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Abstract
In this paper, we investigate the co-dependence and portfolio value-at-risk of cryp-
tocurrencies,with theBitcoin, Ethereum,Litecoin andRipple price series fromJanuary
2016 to December 2021, covering the crypto crash and pandemic period, using the
generalized autoregressive score (GAS)model.Wefind evidence of strong dependence
among the virtual currencies with a dynamic structure. The empirical analysis shows
that the GAS model smoothly handles volatility and correlation changes, especially
during more volatile periods in the markets. We perform a comprehensive comparison
of out-of-sample probabilistic forecasts for a range of financial assets and backtests
and the GAS model outperforms the classic DCC (dynamic conditional correlation)
GARCH model and provides new insights into multivariate risk measures.

Keywords Cryptocurrencies · Generalized autoregressive score (GAS) model ·
Multivariate probabilistic forecasts · Portfolio management

JEL Classification G11 · G17 · C53

1 Introduction

During the last years, cryptocurrencies gain more and more attention not only from
ordinary investors but also from regulatory authorities and policy makers. Cryptocur-
rencies are decentralized currencies that are powered by their users with no central
authority and therefore are independent of monetary politics and not controlled by the
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existing banking system1.Bitcoin, the largest cryptocurrencieswas created in 2009 and
since then numerous other cryptocurrencies have been created. After a stable period of
development, most of the cryptocurrencies started to climb and dramatically increased
in the period 2016 to 2020 with pricing bubbles in 2018 (Corbet et al. 2018). After
that, all major cryptocurrencies’ prices have exhibited tremendous fluctuation with the
sharpest drop during March 2020 selloff, as a result of the COVID-19 outbreak.

Existing literature on the cryptocurrencies market includes studies focusing on
hedging and safe-haven properties of cryptocurrencies (e.g. Bouri et al. 2017; Conlon
and McGee 2020), market efficiency (e.g. Nadarajah and Chu 2017; Tran and Leirvik
2020), volatility patterns and portfolio of cryptocurrency markets (Katsiampa 2017),
most of which provide the within-sample fit for univariate cases. On the other hand, to
account for the structure linkage and interdependencies among the cryptocurrencies
and other financial assets, different multivariate approaches including the GARCH-
DCC models (Guesmi et al. 2019; Ghabri et al. 2021), the GARCH-BEKK models
(Katsiamp et al. 2019; Stavroyiannis and Babaros 2017) and GARCH-copula models
(Bouri et al. 2018; Boako et al. 2019; Syuhada and Hakim 2020) have documented
for volatility forecasting and risk management.

While these studies provide useful analyses, they also confirm that both the con-
ditional volatilities and the correlations of the cryptocurrencies change over time,
especially during the bubble period in 2018 and the pandemic era in 2020. There-
fore, we pay attention to the observation-driven time-varying multivariate generalized
autoregressive score (GAS) model to examine the price dependency relationships
and portfolio value-at-risk (VaR) of cryptocurrencies; particularly, Bitcoin (BTC),
Ethereum (ETH), Litecoin (LTC) and Ripple (XRP) are considered. The generalized
autoregressive score-driving model (GAS) is proposed by Creal et al. (2013), and it
nestsmanywell-knownmodels, includingGARCH (Bollerslev 1986) andACD (Engle
and Russell 1998) models. Tafakori et al. (2018) consider an asymmetric exponential
GASmodel to predict Australian electricity returns. Chen and Xu (2019) use both uni-
variate and bivariate GAS models to analyse and forecast volatilities and correlations
between Brent, WTI and gold prices. To the best of our knowledge, no other study
has ever used the multivariate GAS model to forecast the volatility and correlation of
cryptocurrencies.

Due to the relatively young literature on cryptocurrency, there are few studies related
to out-of-sample forecasting performance for both dependence structure and volatility.
Amongst those, Syuhada and Hakim (2020) construct a dependence model through
vine copula and provide the value-at-risk (VaR) forecasts. Chi and Hao (2021) show
GARCHmodel’s volatility forecast is better than the option implied volatility using the
BTC and ETHprices. In our paper, we conduct out-of-sample forecasting performance
for both point forecasts (e.g. VaR) and density forecasts. In order to see how effectively
the GAS model treats different dynamic features simultaneously in a unified way,
we compare the forecasting results with those of the classic dynamic conditional
correlation generalized autoregressive conditional heteroskedasticity (DCC-GARCH)
model (Engle 2002).

1 Since 2019, China’s central bank has announced that all transactions of cryptocurrencies are illegal, effec-
tively banning digital tokens such asBitcoin.As one of the consequences, the price ofmajor cryptocurrencies
has dropped sharply.
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Our main findings are as follows: First, beside the most applied volatility models,
GARCH, asymmetric GARCH specifications including GJR-GARCH and APARCH
models are also considered for the univariate ETH, LTC, BTC and XRP return series.
Interestingly, the additional parameters in these models, which are supposed to show
the asymmetric volatility response to past returns (so-called leverage effect), are not
significant for all the cryptocurrencies in this paper. These results are consistent with
those found in Chi and Hao (2021) and Syuhada and Hakim (2020). Several studies
apply the asymmetric GARCH models to cryptocurrencies’ return series; however,
they either use a GARCH-type model with Gaussian innovation (Cheikh et al. 2020)
or show rather weak significant additional terms, which are supposed to reflect the
asymmetry (Apergis 2021). One possible explanation is that the traders or investors
from the cryptocurrency market are different to those from the stock market. Unlike
the stockmarket which is usually dominated bywell informed investors, the cryptocur-
rency market has more uninformed investors, and the volatility asymmetry, which can
be traced to trading activity that has been guided by information asymmetry between
well informed and uninformed traders in the market (Avramov et al. 2006), is not
significant as it did in the stock market.

Second, we find empirical evidence to show that the forecasting ability of the
GAS model is better than those of the DCC-GARCH model. More specifically, the
GAS model accounts for large price changes in a very natural way when updating
the correlations and volatilities over time, especially during extreme events. This is
particularly important when we form a portfolio risk and estimate the corresponding
VaR forecasts. Through a sequence of statistical tests, our results prefer theGASmodel
to the DCC-GARCHmodels in terms of point (volatilities and correlations) forecasts,
quantile (value-at-risk) forecasts and density forecasts.

This paper is organized as follows: Section 2 describes the multivariate GASmodel
and theDCC-GARCHmodel. Section 3 provides the data source and preliminary anal-
ysis. In Sect. 4, we applied the two multivariate models to the daily cryptocurrencies
and present the estimation results for the within-sample period. Moreover, we con-
duct out-of-sample forecasting performance for volatilities, correlations, VaRs and
probability distributions for the two models. Section 5 concludes.

2 Empirical models

2.1 Themultivariate GASmodel

Let r t be an N -dimensional random vector at time t with conditional distribution

r t |Ft−1 ∼ p(r t , θ t ), (1)

where Ft−1 contains all the information up to time t −1, θ t is a vector of time-varying
parameters depending on Ft−1 and a set of static parameters φ for all time t . The
GAS(p,q) model is an observation-driven model, and the time-varying parameters
θ t are governed by the score of the conditional density in (1) and an autoregressive
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updating equation

θ t+1 = κ +
p∑

i=1

Ai st−i+1 +
q∑

j=1

Bjθt− j+1, (2)

where κ , A and B are the coefficient matrices with proper dimensions and st is the
scaled score function

st = St∇t (r t , θ t ), (3)

with

∇t = ∂

∂θ t
p(r t , θ t ),

St = It (θ t )
−γ ,

It (θ t ) = Et−1

[
∇t∇T

t

]
= −Et−1

[
∂2 log p(r t , θ t )

∂θ∂θT

]
,

where the expectation is taken with respect to the conditional distribution in (1). The
additional parameter γ is fixed. By choosing different values of γ , the GAS model
encompasses some well-known models (e.g. GARCH, ACD and ACM models, see
Creal et al. 2013, for a detailed discussion).

In the application, we consider a GAS(1,1) model with γ = 0 and the conditional
distribution in (1) follows a multivariate standardized Student-t distribution (Ardia
et al. 2019). Therefore, the time-varying parameter vector θ (including location μ,
scale σ , correlation ρ and shape ν parameters) is given by:

θ t+1 = κ + Ast + Bθ t ,

and a natural choice for St is identity matrix.

2.2 Themultivariate DCC-GARCHmodel

Following Engle (2002), the DCC-GARCH(1,1) model is as follows. Let r t be an
N-dimensional random vector at time t , we consider

Var(r t |Ft−1) = Qt = Dt Rt Dt , (4)

where Ft−1 is the information available up to time t − 1, Dt is a diagonal matrix such
that Dt = diag(

√
h11,t , · · · ,

√
hnn,t ) and hii,t , i = 1, 2, · · · , N is the conditional

variance obtained from the univariate model, which is usually GARCH-type model
and Rt is the dynamic conditional correlation matrix. More specifically, let

r t = μt−1 + ψ t , (5)
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ψ t = Q1/2
t εt , (6)

then the time-varying correlation matrix Qt can be updated by

Qt = (1 − a − b)Q̄ + aZt−1ZT
t−1 + bQt−1

where Q̄ is a symmetric time-invariant unconditional covariance matrix and Zt =
D−1
t εt . In our application, we assume εt follows a multivariate standardized Student-

t distribution, as we did in GAS(1,1) model.

3 Empirical application

Daily Cryptocurrencies data, Ethereum (ETH), Litecoin (LTC), Bitcoin (BTC) and
Ripple (XRP), in US dollars, are obtained from https://www.cryptocompare.com2

using a Python script. Our sample period is from 1 January 2016 till 31 December
2021. We split the sample into two parts, a within-sample period from 1 January 2016
to 31 December 2018, which includes a total of 1096 daily prices and out-of-sample
period from 1 January 2019 to 31 December 2021. For each of the datasets, the returns
rt of ETH, LTC, BTC and XRP are calculated as

rt = 100
[
(log(Pt ) − log(Pt−1)

]
,

where Pt is the daily closing price at time t .
Cryptocurrency returns are extremely volatile, sowewinsorized them at the 0.005%

and 99.5% levels. Figure 1 displays the winsorized return series for ETH, LTC, BTC
and XRP during the full sample period, i.e. from January 2016 to December 2021.
We observe multiple volatile periods for different returns series, but they behave more
similarly after 2018. During the March 2020 selloff, all of them experienced the most
negative changes. It is worth mentioning that XRP suffered significant price fluctu-
ations during first half of 2021 due to an SEC lawsuit Ripple faced at the end of
2020. Therefore, volatility changes of XRP were mostly caused by updates on the
SEC lawsuits after 2021. Table 1 reports the descriptive statistics for the ETH, LTC,
BTC and XRP return series. All of them have positive mean returns and leptokur-
tic empirical distributions for both sample periods. Moreover, the skewness for BTC
(XRP) is negative (positive) across the full sample, while ETH and LTC present pos-
itive skewness before 2019 and negative one after 2019. For all returns series, the
augmented Dickey and Fuller statistics reject the unit root null at 1% significance
level, in favour of the stationary time series. The normality is significantly rejected
by the enormous Jarque–Bera statistics, indicating the fat-tailed distribution. Engle’s
ARCH test (Engle 1982) results reveal the significant ARCH effect, highlighting the
application of GARCH-type models.

2 CryptoCompare’s real-time aggregate index methodology (CCCAGG) calculates the market price of
cryptocurrency pairs traded across exchanges. Aggregating transaction data frommore than 250 exchanges,
CryptoCompare uses a 24-hour volume-weighted average for every currency pair.
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Modelling and forecasting risk dependence for cryptocurrencies

Fig. 1 Cryptocurrency return series from January 2016 to December 2021

Following Tang and Xiong (2012), we first study the full sample rolling uncon-
ditional correlations between the ETH, LTC, BTC and XRP return series using a
bivariate approach. We rescale the return series by subtracting their means and divid-
ing by their standard deviations and specify the regression of the rescaled return rrm,t
on the rescaled return rrl,t , with l,m = 1, 2, 3, 4 and l �= m:

rrm,t = μ + ρ̃rrl,t + ηt

and ˆ̃ρ is the estimated unconditional correlation between the two cryptocurrencies
returns rm and rl . The time-varying estimated correlation is obtained by using a rolling
window of fix length equal to 30 days. The rolling correlations of full-sample return
series are plotted in Fig. 2.

Before 2017, the correlation between BTC and LTC stays high and positive while
those between ETH, BTC and XRP are low and negative. This is not surprising as
Litecoin was one of the first “altcoins" to draw from Bitcoin’s original open-source
code to create a new cryptocurrency, therefore one of the most correlated altcoins with
Bitcoin, while Ethereum is launched based on the platformwhich enables building and
deploying smart contracts and decentralized applications, and compete against Bitcoin
for market shares; XRP is created as a faster, cheaper, andmore energy-efficient digital
asset that can process transactions within seconds and consume less energy than some
counterpart cryptocurrencies.

From the beginning of 2017 to the middle of 2018, distinct spikes in the correla-
tion can be generally found between the cryptocurrencies. Such spikes may reflect

123



J. Cheng

Fig. 2 Estimated unconditional correlations (30-day rolling window) from January 2016 to December 2021

the presence of significant uncertainty during the stage of the development of cryp-
tocurrency market. All the correlations drastically go up at the middle of 2018 and
remain positive and strong until the end of the sample. This finding is in line with the
current literature (Katsiampa 2019; Katsiampa et al. 2019; Chowdhury et al. 2022;
Pace and Rao 2023), and the connectedness between the cryptocurrencies is mainly
caused by market uncertainty in response to the 2018 cryptocurrency crash (Aslanidis
et al. 2019 and Antonakakis et al. 2019) and the launch on 10 December 2017 of the
Bitcoin futures contracts at the Chicago Board Options Exchange (Blau et al. 2020).
Moreover, a significant drop in rolling window correlations can be observed at the
beginning of 2021 in the cryptocurrency pairs ETH-XRP, LTC-XRP, and BTC-XRP.
Again, this is due to the SEC lawsuit Ripple faced. The above bivariate approach con-
siders two return series at a time, as such, cannot exploit the dynamic interdependence
simultaneously. To address this issue, we consider the multivariate GAS and DCC
models in the next section.

3.1 In-sample results

For notational convenience, let r t = (r1, r2, r3, r4) be the returns of the four assets
ETH, LTC,BTC andXRP at time t andρ12,ρ13,ρ14,ρ23,ρ24 andρ34 be the correlation
of the return series ETH and LTC, ETH and BTC, ETH and XRP, LTC and BTC,
LTC and XRP, and BTC and XRP, respectively. We use the multivariate GAS(1,1)
model and the DCC-GARCH(1,1) model (hereafter GAS and DCC) we mentioned
in the last section to fit the multivariate return series r t , respectively. Based on the
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Table 2 The LR test results for the multivariate GAS model

Model 1 Model 2 Model 3 Model 4 Model 5

Log LL −12265.63 −11682.97 −11540.51 −11540.80 −11533.75

No. of the param 15 17 19 21 23

LR test statistic 1165.32 284.92 0.58 14.10

p value 0.000 0.000 0.748 0.001

Model 1 is constant-parameter GAS model, Model 2 indicates time-varying volatility only model, Models
3, 4 and 5 are volatility and correlation time-varying model, volatility, correlation and location time-varying
model and all time-varying model. If Model 4 is a constant-location only model, then the LR statistic is
3.62 (p value is 0.164)

fat-tail leptokurtic empirical distributions we obtained in Table 1, the conditional
distribution of r t in the GAS model is specified by the multivariate standardized
Student-t distribution; the univariate and multivariate residuals in the DCC model are
also specified by the t-distribution.

Asymmetric GARCH specifications including GJR and EGARCH models are also
considered for both GAS and DCCmodels. Interestingly, the additional parameters in
these models, which are supposed to show the asymmetric volatility response to past
returns (so-called leverage effect), are not significant for all the cryptocurrencies in
this paper. These results are consistent with those found in Chi and Hao (2021) and
Syuhada and Hakim (2020). Several studies apply the asymmetric GARCH models
to cryptocurrencies’ return; however, they either use the GARCH-type model with
Gaussian innovation (Cheikh et al. 2020) or show rather weak significant additional
terms which are supposed to reflect the asymmetry (Apergis 2021).

For the GAS model, the conditional distribution parameters are as follows:

θ = (μ1, μ2, μ3, μ4, σ1, σ2, σ3, σ4, ρ12, ρ13, ρ14, ρ23, ρ24, ρ34, ν)

where (μ1, μ2, μ3, μ4), (σ1, σ2, σ3, σ4), (ρ12, ρ13, ρ14, ρ23, ρ24, ρ34), ν are location,
scale/volatility, correlation and shape parameters of the conditional t-distribution,
respectively. Following (Chen and Xu 2019), we conduct a series of likelihood ratio
test (LRT) to see whether these parameters are time varying or not.We are interested in
the null hypothesis H0 : M = Mi versus to the alternative hypothesis H1 : M = Mi+1
for i = 1, 2, 3, 4, where Model 1 to Models 5 are a series of nested time-varying
parameters models, i.e. Model 1 assumes all the parameters are time-invariant, Model
2 is the time-varying volatility-only model and Model 5 is the time-varying volatility,
correlation, location and shape model. Clearly, M1 ⊂ M2 ⊂ M3 ⊂ M4 ⊂ M5, and
under the regular conditions, the test statisticLRTshall followaChi-square distribution
χ2
k with degree of freedom k if H0 is true. The LRT test results are listed in Table

2. It is clear that model 5 seems to be a reasonable choice, i.e. the GAS model with
time-varying volatility and correlation, location and shape model is used for the return
series r t during 2016 to 2019.

The estimation results are presented in Table 3. All the parameters, especially the
time-varying parameters of the model (left panel), are significant at the 5% level. We
also present the unconditional parameters (right panel) by considering the long-term
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Table 3 Parameters estimation of the GAS model

Parameters Estimate p value Parameters Unconditional

κμ1 0.001 0.008 μ1 0.068

κμ2 −0.001 0.000 μ2 −0.075

κμ3 0.004 0.000 μ3 0.234

κμ4 −0.004 0.000 μ4 −0.243

κσ1 0.027 0.000 σ1 4.337

κσ2 0.014 0.000 σ2 2.127

κσ3 0.016 0.000 σ3 2.374

κσ3 0.019 0.000 σ3 2.895

κρ12 0.009 0.000 ρ12 0.388

κρ13 0.009 0.000 ρ13 0.384

κρ14 0.009 0.000 ρ14 0.442

κρ23 0.009 0.000 ρ23 0.510

κρ24 0.009 0.000 ρ24 0.499

κρ34 0.010 0.000 ρ34 0.463

κν −0.585 0.000 ν 4.000

aμ 0.012 0.000

aσ 0.058 0.000

aρ 0.015 0.000

aν 0.414 0.000

aμ 0.984 0.000

aσ 0.981 0.000

aρ 0.992 0.000

aν 0.982 0.000

This table presents the parameter estimation results for ETH, LTC, BTC and XRP return series during
January 2016 to December 2019 (within-sample period). The model assumes time-varying volatility and
correlation, location and shape. The unconditional parameters are extracted using identity scaling

values of the parameters, i.e. (I − B̂)−1κ̂ . With regard to the DCC model, similar
estimation results are reported in Table 4. The parameters can be divided into two
parts, the results of the GARCH model for each individual return series (upper panel)
and the dynamic correlation using multivariate t distribution (lower panel).

In Figs. 3, 4, 5 and 6, we plot the estimated volatilities for ETH, LTC, BTC and
XRP using both GAS and DCC models during the in-sample period, respectively.
For all four return series, the DCC model seems to provide more fluctuant volatilities
than the GAS model, especially during the 2018 crash period. Clearly, the extreme
returns appear to have a strong effect on estimated volatilities for the GARCHmodels,
whereas those for the GAS model appear to be robust.

The correlation estimates from the two models, which are presented in Figs. 7 and
8, show a substantial difference though both models identify a significant persistence
of correlations in high positive values between the cryptocurrencies since 2018. The
GASmodel suggests, in general, positive correlations, varying from -0.15 to 1 between
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Table 4 Parameters estimation of the DCC model

Parameters ETH p value LTC p value BTC p value XRP p value

μ 0.016 0.885 −0.029 0.595 0.200 0.000 −0.274 0.410

ω 2.880 0.055 0.116 0.252 0.077 0.250 0.579 0.012

α 0.274 0.000 0.124 0.000 0.128 0.000 0.183 0.000

β 0.725 0.000 0.874 0.000 0.870 0.000 0.816 0.000

ν 3.301 0.000 3.096 0.000 3.435 0.000 3.000 0.000

Joint parameters p value

a 0.059 0.000

b 0.934 0.000

ν 4.000 0.000

This table presents the parameter estimation results for ETH, LTC, BTC and XRP return series during
January 2016 to December 2019 (within-sample period). For each individual return series, GARCH model
(with t innovation) is used and the dynamic correlation is captured using multivariate t distribution

three series, while the DCC model gives correlations fluctuating substantially over
time, falling to extreme values around -0.6 during June 2016, which is mainly caused
by the instability of the Ethereumprices due to theDAOhack. It is worth noting that the
dynamic correlations we derive from DCCmultivariate modelling approach appear to
be similar to the rolling correlations we estimate in the previously described bivariate
setting while those by GAS approach seem to produce more smoothed correlation
estimates due to its desirable robust future.

3.2 Out-of-sample results

We now turn to the out-of-sample (OOS) forecast performance of the two models.
We compare the one-step-ahead forecasting performance of the GAS model and DCC
model using a rolling window scheme. The length of the rolling estimation window is
set to be 1096 observations, such that 1096 observations (from January 1 2019, until
December 31 2021) are left for out-of-sample forecast evaluation.

3.2.1 Volatility and correlation forecast evaluation

To evaluate the forecasting performance of the twomodels, we construct twomeasures
of realized volatility and correlation using intraday data. The realized volatility is
computed as the sum of intraday returns (see, e.g. Andersen et al. (2001)),

RVt =
Nt∑

i=1

r2t,i (7)

where rt,i is the intraday return on day t for intraday period i (i = 1, 2, · · · , Nt ). We
use transaction prices of ETH, LTC, BTC and XRP from January 2019 to December
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Fig. 3 Estimated volatilities of the ETH return using GAS and DCC models

Fig. 4 Estimated volatilities of the LTC return using GAS and DCC models

2021, sampled in calendar time and tick-timewith 5-minute sampling frequency3. The
intraday return data are obtained from Bitfinex exchange4, using a Python code. The

3 Liu et al. (2015) finds that it is difficult to significantly beat the realized volatility (RV) using 5-minute
intervals.
4 we downloaded the intraday data from different exchanges (e.g. Bitstamp, Coinbase) and the results using
these data are the same.
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Fig. 5 Estimated volatilities of the BTC return using GAS and DCC models

Fig. 6 Estimated volatilities of the XRP return using GAS and DCC models

realized correlation5 is calculated as:

RCxy,t =
∑Nt

i=1 rx,t,i ry,t,i√
RVx,t

√
RVy,t

5 Andersen et al. (2001) introduced the realized covariance and the realized correlation comes from the
realized covariance divided by the square roots of the realized volatilities in (7).

123



J. Cheng

Fig. 7 Estimated correlation using GAS models

where rx,t,i and ry,t,i are the intraday return series for cryptocurrencies X and Y on
day t for intraday period i (i = 1, 2, · · · , Nt ) and RVx,t and RVx,t are the realized
volatility for X and Y on day t .

Following (Patton 2011), we use two popular and robust loss functions,mean square
error (MSE) andGaussian quasi-likelihood (QLIKE) to compare the forecast accuracy
of the GAS and DCC models on the out-of-sample data. These two loss functions are
given by,

MSEσ 2 = 1

N

N∑

i=1

(
σ 2
i − σ̂ 2

i

)2
, MSEρ = 1

N

N∑

i=1

(
ρ − ρ̂i

)2
(8)

and

QLIKEσ 2 = 1

N

N∑

i=1

(
log(σ̂ 2

i ) + σ 2
i

σ̂ 2
i

)
, QLIKEρ = 1

N

N∑

i=1

(
log(ρ̂i ) + ρi

ρ̂i

)
, (9)

where σ̂ 2
i , ρ̂i are the rolling forecasts on volatility and correlation of day i by the two

models, σ 2
i , ρi are the realized volatility and correlation at day i , respectively. N is the

total number of volatility/correlation forecasts. We also use the (Diebold and Mariano
1995) method to test for the null hypothesis that the forecasts by the GAS model are
less accuracy than or equal to the forecasts by the DCC model.

Table 5 reports the OOS losses for volatility and correlation, using the loss func-
tions in (8) and (9), for the GAS and DCC models. The Diebold–Mariano statistics
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Fig. 8 Estimated correlation using DCC models

on the loss differences are also presented to see whether the gains are statistically
significant. Overall, the forecasting ability of volatility and correlation in the GAS
model is superior to those of the DCC model. Judging by the MSE and QLIKE, it is
significant that the GAS model delivers substantially better correlation forecasts than
the DCC model though the two models provide similar correlation forecasts between
the BTC and XRP return series in terms of MSE.

The volatility forecasts comparison ofMSEandQLIKEbetween the twomodels are
mixed. TheMSE favours the GASmodel for all volatilities, while the QLIKE supports
the GAS model for XRP volatility only. There is no evidence to show a significant
difference of volatility forecasts for ETH, LTC and BTC in terms of QLIKE. These
results can be further confirmed in the plots. The difference of correlation forecasts
between the two models can be found across the whole OOS period (Figs. 9 and 10),
while the volatility forecasts of BTC are similar for both models (Figs. 11, 12, 13 and
14). Noted that the DCC model continuously gives large volatility forecasts for all
three return series when there are large changes in the return series.

Interestingly, we find that, on average, for both models, the dynamic correlation
forecasts between cryptocurrencies behave similarly in all pairs. The correlations
remain positive and at high levels with a few fluctuations across the whole OOS
period using GASmodel, while those using DCCmodels gives more sensitive dynam-
ics, especially after January 2020. This could be considered as the consequence of the
COVID-19 effect on cryptocurrencies. In particular, during January 2020 toMay 2020,
weak correlation forecasts can be observed between XRP and other cryptocurrencies
using both models, which is, again, due to the SEC lawsuit.
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Table 5 Results of out-of-sample forecasting accuracy

ETH volatility LTC volatility BTC volatility

MSE QLIKE MSE QLIKE MSE QLIKE

GAS 3960.097 3.624 6888.701 4.121 968.498 4.340

DCC 4135.622 3.679 7034.982 4.145 971.500 4.396

DM −2.292* −0.443 −1.686* −0.961 −2.817* −0.840

XRP volatility

MSE QLIKE

GAS 18960.519 4.272

DCC 19618.484 4.456

DM −2.471* −1.892*

ETH LTC correlation ETH BTC correlation ETH XRP correlation

MSE QLIKE MSE QLIKE MSE QLIKE

GAS 0.296 0.242 0.229 0.366 0.176 0.372

DCC 0.238 0.261 0.356 0.397 0.292 0.376

DM −1.849* −5.499* −3.252* −3.076* −4.722* −4.731*

LTC BTC correlation LTC XRP correlation BTC XRP correlation

MSE QLIKE MSE QLIKE MSE QLIKE

GAS 0.188 0.072 0.189 0.116 0.223 0.133

DCC 0.319 0.124 0.244 0.157 0.224 0.147

DM −4.194* −3.007* −2.264* −4.778* −0.010 −2.149*

This table presents the t-statistics from Diebold–Mariano (DM) tests of equal predictive accuracy for the
rolling window out-of-sample forecasts with different models using corresponding loss functions. A t-
statistic greater than 1.96 in absolute value indicates a rejection of the null of equal predictive accuracy
at the 0.05 level. These statistics are marked with an asterisk. The sign of the t-statistics indicates which
forecast performed better for each loss function: a negative t-statistic indicates that the GAS forecast
produced smaller average loss than the DCC forecast, while a positive sign indicates the opposite

3.2.2 Density forecast evaluation

To conduct further the comparison experiment, we use the estimated results for each
of the models in the previous section to get one-step-ahead density forecasts and the
evaluation is based on scoring rules, which are widely used in weather and climate
prediction (Palmer 2012) and financial risk management (Groen et al. 2013). Let
y = (y(1), · · · , y(N )) be an observation of the N -dimensional random vector, let f (.)
denote a forecast density of y, let 
 denote the set of possible values of y, and let F
denote a convex class of probability distribution on
. A scoring rule is a loss function:

S( f , y) : F × 
 → R ∪ {∞}

such that better forecast yields a lower score. A scoring rule S is said to be proper if
the expected score is optimized, while the true distribution of the observation is issued
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Fig. 9 Out-of-sample estimated correlation using GAS models

Fig. 10 Out-of-sample estimated correlation using DCC models

as a forecast, i.e.

EgS(g, ·) ≤ EgS( f , ·) (10)

for all f , g ∈ F . Furthermore, a scoring rule is called strictly proper if equality (10)
holds only if f = g.
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Fig. 11 Out-of-sample estimated volatilities of the ETH return using GAS and DCC models

Fig. 12 Out-of-sample estimated volatilities of the LTC return using GAS and DCC models

A natural approach is the logarithmic score (Good 1952; Mitchell and Hall 2005;
Amisano and Giacomini 2007), which is defined as:

LogS( f , y) = − log f (y). (11)

However, the logarithmic score is not sensitive to distance, which means it only
rewards the predictive densities for assigning high probabilities to realized values but
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Fig. 13 Out-of-sample estimated volatilities of the BTC return using GAS and DCC models

Fig. 14 Out-of-sample estimated volatilities of the XRP return using GAS and DCC models

not the neighbourhood values. To overcome this problem, (Gneiting and Raftery 2007)
introduce the energy scorewhich is a generalization of the univariate continuous ranked
probability score (CRPS) and allows for a direct comparison of density forecasts. The
energy score is defined as:

ES( f , y) = E
(‖Y − y‖β

) − 1

2
E

(
‖Y − Ỹ‖β

)
(12)
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Fig. 15 Estimated 1% value-at-risk (VaR) for portfolio 1

Fig. 16 Estimated 5% value-at-risk (VaR) for portfolio 1

where Ỹ is an independent copy of Y , so it is drawn independently from the same
distribution f (.) as Y , ‖.‖ is the Euclidean norm. Gneiting and Raftery (2007) show
that the energy score is strictly proper with β ∈ (0, 2). In application, β = 1 seems to
be a standard choice and the score is usually calculated throughMonte Carlo methods.

Pinson and Tastu (2013) show that the discrimination ability of energy score may
be limited, while the dependence structure of multivariate probabilistic forecasts is
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misspecified. To overcome this problem, Scheuerer and Hamill (2015) propose the
variogram score which is based on pairwise differences:

V S( f , y) =
N∑

i, j=1

wi j
(|yi − y j |p − E |xi − x j |p

)2 (13)

where N is the dimension of random vector y, xi and x j are the i th and j th component
of a random vector x that is from the distribution f , wi j are nonnegative weights that
allows one to emphasize pairs of component combinations and standard choice for
weights is wi j = 1. p > 0 is the order of the variogram score. The variogram score is
proper relative to the class of distributions for which the 2p-thmoments of all elements
are finite and it is not strictly proper (Scheuerer and Hamill 2015). In application, the
choice of p is a trade-off between all relative moments of the pairwise deviation and
outliers. Typical choices of p include 0.5 and 1.

To test the null hypothesis of equal predictive ability of two competing models
based on a given scoring rule, we consider (Diebold and Mariano 1995) type tests
using score difference. Given a scoring rule S, the score difference is defined as:

dt = S( f̂1, yt ) − S( f̂2, yt )

where f̂1 and f̂2 are the density forecasts. The null hypothesis of equal scores is:

H0 : E(dt ) = 0, for all t

versus the alternative H1 : E(dt ) �= 0. It can be shown that, under the null hypothesis,
with certain conditions (e.g. see Giacomini and White 2006), the statistic

DM = d̄√
σ̂ 2/n

→ N (0, 1) (14)

where n is the forecast sample size, d̄ = 1
n

∑n
t=1 dt and σ̂ 2 is a heteroskedasticity and

autocorrelation-consistent variance estimator of σ 2 = var(
√
nd̄).

We applied the above three scores to evaluate and compare the density forecasts by
GAS and DCC models. For variogram score, we present the results with different p
values (p = 0.5, 1, 2) as used in Scheuerer and Hamill (2015)). The overall density
forecast can be evaluated using average score d̄ during the whole out-of-sample period
6 and the DM statistics are obtained using the log score in (11), the energy score in (12)
and the variogram score in (13). The score difference dt is computed by subtracting the
score of the DCC model density forecast from the score of the GAS density forecast,
such that negative values of dt indicate the better predictive ability of the forecast
method based on the GASmodel. Table 6 shows the average score differences d̄n with

6 Noted that all the scores we discussed above are proper (Gneiting and Raftery 2007), which means that
any incorrect density forecasts f̂t do not receive a lower average score (negatively oriented score) than the
true density.

123



J. Cheng

Table 6 Average score differences and tests of equal predictive accuracy

Scoring rule multicolumn1ld̄ multicolumn1lDM test stat. p value

Log score 0.004 0.114 0.454

Energy score − 0.198 − 6.506 0.000

Variogram score p = 0.5 − 1.742 − 6.380 0.000

Variogram score p = 1 − 31.980 − 3.882 0.000

Variogram score p = 2 − 38247.031 − 4.355 0.000

The table presents the average score difference d̄∗ and the corresponding test statistics (with p values in
the parentheses) for the log score in (11), the energy score in (12) and the variogram score in (13). The
variogram scores are presented with p = 0.5, 1 and 2. The score difference dt is computed for density
forecasts obtained from a GAS model with multivariate t innovations relative to the DCC model with same
innovations, for daily ETH, LTC, BTC and XRP returns over the evaluation period 1 January 2019–31
December 2021

the accompanying tests of equal predictive accuracy as in (14). These results clearly
demonstrate that both energy and variogram scoring rules suggest superior density
predictive ability of the GAS model. The large values of average variogram score
difference with p = 2 are caused by the nature of quadratic form, and the results are
in accord with the simulation studies by Scheuerer and Hamill (2015).

From the risk management point of view, it is also important to focus on the per-
formance of density forecasts in the region of interest. Therefore, we compare the
models in terms of correctly forecasting the 1% and 5% value-at-risk (VaR) at 1-
day horizons for both individual cryptocurrencies and different portfolios that can
be constructed from the three cryptocurrencies. We define five different arbitrary
portfolios, p jt = g jrt for given 4 × 1 weight vectors g j and for j = 1, 2, 3, 4, 5.
By ordering the cryptocurrencies as ETH, LTC, BTC and XRP, we construct the
following long-only and long-short portfolios: g1 = (1/4, 1/4, 1/4, 1/4), g2 =
(1/4, 1/4, 1/4,−1/4), g3 = (1/4, 1/4,−1/4, 1/4), g4 = (1/4,−1/4, 1/4, 1/4) and
g5 = (−1/4, 1/4, 1/4, 1/4). The long-short positions reflect the relative value bets
among these cryptocurrencies.

We simulate 10000 sample paths for rt+1 = (r1, r2, r3, r4)′, denoted by rst+1 for
s = 1, 2, · · · , 10000using themultivariate t distributionby theGASandDCCmodels.
We then construct the simulated individual returns rsi,t+1 for i = 1, 2, 3, 4 and portfolio
returns psj,t+1 = g′

jr
s
t+1 for j = 1, 2, 3, 4, 5. We use the sample of 10000 simulated

paths to estimate the quantiles of the forecasting distribution at the 1-day horizon. The
out-of-sample VaR accuracy is assessed through the unconditional coverage (UC) test
(Kupiec 1995) and the conditional coverage (CC) test (Christoffersen 1998).

Table 7 presents the UC and CC test statistics and the corresponding p values of the
5% and 1%VaR forecasts for both individual returns (upper panel) and four portfolios
(lower panel). For the individual VaR forecasts, all results, except for BTC returns
series, suggest that GAS model performs better than DCC model at the 1% and 5%
quantile levels. The GAS and DCC models provide same results for the BTC return:
the 1%VaRs forecasts perform reasonably well, but the 5%VaR forecasts are rejected
for both tests. Meanwhile, the GAS model outperforms the DCC model in general
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Table 7 Results of out-of-sample VaR forecasting performance

5% VaR 1% VaR

UC test CC test UC test CC test

ETH GAS 9.192 (0.003) 10.310 (0.006) 0.362 (0.547) 2.522 (0.283)

DCC 44.968 (0.000) 45.331 (0.000) 15.223 (0.000) 15.224 (0.000)

LTC GAS 2.268 (0.132) 3.293 (0.193) 6.055 (0.014) 6.841 (0.033)

DCC 24.624 (0.000) 25.070 (0.000) 8.204 (0.004) 8.221 (0.016)

BTC GAS 16.057 (0.000) 16.068 (0.000) 3.826 (0.051) 4.428 (0.109)

DCC 14.036 (0.000) 14.075 (0.000) 0.891 (0.345) 1.009 (0.604)

XRP GAS 2.678 (0.102) 9.890 (0.007) 2.713 (0.099) 2.779 (0.249)

DCC 24.624 (0.000) 25.611 (0.000) 15.012 (0.000) 17.141 (0.000)

Portfolio 1 GAS 2.268 (0.132) 2.563 (0.278) 1.349 (0.245) 1.766 (0.414)

DCC 42.233 (0.000) 42.649 (0.000) 8.204 (0.004) 8.221 (0.016)

Portfolio 2 GAS 13.312 (0.000) 14.538 (0.000) 3.826 (0.050) 4.911 (0.086)

DCC 28.401 (0.000) 29.060 (0.000) 5.901 (0.015) 5.930 (0.052)

Portfolio 3 GAS 1.891 (0.169) 2.123 (0.346) 2.878 (0.090) 4.137 (0.126)

DCC 30.432 (0.000) 31.176 (0.000) 8.204 (0.004) 8.221 (0.016)

Portfolio 4 GAS 3.592 (0.058) 5.183 (0.075) 8.692 (0.003) 9.238 (0.010)

DCC 28.400 (0.000) 29.060 (0.000) 11.189 (0.001) 11.196 (0.003)

Portfolio 5 GAS 7.745 (0.005) 9.179 (0.010) 1.658 (0.198) 1.748 (0.417)

DCC 22.871 (0.000) 23.947 (0.000) 8.691 (0.003) 9.594 (0.008)

The one-step-aheadVaR forecasts for both individual ETH, LTC,BTC andXRP returns and arbitrary portfo-
lios are found simultaneously based on simulated innovation.Byordering the cryptocurrencies asETH,LTC,
BTC and XRP, portfolios 1, 2, 3, 4 and 5 are constructed using weight vectors g1 = (1/4, 1/4, 1/4, 1/4),
g2 = (1/4, 1/4, 1/4,−1/4), g3 = (1/4, 1/4, −1/4, 1/4), g4 = (1/4, −1/4, 1/4, 1/4) and g5 =
(−1/4, 1/4, 1/4, 1/4), respectively. The column labelled UC and CC reports the unconditional cover-
age test of Kupiec (1995) and the conditional coverage test of Christoffersen (1998) with p values in the
parentheses, respectively

for all portfolios in the forecasting experiment. The only exception is the portfolio
with weights g2 = (1/4, 1/4, 1/4,−1/4) and g5 = (−1/4, 1/4, 1/4, 1/4) at the 5%
significant level and the portfolio with weight g4 = (1/4,−1/4, 1/4, 1/4) at the 1%
significant level, for which both model perform poorly.

In Figs. 15 and 16, we show the 1% and 5% VaR estimates against the realized
returns for portfolio 1, i.e. the long-only portfolio with equal weights for the four
cryptocurrencies. We observe that typically the VaR estimates based on the DCC
models are more extreme, confirming that the DCC model significantly overestimates
the risk at both 5% and 1% quantile levels, especially when the return changes are
large (e.g. April 2020 and May 2021). These results are in accordance with previous
findings (Creal et al. 2011). The estimates of the DCC model are based on lagged
squared returns and the forecasts thus move stochastically every day. However, the
updating equation in the GAS model with the Student-t density provides a more
moderate increase in the variance/correlation for a large absolute realization of return.
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The forecasts using the GAS model naturally inherit the return information. Overall,
we conclude that the GAS model has better out-of-sample forecasting behavior.

4 Conclusion

We have investigated the co-dependence and portfolio VaR of cryptocurrencies using
four popular virtual currencies (Bitcoin, Ethereum, Litecoin and Ripple). The results
of the multivariate GAS model show strong dynamic interdependence among the
cryptocurrencies throughout the sample period. Our out-of-sample forecasting period
notably included the COVID-19 outbreak period, which lasted from early 2020 to the
end of 2021. Thus, it sheds new light on the multivariate risk measures of cryptocur-
rencies for global investors.

We examine the out-of-sample predictive performance of the multivariate GAS
model for a rangeoffinancial assets at various quantile levels.Using abattery of scoring
rules and backtesting procedures, our results show that the GAS model significantly
outperforms the traditional DCC-GARCH model. These results still hold if different
cryptocurrencies are considered. There is plenty of room for future research on the
analysis of cryptocurrencies, especially during financial turmoil. We can extend the
existing scoring rules (especially inmultivariate cases) to amore flexible form to cover
a particular region of the density. An alternative extension could explore the safe-
haven properties of cryptocurrencies, stablecoins and traditional assets. Under this
framework, the dynamic correlations and the portfolio diversification can be studied
systematically.
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