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Abstract—The surveillance videos taken from dynamic cam-
eras are susceptible to multiple security threats like replay
attacks, man-in-the-middle attacks, pixel correlation attacks etc.
Using unsupervised learning, it is a challenge to detect objects
in such surveillance videos, as fixed objects may appear to
be in motion alongside the actual moving objects. But despite
this challenge, the unsupervised learning techniques are efficient
as they save object labelling and model training time, which
is usually a case with supervised learning models. This paper
proposes an effective computer vision-based object identification
algorithm that can detect and separate stationary objects from
moving objects in such videos. The proposed Advanced Flow Of
Motion (AFOM) algorithm takes advantage of motion estimation
between two consecutive frames and induces the estimated motion
back to the frame to provide an improved detection on the
dynamic camera videos. The comparative analysis demonstrates
that the proposed AFOM outperforms a traditional dense optical
flow (DOF) algorithm with an average increased difference of
56% in accuracy, 61% in precision, and 73% in pixel space
ratio (PSR), and with minimal higher object detection timing.

Index Terms—Accuracy, Computer Vision, Dense Optical Flow
(DOF), Object Detection, Pixel Space Ratio (PSR)

I. INTRODUCTION

Object detection is a computer vision technique that iden-
tifies objects at their respective location in a video or image.
Object detection can be implemented by both supervised
and unsupervised machine learning techniques [1]. Supervised
machine learning involves the training on a set of data to
master the attributes of an object for later identification [1]
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and is considered to have accurate detection. Whereas in un-
supervised learning, there is no such training i.e., the labelled
datasets, therefore, outcomes are unknown on real-time data
processing, thus, considered to have low detection accuracy.
Furthermore, better accuracy output of the supervised learning
models are dependent on fairly large labelled datasets for
training, which make it a less preferred option when using
supervised learning on real-time data. However, unsupervised
learning do not require labelling and training of datasets,
making it a low computational cost algorithm for real-time
motion detection for dynamic camera videos [2].

The object detection algorithms, specifically in videos,
broadly classify the objects into two groups i.e., the foreground
(FG) and the background (BG). The FG contains objects in
motion, such as cars, humans, or animals, while the BG mostly
consists of objects that are in a fixed position. These videos
can either be captured with static (CCTV, fixed) or dynamic
cameras (drones, unmanned aerial vehicle (UAV), dashboard,
pan-tilt-zoom (PTZ) or hand-held).

The use of unsupervised machine learning techniques to
detect FG objects [3], [4] in the static camera videos are
easy and accurate, because these objects are the only objects
in motion; thus separating their information from the BG
is straightforward. A dynamic camera, however, presents a
challenge for FG detection because the BG also appears to
be moving, thus causing inaccurate detection.

To overcome this, the optical flow (OF) method has been
widely used with more focus on the dense optical flow (DOF)
in the past decade. The researchers [5] analysed the benefits
of DOF, hence proving its relevancy even for the recent
dynamic applications. Despite the implementation of the DOF,
there was little or no improvement in the object detection
accuracy for dynamic camera videos [6]. As a proof, the978-1-6654-5227-4/22/$31.00 ©2022 European Union
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visual results using DOF over dynamic cameras are shown
in the section 4 of this paper. However, most of the existing
studies (Section 2) focuses on combining DOF with other
algorithms for accurate object detection. In this paper, we have
proposed an efficient unsupervised object detection algorithm
i.e., Advanced Flow Of Motion (AFOM) by applying motion
estimation and infusing the results back to the frame to mask
out, and to enhance the accuracy of the detected moving
objects.

Following an extensive review of the literature related to
object detection in dynamic camera videos, the following
research questions (RQs) are identified as a target for the
research presented in this paper:

RQ1: Why is it necessary to use an accurate object
detection algorithm for the videos captured with dynamic
camera devices?
RQ2: What are the benefits of implementing a low
computational unsupervised object detection algorithm
for low computational camera devices?

To address these RQs, this paper presents an unsupervised
machine learning algorithm (AFOM) for surveillance videos
captured with dynamic cameras. The research contributions of
this paper are:

• The experiments illustrate the effectiveness of AFOM
algorithm in a visual representation with high accuracy
and low pixel space ratio (PSR) value;

• The high structural similarity index (SSIM) value of
tested videos affirms that AFOM based detection pro-
duces the similar shape of the object; and

• Results prove that AFOM has a low computational cost
because of the minimal variation in detection timing com-
pared with DOF, therefore justifying its high efficiency
with constraint devices.

The remainder of the paper is organized as follows: Section
2 describes the related work on object detection techniques.
Section 3 presents the adopted methodology of implementing
AFOM for videos captured with dynamic camera devices.
Section 4 illustrates the comparative visual results and perfor-
mance analysis to show the efficacy of AFOM for the object
detection in moving camera videos. Section 5 discusses the
summary and conclusion of this paper.

II. RELATED WORK

This section reviews the existing literature on unsupervised
learning based object detection techniques within dynamic
camera videos.

Object detection using unsupervised learning in videos
captured with dynamic cameras is challenging [7] due to the
simultaneous movement of the cameras and the foreground
(FG) objects (non-stationary objects in the video) during
recording. There are several different techniques such as com-
pensation method [8], trajectory classification [9], background
subtraction [10], robust principal component analysis (RPCA)
[11], and motion estimation [12] that might recognize objects
in a dynamic camera video [13].

Motion estimation which determines motion vectors of
objects from one frame to another has been widely adopted for
identifying moving objects in dynamic camera videos. Motion
estimation can be achieved using kalman filter (KF) [14], block
matching (BM) [15], optical flow (OF) [3].

KF estimates the object’s states based on observations or
measurements, to determine if there is a change in the state.
This algorithm is divided into two phases; the predicted phase
which calculates the prediction state of the object and the
update phase, to calculate the difference between the true
measurement and the previous estimated measurement [14],
[16], [17].

BM divides video frames into blocks and the best-matching
blocks are selected from a region of the previous frame for
each block in the current frame [15]. Motion vectors are
estimated for each block independently [18].

OF method, which detects the motion of an object or the
camera across two contiguous frames is a popular algorithm
to identify objects within a video taken from a dynamic
camera. OF is categorised into two classes i.e., sparse optical
flow (SOF) and dense optical flow (DOF). SOF measures the
motion vector of selected pixels or features of the objects, and
demand some pre-processing method to obtain these features
on the object, such as using a corner detector algorithm.
However, this implies SOF cannot be implemented in isolation.
Hence, different researchers [19]–[21] have implemented these
two techniques in a combination for object detection.

DOF for this purpose, as developed in [3] used polynomial
interpolation to estimate the motion between two frames to
measure the motion vectors of each object’s pixels, which
improves the implementation of SOF itself. DOF provides an
improved output when using a static camera [5] however with
no significant improvement for dynamic cameras [6]. Due to
this reason, researchers have combined DOF with various al-
gorithms for dynamic cameras [22]–[26], which unfortunately
increases computational cost during implementation.

Thus, rather than combining motion estimation with a
supervised learning technique, [27], [28] this study proposes a
low computational unsupervised object detection (AFOM) by
applying motion estimation and frame fusion techniques. The
proposed AFOM algorithm increases the detection accuracy
for dynamic camera videos with nominal increase in compu-
tational cost.

III. THE PROPOSED ALGORITHM

This section presents the adopted methodology by con-
sidering step-by-step implementation of the proposed AFOM
algorithm.

AFOM algorithm was developed for a precise detection
of moving objects in videos captured from dynamic cameras
for real-time processing. AFOM does not require datasets for
object classification and training for accurate detection, thus,
reducing data pre-processing and implementation cost.

A. AFOM Implementation steps
The AFOM implementation steps, as given in “Fig. 1” are

as follows:
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frame F3 with F2' and F3


till Fn

. 

(7)
(8)

F1

F2

Fig. 1. AFOM implementation steps.

(1) Load the video file from its path and read frame by frame,
from the first frame to the last frame, say F1 to Fn.

(2) Read initial two (02) consecutive frames F1 and F2 from
the loaded video file.

(3) Performs a motion estimation by extracting the coordinate
vectors of the motion between these two consecutive
frames using the Farneback algorithm [3].

(4) Add the extracted motion back into the frame F2 to detect
the object moving in the frame using equation (1) where
the x value varies, y value is constant at 0.5 and The z
value is constant at 0.

Fusion = x · frame+ y · estimated motion+ z (1)

(5) Gaussian blur is thereafter used on the output of Frame
F2, hence producing a noiseless grey-scaled image suit-
able for pixel segmentation.

(6) Pixel segmentation is applied using global thresholding
to separate FG objects’ pixels from BG objects’ pixels.

(7) After steps (2) to (6) till the end of file, frame F2 has
become F ′

2, and eventually frame Fn will become F ′
n

F ′
2 = F2 + F1 (2)

(8) Repeat steps from (2) to (6) for next consecutive frame
(F3) of the video with F ′

2, and continue the process until
the Fn.

F ′
n = Fn + Fn−1 (3)

The pseudo-code describing the implementation of AFOM
is given in Algorithm 1.

Algorithm 1: Object detection with AFOM
Input: Dynamic Camera Video
/* FG (Moving Object) detection */
Output: Video with FG-Extraction
Input: Load Video from path
while video == True do

ret, F1← video.read();
ret, F2← video.read();
motion estimation←
calcOpticalF lowFarneback();

magnitude, angle← cartToPolar(motion flow);
motion extracted← normalize(magnitude, angle);
fusion← add motion extracted to F2;
F2 gray ← cvtColor(fusion);
F2 blur ← GaussianBlur(F2 gray);
ret, thresh← apply global thresholding;
/* thresh contains zeros and one

pixels. */
/* The zeros are the FG while the ones

are the BG. */
if cv2.waitKey(27) & 0xFF == ord (′q′) then

break
end

end
return (0);
video.release()
Output: Pixel Segmented Video: Where zeros (black) are

the FG and ones (white) are the BG

IV. THE EXPERIMENT

For the purpose of assessment, the AFOM algorithm was
implemented in Python with OpenCV. The system specifi-
cations are listed as follows: Intel(R) Core (TM) i7-10510U
CPU@1.80GHz 2.30GHz processor, 16GB RAM, 64bit Oper-
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TABLE I
THE CHARACTERISTICS OF THE EXPERIMENTAL TESTED VIDEOS

S/N Video file Background type Video Resolution Video Frame rate Frame count
size (MB) duration (sec) (FPS)

1 Horse Moving Dynamic 4.29 860 x 484 5 23 126
2. Dashboard Cam Dynamic 6.61 1280 x 720 6 24 144
3. Safari Moving Dynamic 6.00 1280 x 720 5 23 120
4. Mall Dynamic 1.69 1280 x 720 5 23 117
5. Traffic Dynamic 3.66 1920 x 1080 5 46 234

ating system, x64-based processor system type, Intel(R) UHD
Graphics.

This evaluation was performed with a dataset of five (05)
publicly available dynamic camera videos, available at Pix-
abay [29] and Pexels [30] web-pages). All test videos have
various characteristics in terms of colour, motion, and spatial
information. The characteristics of these test videos are given
in “Table I” with the video speed, measured in frames per
second (FPS).

The state-of-the-art DOF [3] has been widely deployed
by previous studies as an unsupervised learning technique.
Therefore, we have compared the proposed AFOM with DOF
for different type of evaluation in this paper.

A. Relative Evaluation of the AFOM and DOF

This sub-section compares the visual results taken with
AFOM and DOF algorithms.

1) Visual Evaluation: The results of the object detection
using AFOM and DOF appear in “Table II”. Comparing the
results, AFOM leads to a coherent detection of the FG objects
in the tested videos, unlike for DOF. This reveals that AFOM
performs an accurate detection.

2) Pixel Space Ratio (PSR) Evaluation: The PSR was
calculated as the ratio (percentage) of the total pixels to the
detected FG pixels within the videos. Comparative analysis of
the PSR results of both algorithms is presented in “Fig. 2”.

“Fig. 2” indicates that DOF results is more, by wrongly
identifying more BG pixels as FG pixels. In other words,
DOF’s false positive rate is higher than that of AFOM.

3) Accuracy and Precision Evaluation: The accuracy and
precision was calculated and the results are shown in “Ta-
ble III”. From the result, AFOM demonstrated higher accuracy
and greater precision than DOF [3], indicating the effective-
ness of AFOM in detecting moving objects within dynamic
camera videos.

4) Structural Similarity Index (SSIM) Evaluation: The
SSIM was calculated using equation (4) and the results are
presented in the “Fig. 3”. It is noted that SSIM ranges from
0 to 1 (0 for low and 1 for high similarity index)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
xµ

2
y + c1)(σ2

x + σ2
y + c2)

, (4)

Fig. 2. PSR comparison of AFOM and DOF

where x = original tested videos, y = encrypted tested
videos, µx = average of x, µy = average of y, σ2

x

= variance of x, σ2
y = variance of y, σxy = covariance

of x and y, c1 = (K1L)
2 c2= (K2L)

2, L = dynamic
range, (K1) = 0.01, (K2) = 0.03

“Fig. 3” shows that the SSIM values for the AFOM are 0.5
above which is closer to 1 and significantly better than the
DOF values [3]. Results indicate that the structure/shapes of
the detected objects by AFOM are matched with the objects
present in the original tested videos. The SSIM values for the
DOF were very low, indicating that DOF poorly recognized
the particular shape of the detected object. These SSIM results
provide evidence that the AFOM is competent at detecting
moving objects within dynamic camera videos. The visual
results given in “Fig. 2” also confirms the structural similarity
of the objects detected with AFOM.

B. Computational Analysis

“Fig. 4” compares the computational cost, which is defined
as the time (in µs) required to perform object detection on the
test videos. From “Fig. 4”, AFOM took longer to detect objects
in the tested videos than the original DOF [3]. However, across
the videos tested, in absolute timing terms, the differences in
detection times are negligible and should be weighed against
the significantly improved accuracy and precision resulting
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TABLE II
VISUAL REPRESENTATION COMPARING THE EXISTING DOF AND PROPOSED AFOM ON DYNAMIC VIDEOS OBJECT DETECTION

Horse moving Dashboard Cam Safari Mall Traffic

Input image

DOF Detection

AFOM Detection

Fig. 3. SSIM comparison of AFOM and DOF

TABLE III
ACCURACY FOR AFOM AND DOF ALGORITHMS

Accuracy (%) Precision (%)
Video file AFOM DOF AFOM DOF
Horse moving 84.615 30.769 93.333 17.647
Dashboard Cam 63.636 20.000 66.667 12.500
Safari 90.000 22.222 87.500 16.667
Mall 85.000 15.000 81.250 12.500
Traffic 85.294 41.176 86.667 50.000

from using AFOM, see “Table III” as well as the SSIM result
in “Fig. 3”. Thus, the trade-off is in the favour of AFOM.

C. Comparative Analysis

To further highlight the efficacy of AFOM for mobile
camera videos, a comparison was also made with existing
studies that implemented motion estimation with unsupervised
learning. The object detection accuracy was used as a com-
parison criterion. The results in “Table IV” show that DOF

Fig. 4. Comparing AFOM and DOF detection timing

has the lowest value of accuracy, which, hence, confirms
the inadequacy of DOF for object detection within dynamic
camera videos. Despite good accuracy results in the studies
[5], [24], [25], which combined DOF with other techniques,
the proposed AFOM has the highest accuracy, at around 82%.

V. CONCLUSION

In this paper, an effective motion detection technique using
AFOM algorithm is proposed to identify the moving objects
in the videos captured by mobile or moving cameras. AFOM
algorithm has been implemented by performing motion es-
timation and motion fusion to the frames to achieve high
accuracy in the detection of FG objects. Performance analysis
confirmed that AFOM also exhibits more precise detection
than the state-of-the-art DOF, while remained competitive with
the DOF in the computational time to perform its opera-
tions. The comparative analysis in “Table IV”, where DOF
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TABLE IV
ACCURACY COMPARISON BETWEEN AFOM ALGORITHM WITH EXISTING ALGORITHMS

Existing Techniques Proposed Model Method Accuracy (%)
[3] Initial Method (2003) Dense Optical Flow (DOF) Motion vector of camera and objects 25.83
[25] (2020) Dense optical flow based background

subtraction technique
Homography matrix, single Gaussian
and DOF

52.49

[5] (2019) Integration of Optical Flow and Action
Recognition

Shuffled images with DOF for Recog-
nition

59.55

[24] (2013) Anticipated geometry pixel deviation DOF and fundamental matrix 65.03
Proposed (2022) AFOM Motion estimation and Frame fusion, 81.71

is integrated with other techniques for improving detection
accuracy also shows the highest accuracy of AFOM algorithm.
Nevertheless, the results reveal the AFOM algorithm to be
effective and reasonably efficient for the constraint dynamic
camera devices for surveillance videos.
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