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A B S T R A C T

In this paper, we study Lamb waves propagating in a discrete strip, whose microstructure is represented by
either a monatomic or a diatomic triangular lattice. In considering the in-plane vector problem, we derive an
analytical solution for the dispersion relation of Lamb waves. Additionally, we investigate the main features of
the eigenmodes of the system, which describe how the lattice strip vibrates at different frequencies. Further,
we discuss how the dispersion properties depend on the number of the lattice’s rows and on the chosen
boundary conditions. For heterogeneous systems, we focus the attention on the internal stop-band and on the
flat bands appearing in the dispersion diagram. Different asymptotic models are employed to approximate the
low-frequency behaviour of the lattice strip, starting from the classical Euler–Bernoulli beam. The effective
behaviour of a lattice strip with dense microstructure is also investigated, and we present a comparative
numerical analysis with the analogous continuum for which the classical Lamb wave problem is posed. The
theory developed is exploited here to design a structured medium capable of manipulating wavemodes, and,
through conversion and selection, generating uni-directional wave phenomena. We envisage that the present
work can fill a gap in the research field related to the analytical study of dispersive waves in microstructured
media, whose dynamic performance is influenced by the presence of multiple external boundaries.
1. Introduction

In solid mechanics, some static and dynamic phenomena are diffi-
cult to interpret if continuous models are adopted. This is especially
true in fracture problems and in the design of metamaterials, where
wave phenomena at multiple scales are of primary importance. In such
cases, the analysis should be based on the geometrical and constitutive
properties of the microstructure rather than on the effective behaviour
of the homogenised system (Kunin, 1982; Kachanov and Sevostianov,
2018; Mishuris et al., 2019).

Elastic lattices consist of periodic arrays of point masses connected
by elastic ligaments. Contrarily to continuous systems, they exhibit
dispersive and filtering properties even if they are homogeneous (Bril-
louin, 1953). A systematic analysis of two-dimensional lattice struc-
tures, providing a method to easily determine band-gaps, has been
presented in Martinsson and Movchan (2003), while the effect of
inclusions and defects within the microstructure on the dispersive
behaviour of the system has been investigated in Movchan et al. (2006).
In this context, quasi-periodic Green’s functions play an important
role in identifying localisation and band-gap formation in periodic
structures (Movchan and Slepyan, 2007; Brun et al., 2011). Another
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special feature observed in discrete systems is dynamic anisotropy,
leading to propagation along preferential directions even if the lattice
responds isotropically in the low-frequency regime. The first demon-
stration of resonant star-like waveforms has been given in Ayzenberg-
Stepanenko and Slepyan (2008) for scalar systems, while directionally
localised waveforms for vector and flexural problems have been shown
in Colquitt et al. (2012) and in McPhedran et al. (2015), respectively.
Wave polarisation in vector elastic lattices, which strongly depends
on the wave vector, has been characterised in Carta et al. (2019)
introducing the concepts of lattice flux and lattice circulation; in this
framework, in the long-wave limit, pressure and shear waves can be
interpreted as circulation-free and flux-free waves, respectively.

In order to alter the dispersive and filtering characteristics of lattice
structures, different types of resonators can be incorporated, as shown
for instance in Tallarico et al. (2017a), Bacigalupo et al. (2019) and
Vadalà et al. (2021). In particular, propagation of localised waves in
a lattice with tilted resonators has been explored in Tallarico et al.
(2017b). More ‘‘exotic’’ properties can be conferred to lattice structures
by introducing active resonators. In this regard, a special role is played
by gyroscopic spinners, whose effect can be exploited to tune the
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Fig. 1. Eigenmodes of a triangular lattice strip with infinite length in the horizontal
direction and six rows in the vertical direction. Note that the geometry of the strip
possesses no axis of symmetry in the horizontal direction. In the colour scale, blue
(red) colour indicates larger (smaller) values of the total displacement field. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

frequencies at which star-shape waveforms are generated (Brun et al.,
2012; Carta et al., 2014), to create waves localised in a single line
(Carta et al., 2017) and to force the uni-directional propagation of
waves that are also immune to backscattering (Nash et al., 2015;
Süsstrunk and Huber, 2015; Wang et al., 2015; Garau et al., 2018; Lee
et al., 2018; Mitchell et al., 2018; Garau et al., 2019).

In fracture mechanics, models of elastic lattices with cracks have
been developed in the literature with the aim of describing the origins
of crack instability and the speed of crack propagation (Marder and
Gross, 1995; Slepyan, 2002). In discrete systems, the fracture process
is often manifested through the breakage of lattice bonds at a critical
threshold, which introduces nonlinearity into the considered problem.
Nonetheless, linear models can be employed to relate the speed of
dynamic crack propagation to the dispersion curves governing waves
propagating in an intact infinite lattice and semi-infinite lattice, as
well as to study admissibility of the failure regimes via the solution
to these linear models. Following Slepyan’s work, the fracture problem
is usually solved analytically by employing the Wiener–Hopf approach
(Mishuris et al., 2009, 2010; Slepyan et al., 2010; Mishuris et al., 2012;
Nieves et al., 2013) and asymptotic methods (Piccolroaz et al., 2009,
2010, 2012; Nieves et al., 2012), or numerically by means of finite
element computations (Carta et al., 2013).

Considering the advantages that discrete structures offer with re-
spect to their continuous counterparts, in this paper we study propaga-
tion of Lamb waves in strips of infinite length and finite width, taking
full account of the internal microstructure of the strip. The latter is
assumed to be made of either a monatomic or a diatomic triangular
lattice. Discrete strips were previously analysed in Sharma (2017, 2018)
for the scalar problem, where the lattice’s particles were allowed to
have a single degree of freedom in the out-of-plane direction; here, we
consider the vector problem, where the displacement of each mass is
a two-component vector in the lattice’s plane. Illustrations of both a
symmetric and an antisymmetric vibration mode of the microstructured
strip considered in this paper are shown in Fig. 1. We note that while
Rayleigh waves in square and triangular lattices have already been
studied in the literature (in particular by Slepyan (2001a,b)), to the best
of our knowledge, the analytical solution of Lamb waves propagating
in microstructured strips have not been presented in previous works. In
this way, we aim to fill a gap in the literature on wave propagation in
discrete structures.

Furthermore, exploiting the possibility to select symmetric and
antisymmetric modes of vibration, we show that the discrete strip can
act as a waveguide with preferential directionality. In other words, it
allows waves of a certain frequency to travel in one direction, while
2

their propagation in the opposite direction is prevented. We note that
this phenomenon was already observed in Zhu et al. (2010), where
a continuous waveguide was designed. Nonetheless, the benefits of
considering a discrete structure are twofold: first, a finite number of
dispersion curves is exhibited by a microstructured medium; second,
these dispersion curves (whose determination is essential to select
the frequencies at which the effect of preferential directionality is
achievable) can be obtained analytically.

The discrete strip model proposed in this work has applications in
the study of the dynamic response of carbon nanotubes experiencing
tension and compression due to wave propagation (Sharma, 2018)
and in non-destructive evaluation methods (Diamanti et al., 2005; Su
and Ye, 2021). Additionally, the theory developed here can provide
a micromechanical description of dynamic phenomena propagating
in elastic bodies with thin contrasting layers or substrates along the
boundary (Sharma and Eremeyev, 2019; Fu et al., 2020; Kaplunov
et al., 2019). Moreover, it can be useful in the dynamic study of high-
contrast laminates and sandwich plates (Kaplunov et al., 2017; Aydin
et al., 2018; Kaplunov et al., 2021).

The plan of the paper is as follows. In Section 2, we analyse Lamb
waves in a homogeneous elastic triangular lattice, determining the
dispersion relation in closed form. In the derivation we distinguish
between symmetric and antisymmetric modes, and investigate the de-
pendence of the dispersion properties of the system on the number of
rows and the boundary conditions. Further, we compare the results
obtained for the microstructured medium with those corresponding to
the low-frequency long-wave beam approximation and to a continuum
strip, where the classical Lamb problem is encountered. In Section 3, we
consider a heterogeneous structure assuming that the periodic lattice
has two different masses in the nodal points. This heterogeneity leads
to the generation of an internal stop-band, whose dependence on the
mass ratio is investigated in detail. In addition, special longitudinal and
transversal eigenmodes of the diatomic discrete system are examined
and discussed. In Section 4, we develop an application of the work
presented in Section 3 to construct a diatomic strip capable of filtering
and propagating waves of a specific type in one direction only. Finally,
in Section 5, concluding remarks are provided.

2. Lamb wave propagation in an elastic homogeneous triangular
lattice

We study a two-dimensional triangular array of masses 𝑀 , con-
nected by elastic springs of length 𝐿 and stiffness 𝛤 . The lattice is
infinite in the 𝑥1-direction, while it has finite size along the 𝑥2-direction
(see Fig. 2). The position of each mass is defined by the multi-index
(𝑚, 𝑛)T, where 𝑚.𝑛 ∈ Z with 0 ≤ 𝑛 ≤ 𝑁 . Here, 𝑁 ∈ N, 𝑁 ≥ 3, with 𝑁 +1
being the number of rows in the 𝑥2-direction. We note that the cases
𝑁 = 1 and 𝑁 = 2 are trivial and we do not discuss them here.

The equations of motion for the lattice’s particles in the 𝑥1𝑥2-plane
are given by

𝑀 𝒖̈(𝑚,𝑛) = 𝛤
[

𝒂(1) ⋅
(

𝒖(𝑚+1,𝑛) + 𝒖(𝑚−1,𝑛) − 2𝒖(𝑚,𝑛)
)

𝒂(1)

+𝒂(2) ⋅
(

𝒖(𝑚+1,𝑛−1) + 𝒖(𝑚−1,𝑛+1) − 2𝒖(𝑚,𝑛)
)

𝒂(2)

+ 𝒂(3) ⋅
(

𝒖(𝑚,𝑛+1) + 𝒖(𝑚,𝑛−1) − 2𝒖(𝑚,𝑛)
)

𝒂(3)
]

,

for 0 < 𝑛 < 𝑁 ,

(1a)

𝑀 𝒖̈(𝑚,0) = 𝛤
[

𝒂(1) ⋅
(

𝒖(𝑚+1,0) + 𝒖(𝑚−1,0) − 2𝒖(𝑚,0)
)

𝒂(1)

+𝒂(2) ⋅
(

𝒖(𝑚−1,1) − 𝒖(𝑚,0)
)

𝒂(2)

+ 𝒂(3) ⋅
(

𝒖(𝑚,1) − 𝒖(𝑚,0)
)

𝒂(3)
]

,

for 𝑛 = 0 ,

(1b)

𝑀 𝒖̈(𝑚,𝑁) = 𝛤
[

𝒂(1) ⋅
(

𝒖(𝑚+1,𝑁) + 𝒖(𝑚−1,𝑁) − 2𝒖(𝑚,𝑁))𝒂(1)

+𝒂(2) ⋅
(

𝒖(𝑚+1,𝑁−1) − 𝒖(𝑚,𝑁))𝒂(2)

+ 𝒂(3) ⋅
(

𝒖(𝑚,𝑁−1) − 𝒖(𝑚,𝑁))𝒂(3)
]

,

for 𝑛 = 𝑁 ,

(1c)
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Fig. 2. Two-dimensional periodic lattice, made of identical points having mass 𝑀 linked by elastic springs having stiffness 𝛤 . The lattice is infinite in the 𝑥1-direction and finite
in the 𝑥2-direction. In this configuration, free Neumann boundary conditions have been applied.
where 𝒖(𝑚,𝑛)(𝑡) =
(

𝑢(𝑚,𝑛)1 (𝑡), 𝑢(𝑚,𝑛)2 (𝑡)
)T

is the displacement vector, which
is a function of time 𝑡 and depends on the multi-index (𝑚, 𝑛)T. Here the
dot atop of a dependent variable denotes the time derivative. Further,
the vectors

𝒂(1) = (1, 0)T , 𝒂(2) = (−1∕2,
√

3∕2)T , 𝒂(3) = (−1∕2,−
√

3∕2)T (2)

are used to identify the directions of the lattice’s links (see Fig. 2).
Under time-harmonic conditions, the displacement vector takes the

form

𝒖(𝑚,𝑛) = 𝑼 (𝑚,𝑛)ei𝜔𝑡 , (3)

where 𝜔 is the radian frequency and 𝑼 (𝑚,𝑛) is the unknown displace-
ment amplitude vector.

2.1. Normalisation

For the sake of simplicity, we introduce the normalised quantities

𝒙 = 𝒙̃𝐿 , 𝒖 = 𝒖̃𝐿 , 𝑼 = 𝑼̃𝐿 , 𝑘1 = 𝑘̃1∕𝐿 , 𝑡 = 𝑡
√

𝑀∕𝛤 , 𝜔 = 𝜔̃
√

𝛤∕𝑀 ,

(4)

where the symbol tilde is used to indicate a non-dimensional quan-
tity. In (4), 𝒙 = (𝑥1, 𝑥2)T is the position vector, while 𝑘1 denotes
the wavenumber. Additionally, 𝒖̃ is assumed to be a function of the
dimensionless variables 𝒙̃ and 𝑡, while 𝑼̃ is only 𝒙̃-dependent.

For ease of notation, in the following we will omit the symbol tilde,
assuming implicitly that all the variables appearing in the equations are
non-dimensional.

2.2. Solution in the lattice’s bulk

Employing the normalisation (4) together with (3), the governing
Eqs. (1a) for the interior lattice’s particles in the time-harmonic regime
become

𝜔2𝑼 (𝑚,𝑛) + 𝒂(1) ⋅
(

𝑼 (𝑚+1,𝑛) + 𝑼 (𝑚−1,𝑛) − 2𝑼 (𝑚,𝑛))𝒂(1)

+ 𝒂(2) ⋅
(

𝑼 (𝑚+1,𝑛−1) + 𝑼 (𝑚−1,𝑛+1) − 2𝑼 (𝑚,𝑛))𝒂(2)

+ 𝒂(3) ⋅
(

𝑼 (𝑚,𝑛+1) + 𝑼 (𝑚,𝑛−1) − 2𝑼 (𝑚,𝑛))𝒂(3) = 𝟎
for 0 < 𝑛 < 𝑁 .

(5)
3

The solution for the displacement amplitude vector is sought in the
form

𝑼 (𝑚,𝑛) = 𝛬𝑛𝑯e−i𝑘1𝑥1 = 𝛬𝑛𝑯e−i𝑘1(𝑚+𝑛∕2) , (6)

where 𝑯 =
(

𝐻1,𝐻2
)T. The complex exponential represents the prop-

agating component of the wave field in the 𝑥1-direction, whereas 𝛬𝑛

dictates the wave profile in the 𝑥2-direction.
Substituting (2) and (6) into (5), we obtain the homogeneous system

𝑨𝑯 = 𝟎 , (7)

where

𝑨 =

⎛

⎜

⎜

⎜

⎝

𝜔2 − 5 + 4 cos2
(

𝑘1
2

)

+ 1
2

(

𝛬 + 1
𝛬

)

cos
(

𝑘1
2

)

−i
√

3
2

(

𝛬 − 1
𝛬

)

sin
(

𝑘1
2

)

−i
√

3
2

(

𝛬 − 1
𝛬

)

sin
(

𝑘1
2

)

𝜔2 − 3 + 3
2

(

𝛬 + 1
𝛬

)

cos
(

𝑘1
2

)

⎞

⎟

⎟

⎟

⎠

(8)

(see also Slepyan (2002)). The homogeneous system (7) admits non-
trivial solutions if det(𝑨) = 0, which leads to the biquadratic equation

(

𝛬 + 1
𝛬

)2
− 4𝑝

(

𝛬 + 1
𝛬

)

+ 4𝑞 = 0 , (9)

where the coefficients 𝑝 and 𝑞 are given by

𝑝 =
[

2 sin2
(

𝑘1
2

)

+ 1 − 2𝜔2

3

]

cos
(

𝑘1
2

)

,

𝑞 = 𝜔2

3

{

𝜔2 − 4
[

sin2
(

𝑘1
2

)

+ 1
]}

+ 3 sin2
(

𝑘1
2

)

+ 1 .
(10)

The Eq. (9) in 𝛬 has four solutions, denoted as 𝛬1,… , 𝛬4. However,
only two roots (say 𝛬1 and 𝛬2) are independent, since the remaining
two solutions are their reciprocal quantities (namely, 𝛬3 = 1∕𝛬1 and
𝛬4 = 1∕𝛬2). The expressions for 𝛬1 and 𝛬2 can be written as

𝛬𝑗 =

√

𝑔𝑗 + 1 −
√

𝑔𝑗 − 1
√

𝑔𝑗 + 1 +
√

𝑔𝑗 − 1
, 𝑗 = 1, 2 , (11)

where

𝑔𝑗 = 𝑝 + (−1)𝑗−1
√

𝑝2 − 𝑞 , 𝑗 = 1, 2 , (12)

with |𝛬𝑗 | ≤ 1, 𝑗 = 1, 2, for 𝜔 ≥ 0, 𝑘 ∈ R.
The eigenvector 𝑯(𝛬𝑗 ), 𝑗 = 1, 2, is normalised such that

𝑯(𝛬𝑗 ) =

(

1
)

, (13)

ℎ(𝛬𝑗 )
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w

𝑩

𝑩FF =

(

𝑩L(𝛬1)𝑯(𝛬1) 𝑩L(𝛬2)𝑯(𝛬2) 𝑩L(𝛬−1
1 )𝑯(𝛬−1

1 ) 𝑩L(𝛬−1
2 )𝑯(𝛬−1

2 )

𝛬𝑁
1 𝑩U(𝛬1)𝑯(𝛬1) 𝛬𝑁

2 𝑩U(𝛬2)𝑯(𝛬2) 𝛬−𝑁
1 𝑩U(𝛬−1

1 )𝑯(𝛬−1
1 ) 𝛬−𝑁

2 𝑩U(𝛬−1
2 )𝑯(𝛬−1

2 )

)

(18)

Box I.
o
t
f
e
𝜔

w
f

𝐶

R
m

𝑼

w

𝑯

ith

ℎ(𝛬𝑗 ) =
i
√

3
(

𝛬𝑗 −
1
𝛬𝑗

)

sin
(

𝑘1
2

)

2𝜔2 − 6 + 3
(

𝛬𝑗 +
1
𝛬𝑗

)

cos
(

𝑘1
2

)

, 𝑗 = 1, 2 . (14)

The displacement amplitude vector can thus be written as

𝑼 (𝑚,𝑛) =
[

𝐶1𝛬
𝑛
1𝑯

(

𝛬1
)

+ 𝐶2𝛬
𝑛
2𝑯

(

𝛬2
)

+ 𝐶3𝛬
−𝑛
1 𝑯

(

𝛬−1
1
)

+𝐶4𝛬
−𝑛
2 𝑯

(

𝛬−1
2
)]

e−i𝑘1𝑥1 ,
(15)

where 𝐶𝑗 (𝑗 = 1,… , 4) are unknown coefficients.

2.3. Conditions on the lattice’s free boundaries

Here, we extend the validity of the relation (15) to the boundaries
of the lattice strip at 𝑛 = 0 and 𝑛 = 𝑁 . The associated procedure leads
to suitable choices of the coefficients 𝐶𝑗 , 𝑗 = 1,… , 4, to enable (1b) and
(1c), in the normalised form, to be satisfied.

Note that (15) satisfies (5) for 𝑛 ∈ Z, i.e. without the need of any
restrictions on the value of 𝑛. Therefore, using the representation (15)
for 𝑼 (𝑚,0) and 𝑼 (𝑚,𝑁), 𝑚 ∈ Z, together with (5), allows the normalised
equivalents of (1b) and (1c) to be replaced by

𝒂(2) ⋅
(

𝑼 (𝑚+1,−1) − 𝑼 (𝑚,0))𝒂(2)
+𝒂(3) ⋅

(

𝑼 (𝑚,−1) − 𝑼 (𝑚,0))𝒂(3) = 𝟎 for 𝑛 = 0 ,
(16a)

𝒂(2) ⋅
(

𝑼 (𝑚−1,𝑁+1) − 𝑼 (𝑚,𝑁))𝒂(2)
+𝒂(3) ⋅

(

𝑼 (𝑚,𝑁+1) − 𝑼 (𝑚,𝑁))𝒂(3) = 𝟎 for 𝑛 = 𝑁 .
(16b)

Physically, the conditions above represent the absence of two (out
of six) elastic forces relative to the particles located at the lattice’s
boundaries.

Substituting (2) and (15) into (16), we derive the homogeneous
system

𝑩FF 𝑪 = 𝟎 , (17)

where 𝑩FF (Eq. (18)) is given in Box I and

𝑪 =
(

𝐶1, 𝐶2, 𝐶3, 𝐶4
)T , (19)

with

𝑩L(𝛬𝑗 ) =

⎛

⎜

⎜

⎜

⎝

1
𝛬𝑗

cos
(

𝑘1
2

)

− 1 i
√

3
𝛬𝑗

sin
(

𝑘1
2

)

i
√

3
𝛬𝑗

sin
(

𝑘1
2

)

3
[

1
𝛬𝑗

cos
(

𝑘1
2

)

− 1
]

⎞

⎟

⎟

⎟

⎠

, (20a)

U(𝛬𝑗 ) =
⎛

⎜

⎜

⎝

𝛬𝑗 cos
(

𝑘1
2

)

− 1 −i
√

3𝛬𝑗 sin
(

𝑘1
2

)

−i
√

3𝛬𝑗 sin
(

𝑘1
2

)

3
[

𝛬𝑗 cos
(

𝑘1
2

)

− 1
]

⎞

⎟

⎟

⎠

. (20b)

The subscript ‘‘FF’’ in (17) specifies that the boundary conditions are
‘‘free–free’’, while the subscripts ‘‘U’’ and ‘‘L’’ in (20) indicate the upper
(𝑛 = 𝑁) and lower (𝑛 = 0) boundaries, respectively. Different boundary
conditions will be considered in Section 2.7.

2.4. Dispersion curves

The dispersion relation, which shows how the radian frequency
𝜔 depends on the wavenumber 𝑘1, is determined by imposing that
det (𝑩FF) = 0. The solutions of this equation are reported in Fig. 3 for a
lattice with five rows (𝑁 = 4). For now, we restrict subsequent compu-
4

tations to the case when 𝑁 is even. There, the notion of symmetric and
anti-symmetric modes propagating through the strip can be interpreted
more naturally, owing to the structural symmetry of the medium about
the row positioned at 𝑥2 =

√

3𝑁∕4 (𝑛 = 𝑁∕2). The response of a strip
with odd 𝑁 is considered further in Section 2.4.2.

For each value of the wavenumber, there is a finite set of radian
frequencies, equal to 2(𝑁 + 1). Indeed, for the specific case considered
in Fig. 3, the number of dispersion curves is ten.

The dispersion diagram in Fig. 3 shows that the structure is a low-
pass filter, characterised by a semi-infinite stop-band over the threshold
frequency 𝜔∗ = 2.3932 (the value of the 10th dispersion curve at
𝑘1 = 𝜋), while it does not present any internal complete stop-band.
In addition, there are different pairs of frequencies and wavenumbers
where the group velocity is zero; hence, we expect standing waves at
those points and their presence indicates regimes where waves can have
positive wavenumbers and negative group velocity. Note also that the
points along the dispersion curves where the group velocity is zero are
connected with resonance modes for the lattice strip when subjected
to an applied dynamic load at such frequencies. At these frequencies,
energy is unable to propagate away from the applied load, leading to
an unbounded energy density at this location in the system (Slepyan,
2002).

Along the 4th, 5th and 9th curves, there are points where the group
velocity is zero in the interior of the irreducible Brillouin zone, namely
for 0 < 𝑘1 < 𝜋. We note that zero group velocity points and intervals
where the group velocity 𝑣𝑔 is positive or negative along the dispersion
curves, can be found from analysing the function sgn(𝑣𝑔) = sgn(𝛺(𝜔, 𝑘))
along the dispersion curves, where

𝛺(𝜔, 𝑘) ∶= −
𝜕[det(𝑩FF)]

𝜕𝑘

(

𝜕[det(𝑩FF)]
𝜕𝜔

)−1
(21)

(see also Grünsteidl and Veres (2015)). Here, the expression 𝛺(𝜔, 𝑘) is
btained by differentiating the dispersion relation det (𝑩FF) = 0 along
he dispersion curves. This approach provides an effective alternative
or determining such information in absence of an explicit analytical
xpression representing the dispersion curves in terms of the frequency
as a function of the wavenumber 𝑘1.

2.4.1. Eigenmodes
The eigenmodes associated with the dispersion curves can be clas-

sified as either symmetric (‘‘S’’) or antisymmetric (‘‘A’’) (see Fig. 3).
If 𝑁 is even, the symmetric modes are characterised by the boundary
conditions

𝑈 (𝑚,0)
1 = 𝑈 (𝑚−𝑁∕2,𝑁)

1 and 𝑈 (𝑚,0)
2 = −𝑈 (𝑚−𝑁∕2,𝑁)

2 , (22)

hich, using the fact that ℎ(𝛬) = −ℎ(𝛬−1) (see Eq. (14)), lead to the
ollowing relationships among the coefficients 𝐶𝑗 :

3 = 𝛬𝑁
1 𝐶1 and 𝐶4 = 𝛬𝑁

2 𝐶2 . (23)

elations (23) allow us to simplify the representation of the displace-
ents (15) to

(𝑚,𝑛) =
[

𝐶1(𝛬𝑛
1𝑰 + 𝛬𝑁−𝑛

1 𝑿)𝑯
(

𝛬1
)

+ 𝐶2(𝛬𝑛
2𝑰 + 𝛬𝑁−𝑛

2 𝑿)𝑯
(

𝛬2
)]

e−i𝑘1𝑥1 ,

(24)

here

(𝛬−1) = 𝑿𝑯(𝛬) , with 𝑿 =

(

1 0
)

. (25)

0 −1
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Fig. 3. Dispersion curves corresponding to Lamb waves propagating in the elastic lattice shown in Fig. 2. The lattice has five rows (𝑁 = 4) and free–free boundary conditions.
The labels ‘‘S’’ and ‘‘A’’ indicate symmetric and antisymmetric modes, respectively, corresponding to 𝑘1 = 0.15𝜋 indicated by the dashed line.
Then, the homogeneous system in (17) can be reduced to a 2 × 2 system
for only 𝐶1 and 𝐶2, where the Neumann boundary conditions at either
𝑛 = 0 or 𝑛 = 𝑁 are applied.

Conversely, a mode is antisymmetric if

𝑈 (𝑚,0)
1 = −𝑈 (𝑚−𝑁∕2,𝑁)

1 and 𝑈 (𝑚,0)
2 = 𝑈 (𝑚−𝑁∕2,𝑁)

2 . (26)

The above conditions yield

𝐶3 = −𝛬𝑁
1 𝐶1 and 𝐶4 = −𝛬𝑁

1 𝐶2 (27)

and (15) takes the form

𝑼 (𝑚,𝑛) =
[

𝐶1(𝛬𝑛
1𝑰 − 𝛬𝑁−𝑛

1 𝑿)𝑯
(

𝛬1
)

+ 𝐶2(𝛬𝑛
2𝑰 − 𝛬𝑁−𝑛

2 𝑿)𝑯
(

𝛬2
)]

e−i𝑘1𝑥1 .

(28)

We note similar comments hold for (28) as for (24).
Symmetric and antisymmetric modes can be visualised in Video1(a)–

Video1(j), provided in the Supplementary Material accompanying this
paper. In particular, the videos correspond to a fixed value of the
wavenumber (𝑘1 = 0.15 𝜋) and the associated values of the radian
frequency, calculated from the dispersion diagram in Fig. 3. It is
clear that a harmonic external excitation with a prescribed frequency
generates a response in the system that is a combination of different
modes, since, in the propagating regime 0 ≤ 𝜔 ≲ 𝜔∗, a horizontal line
𝜔 = Const intersects more than one dispersion curve.

2.4.2. Symmetric and antisymmetric modes for odd 𝑁
When 𝑁 is odd, the full symmetry is lost, as while horizontal rows

𝑛 and 𝑁 − 𝑛, with 𝑛 = 0,… , (𝑁 − 1)∕2, are symmetrically placed with
respect to the horizontal line 𝑥2 =

√

3𝑁∕4, the horizontal positions
of the nodes in any two neighbouring rows are separated by 1∕2.
Nevertheless, symmetric and antisymmetric modes propagate within
the lattice.

In particular, symmetric modes are enforced by the conditions

𝑈 (𝑚,0)
1 =

𝑈 (𝑚−(𝑁+1)∕2,𝑁)
1 + 𝑈 (𝑚−(𝑁−1)∕2,𝑁)

1
2

and

𝑈 (𝑚,0)
2 = −

𝑈 (𝑚−(𝑁+1)∕2,𝑁)
2 + 𝑈 (𝑚−(𝑁−1)∕2,𝑁)

2
2

, (29)

for 𝑚 ∈ Z, which engage the arithmetic average displacements between
the two adjacent nodes at 𝑛 = 𝑁 .
5

On the other hand, antisymmetric modes are subjected to the con-
ditions

𝑈 (𝑚,0)
1 = −

𝑈 (𝑚−(𝑁+1)∕2,𝑁)
1 + 𝑈 (𝑚−(𝑁−1)∕2,𝑁)

1
2

and

𝑈 (𝑚,0)
2 =

𝑈 (𝑚−(𝑁+1)∕2,𝑁)
2 + 𝑈 (𝑚−(𝑁−1)∕2,𝑁)

2
2

, (30)

for 𝑚 ∈ Z.
Fig. 1 illustrates a symmetric and an antisymmetric wave in the

lattice strip with odd 𝑁 = 5, i.e. when the structure is not geo-
metrically symmetric about the line 𝑥2 =

√

3𝑁∕4. The symmetric
mode corresponds to a frequency 𝜔 = 0.9499 and wavenumber 𝑘1 =
0.5655, while the antisymmetric one corresponds to 𝜔 = 1.055 and
the same wavenumber 𝑘1 = 0.5655. By comparing the behaviour of
the horizontal chains of the strip in the Figure, it is clear the medium
supports symmetric and antisymmetric modes, even though the sym-
metric and antisymmetric conditions are not strictly satisfied by the
node displacements in a way analogous to the case when 𝑁 is even.

2.5. Asymptotic approximations

In this section we report different continuum approximations of the
discrete structure. Within Section 2.5, we re-introduce the notation
tilde to indicate normalised quantities. Such a notation will be omitted
again from Section 2.6.

2.5.1. Beam approximation in the low-frequency regime
In the long-wave low-frequency limit, the discrete strip behaves like

a homogeneous Euler–Bernoulli beam, whose longitudinal and flexural
motions are described by the dispersion equations

𝜔𝐿 =
√

𝐸
𝜌
|

|

𝑘1|| (31)

and

𝜔𝐹 =

√

𝐸 𝐼tot
𝜌𝐴tot

𝑘21 , (32)

respectively, that involve dimensional quantities. In the formulae
above, 𝐸 and 𝜌 represent the effective Young’s modulus and density
of the beam, while 𝐼 and 𝐴 denote the second moment of area
tot tot
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Fig. 4. Comparison between the normalised dispersion curves for the lattice strip (black dots) and for the beam approximation (grey lines), in the low-frequency, low-wavelength
regime. The dashed lines refer to the flexural waves, while the dot–dashed lines are associated with the longitudinal ones.
𝜔

and the area of the beam’s cross-section. In order to compare the long-
wave behaviours of the discrete strip and of the homogenised beam, we
need to evaluate the constitutive and geometrical quantities introduced
above in terms of the lattice’s parameters.

The effective density is calculated by dividing the mass of each
lattice’s particle by the corresponding area of pertinence, represented
by the grey shaded parallelogram in Fig. 2 (considering a unit thickness
in the out-of-plane direction). Hence, we obtain

𝜌 = 2𝑀
√

3 𝑙2
. (33)

The Lamé parameters of an infinite triangular lattice are given by
𝜆ℎ = 𝜇ℎ =

√

3𝛤∕4 (see Ostoja-Starzewski (2002)). Consequently, the
effective Poisson’s ratio is equal to

𝜈 =
𝜆ℎ

2(𝜆ℎ + 𝜇ℎ)
= 1

4
, (34)

while the effective Young’s modulus is given by

𝐸 =
𝜇ℎ(3𝜆ℎ + 2𝜇ℎ)

𝜆ℎ + 𝜇ℎ
=

5
√

3
8

𝛤 . (35)

Looking at the geometry of the lattice’s structure, the area and
the second moment of area of the beam’s cross-section are evaluated
considering the contributions of the horizontal links, namely

𝐴tot =
𝑁
∑

𝑛=0
𝐴𝑛 = (𝑁 + 1)𝐴 , 𝐼tot ≃ 2

𝑁∕2−1
∑

𝑛=0
𝐴𝑖

[

(𝑁
2

− 𝑛
)

√

3
2

𝑙

]2

= 3
2
𝐴 𝑙2

𝑁∕2−1
∑

𝑛=0

(𝑁
2

− 𝑛
)2

, (36)

where 𝐴𝑛 = 𝐴, the area of a single ligament, and (𝑁∕2 − 𝑛)(
√

3∕2) 𝑙 is
the distance of the 𝑛th link from the lattice’s middle row, the centre of
mass of the ‘‘equivalent beam’’ cross-section. For the lattice shown in
Fig. 2, where 𝑁 = 4, 𝐴tot = 5𝐴 and 𝐼tot = 15𝐴 𝑙2∕2.

Substituting (33), (35) and (36) into (31) and (32), we find the
dispersion relations for the beam approximating the low-frequency
behaviour of the lattice strip with five rows. Using the normalisation
in Section 2.1, we obtain:

𝜔̃𝐿 =

√

15
4

|

|

𝑘̃1|| and 𝜔̃𝐹 =
3
√

5

4
√

2
𝑘̃21 . (37)

The dispersion relations (37) are plotted in Fig. 4 with intermittent
grey lines. In particular, the dashed (dot–dashed) lines correspond to
the asymmetric flexural (symmetric longitudinal) waves propagating
6

in the beam. Conversely, the black dots are the solutions of the Lamb
problem in the discrete strip (see also Fig. 3). We highlight the excel-
lent agreement between the dynamic responses of the lattice and the
homogeneous beam when 𝑘̃1 → 0.

2.5.2. Homogenisation approximation for the lattice strip
If the width of the lattice strip is fixed and 𝑁 → ∞, the considered

structured system approximates the continuum elastic strip with free
boundaries. We assume that the total width of the strip is

√

3𝑑∕2,
with 𝑑 > 0. It follows that the associated link length in the structure
is 𝑑∕𝑁 . The density in terms of the lattice parameters is given by
𝜌 = 2𝑀𝑁2∕

√

3𝑑2 and 𝜆ℎ = 𝜇ℎ =
√

3𝛤∕4 as in Section 2.5.1. In this
case, the normalised frequency and wavenumber as in (37) are related
to the equivalent parameters of the continuum strip by

̃ =
√

𝑀
𝛤

𝜔ℎ = 𝑂(𝑁−1) , 𝑘̃1 =
𝑑
𝑁

𝑘ℎ , (38)

respectively. The classical dispersion curves for Lamb waves in a contin-
uous strip, having width 𝐷 =

√

3𝑑∕2, are identified as follows (see Graff
(1975)). For symmetric modes, they are found as solutions of

tanh(𝛾𝑠𝐷∕2)
tanh(𝛾𝑝𝐷∕2)

−
4𝛾𝑠𝛾𝑝𝑘2ℎ

(𝑘2ℎ + 𝛾2𝑠 )2
= 0 , (39)

where

𝛾2𝑝 = 𝑘2ℎ −
𝜔2
ℎ

𝑐2𝑝
, 𝛾2𝑠 = 𝑘2ℎ −

𝜔2
ℎ

𝑐2𝑠
, (40)

with

𝑐𝑠 =
√

𝜇ℎ
𝜌

and 𝑐𝑠 =

√

𝜆ℎ + 2𝜇ℎ
𝜌

. (41)

The associated solutions are shown as black curves in Fig. 5 and
labelled with ‘‘S’’. Here, the computations have been performed for a
continuum strip with width 𝑑 = 1 m, density 𝜌 = 1 kg m−3 and Lamé
parameters 𝜆ℎ = 𝜇ℎ =

√

3∕4 Pa. Conversely, antisymmetric modes for
the continuum strip are determined from

tanh(𝛾𝑠𝐷∕2)
tanh(𝛾𝑝𝐷∕2)

−
(𝑘2ℎ + 𝛾2𝑠 )

2

4𝛾𝑠𝛾𝑝𝑘2ℎ
= 0 (42)

and they are shown as grey lines in Fig. 5 and labelled with ‘‘A’’.
In particular, using the asymptotic model discussed in Section 2.5.1,

the lowest two curves found from (39) and (42) can be approximated
by (31) and (32) when taking 𝑁 → ∞. In this limit, we obtain the
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Fig. 5. Dispersion diagram for a homogeneous continuum strip, with frequency and wavenumber parameters 𝜔ℎ and 𝑘ℎ, respectively, based on (39) (black curves) and (42) (grey
curves). The two lowest curves are approximated by the functions in (43) (dashed lines) and higher curves (red crosses) by the asymptotics of the dispersion relation obtained
from (17) as in (44). The continuum strip is assumed to have width 𝑑 = 1 m, density 𝜌 = 1 kg m−3 and the Lamé parameters 𝜆ℎ = 𝜇ℎ =

√

3∕4 Pa. See Section 2.5.2 for more details.
dispersion curves:

𝜔𝐿
ℎ =

√

𝐸
𝜌
|𝑘ℎ| and 𝜔𝐹

ℎ = 𝑑
4

√

𝐸
𝜌
𝑘2ℎ , (43)

as 𝐼tot = 𝐴tot𝑑2∕16, while the Young’s modulus is given by (35).
High-frequency dispersion curves are then easily traceable from

the asymptotics of the dimensionless dispersion relation of (17) when
𝑁 → ∞. For 𝑘̃1 → 0, the dispersion relation admits the asymptotic
representation

det(𝑩FF) ∼
3
∑

𝑗=0
𝑇𝑗 (𝜔̃)𝑘̃

2(𝑗−1)
1 , (44)

where 𝑩FF is defined in (18) and the coefficients 𝑇𝑗 in this expansion
are not reported here for brevity. We then insert (38) into the leading
term in the above right-hand side and allow 𝑁 → ∞. The resulting
leading order term is then taken and equated to zero to find the approx-
imations to high-frequency dispersion curves in terms of dimensional
variables.

The associated results appear as red crosses in Fig. 5. We note
the excellent agreement between the behaviour of the curves based
on (39), (42) and (43) and the asymptotics of the dispersion relation
based on (17). The computations of Fig. 5 show the strip can be
approximated by an Euler–Bernoulli beam at low-frequencies, whereas
at higher frequencies the overall behaviour of the dense lattice strip is
engaged in determining the motion of the system.

2.6. Dependence of the dispersion diagram on the number of rows

The number of dispersion curves, equal to 2(𝑁+1), increases linearly
with the number of lattice’s rows.

In order to demonstrate the statement above with numerical exam-
ples, in Fig. 6(a) and (b) we have reported the dispersion diagrams for
a lattice with seven rows (𝑁 = 6) and nine rows (𝑁 = 8), respectively.
Comparing Figs. 3 and 6, we observe that the threshold frequency 𝜔∗

of the semi-infinite stop-band increases with 𝑁 slightly: 𝜔∗ = 2.3932 for
𝑁 = 4, 𝜔∗ = 2.4196 for 𝑁 = 6 and 𝜔∗ = 2.4312 for 𝑁 = 8. Hence, the
additional curves appearing with increasing 𝑁 cluster inside the almost
unaltered pass-band of the system.

In the limit when 𝑁 → ∞, if the distance between the rows is kept
fixed, Lamb waves degenerate into Rayleigh waves, localised near the
boundaries. From a physical point of view, this is obvious since the
strip becomes a semi-infinite lattice structure occupying the domain
7

𝑥2 ≥ 0. From a mathematical point of view, when 𝑁 becomes large,
the rank of the system 𝑩FF reduces to 2, providing the conditions for
the coefficients 𝐶3 and 𝐶4 to be set to zero to eliminate the exponential
growth in the constructed solution (15) as 𝑁 → ∞ (as |𝛬𝑗 | < 1, 𝑗 = 1, 2,
in the problem for Rayleigh waves). To see this, first we recall the
following relationships

ℎ(𝛬−1) = −ℎ(𝛬) and 𝑩U(𝛬−1)𝑯(𝛬−1) = 𝑿𝑩L(𝛬)𝑯(𝛬) (45)

and insert them into (18). From there, the coefficients 𝐶𝑗 , 𝑗 = 1,… , 4,
can be obtained by analysing the degeneracies of the matrix

𝑩FF =

⎛

⎜

⎜

⎜

⎝

𝑸(𝛬1 , 𝛬2) 𝑸(𝛬−1
1 , 𝛬−1

2 )

𝑶 𝑸(𝛬1 , 𝛬2)𝜦−𝑁 −𝑸(𝛬−1
1 , 𝛬−1

2 )𝜦𝑁 [𝑸(𝛬1 , 𝛬2)]−1𝑸(𝛬−1
1 , 𝛬−1

2 )

⎞

⎟

⎟

⎟

⎠

, (46)

where 𝑶 is the zero 2 × 2-submatrix,

𝑸(𝛬1, 𝛬2) = [𝑩L(𝛬1)𝑯(𝛬1),𝑩L(𝛬2)𝑯(𝛬2)] and 𝜦 = diag(𝛬1, 𝛬2) .

(47)

When 𝑁 → ∞, 𝜦𝑁 → 𝑶, the system (17) can be reduced to the
equivalent form
(

𝑸(𝛬1, 𝛬2) 𝑸(𝛬−1
1 , 𝛬−1

2 )

𝑶 𝑸(𝛬1, 𝛬2)𝜦−𝑁

)

𝑪 = 𝟎 . (48)

Considering that det(𝜦) ≠ 0, the degenerate frequencies and wavenum-
bers of this system are then found from

det
[

𝑸(𝛬1, 𝛬2)
]

= 0 . (49)

Here, 𝑸(𝛬1, 𝛬2) provides the eigensolutions associated with the Rayleigh
waves propagating in the neighbourhood of the lower boundary (𝑛 = 0)
in the lattice half-plane. This matrix function is also given in Slepyan
(2002). The coefficients 𝐶𝑗 , 𝑗 = 1,… , 4, are not uniquely determined,
but they can be derived setting 𝐶3 = 𝐶4 = 0, based on physical
considerations.

2.7. Different boundary conditions

The approach presented above can be applied to analyse wave prop-
agation in lattice strips with different constraints on the boundary. In
the following, we briefly describe the case of Dirichlet and mixed-type

boundary conditions.
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Fig. 6. Dispersion curves associated with Lamb waves for homogeneous triangular lattices with free–free boundary conditions, having (a) 𝑁 = 6 and (b) 𝑁 = 8. The labels ‘‘S’’
and ‘‘A’’ indicate symmetric and antisymmetric modes, respectively.
2.7.1. Clamped–clamped boundary conditions

Now we assume that null Dirichlet conditions are applied at the
boundaries of the lattice. Therefore, we impose:

𝑼 (𝑚,0) = 𝟎 for 𝑛 = 0 , (50a)

𝑼 (𝑚,𝑁) = 𝟎 for 𝑛 = 𝑁 . (50b)

After substituting (2) and (15) into (50), we obtain the following
homogeneous system:

𝑩CC 𝑪 = 𝟎 , (51)

where

𝑩CC =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

1 1 1 1

ℎ
(

𝛬1
)

ℎ
(

𝛬2
)

ℎ
(

𝛬−1
1
)

ℎ
(

𝛬−1
2
)

𝛬𝑁
1 𝛬𝑁

2 𝛬−𝑁
1 𝛬−𝑁

2

𝑁 ( ) 𝑁 ( ) −𝑁 ( −1) −𝑁 ( −1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

, (52)
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⎝𝛬1 ℎ 𝛬1 𝛬2 ℎ 𝛬2 𝛬1 ℎ 𝛬1 𝛬2 ℎ 𝛬2
⎠

while 𝑪 is the vector of unknown coefficients given by (19). The
subscript ‘‘CC’’ in (52) indicates that the boundary conditions are of
the ‘‘clamped–clamped’’ type in this scenario.

Non-trivial solutions are determined from the condition that
det (𝑩CC) = 0. This leads to the dispersion curves plotted in Fig. 7(a),
where a lattice with five rows has been considered. Since the nodes
along the lowest and upper rows are constrained, the total number of
dispersion curves is 2(𝑁 − 1) (six in the case examined in Fig. 7(a)).
Further, we note that the constraints at the boundaries cause the
appearance of a low-frequency stop-band, namely waves cannot propa-
gate through the discrete strip in the frequency range below the lowest
dispersion curves.

2.7.2. Clamped–free boundary conditions
Finally, we consider mixed boundary conditions, namely zero dis-

placements in the nodes located along the lowest row (𝑛 = 0) and free
conditions in the upper row (𝑛 = 𝑁) of the lattice:

𝑼 (𝑚,0) = 𝟎 for 𝑛 = 0 ,

𝒂(2) ⋅
(

𝑼 (𝑚−1,𝑁+1) − 𝑼 (𝑚,𝑁))𝒂(2)

+ 𝒂(3) ⋅
(

𝑼 (𝑚,𝑁+1) − 𝑼 (𝑚,𝑁))𝒂(3) = 𝟎 for 𝑛 = 𝑁 . (53)
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Fig. 7. Dispersion curves for the homogeneous triangular lattice with (a) clamped–clamped and (b) clamped–free boundary conditions. In both figures, 𝑁 = 4.
𝑩CF =
⎛

⎜

⎜

⎝

𝑯(𝛬1) 𝑯(𝛬2) 𝑯(𝛬−1
1 ) 𝑯(𝛬−1

2 )

𝛬𝑁
1 𝑩U(𝛬1)𝑯(𝛬1) 𝛬𝑁

2 𝑩U(𝛬2)𝑯(𝛬2) 𝛬−𝑁
1 𝑩U(𝛬−1

1 )𝑯(𝛬−1
1 ) 𝛬−𝑁

2 𝑩U(𝛬−1
2 )𝑯(𝛬−1

2 )

⎞

⎟

⎟

⎠

(55)

Box II.
In this case, the homogeneous system has the form

𝑩CF 𝑪 = 𝟎 , (54)

where 𝑩CF (Eq. (55)) is given in Box II with 𝑩U given in (20b).
The dispersion curves for clamped–free boundary conditions and

𝑁 = 4 are shown in Fig. 7(b). In this case, the number of curves is
equal to 2𝑁 . A low-frequency stop-band is still present, but its size
is smaller than that for the lattice with clamped–clamped boundary
conditions, reported in part (a) of the same figure. Comparing the
dispersion curves in Fig. 6(b), corresponding to a lattice with 𝑁 = 8
and free–free boundary conditions, and those in Fig. 7(b), we observe
that some frequencies are coincident. These frequencies are associated
9

with eigenmodes of the lattice with 𝑁 = 8 that have zero displacements
at the nodes positioned in the central row (𝑛 = 𝑁∕2 = 4).

3. Diatomic triangular lattice

In this section, we consider a triangular lattice with two types of
particles, having masses 𝑀 and 𝜇𝑀 , arranged as in a laminated strip
(see Fig. 8). The length and the stiffness of each link are equal to 𝐿
and 𝛤 , respectively, as in Section 2. Free–free boundary conditions are
assumed throughout this section. The displacement vectors associated
with masses 𝑀 and 𝜇𝑀 are denoted by 𝒖 and 𝒗, respectively. As for
the monatomic lattice analysed in Section 2, we assume that 𝑁 is an
even number.
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Fig. 8. Two-dimensional periodic lattice strip, consisting of two types of particles. Free–free boundary conditions are considered. The elementary cell of the system is highlighted
in grey colour.
3.1. Eigensolutions for Lamb waves in the diatomic lattice

Following a similar procedure presented above for the monoatomic
lattice, in the following we determine the eigensolutions for the time-
harmonic problem, starting from the governing equations in the bulk
and obtaining the relative eigensolutions by imposing the boundary
conditions.

3.1.1. Equations for the diatomic lattice’s bulk
The governing equations for the particles belonging to the interior

of the diatomic lattice (0 < 𝑛 < 𝑁) are expressed by

𝑀 𝒖̈(𝑚,𝑛) = 𝛤
[

𝒂(1) ⋅
(

𝒖(𝑚+1,𝑛) + 𝒖(𝑚−1,𝑛) − 2𝒖(𝑚,𝑛)
)

𝒂(1)

+𝒂(2) ⋅
(

𝒗(𝑚−1,𝑛+1) + 𝒗(𝑚+1,𝑛) − 2𝒖(𝑚,𝑛)
)

𝒂(2)

+ 𝒂(3) ⋅
(

𝒗(𝑚,𝑛+1) + 𝒗(𝑚,𝑛) − 2𝒖(𝑚,𝑛)
)

𝒂(3)
]

,

(56a)

𝜇𝑀 𝒗̈(𝑚,𝑛) = 𝛤
[

𝒂(1) ⋅
(

𝒗(𝑚+1,𝑛) + 𝒗(𝑚−1,𝑛) − 2𝒗(𝑚,𝑛)
)

𝒂(1)

+𝒂(2) ⋅
(

𝒖(𝑚−1,𝑛) + 𝒖(𝑚+1,𝑛−1) − 2𝒗(𝑚,𝑛)
)

𝒂(2)

+ 𝒂(3) ⋅
(

𝒖(𝑚,𝑛) + 𝒖(𝑚,𝑛−1) − 2𝒗(𝑚,𝑛)
)

𝒂(3)
]

,

(56b)

where the vectors 𝒂(𝑗) (𝑗 = 1, 2, 3) are given in (2) (see also Fig. 8).
Normalising the equations above as in Eq. (4) and considering time-

harmonic conditions (refer to (3)), with the addition 𝒗 = 𝐿𝒗̃ and
𝑽 = 𝐿𝑽̃ we obtain:
𝜔2𝑼 (𝑚,𝑛) +𝒂(1) ⋅

(

𝑼 (𝑚+1,𝑛) + 𝑼 (𝑚−1,𝑛) − 2𝑼 (𝑚,𝑛))𝒂(1)

+𝒂(2) ⋅
(

𝑽 (𝑚−1,𝑛+1) + 𝑽 (𝑚+1,𝑛) − 2𝑼 (𝑚,𝑛))𝒂(2)

+𝒂(3) ⋅
(

𝑽 (𝑚,𝑛+1) + 𝑽 (𝑚,𝑛) − 2𝑼 (𝑚,𝑛))𝒂(3) = 𝟎 ,
(57a)

𝜇𝜔2𝑽 (𝑚,𝑛) +𝒂(1) ⋅
(

𝑽 (𝑚+1,𝑛) + 𝑽 (𝑚−1,𝑛) − 2𝑽 (𝑚,𝑛))𝒂(1)
+𝒂(2) ⋅

(

𝑼 (𝑚−1,𝑛) + 𝑼 (𝑚+1,𝑛−1) − 2𝑽 (𝑚,𝑛))𝒂(2)
+𝒂(3) ⋅

(

𝑼 (𝑚,𝑛) + 𝑼 (𝑚,𝑛−1) − 2𝑽 (𝑚,𝑛))𝒂(3) = 𝟎 ,
(57b)

where 𝑼 and 𝑽 are the displacement amplitude vectors. Note that, as
before, we avoid the tilde atop of the dimensionless variables for ease
of notation.

Employing the ansatz

𝑼 (𝑚,𝑛) = 𝛬𝑛𝑯e−i𝑘1(𝑚+𝑛) , (58a)

𝑽 (𝑚,𝑛) = 𝛬𝑛𝑳e−i𝑘1(𝑚+𝑛) , (58b)

with 𝑯 = (𝐻1,𝐻2)𝑇 and 𝑳 = (𝐿1, 𝐿2)𝑇 , and following algebraic
simplifications, the system (57) takes the form

𝑺 𝑱 = 𝟎 , (59)

where 𝑺 (Eq. (60)) is given in Box III and 𝑱 = (𝑯 ,𝑳)T.
The condition det (𝑺) = 0 leads to a 4th-order equation in 𝛬, whose

solutions are
√

𝜂2 − 1 , (61a)
10

𝛬1,3 = 𝜂𝑎 ± 𝑎
𝛬2,4 = 𝜂𝑏 ±
√

𝜂2𝑏 − 1 , (61b)

where

𝜂𝑎,𝑏 = 𝑝 ±
√

𝑝2 − 𝑞 (62)

and the coefficients 𝑝 and 𝑞 are in this case given by

𝑝 = 1
18

{

−18 + 4𝜇𝜔4 + (4𝜔2 − 9)(4𝜇𝜔2 − 9) cos (𝑘1)

+6
[

2(1 + 𝜇)𝜔2 − 9
]

cos (2𝑘1) + 9 cos (3𝑘1)
}

,
(63a)

𝑞 = 1
18

{

549 − 396(1 + 𝜇)𝜔2 + 8 [9 + 𝜇(34 + 9𝜇)]𝜔4 − 48𝜇(1 + 𝜇)𝜔6

+8𝜇2𝜔8

+2
[

−351 + 204(1 + 𝜇)𝜔2 − 4(6 + 25𝜇 + 6𝜇2)𝜔4 + 8𝜇(1 + 𝜇)𝜔6]

× cos (𝑘1)

+
[

189 − 60(1 + 𝜇)𝜔2 + 16𝜇𝜔4] cos (2𝑘1) − 18 cos (3𝑘1)
}

.

(63b)

We note that 𝛬3 = 𝛬−1
1 and 𝛬4 = 𝛬−1

2 .
Accordingly, the displacement amplitude vectors can be written as

𝑼 (𝑚,𝑛) =
[

𝐶1𝛬𝑛
1𝑯

(

𝛬1
)

+ 𝐶2𝛬𝑛
2𝑯

(

𝛬2
)

+ 𝐶3𝛬−𝑛
1 𝑯

(

𝛬−1
1
)

+𝐶4𝛬−𝑛
2 𝑯

(

𝛬−1
2
)]

e−i𝑘1(𝑚+𝑛) ,
(64a)

𝑽 (𝑚,𝑛) =
[

𝐶1𝛬𝑛
1𝑳

(

𝛬1
)

+ 𝐶2𝛬𝑛
2𝑳

(

𝛬2
)

+ 𝐶3𝛬−𝑛
1 𝑳

(

𝛬−1
1
)

+𝐶4𝛬−𝑛
2 𝑳

(

𝛬−1
2
)]

e−i𝑘1(𝑚+𝑛) ,
(64b)

where 𝐶𝑗 (𝑗 = 1,… , 4) are unknown coefficients. We can take 𝑯 =
(

1, ℎ2
)T and 𝑳 =

(

𝑙1, 𝑙2
)T, where the components ℎ2, 𝑙1 and 𝑙2 are

determined from the system (59) as:

ℎ2(𝛬) = −

√

3
4

(𝛬 − 1)(𝑒−i𝑘1 − 1)
𝜔2 − 3

𝑙1(𝛬) −
3
4
(𝛬 + 1)(𝑒−i𝑘1 + 1)

𝜔2 − 3
𝑙2(𝛬) ,

𝑙1(𝛬) = −
3
√

3i
8

(𝛬 − 𝛬−1) sin(𝑘1)
𝜉(𝛬)

𝑙2(𝛬) −
1
4
(𝜔2 − 3)(𝛬−1 + 1)(𝑒i𝑘1 + 1)

𝜉(𝛬)
,

𝑙2(𝛬) =
2
√

3(𝜔2 − 3){3i(𝛬−1 + 1)(𝛬 − 𝛬−1)(𝑒i𝑘1 + 1) sin(𝑘1) − 8(𝛬−1 − 1) 𝜉(𝛬)(𝑒i𝑘1 − 1)}

64{(𝜔2 − 3)(𝜇𝜔2 − 3) − 9
4
(𝛬 + 𝛬−1 + 2) cos2(𝑘1∕2)} 𝜉(𝛬) + 27 sin2(𝑘1)(𝛬 − 𝛬−1)2

,

(65)

with

𝜉(𝛬) = (𝜔2 − 3)(𝜇𝜔2 + 2 cos(𝑘1) − 3) − 3
4
(2 − 𝛬 − 𝛬−1) sin2(𝑘1∕2) . (66)

3.1.2. Conditions for the diatomic lattice’s free boundaries
Following the procedure outlined in Section 2.3, at the lattice’s free

boundaries, we obtain that the following conditions hold:

𝒂(2) ⋅
(

𝑽 (𝑚+1,0) − 𝑼 (𝑚,0))𝒂(2)
+𝒂(3) ⋅

(

𝑽 (𝑚,0) − 𝑼 (𝑚,0))𝒂(3) = 𝟎 for 𝑛 = 0 ,
(67a)

𝒂(2) ⋅
(

𝑽 (𝑚−1,𝑁+1) − 𝑼 (𝑚,𝑁))𝒂(2)
(3) ( (𝑚,𝑁+1) (𝑚,𝑁)) (3) (67b)
+𝒂 ⋅ 𝑽 − 𝑼 𝒂 = 𝟎 for 𝑛 = 𝑁 .



European Journal of Mechanics / A Solids xxx (xxxx) xxxG. Carta et al.
𝑺 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜔2 + 2 cos (𝑘1) − 3 0 1
4 (𝛬 + 1)(e−i𝑘1 + 1)

√

3
4 (𝛬 − 1)(e−i𝑘1 − 1)

0 𝜔2 − 3
√

3
4 (𝛬 − 1)(e−i𝑘1 − 1) 3

4 (𝛬 + 1)(e−i𝑘1 + 1)

1
4 (𝛬

−1 + 1)(ei𝑘1 + 1)
√

3
4 (𝛬−1 − 1)(ei𝑘1 − 1) 𝜇𝜔2 + 2 cos (𝑘1) − 3 0

√

3
4 (𝛬−1 − 1)(ei𝑘1 − 1) 3

4 (𝛬
−1 + 1)(ei𝑘1 + 1) 0 𝜇𝜔2 − 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(60)

Box III.
Fig. 9. Dispersion curves for the diatomic lattice sketched in Fig. 8, having five rows and free–free boundary conditions. Here, the mass ratio is 𝜇 = 10.0.
After algebraic manipulations, we arrive at the homogeneous system

𝑻 FF 𝑪 = 𝟎 , (68)

where the vector of unknowns is 𝑪 =
(

𝐶1, 𝐶2, 𝐶3, 𝐶4
)T and the coeffi-

cients matrix is given by

𝑻 FF =

⎛

⎜

⎜

⎝

𝑻 L𝑱 (𝛬1) 𝑻 L𝑱 (𝛬2) 𝑻 L𝑱 (𝛬−1
1 ) 𝑻 L𝑱 (𝛬−1

2 )

𝛬𝑁
1 𝑻 U(𝛬1)𝑱 (𝛬1) 𝛬𝑁

2 𝑻 U(𝛬2)𝑱 (𝛬2) 𝛬−𝑁
1 𝑻 U(𝛬−1

1 )𝑱 (𝛬−1
1 ) 𝛬−𝑁

2 𝑻 U(𝛬−1
2 )𝑱 (𝛬−1

2 )

⎞

⎟

⎟

⎠

.

(69)

Here, 𝑱 =
(

1, ℎ2, 𝑙1, 𝑙2
)T,

𝑻 L =

(

−2 0 1 + e−i𝑘1
√

3
(

1 − e−i𝑘1
)

0 −2
√

3 1 − e−i𝑘1
√

3
(

1 + e−i𝑘1
)

)

, (70a)

𝑻 U(𝛬𝑗 ) =

(

−2 0
(

e−i𝑘1 + 1
)

𝛬𝑗
√

3
(

e−i𝑘1 − 1
)

𝛬𝑗

0 −2
√

3
(

e−i𝑘1 − 1
)

𝛬𝑗
√

3
(

e−i𝑘1 + 1
)

𝛬𝑗

)

. (70b)

3.2. Dispersion diagrams

Imposing det (𝑻 FF) = 0, we derive several solutions for the radian
frequency 𝜔 as functions of the wavenumber 𝑘1, which represent the
dispersion curves for the diatomic lattice with free–free boundary
conditions. The dispersion diagram for a mass ratio 𝜇 = 10.0 and five
rows (𝑁 = 2) is shown in Fig. 9.

The number of dispersion curves is twice the number of rows, as for
the monatomic lattice studied in Section 2. Differently from the latter,
11
the dispersion diagram in Fig. 9 contains an internal stop-band, whose
width can be expanded by increasing the mass ratio 𝜇. In addition,
we notice the presence of two pairs of flat bands, each pair being
characterised by two nearly coincident curves.

3.2.1. Eigenmodes
Here, we describe interesting modes of vibrations, evaluated at some

important points of the dispersion diagram.
We start from investigating the limits of the internal band-gap.

The eigenmode determined at (𝑘1, 𝜔) = (0, 0.738), indicated by ‘‘a’’ in
Fig. 9, is illustrated in Video2(a) of the Supplementary Material. At this
particular value of the frequency and wavenumber, the vibrations are
mainly confined in the rows where the smaller masses are positioned;
moreover, the particles move only in the horizontal direction. On the
other hand, in the lower limit of the internal stop-band where (𝑘1, 𝜔) =
(𝜋, 0.656) (point ‘‘b’’ in Fig. 9), the eigenmode is such that the nodal
points in the central row (𝑛 = 2) remain almost fixed, while in the
other rows the small (big) masses displace vertically (horizontally) (see
Video2(b)).

Next, we examine the vibrations at some frequencies belonging
to the flat bands. In the lower one (see point ‘‘c’’ in Fig. 9), where
(𝑘1, 𝜔) = (4𝜋∕5, 1.25) the small masses at the boundaries move in
the vertical direction, while all the particles in the other three rows
undergo displacements of relative negligible amplitude (see Video2(c)).
Conversely, in the upper flat band (in particular at point ‘‘d’’, where
(𝑘1, 𝜔) = (4𝜋∕5, 1.75)) the vibrations are mainly confined in the central
row, where the particles move again in the vertical direction (see
Video2(d)).
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Fig. 10. Same as in Fig. 9, but for a mass ratio equal to 𝜇 = 0.1.
3.2.2. Lattice with 𝜇 < 1
In order to better understand the dynamic features of the diatomic

lattice, we consider a discrete system where bigger and smaller masses
are swapped with respect to the scenario shown in Fig. 8. In particular,
we take 𝜇 = 0.1, which is the reciprocal value of the mass ratio
considered in the previous sections.

The dispersion curves for this value of the mass ratio are shown in
Fig. 10. We notice that the frequencies are larger than those in Fig. 9,
because the total mass of the particles within the elementary cell is
smaller. An internal stop-band still appears, due to the high contrast of
the masses of the diatomic lattice.

It is interesting to look at the eigenmodes for 𝜇 = 0.1 and compare
them with those calculated for 𝜇 = 10.0, discussed in Section 3.2.1.
In the upper limit of the internal stop-band (point ‘‘a’’ in Fig. 10,
corresponding to (𝑘1, 𝜔) = (0, 3.203)), vibrations are confined in the
rows where smaller masses are located and the motion occurs in the
horizontal direction (see Video3(a)); this is analogous to what observed
for 𝜇 = 10.0 (see Video2(a)). In the lower limit of the internal stop-band
(point ‘‘b’’ in Fig. 10, where (𝑘1, 𝜔) = (𝜋, 2.176)) bigger masses vibrate
horizontally, while smaller masses move vertically (see Video3(b)),
as for 𝜇 = 10.0 (see Video2(b)). In the flat band (see, for example,
point ‘‘c’’ in Fig. 10, whose coordinates are (𝑘1, 𝜔) = (4𝜋∕5, 5.52)),
only smaller masses move significantly and their trajectories are in the
vertical direction (see Video3(c)), in agreement with what found for
𝜇 = 10.0 (see Video2(c) and Video2(d)). In the present case, however,
there is only one flat band, because there are no other rows with smaller
masses (on the other hand, for 𝜇 = 10.0 there are two flat bands because
motion can be localised in either the boundary rows or in the central
row, where smaller masses are).

We note that, in both cases 𝜇 ≷ 1, the above mentioned eigenmodes
display remarkable behaviours since the trajectories of nodes are uni-
directional in contrast with the motions of the boundary points for the
classical solutions of both Lamb and Rayleigh waves in a continuum
or discrete solid; in such cases the trajectories are ellipsoidal. A similar
property can be obtained, both in continuum and discrete solids with
the introduction of a gyroscopic effect, as shown by Nieves et al.
(2020).
12
3.2.3. Dependence of the dispersion properties on the mass ratio 𝜇
The presence of an internal band-gap in the dispersion diagram

clearly depends on the mass ratio 𝜇. In particular, we have noticed that,
for 𝜇 ≥ 1, the internal band-gap appears when the fifth frequency at
𝑘1 = 0 becomes larger than the fourth frequency at 𝑘1 = 𝜋. Therefore,
we have performed a parametric analysis, where we have calculated the
radian frequencies at 𝑘1 = 0 and 𝑘1 = 𝜋 for 1 ≤ 𝜇 ≤ 15. The results are
shown in Fig. 11. The region coloured in grey represents the internal
band-gap, which appears when 𝜇 > 7.519.

The evolution of the dispersion diagram for increasing values of
the mass ratio is shown in Fig. 12. In particular, three values of the
mass ratio have been considered: 𝜇 = 2.5, 5.0, 7.519 (we recall that the
dispersion curves for 𝜇 = 10.0 have been reported in Fig. 9). We note
that for small values of 𝜇 (e.g., 𝜇 = 2.5 in part (a)) the maximum
of the fourth dispersion curve is not found at 𝑘1 = 𝜋. However, for
𝜇 > 5.0, for which an internal stop-band has not appeared yet (see part
(b)), the maximum of the fourth dispersion curve is located at 𝑘1 = 𝜋.
For 𝜇 = 7.519, the fourth frequency at 𝑘1 = 𝜋 coincides with the fifth
frequency at 𝑘1 = 0 (see part (c)). Hence, when 𝜇 > 7.519 an internal
band-gap appears and its width increases as the mass ratio 𝜇 becomes
larger.

4. Application: one-way wave propagation in discrete strips

In this section, we show how mode conversion and selection can
be exploited to force waves to travel in a single direction (Zhu et al.,
2010).

To this aim, we consider two periodic lattices made of two types
of masses, whose ratio is denoted by 𝜇 as in Section 3. The unit cells
of the two periodic diatomic lattices are sketched in the insets on the
bottom part of Fig. 13. We note that the width of these unit cells is
twice the width of the periodic cells in Figs. 2 and 8. In part (a) (part
(b)) of Fig. 13 an antisymmetric (symmetric) lattice is analysed. The
corresponding dispersion curves, obtained numerically, are reported on
the top diagrams of Fig. 13 in the range 0 ≤ 𝜔 ≤ 1.6.

The dispersion curves for the antisymmetric lattice in Fig. 13(a)
are associated with hybrid modes, represented as combinations of

symmetric and antisymmetric modes. Conversely, the symmetric lattice
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Fig. 11. Radian frequencies 𝜔 evaluated at 𝑘1 = 0 (black dots) and 𝑘1 = 𝜋 (grey crosses), as functions of the mass ratio 𝜇.

Fig. 12. Dispersion curves calculated for the diatomic lattice with 𝑁 = 2, free–free boundary conditions and (a) 𝜇 = 2.5, (b) 𝜇 = 5.0, (c) 𝜇 = 7.519. The horizontal dot–dashed and
dashed lines represent the fourth and fifth frequencies computed at 𝑘1 = 𝜋 and 𝑘1 = 0, respectively.
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Fig. 13. Dispersion curves (top) corresponding to the periodic unit cells (bottom) for the (a) antisymmetric and (b) symmetric lattices. The ratio between bigger and smaller
masses is given by 𝜇 = 10.0. The horizontal dashed lines in the dispersion diagrams indicate the frequencies of the time-harmonic loads considered in the forced problems, discussed
in the following.
in Fig. 13(b) is characterised by either symmetric or antisymmetric
modes.

Now we consider a finite structure made of an anti-symmetric and
a symmetric lattice joined together, as shown in Fig. 14(a) and (c). The
interface between the two lattices is represented by a dashed line. PML
(Perfectly Matched Layers) are introduced near the ends of the strip to
avoid wave reflection at the left and right boundaries. In part (a), an
antisymmetric time-harmonic load is applied at the left of the structure.
Its frequency is given by 𝜔 = 1.25. Referring to Fig. 13, this frequency
intersects a hybrid mode in the antisymmetric lattice (part (a)) and
a symmetric mode in the symmetric lattice (part (b)). Therefore, the
wave generated by the antisymmetric load becomes hybrid when trav-
elling through the antisymmetric lattice; when it reaches the symmetric
lattice, only the symmetric component propagates. Consequently, the
wave is allowed to propagate in the forward direction (from the left to
the right of the strip), as shown in part (b).
14
On the other hand, in part (c) the same load is applied near the
right end of the strip. Being antisymmetric, it cannot propagate through
the symmetric lattice since that frequency corresponds to a symmetric
mode. Hence, the wave is localised near the point of application of the
load and cannot propagate in the backward direction (namely from
the right to the left), as demonstrated by the response of the system
reported in part (d). Using mode conversion and selection, we have
designed a discrete strip which sustains one-way wave propagation, in
the same spirit as the continuous phononic crystals presented in Zhu
et al. (2010).

A similar behaviour can be obtained by imposing a symmetric load.
In this case, we need to choose a frequency that intersects a hybrid
mode in the antisymmetric lattice and an antisymmetric mode in the
symmetric one. In particular, we take 𝜔 = 0.96 (refer to Fig. 13). When
the symmetric load is applied at the left of the strip (see Fig. 15(a)), it
excites a hybrid mode so that the ensuing wave propagates through
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Fig. 14. (a,c) Structure made of an antisymmetric lattice (left) and a symmetric lattice (right), whose unit cells are detailed in (a). An antisymmetric time-harmonic load of
frequency 𝜔 = 1.25 is imposed at the (a) left and (c) right of the strip, as indicated by the arrows. PML are inserted in proximity of the ends of the structure. (b,d) Displacement
fields resulting from the loading conditions in (a,c), respectively.
Fig. 15. Same finite structure as in Fig. 14, but considering a symmetric load having frequency 𝜔 = 0.96.
the antisymmetric lattice. When it reaches the interface, only the
antisymmetric part travels through the symmetric lattice, reaching the
right end of the strip (see Fig. 15(b)). Conversely, when the symmetric
load is imposed near the right end of the finite structure (see Fig. 15(c)),
it cannot travel through the symmetric lattice because at that frequency
only antisymmetric modes can be activated. As a consequence, the
wave remains confined near the application point of the load (see
Fig. 15(d)).

5. Conclusions

We have studied the dispersion features of Lamb waves in both
monatomic and diatomic lattice strips. For both cases, we have derived
analytically the dispersion equations.
15
For monatomic lattices, we have shown how to characterise sym-
metric and antisymmetric eigenmodes, identifying them in the disper-
sion diagram. In addition, we have found that the number of dispersion
curves is a linear function of the number of rows within the strip
and that it also depends on the imposed conditions at the bound-
aries. In particular, we have considered free–free, clamped–clamped
and clamped–free boundary conditions. In the low-frequency long-
wave limit, we have obtained agreement with the continuum beam
equations, describing the motion of longitudinal and flexural waves.

Regarding the diatomic lattice, we have proved the existence of an
internal band-gap, that appears for large values of the ratio between
the masses of the two types of particles. Moreover, we have observed
the presence of flat bands in the dispersion diagram, corresponding to
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resonant modes. The analysis of the eigenmodes, evaluated at specific
values of the frequency, has helped us detect interesting modes of
vibrations of the microstructured strip, which evidence unidirectional
polarisations.

In addition, we have investigated asymptotically some natural lim-
iting cases of the considered discrete elastic medium. This includes the
case when the number of rows of the strip become infinite, where we
have shown that the Rayleigh wave problem for an elastic lattice half-
space is encountered. Further, we have demonstrated numerically that,
for large 𝑁 , the dispersive features of a strip with a finite width and a
dense internal microstructure can reproduce the dispersive nature of a
continuum elastic strip of the same width.

The developed theory has led to the design of a discrete hetero-
geneous elastic system capable of selecting waves of a specific type
from wave packets generated by an applied load and propagating only
these particular waves in a single direction in the structure. Potential
applications of this system include the design of novel Micro-Electro-
Mechanical-System devices (MEMs) that can convey energy in selective
directions.

The formulation and application presented in this work can be
easily extended to more complex lattice systems, comprising links of
different stiffness or flexural ligaments, defects and resonators. We
believe that the analytical work developed in this paper can be use-
ful for several engineering applications at different scales, including
Lamb-wave-based damage identification techniques used to find and
characterise flaws in tested specimens, the dynamics of carbon nan-
otubes, near-surface seismic surveying, as well as the design of acoustic
and elastic waveguides.
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