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Abstract—The use of microorganisms for the production 

of industrially important compounds and enzymes is 
becoming increasingly important. Eukaryotes have been less 
widely used than prokaryotes in biotechnology, because of the 
complexity of their genomic structure and biology. The 
Yeast2.0 project is an international effort to engineer the yeast 
Saccharomyces cerevisiae to make it easy to manipulate, and 
to generate random variants using a system called 
SCRaMbLE. SCRaMbLE relies on artificial evolution in vitro 
to identify useful variants, an approach which is time 
consuming and expensive. We developed an in silico simulator 
for the SCRaMbLE system, using an evolutionary computing 
approach, which can be used to investigate and optimize the 
fitness landscape of the system. We applied the system to the 
investigation of the fitness landscape of one of the S. 
saccharomyces chromosomes, and found that our results fitted 
well with those previously published. We then simulated 
directed evolution with or without manipulation of 
SCRaMbLE, and revealed that controlling the SCRaMbLE 
process could effectively impact directed evolution. Our 
simulator can be applied to the analysis of the fitness 
landscapes of any organism for which SCRaMbLE has been 
implemented. 

Keywords— SCRaMbLE, yeast, simulation, fitness 
landscape 

I. INTRODUCTION 
The Synthetic Yeast 2.0 (Sc2.0) project is an 

international effort aimed at engineering a eukaryotic 
genome, that of the Baker’s yeast Saccharomyces 
cerevisiae. The project involves eleven institutions from five 
countries. S. cerevisiae is widely recognized as a model 
organism, is generally regarded as safe, and hence has been 
studied in considerable detail and is extensively used in 
industry (Strathern, Jones and Broach, 1982).  It is therefore 
an ideal organism for the genome-scale engineering of a 
eukaryote (Giaever et al., 2002). The ultimate aim of Sc2.0 is 
to reconfigure the yeast genome in such a way that it is 
easier to understand and manipulate, using procedures 
including the deletion of all known genome destabilizing 
elements (transposons and sub-telomeric repeat regions); 
the insertion of symmetrical loxP recombination sites 
(loxPsym) immediately  downstream of all non-essential 
genes; conversion of rarely used stop codons, such as TAG, 
to the major stop codon TAA, to free up a codon; the 
watermarking of all protein coding sequences by 
synonymous base changes,  so that they can be identified as 
synthetic genes by PCR amplification; the removal of all 
tRNA genes; and the removal of the majority of the 250 
introns. 

The insertion of the loxPsym sites is of particular 
importance, since these sites become the locations of 
genome reshuffling upon the addition of Cre recombinase 
(Shen et al., 2016). This system is known as SCRaMbLE: 
Synthetic Chromosome Rearrangement and Modification 
by loxPsym-mediated Evolution. The loxPsym sites 
themselves are too short, at only 34 bp, to participate in 
homologous recombination, so the SCRaMbLE system is 
only induced by the addition of Cre recombinase 
(Dymond and Boeke, 2012) . When the SCRaMbLE 
system is induced, not all loxPsym sites will be activated. 
The stretch of DNA between two active loxPsym sites is 
referred to as a segment, and may include several ORFs. 

The ability to generate multiple variations from a wild-
type chromosome, via insertion, deletion, translocation, or 
inversion of existing genes, means that it is possible to 
produce thousands or millions of novel genomes. Most of 
these genomes will, of course, be non-functional, and the 
Sc2.0 project aims to use directed evolution to select 
colonies with desirable characteristics. On solid medium, a 
primary metric for fitness in vitro is colony size. Growth in 
liquid media can also be measured. Fitness in vitro is often 
measured as the ability to produce a substance at enhanced 
levels.  

Directed evolution can be an efficient approach to the 
identification of desired variants of a wild-type organism. 
However, by applying only directed evolution, many 
interesting and potentially useful genotypes will be missed. 
Further, directed evolution is a time-consuming and 
wasteful process, which cannot fully explore the genomic 
richness generated by the SCRaMbLE system.  

There is a large body of research on the interaction 
between evolutionary processes and the fitness landscape 
generated by individuals in a population (Kauffman and 
Levin, 1987; Earl and Deem, 2004; Pitzer and Affenzeller, 
2012; De Visser and Krug, 2014; Ueda, Takeuchi and 
Kaneko, 2017). Evolution has been shown to occur more 
efficiently—that is, more of the possible phenotypes are 
explored in a shorter time—upon a relatively smooth fitness 
landscape than on a jagged surface, in which the fitness of 
one individual is largely unrelated to that of an individual 
close in genotype (Kvitek and Sherlock, 2011). At present, 
this more theoretical view of the potential of the 
SCRaMbLE system is largely ignored, the assumption being 
that if enough recombinant chromosomes are generated, 
individuals with desired phenotypes can be identified via 
screening.  
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Computational modeling and analysis of the fitness 
landscape generated by the SCRaMbLE system offers the 
prospect of identifying system parameters which can 
produce a smooth fitness landscape, hence improving the 
efficiency of the directed evolution process, and of 
improving our understanding of the biology of an important 
model eukaryote. The stochastic nature of an evolutionary 
algorithm, combined with genome-wide data on mutations, 
means that multiple runs can explore different areas of the 
evolutionary landscape. 

In this paper we report the development of a 
computational model of the SCRaMbLE system, and the 
fitness landscape generated thereby. The model was 
parameterized using both genome-scale experimental 
mutant data and a computational yeast metabolic model. 
Each set of recombined chromosomes generated from a 
single chromosome by the SCRaMbLE system is 
considered as comprising a genetic landscape. Each newly 
generated chromosome has a genetic distance, D, from its 
parent and all other chromosomes in the population, and a 
fitness, f. By combining these two metrics, a fitness 
landscape can be constructed and explored. This model 
allows different configurations of a SCRaMbLEd 
chromosome to be explored.  

II. METHODS 
A. Algorithm 

Because of the extensive processing and modularization 
of yeast chromosomes, as described briefly above, it is 
reasonable to consider each chromosome as a linear vector 
of genes. We chose to simulate the synthesized right arm of 
Chromosome IX (synIXR), because it is relatively short 
(Shen et al., 2016), allowing detailed manual checking of 
the results, and because in vitro data from SCRaMbLE 
experiments is available for this chromosome, permitting 
comparison of simulation results with laboratory data. Each 
simulated SCRaMbLEd chromosome was considered to by 
hosted in a strain, equivalent to an agent in modelling terms.  

Although only three ORFs of synIXR are related to the 
metabolic model, affecting the validation of the fitness 
function, the accessible experimental data of synIXR 
SCRaMbLEing facilitated validation of the SCRaMbLE 
probability (Section Parameterisation). 

The simulated chromosome was initialized as a list of 
strings of 43 segments, reflecting the relative position of 
each segment in the targeted chromosome. Segments were 
separated by the loxPsym site immediately after every non-
essential ORF. The probablity of a Cre recombinase binding 
to a breakpoint is scrProb. A pseudo-random number 
generator was used to determine whether a Cre recombinase 
bound to a breakpoint.  

B. Distance metric 
The genetic distance between each pair of chromosomes 

in the population was calculated using the Levenshtein 
distance (Levenshtein, 1966). This distance metric measures 
the number of edits required to convert one string into 
another, using insertion, deletion, or substitution. The 
Levenshtein distance can be considered to be a measure of 
the similarity between evolved chromosomes.  

In order to determine which of the mutation operations 
are optimal at any point in the chromosome, we need a cost 

value for each modification. If we were working with DNA 
sequence information, the use of a substitution matrix, such 
as PAM (Schwartz and Dayhoff, 1978) or BLOSUM 
(Henikoff and Henikoff, 1992), might be appropriate. 
However, in this simulation, we handled segments as 
indivisible units, as dictated by the SCRaMbLE system, so 
all operations were assigned an equal weight of 1.0. This 
weighting assumes that all operations are equally likely, an 
assertion which could be modified in the light of 
experimental data. 

Fitness is an abstract concept, and is very difficult to 
calculate in practice. The fitness function used here was 
based on two types of data: single gene 
deletion/overexpression fitness data (experimental fitness) 
and flux balance analysis results (FBA fitness).  

An in vitro project previously described used colony size 
as a measure of fitness (Yoshikawa et al., 2011); 
SCRaMbLEd chromosomes which produce colonies at least 
equal in area to those of the wild-type are considered to be 
fit. However, this approach is clearly infeasible for a 
simulated  system. Another important concept related to 
fitness is gene essentiality. Of the entire genetic 
complement of an organism, only some genes are essential 
for life (Giaever et al., 2002). However, this concept is also 
fraught with difficulty, particularly for unicellular 
organisms. Which genes are essential depends largely upon 
the environment, and an organism grown in rich media is 
likely to require fewer genes for survival than one grown in 
minimal media.  

Genes do not act in isolation; a gene may be essential 
only in the absence of one or more other genes (Ulitsky and 
Shamir, 2007). Synthetic lethality occurs when either of two 
genes is sufficient for viability alone, but the organism 
becomes inviable when both genes are knocked out (Ooi et 
al., 2006). Although most of the research into synthetic 
lethality has been performed in the context of two-gene 
interactions, most genes and their products interact with 
multiple other genes and gene products, in a plethora of 
ways (Weile et al., 2012). There is a very large body of 
research into complex genetic networks and their robustness 
or otherwise in the face of internal and environmental 
challenges, based largely upon the work of Paul Erdös in the 
1950s (Erd, 1959), but blossoming in a genomic context in 
the early 2000s (Strogatz, 2001; Barabasi and Oltvai, 2004; 
Farkas et al., 2011), and to which we have contributed 
(Hallinan, Misirli and Wipat, 2010; Hallinan, James and 
Wipat, 2011; James et al., 2014). However, because of the 
nebulous nature of gene essentiality, and the preliminary 
nature of this work, we chose to apply a naïve definition of 
essentiality. For our chromosome, genes were deemed to be 
essential if they were identified as such in any description in 
the Saccharomyces Genome Database (Cherry et al., 2012). 
For example, of the 43 segments on synIXR, 7 ORFs 
(YBL112C, YIR006C, YIR008C, YIR010W, YIR016W, 
and YIR023W, located on segments 2, 7, 9, 10, 12, and 20 
respectively) were essential, and the segments carrying 
them were identified as essential using this criterion. Any 
SCRaMbLEd chromosome not carrying all seven essential 
genes was deemed to be non-viable.  

Whilst the absence of essential genes results in the 
failure of the cell to grow under certain conditions, some 
genes, especially those encoding enzymes which carry out 
key processes in metabolic networks, only result in a 



reduced growth rate when absent. The contribution of these 
enzymes, and therefore their genes, can be modelled using 
genome scale metabolic modelling. Flux balance analysis 
(FBA) is a common approach to the simulation of metabolic 
networks (Orth, Thiele and Palsson, 2010). An FBA model 
determines the flow of metabolites through a given 
metabolic network, and can be used to predict the growth 
rate of an organism under a given growth regime. In this 
work we reconstructed the yeast metabolic network for each 
of the SCRaMbLEd chromosome variants, taking into 
account deleted and duplicated enzyme-encoding genes.  

The FBA-related fitness was based on the latest 
consensus yeast metabolic model (Lu et al., 2019), with a 
constraint file created from simulated SCRaMbLEd results 
in which ORFs on deleted segments are set to 0. The fitness 
of the SCRaMbLEd genomes, Fs, was then calculated by 
running a flux balance analysis, using FlexFlux software 
(Marmiesse, Peyraud and Cottret, 2015; Lu et al., 2019). 
The results were normalized with respect to the wild-type 
fitness, Fw, which was calculated by running the no-
constraint FBA of the original yeast metabolic model (Eq. 
1). 

Normalized FBA Fitness = Fs−Fw
Fw

                (1) 

Both the single gene deletion fitness data and the single 
gene over-expression fitness data were obtained from 
publications (Yoshikawa et al., 2011). We analyzed the 
distribution of growth rates in the set of mutants from the 
experimental data, including the deletion and duplication 
data, to determine how these data could be used to 
parameterize the fitness function. The variability within the 
deletion and duplication datasets was found to be high, 

while the variability between those two data groups was 
relatively low, with both datasets showing a high proportion 
of mutants, peaking at a fitness of 0.3-0.35 as measured by 
the growth rate (Fig. 1). The culture media used for both 
groups were similar, but differed slightly due to the 
strategies used for the selection of mutated strains. Using the 
hypothesis that the fitness distributions of deletion and 
duplication mutations are similar, we applied quantile 
normalization to the fitness score of the deleted and 
duplicated ORFs in the two datasets (Fig. 1). Each quantile 
normalized fitness score was designated f .  

Using this approach, given a SCRaMbLEd genome, an 
experimental fitness score (EFS) could be calculated by 
averaging the normalized fitness scores of the deleted or 
duplicated ORFs.  

EFS =X                               (2) 
where x is the normalized fitness of a mutated ORF. 

Here, x was obtained by comparing  f with the median value 
(0.318 for deletion fitness and 0.295 for duplication). 

       x= f / 0.318 or x =f / 0.295                                              (3) 

A comprehensive fitness value was then calculated by 
multiplying the FBA fitness and the EFS. ORFs not 
included in the metabolic model or wet-lab data were 
considered to not affect the fitness. 

Fitness=EFS * normalized FBA Fitness                (4) 

Overall, the fitness of a strain is calculated by the 
following equation. Apprently, the fitness of a wildtype 
strain is 1.  

Fitness=X *  Fs−Fw
Fw

          (5) 

 

 
Fig. 1. A) Fitness of a systematically mutated set of yeast strains obtained experimentally by Yoshikawa et al. (2011). There is high variability within the 

deletion and duplication datasets, but relatively low variability between the datasets, allowing the application of quantile normalisation to both datasets. 
B) Quantile normalised distribution of single ORF deletion and duplication data. Density: probability density of muations with specific fitness in the 
dataset; Fitness: growth rate (1/h). 

C. Flux balance analysis using FlexFlux 
We developed an algorithm to incorporate flux balance 

analysis when determining fitness values. The algorithm 
was implemented in Java, and relies on FlexFlux, a steady-
state based metabolic network research tool for flux balance 
analysis (Marmiesse, Peyraud and Cottret, 2015).  FBA 
models were represented in the Systems Biology Markup 

Language (SBML) (Hucka and others, 2003). The 
implementation takes a list of deleted genes from the 
Chromosome class and runs FlexFlux to simulate gene 
knockout on the latest yeast consensus SBML genome-scale 
model, yeast_8.3.5 (Lu et al., 2019). First, it creates a text-
based constraint file which contains an objective function 
for maximizing the biomass. Next, the unique ID of every 
deleted ORF is obtained from the SBML model file. These 
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IDs are written into the constraint file, and their status is set 
to “0” to represent deletion. Finally, FlexFlux is called with 
the constraint file and generates a result document. Some of 
the deleted ORFs might not be included in the SBML 
model, indicating that such ORFs are not involved in the 
well-understood metabolic network. In these cases, these 
ORFs are not written into the constraint file. If none of the 
deleted ORFs are included in the SBML model, the method 
returns wild-type fitness. 

D. Parameterisation 
The recombinase protein Cre randomly binds to a 

loxPsym site and initiates SCRaMbLEing We simulated this 
process using a parameter, scrProb, the probability of a Cre 
protein binding to a loxPsym site and triggering deletion or 
duplication. scrProb was estimated based on experimental 
data. On average, for chromosome synIXR, around six 
SCRaMbLE events occurred following four hours of 
induction with 1 M estradiol (Shen et al., 2016). Using this 
information, we estimated the probability of an event, using 
a simple simulation to investigate the correlation between 
scrProb and the average number of SCRaMbLE events. 

For every scrProb range from 0 to 1.0, with a gap of 
0.01, SCRaMbLEing on synIXR was simulated with a pool 
of 1,000 strains. The number of survivals  and the average 
number of SCRaMbLE events of the 1,000 SCRaMbLEd 
strains are shown in Fig.s 2 and 3. 

The simulation results indicated that when scrProb 
was around 0.3, the number of SCRaMbLE events was 
about six (Fig.s 2), which is the average number of 
SCRaMbLE events of surviving strains identified from the 
experimental data (Shen et al., 2016). scrProb could be 
validated using additional experimental results, which are 
not currently available. With different scrProb, the survival 
rates of SCRaMbLE strains were different. If scrProb = 0.2, 
the survival rate was 37/1000; while with scrProb = 0.4, the 
survival rate was 10/1000. Hence, given further data about 
the survival rate, which could be obtained by running a 
simple wet-lab experiment comparing colony numbers 
between a SCRaMbLEd culture and a negative control, we 
could produce a more accurate estimate of the probability of 
a loxPsym site being involved in a SCRaMbLE event. In 
this work, we set the scrProb to 0.3.  

 

 
Fig. 2. Single point breaking probability versus the average number of SCRaMbLE events. When the probability of a Cre binding to a loxPsym was around 

0.3, the average number of SCRaMbLE events in chromosome synIXR was about six per surviving strain, which is the average number of SCRaMbLE 
events determined in vivo (Shen et al., 2016). 



 

Fig. 3. Single point breaking probability versus the number of survivors of SCRaMbLEing strains with synIXR. The number of strains was set as 1000 
before SCRaMbLEing. When the probability of a loxPsym experiencing a SCRaMbLE event was around 0.2 to 0.4, the survival rate was between 37‰ 
and 10‰. 

E. Fitness landscape analysis 
 

We simulated 4,280 strains using a pseudo random 
number generator. The resulting dataset was used for fitness 
landscape analysis and further investigation.  

Chromosome synIXR has 43 segments, making it 
difficult to visualize. We therefore used a dimension 
reduction algorithm, t-Distributed Stochastic Neighbor 
Embedding (t-SNE), to convert the 43-dimensional input 
into a two-dimensional array representing the genotype of 
every genome in the simulation (Hari and Lobo, 2020). t-
SNE is a non-linear dimension reduction algorithm, and is 
implemented by minimizing the Kullback-Leibler 
divergence between two similarity distributions: the 
pairwise similarities of high dimensional data points, and 
the corresponding low-dimensional embedded output 
points (Van Der Maaten and Hinton, 2008). 

The two-dimensional array produced by t-SNE was used 
as the x and y axes of the fitness landscape, with the fitness 
score of each strain as the z axis. A tunable parameter of t-
SNE, perplexity, balances the attention between local and 
global data by estimating the number of close neighbors of 

each point in the landscape. t-SNE was optimized by 
comparing the results produced by our simulator, resulting 
in a perplexity value of 40.  

III. RESULTS 
In this work we used an in silico evolutionary approach 

to develop a model of the evolution of a population of yeast 
mutants whose genomes were perturbed using the 
SCRaMbLE system. We validated the model of deletions by 
comparing in silico and in vivo ORF deletions in mutant 
populations, validated the fitness function by reference to 
experimental data, and finally analysed the fitness landscape 
of the populations generated in silico, using the model.  

A. Deletion patterns in SCRaMbLEd genomes in silico 
and in vivo.  
To evaluate whether the results of the SCRaMbLE 

simulation were comparable with the wet lab data, we ran a 
simulation investigating deletion patterns on the circular 
chromosome synIXR. A random simulation dataset with 80 
surviving in silico strains was generated, and compared 
with a wet-lab experimental dataset with 64 surviving in 
vitro strains (Shen et al., 2016) (Fig. 4). 

 



 

 

 
Fig. 4. A) Deletion patterns in simulated in silico strains, with a deletion probability of 0.2. B) Deletion patterns obtained in vivo by Shen et al. (2016) . C) 

Simulated deletion patterns with Segment 24 as an essential segment. The Y axis represents the number of SCraMbLEd strains with a specific segment 
deleted; The X axis represents segments. Each segment is the basic unit of SCRaMbLE, flanked by loxPsym sites. 

Comparing Fig. 4A and 4B, we observed similar 
deletion patterns. Both experimental and simulation data 
have two deletion patterns, ranging from Segment 13 to 
Segment 18, and from Segment 20 to Segment 43, 
respectively. The peaks of these deletion patterns are 
similar, with around 30 deletions for pattern Segment 13-18 
and around 50 deletions for pattern Segment 20-43. 
However, for the simulation results, the second pattern, 
between Segments 20 and 43, was much smoother than its 
experimental counterpart. Combining the fitness score of  
the simulations by isolating strains with a relatively high 
fitness score might produce a different perspective, with 

results more similar to those of the real data. However, since 
the relevant fitness data was not published with the 
experimental deletion patterns for synIXR (Shen et al., 
2016), we could not make this comparison. The number of 
deletions of ORFs between Segments 21 and 31 was much 
higher in the simulation than in the wet lab results. Further 
data about gene functions, from the Saccharomyces Genome 
Database (SGD) (Chervitz et al., 1999), suggested that null 
mutants of Segment 24 (carrying ORF YIR026C) decreased the 
competitive fitness of growth rate, which may explain the 
difference described above (Fig. 4). 
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Fig. 5.  A) In silico deletion patterns of all genomes, and B) high fitness genomes. The Y axis indicates the number of genomes with a related deleted segment 
in a dataset generated by SCRaMbLE simualation .  The most significant difference between all strains and the high fitness strains was observed in the deletion 
patterns between Segments 3 and 6, which were absent in the high fitness results, suggesting that the ORFs on these segments are related to high fitness.  

 

TABLE I.  IN SILICO FITNESS VERSUS EXPERIMENTAL FITNESS FOR THREE DELETION MUTANTS AND THE WILD-TYPE STRAIN. THE FITNESS FUNCTION 
DESCRIBED IN EQ4 WAS USED TO CALCULATE THE FITNESS SCORES OF THE SIMULATIONS.  

Strain Simulation Fitness Experimental Fitness 
Wild-type 1.0 Wild-type 

∆YIR004W 
0.886 0.921 

∆YIR005W 0.797 0.783 

∆YIR020C 0.977 1.0 

 
 

According to the findings of Deutschbauer and co-
workers, the ORF YIR026C is vital for strains competing 
with each other, due to the decreased competitive fitness of 
the null mutant (Deutschbauer et al., 2005). This 
observation indicates that Segment 24 is non-essential 
when there are no other strains competing against it. 
However, due to its weak competency, the YIR026C null 
mutant could not survive in competition with other 
scrambled strains, resulting in the deletion patterns being 
shifted from Segment 34 to Segment 30. Thus, YIR026C on 
Segment 24 is an essential ORF in a multicellular 
consortium. Adding Segment 24 as an essential unit in the 
simulation produced results similar to the wet-lab results 
(Fig. 4C). 

Strains with a fitness score higher than that of the wild-
type strain were selected for further analysis. The most 
significant differences between high fitness strains was 
observed in the deletion patterns between Segments 3 and 6, 
which were absent from the chromosomes of the high fitness 
strains, an observation which suggests that the ORFs on 
these segments are associated with higher fitness (Fig. 5). 

Together, these results suggest that the SCRaMbLE 
simulator models deletion events with reasonable accuracy. 
Since the simulation is based on random numbers, these 
simulation results provide further evidence that the 
SCRaMbLE deletion process is largely random, but is 
constrained by its metabolic and phenotypic effects on the 
resulting mutant strains.  

B. Validation of the fitness function  
To validate the final fitness function (Eq. 4) used for the 

evolutionary process in silico, we calculated the fitness  of 
the three single deletion mutant strains: YIR004W on 
Segment 5, YIR005W on Segment 6, and YIR020C on 
Segment 18 (Table 1). These ORFs, which are supported by 
experimental evidence (p < 0.05), are all on the synIXR 
chromosome (Shen et al., 2016). These results (Table 1) 
were consistent with experimental results. 

C. Fitness distance correlation 
Fitness distance correlation (FDC) is usually used for 

optimizing genetic algorithms and analyzing the ruggedness 
of fitness landscapes. We applied the technique to the 
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analysis and comparison of the fitness landscapes generated 
by the simulated SCRaMbLEd yeast strain populations. 
FDC samples data points on the fitness landscape, and 
calculates the correlation between the measured fitness and 
the distance to the global optimal fitness. We used this 
approach to investigate the topology of the in silico 
landscape, and for studying the shape and size of the 
evolutionary search space.  

Fitness Dataset 1, with 4,280 strains generated for 
fitness landscape analysis was used here (Methods Section 
E). We also constructed a smaller dataset, Fitness Dataset 2, 
derived from Fitness Dataset 1 by removing strains with 
mutated genes whose products were not modelled in the 
metabolic network. When the FDC value ws between -0.15 
and 0.15, optimization was difficult, because the fitness 
landscape was very rough. The FDC coefficient of the 4,280 
simulated scrambled genomes in Fitness Dataset 1 was 0.07. 

However, the FDC rose slightly to 0.09 for FDC Dataset 2, 
which only included strains with fitness in which a 
contribution from the FBA contributed to the landscape. 
Scatter plots (Fig. 6 and Fig. 7) show the structure of FDC 
Dataset 1 and FDC Dataset 2. For FDC Dataset 2, a cohort 
of high-fitness strains with chromosomes srparated by 
relatively high Levenshtein distance could be observed (Fig. 
6). There was no significant structure in the correlation of 
fitness and distance for FDC Dataset 1, in which all mutants 
were retained (Fig. 7). The results shown in the scatter plots 
are consistent with the FDC values. The slight difference 
between Fitness Dataset 1 and Fitness Dataset 2 is probably 
because, while the whole fitness landscape is rugged, some 
patterns still exist in the enzyme encoding-genes-mutated 
subset, since only three ORFs from synIXR are involved in 
the metabolic network. The fitness landscape had high 
ruggedness, based on FDC analysis. 

 
Fig. 6. Scatter plot of the fitness-distance correlation of Fitness Dataset 2, with 237 strains whose mutant gene products featured in the metabolic network. 

Dark blue: fitness > 1; light blue: fitness = 1; orange: fitness < 1.      
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Fig. 7. Scatter plot of the fitness-distance correlation of Fitness Dataset 1 with 4,280 strains with simulated scrambled chromosomes. Mutant strans were 
included, even if the mutant gene products did not feature in the metabolic model used to calculate the genome fitness, using FBA. Dark blue: fitness > 
1; light blue: fitness = 1; orange: fitness < 1. 

Fitness Dataset 1 was used for visualizing the fitness 
landscape (Fig. 8A). Due to the lack of data points for strains 
with ORFs encoding enzymes, the SCRaMbLE simulator 
was also used to generate 401 strains with SCRaMbLEd 
chromosomes with mutated genes whose products 
contributed to the metabolic network used to evaluate 
fitness (Fig. 8B). All strains were divided into four groups 
based on fitness: High, Wild-type, Low, and Dead (not 
shown). The dimension reduction algorithm t-SNE was 
used to convert the high dimensional data to two 
dimensions. The fitness of most of the in silico strains was 
lower than that of the wild-type in silico strain. A large 
number of strains were inviable, due to the deletion of 
essential genes from their chromosome. In Fig. 8B, clear 
boundaries can be observed between each group of strains, 

indicating that there are obvious patterns of chromosomes 
with mutations in genes contributing to metabolism. 
Mutations in these ORFs redirect the flux in the FBA model 
of the metabolic networks, and thus lead to changes in the 
fitness score. Some ORFs play a key role in the metabolic 
networks. By altering these key ORFs, the flux of the FBA 
model changed significantly. Although experimental single-
gene deletion and duplication data were integrated into the 
fitness function (Eq. 4), the fitness scores of strains with and 
only with mutated ORFs encoding metabolic enzymes were 
fully dependent on the FBA results of the metabolic model. 
Since only three ORFs from synIXR were involved in the 
metabolic model, t-SNE easily captured the key features 
necessary to distinguish groups with different fitness.  

  

 
Fig. 8. Visualisation of a fitness landscape of SCRaMbLEing synIXR strains. High fitness (Fitness > Wild-type): Pink; wild-type fitness: purple; low fitness 

(Fitness < Wild-type). A: the whole landscape of 10000 scrambled strains. There were four clusters in the landscape. No obvious patterns could be 
observed in most of the fitness landscape. B: 401 scrambled strains with mutated metabolic enzyme-encoded ORFs with clear patterns in terms of fitness 
score. 
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For the other in silico strains, including those with non-
metabolic-related mutants, no clear patterns regarding 
fitness were observed (Fig. 8A). These results, together with 
the results from the FDC analysis, indicated that the fitness 
landscape of simulated SCRaMbLEd strains showed a high 
degree of ruggedness, although the enzyme-encoding 
mutation fitness subset was smoother. 

D. Directed evolution of synII 
Given the success of the proof of concept simulations of 

strains with the SCRaMbLEd chromosome synIXR, we 
explored simulating directed evolution using this modelling 
approach. Since there were only 43 ORFs on synIXR, which 
limited the searching space of evolution, we applied the 
directed evolution mode to another synthetic chromosome 
synII. SynII has 456 ORFs, which vastly expands the space 
for directed evolution.    

Since synII is a large chromosome, SCRaMbLE was 
expected to alter essential ORFs with a high probability, 
leading to more unfit strains with a lower survival rate. For 

this reason, the number of SCRaMbLEd strains in the 
simulation was set to 100,000, to ensure that some strains 
survived. The probability of Cre binding to a loxPsym site, 
scrProb, was set to 0.3 as for the simulations with the 
synthetic chromsome synIXR. Whilst synII has about 10 
times more loxPsym sites than synIXR, the number of Cre 
molecules in the cell under experimental conditions was still 
far in excess of the number of loxPsym sites. Thus, scrProb 
in the simulation of synII SCRaMbLEing should be similar 
to the scrProb of synIXR SCRaMbLEing. 

Five rounds of directed evolution were simulated with 
the above settings. There were only seven surviving strains 
after the first round of SCRaMbLE of 100,000 synII strains, 
due to the deletion of essential ORFs (Fig. 9). However, the 
fifth round of SCRaMbLE resulted in 223 survivals from the 
same number of SCRaMbLEd strains. The major reason 
was that the chromosomes of these strains gradually gained 
duplicated copies of essential ORFs during successive 
rounds of SCRaMbLE, which enabled a strain to survive a 
deletion event. 
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Fig. 9. Heatmap profiles of synII ORFs in five rounds of direcetd evolution. X axis represents the 456 ORFs of synII; Y axis stands for the surviving strains 
(e.g. there are seven strains resulting from the first round of SCRaMbLE (Fig. 9A)). Directed evolution rounds 1 to 5 are labelled A-E. For each round of 
directed evolution, the strain with the highest fitness score was picked as the initial strain to be SCRaMbLEd in the following round. In each profile, 
chromosomes were ranked in descending order of Levenshtein distance from the unscrambled wild-type chromosome (i.e. the bottom chromosomes were 
more similar to the wild-type chromosome than upper chromosomes). Darker data points represented higher copy numbers, while white areas represent 
deletion of the corresponding ORF. 

Patterns of chromosomal rearrangements could be 
observed from the profiles of the SCRaMbLED 
chromosomes (Fig.9). Strain 1 of the first round of 
SCRaMbLE (Fig. 9A) had the chromosome with the highest 
fitness score, and was selected as the starting strain for the 
second round of SCraMbLE. Hence, the chromosomes 
shown in the heatmap for the second round of SCraMbLE 
shared similar chromosomal patterns with strain 1. For 
example, two chunks of duplication (darker zones), 
inherited from the strain 1 of the first round of SCRaMbLE, 
lying between ORF300 and ORF400 (marked in Fig. 9A), 
can also be seen in all daughter strains of the second round 
(Fig. 9B). However, duplication patterns might not be 
passed through generations due to potential loss during the 
directed evolution. While deletion patterns could be 
maintained if the only copy of an ORF was deleted. For 
example, the marked deletion pattern from strains of the 
third round of directed evolution(Fig. 9C) was succeeded in 
following rounds(Fig. 9D and Fig. 9E). 

 To obtain further insights from the results of directed 
evolution, the 10 strains with the highest and lowest fitness 
at each round were identified, and heatmaps of their 
chromosomal similarities were produced (Fig. 10). All 
profiles shared common deletion or duplication patterns, 
such as the deletion of chromosomal segments between 

ORF100 and ORF200, and between ORF300 and ORF400. 
This finding suggested that the fitness landscape is very 
rugged, so that a minimal alteration to a chromosome could 
result in a very different phenotype in terms of fitness. 
Genetic traits from the highest fitness strains were likely to  
be propagated in subsequent rounds of evolution, while 
mutations responsible for lowering the fitness of the lowest 
fitness strains would not be passed on.  

Thus, if a pattern of duplication or deletion was established 
in low-fitness strains and the pattern only appeared in that 
round of evolution, those mutations may have led to a 
decrease in fitness. In this case there were some differences 
(as annotated in Fig. 10B) between the two profiles.  

The region indicated by an arrow in Fig. 10B, ranging from 
ORF49 to ORF54 (YBL071C, YBL070C, YBL069W, 
YBL068W-A, YBL068W, and YBL067C), was more 
apparent in the chromosome of low-fitness strains than in 
high-fitness strains(Fig. 10A). This pattern only appeared 
on the third round of evolution low-fitness results. This 
observation indicated that in the third round of evolution an 
increase in copy number segments ranging from ORF49 to 
ORF54 may have been linked to a decrease in fitness (Strain 
13 to Strain 22).    

 

A 



 
Fig. 10. Chromosomal alignments from synII strains with the highest or lowest fitness from each round of directed evolution. A: From bottom to top: Stacking 

Round 1 to 5 top highest-fitness strains of each round (only two from Round 1 and ten from Round 2-5). B: From bottom to top: Stacking Round 1 to 5 
the lowest-fitness genomes of each round (only two from Round 1 and ten from Round 2-5). The indicated region, ranging from ORF49 to ORF54 
(YBL071C,YBL070C, YBL069W, YBL068W-A, YBL068W, and YBL067C), was more apparent in these low fitness strains than in the high-fitness 
profile(Fig. 10A) 

 

E. Directed evolution with CRISPRi 
SCRaMbLE shuffles Sc2.0 genomes in a random way. 

Whilst, in theory, the whole evolutionary search space 
could be explored, reaching a specific target is largely 
based on luck.  

To address this problem, we are developing laboratory 
based genetic tools to improve the ability of controlling 
SCRaMbLE by altering the probability of occurrence of 
SCRaMbLE events at ORF sites of interest (unpublished). 
Regarding blocking specific segments of Sc2.0 from 
SCRaMbLing, a dCas9-blocking-CRE strategy (or 
CRISPRi for SCRaMbLE) was designed in previous study 
by targeting sequences adjacent to corresponding loxPsym 
sites flanking the segment of interest. Additionally, a novel 
programmable system called CIRS(CRISPR inspired 
recombination system) was proposed to improve CRE 
binding to specific loxPsym sites. Inspired by CRISPR and 
CIRTS (CRISPR-Cas-inspired RNA targeting system), 
CIRS uses a redesigned gRNA to direct the gRNA-
binding-protein-fused Cre recombinase. 

We therefore sought to simulate this system, emulating 
the effects of targeting CRISPRi and CIRS to block 
selected recombination events and studying the 
chromosomal rearrangements in the resulting 
SCRaMbLEd strains. Here, we describe the simulation 
results of directed evolution with CRISPRi as an example, 
and compare them with the previous results of simulation 
without CRISPRi. 

As a proof of concept, a set of ORFs (YBL097W, 
YBL092W, YBL084C, YBL076C, YBL074C, 
YBL050W, YBL041W, YBL040C, YBL035C, 
YBL034C, YBL030C, YBL026W, YBL023C, 
YBL020W, YBL018C, YBL014C, and YBL004W) was 
randomly selected as the target of CRISPRi. The 
probability of Cre binding to adjacent loxPsym sites to 
these ORFs was set as 0, which represented 100% 
efficiency of CRISPRi blocking. These ORFs were 
essential ORFs, and thus the survival numbers were 
expected to be higher than the previous simulation. Five 
rounds of directed evolution were performed as for 
previous simulations. Then the strains with the highest 
fitness of each round of evolution were selected, along 
with those from previous simulations without CRISPRi 
(Fig. 11). 

B 



 

 
Fig. 11. Profiles of the chromosome from the fittest strains from each round of directed evolution with or without CRISPRi. A: normal directed evolution; B: 

directed evolution with CRISPRi. Patterns are marked by rectangles. 

Patterns of genome conservation could be observed 
within the comparative heatmaps of the chromosomes from 
fit strains. For example, in the simulation without CRISPRi, 
patterns including the duplicated chunk of ORF63-ORF65 
(YBL059W, YBL058W, and YBL057C) and the deletion 
chunk of ORF146-ORF152 (YBR020W, YBR021W, 
YBR022W, YBR023C, YBR024W, YBR025C, and 
YBR026C) could be identified (Fig. 11A). In the simulation 
with CRISPRi, the duplication pattern of ORF17-ORF26 
(YBL100C, YBL099W, YBL098W, YBL097W, 
YBL096C, YBL095W, YBL094C, YBL093C, YBL092W, 
and YBL091C-A) and the deletion pattern of ORF431-

ORF455 were apparent (Fig. 11B). However, although both 
simulations used the same random seed, the chromosomal 
profiles of the strains with CRISPRi modified SCRaMbLE 
did not share many similarities with those of the unmodified 
SCRaMbLE strains, an observation which suggested that 
CRISPRi could be used to modify the direction of evolution 
in the fitness landscape. 

With CRISPRi directed evolution, more strains survived 
during evolution. There were 446 survivals in total for five 
rounds of normal directed evolution while 846 survivors 
emerged from the simulation with CRISPRi.    
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Fig. 12. Chromosomal landscapes of simulated synII SCRaMbLE directed evolution with CRISPRi (CRISPRi_Round 1-5) or without CRISPRi (Round 1-5). 

X and Y axes represent the dimensions of t-SNE results, whose dimensions were reducted from 456 (number of ORFs on synII) to two. Strains with 456 
ORFs were transformed by dimensional reduction to two dimensions. The resulting survivors of each round are indicated with different colors. 

To further investigate the ways in which CRISPRi could 
help explore the fitness landscape, the dimension reduction 
algorithm t-SNE was applied to both normal simulation and 
CRISPRi-controlled simulation datasets. The results are 
shown in Fig.12. The results of the first round of directed 
evolution, with or without CRISPRi, were all located in the 
same small area. However, the route of directed evolution 
diverged after the second round of evolution. This 
divergence was manifested by the increasing distance 

between clusters in the landscape. There was a strain from 
the previous round of evolution in the center of each cluster. 
Five rounds of normal directed evolution in a t-SNE 
dimension reduction graph (Fig. 13) showed similar results.  

The outliers were the strains with the highest fitness 
from the previous round, and served to act as the initial 
strain whose chromosome was SCRaMbLEd in the 
following round.   

 
Fig. 13.  t-SNE dimension reduction on the chromosomes of strains subject to the standard SCRaMbLE approach. Rounds are labeled as 1 - 5. 



The fitness landscapes of both simulation datasets were 
created based on the same t-SNE dimension reduction 
results (Fig. 14). No clear patterns could be found in the 
fitness landscapes, a finding which was consistent with 
previous findings that the fitness landscapes of SCRaMbLE 

were rugged. However, red dots, representing high-fitness 
strains, were apparently more frequent in the clusters of 
CRISPRi rounds. This finding supported the contention that 
directed evolution with proper CRISPRi application could 
achieve high fitness more efficiently. 

 
Fig. 14. The fitness landscapes of directed evolution with and without CRISPRi. Same data were used as Fig. 12, but the genomes were colored based on fitness 

instead. 

Collectively, these results indicate that CRISPRi has the 
potential to guide directed evolution in a specific direction, 
and also to improve the efficiency of evolution. 

IV. DISCUSSION 
The aim of the Yeast2.0 project is to produce eukaryotic 

chromosomes which are easily manipulable, and which can 
produce millions of variants on the original, naturally 
evolved, genomes, which can then be searched for genomes 
that are viable, relatively easily cultivated, and have 
biological characteristics which are desirable for use in 
application areas such as the production of drug precursors, 
biofuels, and industrial enzymes. The choice of S. cerevisiae 
as the first target was due to its known safety, easy culture 
conditions, and well-studied biology, but this approach 
could be applied, in principle, to any other eukaryote. 

The identification of valuable variants, in the original 
project, was reliant upon evolution in vitro. This approach, 
while demonstrably valuable, has several drawbacks. The 
most obvious issue is that evolution in vitro requires time, 
expertise, and technology, and is costly. More 
fundamentally, however, this use of evolution takes no 
account of the fitness landscape of the system; it essentially 
considers each variant as an individual entity, without 
considering the relationships between variants, their 
mutations, and their places in the fitness landscape. 

An understanding of the characteristics of the fitness 
landscape generated by the SCRaMbLE system will be of 
interest from a purely theoretical perspective because, in 

conjunction with the data produced in the biology 
laboratories of the consortium members, it provides an 
unparalleled opportunity to explore a real-world, extensive 
fitness landscape, and assess our understanding of this 
process by developing and evaluating simulation 
approaches. This project also has more directly practical 
applications. The ability to simulate the fitness landscape 
generated by the SCRaMbLE system may allow us to 
investigate the parameters of the system, and identify 
combinations of parameters which could lead to the 
generation of smooth fitness landscapes in vivo, thereby 
facilitating the process of artificial evolution in vitro, and 
saving time and money when identifying valuable variants. 
In the future, it may even be possible to develop genetic 
circuits to modulate the in vivo SCRaMbLE system to bias 
the evolutionary landscape in an optimal direction through 
the repression or enhancement of the recombination of 
particular loxP segments.  

In this study, we developed a system for the simulation 
of SCRaMbLE in silico, including metrics for the distance 
between chromosomes, and for the fitness of the variants. 
These two metrics allow us to generate a fitness landscape 
for a SCRaMbLE run with a specific set of parameters. We 
applied our simulator to a single landscape, identified clear 
clusters of variants, and evaluated the ruggedness of the 
landscape of the chromosome we used.  

We found that the simulation results of the deletion 
patterns of synIXR we obtained were consistent with real-
world data, a finding which confirms that the SCRaMbLE 



process tends to be random. By testing various values of the 
breakpoint probability of the simulator, we inferred that the 
real-world probability of a loxPsym site being involved in 
SCRaMbLE is around 0.3. This value could be narrowed 
down to a more precise number by running simple wet-lab 
experiments. We also found that the fitness landscape tends 
to be rugged, a finding which indicates that we may be able 
to improve the efficiency of the artificial evolution process 
by identifying changes that can be made to the system. With 
the success of modeling the SCRaMbLE of a chromosome 
and creating a resulting fitness landscape, the simulator was 
used to model directed evolution by running multiple rounds 
of SCRaMbLE on the chromosome synII. Patterns of ORFs 
related to high or low fitness scores were found by 
comparing heatmaps. The same simulations were executed 
again with the activation of CRISPRi. By protecting some 
essential ORFs from SCRaMbLE, CRISPRi sped up the 
process of finding genomes with high fitness. The results 
indicate that CRISPRi has the potential to redirect the path 
of evolution.  

The fitness function could be further improved by 
integrating experimental multiple-gene mutation data, 
epistasis data, and copy number limitations. The simulation 
did not set an upper boundary for the copy number of an 
ORF, because no evidence for such a limitation was found 
in the literature. However, it is very likely that there would 
be a limitation on the copy number of an ORF in reality, due 
to homologous recombination. Thus, genomes with an ORF 
with more than 10 copies were filtered out in the 
computational model. With more experimental findings 
related to the limitation of copy number, the arbitrary 
limitation could be changed to a more accurate parameter. 

The current version of the simulator could be improved 
in several ways. First, cis-regulatory elements like 
enhancers can be taken into account. Inverted enhancers 
would alter the expression of surrounding genes, although 
they are unlikely to have an impact if the ORF is also 
inverted. Identifying enhancers in the genome would be 
difficult, while quantifying their impact on fitness would be 
even harder. The interaction between replication and 
transcription could be taken into account in the model. On 
the one hand, transcription speed could be altered by 
inversion. Transcription could occur simultaneously with 
replication. However, the leading strand could be 
transcribed faster due to the fact that Okazaki fragments on 
lagging strands need to be connected by DNA polymerase 
and ligase. Thus, for those transcription units inverted from 
leading strands to lagging strands during replication, the 
transcription speed would be lower, and vice versa. The 
alteration of transcription speed would probably affect the 
phenotype. On the other hand, inversion might increase the 
probability of clashes between transcription and the 
replication fork. For eukaryotes, the speed of replication 
fork, 18–100 bp/s, is roughly the same as transcription, 2.3 
kb/min, which reduces the chance of clashes (Pérez-Ortín, 
Alepuz and Moreno, 2007; Rogers, 2016; Gispan, Carmi 
and Barkai, 2017). In addition, most transcription moves in 
the same direction as the replication fork. Hence, for those 
transcription units, clashes with the replication fork are 
likely to occur if they are inverted due to the slower speed 
and inverted direction of transcription. To model these 
effects caused by inversion, we will need to locate the origin 
of replication, and then find parameters to evaluate the 
above effects.   

For larger chromosomes, or high dimensional genomes, 
due to the number of pairwise similarities needed, the 
calculation increases exponentially, computation is 
expensive, and t-SNE is inefficient. A linear dimension 
reduction algorithm such as Principal Components Analysis 
could be applied to reduce the dimensionality to under 50, 
followed by the use of t-SNE (Van Der Maaten and Hinton, 
2008). A potential approach would be to use LargeVis 
(Tang et al., 2016) instead of t-SNE for dimension 
reduction. LargeVis constructs K-nearest neighbor graphs 
more efficiently, and uses a principled probabilistic model 
for graph visualization. Another dimension reduction 
solution is to use UMAP, which is believed to preserve a 
better global structure than t-SNE (Becht et al., 2019). 

This work will form the basis for an extended simulation 
study of the SCRaMbLE system. In future work, we will 
apply the system both to other chromosomes besides 
synIXR and synII and to individual chromosomes 
repeatedly, to investigate whether these preliminary results 
apply to other chromosomes, and to evaluate the extent of 
variability between the landscapes that can be generated 
from a single chromosome. As discussed above, one of the 
most important aspects of the research will be the evaluation 
of the effects of modification of the parameters on the 
ruggedness of the landscape. It is highly likely that these 
parameters do not interact linearly, making it unlikely that 
optimal parameter settings can be achieved by chance in the 
laboratory. We also envisage improving the 
parameterization for our model as new data emerges from 
future wet-lab SCRaMbLE studies. 

In this work, we developed a simulator for the 
SCRaMbLE system, which has the potential to provide both 
theoretical and practical insights into this exciting new 
approach to bioengineering. We also simulated directed 
evolution based on this simulator with and without rational 
manipulation of SCRaMbLE, which indicated that the 
efficiency of directed evolution can be improved with 
genetic tools. 
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