547587 -35.17730 0.00473 8.27743 34.448 0.04891
57979.581918 -76.95182 0.00272 8.29949 34.246 0.02375
57996.529560 -38.13035 0.00324 8.31348 34.277 0.04163
58001.510009 -69.13364 0.00302 8.30714 34.214 0.02582
58008.470052 -72.09597 0.02062 8.26838 34.398 0.07094
58012.493882 -56.95128 0.00442 8.28094 34.427 0.01261
58258.703952 -33.23617 0.00278 8.24429 34.880 0.03156
58272.646623 -69.65691 0.00254 8.25571 34.828 0.02267
58276.707794 -53.23456 0.00213 8.27952 34.650 0.02728
58278.649982 -44.46367 0.00270 8.26452 34.718 0.01897
58286.693559 -40.52268 0.00279 8.25444 34.814 0.04001
58291.571082 -70.64953 0.00291 8.26216 34.799 0.03911
58301.682725 -59.27470 0.00501 8.26292 34.601 0.04623
58334.515634 -32.95173 0.00224 8.26416 34.732 0.03756
58340.485380 -47.58266 0.00313 8.23341 34.979 0.02739
58356.492448 -49.72878 0.00241 8.25519 34.600 0.02249
58521.884427 -32.68384 0.00572 8.24942 34.789 0.03390
58548.884978 -34.78751 0.00269 8.27384 34.712 0.02978
58565.835269 -55.89578 0.00223 8.29513 34.526 0.02256
58584.849299 -77.25342 0.00212 8.30491 34.430 0.01920
58600.898483 -32.67798 0.00320 8.32099 34.343 0.03645
58611.764016 -76.90855 0.00584 8.28568 34.680 0.02539
58615.819016 -66.97010 0.00252 8.29986 34.518 0.01559
58644.693557 -56.58981 0.00235 8.29114 34.526 0.03632
58660.683192 -72.15472 0.00377 8.27641 34.651 0.03250
58673.679701 -44.66300 0.00441 8.27281 34.705 0.01648
58914.890985 -31.32791 0.00276 8.27327 34.612 0.03724
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Table A7. Journal of Observations containing our HARPS data for J1928-38. Columns are as in A5

BJD 𝑉rad 𝜎𝑉rad FWHM contrast bis. span
[km s−1] [km s−1] [km s−1] [km s−1]

58273.834134 32.80650 0.00217 7.04698 48.100 -0.00888
58278.843949 17.69958 0.00355 7.07692 47.503 -0.00764
58284.752885 -1.49688 0.00232 7.04283 48.268 -0.00407
58288.745112 9.82687 0.00190 7.04846 48.270 -0.00610
58292.729051 25.70995 0.00326 7.02329 48.428 0.00265
58293.708035 28.62785 0.00290 7.03782 47.844 0.00469
58311.790430 8.67845 0.00209 7.05597 47.813 -0.00506
58334.565596 6.49932 0.00184 7.05307 48.138 0.00278
58338.621368 23.08744 0.00361 7.03939 48.057 -0.00714
58346.585986 27.43032 0.00176 7.05339 48.206 -0.01117
58355.645102 -0.30616 0.00228 7.06381 47.595 -0.00554
58550.896768 30.15923 0.00242 7.07663 47.847 -0.00196
58556.881115 26.03178 0.00374 7.06599 48.034 0.00072
58556.901788 25.94663 0.00338 7.06541 48.122 -0.01728
58564.890277 -1.28170 0.00189 7.06720 47.828 -0.00538
58586.899133 -1.30374 0.00203 7.07108 47.947 -0.00910
58612.855107 1.20469 0.00577 7.07242 47.921 -0.01711
58637.829855 6.75596 0.00257 7.07361 47.829 -0.00782
58643.837284 29.35475 0.00212 7.09607 47.618 0.00213
58664.803891 21.81645 0.00247 7.11147 47.332 0.00270
58667.703897 30.57137 0.00231 7.08125 47.868 0.00740
58670.740859 32.53833 0.00203 7.07063 47.896 -0.00829
58700.663044 7.52499 0.00187 7.07861 47.860 -0.00283
58726.538304 -0.92379 0.00392 7.05509 47.966 -0.00253
58740.520279 32.68685 0.00267 7.06985 47.567 -0.01475
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