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Abstract 

Malaria continues to pose a significant global health and socio-economic burden on those 

regions where it is endemic. Despite substantial investment in the delivery of artemisinin-based 

combination therapies, causing a fall in malaria mortality, recent data suggest that this parasitic 

disease still imposes a significant impact. A major problem is the narrow drug discovery 

pipeline, made worse by reports of artemisinin resistance. 

In recent years, high-throughput screening of natural products derived from plants and marine 

organisms has led to the discovery of potent anti-malarial indole alkaloids (such as 

dihydrousambarensine (A)), many of which contain an indoloisoquinoline core.  
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Building on previously discovered methodology in our group, we have developed a series of 

novel, enantiomerically pure, synthetic indoloisoquinoline and their potential as anti-malarial 

leads was assessed. The structure-activity relationship of these compounds was investigated in 

several areas and a lead compound (B) was generated with an activity close to that of a known 

anti-malarial natural product dihydrousambarensine (A). 
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We have also developed a synthetic route to these indoloisoquinolines in racemic form, derived 

from compound (E), that give anti-malarial activity comparable to their enantiomerically pure 

analogues. This provides quicker and cheaper access to these anti-malarial compounds. 
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TLC = thin layer chromatography 
TMSCl = trimethylsilyl chloride 
UV = ultraviolet 
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1.1 Introduction to Malaria, Causes and Treatments. 

1.1.1. Malaria 

Malaria is a parasitic disease, endemic in 105 countries throughout the tropical and 

temperate regions. In 2010 alone malaria caused an estimated 655,000 deaths and a 

further 216 million clinical cases. 1 Although everyone is susceptible, the majority of fatal 

cases occur among African children, where malaria accounts for approximately 22% of 

childhood deaths. Malaria can also cause high rates of miscarriage or low birth weight. An 

estimated 200,000 infants die per year as a result of the disease during pregnancy, 

making young children and pregnant women the most vulnerable against malaria. 

Malaria is caused by a protozoan parasite of the genus Plasmodium. There are four main 

species that can cause infection in humans; P. vivax, P. ovale, P. malariae and 

P. falciparum. P. vivax and P. falciparum are the most common, with the latter being the 

most deadly. 1 Recently, there have been reported cases of P. knowlesi in humans, 2, 3 

creating a 5th species that is a danger. Until now, P. knowlesi had only been found in 

monkeys in South-East Asia. The Plasmodium parasites are transmitted by the female 

Anopheles mosquito of which 50-60 species can spread the infection. 

The clinical symptoms of malaria vary between species. It most commonly presents with 

flu-like symptoms of a periodic fever, joint pains, vomiting and headaches. If left untreated 

the disease can cause more serious symptoms of renal failure, hypoglycaemia, and 

anaemia. In severe cases the parasite enters the brain, a condition known as cerebral 

malaria, and can cause a coma, leading to death. 1 Due to the non-specificity of the early, 

less severe symptoms, malaria is often over-diagnosed in endemic areas, and therefore 

treatment is over-prescribed, which can lead to resistance against anti-malarials. 

The life cycle of the parasite also varies between species. Figure 1 shows the life cycle of 

P. falciparum. 
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Figure 1: Life cycle of P. falciparum. 4 

 

The parasite undergoes sexual reproduction in the mosquito’s digestive tract and asexual 

reproduction in the body cavity. Reproduction in the mosquito’s digestive tract produces 

sporozites which migrate into the salivary glands and are then passed into the human host 

when the mosquito feeds. The sporozites travel to the liver and undergo asexual 

reproduction. This forms a schizont, which contains approximately 40,000 merozoites. 

When the schizont matures, it erupts, releasing the merozoites which invade the host’s 

red blood cells. Here, the merozoites mature through a ring stage to form a new schizont 

containing approximately 24 merozoites. When this is mature the merozoites are released 

to infect further red blood cells. The schizonts mature and erupt every 36-48 hours 

depending on the species of parasite. This accounts for the periodic fever. Not all 

merozoites invade red blood cells, however; some form gametocytes which are then taken 

up by another mosquito host when it feeds. 
5
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1.1.2. Brief history of treatment 

The first anti-malarial drug to be used was quinine (1), an alkaloid discovered in the bark 

of the Cinchona tree (Peruvian fever tree) traditionally used to treat fevers. Resistance to 

quinine has been reported, but it is rare and the drug is still one of the most effective anti-

malarials used today. 6  
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Since the first use of quinine in the 17th century, no other drugs were used until the 

20th century, when pharmacological research allowed the discovery of new compounds. 

Chloroquine (2), the second breakthrough in malaria treatment, was first discovered in 

1934; however it was not until 1946 that it was established as a safe and effective 

anti-malarial. 7 It works by inhibiting the development of asexual erythrocytic forms of the 

parasite, thus reducing parasitaemia. 8 Resistance to chloroquine by P. falciparum was 

first documented in the 1950’s in South East Asia and South Africa, and has become 

widespread since then. 9 

(1) 
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Many other drugs have been used as treatments and prophylaxis for malaria. These 

include mefloquine, proguanil, mepacrine, primaquine and pyrimethamine. Resistance to 

all these drugs has been reported. 10 

 

1.1.3. Current treatments 

The current front-line treatments for malaria are a class of compounds known as the 

artemisinins. Artemisinin (3) resides in the leaves of the Chinese plant Artemisia annua 

which has been used in traditional Chinese medicine for over a thousand years. In 1967 

the leaves were screened and found to have potent anti-malarial activity. In 1972, the 

active ingredient was isolated, purified and named Artemisinin. 11  
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Derivatives of this compound have been synthesised; the most of important of these 

include artesunate (4), artemether (5), artemotil (6) and dihydroartemisinin (7).  The 

artemisinins have been widely used as anti-malarials in combination therapies since 

wide-spread resistance to other anti-malarials occurred. 12 
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They act quickly, and are eliminated quickly, with a half-life of roughly one hour. The exact 

mechanism of action is not known, however studies have proven that the endo peroxide 

bridge is essential for activity. 13 This suggests that free radicals are involved in the 

mechanism and there is evidence to support this. There is also evidence to support that 

binding to the haem group in the host’s blood also contributes to activity. The endo 

peroxide bridge although essential, causes problems in manufacturing and co-formulation, 

due to it’s instability, an instability that is accelerated under tropical conditions. 

(4) (5) 

(6) (7) 
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Resistance to the artemisinins was slow to emerge and was not reported until 2009. 13 The 

reasons for this are believed to be due to: 

1) The short half-life and quick elimination from the body of the drug, therefore the 

parasite is not exposed to it for long. 

2) Activity against gametes: this is the stage at which the parasite is taken from the 

blood into the mosquito and transmitted to a new host. Killing the gametes reduces 

transmission; therefore gametes exposed to artemisinins are less likely to infect a 

new host.  

3) Use in combination therapy, which tends to delay the onset of resistance. 

The most recent anti-malarial, named Synriam, was launched by Indian drug company 

Ranbaxy on world malaria day, 2012. It is the first drug in recent years not to be based on 

artemisinin; however it still contains a peroxide bridge in its structure, thought to be 

causing its activity. It is given as a fixed-dose prescription as a combination of arterolane 

maleate (8) and piperaquine phosphate (9). Ranbaxy report a cure rate of 95% when 

three doses are taken over three days, providing a very simple and effective regime. 14 
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Another drug in the pipeline comes from the Medicine for Malaria Venture and is code 

named MMV390048 (10). 15 It was identified during a high throughput screening campaign 

in which several millions of chemical samples were screened to identify new compounds 

with anti-malarial activity. It was synthesised in 2010, displaying potent activity and high 

stability. Animal testing in 2011 discovered that a low oral dosage could completely cure 

the test subject. It has been found to be active against a wide variety of drug-resistant 

strains and against multiple points in the parasites’ life cycle. This is a very promising drug 

candidate which is hoped to enter clinical trials in 2013.  
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1.1.4 Vaccine 

A lot of research today focuses on creating a vaccine for malaria. Vaccines display an 

advantage over drugs as they prevent people from contracting and spreading the disease 

and have led to the complete eradication of certain illnesses in the past (e.g. smallpox). 

RTS,S is the most clinically-advanced current vaccine candidate and the first to ever enter 

large-scale phase 3 clinical trials. Created in 1987 by GlaxoSmithKline, and developed 

since with funding from the Bill and Melinda Gates foundation, it has been shown to 

protect young children against P. falciparum. The vaccine induces the production of 

(10) 
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antibodies and T cells that are believed to affect the parasites ability to infect, develop and 

survive in the human liver. 16 Studies have shown that it remains effective for at least 18 

months after administration in reducing clinical malaria by 35% and severe malaria by 

49%. 17, 18 

 

1.1.5. Other methods to combat malaria 

Other methods to try to combat malaria include environmental control, biological control 

and vector control. The latter is concerned with the eradication of the Anopheles mosquito 

which carries the parasite. This can be done by spraying areas where the vector may rest 

with an insecticide or impregnating materials with one, which can then be made into 

mosquito nets. This method was highly successful until resistance to the insecticides used 

(pyrethroids and DDT) was reported. 19, 20 

Biological control involves releasing species that consume mosquito larvae, introducing 

bacteria that produce toxins into breeding sites and sterilisation of male mosquitoes. 

Environmental control is the reduction of breeding sites by draining areas of stagnant 

water. These methods although effective, are on their own not enough.  

As mentioned above, resistance has been documented against the artemisinins. The 

discovery of new lead compounds with high anti-malarial activity that can be developed 

into effective drug candidates is highly desirable, but resistance to these is likely to appear 

after a few years. The development of a promising vaccine is also helpful, but it is not 

100% effective. All established treatments for malaria have been met with resistance from 

the parasite, and all species of the parasite are showing resistance, therefore there is still 

an urgent need for new anti-malarial compounds. 21 
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1.2 Natural Compounds with Anti-Malarial Properties 

1.2.1 Traditional medicines 

Plants have been used as medicines for thousands of years and indeed, some of the 

major breakthroughs in modern medicine have been derived from natural sources. The 

discovery of penicillin from a fungus; aspirin derived from willow bark, and the previously 

mentioned quinine and artemisinin are just a few examples. In 1996, it was reported that 

30% of the current top prescribed drugs were derived from natural compounds and 

according to the World Health Organisation only 4 out of the current 15 anti-malarial drugs 

are totally synthetic. 22 

Traditional medicines for malaria have often come from locally sourced plants or trees in 

areas where the disease is endemic.  The bark of the Cinchona tree, native to South 

America, was used long before quinine was isolated and identified. Also from this region, 

the bark of Geissospermum vellosii 23 is used by the native population. In traditional 

Congolese medicine Anisopappus chinensis, Entandrophragma palustre, Melia 

azedarach, Physalis angulata and Strychnos icaja are all used to treat malaria. 24 

Strychnos icaja is also native to central Africa and is used as a medicine along with the 

related species Strychnos spinosa and Stychnos henningsii. 25  

 

1.2.2 Indole alkaloids  

Many of plants mentioned in 1.2.1 have been screened for activity and the active 

compounds have been isolated, purified and individually tested against P. falciparum. 

These compounds, in general, are indole alkaloids. The most notable of these are 

ochrolifuanine A (11) and isotrychnopentamine A (12) which both have an IC50 <500 nM 

(0.5 µM) against all Plasmodium lines tested, Another notable compound is 

dihydrousambarensine (13) which has an IC50 value of < 2 µM against all strains tested 
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and has a reported IC50 of 39 nM (0.039 µM) against a particular chloroquine-resistant 

strain. 26 
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These structures are fairly similar, and the screening of numerous compounds has shown 

some patterns that could be the cause of high anti-malarial activity. It has been reported 

that the indole moiety is important for activity, 27, 28 and many report that bis-indole 

compounds are far more active than mono-indoles. 23, 25, 26, 27, 29 Frederich et al. reported 

that of all structures screened, the highest activity for a mono-indole compound was an 

IC50 of 10 µM, whereas all the bis-indoles showed values of less than 2 µM. 26 This is 

supported by Giradot et al., who found bis-indoles from Muntafara sessilifolia (a plant 

(11) (12) 

(13) 
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native to Madagascar whose bark is traditionally used to treat fevers) to be more active 

than the mono-indoles. 27 

Stereochemistry also plays a key role. This is shown clearly with ochrolifuanine A (11) and 

its enantiomer ochrolifuanine E (14), which has an IC50 value of <2 µM compared to 

ochrolifuanine A’s activity of <500 nM (<0.5 µM). Many of the naturally occurring 

compounds with high potency, including dihydrousambarensine, share the same 

stereochemistry at position 12b as ochrolifuanine A.  
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An ethyl or ethylidene side chain (as shown on compounds (11)-(13)) on the D-ring and a 

fully or partially aromatised second ring system have also been found to increase 

activity. 26, 30 
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1.2.3 Mechanism of action 

It is known that the basicity of chloroquine contributes to its activity, as this causes it to 

accumulate in the acidic food vacuole of the parasite. 31, 32 However, it has been shown by 

Schalkwyk et al. 33 that the acidity of a compound can be also be a cause of activity. The 

Plasmodium parasite is known to regulate the pH of its cytosol by pumping protons out 

across the parasite’s plasma membrane. This generates a pH gradient which is critical to 

the transport of Vitamin B5, an essential nutrient. Disruption of this pH gradient would 

result in inhibiting parasitic growth. Schalkwyk et al. showed that there was a strong, 

positive correlation between anti-malarial activity and the ability of the compounds tested 

to disrupt the cytosolic pH of the parasite.  

Another possible mechanism is the interference of heat shock protein 90 (HSP 90). Heat 

shock proteins (named for their increase in production after periods of heat or stress) are 

a class of compounds that are involved with the folding and unfolding of other proteins. 

HSP 90 has been found to be essential for the growth of P. falciparum during the 

erythrocytic stage. 34 This mechanism was proposed by Shahinas et al. during their 

research into harmine (15), an indole alkaloid from the shrub Guiera senegalensis, found 

in the savannah regions of Central and West Africa that is used as a traditional remedy for 

malaria. 35 Harmine has a very potent activity of 0.0501 µM against the P. falciparum strain 

3D7. Shahinas et al. found that harmine inhibits P. falciparum HSP 90 by competing for 

the ATP binding site and that it also synergises with known anti-malarials chloroquine and 

artemisinin. 35, 36   

N
H

N

O
 

(15) 



24 

 

The structure of harmine is similar to the tetracyclic indolizino[2,3-a]quinolizidine ring 

system (16). It is possible that other indole alkaloids with this basic structure inhibit 

P. falciparum the same way as harmine does. 

Although the exact mechanism is unknown, it appears that the indole moiety is highly 

important for anti-malarial activity. All the most active compounds have a free indole NH 

and compounds with two indole moieties are more active still. 33, 37 

The aim of this project is to investigate the structure-activity relationships of the 

indolizino[2,3-a]quinolizidine ring system (16) and to build upon the findings to synthesise 

a compound with high anti-malarial activity. 
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1.2.4 Synthesis of the indolizino[2,3-a]quinolizidine core 

Many different methods have been employed for the synthesis of this synthetically 

important ring system. Jana et al. 38 utilised the condensation of various amines with 

haloaldehydes followed by a cyclisation and subsequent Pictet-Spengler reaction to give a 

one-step synthesis of many derivatives of the core (Scheme 1). They used this method to 

generate the Kopsia griffithii alkaloid harmicine (21) in racemic form, found to exhibit 

activity against the parasite that causes leishmaniasis. 

  

(16) 
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Martin et al. 39 utilised another method to access this template en route to a synthesis of 

geissoschizine (a pivotal intermediate in the biosynthesis of biologically-active alkaloids) 

(Scheme 2). It began with the conversion of D-tryptophan (23) into the dihydrocarboline 

(24) in a single step. This was followed by a reaction with vinyl ketene acetal (25) to give 

compound (26) which was then treated with isobutylene in acidic conditions to give (27). 

N-Acylation of (27) with diketene, followed by a Michael reaction gave compound (28) as 

a precursor to geissoschizine (29). 

Scheme 1 

(17) (18) 
(19) 

(20) (21) 

(22) 
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Chang et al. 40 synthesised the template en route to the natural product deplancheine (35), 

a compound isolated from the New Caledonian plant Alstonia deplanchei, that has a 

simple structure containing the indolizino[2,3-a]quinolizidine template. Tryptamine (17) 

forms an amide with chloroacetyl chloride in the presence of triethylamine, which is then 

treated with p-toluenesulfinic acid sodium salt to give compound (30). This was then 

reacted with various α,β-unsaturated esters (31) in the presence of sodium hydride, 

followed by a reduction with sodium borohydride and a cyclisation reaction to give the 

(23) (24) 

(25) 

(26) (27) 

(28) (29) 

Scheme 2 
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tetracyclic template (34). This was then functionalised further to give the natural product 

deplancheine (35) (Scheme 3).  
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1.2.5 Synthesis of bis-indole compounds 

Although the synthesis of the indolizino[2,3-a]quinolizidine core and its derivatisation to 

natural compounds has been well investigated and reported, synthesis of bis-indole 

compounds have not. One that has been investigated is ochrolifuanine A (11), and it’s full 

synthesis was reported by Malhorta et al. in 1999. 41  

The bottom ring system was introduced by a condensation reaction between tryptamine 

hydrochloride and aldehyde (37) to give imine (38) which was then cyclised to give a 

β-carboline unit, forming ochrolifuanine A (11). The reaction was carried out at 37-40 °C in 

the presence of a 0.2 M phosphate buffer at pH 4.5 (Scheme 4). 
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1.2.6 Biosynthesis of indole alkaloids 

L-Tryptophan is the most common precursor in the biosynthesis of indole alkaloids. It is 

formed from the shikimate pathway (Scheme 5), via the intermediate anthranilic acid (39) 

which is converted into indole (47), and subsequent reaction with L-serine (48) and the 

enzyme tryptophan synthase, gives L-tryptophan (49). 42 
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L-Tryptophan (49) is then converted into tryptamine (17) by a decarboxylation reaction 

assisted by the enzyme tryptophan decarboxylase (Scheme 6).  
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The C2 carbon of the indole ring is nucleophilic due to the adjacent nitrogen atom, and 

can therefore participate in Mannich and Pictet-Spengler type reactions, forming a 

β-carboline (52) (Scheme 7). 
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Extra carbon atoms and rings are supplied by reacting tryptamine (17) with various 

aldehydes and ketones, depending on the complexity of the desired target. More complex 

compounds use an aldehyde such as secologanin (55), shown below (Scheme 8) in the 

synthesis of strictosidine (56), a precursor to complex indole alkaloids such as ajmalicine 

(57), an antihypertensive drug used in the treatment of high blood pressure. 43 
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More simple compounds like harmine (15) described above, use ketoacids as precursors 

(Scheme 9). 
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1.3 Allin Group Synthesis of the Indolizino[2,3-a]quinolizidine ring system 

1.3.1 N-Acyliminium ions 

Previous work in the Allin group has focused on the application of N-acyliminium ions in 

the asymmetric synthesis of indole alkaloids. This has led to the synthesis of the 

indolizino[2,3-a]quinolizidine ring system 44 and some natural product targets  derived 

from it, such as both enantiomers of deplancheine (35a, 35b) 45 and (+)-12b-

epidevinylantirhine (62). 46 
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Cyclisation reactions proceeding via N-acyliminium ions (64) is a relatively new area 

compared to those that proceed via iminium ions (63) such as the Mannich 47 reaction, the 

Bischler-Napieralski 48 reaction, and the Pictet-Spengler 49 reaction.   
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Both iminium and N-acyliminium ions are used extensively as electrophiles in the 

synthesis of alkaloidal and related systems; however, it seems possible that 

N-acyliminium ions are more reactive. A study on 13C NMR spectra by Wurthwein et al. 50 

showed that substitution of an N-methyl (65) by an N-acetyl group (66) led to a downfield 

shift of the imino carbon absorption of approximately 5 ppm. This could suggest that N-

acyliminium ions are more electrophilic and therefore more reactive, than iminium ions.45  
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Due to their limited stability and high reactivity, N-acyliminium ions are generated in situ. 

There are five principal mechanisms for this: 45 

1) N-Acylation of imines: Condensation of aldehydes or ketones with amines can 

produce imines in high yields. These can then be acylated with reactive carboxylic 

acid derivatives such as anhydrides or acid chlorides. 
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2) N-Protonation of N-acylimines: This method is not synthetically useful due to the 

requirement of forceful conditions and the instability of N-acylimines, as they 

tautomerise to the corresponding enamide. 
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3) N-Protonation of enamides: N-acyliminium ions can be formed by the 

protonation of enamides. 
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4) Oxidation of amides: This method involves initial removal of an electron from the 

lone pair on the nitrogen atom of compound (75), followed by loss of a proton and 

another electron from compound (76). This gives the corresponding N-acyliminium 

ion (77). These oxidations are generally carried out in the presence of a 

nucleophile, usually methanol, in order to trap the ion as soon as it is formed 

(Scheme 13).  
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5) Heterolysis of amides with a leaving group on the α-carbon: This is the most 

common method, and the one employed in Allin group’s work. The leaving group is 

usually an oxygen substituent but could also be a halogen, nitrogen, sulfur or 

phosphorus substituent. Generally, an acid (Brönsted or Lewis) is used to 

generate the ion.      
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Tamelen et al. 54 described a synthesis of yohimbine (81), a naturally occurring alkaloid 

from the plant Pausinystalia yohimbe which has stimulant and aphrodisiac effects. The 

essential step in this synthesis is the acid-catalysed ring closure of an N-acyliminium ion 

(82). The reaction proceeds extremely quickly due to the high reactivity of the electron-rich 

aromatic ring as a nucleophile, in this case an indole ring. 
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Reactions involving iminium ions or N-acyliminium ions are reversible, the reverse 

process being examples of the Grob fragmentation. 55 The product of a reaction involving 

an iminium ion is an amine, however with an N-acyliminium ion the product is an amide.  

Amides are far less susceptible to fragmentation than amines and therefore reactions 

involving N-acyliminium ions can be viewed as less reversible. 56 

 

1.3.2 Synthesis of the (+)- indolizino[2,3-a]quinolizidine ring system (86) 

Cyclisation reactions using an N-acyliminium ion and an indole ring have played an 

important role in the Allin group’s previous work and have been utilised in the 

(81) (82) 
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stereoselective synthesis of the indoloizino[2,3-α]quinolizidine template, which, as noted 

above, comprises a tetracyclic core present in a plethora of bioactive indole alkaloids. 

The synthesis of this ring system was achieved by reacting the β-amino alcohol derivative 

of L-tryptophan (83) with an appropriate keto acid (84) under Dean-Stark conditions for 

48 hours, to give the expected bicyclic lactam product (85) as a 5:1 mixture of 

diasteroisomers, with (85a) being the major isomer (Scheme 15). 57 
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Originally both diastereoisomers of (85) were treated with titanium tetrachloride to give the 

desired cyclised product (86) as a 5:2 mixture of diasteroisomers. 57 
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In an attempt to improve the selectivity, the bicyclic lactam diastereoisomers (85a, b) were 

treated with 2M hydrochloric acid in absolute ethanol. This gave the desired product (86) 

as a single diastereoisomer (Scheme 16). 44 
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1.3.3 Cyclisation reactions of indole (46) 
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When undergoing electrophilic substitution, despite the C2 carbon being more strongly 

nucleophilic, reaction generally occurs at the C3 carbon. This is most likely due to the 

unwillingness of the benzene ring to lose aromaticity. Reaction at the C3 carbon does not 

require the benzene ring to be involved (Scheme 17). 
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Reaction at the C2 carbon does involve the benzene ring (Scheme 18). 
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If the C3 position is blocked, one would assume the reaction would be forced to occur at 

the C2 position, and benzene would be forced to take part. However a study has shown 

that this is not the case. The compound shown below (89) was labelled with tritium (3H) on 

the carbon attached in the C3 position (89). When the cyclisation reaction had occurred it 

was found that not all the radio-labelled hydrogen was where it was expected to be: 50% 

resided adjacent to the C3 of indole as expected and 50% had migrated as shown 

(Scheme 19). 
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For this to occur, the reaction intermediate must be symmetrical, which results from attack 

at the 3-position. This forms a spiro compound, a 5 remembered ring at right angles to the 

indole moiety. Bond migration then occurs to give the observed product (90); each CH2 

group has an equal chance of migrating (Scheme 20). 58 
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In cyclisations such as the one shown in Scheme 20, depending on the substituents of the 

compound, a new chiral centre can be introduced. A mixture of stereoisomers is possible, 

the composition of which is determined by the locations of substituents on the addition 

product. 56 When treating both bicyclic lactams (85a, b) with 2M hydrochloric acid only one 

diastereoisomer is observed (86a) (Scheme 16). 

 

1.3.4 Rationalisation of the Stereochemical Outcome 

Conformational models (Figure 2) were used by the Allin group to rationalise the 

stereochemical outcome of this cyclisation reaction. 45 Both diastereoisomers of the 

bicyclic lactam form the same N-acyliminium species as an intermediate. In the first 

conformation (A), the carbonyl moiety is eclipsed in a 1,3-fashion by the hydrogen atom at 

the β-amino alcohol chiral centre. This gives the observed diastereoisomer. This is 

possible as the hydrogen atom at the iminium carbon is small and therefore provides no 

significant steric bulk to interfere with the positioning of the hydroxymethyl or indole 

groups. Bond rotation around the C-N+ bond leads to conformation (B) which would give 

the unobserved diastereoisomer. This conformation has the hydroxymethyl group 

positioned closer to the carbonyl which appears to bring an unfavourable 1, 3-interaction 

between the two groups. 
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It is thought by the Allin group that conformation (B) leading to the minor diastereoisomer 

observed upon treatment with titanium tetrachloride is stabilised by chelation between the 

Lewis acid-complexed oxymethyl group and the carbonyl moiety. 45 

 

1.3.5 Synthesis of the (-)- indolizino[2,3-a]quinolizidine ring system (96) 

Access to both enantiomers of the indoloizino[2,3-α]quinolizidine template was highly 

desirable as both stereochemistries appear in natural compounds. This was achieved 

using the same method as shown in Scheme 15, but using the β-amino alcohol derivative 

of D-tryptophan (94) as the starting material (Scheme 21). 
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1.4 Functionalisations of the Indolizino[2,3-a]quinolizidine Ring System  

With both enantiomers accessible, work then focused on functionalisations of the 

template. Due to the cost of unnatural D-tryptophan compared to its inexpensive 

enantiomer, the template formed from L-tryptophan was more commonly used. Figure 3 

below shows possible functionalisations of the template. 

 

 

 

Figure 3: Functionalisations of the indolizino[2,3-a]quinolizidine ring system 

 

1.4.1 Alkylations 

The simplest of these functionalisations is an alkylation at the indole NH and the free 

hydroxyl group. These were carried out initially to prevent unwanted side reactions during 

further experiments (i.e. N-protection). A benzyl moiety was added to both N and O atoms 

as a protecting group using 2 equivalents of sodium hydride and benzyl bromide in 

anhydrous dimethylformamide (Scheme 22). Other groups could potentially be added 

using the same methodology. 
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1.4.2 α,β-Unsaturation and conjugate additions 

With protecting groups in place, the compound could be further functionalised 

(Scheme 24). α,β-Unsaturation was achieved using a method employed by Reich et al. 59 

that showed selenoxides undergo clean syn elimination to form olefins at or below room 

temperature.  

Syn elimination is where the substituents a removed from the same face of the bond as 

shown in Scheme 23. 
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Lithium diisopropylamide was used to generate the enolate of the bis-protected template 

(97) which was then reacted with phenyl selenyl bromide at -78 °C to give selenide (100). 

The crude selenide was dissolved in methanol and water, and treated with sodium 

(86) (97) 

Scheme 22 
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metaperiodate to give the desired α,β-unsaturated compound (101), which could now be 

used to explore conjugate addition reactions.  
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Various nucleophiles were investigated as reagents for conjugate addition reactions, with 

vinyl magnesium bromide being the most successful (Scheme 25), giving a 65% yield of 

compound (102). It is important to note that the relative stereochemistry of the nucleophile 

at the newly created chiral centre remains the same regardless of what nucleophile is 

used and is cis to the H atom adjacent to the nitrogen on carbon 12b. This was also found 

to be true when conjugate additions were performed on the opposite enantiomer of the 

template. 60 This cis chemistry can also be produced when there is no hydroxymethyl 

moiety on the compound and the indole NH remains unprotected.  
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The opposite stereochemistry can be introduced as shown in Scheme 26. 60 
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In this case the relative stereochemistry of the nucleophile is always trans to the H atom.  

This stereocontrol could prove useful in the synthesis of natural compounds as both 

relative stereochemistries are found in natural products. 

 

1.4.3 Rationalisation of the Stereochemical Outcome 

The stereochemical induction in compound (102) that gives rise to the protons at position 

12b and position 2 having trans relative stereochemistry appears to result from the 

nucleophile approaching the face of the amide that carries the bulky benzyloxymethyl-

(103) (104) 

Scheme 26 
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substituent, which is unexpected. However, the conformation of (102) is bowl-like and the 

nucleophile is actually approaching from the outer (possibly less hindered) face of the 

bowl. 60 
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With no hydroxymethyl group, and a Boc-protected indole nitrogen, conjugate addition 

reactions yielded compounds with the protons at 12b and 2 having cis relative 

stereochemistry, as in compound (104). Without the bulky benzyloxymethyl-substituent, 

the opposite face is most likely the less hindered. 
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1.4.4 Removal of hydroxymethyl moiety  

A rhodium-induced decarbonylation method for the removal of the hydroxyl methyl group 

(Scheme 27) was investigated to demonstrate the potential of synthetic utility of the 

indolizino[2,3-α]quinolizidine template as a precursor to natural compounds, none of which 

contain this moiety. 45  
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Compound (86) is oxidised to the corresponding aldehyde which is then subjected to the 

rhodinium decarbonylation protocol using mesitylene as a solvent. Unfortunately, possibly 

due to long reaction times and high temperatures, this method caused racemisation of the 

hydrogen on carbon 12b and was therefore abandoned. An alternative procedure was 

adopted using the radical decarbonylation of phenylseleno esters (Scheme 28). 60 
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Compound (86) is converted to the corresponding aldehyde as in Scheme 27. The indole 

nitrogen is then Boc-protected (107), and the aldehyde is further oxidised to the carboxylic 

acid (108). Compound (108) is converted into a phenylseleno ester (109) which is then 

eliminated using a tin-mediated radical de-carbonylation reaction to give the desired 

compound (110). 
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1.4.5 Synthesis of both enantiomers of deplancheine 

Enolate addition to the indolizino[2,3-α]quinolizidine has been used to introduce an 

ethylidene group. This was achieved using acetaldehyde and lithium diisopropylamide, 

followed by activation of the hydroxyl group and a DBN-induced elimination procedure 

(Scheme 29). This was done as part of the synthesis 45 of the natural compound 

deplancheine (35), isolated from the plant Alstonia deplanchei. As one of the simplest 

indole alkaloids that shares the indoloisoquinoline tetracyclic core, numerous syntheses 

have been reported that test out different methodologies, with many giving racemic 

mixtures. The Allin group utilised their new methodology and control over stereochemistry 

to synthesise both enantiomers of deplancheine individually (Scheme 29) starting from the 

respective enantiomer of compound (107). 45 This introduction of the ethylidene group is 

important as it is found in natural compounds such as dihydrousambarensine (13). 26   
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The enolate of compound (110) is generated using lithium diisopropylamide which then 

reacts with acetaldehyde. The OH group formed as a result of this reaction is activated 

using mesyl chloride and subsequently eliminated to give the ethylidene moiety, forming 

compound (111). The Boc protecting group is removed by heating under reflux with 

tetrabutylammoniunm fluoride to give compound (112). The removal of the carbonyl group 

is carried out using an adaption of the Borch protocol, 61 in which trimethyloxonium 

tetrafluoroborate is used as a methylating agent to add a methyl group to the carbonyl 

oxygen, forming a methoxy group, which is then eliminated. 
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1.4.6 Synthesis of (+)-12b-epidevinylantirhine 

Another indole alkaloid synthesised by the Allin group is (+)-12b-epidevinylantirhine 

(62). 46 This compound was first isolated by Wenkert 62 during studies towards a synthesis 

of geissoschizol. The production of this compound (Scheme 30) is significant as it 

introduces a free OH that can be used for extra functionality, with the potential to try to 

build a bis-indole compound such as dihydrousambarensine (13) or ochrolifuanine A (11).  
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 (13) (11) 
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The dithiolane ring is removed using sodium borohydride with a nickel chloride catalyst in 

a similar way as using Raney nickel. Formic acid is used to remove the Boc protecting 

group and the amide and ester are both reduce by heating under reflux with lithium 

aluminium hydride in anhydrous tetrahydrofuran. 

It should be noted that addition of an ethylidene group to (+)-12b-epidevinylantirhine (62) 

would give access to the compound (+)-geissoschizol 63 (115a), the opposite enantiomer 

of a naturally occurring indole alkaloid. Utilising the Allin group’s stereocontrol and the 

incorporation of the ethylidene group, this could provide a new, asymmetric synthesis of 

(-)-geissoschizol (115b), the naturally occurring enantiomer. 

(104) 

(113) 

(114) (62) 

Scheme 30 
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An attempt to incorporate this moiety was made en route to (+)-12b-epidevinylantirhine as 

shown (Scheme 31), but was unsuccessful, 64 possibly due to the steric hindrance of the 

bulky dithiolane ring.  

N
N O

H
Boc

H
S S

CO2Me

N
N O

H
Boc

H
S

S

CO2Me

1. LDA, CH3CHO
THF -78 °C to RT, 24 h

2. TEA, MsCl
DCM, -40 °C to RT 3 h

3. DBN, THF, RT, 16 h

 

 

 

The methodologies previously employed in the Allin group give an indication of; 

� How to control stereochemistry 

� Conjugate additions, how to build towards bis-indole compounds 

� Enolate additions, introduction of ethylidene group 

� How to remove the hydroxymethyl group 

All of the above are important for building a structure-activity relationship picture of the 

indoloizino[2,3-α]quinolizidine template and for the synthesis of a bis-indole compound. 

(104) 
(116) 

Scheme 31 

(115b) 

No Reaction 

(115a) 
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1.5 Determination of Anti-Malarial Activity 

1.5.1 Introduction 

The half maximal inhibitory concentration (IC50) is a measure of biological activity that 

shows the required concentration of a compound needed for 50% inhibition of parasite 

growth. The compounds described below in this thesis need to be tested for anti-malarial 

activity to help guide us in understanding what aspects of their structure influence their 

activity (structure-activity relationship). 

Several methods can be employed to measure anti-malarial activity. These all 

fundamentally rely on the determination of parasite growth. Intraerythrocytic development 

takes 48 hours to complete one growth cycle. Therefore, by exposing intraerythrocytic 

cultures for 48 hours to a range of drug concentrations, the concentration of drug that 

inhibits growth by 50% (IC50) can be determined. The methods to monitor parasite growth 

are varied: 

� Microscopic examination. 65 

� Colorimetric assays of enzyme production e.g. lactase dehydrogenase assay. 66 

� Radiometric monitoring of DNA replication by incorporation of triated hypoxanthine 

(a nucleotide precursor). This method is the most widely publicised and 

accepted.67 

� Fluorescence assay of DNA replication using intercalating agents such as Syber 

Green I. 68 

All the above methods are accurate and have a variety of advantages (low cost, 

sensitivity, ease of use, no need for specialist equipment) and disadvantages (expensive, 

time consuming, high cost, lack of sensitivity, storage and disposal of radioactive 

materials).  
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Keele University Institute for Science and Technology in Medicine (ISTM) have developed 

a transgenic P. falciparum line that expresses a bioluminescent reporter gene, luciferase, 

during replication. 69 They have also reported improvements in the bioluminescence assay 

format to improve reproductivity of the assay data developed. 70 Similar developments in 

luciferase expressing parasites have been reported by other groups. 71 Bioluminescence 

assays provide data comparable to the other assay formats, but the absence of 

background signals and a high signal/noise ratio offers significant advantages in 

determination of the IC50 data. 

In collaboration with Dr Paul Horrocks’ group in the ISTM the IC50 data for all the 

compounds described in Chapter 2 of this thesis were determined following the method 

outlined in section 1.5.2. 

 

1.5.2 Determining the IC50 

Stock culture [4% haematocrit, 2% trophozite stage parasitaemia of Dd2luc (transgenic 

luciferase parasite)] 69 was provided by a collaborating laboratory. 6 ml was required per 

plate. 

A 96 well plate was set up as shown in Figure 4. Columns 10 and 11 served as controls; a 

positive (+) control, containing parasites only with no drug, and a negative (-) control 

which contained no parasites or drugs, just culture medium. 

100 µl of stock culture was added to each well apart from column 2. To this, 150 µL of 

medium was added followed by 12 µL of the chosen drug at 10 mM concentration in 

dimethyl sulfoxide. These were mixed together using an auto-pipette and 50 µL was 

transferred from column 2 to column 3. The process was repeated with 50 µL being 

transferred across to each column. When column 9 was reached 50 µL was taken and 

discarded. This created a series of 3 fold dilutions of drug concentration ranging from 400 
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µM to 0.1 µM. The outside wells were filled with 200 µl of incomplete medium to minimise 

edge effects from evaporation during the following incubation period in a gassed chamber 

(1% O2, 3%, CO2, 96% N2) at 37 °C for 48 hours (Figure 5). 

 

              

    

 

After the incubation period, 40 µL from each well was added to 10 µL of passive lysis 

buffer (Promega UK) on a white, 96 well plate. 50 µL of standard luciferase substrate 

(Promega UK) was added and the bioluminescence was measured (in relative light units) 

for 2 seconds using a MultiGloMax luminometer by Promega.  

Each drug is done in triplicate on one plate and three biological replicas were conducted 

to provide data for analysis. 

The relative light units calculated were converted into % growth and plotted against log10-

transformed drug concentration. The IC50 values were determined from a sigmoidal dose-

response curve (Figure 6) in GraphPad Prism v5. (GraphPad Software, Inc., San Diego, 

CA). This methodology has been submitted for publication to The Malarial Journal. 73 

Figure 6 shows the sigmoidal dose-response curve for a compound that will be described 

further in Chapter 2. The graph can be used to determine to the concentration of this 

compound needed to inhibit parasitic growth by 50% and hence, the IC50 value (1.7 µM). 

Figure 5: Drug inhibition plate after 
48 hours 72

 

Figure 4: 96 well plate                                                       
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Figure 6: Graph to determine the anti-malarial activity of (114) (1.7 µM). 
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Chapter 2 
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2.1 Synthesis of the Indolizino[2,3-α]quinolizidine Ring System 

2.1.1 Synthesis of (+)-indolizino[2,3-α]quinolizidine  

A full investigation into the structure-activity relationship of the indolizino[2,3-

α]quinolizidine ring system as a starting point for the development of a novel series of 

anti-malarials required both enantiomers of the template (1) to be synthesised.  

  

N
H

N O

 

 

The requisite β-amino alcohol derivative of L-tryptophan was prepared by reducing 

L-tryptophan (2) with an excess of lithium borohydride and trimethylchlorosilane in 

anhydrous tetrahydrofuran (Scheme 1). 1 

 

NH2

N
H

O

OH

NH2

N
H

OHLiBH4, TMSCl

Dry THF, RT, 24 h

 

 

 

Metal borohydrides alone cannot reduce α-amino acid substrates; however in the 

presence of trimethylchlorosilane reduction becomes possible. The exact mechanism for 

this reaction has yet to be determined, but it is thought that a borane – tetrahydrofuran 

Scheme 1 

(1) 

(2) (3) 
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complex is formed (Equation 1) and it is this species, along with excess 

trimethylchlorosilane, that acts as the reducing agent. 2 

 

LiBH4 + Me3SiCl + THF LiCl + Me3SiH +BH3.THF
 

 

 

The desired keto acid (6) was formed by an acid-catalysed transesterification of 

δ-valerolactone, followed by oxidation to the corresponding aldehyde using a suspension 

of pyridinium chlorochromate and celite in dichloromethane (Scheme 2). No purification 

was carried out as re-lactonisation occurs on aqueous work up. 3   

 

O

O

OMe

O

OH

OMe

O

O

H2SO4, MeOH

80 °C, 5 h

PCC, Celite

DCM, RT, 2 h
 

 

 

 

The products of the reactions shown in Schemes 1 and 2 were then combined for 48 

hours under Dean-Stark conditions, to give the expected bicyclic lactams (7a, b) in 20% 

yield as a mixture of diastereoisomers, with (7a) being the major isomer (Scheme 3). 

 

Equation 1 

Scheme 2 

(4) (6) (5) 
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The diasteroisomers were purified, but not separated. Instead, they were treated with 2M 

hydrochloric acid in absolute ethanol at room temperature to give the desired cyclised 

product (8) as a single diastereoisomer in 95% yield (Scheme 4). The rationalisation for 

this stereochemical outcome is described in Chapter 1. 
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The proposed mechanisms for the reactions described above are shown in Schemes 5 

and 6. 

Scheme 3 

Scheme 4 

(3) 

(6) 

(7b) 

(7a) 

(8) 

(7a) 

(7b) 
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A mixture of diastereoisomers is formed from this reaction as the iminium ion intermediate 

(10) is planar and can be attacked from either side by the hydroxyl nucleophile. 

 

Scheme 5 

(3) 

(6) 
(9) 

(10) (11) 

(7a, b) (12) 
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As mentioned in section 1.3, attack is occurring at the 3 position of the indole moiety, 

followed by a subsequent rearrangement reaction, due to the unwillingness of the 

benzene ring in the indole moiety to lose aromaticity. 4  

 

2.1.2 Synthesis of (-)-indolizino[2,3-α]quinolizidine  

To obtain the opposite enantiomer of (+)-indolizino[2,3-α]quinolizidine, the synthesis 

outlined in the above section (2.1.1) was repeated using D-tryptophan as the starting 

material. The expected bicyclic lactams (19a, b) were obtained in 32% yield and were 

cyclised to give the (-)-enantiomer (20) in 95% yield (Schemes 7 and 8).  

Scheme 6 

(7) (13) 

(14) (15) 

(8) (16) 
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With both enantiomers in hand, the effects of ring stereochemistry on biological activity 

could now be investigated, along with a range of structural modifications of the 

indolizino[2,3-α]quinolizidine ring system. 

Scheme 7 

Scheme 8 

(17) (18) 

(18) (6) 

(19a) 

(19b) 

(20) 
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2.2 Alkylations 

2.2.1 Mono-alkylations of (+)-indolizino[2,3-α]quinolizidine  

Protecting groups positioned on the indole NH and the OH of the template are a necessity 

to stop unwanted side reactions during further functionalisations, however a variety of 

different groups could be added and this prompted an investigation into whether or not the 

addition of groups may increase or decrease anti-malarial activity and subsequently which 

groups give the best improvement. The first groups to be tested were methyl, allyl and 

benzyl.  

Due to the weakly acidic nature of the indole NH, a strong base was needed to 

deprotonate it. Sodium hydride (1.5 eq) in anhydrous dimethylformamide was used, 

followed by addition of benzyl bromide (1.5 eq) to give the mono-benzylated compound 

(21), in 63% yield (Scheme 9). 

 

N
H

N O

H

OH

N
N O

H

OH
NaH, BnBr

Dry DMF, 
0 °C to RT, 24 h

 

 

 

2.2.2 Bis-alkylations of (+)-indolizino[2,3-α]quinolizidine   

Groups were then added to the oxygen atom of compound (21). In the first instance, a 

methyl group (Scheme 10), and secondly an allyl group (Scheme 11). 2 Equivalents of 

sodium hydride were used followed by 2 equivalents of the appropriate alkylating agent. 

 

Scheme 9 

(8) (21) 
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Compounds (22) and (23) were produced in 14% and 37% yields respectively. 

Other compounds in this series were previously synthesised by our group. These were 

prepared using similar methods to those described above and gave access to compounds 

(24) to (26). 3  
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O

 

Scheme 10 

Scheme 11 

(21) (22) 

(21) (23) 

(24) (25) 
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2.2.3 Mono-alkylations of (-)-indolizino[2,3-α]quinolizidine   

It was important to synthesise analogous compounds to those in section 2.2.1 starting 

from the template derived from D-tryptophan (20) so that their respective activities could 

be compared to determine if absolute stereochemistry is important for anti-malarial activity 

in this series of compounds. 

A benzyl group and an allyl group were added to the indole NH of template (20) as 

described in Schemes 12 and 13. Compound (27) was formed in 41% yield and (28) in 

74%. 
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Dry DMF, 
0 °C to RT, 24 h

 

 

 

 

Scheme 12 

(26) 

(20) (27) 
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2.2.4 Bis-alkylations of (-)-indolizino[2,3-α]quinolizidine   

The following compounds shown in Schemes 14 and 15 were synthesised as described in 

section 2.2.2, starting from compound (27).  By these routes compound (29) was formed 

in 51% yield and compound (30) in 93% yield.  
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Scheme 13 

Scheme 14 

(20) (28) 

(27) (29) 
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When the same group was required on both the nitrogen and oxygen atoms, an excess of 

sodium hydride (4.4 eq) and the corresponding alkylating agent (3 eq) was used. This 

gave rise to the targets shown below in Schemes 16, 17 and 18. 
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Scheme 15 

Scheme 16 
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58% 



80 

 

N
H

N O

H

OH

N
N O

H

ONaH, AllylBr

Dry DMF, 
0 °C to RT, 24 h

 

 

 

 

N
H

N O

H

OH

N
N O

H

O
NaH, MeI

Dry DMF, 
0 °C to RT, 24 h

 

 

 

 

2.2.5 Biological activities  

The IC50 values (against P. falciparum strain Dd2luc) for the range of compounds 

previously described are shown below in Table 1. Compounds in the L-series are those 

derived from L-tryptophan and compounds in the D-series are those derived from 

D-tryptophan. 

 

 

 

Scheme 17 

Scheme 18 

(20) 

(20) (32) 

(33) 

31% 

77% 
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Table 1: 

N
R

N O

H

OR1

                                           

N
R

N O

H

OR1

 

 

L-Series R R1 IC50 (µM) Dd2luc D-Series  R R1 IC50 (µM) Dd2luc 
(8) H H 71 (20) H H 56 

(25) Methyl Methyl 30 (33) Methyl Methyl 29 
(24) Allyl Allyl 16 (32) Allyl Allyl 13 
(26) Benzyl Benzyl 12 (31) Benzyl Benzyl 3.5 
(22) Benzyl Methyl 32 (29) Benzyl Methyl 1.3 
(23) Benzyl Allyl 35 (30) Benzyl Allyl 1.3 

 
      (27) Benzyl H 5 
      (28) Allyl H 41 

 

The first conclusion that can be drawn from these results is that the addition of a group 

has led to an increase in activity. In both the L and the D-series, the substituted 

compounds have lower IC50 values (and therefore higher anti-malarial activity) than the 

parent compounds (8) and (20). The results of the D-series compounds also show that the 

addition of a second group is desirable. Compound (27) is mono-benzylated at the indole 

nitrogen and has an IC50 value of 5 µM. Addition of an allyl, methyl or benzyl group to the 

oxygen atom on compound (27) gave compounds (31), (29) and (30), all of which have 

higher anti-malarial activity than (27). Comparison of compounds (28) and (32) also show 

this trend. Compound (28) has an allyl group on the indole nitrogen and an IC50 value of 

41 µM. Addition of a second allyl group gives compound (32), which has a lower IC50 

value of 13 µM and therefore has a higher anti-malarial activity.  

This shows two things: (1) that the hydrogen bonding properties of the NH and OH groups 

are not important for the binding of the compound to its target and (2) that a reduction in 

the polarity of templates (8) and (20) is desirable. They are polar compounds and 
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reducing this will allow them to pass through cell membranes more freely. 5, 6 It is also 

possible that there are hydrophobic regions in the target binding site that the compounds 

could not bind to without substitutions at the N and O atoms. In section 1.2.3 it is 

proposed that a free indole NH is needed for high anti-malarial activity; however, this does 

not appear to be the case in this series of compounds. 

The second conclusion is that compounds in the D-series (those derived from 

D-tryptophan) have better activity than their L-series analogues. This trend is apparent for 

all the compounds tested. In some cases the difference is marginal (compounds (25) and 

(33), and compounds (24) and (32)), but in others, the increase in activity is highly 

significant. Compounds (29), (30) and (31) all show a marked increase in activity 

compared to their L-series analogues, giving IC50 values as low as 1.3 µM. 

This increase in activity as we move from the L-series to the D-series highlights the 

importance of absolute stereochemistry of compounds derived from this indoloisoquinoline 

template. The more active D-series shares the same absolute stereochemistry at the ring 

junction within the heterocyclic core as the natural anti-malarial compound 

dihydrousambarensine (34).  

 

N
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N

N

HN

H

H

 

 (34) 
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This relationship between stereochemistry and anti-malarial activity has also been 

reported by Frederich et al. 7 and is discussed in section 1.2. 

These results also show a preference for a benzyl moiety at the indole nitrogen and either 

a methyl or allyl substituent at the oxygen atom (compounds (29) and (30)). Both of these 

have IC50 values of 1.3 µM, the highest level of activity in this set of compounds. An 

increase in steric bulk at R1 (compound (31) which has a benzyl group) is not favourable. 

Free rotation round the single bond of the benzyl moiety could be causing it to mimic the 

presence of a second ring system (35) such as that found in the naturally occurring 

anti-malarial dihydrousambarensine (34). 

 

N
N O

H

OR1

                                    

 

 

2.2.6 Investigations into ring size, electronic and steric properties 

Due to the results gathered in section 2.2.5, we decided to continue synthesising only 

compounds in the D-series, as it has been shown that these have higher anti-malarial 

activity. 

To try to understand which properties of the substituents added to the template were 

responsible for giving rise to better biological activity, and to try to improve on these 

findings, a further set of analogues was prepared.  

(35) 
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A propyl group was added to the free hydroxyl group of compound (27) as shown 

(Scheme 19) in 50% yield.   
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Bromomethyl cyclohexane and bromomethyl cylcobutane were both used as alkylating 

agents, along with benzyl bromide and allyl bromide to produce compounds (37), (39) and 

(41). Addition of these new groups was not as straightforward as the previous examples. 

Under our usual alkylation conditions no reaction occurred, so sodium iodide was added 

and the reaction heated at 60 °C for 24 hours. Addition of sodium iodide causes a 

displacement reaction in situ (Scheme 20) giving a more reactive alkylating agent. This is 

desirable as the iodide ion is a much better leaving group due to the weak C-I bond which 

requires less energy to break than the C-Br bond and therefore the desired reaction can 

proceed. 4 

 

Br NaI+ I + NaBr

 

 

Scheme 19 

Scheme 20 

(27) (36) 
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45% 
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Scheme 21 

Scheme 22 
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46% 
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2.2.7 Biological activities 

Table 2 shows the IC50 values of the compounds synthesised in section 2.2.6 and their 

parent compounds from 2.2.5.  

 

 

 

 

 

 

Scheme 23 

(20) (40) 

(41) 

67% 
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Table 2:  

N
R

N O

H

OR1

 

Parent Compounds Analogues 

 R R1 IC50 (µM) Dd2luc  R R1 IC50 (µM) Dd2luc 
(31) Benzyl Benzyl 3.5 (37) Benzyl Cyclohexylmethyl 19 
(30) Benzyl Allyl 1.3 (36) Benzyl Propyl 2.8 

(39) Cyclohexylmethyl Allyl 9 
(41) Cyclobutylmethyl Allyl 7 

 

Comparison of these compounds shows that an increase in steric bulk at the R1 position 

leads to a decrease in anti-malarial activity. Compound (30) has an IC50 value of 1.3 µM. 

When the allyl group at the R1 position is changed to a benzyl (31), a cyclohexylmethyl 

(37) or a propyl group (36), the activity drops to 3.5 µM, 19 µM and 2.8 µM respectively.  

Due to the lack of the double bond in the propyl group, it is not planar and therefore it can 

rotate around, increasing steric bulk. It also lacks the electron density of the allyl group in 

compound (30) due to the absence of the π-bond. This finding is similar to that observed 

with the decrease in activity when the R1 substituent is changed from a benzyl (31) to a 

cyclohexylmethyl (37). Again there is a reduction in electron density and a reduction in 

planarity as the saturated cyclohexyl ring would be expected to favour a chair 

conformation.  

Compounds (39) and (41) also show a decrease in activity. Here the R substituent has 

been changed from a benzyl to a cyclobutylmethyl in (41) and a cyclohexylmethyl in (39) 

and the IC50 values have dropped from 1.3 µM to 7 µM and 9 µM respectively. In both 

cases it seems that the steric and electronic properties of benzyl are preferred for higher 

activity. A change in ring size from an unsaturated six membered ring to an unsaturated 
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four membered ring does show a slight increase in activity, but it is negligible compared to 

that of having a benzyl moiety in the R position. 

The properties of the benzyl substituent may explain why it is preferred to its saturated 

analogue. As a planar, hydrophobic structure, it can bind to flat hydrophobic regions of the 

target binding site (Figure 1). Neither a methyl or cyclohexylmethyl group would be able to 

bind in the same way; this is reflected in the IC50 values. The methyl group is too small for 

much interaction and a cyclohexylmethyl group as mentioned above, is not planar, and 

would have a larger steric influence (Figure 1). Both methyl and cyclohexylmethyl lack 

aromaticity and cannot π-bond. An allyl group might undergo π-bonding but it is also small 

and would not bind to the binding site as proficiently as a benzyl moiety. 

 

                                 

Figure 1 
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2.3 Introduction of α,β – Unsaturation to the Indolizino[2,3-α]quinolizidine ring 

system 

2.3.1 α,β – Unsaturation 

α,β – Unsaturation of compounds was achieved following the Reich method mentioned in 

Chapter 1. 8 This technique was performed on two of the compounds, (30) and (31), 

introduced in the previous section.  

N
N O

H

O

                          

N
N O

H

O

 

 

Addition of n-butyl lithium to diisopropylamine in anhydrous tetrahydrofuran at -78 °C 

formed lithium diisopropylamide, which in turn, was used to generate the enolates of these 

compounds. Phenyl selenyl bromide was then added to give the α-selenide required for 

the subsequent elimination reaction. Sodium metaperiodiate and sodium bicarbonate 

dissolved in methanol and water were used as an oxidant to promote elimination of the 

selenoxide, introducing a double bond (Scheme 24). Due to solubility issues, the 

elimination reaction was carried out at 60 °C instead of room temperature. 

 

 

(30) (31) 
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(42)  R=Bn,  

         R
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(43)  R=R
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This methodology gave rise to compounds (44) and (45) in 40% and 25% yields 

respectively. The IC50 value of each compound is shown in Table 3 along with the activity 

of the saturated analogues. 
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Scheme 24 

(30)  R=Bn, R
1
=Allyl 

(31)  R=R
1
=Bn 

(44)  R=Bn, R
1
=Allyl 

(45)  R=R
1
=Bn 

(45)  (44)  
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2.3.2 Biological activities 

Table 3: 

N
R

N O

H

OR1

 

Saturated Analogues Unsaturated Analogues 

 R R1 IC50 (µM) Dd2luc  R R1 IC50 (µM) Dd2luc 
(30) Benzyl Allyl 1.3 (44) Benzyl Allyl 1.7 
(31) Benzyl Benzyl 3.5 (45) Benzyl Benzyl 3.6 

 

Introduction of unsaturation to the lactam ring could cause a change in ring conformation. 

In both cases shown in Table 3 this difference has not led to improved activity on 

comparison with the saturated analogues.  

 

 

 

 

 

 

 

 

 

 



92 

 

2.4 Conjugate Additions 

2.4.1 Addition of a vinyl group 

With α,β-unsaturation of the lactam ring achieved, conjugate additions to the ring were 

now possible. Vinyl groups were added to unsaturated compounds (44) and (45) using a 

reagent system of vinyl magnesium bromide and copper cyanide. This gave rise to 

compounds (46) and (47) in 37% and 49% yields respectively. The rationalisation for the 

stereochemical outcome of the newly created chiral centre is discussed in Chapter 1. 
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OR1
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Vinyl MgBr
CuCN
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-78 °C to RT

 

 

 

The copper cyanide is added in order to transmetalate the Grignard reagent, and create a 

copper vinyl species that will add to the C=C bond rather than the C=O bond. 

 

MgBr + CuCN Cu MgBrCN+  

 

 

The exact structure of the vinyl copper species is unknown and more complicated than 

Scheme 26 shows, as that species is far too un-reactive for the reaction to occur. 4  

(44)  R=Bn, R
1
=Allyl 

(45)  R=R
1
=Bn 

(46)  R=Bn, R
1
=Allyl 

(47)  R=R
1
=Bn 

Scheme 25 

Scheme 26 
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Compounds (46) and (47) were formed by this method. Their activities are shown in 

Table 4, compared with their parent compounds. Compound (48) is an analogue of (47), 

synthesised by another member of the group from L-tryptophan, and its anti-malarial 

activity is also shown in Table 4. 

N
N O

H

O

                                        

N
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2.4.2 Biological Activities 

Table 4: 

N
R

N O

H

OR1

                                             

N
R

N O

H

OR1

 

Parent Compounds  Analogues with vinyl substituent  

(D-Series)   (D-Series)   

 R R1  IC50 (µM) Dd2luc  R R1 IC50 (µM) Dd2luc 
(30) Benzyl Allyl 1.3 (46) Benzyl Allyl 1.1 
(31) Benzyl Benzyl 3.5 (47) Benzyl Benzyl 13 
L-Series   L-Series   
(26) Benzyl Benzyl 12 (48) Benzyl Benzyl 20 

 

Table 4 shows conflicting results. Introduction of a vinyl group to the bis-benzyl compound 

(31) to give compound (47) has caused a decrease in activity (3.5 µM to 13 µM). This 

(46) (47) 
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finding is supported by IC50 values of the enantiomers of these compounds. Compound 

(26) 3 has an IC50 value of 12 µM; addition of a vinyl group to give compound (48), 3 

causes this to fall to 20 µM.  

N
N O

H

O

                                           

N
N O

H

O

 

 

 

Contrary to this, addition of a vinyl group to the compound (30), with a benzyl at R and an 

allyl at R1, has caused an increase in activity, giving the most active compound presented 

so far. As mentioned before it is likely that increased steric bulk, particularly at the R1 

position is unfavourable. With two benzyl moieties and a vinyl group, it could be that 

compound (47) is now too big and bulky and is not readily accommodated into the binding 

site, that there is limited space. In compound (46), with a less bulky allyl group at R1, the 

addition of the vinyl group causes a favourable increase in activity. This suggests that 

addition to the β-position of the lactam ring could be highly beneficial for anti-malarial 

activity; however there is limited space, and adding a substituent larger than a vinyl group 

could cause a decrease in activity.  Natural anti-malarial compounds such as 

dihydrousambarensine (34), ochrolifuanine A (49a) and a plethora of others all have 

β-carboline type ring systems in this position. What they lack however, is a substituent in 

the R1 position, in fact the hydroxy methyl moiety is not present at all and it is perhaps this 

that gives enough reduction in size to allow these natural compounds to have large 

structures bonded to the lactam ring and still retain high anti-malarial activity. 

(26) (48) 
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Therefore, it appears that removing the hydroxymethyl group from our indoloisoquinoline 

template is desirable, as it will allow us to investigate further additions to the lactam ring. 

The methodology for this is described in section 2.6. 
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(34) (49a) 
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2.5 Basicity 

2.5.1 Introduction 

The activity of chloroquine has, in part, been attributed to its basic nature, causing it to 

accumulate in the acidic digestive vacuole of the Plasmodium parasite. 9,10 Similar findings 

have been reported in compounds from various Strychnos species, exhibiting anti-

plasmodial activity. 7 Despite the similarities in structures, usambarine (50) (possessing a 

methyl substituent at N3, giving a tertiary amine) was found to be less active 

(IC50 = 2.5 µM) than ochrolifuanine A (49a) (IC50 = 0.12 µM) and E (51) (IC50 = 0.28 µM), 

which both possess an H atom instead, which would make the compound slightly more 

basic. Isostrychnopentamine (52) is also structurally similar to usambarine, yet possesses 

a third basic nitrogen atom in the pyrrolidine ring, and accordingly was found to be more 

active against the Plasmodium lines tested (IC50 = 0.12 µM). 
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With this is mind, modifications were made to see if increasing the basicity of these 

compounds could have a similar effect. 

 

2.5.2 Increasing the basicity 

Replacing the benzyl moiety at the R position with a pyridylmethyl group, and keeping the 

R1 substituent an allyl group, gives an analogue to compound (30) with very similar steric 

properties, but with an increase in basicity due to the extra nitrogen atom. The addition of 

the pyridylmethyl group was not as straightforward as with the other alkylations. Previous 

methods developed successfully with previous alkylating agents failed to yield the desired 

product in this series (Schemes 27 and 28). 
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Scheme 27 

Scheme 28 

(20) (53) 

(20) (53) 

No Reaction 

No Reaction 
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A method reported by Jilka et al. 11 for the dialkylation of carbocyclic analogues of Tröger’s 

base with pyridyl groups was investigated. Two methods were described; the first, in 

which the pyridine salt was deprotonated with triethylamine and added as a solution to 

anhydrous tetrahydrofuran, followed by sodium hydride (Scheme 29), was attempted by 

another member of the Allin group and was found to be unsuccessful. 
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The second method described by Jilka et al. involved the bromomethylpyridine being 

treated with potassium tert-butoxide in dry dimethyl sulfoxide (Scheme 30). 11 This method 

proved to be successful and gave the desired compound (53) in 22% yield.  
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Scheme 29 

Scheme 30 
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An allyl group was then added to (53) in the usual way to give compound (54) in 90% 

yield. 
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Another method investigated to increase the basicity of these compounds was to remove 

the carbonyl group, converting the amide functional group to a tertiary amine. Amides are 

very weak bases compared to amines since the adjacent carbonyl group is 

electron-withdrawing and causes the lone pair on the nitrogen to become delocalised. The 

carbonyl group was removed using 1 equivalent of lithium aluminium hydride in dry 

tetrahydrofuran under reflux conditions for 3 hours. The reaction was then stirred at room 

temperature overnight. This reaction was carried out on the two most biologically active 

compounds, (29) and (30), described in section 2.1 (Scheme 32). 

 

 

 

(53) (54) 

Scheme 31 
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Table 5 shows the anti-malarial activity of the compounds described in this section, 

compared to the parent compounds. 

 

2.5.3 Biological activity 

Table 5: 

N
R

N O

H

OR1

 

Parent Compounds Analogues 

 R R1 IC50 (µM) Dd2luc  R R1 IC50 (µM) Dd2luc 
(30) Benzyl Allyl 1.3 (54) 4- Pyridyl methyl Allyl 2.1 

(56) Benzyl Allyl 1.5 
(29) Benzyl Methyl 1.3 (55) Benzyl Methyl 3.3 

 

None of these compounds show any improvement in activity compared to the parent 

compounds (29) and (30) (both with an IC50 of 1.3 µM). Therefore it seems conclusive that 

the basicity of these compounds is not contributing to their activity. The drop in activity 

from the amide compounds (29) and (30) to the corresponding amines (55) and (56) is 

(55) R
1
=Me  45% 

(56) R
1
=Allyl   12% 

 Scheme 32 

(29) R
1
=Me 

(30) R
1
=Allyl 
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small. Amides have the ability to form a hydrogen bond to a binding site through the 

carbonyl oxygen, if this particular binding was important for the compound’s activity, a 

larger drop in activity might be expected. The nitrogen atom of an amide functional group 

cannot form a hydrogen bond since the lone pair of electrons will delocalise across with 

the neighbouring carbonyl group. However when converted into a tertiary amine, the N-

atom can form hydrogen bonds through the free lone pair of electrons. It may be possible 

that the amine N-atom is binding by hydrogen bonds to the same site that the carbonyl 

oxygen of the amide does, and this is why very little change in activity has occurred. 

Alternatively, the binding site is not influenced by this particular functionality and no 

bonding is occurring in this location at all. 

The addition of a nitrogen atom caused by swapping the benzyl moiety in compound (30) 

with a pyridyl group (54) gives the compound the ability to form new hydrogen bonds. Due 

to the decline in activity there seem to be no H bond donors in this region of the binding 

site. 
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2.6 Synthesis of a New Template 

2.6.1 Removal of the hydroxy methyl group 

The hydroxyl methyl moiety within the indolizino[2,3-α]quinolizidine ring system under 

investigation is not found in any natural compounds that exhibit anti-malarial activity. In 

section 2.4 it was also proposed that this moiety was preventing high levels of biological 

activity from being achieved by taking up chemical space. 

For these reasons, it was removed by a radical decarbonylation of an acyl selenide 12 

using tributyltin hydrideand azobisisobutyronitrile, giving the desired product (58a) in 72% 

yield. 
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Heating azobisisobutyronitrile (59) causes its decomposition, eliminating a molecule of 

nitrogen gas and forming two 2-cyanoprop-2-yl radicals (60). These can then initiate 

further reactions (Scheme 34). 

 

Scheme 33 

(57) (58a) 
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In order to create the phenylseleno ester, the OH group must be oxidised to the 

corresponding carboxylic acid. Previous research in the group showed that direct 

oxidation was not possible due the indole NH being sensitive to the use of all oxidising 

agents tried. 13 An indirect route of oxidising the alcohol to the aldehyde, followed by a 

protection of the indole nitrogen and then subsequent oxidation to the acid was proposed.  

The only oxidising agent found able to successfully give the aldehyde with our substrate 

was IBX. 13 

IBX (68) was synthesised from 2-iodobenzoic acid (67) and potassium bromate (66) 

(Scheme 35). 14 

KBrO3       +

CO2H

I

O
I

O

O
OH

80 °C

3 h

 

 

 

The oxidation reaction was performed in anhydrous dimethyl sulfoxide at room 

temperature and yielded aldehyde (69) as a white solid. This reaction worked well on a 

small (0.1 g) scale, but attempts to scale up to a larger (1.0 g) scale failed. Commercial 

stabilised IBX was then used and gave the aldehyde in 80% yield on a 1.0 g scale. 

 

N
H

N
H

IBX

DMSO, RT, 24 hN O

H

OH

N

H

O

O

H

 

Scheme 36 

Scheme 35 

(66) (67) (68) 

(20) (69) 



105 

 

Protection of the indole NH was achieved by using di-tert-butyl carbonate in anhydrous 

tetrahydrofuran with triethylamine and 4-(dimethylamino)pyridine. 
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To obtain the carboxylic acid, a Pinnick oxidation 15 was performed using sodium chlorite 

and sodium dihydrogen phosphate dissolved in a mixture of acetonitrile and tert-butyl 

alcohol (Scheme 38). This gave the desired acid in 88% yield. Cyclohexene was used as 

a chlorine scavenger to catch any hypochlorite ions formed, as these may cause 

unwanted side reactions. 
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Scheme 37 

(69) (70) 

Scheme 38 

(70) (71) 



106 

 

Selenation of the carboxylic acid was achieved in 55% yield by reacting the carboxylic 

acid with diphenyl diselenide and tributylphosphine in anhydrous dichloromethane.  
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2.6.2 Functionalisation of template (72a) 

The Boc protecting group was removed by heating under reflux with tetrabutylammonium 

fluoride in anhydrous tetrahydrofuran for 9 hours. This gave the free indole compound in 

79% yield (Scheme 40). 
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Scheme 39 

(71) (57) 

Scheme 40 

(58a) (72a) 

(58a) 
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A set of compounds derived from this new template (72a) were designed and synthesised. 

The aim was to test them against analogues that have the hydroxymethyl group in place 

to see if removal of this moiety leads to better anti-malarial activity and hence gain 

information on the necessity of functionality in this chemical space. 

The other compounds in this series were synthesised using methods already described 

above in this thesis. 
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Table 6 compares the activities of compounds (72a) and (73a) with their analogues. 

 

 

 

 

(72a)  (73a)  80% 

(74a) 

79%  

26%  
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2.6.3 Biological activities  

Table 6:  

N
R

N O

H

OR1

                                           

N
R

N O

H
 

 

Parent Compounds Analogues 

 R R1 IC50 (µM) Dd2luc  R R1 IC50 (µM) Dd2luc 
(20) H H 56 (72a) H N/A 36.7 
(27) Benzyl H 5 (73a) Benzyl N/A 5.3 

 

In the first instance (compounds (20) and (72a), with no modifications to either template, 

the removal of the hydroxymethyl group has caused a notable increase in activity, 

however it is still not comparable to the activity of compounds (29), (30) and (46). This 

increase in activity is most probably due to the OH group having been removed and 

lowering the overall polarity of the compound. 

Addition of a benzyl group (compound (73a)) to template (72a) causes the same high 

increase in activity seen previously when a benzyl group was added to template (20). 

Compound (73a) has an IC50 value very similar to analogue (27), showing that in this 

case, the removal of the hydroxymethyl moiety has caused no significant change in 

anti-malarial activity. This would suggest that functionality in this region is not necessary 

for high activity. 

The α,β-unsaturated compound (74a) shows an increase in activity (IC50 = 15.2 µM) 

compared to its saturated analogue (58a) (IC50 = 22.5 µM). This finding is different from 

the results described in section 2.3 which suggest that α,β-unsaturated compounds have 

a lower activity (albeit by only a small amount). The change from a benzyl (73a) to a Boc 
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(58a) protecting group on the indole nitrogen induces a decrease in activity. This result is 

unsurprising, as a Boc group shares none of benzyl’s steric or electronic properties. 

The Boc group on the α,β-unsaturated compound (74a) was removed using formic acid 16 

as the tetrabutylammonium fluoride Boc removal method described above (Scheme 40) 

has been shown to reduce the unsaturated lactam ring. 3 This yielded the desired 

compound (75a). 

The structure of this compound (75a) was confirmed by 1H NMR spectroscopy (showing 

that the C(CH3)3 peak, characteristic of a Boc group, was not present, and that an indole 

NH peak was present at 8.23 ppm). This compound was found to be unstable and no 

further data could be collected. 

N
H

N O
H

 

 

Despite no real increase in anti-malarial activity, we felt it was desirable to continue 

making compounds without a hydroxymethyl substituent, due to the stronger resemblance 

to natural indole alkaloids. As the most active natural compounds (such as 

dihydrousambarensine (34) and ochrolifuanine A (49a)) have a free indole NH, the use of 

a Boc group in this position is better than a benzyl with our compound, due to its ease of 

removal. 

The synthesis of the indolizino[2,3-α]quinolizidine  core requires five steps, and a further 

five steps to remove the hydroxymethyl moiety. This requires large amounts of starting 

material and reagents, and the reactions to be scaled up to give enough template for a 

series of compounds. Due to the high cost of D-tryptophan and the time required for a 10 

(75a) 



110 

 

step synthesis, an alternative route was sought for creating an indolizino[2,3-

α]quinolizidine  core. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 

 

2.7 Alternative Synthesis to the Indolizino[2,3-α]quinolizidine  Ring System. 

2.7.1 Previous work 

Previous work in the Allin group towards the synthesis of the indoloizino[8,7-b]indole ring 

system (78) had shown that this template, similar to the indolizino[2,3-α]quinolizidine  ring 

system, could be synthesised in two steps by reaction of the β-amino derivative of 

L-tryptophan (3) with succinic anhydride (76), followed by a reductive cyclisation 

reaction. 17 
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We thought that this approach, via the corresponding imide (81), could be used to access 

the racemic indolizino[2,3-α]quinolizidine ring system (72a, b) using tryptamine (79) and 

glutaric anhydride (80) (Scheme 42). 

 

Scheme 41 

(76) 

(3) (77) 

(78) 
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Key features of product (72a, b) are that it is racemic and that it lacks the hydroxylmethyl 

substituent. The first step of this proposed synthesis is the formation of an imide derivative 

from tryptamine and glutaric anhydride. The method described in Scheme 42 was used, 

but proved unsuccessful in this case as the reagents did not dissolve. The method was 

repeated but with replacing toluene with anhydrous tetrahydrofuran as a solvent. This 

gave rise to the formation of undesired compound (82), showing that under these 

conditions the reaction is not reaching completion, but rather stopping half way. Different 

methods for the formation of this imide were then investigated. 

HN

H
N

O

O OH

 

 

Scheme 42 

(79) (80) 
(81) 

(72a, b) 

(82) 

No Reaction 
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2.7.2 Imide formation 

Ardeo et al. achieved the desired imide (81) in 67% yield, during their investigations into 

constructing the fused β-carboline framework found in corynanthe-type indole alkaloids. 18 

They reacted tryptamine with glutaric anhydride while heating under reflux in acetic acid.  
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Morrison et al. accessed the same compound by a different method involving diethyl 

glutarate (83) as a substrate. 19 This was reacted with tryptamine at 175 °C for 1 hour, and 

subsequently heated under reflux in xylene with p-toluenesulfonic acid for 9 hours.  
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Scheme 43 
18

 

Scheme 44 
19

 

(79) (80) (81) 

(79) (83) (81) 
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Raheem et al. formed a similar imide en route to the natural compound (+)-harmicine 

(87). 20 Tryptamine (79) was combined with succinic anhydride (76) in a mixture of toluene 

and acetic acid (1:3) and heated under reflux at 120 °C for 24 hours. The imide (85) was 

then cyclised to give compound (86) using sodium borohydride in methanol at 0 °C 

followed by trimethylchlorosilane, methyl tert-butyl ether and a chiral thiourea catalyst 

(84). This method gave (+)-harmicine (87) in 97% e,e. All compounds reported by 

Raheem which were synthesised this way gave a high percentage enantiomeric excess. 
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A method reported by Heaney, 21 that showed that an imide could be formed by heating 

tryptamine with glutaric anhydride at 200 °C with no solvent, was tried and found to be 

successful in our studies. Thin layer chromatography showed that after 2 hours there was 

still plenty of starting material left, so the reaction was left overnight and gave the desired 

imide (81) in 66% yield. 
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We found that under these conditions, the undesired intermediate (82) could also be 

converted into the imide (81). 
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Scheme 46 

(79) (80) (81) 

Scheme 47 
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2.7.3 N-Acyliminium cyclisation 

For cyclisation to occur, one of the carbonyl groups on the piperidinone ring must be 

reduced. In 1954, Tagmann et al showed that under mild conditions lithium aluminium 

hydride could be used to reduce compound (88) to the hydroxyl piperidinone compound 

(89). 22 
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Speckamp et al. developed this partial reduction of cyclic imides into high yielding 

procedures by using excess sodium borohydride in ethanol. 23, 24 During the reaction, 

dilute hydrochloric acid is added to stop the medium becoming too basic, as this would 

cause undesired ring opening. The reaction is performed at a low temperature which also 

helps to avoid ring opening. It has been reported that the addition of acid is not necessary 

if the reaction is performed using methanol as a solvent and carried out at -4 °C. 

Cyclisation of the reduced imide is achieved by addition of hydrochloric acid to the 

reaction (Scheme 49). 

 

Scheme 48 
22

 

(88) (89) 
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Rahman et al. in their synthesis towards β-carbolines, 25 report success using a variety of 

metals to catalyse reduction by sodium borohydride (Scheme 50). The imide was treated 

with 5 equivalents of sodium borohydride, and 1 equivalent of cobalt chloride in ethanol at 

0 °C. After two hours a 95% yield of the desired product was obtained. This was then 

cyclised using concentrated hydrochloric acid. Similar yields were achieved using nickel 

chloride, chromium chloride and stannous chloride. 

Scheme 49 
23, 24

 

(81) (90) 

(72a, b) 
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The method employed in this current project was adapted from that of Speckamp et 

al. 23, 24 The imide was dissolved in absolute ethanol and cooled to 0 °C degrees. Sodium 

borohydride was added followed by 2M hydrochloric acid in absolute ethanol which was 

added portionwise over a period of 3 hours. The reaction was then acidified to pH 1-3 by 

further addition of 2 M hydrochloric acid in absolute ethanol and the reaction mixture was 

stirred at room temperature overnight. The addition of further 2M hydrochloric acid is 

needed to promote the cyclisation reaction. After work-up the crude product was washed 

with absolute ethanol to give an off-white solid (72a, b) in 68% yield (Scheme 49). The 

proposed mechanism for this cyclisation reaction is shown in Scheme 51. 
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(72a, b) 

Scheme 50 
25
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2.7.4 Racemic compounds 

Using a racemic template, although quicker and cheaper to synthesise, could pose 

problems when testing for anti-malarial activity. A racemic mixture could be considered 

comparable with administering two different drugs with differing pharmacological 

Scheme 51 

(81) (90) 

(72a, b) 

(94) 

(91) (92) 

(93) 
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properties; it is possible only one enantiomer has biological activity. One enantiomer may 

act as an agonist or an antagonist causing an increase, or decrease, in the overall 

effectiveness of the drug. In the case of the asthma treating drug salbutamol, only one 

enantiomer (the R enantiomer (95)) has any advantageous effect. 26 
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R -Salbutomol                                                                 S- Salbutamol 

 

Studies into the chiral drug thalidomide, commonly prescribed in the late 1950’s for 

morning sickness, but withdrawn a few years later after being linked to serious 

birth_defects, have shown some evidence that the two isomers have differing biological 

effects. The R-enantiomer (98) has been shown to be responsible for the drugs sedative 

effects and the S-enantiomer (97) has been shown to be responsible for its 

imunnomodulatory effects. 27, 28 It is important to test each enantiomer of a chiral drug 

separately to see exactly what biological effect it might produce. Thalidomide is racemised 

in vivo 29 and therefore administering a single enantiomer would not avoid the undesirable 

side effects of this drug. Therefore it is important to know what effects a racemic mixture 

could have.  
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The in vitro testing done on the compounds produced in this project may show if using a 

racemic mixture will have any effect on the compounds anti-malarial activities. 

A series of compounds similar to the ones in section 2.6 were synthesised using methods 

described above. This was carried out to see what effect (if any) using a racemic template 

instead of an enantiomerically pure one might have on the activity of the compounds. 

Table 7 shows the IC50 values of the compounds (72a, b), (73a, b), and (58a, b) 

compared with their enantiomerically pure analogues; Table 8 shows the unsaturated 

compound (74a, b) compared to its enantiomerically pure analogue (74a). 
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(72a, b) (73a, b) 

(58a, b) (74a, b) 

68% 58% 

55% 37% 
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2.7.5 Biological activities 

Table 7: 

N
R

N O

H
                                     

N
R

N O

H
 

 

D-Series R IC50 (µM) Dd2luc Racemic R IC50 (µM) Dd2luc 
(72a) H 36.7 (72a, b) H 38.5 
(73a) Benzyl 5.3 (73a, b) Benzyl 8.26 
(58a) Boc 22.5 (58a, b) Boc 23.6 

 

Table 8: 

D-Series R IC50 (µM) Dd2luc Racemic R IC50 (µM) Dd2luc 
(74a) Boc 15.2 (74a, b) Boc 10.1 

 

The above tables show that the IC50 values of the racemic compounds are not especially 

different from those of their pure enantiomer analogues. Out of the four comparisons, 

three show the pure enantiomer is slightly more active and the other one shows the 

racemate to be more active. There are a few possible reasons for this lack of difference in 

activity. 

The racemic compounds contain both (-/+)-enantiomers; while previous results have 

shown compounds derived from (-)-enantiomer (20) to be far more active, there are some 

cases in which compounds derived from the (+)-enantiomer (8) have been shown to be 

active in the 10-30 µM range ((24), (25) and (26)), suggesting that compounds with this 

stereochemistry could, with structural modifications become more active. 
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The enantiomerically pure compounds from section 2.6 were derived from the (-)-template 

(20), they have not been synthesised with the opposite stereochemistry and therefore 

their biological activity is unknown. They could have been more potent than the 

compounds previously tested, and therefore their presence would not cause a decline in 

activity as would be expected. It is possible that stereochemistry is less important now the 

hydroxymethyl group has been removed and only one chiral centre is now present. It 

could be that it was the relative stereochemistry (cis/trans) at the chiral centre containing 

the hydroxymethyl moiety that made such a difference in the activity of the compounds in 

section 2.1. 

Previously mentioned in section 1.2 was the potent anti-malarial compound 

ochrolifuanine A (49a) and its far less potent enantiomer ochrolifuanine E (51). 7 The 

stereochemistry of the hydrogen atom at position 12b in ochrolifuanine A is the same as 

that of the our more potent (-)-enantiomer (20), whereas E shares the same 

stereochemistry as our less potent (+)-enantiomer (8), therefore we thought that the 

absolute stereochemistry at this position was important. However ochrolifuanine A and E 

have three asymmetric carbon atoms and the difference in their anti-malarial activities 

could be attributed to these other chiral centres. 

 

(8) (20) 
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This theory could be tested by deriving compounds from template (99), a diastereoisomer 

of the (-)-template (20). Previous work in our group shows that (99) could be synthesised 

from compound (20) by refluxing with trifluoroacetic acid in toluene (Scheme 52). 3   
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Groups could then be added to template (99) using methods described above to give 

compounds analogous to those derived from template (20). The IC50 values could then be 

compared to the parent compounds to see if there were any significant differences in 

activity arising from the change of stereochemistry at the hydrogen atom at position 12b.  

This would demonstrate whether the absolute stereochemistry at this asymmetric centre is 

important for anti-malarial activity. 

(49a) (51) 

Scheme 52 

(20) (99) 
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Due to the little difference in the activities between racemic compounds and their 

enantiomerically pure forms, the project was moved forward using the more readily 

accessible racemic template. Even if activity of the racemic compounds is lower, they will 

still give an indication of what modifications lead to increased anti-malarial activity. If a 

significant lead compound is developed, we have the knowledge base to synthesise an 

enantiomerically pure analogue.  

 

2.7.6 Other racemic derivatives and biological activities 

Other compounds in the racemic series that were synthesised using previously developed 

methods are shown. Their activities are displayed in Table 9. 
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Table 9: 

N
R

N O

H
 

Unsaturated Compounds Compounds with a Vinyl substituent 

 R IC50 (µM) Dd2luc  R IC50 (µM) Dd2luc 
(100a, b) Benzyl 1.9 (101a, b) Benzyl 4.7 
(74a, b) Boc 10.1 (102a, b) Boc 14.5 
   (103a, b) H 69.6 

 

The structure-activity relationships of these racemic compounds follow similar trends to 

those that were found with the enantiomerically pure series in section 2.6. 

Both compounds (100a, b) and (74a, b) show that introduction of α,β-unsaturation has 

caused an increase in activity when compared to their saturated analogues (73a, b) and 

(58a, b) (IC50 values of 8.26 µM and 23.6 µM respectively). This is also the case with the 

enantiomerically pure compound (74a) (IC50 = 15.2 µM) when compared to its saturated 

analogue (58a) ((IC50 = 22.5 µM). 

 

(102a, b) (103a, b) 45% 46% 
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The IC50 values of the compounds described in section 2.3 showed that when the 

hydroxymethyl group is present, introduction of α,β-unsaturation of the lactam ring did not 

lead to an increase in activity. Compound (30) has an IC50 value of 1.3 µM, whereas its 

unsaturated analogue (44) has a value of 1.7 µM. 
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Addition of a group to the indole nitrogen atom in the racemic template (72a, b) has 

caused an increase in activity, from (72a, b) (IC50 = 38.5 µM) to (73a, b) (IC50 = 8.26 µM) 

and (58a, b) (IC50 = 23.6 µM), a trend seen in section 2.2 and section 2.6. 
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The IC50 values of these compounds show that a benzyl substituent causes a greater 

increase in activity than a Boc group, as seen with the enantiomerically pure compounds 

(58a) and (73a) in section 2.6.  

The introduction of a vinyl group (compounds (101a, b) and (102a, b)) causes an increase 

in anti-malarial activity when compared to their parent compounds (73a, b) and (58a, b) 

(Table 10). This is consistent with the results from section 2.4, in which addition of a vinyl 

group to compound (30) (IC50 = 1.3 µM) gave compound (46) which has an IC50 value of 

1.1 µM.  
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Table 10: 

N
R

N O

H
 

Parent Compounds Vinyl Compounds 

 R IC50 (µM) Dd2luc  R IC50 (µM) Dd2luc 
(73a, b) Benzyl 8.26 (101a, b) Benzyl 4.7 
(58a, b) Boc 23.6 (102a, b) Boc 14.5 
(72a, b) H 38.5 (103a, b) H 69.4 
 

Both the enantiomerically pure series and the racemic series of compounds follow similar 

structure-activity trends. This provides evidence that further structural modifications to the 

easily obtainable racemic template (and the anti-malarial activities obtained) will be a 

good indication of the bio-activity of the enantiomerically pure compounds. 

 

2.7.7 Conclusion to the structure-activity relationship investigation of the 

indolizino[2,3-α]quinolizidine  ring system 

Thus far in this project, we conducted an investigation into the structure-activity 

relationship of the indolizino[2,3-α]quinolizidine  ring system. Structural modifications that 

have been explored include; stereochemistry, alkylations, α,β-unsaturation followed by 

conjugate addition, removal of the hydroxymethyl moiety and the use of a racemic 

template.  

From this we have discovered that: 

� Compounds derived from (-)-Indolizino[2,3-α]quinolizidine  are more active than 

those derived from (+)-Indolizino[2,3-α]quinolizidine.  
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� That the addition of groups to the indole nitrogen and the oxygen atom increases 

activity.  

� A benzyl group on the indole nitrogen and a methyl or allyl group on the oxygen 

atom give the best anti-malarial activity (IC50 = 1.3 µM) 

� Introduction of α,β-unsaturation causes a decrease in anti-malarial activity in 

compounds with the hydroxymethyl moiety, but an increase in compounds 

without. 

� Addition of a vinyl group, in general, causes an increase in activity and led to 

compound (46), our most active compound so far (IC50 = 1.1 µM). 

� Increasing the basicity of the compounds in this project did not increase anti-

malarial activity. 

� Using a readily accessible racemic template (72a, b) instead of an 

enantiomerically pure one gives a good indication of anti-malarial activity in this 

series. 
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2.8 Towards a Bis-Indole Derivative 

2.8.1 Ochrolifuanine A 

With the structure-activity relationships of the indolizino[2,3-α]quinolizidine template 

investigated, the project moved towards the synthesis of a compound containing an 

additional ring system. The most active compounds found in nature are those containing 

two indole ring systems. The total synthesis of the bis-indole anti-malarial compound 

ochrolifuanine A has been reported (49a), 30 but to the best of our knowledge no others 

have. The synthesis and subsequent structure-activity relationship investigation of 

bis-indole compounds could provide novel leads with high anti-malarial activity. 

The key step in this reaction is a Pictet-Spengler 31 reaction between tryptamine and an 

aldehyde group.  
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This gives the desired compound (49a, b) as a mixture of diastereoisomers that could 

then be separated. The Pictet-Spengler reaction provides a route for deriving compounds 

with an additional ring system.  In order for this to be successful, aldehyde functionality 

must be introduced to the lactam ring of compound (72a, b).  

Scheme 53 

(104) (49a, b) 
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2.8.2 Aldehyde functionalisation of racemic indolizino[2,3-α]quinolizidine  

Using the racemic version of the indolizino[2,3-α]quinolizidine  ring system, the previously 

reported synthesis of (+)-12b-epidevinylantirhine was followed. 32 

The first step involves a conjugate addition reaction between α,β-unsaturated compound 

(74a, b), and methyl-1,3-dithiolane-2-carboxylate (106). This compound is not readily 

available and therefore was prepared from ethyl-1,3-dithiolane-2-carboxylate (105) by 

refluxing in methanol with sodium hydroxide for 30 minutes with the exclusion of light. 33 

This gave the desired compound as a yellow oil. 
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(106) was then reacted with (74a, b) using lithium diisopropylamide as a base. This gave 

compound (107) in 54% yield (Scheme 55). 

 

 

Scheme 54 

(105) (106) 

(72a, b) 
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Previous work has shown that with no hydroxymethyl group and a protecting group on the 

indole nitrogen atom, the incoming nucleophile always attacks one (the less hindered) 

face of the compound, giving only one relative stereochemistry. 32 This is discussed earlier 

in Chapter 1. The two enantiomers now present in the racemic mixture are as shown 

(107a) and (107b). 
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The removal of the dithiolane ring from (107a, b) was achieved using sodium borohydride 

with a nickel chloride catalyst in 61% yield. 34 As mentioned above in Chapter 1 the 

borohydride and nickel catalyst acts like Raney nickel, reducing the C-S bonds. 4 

(74a, b) 

(106) 

(107a, b) 

Scheme 55 

(107a) (107b) 
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The removal of the Boc group from (108a, b) was subsequently achieved cleanly in 82% 

yield on stirring with formic acid for 24 hours. 
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After removal of the Boc protecting group, the compound was treated with lithium 

aluminium hydride in dry tetrahydrofuran and heated under reflux for 3 hours, followed by 

9 hours stirring at room temperature. An excess of reducing agent was used to convert, in 

one pot, the ester to an alcohol and the amide to the corresponding amine, giving 

(+/-) -12b-epidevinylantirhine (110a, b) in 76% yield (Scheme 58). 

 

(107a, b) (108a, b) 

Scheme 56 

Scheme 57 

(108a, b) (109a, b) 
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2.8.3 Oxidation 

To obtain the aldehyde group, the primary alcohol must be oxidised. There are numerous 

agents that could be used to oxidise an alcohol to an aldehyde. PDC, 35 PCC, 36 

Dess-Martin Periodinane 37 and the Swern oxidation 38 are a few, however all these except 

PCC were attempted unsuccesfully on compound (8) by another member of the Allin 

group. The lack of success was possibly due to the indole NH, known to be unstable 

under oxidising conditions. 13, 39  

N
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N O

OH

H

 

 

Due to the similarities between PCC and PDC we assumed that PCC would also be an 

unsuitable oxidising agent. The oxidising agent IBX has been reported not to affect 

indoles with a free NH, 40 therefore an IBX oxidation was attempted (Scheme 59). 

 

Scheme 58 

(109a, b) (110a, b) 

(8) 
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An aqueous work up was performed and the compound extracted into ethyl acetate. 1H 

NMR analysis of the crude material showed only the presence of by-products of the 

oxidising agent. We thought that, due to the insolubility of the starting material, the 

aldehyde would also be fairly insoluble and therefore was not extracted. The experiment 

was repeated but without the aqueous work up. Instead, after 24 hours stirring the 

reaction was put on a freeze dryer to remove the dimethyl sulfoxide. Unfortunately, this 

did not yield any positive results either. 

A different method was then employed that required no extraction or aqueous work up. 

IBX oxidations are usually carried out in dimethyl sulfoxide due to the inability of the 

oxidising agent to dissolve in any other solvent, but Moore et al. 41 reported that at 

elevated temperatures, IBX can be used to convert alcohols cleanly into the 

corresponding aldehydes in excellent yields. Once the solution has cooled, the reduced 

IBX can be filtered out and the solvent removed. They reported a 90% yield when using 

ethyl acetate. This reaction was attempted with compound (110a, b) (Scheme 60). 

 

 

Scheme 59 

(110a, b) (111a, b) 

No Reaction 



137 

 

IBX 

EtOAc, 80 °C, 
3 h

N
H

N

H

O

N
H

N

H

HO
 

 

 

1H NMR spectroscopy of the crude reaction mixture showed no characteristic aldehyde 

peak or starting material. 

We then decided to protect the indole NH, to see if this would make the oxidation reaction 

successful. Triethylamine with 4-(dimethylamino)pyridine and di-tert-butyl carbonate in 

anhydrous tetrahydrofuran was used. After 2 hours, analysis by TLC showed complete 

conversion of starting material to the product shown in Scheme 61. 
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The base was changed to sodium hydride which previously had shown selectivity for the 

indole NH due to the reaction proceeding by a different mechanism, and the Boc 

protection was successful. 

 

Scheme 60 

(110a, b) (111a, b) 

Scheme 61 

(110a, b) (112a, b) 

No Reaction 
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Oxidation attempts on compound (113a, b) also failed. This may be due to the amide in 

the lactam ring having been converted to an amine, an unforeseen problem, as IBX has 

been reported to be chemoselective towards alcohol groups in the presence of primary, 

secondary and tertiary amines. 40 Frigaro et al. successfully oxidised compound (114) to 

its corresponding aldehyde (115) in 91% yield, 40 in the presence of a tertiary amine and 

an unprotected indole moiety. 
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Due to the success of this reaction and the compound’s similarity to ours (110a, b), the 

effectiveness of the IBX being used was called into question. A test reaction, known to 

work and described in section 2.6 was performed. 1H NMR spectroscopy of the crude 

(110a, b) 
(113a, b) 

Scheme 62 

Scheme 63 
40
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material showed clean conversion from the alcohol to the aldehyde, with a strong CHO 

peak at 9.4 ppm. 
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2.8.4 DIBAL reduction 

After several unsuccessful methods trying to obtain the desired aldehyde through 

oxidation, a reduction method was employed. Diisobutylaluminium hydride is known for 

reducing esters to aldehydes at low temperatures. 4 A short reaction time was used and a 

cold reaction temperature to try to prevent over-reduction to the alcohol. 1 Equivalent of 

DIBAL was used at – 80 °C in anhydrous dichloromethane. After 1 hour the reaction was 

quenched with methanol. 1H NMR spectroscopy of the crude reaction mixture showed 

only starting material. The experiment was repeated using 3 equivalents of DIBAL. This 

gave a mixture of the desired aldehyde (111a, b) and the alcohol (110a, b). The amide 

was also reduced. 

 

Scheme 64 

(20) (69) 



140 

 

N
H

N

H

HO

N
H

N O

H

O

OMe

N
H

N

H

O

+
DIBAL

Dry DCM, - 80 °C

 

 

 

 

As expected the major product was the alcohol (110a, b). Unfortunately, as the amide was 

also reduced, the alcohol could not be oxidised to the aldehyde (111a, b) as originally 

planned. We had thought that the amide would not be reduced at such a low 

temperature. 42   

 

2.8.5 Biological activities 

The compounds described in this section were tested for anti-malarial activity, and their 

IC50 values are displayed in Table 11. As these compounds are intermediates towards a 

bis-indole target, high anti-malarial activity was not expected, but was sought to provide a 

more complete structure-activity profile. 

 

 

 

 

Scheme 65 

(109a, b) (110a, b) (111a, b) 
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Table 11: 

N
N O

H
R

R1  

Compound R R1 IC50 (µM) Dd2luc 
(107a, b) Boc Ethyl-1,3-dithiolane-2-carboxylate 9.17 
(108a, b) Boc CH2C=OOCH3 20.3 
(109a, b) H CH2C=OOCH3 55.1 
(110a, b) H CH2CH2OH 27.2 
(111a, b) H CH2CHO 24.7 
(112a, b) H CH2CH2Boc 65.1 

 

The results of these compounds show that (107a, b) had the highest anti-malarial activity, 

most probably due to having a 5 membered ring at the R1 position. This resembles an 

additional ring system more closely than the other R1 substituents of the compounds in 

this series. The removal of the Boc group from compound (108a, b) to (109a, b) shows a 

decrease in activity. This is expected as previous results showed that addition of a group 

at the indole nitrogen always increased activity. 

With aldehyde functionality in place (111a, b), a Pictet-Spengler reaction could now be 

performed. 
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2.9 Addition of a Second Ring System 

2.9.1 Pictet-Spengler reaction 

The Pictet-Spengler reaction is one in which a β-arylethylamine such as tryptamine (79) 

undergoes a condensation reaction with an aldehyde or ketone, followed by ring closure 

(Scheme 66). Usually heat and the presence of an acidic catalyst are required. This forms 

a β-carboline unit (116), which we would like to add our compound (111a, b) 

(Scheme 67).   
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Scheme 66 

(79) (116) 

Scheme 67 

(111a, b) (117) 

(79) 
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This would potentially give a mixture of 4 diastereoisomers. 
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More nucleophilic rings such as indole give better reaction yields under mild conditions. 

The mechanism for this reaction is shown in Scheme 68. 

 

(117c) 

(117a) (117b) 

(117d) 
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The Pictet-Spengler reaction has been employed by various research groups as a route 

towards β-carbolines, it is commonly carried out using trifluoroacetic acid in anhydrous 

dichloromethane. Ducrot et al. 43 used it to generate β-carboline precursors to 

1-aminoindole[2,3-α]quinolizidines (123) (Scheme 69). 

(79) 

(116) 

(120) (119) 

(118) 

Scheme 68 
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Kundu et al. 44 used a novel varient of the Pictet-Spengler reaction using trifluoroacetic 

acid in water as a method of synthesising β-carbolines in high yields (Scheme 70). 
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2.9.2 Imine formation 

The first step of this reaction was to form an imine between compound (111a, b) and 

tryptamine (79). 
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The conditions employed were those described by Bailey et al. 45 in which the imine is 

formed by combining tryptamine and the aldehyde under a nitrogen atmosphere in 

anhydrous dichloromethane. 3Å molecular sieves were added since the by-product of this 

reaction is water. Once the imine is formed, trifluoroacetic acid is added. 

Compound (111a, b) and tryptamine (79) were combined as described. After 30 minutes it 

was noted that the compounds had not dissolved and therefore the reaction was heated to 

30 °C. After 4 hours a small portion of the reaction mixture was extracted, the solvents 

removed and a 1H NMR spectrum obtained, which showed the presence of tryptamine. 

The reaction was left overnight. Thin layer chromatography showed presence of both 

tryptamine (79) and aldehyde (111a, b). The reaction was run again at a higher 

temperature using anhydrous tetrahydrofuran for 12 hours.  After this time, analysis by 

thin layer chromatography showed no presence of tryptamine. Column chromatography 

Scheme 71 

(126a, b) 
(111a, b) 

(79) 
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was performed, but unfortunately none of the desired product could be obtained. No 

further action could be taken due to the project finishing. 
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2.10 Validity of these Compounds as Anti-Malarials 

For a compound to be considered a viable candidate for a drug, it must adhere to three 

main criteria. It must be cost effective, effective and safe. The first synthetic method 

towards the targets described in this thesis (Scheme 72), starting from D-tryptophan is 

highly costly and time consuming.  
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However the second, shorter method (Scheme 73) starting from tryptamine and resulting 

in racemic compounds is much more affordable, the IC50 results show that using racemic 

compounds gives very similar activity to that of the pure enantiomers and therefore 

provides a quicker, cheaper route to the compounds described in this project. 
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Scheme 72 
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These compounds, although they display anti-malarial activity, are not yet effective 

enough to be seriously considered as drug candidates (an IC50 value in the low nM range 

is desirable). They do however comply with three out of four of Lipinski’s rule of 5, a 

standard guideline for developing drugs. 46 

The rule of 5 states that, in general, for a drug to be orally active, it must have no more 

than one violation of the following criteria: 

1) No more that 5 hydrogen bond donors 

2) No more than 10 hydrogen bond acceptors 

3) A molecular mass less than 500 

4) An octanol-water partition coefficient (log P) less than five 

The compounds described in this thesis definitely comply with rules 1-3. The octanol-

water partition coefficient has not been tested. It is therefore likely that with further 

Scheme 73 

(72a, b) 

(90) (81) 



150 

 

structural modifications to increase activity, this class of compounds could make viable 

drug candidates for malaria. 

The safety of these compounds has not been fully assessed as they are not active 

enough to warrant much further investigation. However, cytotoxicity screening of natural 

structurally related indole alkaloids has been conducted and selectivity index (SI) 

determined. The selectivity index can be defined as the ratio of cytotoxicity over anti-

plasmodial activity; a high number displays selectivity for the plasmodium parasite and 

therefore makes a compound a more desirable drug candidate. The selectivity index for 

dihydrousambarensine has been reported as 375 (with an IC50 value of 0.032 µM) against 

the chloroquine resistance strain W2, 447 showing high anti-malarial activity, and low 

cytotoxicity. It is therefore possible for structurally related compounds to have this 

selectivity too. 

Preliminary toxicity screenings were conducted for 5 of the compounds described in this 

thesis and they were found to be non-toxic (see appendix 4.2). 48 
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2.11 Conclusion 

In summary, we have developed several anti-malarial compounds derived from both 

enantiomers of the indolizino[2,3-α]quinolizidine template (8) and (20). Those derived from 

(20) were more active. We have investigated several structural modifications to the 

templates to try to obtain a compound with high anti-malarial activity.  

 

N
H

N O

H

OH

                                 

N
H

N O

H

OH

 

 

Addition of protecting groups to both the indole nitrogen and the hydroxyl group increase 

anti-malarial activity. The combination of N-benzyl, O-methyl (29) or N-benzyl, O-allyl (30) 

yielded the most potent compounds. 
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With the hydroxymethyl moiety present, incorporation of α,β-Unsaturation in the lactam 

ring does not increase activity, however when followed by a conjugate addition reaction 

using vinyl magnesium bromide gave the most active compound in this series 

(46) (IC50=1.1 µM). 

(8) (20) 

(29) (30) 
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Increasing the basicity of the compounds by converting the amide into an amine and by 

adding a pyridyl group to the indole NH did not increase activity.  

Following previously described methodology, the hydroxyl methyl group was removed 

from (20) and a series of compounds were derived from this new template (72a), which 

bore a closer resemblance to natural anti-malarials. 
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We have developed a novel synthetic route to a racemic template that is quicker and 

cheaper to make than (72a) and a set of compounds derived from it showed that the 

racemic versions of these compounds are comparable in anti-malarial activity with the 

enantiomerically pure ones. 

 

Scheme 74 

(46) 

(20) (72a) 
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We have developed a novel route to the aldehyde (111a, b), which could then undergo a 

Pictet-Spengler reaction with tryptamine (79) to give a bis-indole compound. Unfortunately 

our attempts so far have proved unsuccessful.  
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Future work will focus on developing bis-indole compounds. The method reported by 

Malhorta 30 in the synthesis of ochrolifuanine A should prove successful in attaching a 

second ring system to our aldehyde (111a, b) to give the desired bis-indole compound 

(117). Derivatives of tryptamine, such as 5-hydroxytryptamine (127) or tryptophan (2), (17) 

could also be used to form a second ring system and to give insight as to whether extra 

functionality in this area could affect anti-malarial activity. 
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The functional groups on the above compounds could also be further functionalised, and 

in the case of tryptophan, effects of stereochemistry could be investigated. 
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Chapter 3 

Experimental 
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3.1 General Information 

3.1.1 Solvents and reagents  

All solvents, where necessary, were dried and stored over 3 Å molecular sieve prior to 

use. 

Reagent chemicals were purchased from the following companies: Alfa Aesar UK, Sigma-

Aldrich UK, Fischer Scientific and Acros Organics. 

 

3.1.2 Chromatographic procedures 

Analytical thin layer chromatography (TLC) was conducted using aluminium backed plates 

with 0.20 mm silica gel with fluorescent indicator UV254 and using polyester backed plates 

with 0.20 mm aluminium oxide with fluorescent indicator N/UV254. 

Plates were examined under UV light (254 nm).  

Column chromatography over silica gel was conducted using Geduran Si 60 (40-63 µm). 

Samples were pre-absorbed onto the minimum amount of silica.  

Column chromatography over alumina was conducted using Acros Organics aluminium 

oxide, basic, Brockman 1 for chromatography. 50-200 µm, 60 A. Samples were pre-

absorbed onto the minimum amount of alumina. 

Pressure was applied by the use of hand bellows. 
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3.1.3 Spectra 

Infrared spectra (IR) was conducted in the range of 4000-500 cm-1, using a Thermo 

Scientific Nicolet is10 with a Pike Technologies GladiATR. Samples were applied directly 

to the ATR plate. 

Nuclear Magnetic Resonance (NMR) spectra (1H and 13C) were recorded at 300 MHz 

using a Bruker Spectrospin DPX 300 Spectrometer. Multiplicities were recorded as broad 

peaks (br), singlets (s), doublets (d), triplets (t), quartets (q), quintets (qu), sextets (si), 

septets (se) double doublets (dd), doublet of double doublets (ddd), doublet of triplets (dt), 

doublet of quartets (dq), triplet of doublets (td), quartet of quartets (qq), sextet of doublets 

(sid) and multiplets (m). All NMR samples were made up in deuterated solvents with all 

values quoted in ppm relative to tetramethylsilane (TMS) as an internal reference. 

Coupling constants (J values) are reported in Hertz (Hz). 

Mass Spectrometry Samples were sent for EI/CI and Accurate Mass measurement to 

EPSRC National Mass Spectrometry Centre at the University of Wales, Swansea.  

 

3.1.4 Other data 

Melting points were determined using a Stuart Scientific SMP3 Melting point instrument. 

Specific Rotations were performed using a Rudolph Research Analytical Autopol 

Automatic Polarimeter and are reported in units of deg° dm−1cm3 g−1
. 
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3.2 Synthesis of Indolizino[2,3-α]quinolizidines 

(2S)-2-Amino-3-(1H-indole-3-yl)propan-1-ol (3) 3 

 

N
H

OH

NH2

 

 

Anhydrous tetrahydrofuran (75 ml) was added to lithium borohydride (1.07 g, 49.0 mmol) 

under a nitrogen atmosphere. Trimethylsilyl chloride (12.4 ml, 97.9 mmol) was added over 

the course of two minutes, followed by L-tryptophan (2) (5 g, 24.5 mmol) which was added 

slowly over the course of 5 minutes. The reaction was left stirring at room temperature for 

24 hours.  

Methanol (30 ml) was added cautiously to quench the reaction. The solvents were 

evaporated and the resulting oil was treated with 20% potassium hydroxide solution 

(40 ml).  The solution was washed with ethyl acetate (3 x 100 ml) and the organic extracts 

were combined and dried using anhydrous magnesium sulphate. The drying agent was 

then removed by filtration and the solvent removed under reduced pressure to yield a 

brown oil (3.36 g 72.2%). No further purification was carried out. 

δH(300 MHz; DMSO) 2.50-2.60 (1H, m, CH(H)CHNH2), 2.78 (1H, dd, J 14.1, 6, 

CH(H)CHNH2), 2.93-3.01 (1H, m, CH2CHNH2), 3.18-3.37 (2H, m, CH2OH), 6.95 (1H, t, J 

6.9, ArH), 7.05 (1H, t, J 7.2, ArH), 7.14 (1H, s, C=CHNH), 7.33 (1H, d, J  7.8, ArH), 7.53 

(1H, d, J  7.8, ArH), 10.83 (1H, br s, NH). 

OH proton was not observed. 
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Methyl 5-hydroxypentanoate (5) 3 

 

O

OMe

OH  

 

Concentrated sulfuric acid (25 drops) was added to a solution of δ-valerolactone (4) 

(25.8 g, 257.7 mmol) in methanol (250ml) and heated under reflux at 80°C for 5 hours. 

The mixture was cooled using an ice/salt bath and sodium hydrogen carbonate (2.5 g) 

was added and stirred for 10 minutes. This was then filtered and the solvent removed 

under reduced pressure to yield a colourless oil (30.23 g, 89%). The product was not 

purified as re-lactonisation occurs on aqueous work up or distillation. 

δH(300 MHz; CDCl3) 1.52-1.59 (2H, m, CH2CH2OH), 1.62-1.69 (2H, m, CH2CH2CH2OH), 

2.31 (2H, t, J 7.5, CH2COOCH3), 3.56-3.60 (2H, m, CH2OH), 3.63 (3H, s, OCH3). 

OH proton was not observed 
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Methyl 5-oxopentanoate (6) 3 

 

O

OMe

O  

 

Methyl 5-hydroxypentanoate (5) (11.8 g, 89.4 mmol) was added slowly to a suspension of 

pyridinium chlorochromate (29.0 g, 134.5 mmol) and celite (29.0 g) in dichloromethane 

(200 ml) and stirred at room temperature for 4 hours. The solution was decanted and the 

solids were washed with diethyl ether (4 x 100 ml) until the solvent ran clear. The 

combined organic solutions were filtered through an alumina column and the solvent was 

removed under reduced pressure to give a green oil (9.65 g, 83%) which was not purified 

further. 

δH(300 MHz; CDCl3) 1.62-1.65 (2H, m, CH2CH2CHO), 1.86-1.95 (2H, m, CH2CHO), 2.26-

2.31 (2H, m, CH2CH2CH2CHO), 3.63 (3H, s, OCH3), 9.73 (1H, s, CHO). 
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(3S)-3-((1H-Indol-3-yl)methyl)-hexahydrooxazolo[3,2-a]pyridin-5-one (7a, b) 3  

 

NH

N

O

O

H  

 

(2S)-2-Amino-3-(1H-indole-3-yl)propan-1-ol (3) (7.36 g, 38.70 mmol) and methyl 5-

oxopentanoate (6) (5.04 g, 38.70 mmol) were combined in toluene (150 ml) and refluxed 

under Dean-Stark conditions for 48 hours.  

The mixture was cooled and the remaining toluene was removed under reduced pressure. 

The resulting brown oil was absorbed onto silica and purified by flash column 

chromatography over silica using ethyl acetate as the eluent to produce the desired 

compound as a mixture of diastereoisomers which were not separated (2.13 g, 20%). The 

1H NMR data for the major isomer (7a) is shown below.  

 

NH

N

O

O

H  

 

δH(300 MHz; CDCl3) 1.29-2.00 (4H, m, CH2CH2CH2CO), 2.31-2.42 (2H, m, CH2CO), 2.57-

2.60 (1H, m, CH(H)C=C), 3.61-3.70 (1H, m, CH(H)C=C), 3.95-4.07 (2H, m, CH2O), 4.21-

4.24 (1H, m, NCHCH2O), 4.60-4.65 (1H, m, NCHOCH2), 6.98 (1H, s, C=CHNH), 7.04-7.20 

(2H, m, ArH), 7.30 (1H, d, J  7.8 ArH), 7.77 (1H, d, J 8.1 ArH), 8.02 (1H, br s, NH). 
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(6S,12bR)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(8) 3 

 

N
H

N O

OH

H

 

   

(3S,8aS)-3-(1H-Indol-3-ylmethyl)-hexahydro-oxazolo[3,2-a]pyridine-5-one (7a, b) (1.39 g, 

5.10 mmol) was dissolved in absolute ethanol (70 ml) and acidified to pH 1 using 2 M 

hydrochloric acid in absolute ethanol. This was then stirred at room temperature for 

20 hours.  

The reaction was quenched by the addition of saturated sodium hydrogen carbonate 

solution and extracted with ethyl acetate (3 x 100 ml). The organic extracts were 

combined, dried using anhydrous magnesium sulphate, and the drying agent was 

removed by filtration. The solvent was removed under reduced pressure to give a brown 

solid (1.33 g, 95%). A portion of this was re-crystallised from absolute ethanol to give a 

white solid. 

δH(300 MHz; DMSO) 1.57-1.65 (1H, m, CH(H)CH2CH2CO), 1.78-1.85 (2H, m, 

CH2CH2CO), 2.30-2.42 (2H, m, CH2CO), 2.55 (1H, s, CH(H)CH2CH2CO), 2.64-2.74 (1H, 

m, C=CCH(H)), 2.85 (1H, d, J  15, C=CCH(H)), 3.41 (2H, s, CH2OH), 4.70 (1H, d, J 8.7, 

NCHC=C), 4.84 (1H, br s, OH), 5.27 (1H, dt, J 6, 6, NCHCH2OH), 6.97 (1H, t, J 7.4, ArH), 

7.11 (1H, t, J 7.4, ArH), 7.37 (1H, d, J 7.8, ArH), 7.45 (1H, d, J 7.8, ArH), 10.95 (1H, br s, 

NH). 
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(2R)-2-Amino-3-(1H-indole-3-yl)propan-1-ol (18) 3 

 

N
H

OH

NH2

 

 

Anhydrous tetrahydrofuran (75 ml) was added to lithium borohydride (1.07 g, 49.0 mmol) 

under a nitrogen atmosphere. Trimethylsilyl chloride (12.4 ml, 97.9 mmol) was added over 

the course of two minutes, followed by D-tryptophan (17) (5 g, 24.5 mmol) which was 

added slowly over the course of 5 minutes. The reaction was left stirring at room 

temperature for 24 hours.  

Methanol (30 ml) was added cautiously to quench the reaction. The solvents were 

evaporated and the resulting oil was treated with 20% potassium hydroxide solution 

(40 ml).  The solution was washed with ethyl acetate (3 x 100 ml) and the organic extracts 

were combined and dried using anhydrous magnesium sulphate. This was then filtered 

and the solvent removed under reduced pressure to yield a brown oil (4.14 g, 89%). No 

further purification was carried out. 

δH(300 MHz; DMSO) 2.58 (1H, dd, J 14.1, 7.2, CH(H)CHNH2), 2.79 (1H, dd, J 14.1, 6, 

CH(H)CHNH2), 2.94-3.02 (1H, m, CH2CHNH2), 3.19-3.30 (1H, m, CH(H)OH), 3.31-3.39 

(1H, m, CH(H)OH) 6.94 (1H, t, J 6.9, ArH), 7.03 (1H, td, J 8.1, 1.2, ArH), 7.13 (1H, s, 

CHNH), 7.32 (1H, d, J  7.8, ArH), 7.52 (1H, d, J  7.8, ArH), 10.89 (1H, br s, NH). 

OH proton was not observed. 
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(3R)-3-((1H-Indol-3-yl)methyl)-hexahydrooxazolo[3,2-a]pyridin-5-one (19a, b) 3  

 

NH

N

O

O

H  

 

(2R)-2-Amino-3-(1H-indole-3-yl)propan-1-ol (18) (5.97 g, 31.42 mmol) and methyl 5-

oxopentanoate (6) (4.08 g, 31.42 mmol) were combined in toluene (150 ml) and refluxed 

under Dean-Stark conditions for 48 hours.  

The mixture was cooled and the remaining toluene removed by rotary evaporation. The 

resulting brown oil was absorbed onto silica and purified by flash column chromatography 

over silica using ethyl acetate as the eluent to produce the desired compound as a 

mixture of diastereoisomers that were not separated (2.76 g, 33%). The 1H NMR data for 

the major isomer (19a) is shown below. 

 

NH

N

O

O

H  

 

δH(300 MHz; CDCl3) 1.34-1.47 (1H, m, CH(H)CH2CH2CO), 1.59-1.65 (1H, m, 

CH2CH(H)CH2CO), 1.74-1.90 (1H, m, CH2CH(H)CH2CO), 2.27-2.30 (1H, m, 

CH(H)CH2CH2CO),  2.44-2.49 (2H, m, CH2CO), 2.54-2.63 (1H, m, CH(H)C=C), 3.60-3.68 

(1H, m, CH(H)C=C), 3.93 (1H, d, J 9, CH(H)O), 3.98-4.02 (1H, m, CH(H)O), 4.20-4.27 
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(1H, m, NCHCH2CO), 4.58 (1H, dd, J 9.6, 2.7, NCHOCH2), 6.92 (1H, s, C=CHNH), 7.03-

7.26 (2H, m, ArH), 7.60 (1H, d, J 7.8, ArH), 7.72 (1H, d, J 7.5, ArH), 8.52 (1H, br s NH). 
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(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) 3 

N
H

N O

H

OH

 

(3R,8aR)-3-(1H-Indol-3-ylmethyl)-hexahydro-oxazolo[3,2-a]pyridine-5-one (19a, b) 

(0.60 g, 2.11 mmol) was dissolved in absolute ethanol (50 ml) and acidified to pH 1 using 

2 M hydrochloric acid in absolute ethanol and stirred at room temperature for 20 hours.  

The reaction was quenched by the addition of saturated sodium hydrogen carbonate 

solution and extracted with ethyl acetate (3 x 100 ml). The organic extracts were 

combined, dried using anhydrous magnesium sulphate and the drying agent was removed 

by filtration. The solvent was removed under reduced pressure to yield a brown solid 

(0.57 g, 95%). A small portion was re-crystallised from absolute ethanol to give white 

crystals. 

δH(300 MHz; DMSO) 1.57-1.70 (1H, m, CH(H)CH2CH2CO), 1.81-1.90 (2H, m, 

CH2CH2CO), 2.30-2.43 (2H, m, CH2CO), 2.56-2.58 (1H, m, CH(H)= CH(H)CH2CH2CO), 

2.64-2.79 (1H, m, C=CCH(H)), 2.86 (1H, d, J 15.9, C=CCH(H)), 3.39-3.45 (2H, m, 

CH2OH), 4.71 (1H, d, J  7.2, NCHC=C), 4.85 (1H, t, J 5.4, OH), 5.28 (1H, dt, J 6, 6, 

NCHCH2OH), 7.03 (1H, t, J 6.9, ArH), 7.12 (1H, t, J 7.2, ArH), 7.38 (1H, d, J 7.8, ArH), 

7.45 1H, d, J 7.5, ArH), 10.95 (1H, br s, NH). 
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3.3 Synthesis of Indolizino[2,3-α]quinolizidine Substrates 

(6S,12bR)-12-Benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (21) 13 

N

N
O

H

OH

 

 

Sodium hydride (60% dispersion in mineral oil, 0.13 g, 3.35 mmol) and (6S,12bR)-6-

hydroxymethyl-2,3,6,7,12,12b-hexahydro-1H-indole[2,3-a]quinolizin-4-one (8) (0.60 g, 

2.23 mmol) were combined under a nitrogen atmosphere and cooled to 0 °C using an ice 

bath. Anhydrous dimethylformamide (10 ml) was added and the ice bath removed. The 

reaction was then stirred at room temperature for 30 minutes. After this time, benzyl 

bromide (0.4 ml, 3.35 mmol) was added and the reaction was stirred for 24 hours.  

The reaction was quenched by the addition of ice water (15 ml), washed with ethyl acetate 

(3 x 100 ml) and brine (3 x 100 ml). The combined organic extracts were dried over 

anhydrous magnesium sulphate, which was then removed by filtration and the solvent 

was removed under reduced pressure. The crude product was absorbed onto silica and 

purified by flash column chromatography over silica using 5% methanol in ethyl acetate as 

the eluent. This yielded a white solid (0.51 g, 63%). 

Mp: 235-237 °C; [α]D = +150.99 (c = 0.01, CHCl3); νmax (cm-1) 3290 OH, 1591 NC=O  

δH (300 MHz; CDCl3) 1.55-1.69 (1H, m, CH(H)CH2CH2CO), 1.77-1.91 (2H, m, 

CH2CH2CO), 2.33-2.42 (1H, m, CH(H)CH2CH2CO), 2.44-2.64 (2H, m, CH2CO), 2.87 (1H, 

d J 15.9, C=CCH(H)), 3.03 (1H, ddd J 15.9, 6, 2.1, C=CCH(H)), 3.47-3.52 (1H, m, 
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CH(H)OH), 3.59-3.64 (1H, m, CH(H)OH), 4.61 (1H, d, J 12, NCHC=C), 5.26 (1H, d, J 17.5 

NCH(H)Ph), 5.38 (1H, d, J 17.5 NCH(H)Ph), 5.46-5.53 (1H, m, NCHCH2OH), 6.94-6.97 

(2H, m, ArH), 7.13-7.19 (3H, m, ArH), 7.26-7.33 (3H, m, ArH), 7.52-7.56 (1H, m, ArH) 

OH proton was not observed 

δC (300 MHz;  CDCl3) 19.34 (CH2), 21.78 (CH2), 30.48 (CH2), 31.89 (CH2), 47.71 (CH), 

49.04 (CH2), 51.14 (CH), 62.91 (CH2), 107.41 (C), 109.92 (CH), 118.46 (CH), 119.88 

(CH), 122.30 (CH), 125.73 (2xCH), 126.77 (C), 127.64 (CH), 128.98 (2xCH), 133.02 (C), 

137.15 (C), 138.24 (C), 172.25 (NC=O) 

MS (CI) m/z 361 [MH+, 100%]; (Found: MH+, 361.1909. C23H24N2O2 requires 361.1911). 
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(6S,12bR)-12-Benzyl-6-(methoxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (22) 

N

N
O

H

O

 

 

Sodium hydride (60% dispersion in mineral oil, 0.071 g, 1.77 mmol) and (6S,12bR)-12-

benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (21) 

(0.29 g, 0.803 mmol) were combined under a nitrogen atmosphere and cooled to 0°C. 

Anhydrous dimethylformamide (5 ml) was added and the reaction was stirred at room 

temperature for 30 minutes. After this time, methyl iodide (0.17 ml, 1.20 mmol) was added 

and the reaction was stirred for 24 hours. 

The reaction was quenched by the addition of ice water (15 ml), washed with ethyl acetate 

(3 x 100 ml) and brine (3 x 100 ml). The combined organic extracts were dried over 

anhydrous magnesium sulphate, which was then removed by filtration and solvent was 

removed under reduced pressure. The crude product was absorbed onto silica and 

purified by flash column chromatography over silica using 5% methanol in ethyl acetate as 

the eluent to give a yellow solid (0.043 g, 14%). 

Mp: 194-195 °C; [α]D = +161.25 (c = 0.008, CHCl3); νmax (cm-1) 1259 O-Me, 1629 NC=O.  

δH (300 MHz; CDCl3) 1.44-1.57 (1H, m, CH(H)CH2CH2CO), 1.62-1.82 (2H, m, 

CH2CH2CO), 2.28-2.36 (1H, m, CH(H)CH2CH2CO), 2.38-2.42 (1H, m, CH(H)CO), 2.46-

2.54 (1H, m, CH(H)CO),  2.76 (1H, d J 15.6, C=CCH(H)), 2.92 (1H, ddd, J 15.9, 5.7, 2.1, 

C=CCH(H)), 3.12-3.26 (2H, m, CH2OMe), 3.16 (3H, s, OCH3), 4.40 (1H, d, J 12, 

NCHC=C),  5.17 (1H, d, J 17.5, NCH(H)Ph), 5.33 (1H, d, J 17.5, NCH(H)Ph),  5.57 (1H, 
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dt, J 6, 6, NCHCH2OMe), 6.85-6.87 (2H, m, ArH), 7.04-7.08 (3H, m, ArH), 7.16-7.24 (3H, 

m, ArH), 7.45-7.49 (1H, m, ArH). 

δC (300 MHz;  CDCl3) 18.31 (CH2), 20.95 (CH2), 29.32 (CH2), 30.98 (CH2), 44.53 (CH), 

46.71 (CH2), 50.26 (CH), 57.74 (CH2), 70.13 (CH3), 106.87 (C), 108.73 (CH), 117.46 (CH), 

118.74 (CH), 121.15 (CH), 124.70 (2xCH), 125.87 (C), 126.55 (CH), 127.86 (2xCH), 

132.39 (C), 136.21 (C), 137.28 (C), 169.25 (NC=O). 

MS (CI) m/z 375 [MH+, 100%]; (Found: MH+, 375.2064. C24H27N2O2 requires 375.2067). 
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(6S,12bR)-6-(Allyloxymethyl)-12-benzyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (23) 

N

N
O

H

O

 

 

Sodium hydride (60% dispersion in mineral oil, 0.07 g, 1.65 mmol) and (6S,12bR)-12-

benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (21) 

(0.27 g, 0.75 mmol) were combined under a nitrogen atmosphere and cooled to 0°C. 

Anhydrous dimethylformamide (5 ml) was then added the reaction was stirred for 

30 minutes at room temperature. After this time allyl bromide (0.10 ml, 1.12 mmol) was 

added and the reaction was left to stir for 24 hours. 

The reaction was quenched by the addition of ice water (15 ml), washed with ethyl acetate 

(3 x 100 ml) and brine (3 x 100 ml). The combined organic extracts were dried over 

anhydrous magnesium sulphate, which was then removed by filtration and solvent was 

removed under reduced pressure. The crude product was absorbed onto silica and 

purified by flash column chromatography over silica using 5% methanol in ethyl acetate as 

the eluent to give a yellow solid (0.11 g, 37%). 

Mp: 147-149 °C; [α]D = +140.00 (c = 0.011); νmax (cm-1) 1633 NC=O. 

δH (300 MHz; CDCl3) 1.44-1.57 (1H, m, CH(H)CH2CH2CO), 1.60-1.82 (2H, m, 

CH2CH2CO), 2.28-2.34 (1H, m, CH(H)CH2CH2CO), 2.36-2.42 (1H, m, CH(H)CO), 2.45-

2.54 (1H, m, CH(H)CO), 2.80 (1H, d J 15.9, C=CCH(H)), 2.92 (1H, ddd, J 15.9, 5.7, 2.1, 

C=CCH(H)), 3.20-3.30 (2H, m, CH2OAllyl), 3.74-3.88 (2H, m , OCH2CH=CH2), 4.42 (1H, 
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d, J 12, NCHC=C), 4.98-5.12 (2H, m, OCH2CH=CH2), 5.17 (1H, d, J 17.5, NCH(H)Ph), 

5.32 (1H, d, J 17.5, NCH(H)Ph), 5.52-5.59 (1H, m, NCHCH2OAllyl), 5.64-5.77 (1H, m, 

NCHCH2OCH2CH), 6.85-6.87 (2H, m, ArH), 7.05-7.09 (3H, m, ArH), 7.17-7.23 (3H, m, 

ArH), 7.46-7.49 (1H, m, ArH). 

δC (300 MHz;  CDCl3) 18.31 (CH2), 20.89 (CH2), 29.34 (CH2), 30.95 (CH2), 44.74 (CH), 

46.69 (CH2), 50.31 (CH), 67.40 (CH2), 70.59 (CH2), 106.83 (C), 108.73 (CH), 115.78 

(CH2), 117.47 (CH), 118.74 (CH), 121.14 (CH), 124.70 (2xCH), 125.92 (C), 126.53 (CH), 

127.86 (2xCH), 132.37 (C), 133.68 (CH), 136.23 (C), 137.27 (C), 169.28 (NC=O). 

MS (CI) m/z 401 [MH+, 100%]; (Found: MH+, 401.2222. C26H29N2O2 requires 401.2224). 

 

 

 

 

 

 

 

 

 

 

 

 



173 

 

(6R,12bS)-12-Benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (27) 

 

N
N O

H

OH

 

 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (0.60 g, 2.23 mmol) and sodium hydride (60% dispersion in mineral oil, 0.13 g, 

3.35 mmol) were combined under a nitrogen atmosphere. An ice bath was placed 

underneath and anhydrous dimethylformamide (5 ml) was added. The ice bath was 

removed and the reaction was left to stir at room temperature for half an hour. Benzyl 

bromide (0.40 ml, 3.35 mmol) was added and the reaction was left for 24 hours.  

The reaction was quenched using ice water (15 ml), washed with ethyl acetate (3 x 50 ml) 

then brine (3 x 50 ml) and dried using anhydrous magnesium sulphate, which was then 

removed by filtration. The solvent was removed under reduced pressure. The crude 

product was absorbed onto silica and purified using flash column chromatography over 

silica with 5% methanol in ethyl acetate as the eluent. This gave a yellow solid (0.33 g, 

41%). 

Mp: 233-235 °C; [α]D = -119.62 (c = 0.004, CHCl3); νmax (cm-1) 3290 (OH), 1591 NC=O.  

δH (300 MHz; CDCl3) 1.49-1.63 (1H, m, CH(H)CH2CH2CO), 1.70-1.82 (2H, m, 

CH2CH2CO), 2.26-2.31 (1H, m, CH(H)CH2CH2CO), 2.35-2.58 (2H, m, CH2CO), 2.80 (1H, 

d J 15.9, C=CCH(H)), 2.96 (1H, ddd J 15.6, 5.7, 1.8, C=CCH(H)), 3.41 (1H, m, CH(H)OH), 

3.52-3.58 (1H, m, CH(H)OH), 4.54 (1H, d, J 10.8, NCHC=C), 5.19 (1H, d, J 17.5, 
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NCH(H)Ph), 5.31 (1H, d, J 17.5, NCH(H)Ph), 5.39-5.46 (1H, m, NCHCH2OH), 6.87-6.90 

(2H, m, ArH), 7.06-7.11 (3H, m, ArH), 7.19-7.26 (3H, m, ArH), 7.47-7.50 (1H, m, ArH). 

OH proton was not observed. 

δC (300 MHz;  CDCl3) 19.35 (CH2), 21.76 (CH2), 30.49 (CH2), 31.87 (CH2), 47.70 (CH2), 

49.01 (CH), 51.13 (CH), 63.03 (CH2), 107.39 (C), 109.91 (CH), 118.45 (CH), 119.88 (CH), 

122.31 (CH), 125.72 (2xCH), 126.77 (C), 127.65 (CH), 128.97 (2xCH), 133.00 (C), 137.14 

(C), 138.25 (C), 172.26 (NC=O). 

MS (CI) m/z 361 [MH+, 100%]; (Found: MH+, 361.1913. C23H24N2O2 requires 361.1911). 
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(6R,12bS)-12-Allyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (28) 

 

N
N O

OH

H

 

 

Sodium hydride (60% dispersion in mineral oil, 0.043 g, 1.11 mmol) was added to 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (0.2 g, 0.74 mmol) under a nitrogen atmosphere. The reaction was cooled with an ice 

bath and dry dimethylformamide (5 ml) was added. The ice bath was removed and the 

reaction was left stirring at room temperature for half an hour. After this time, allyl bromide 

(0.097 ml, 1.11 mmol) was added and the reaction was left overnight. 

The reaction was quenched using ice water (20 ml) and extracted into ethyl acetate 

(3 x 20 ml). The combined organic extracts were washed with brine (3 x 50 ml), dried over 

anhydrous magnesium sulphate, which was then removed by filtration and the solvent 

was removed under reduced pressure. The crude product was absorbed onto silica and 

purified using flash column chromatography over silica with 5% methanol in ethyl acetate 

as the eluent. This gave a pale yellow solid (0.17 g, 74%). 

Mp: 161-164 °C; [α]D = -138.25 (c = 0.00217 CHCl3); νmax (cm-1) 1603 NC=O, 3332 OH. 

δH (300 MHz; CDCl3) 1.58-1.66 (1H, m, CH(H)CH2CH2CO), 1.78-1.89 (2H, m, 

CH2CH2CO), 2.39-2.50 (1H, m, CH(H)CH2CH2CO), 2.39-2.50 (1H, m, CH(H)CO), 2.53-

2.62 (1H, m, CH(H)CO), 2.75 (1H, d J 16.2, C=CCH(H)), 2.93 (1H, dd, J 15.9, 4.2, 

C=CCH(H)), 3.43 (1H, t, J 10.5 CH(H)OH), 3.53-3.59 (1H, m, CH(H)OH), 4.61-4.69 (1H, 
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m, NCHC=C), 4.61-4.69 (1H, m, NCH(H)CHCH2), 4.61-4.69 (1H, m, NCH2CHCH(H)), 4.83 

(1H, d, J 17.1,  NCH(H)CHCH2), 5.15 (1H, d, J 10.5, NCH2CHCH(H)), 5.39-5.46 (1H, m,  

NCHCH2OH), 5.83-5.93  (1H, m, NCH2CH), 7.05-7.19 (3H, m, ArH), 7.45 (1H, d, J 7.5, 

ArH). 

OH proton was not observed. 

δC (300 MHz; CDCl3) 18.34 (CH2), 20.70 (CH2), 29.50 (CH2), 30.88 (CH2), 45.40 (CH2), 

48.02 (CH), 50.01 (CH), 61.94 (CH2), 105.91 (C), 108.80 (CH), 115.91 (CH2), 117.34 

(CH), 118.68 (CH), 121.05 (CH), 125.68 (C), 131.75 (C), 131.93 (CH), 136.90 (C), 171.32 

(NC=O). 

MS (CI) m/z 311 [MH+, 100%]; (Found: MH+, 311.1757. C19H23N2O2 requires 311.1754). 
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(6R,12bS)-12-Benzyl-6-(methoxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (29) 

 

N
N O

O

H

 

 

Sodium Hydride (60% dispersion in mineral oil, 0.046 g, 1.16 mmol) was combined with 

(6R,12bS)-12-benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (27) (0.21 g, 0.581 mmol) under a nitrogen atmosphere and cooled to 0°C 

using an ice bath. Dimethylformamide (5 ml) was added and the ice bath removed. The 

reaction was stirred at room temperature for 30 minutes. Methyl Iodide (0.073 ml, 

1.16 mmol) was added and the reaction was stirred for 24 hours at room temperature.  

The reaction was quenched by the addition of ice water (15 ml), washed with ethyl acetate 

(3 x 50 ml) and brine (3 x 50 ml). The combined organic extracts were dried over 

anhydrous magnesium sulphate, which was then removed by filtration and the solvent 

was removed by rotary evaporation. The crude product was absorbed onto silica and 

purified by flash column chromatography over silica using 5% methanol in ethyl acetate as 

the eluent to give a yellow solid (0.11g, 51%). 

Mp: 191-192 °C; [α]D = -144.23 (c = 0.00208 CHCl3); νmax (cm-1) 1629 NC=O.  

δH (300 MHz; CDCl3) 1.41-1.56 (1H, m, CH(H)CH2CH2CO), 1.59-1.82 (2H, m, 

CH2CH2CO), 2.27-2.42 (1H, m, CH(H)CH2CH2CO), 2.46-2.49 (1H, m, CH(H)CO), 2.52-

2.55 (1H, m, CH(H)CO), 2.76 (1H, d J 15.9, C=CCH(H)), 2.92 (1H, ddd, J 15.9, 5.7, 2.1, 

C=CCH(H)), 3.12-3.27 (2H, m, CH2OMe), 3.17 (3H, s, OCH3), 4.41 (1H, d, J 11.1, 
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NCHC=C), 5.18 (1H, d, J 17.5, NCH(H)Ph), 5.34 (1H, d, J 17.5, NCH(H)Ph),  5.57 (1H, dt, 

J 6.9, 6 NCHCH2OMe), 6.85-6.88 (2H, m, ArH), 7.03-7.09 (3H, m, ArH), 7.17-7.24 (3H, m, 

ArH), 7.46-7.50 (1H, m, ArH). 

δC (300 MHz;  CDCl3) 19.39 (CH2), 22.03 (CH2), 30.41 (CH2), 32.06 (CH2), 45.62 (CH), 

47.80 (CH2), 51.35 (CH), 58.82 (CH2), 71.22 (CH2), 107.97 (C), 109.81 (CH), 118.54 (CH), 

119.83 (CH), 122.24 (CH), 125.79 (2xCH), 126.97 (C), 127.63 (CH), 128.95 (2xCH), 

133.46 (C), 137.30 (C), 138.37 (C), 170.36 (NC=O). 

MS (CI) m/z 375 [MH+, 100%]; (Found: MH+, 375.2069. C24H27N2O2 requires 375.2067). 
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(6R,12bS)-6-(Allyloxymethyl)-12-benzyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (30) 

 

N
N O

H

O

 

 

Sodium hydride (60% dispersion in mineral oil, 0.13 g, 3.27 mmol) and (6R,12bS)-12-

benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (27) 

(0.59 g, 1.63 mmol) were combined under a nitrogen atmosphere. An ice bath was placed 

underneath the flask and anhydrous dimethylformamide (10 ml) was added. The ice bath 

was removed and the reaction was stirred at room temperature for 30 minutes. After this 

time, allyl bromide (0.28 ml, 3.27 mmol) was added and the reaction was left for 24 hours.  

The reaction was quenched with the addition of ice water (30 ml) and washed with ethyl 

acetate (3 x 50 ml) and brine (3 x 50 ml). The organic extracts were combined and dried 

using anhydrous magnesium sulphate. This was then filtered out and the solvent was 

removed under reduced pressure. The crude product was absorbed onto silica and 

purified by flash column chromatography over silica using 5% methanol in ethyl acetate as 

the eluent. This produced a yellow solid (0.61 g, 93%).  

Mp: 140-142 °C; [α]D = -110.76 (c = 0.032 CHCl3); νmax (cm-1) 1633 NC=O. 

δH (300 MHz; CDCl3) 1.45-1.58 (1H, m, CH(H)CH2CH2CO), 1.62-1.83 (2H, m, 

CH2CH2CO), 2.27-2.35 (1H, m, CH(H)CH2CH2CO), 2.40-2.43 (1H, m, CH(H)CO), 2.46-

2.55 (1H, m, CH(H)CO), 2.80 (1H, d J 15.6, C=CCH(H)), 2.92 (1H, ddd, J 15.9, 5.7, 2.1, 

C=CCH(H)), 3.20-3.30 (2H, m, CH2OAllyl), 3.74-3.89 (2H, m , OCH2CH=CH2), 4.43 (1H, 



180 

 

d, J 10.8, NCHC=C), 5.06 (2H, m, OCH2CH=CH2), 5.18 (1H, d, J 17.5, NCH(H)Ph), 5.33 

(1H, d, J 17.5, NCH(H)Ph), 5.52-5.59 (1H, m, NCHCH2OAllyl) 5.65-5.78 (1H, m, 

NCHCH2OCH2CH), 6.85-6.88 (2H, m, ArH), 7.05-7.10 (3H, m, ArH), 7.17-7.22 (3H, m, 

ArH), 7.46-7.50 (1H, m, ArH). 

δC (300 MHz; CDCl3) 18.30 (CH2), 20.91 (CH2), 29.35 (CH2), 30.93 (CH2), 44.79 (CH), 

46.72 (CH2), 50.33 (CH), 67.43 (CH2), 70.61 (CH2), 106.87 (C), 108.74 (CH), 115.81 

(CH2), 117.49 (CH), 118.76 (CH), 121.17 (CH), 124.71 (2xCH), 125.94 (C), 126.55 (CH), 

127.88 (2xCH), 132.35 (C), 133.67 (CH), 136.23 (C), 137.30 (C), 169.38 (NC=O). 

MS (CI) m/z 401 [MH+, 100%]; (Found: MH+,  401.2222. C26H29N2O2 requires 401.2224). 
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(6R,12bS)-12-Benzyl-6-(benzyloxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (31) 49 

 

N
N O

O

H

 

 

Sodium hydride (60% dispersion in mineral oil, 1.28 g, 32.09 mmol) and (6R,12bS)-6-

Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one (20) (1.97 g, 

7.29 mmol) under a nitrogen atmosphere. This was cooled to 0°C using an ice bath. 

Anhydrous dimethylformamide (40 ml) was added and the ice bath removed. The reaction 

was left stirring at room temperature for 30 minutes. After this time benzyl bromide 

(2.61 ml, 21.83 mmol) was added and the reaction left for 24 hours.  

The reaction was quenched with the addition of ice water (30 ml) and washed with ethyl 

acetate (3 x 100 ml) and brine (3 x 100 ml). The organic extracts were combined and 

dried over anhydrous magnesium sulphate, which was then filtered out, and the solvent 

removed under reduced pressure. The crude product was absorbed onto silica and 

purified using flash column chromatography over silica with ethyl acetate as the eluent. 

This gave a pale yellow foam (1.90 g, 58%). 

δH (300 MHz; CDCl3) 1.47-1.67 (1H, m, CH(H)CH2CH2CO), 1.70-1.80 (2H, m, 

CH2CH2CH2CO), 2.23-2.35 (1H, m, CH(H)CH2CH2CO), 2.38-2.43 (1H, m, 

CH2CH2CH(H)CO), 2.45-2.53 (1H, m, CH2CH2CH(H)CO), 2.85 (1H, d, J 15.9, 
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C=CCH(H)), 2.94 (1H, ddd, J 15.6, 5.4, 1.8, C=CCH(H)), 3.23-3.33 (2H, m, CH2OBn), 

4.31 (1H, d, J 10.8, NCHC=C), 4.33 (1H, d, J 12, OCH(H)Ph), 4.40 (1H, d, J 12.3, 

OCH(H)Ph), 5.12 (1H, d, J 17.5, NCH(H)Ph), 5.25 (1H, d, J 17.5, NCH(H)Ph), 5.58-5.65 

(1H, m, C=CCH2CH). 6.80-6.82 (2H, m, ArH), 7.06-7.19 (11H, m, ArH), 7.47-7.51 (1H, m, 

ArH). 
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(6R,12bS)-12-Allyl-6-(allyloxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (32) 

 

N
N O

H

O

 

 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (0.20 g, 0.74 mmol) and sodium hydride (60% dispersion in mineral oil, 0.13 g, 

3.26 mmol) were combined under a nitrogen atmosphere. An ice bath was placed 

underneath and anhydrous dimethylformamide (5 ml) was added. The ice bath was then 

removed and the reaction was stirred at room temperature for 30 minutes. After this time, 

allyl bromide (0.20 ml, 2.22 mmol) was added and the reaction was left stirring for 

24 hours.  

Ice water (15 ml) was added to quench the reaction, which was then washed with ethyl 

acetate (3 x 50 ml) and brine (3 x 50 ml). The organic extracts were combined and dried 

using anhydrous magnesium sulphate, which was then removed by filtration and the 

solvent removed under reduced pressure. The crude product was absorbed onto silica 

and purified using flash column chromatography over silica with 5% methanol in ethyl 

acetate as the eluent to give an orange solid (0.08 g, 31%). 

Mp: 74-76°C; [α]D = -140.00  (c = 0.016, CHCl3); νmax (cm-1) 1624 NC=O. 

δH (300 MHz; CDCl3)  1.48-1.62 (1H, m , CH(H)CH2CH2CO), 1.71-1.92 (2H, m, 

CH2CH2CO),  2.37-2.48 (1H, m, CH(H)CH2CH2CO), 2.52-2.55 (1H, m, CH(H)CO), 2.58-

2.61 (1H, m, CH(H)CO), 2.76 (1H, d, J 15.9, C=CCH(H)), 2.90 (1H, ddd, J 15.6, 5.7, 2.1, 
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C=CCH(H)), 3.21-3.37 (2H, m, CH2OAllyl), 3.81 (1H, ddt, J 12.9, 5.7, 1.2, 

NCHCH2OCH(H)), 3.92 (1H, ddt, J 12.6, 5.4, 1.2, NCHCH2OCH(H)), 4.53-4.64 (2H, m, 

NCH2), 4.81 (1H, d, J 17.1, NCHC=C), 5.00-5.09 (2H, m, CHOCH2CHCH2), 5.11-5.14 (2H, 

m, NCH2CHCH2), 5.57 (1H, dt, J 6, 6, NCHCH2OAllyl), 5.67-5.80 (1H, m, CHOCH2CH) 

5.82-5.94 (1H, m, NCH2CH), 7.03-7.19 (3H, m ArH), 7.45 (1H, d, J 7.8, ArH). 

 δC (300 MHz; CDCl3)  19.45 (CH2), 21.89 (CH2), 30.52 (CH2), 32.07 (CH2), 45.73 (CH) 

46.51 (CH2), 51.31 (CH), 68.49 (CH2), 71.62 (CH2), 107.39 (C), 109.76 (CH), 116.86 

(CH2), 116.95 (CH2), 118.48 (CH), 119.66 (CH), 122.01 (CH), 126.94 (C), 133.05 (CH), 

133.20 (C), 134.74 (CH), 137.97 (C), 170.45 (NC=O). 

MS (CI) m/z 351 [MH+, 100%]; (Found: MH+, 351.2062. C22H27N2O2 requires 351.2067). 
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(6R,12bS)-6-(Methoxymethyl)-12-methyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (33) 

 

N
N O

H

O

 

 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (0.2 g, 0.74 mmol) and sodium hydride (60% dispersion in mineral oil, 0.13 g, 

3.26 mmol) were combined under a nitrogen atmosphere and cooled to 0°C using and ice 

bath. Anhydrous dimethylformamide (5 ml) was added and the ice bath removed. The 

reaction was left stirring at room temperature for 30 minutes. After this time methyl iodide 

(0.14 ml, 2.22 mmol) was added and the reaction was left to stir for a further 24 hours.  

The reaction was quenched with the addition of ice water (15 ml) and washed with ethyl 

acetate (3 x 50 ml) and then brine (3 x 50 ml). The organic extracts were combined and 

dried over anhydrous magnesium sulphate, which was then removed by filtration and the 

solvent removed under reduced pressure. The crude product was absorbed onto silica 

and purified by flash chromatography over silica using 5% methanol in ethyl acetate as 

the eluent. This gave a bronze solid (0.17 g, 77%). 

Mp:  156-157 °C; [α]D = -230.77  (c = 4.42 x 10-3, CHCl3); νmax (cm-1) 1624 NC=O. 

δH (300 MHz; CDCl3)  1.49-1.63 (1H, m , CH(H)CH2CH2CO), 1.75-1.92 (2H, m, 

CH2CH2CO),  2.36-2.46 (2H, m, CH2CO), 2.48-2.63 (1H, m, CH(H)CH2CH2CO), 2.70 (1H, 

d, J 15.6, C=CCH(H)), 2.88 (1H, ddd, J 15.6, 5.4, 1.8, C=CCH(H)), 3.13-3.19 (1H, m, 

CH(H)OCH3), 3.21 (3H, s, OCH3), 3.29-3.35 (1H, m, CH(H)OCH3), 3.63 (3H, s, NCH3), 
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4.62 (1H, d, J 11.1, NCHC=C), 5.57 (1H, dt, J 6.9, 6, NCHCH2OCH3),  7.04 (1H, t, J  7.5, 

ArH), 7.12-7.22 (2H, m, ArH), 7.42 (1H, d, J 7.8, ArH).  

δC(300 MHz; CDCl3)  18.35 (CH2), 20.76 (CH2), 29.11 (CH2), 30.24 (CH3), 31.02 (CH2), 

44.65 (CH), 50.18 (CH), 57.74 (CH3), 70.09 (CH2), 105.62 (C), 107.92 (CH), 117.36 (CH), 

118.34 (CH), 120.81 (CH), 125.52 (C), 132.18 (C), 137.13 (C), 169.40 (NC=O). 

MS (CI) m/z 299 [MH+, 100%]; (Found: MH+, 299.1750. C18H23N2O2 requires 299.1754). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



187 

 

(6R,12bS)-12-Benzyl-6-(propoxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (36) 

N
N O

O

H

 

 

Sodium hydride (60% dispersion in mineral oil, 0.05 g, 1.31 mmol) was added to 

(6R,12bS)-12-benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (27) (0.23 g, 0.60 mmol) under a nitrogen atmosphere. This was cooled to 

0 °C using an ice bath and anhydrous dimethylformamide (10 ml) was added. The 

reaction was stirred at room temperature for half an hour. After this time, propyl bromide 

(0.12 ml, 1.20 mmol) was added and the reaction was left stirring overnight. 

Ice cold water (20 ml) was added to quench the reaction which was then extracted into 

ethyl acetate (3 x 50 ml). The organic extracts were combined and washed with brine 

(3 x 50 ml). These were then dried over anhydrous magnesium sulphate, which was then 

removed by filtration and the solvent removed under reduced pressure. The crude product 

was absorbed onto silica and purified using flash column chromatography over silica with 

5% methanol in ethyl acetate as the eluent. This gave a yellow solid (0.12 g, 50%). 

Mp: 153-155 °C; [α]D = -127.36 (c = 0.00212 CHCl3); νmax (cm-1) 1634 NC=O. 

δH (300 MHz; CDCl3) 1.15-1.80 (1H, m, CH(H)CH2CH2CO), 1.15-1.80 (2H, m, 

CH2CH2CO), 1.15-1.80 (2H, m, OCH2CH2CH3), 1.15-1.80 (3H, m, OCH2CH2CH3), 2.28-

2.42 (1H, m, CH(H)CH2CH2CO), 2.28-2.42  (1H, m, CH(H)CO), 2.44-2.53  (1H, m, 

CH(H)CO), 2.78 (1H, d J 15.9, C=CCH(H)), 2.91  (1H, ddd, J 15.6, 5.4, 1.8, C=CCH(H)), 

3.13-3.18 (1H, m, CH(H)OC3H7) 3.13-3.18 (1H, m, OCH(H)CH2CH3), 3.23-3.31 (1H, m, 
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CH(H)OC3H7), 3.23-3.31 (1H, m, OCH(H)CH2CH3),  4.42 (1H, d, J 9.6, NCHC=C), 5.17 

(1H, d, J 17.5, NCH(H)Ph), 5.33 (1H, d, J 17.5, NCH(H)Ph), 5.55 (1H, dt, J 7.5, 6, 

NCHCH2OC3H7), 6.85-6.88 (2H, m, ArH), 7.03-7.08 (3H, m, ArH), 7.17-7.24 (3H, m, ArH), 

7.46-7.49 (1H, m, ArH). 

δC (300 MHz;  CDCl3) 10.58 (CH3), 19.40 (CH2), 21.88 (CH2), 22.87 (CH2), 30.37 (CH2), 

32.05 (CH2), 45.77 (CH), 47.81 (CH2), 51.39 (CH), 68.98 (CH2), 72.52 (CH2), 108.01 (C), 

109.78 (CH), 118.55 (CH), 119.81 (CH), 122.21 (CH), 125.79 (2xCH), 127.05 (C), 127.60 

(CH), 128.94 (2xCH), 133.49 (C), 137.33 (C), 138.39 (C), 170.34 (C). 

MS (CI) m/z 403 [MH+, 100%]; (Found: MH+, 403.2375. C26H31N2O2 requires 403.2380). 
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(6R,12bS)-12-Benzyl-6-((cyclohexylmethoxy)methyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (37) 

 

N
N O

O

H

 

 

Sodium hydride (60% dispersion in mineral oil, 0.034 g, 0.853 mmol) was added to 

(6R,12bS)-12-benzyl-6-(hydroxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (27) (0.14 g, 0.388 mmol) under a nitrogen atmosphere. This was cooled to 

0 °C using an ice bath and anhydrous dimethylformamide (10 ml) was added. The 

reaction was stirred at room temperature for half an hour. After this time, 

(bromomethyl)cyclohexane (0.108 ml, 0.775 mmol) and sodium iodide (0.12 g, 

0.775 mmol) were added and the reaction was heated to 60 °C and left overnight. 

Ice cold water (20 ml) was added to quench the reaction which was then extracted into 

ethyl acetate (3 x 50 ml). The organic extracts were combined and washed with brine 

(3 x 50 ml). These were then dried over anhydrous magnesium sulphate, which was then 

removed by filtration and the solvent removed under reduced pressure. The crude product 

was absorbed onto silica and purified using flash column chromatography over silica with 

5% methanol in ethyl acetate as the eluent. This gave a yellow oil (0.11 g, 31%). 

[α]D = -34.55 (c = 0.011 CHCl3); νmax (cm-1) 1633 NC=O. 

δH (300 MHz; CDCl3) 1.05-1.82 (1H, m, CH(H)CH2CH2CO), 1.05-1.82 (2H, m, 

CH2CH2CO), 1.05-1.82 (11H, m, OCH2C6H11), 2.29-2.37 (1H, m CH(H)CH2CH2CO), 2.39-

2.48 (1H, m, CH(H)CO), 2.51-2.53 (1H, m, CH(H)CO), 2.77 (1H, d J 15.9, C=CCH(H)), 
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2.89 (1H, dd, J 5.7, 2.1, OCH(H)C6H11), 2.93-2.98 (1H, m, C=CCH(H)), 3.10-3.15 (1H, m, 

CH(H)OCH2C6H11), 3.10-3.15 (1 H, m, OCH(H)C6H11), 3.22 (1H, dd, J 7.5, 2.4, 

CH(H)OCH2C6H11), 4.41 (1H, d, J 10.2, NCHC=C), 5.18 (1H, d, J 17.5, NCH(H)Ph), 5.34 

(1H, d, J 17.5, NCH(H)Ph), 5.55 (1H, dt, J 7.2, 6.3 NCHCH2OCH2C6H11), 6.87-6.92 (2H, 

m, ArH), 7.04-7.09 (3H, m, ArH), 7.19-7.24 (3H, m, ArH), 7.46-7.49 (1H, m, ArH). 

δC (300 MHz;  CDCl3) 19.40 (CH2), 21.84 (CH2), 25.84 (CH2), 25.87 (CH2), 26.60 (CH2), 

29.88 (CH2), 29.92 (CH2), 30.32 (CH2), 32.04 (CH2), 37.99 (CH), 45.70 (CH), 47.81 (CH2), 

51.42 (CH), 69.17 (CH2), 76.69 (CH2), 108.05 (C), 109.73 (CH), 118.53 (CH), 119.79 

(CH), 122.18 (CH), 125.79 (2xCH), 127.03 (C), 127.61 (CH), 128.94 (2xCH), 133.49 (C), 

137.33 (C), 138.36 (C), 170.32 (NC=O). 

MS (CI) m/z 457 [MH+, 100%]; (Found: MH+, 457.2843. C30H37N2O2 requires 457.1754). 
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(6R,12bS)-6-(Allyloxymethyl)-12-(cyclohexylmethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (39) 

N
N O

O

H

 

Sodium hydride (60% dispersion in mineral oil, 0.04 g, 1.11 mmol) was added to 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (0.25 g, 0.925 mmol) under a nitrogen atmosphere. This was cooled to 0 °C using an 

ice bath and anhydrous dimethylformamide (10 ml) was added. The reaction was stirred 

at room temperature for half an hour. After this time, (bromomethyl)cyclohexane (0.16 ml, 

1.11 mmol) and sodium iodide (0.17 g, 1.11 mmol) were added and the reaction was 

heated to 60 °C and left overnight. 

Ice cold water (20 ml) was added to quench the reaction which was then extracted into 

ethyl acetate (3 x 50 ml). The organic extracts were combined and washed with brine 

(3 x 50 ml). These were then dried over anhydrous magnesium sulphate, which was then 

removed by filtration and the solvent removed under reduced pressure. The crude product 

was absorbed onto silica and purified using flash column chromatography over silica with 

5% methanol in ethyl acetate as the eluent. This gave a white foam (38) (0.14 g, 41%). 

Sodium hydride (60% dispersion in mineral oil 0.034 g, 0.842 mmol) was added to the 

product (38) (0.14 g, 0.383 mmol) under a nitrogen atmosphere. This was cooled to 0 °C 

using an ice bath and dry dimethylformamide (10 ml) was added. The reaction was stirred 

at room temperature for half an hour. After this time allyl bromide (0.07 ml, 0.765 mmol) 

was added and the reaction was left overnight. 
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Ice cold water (20 ml) was used to quench the reaction which was then extracted into 

ethyl acetate (3 x 50 ml). The organic extracts were combined and washed with brine 

(3 x 50 ml). These were then dried over anhydrous magnesium sulphate, which was then 

removed by filtration and the solvent removed under reduced pressure. The crude product 

was absorbed onto silica and purified using flash column chromatography over silica with 

5% methanol in ethyl acetate as the eluent. This gave a yellow solid (0.07 g, 45%). 

Mp:  130-133 °C; [α]D = -  70.80 (c =  0.00226); νmax (cm-1) 1636 NC=O. 

δH (300 MHz; CDCl3) 0.77-1.99 (1H, m, CH(H)CH2CH2CO), 0.77-1.99 (2H, m, 

CH2CH2CO), 0.77-1.99 (11H, m, NCH2C6H11), 2.38-2.50 (1H, m, CH(H)CH2CH2CO), 2.38-

2.50 (1H, m, CH(H)CO), 2.53-2.63 (1H, m, CH(H)CO), 2.77 (1H, d J 15.9, C=CCH(H)), 

2.84-2.91 (1H, m, C=CCH(H)), 3.42 (2H, si, J 9.9, CH2OAllyl),  3.65 (1H, q, J 8.7, 

NCH(H)C6H11), 3.78-3.92 (2H, m , OCH2CH=CH2), 4.06 (1H, dd, J 14.4,  5.7, 

NCH(H)C6H11), 4.64 (1H, d, J 10.8, NCHC=C), 4.99-5.13 (2H, m, OCH2CH=CH2),  5.54 

(1H, dt, J 6.6, 6.6, NCHCH2OAllyl),  5.67-5.78 (1H, m, NCHCH2OCH2CH), 7.04 (1H, t, J 

6.9, ArH), 7.13 (1H, t, ArH), 7.21 (1H, t, J 6.9, ArH), 7.43 (1H, d, J 7.8, ArH) 

δC (300 MHz; CDCl3) 19.36 (CH2), 21.98 (CH2), 25.64 (CH2), 25.79 (CH2), 26.22 (CH2), 

30.41 (CH2), 31.04 (2xCH2), 31.93 (CH2), 38.14 (CH), 45.89 (CH), 50.82 (CH2), 51.49 

(CH), 68.67 (CH2) 71.78 (CH2), 107.01 (C), 110.20 (CH), 116.96 (CH2), 118.44 (CH), 

119.29 (CH), 121.60 (CH), 126.91 (C), 133.48 (C), 134.75 (CH), 137.72 (C), 170.60 

(NC=O). 

MS (CI) m/z 407 [MH+, 100%]; (Found: MH+, 407.2694. C26H35N2O2 requires 407.2693). 
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(6R,12bS)-6-(Allyloxymethyl)-12-(cyclobutylmethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (41) 

 

N
N O

O

H

 

 

Sodium hydride (60% dispersion in mineral oil, 0.04 g, 1.11 mmol) was added to 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (0.25 g, 0.925 mmol) under a nitrogen atmosphere. This was cooled to 0 °C using an 

ice bath and anhydrous dimethylformamide (10 ml) was added. The reaction was stirred 

at room temperature for half an hour. After this time, (bromomethyl)cyclobutane (0.13 ml, 

1.11 mmol) and sodium iodide (0.17 g, 1.11 mmol) were added and the reaction was 

heated to 60 °C and left overnight. 

Ice cold water (20 ml) was used to quench the reaction which was then extracted into 

ethyl acetate (3 x 50 ml). The organic extracts were combined and washed with brine 

(3 x 50 ml). These were then dried over anhydrous magnesium sulphate, filtered and the 

solvent removed under reduced pressure. The crude product was absorbed onto silica 

and purified using flash column chromatography over silica with 5% methanol in ethyl 

acetate as the eluent. This gave a solid (40) (0.21 g, 67%). 

Sodium hydride (60 % dispersion in mineral oil, 0.055g, 1.37 mmol) was added to the 

product (40) (0.21 g, 0.621 mmol) under a nitrogen atmosphere. This was cooled to 0 °C 

using an ice bath and anhydrous dimethylformamide (10 ml) was added. The reaction was 
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stirred at room temperature for half an hour. After this time allyl bromide (0.11 ml, 

1.24 mmol) and the reaction was left overnight. 

Ice cold water (20 ml) was used to quench the reaction which was then extracted into 

ethyl acetate (3 x 50 ml). The organic extracts were combined and washed with brine 

(3 x 50 ml). These were then dried over anhydrous magnesium sulphate, this was then 

removed by filtration and the solvent was removed under reduced pressure. The crude 

product was absorbed onto silica and purified using flash column chromatography over 

silica with 5% methanol in ethyl acetate as the eluent. This gave a yellow oil (0.15 g, 

46%). 

[α]D = - 62.86 (c = 0.007); νmax (cm-1) 1636 NC=O. 

δH (300 MHz; CDCl3) 1.48-1.95 (1H, m, CH(H)CH2CH2CO), 1.48-1.95 (2H, m, 

CH2CH2CO), 1.48-1.95 (6H, m, NCH2CHC3H6), 2.39-2.50 (1H, m, CH(H)CH2CH2CO), 

2.39-2.50 (1H, m, CH(H)CO), 2.54-2.69 (1H, m, CH(H)CO), 2.54-2.69 (1H, m, 

NCH2CHC3H6), 2.75 (1H, d J 15.9, C=CCH(H)), 2.87 (1H, ddd, J 15.9, 5.7, 1.8, 

C=CCH(H)), 3.27 (2H, m, J 7.2, CH2OAllyl), 3.78-3.95 (2H, m, OCH2CH=CH2), 3.78-3.95 

(1H, m, NCH(H)C4H7), 4.18 (1H, dd, J 14.7, 6, (NCH(H)C4H7), 4.67 (1H, d, J 11.1, 

NCHC=C), 5.07 (2H, m, OCH2CH=CH2), 5.55 (1H, dt, J 6.6, 6.6, NCHCH2OAllyl), 5.67-

5.80 (1H, m, NCHCH2OCH2CH), 7.01-7.06 (1H, m, ArH), 7.13 (1H, td, J 15.3, 8.1, 1.2, 

ArH), 7.25 (1H, d, J 8.1, ArH), 7.42 (1H, d, J 7.5, ArH). 

δC (300 MHz; CDCl3) 18.32 (CH2), 19.39 (CH2), 21.97 (CH2), 26.42 (CH2), 27.46 (CH2). 

30.47 (CH2), 31.96 (CH2), 36.12 (CH), 45.80 (CH), 49.66 (CH2), 51.45 (CH), 68.54 (CH2), 

71.66 (CH2), 107.31 (C), 109.97 (CH), 116.96 (CH2), 118.41 (CH), 119.33 (CH), 121.66 

(CH), 126.97 (C), 133.03 (C), 134.75 (CH), 137.84 (C), 170.56 (NC=O). 

MS (CI) m/z 379 [MH+, 100%]; (Found: MH+, 379.2383. C24H31N2O2 requires 379.2380). 
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(6R,12bS)-12-Benzyl-6-(benzyloxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (45) 13 

N
N O

O

H

 

Diisopropylamine (0.67 ml, 4.79 mmol) was added to dry tetrahydrofuran (5 ml) under a 

nitrogen atmosphere at 0 °C. n-Butyllithium (2.5 M in hexanes, 1.92 ml, 4.79 mmol) was 

added and the reaction stirred for 15 minutes. This was then cooled to -78 °C. (6R,12bS)-

12-benzyl-6-(benzyloxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one 

(31) (1.9 g, 1.60 mmol) in dry tetrahydrofuran (15 ml) was added via cannula. The reaction 

was stirred at -78 °C for one hour. Following this, phenyl selenium bromide (0.57 g, 

2.40 mmol) in dry tetrahydrofuran (10ml) was added via cannula and the reaction was left 

stirring for 24 hours. 

The reaction was quenched with saturated ammonium chloride solution (40 ml) and 

extracted into diethyl ether (3 x 75 ml). The organic extracts were combined and washed 

with saturated ammonium chloride solution (100 ml), dried over anhydrous magnesium 

sulphate, which was removed by filtration and the solvents were removed under reduced 

pressure. This produced a brown oil, which was used with no further purification. 

The crude selenide (1.12 g, 1.85 mmol) was dissolved in methanol (220 ml) and water 

(45 ml). Sodium metaperiodate (0.91 g, 4.25 mmol) and sodium bicarbonate (0.19 g, 

2.22 mmol) were added and the reaction was heated at 60 °C for 24 hours. 

The reaction was quenched with saturated sodium bicarbonate solution (100 ml) and 

diethyl ether (150 ml). The organic layer was washed with water (100 ml) followed by 
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brine (100 ml), dried over anhydrous magnesium sulphate which was removed by filtration 

and the solvents were removed under reduced pressure. 

The crude product was absorbed onto silica and purified by flash column chromatography 

over silica using ethyl acetate as the eluent to give a pale yellow solid (0.33 g, 40%).  

Mp: 60-61 °C; [α]D = -254.77 (c = 0.00577 CHCl3) νmax (cm-1) 1662 NC=O. 

δH (300 MHz; CDCl3) 2.13-2.24 (1H, m, CH(H)CH2CH2CO), 2.49 (1H, dq, J 17.4, 6.3, 3.9, 

CH(H)CH2CH2CO), 2.95 (1H, ddd, J 15.6, 5.4, 1.8, C=CCH(H)), 3.08 (1H, d, J 15.9, 

C=CCH(H)), 3.22-3.32 (2H, m, CH2OBn), 4.38 (2H, s, OCH2Ph), 4.52-4.57 (1H, m, 

NCHC=C), 5.11 (1H, d, J 17.5, CH(H)Ph), 5.20 (1H, d, J 17.5, CH(H)Ph), 5.34-5.40 (1H, 

m, NCHCH2OBn), 5.99 (1H, dd, J 9.6, 2.7, CH2CHCHCO), 6.41-6.48 (1H, m, 

CH2CHCHCO), 6.76-6.79 (2H, m, ArH), 7.06-7.17 (11H, m, ArH), 7.51-7.56 (1H, m, ArH). 

δC (300 MHz;  CDCl3) 22.00 (CH2), 32.03 (CH2), 46.07 (CH), 47.31 (CH2), 49.84 (CH), 

68.10 (CH2), 72.60 (CH2), 107.70 (C), 109.85 (CH), 118.73 (CH), 119.96 (CH), 122.34 

(CH), 125.61 (2xCH), 126.01 (CH), 127.03 (C), 127.37 ( 3xCH), 127.60 (CH), 128.25 

(2xCH), 128.96 (2xCH), 132.62 (C), 137.07 (C), 138.19 (C), 138.26 (CH), 138.30 (C), 

164.92 (NC=O). 

MS (CI) m/z 449 [MH+, 100%]; (Found: MH+, 449.2222. C30H29N2O2 requires 449.2224). 
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(2R,6R,12bS)-12-Benzyl-6-(benzyloxymethyl)-2-vinyl-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (47) 13 

N
N O

O

H

 

 

A 0.7 M solution of vinyl magnesium bromide in tetrahydrofuran (10.6 ml, 7.43 mmol) was 

added to a suspension of copper cyanide (0.34 g, 3.75 mmol) in anhydrous 

tetrahydrofuran (20 ml) at -78 °C while stirring. The reaction was warmed to 0 °C for 

3 minutes then re-cooled to -78 °C. (6R,12bS)-12-benzyl-6-(benzyloxymethyl)-1,6,7,12b-

tetrahydroindolo[2,3-a]quinolizin-4(12H)-one (45) (0.33 g, 0.736 mmol) in anhydrous 

tetrahydrofuran (15 ml) was added via cannula at -78 °C. After 5 minutes, 

chlorotrimethylsilane (0.48 ml, 3.75 mmol) was added and the reaction was left to warm 

slowly to room temperature overnight.  

The reaction as quenched with the addition of saturated ammonium chloride solution 

(20 ml) and water (20 ml) and left stirring for 20 minutes. A 1.0 M solution of 

tetrabutylammonium fluoride in tetrahydrofuran (6 ml) was added and the stirring 

continued for 15 minutes. The reaction was extracted into ethyl acetate (3 x 50 ml) and 

the combined organic extracts were dried over anhydrous magnesium sulphate. This was 

then filtered out and the solvents removed under reduced pressure.  
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The crude product was absorbed onto silica and purified by flash column chromatography 

over silica with 1:1 ethyl acetate: petroleum ether as the eluent. This gave a pale yellow 

solid (0.17 g, 49%). 

Mp: 133-136 °C; [α]D = -52.81 (c = 0.00303 CHCl3); νmax (cm-1) 1636 NC=O. 

δH (300 MHz; CDCl3) 1.74-1.84 (1H, m, CH(H)CHCH2CO), 2.08-2.18 (1H, m, 

CH(H)CHCH2CO), 2.40-2.57 (2H, m, CH2CHCH2CO), 2.40-2.57 (1H, m, CH2CHCH2CO), 

2.83 (1H, d, J 15.9, C=CCH(H)),  2.94 (1H, ddd, J 15.6, 5.4, 1.8, C=CCH(H)), 3.24 (2H, d, 

J 7.5, CH2OBn), 4.33 (2H, s, OCH2Ph), 4.39-4.44 (1H, m, NCHC=C), 4.84-4.95 (2H, m, 

CHCH=CH2), 5.10 (1H, d, J 17.5, NCH(H)Ph), 5.24 (1H, d, J 17.5, CH(H)Ph), 5.53-5.59 

(1H, m, NCHCH2OBn), 5.60-5.72 (1H, m, CHCH=CH2), 6.79-6.82 (2H, m, ArH), 7.05-7.17 

(11H, m, ArH), 7.47-7.50(1H, m, ArH). 

δC (300 MHz;  CDCl3) 20.90 (CH2), 31.63 (CH), 33.83 (CH2), 35.10 (CH2), 45.06 (CH), 

46.40 (CH), 46.71 (CH2), 67.22 (CH2), 71.54 (CH2), 107.16 (C), 108.64 (CH), 114.61 

(CH2), 117.38 (CH), 118.81 (CH), 121.16 (CH), 124.75 (2xCH), 125.97 (C), 126.39 (CH), 

126.42 (2xCH), 126.57 (CH), 127.17 (2xCH), 127.88 (2xCH), 132.26 (C), 136.16 (C), 

137.13 (C), 137.36 (C), 138.10 (CH), 169.06 (NC=O).  

MS (CI) m/z 477 [MH+, 100%]; (Found: MH+, 477.2530. C32H33N2O2 requires 477.2537). 
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(6R,12bS)-6-(Allyloxymethyl)-12-benzyl-1,6,7,12b-tetrahydroindolo[2,3-a]quinolizin-

4(12H)-one (44) 

N
N O

O

H

 

 

Diisopropylamine (0.14 ml, 0.999 mmol) was added to anhydrous tetrahydrofuran (5 ml) 

under a nitrogen atmosphere at 0 °C. n-Butyllithium (2.5 M in hexanes, 0.4 ml, 0.999 

mmol) was added and the reaction stirred for 15 minutes. This was then cooled to -78 °C. 

(6R,12bS)-6-(allyloxymethyl)-12-benzyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (30) (0.4 g, 0.999mmol) in anhydrous tetrahydrofuran (10 ml) was added via 

cannula. The reaction was stirred at -78 °C for one hour. Following this, phenyl selenium 

bromide (0.26 g, 1.099 mmol) in anhydrous tetrahydrofuran (10ml) was added via cannula 

and the reaction was left stirring for 24 hours. 

The reaction was quenched with saturated ammonium chloride solution and extracted into 

diethyl ether (3 x 20 ml). The organic extracts were combined and washed with saturated 

ammonium chloride solution (100 ml), dried over anhydrous magnesium sulphate, which 

was then removed by filtration and the solvents removed under reduced pressure. This 

produced a brown oil, which was used with no purification. 

The crude selenide (0.54 g, 0.972 mmol) was dissolved in methanol (55 ml) and water 

(11 ml). Sodium metaperiodate (0.48 g, 2.24 mmol) and sodium bicarbonate (0.098 g, 

1.17 mmol) were added and the reaction was heated at 60 °C for 24 hours. 

The reaction was quenched with saturated sodium bicarbonate solution (50 ml) and 

diethyl ether (75 ml). The organic layer was washed with water (50 ml) followed by brine 
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(50 ml), dried over anhydrous magnesium sulphate which was then removed by filtration 

and the solvents removed under reduced pressure. The crude product was absorbed onto 

silica and purified by flash column chromatography on silica using ethyl acetate as the 

eluent to give a yellow oil (0.10 g, 25%). 

[α]D = - 129.00  (c = 0.01); νmax (cm-1) 1663 NC=O. 

δH (300 MHz; CDCl3) 2.13-2.26 (1H, m, CH(H)CH2CH2CO), 2.54 (1H, dq, J 17.7, 6.6, 3.9, 

CH(H)CH2CH2CO), 2.94 (1H, ddd, J 15.6, 5.1, 1.8, C=CCH(H)), 3.03 (1H, d J 15.9, 

C=CCH(H)), 3.19-3.31 (2H, m, CH2OAllyl), 3.81-3.85 (2H, m , OCH2CH=CH2), 4.63-4.69 

(1H, m, NCHC=C), 4.98-5.12 (2H, m, OCH2CH=CH2), 5.16-5.23 (2H, m, NCH2Ph), 5.28-

5.35 (1H, m, NCHCH2OAllyl), 5.65-5.78 (1H, m, NCHCH2OCH2CH), 6.00 (1H, dd, J 9.9, 3, 

CH2CH=CHCO), 6.45-6.51 (1H, m, CH2CH=CHCO), 6.84-6.89 (2H, m, ArH), 7.05-7.14 

(3H, m, ArH), 7.19-7.25 (3H, m, ArH), 7.51-7.54 (1H, m, ArH). 

δC (300 MHz; CDCl3) 21.88 (CH2), 32.07 (CH2), 45.99 (CH), 47.38 (CH2), 49.83 (CH), 

68.25 (CH2), 71.79 (CH2), 107.77 (CH), 109.87 (C), 116.76 (CH2), 118.78 (CH), 119.91 

(CH), 122.36 (CH), 125.65 (2xCH), 126.04 (CH), 127.03 (C), 127.65 (CH), 128.99 (2xCH), 

132.59 (C), 134.73 (CH), 137.12 (C), 138.19 (CH), 164.90 (NC=O).  

MS (CI) m/z 399 [MH+, 100%]; (Found: MH+, 399.2057 C26H27N2O2 requires 399.2067). 
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(2R,6R,12bS)-6-(Allyloxymethyl)-12-benzyl-2-vinyl-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (46) 

 

N
N O

O

H

 

 

A 0.7 M solution of vinyl magnesium bromide in tetrahydrofuran (3.6 ml, 2.53 mmol) was 

added to a suspension of copper cyanide (0.12 g, 1.28 mmol) in anhydrous 

tetrahydrofuran (10 ml) at -78 °C while stirring. The reaction was warmed to 0 °C for 

3 minutes then re-cooled to -78 °C. (6R,12bS)-6-(allyloxymethyl)-12-benzyl-1,6,7,12b-

tetrahydroindolo[2,3-a]quinolizin-4(12H)-one (44) (0.10 g, 0.251 mmol) in anhydrous 

tetrahydrofuran (5 ml) was added via cannula at -78 °C. After 5 minutes trimethylsily 

chloride (0.16 ml, 1.28 mmol) was added and the reaction was left to warm slowly to room 

temperature overnight. 

The reaction was quenched with the addition of saturated ammonium chloride solution 

(10 ml) and water (10 ml) and then left stirring for 20 minutes.  A 1.0 M solution of 

tetrabutylammonium fluoride in tetrahydrofuran (6 ml) was added and the stirring 

continued for a further 15 minutes. The reaction was extracted into ethyl acetate 

(3 x 50 ml) and the combined organic extracts were dried over anhydrous magnesium 

sulphate. This was then filtered out and the solvents removed under reduced pressure. 

The crude product was absorbed onto silica and purified by flash column chromatography 

over silica with ethyl acetate as the eluent. This gave a brown oil (0.04 g, 37%). 

[α]D = -29.41 (c =0.00068 CHCl3); νmax (cm-1) 1633 NC=O. 
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δH (300 MHz; CDCl3) 1.76-1.86 (1H, m, CHCH(H)CHCH2CO), 2.15-2.20 (1H, m, 

CHCH(H)CHCH2CO), 2.48-2.61 (2H, m, CHCH2CO), 2.48-2.61 (1H, m, CHCH2CO), 2.78 

(1H, d, J 15.9, C=CCH(H)), 2.95 (1H, ddd, J 13.8, 3.9, 1.8, C=CCH(H)), 3.17-3.23 (2H, m, 

CH2OAllyl), 3.79 (2H, m, OCH2CH=CH2), 4.49 (1H, d, J 8.7, NCHC=C), 4.94-5.11 (2H, m, 

OCH2CH=CH2), 4.94-5.11 (2H, m, CHCH2CHCH=CH2), 5.16 (1H, d, J 17.5, NCH(H)Ph), 

5.31 (1H, d, J 17.5, NCH(H)Ph), 5.52 (1H, dt, J 6.9, 6.3, NCHCH2OAllyl), 5.64-5.77 (1H, 

m, NCHCH2OCH2CH=CH2), 5.64-5.77 (1H, m, CHCH2CHCH=CH2), 6.87-6.90 (2H, m, 

ArH), 7.05-7.11 (3H, m, ArH), 7.20-7.23 (3H, m, ArH), 7.46-7.50 (1H, m, ArH). 

δC (300 MHz; CDCl3) 20.88 (CH2), 31.61 (CH), 33.66 (CH2), 35.02 (CH2), 44.97 (CH), 

46.33 (CH), 46.82 (CH2), 67.33 (CH2), 70.67 (CH2), 107.26 (C), 108.67 (CH), 114.72 

(CH2), 115.78 (CH2), 117.38 (CH), 118.77 (CH), 121.18 (CH), 124.79 (2xCH), 125.95 (C), 

126.60 (CH), 127.91 (2xCH), 132.28 (C), 133.60 (CH), 136.20 (C), 137.37 (C), 137.98 

(CH).  

MS (CI) m/z 427 [MH+, 100%]; (Found: MH+, 427.2379. C28H31N2O2 requires 427.2380). 
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(6R,12bS)-6-(Hydroxymethyl)-12-(pyridin-4-ylmethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (53) 

 

N
N

OH

O

N

H

 

 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (0.20 g, 0.740 mmol) was dissolved in anhydrous dimethyl sulfoxide under a nitrogen 

atmosphere. 4-(Bromomethyl)-pyridine hydrobromide (0.28 g, 1.11 mmol) was added and 

the reaction cooled to 0 °C before addition of potassium tert-butoxide (0.12 g, 1.11 mmol). 

The reaction then left to warm slowly overnight. 

After this time the reaction was quenched with water (10 ml), extracted with ethyl acetate 

(3 x 20 ml) and washed with brine (3 x 50 ml). It was then dried over anhydrous 

magnesium sulphate, which was then removed by filtration and the solvent removed 

under pressure. The crude product was absorbed onto silica and purified by flash column 

chromatography over silica using 5% methanol in ethyl acetate as the eluent. This yielded 

a white solid (0.06 g, 22%). 

Mp: 227-229 °C; [α]D = -67.80 (c = 0.00059 CHCl3); νmax (cm-1) 1591 NC=O, 3290 OH. 

δH (300 MHz; CDCl3) 1.52-1.66 (1H, m, CH(H)CH2CH2CO), 1.72-1.81 (2H, m, 

CH2CH2CO), 2.26-2.31 (1H, m, CH(H)CH2CH2CO), 2.35-2.54 (2H, m, CH2CH2CO), 2.79 

(1H, d, J 15.9, C=CCH(H)), 2.96 (1H, ddd, J 15.9, 5.7, 1.8, C=CCH(H)), 3.41 (1H, t, J 

10.5, CHCH(H)OH), 3.52-3.60 (1H, m, CHCH(H)OH), 4.54 (1H, d, J 11.1, CHC=C), 5.19 

(1H, d, J 17.5, NCH(H)Pyr), 5.31 (1H, d, J 17.5, NCH(H)Pyr), 5.39-5.49 (1H, m, 
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CHCH2OH), 6.87-6.90 (12H, m, ArH), 7.06-7.12 (3H, m ArH), 7.16-7.26 (2H, m, ArH), 

7.46-7.49 (1H, m, ArH).  

No further data was obtained due to this being an intermediate compound. 
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(6R,12bS)-6-(Allyloxymethyl)-12-(pyridin-4-ylmethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (54) 

N
N

O

O

N

H

 

 

Sodium hydride (60% dispersion in mineral oil, 0.013 g, 0.33 mmol) and (6R,12bS)-6-

(hydroxymethyl)-12-(pyridin-4-ylmethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-

4(12H)-one (53) (0.06 g, 0.17 mmol) were combined under a nitrogen atmosphere. An ice 

bath was placed underneath the flask and anhydrous dimethylformamide (5 ml) was 

added. The ice bath was removed and the reaction stirred at room temperature for 

30 minutes. After this time allyl bromide (0.03 ml, 0.33 mmol) was added and the reaction 

was left for 24 hours.  

The reaction was quenched with the addition of ice water (10 ml) and washed with ethyl 

acetate (3 x 50 ml) and brine (3 x 50 ml). The organic extracts were combined and dried 

using anhydrous magnesium sulphate. This was then removed by filtration and the solvent 

removed under reduced pressure. The crude product was absorbed onto silica and 

purified by flash column chromatography over silica using 5% methanol in ethyl acetate as 

the eluent. This produced a white oil (0.06 g, 90%). 

[α]D = -118.88 (c = 0.00077 CHCl3); νmax (cm-1) 1633 NC=O. 

δH (300 MHz; CDCl3) 1.45-1.58 (1H, m, CH(H)CH2CH2CO), 1.64-1.76 (2H, m, 

CH2CH2CO), 2.29-2.53 (1H, m, CH(H)CH2CH2CO), 2.29-2.53 (2H, m, CH2CH2CO), 2.80 

(1H, d, J 15.3, C=CCH(H)), 2.93 (1H, dd, J 15.9, 3.3, C=CCH(H)), 3.20-3.30 (2H, m, 

CHCH2OAllyl), 3.75-3.87 (2H, m, OCH2CH=CH2), 4.43 (1H, d, J 10.2, CHC=C), 4.99-5.12 
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(2H, m, OCH2CH=CH2), 5.18 (1H, d, J, 17.5, NCH(H)Pyr), 5.33 (1H, d, J 17.5, 

NCH(H)Pyr), 5.55-5.57 (1H, m, C=CCH2CH), 5.67-5.82 (1H, m, OCH2CH=CH2), 6.86-6.88 

(2H, m, ArH), 7.08-7.09 (3H, m ArH), 7.19-7.20 (2H, m, ArH), 7.47-7.48 (1H, m, ArH). 

δC (300 MHz; CDCl3) 18.32 (CH2), 20.91 (CH2), 29.36 (CH2), 30.96 (CH2), 44.76 (CH), 

46.72 (CH2), 50.33 (CH), 67.43 (CH2), 70.61 (CH2), 106.87 (C), 108.74 (CH), 115.82 

(CH2), 117.50 (CH), 118.77 (CH), 121.17 (CH), 124.71 (2xCH), 125.94 (C), 126.56 (CH), 

127.89 (2xCH), 132.36 (C), 133.68 (CH), 136.23 (C), 137.29 (C), 169.35 (NC=O). 

MS (CI) m/z 401 [M+, 100%]; (Found: M+, 401.2224. C25H27N3O2 requires 401.2224) 
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(6R,12bS)-12-Benzyl-6-(methoxymethyl)-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-

a]quinolizine (55) 

N
N

O

H

 

 

Anhydrous tetrahydrofuran (5 ml) was added to lithium aluminium hydride (0.032 g, 

0.855 mmol) in a pre-dried, 3 necked flask under a nitrogen atmosphere and cooled to 

0 °C. (6R,12bS)-12-benzyl-6-(methoxymethyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (29) (0.16 g, 0.427 mmol) in anhydrous tetrahydrofuran (5 ml) was 

added via cannula. The reaction was heated under reflux for 3 hours and then stirred at 

room temperature overnight. 

The reaction was quenched with the addition of diethyl ether (10 ml) and sodium 

potassium tartrate solution (20 ml) and left to stir for one hour. The organic layer was 

separated and dried over anhydrous magnesium sulphate, which was then removed by 

filtration and the solvents removed under reduced pressure. The crude product was 

absorbed onto alumina and purified by flash column chromatography over alumina using 

1% methanol in chloroform as the eluent. This yielded a brown oil (0.07 g, 45%). 

[α]D = -22.86(c = 0.007, CHCl3); νmax (cm-1) 2924 CH. 

δH (300 MHz; CDCl3) 1.32-1.63 (1H, m, CHCH(H)CH2CH2), 1.32-1.63 (2H, m, 

CHCH2CH2CH2CH2), 1.69-1.84 (1H, m, CHCH(H)CH2CH2), 2.27-2.97 (2H, m, 

CHCH2CH2CH2CH2), 3.10-3.16 (2H, m CHCH2CH2CH2CH2), 3.24 (3H, s, OCH3), 3.26-

3.36 (2H, m, C=CCH2), 3.51-3.55 (2H, m, CH2OCH3), 3.64 (1H, d, J 9.6, NCHC=C), 5.14 

(1H, d, J 17.5, NCH(H)Ph), 5.26 (1H, d, J 17.5, NCH(H)Ph), 5.11-5.29 (1H, m, 
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C=CCH2CH), 6.88-6.91 (2H, m, ArH), 7.00-7.04 (3H, m, ArH), 7.15-7.21 (3H, m, ArH), 

7.43-7.47 (1H, m ArH). 

δC (300 MHz; CDCl3) 23.96 (CH2), 25.12 (CH2), 25.23 (CH2), 30.52 (CH2), 47.49 (CH2), 

52.53 (CH2), 55.59 (CH), 55.70 (CH), 59.02 (CH3), 71.44 (CH2), 107.35 (C), 109.64 (CH), 

118.24 (CH), 119.19 (CH), 121.23 (CH), 125.95 (2xCH), 127.22 (CH), 127.52 (C), 128.72 

(2xCH), 136.60 (C), 137.71 (C), 137.84 (C). 

MS (CI) m/z 361 [MH+, 100%]; (Found: MH+, 361.2279. C24H29N2O requires 361.2274). 
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(6R,12bS)-6-(Allyloxymethyl)-12-benzyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-

a]quinolizine (56) 

N
N

O

H

 

 

Anhydrous tetrahydrofuran (5 ml) was added to lithium aluminium hydride (0.028 g, 

0.750 mmol) in a pre-dried, 3 necked flask under a nitrogen atmosphere and cooled to 

0 °C. (6R,12bS)-6-(allyloxymethyl)-12-benzyl-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (30)  (0.15 g, 0.375 mmol) in anhydrous tetrahydrofuran (5 ml) 

was added via cannula. The reaction was heated under reflux for 3 hours and then stirred 

at room temperature overnight. 

The reaction was quenched with the addition of diethyl ether (10 ml) and sodium 

potassium tartrate solution (20 ml) and left to stir for one hour. The organic layer was 

separated and dried over anhydrous magnesium sulphate, which was then removed by 

filtration and the solvents removed under reduced pressure. The crude product was 

absorbed onto alumina and purified by flash column chromatography over alumina using 

5% ethyl acetate in chloroform as the eluent. This yielded a brown oil (0.017 g, 12%). 

[α]D = -29.41 (c = 0.00068, CHCl3); νmax (cm-1) 2920 CH. 

δH (300 MHz; CDCl3) 1.33-2.22 (2H, m, CHCH2CH2CH2CH2), 1.33-2.22 (2H, m, 

CHCH2CH2CH2CH2), 2.74-3.00 (2H, m, CHCH2CH2CH2CH2), 2.74-3.00 (2H, m, C=CCH2), 

3.13 (1H, d, J 12.3, NCHC=C), 3.31-3.36 (2H, m, CH2OAllyl), 3.59-3.61 (2H, m, 

CHCH2CH2CH2CH2), 3.86 (2H, d, J 5.4, OCH2CH=CH2), 5.06-5.30 (1H, m, 
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NCHCH2OAllyl), 5.06-5.30 (2H, m, NCH2Ph), 5.06-5.30 (2H, m, OCH2CH=CH2), 5.73-5.88 

(1H, m, OCH2CH=CH2), 6.90 (2H, d, J 7.8, ArH), 7.01-7.04 (3H, m, ArH), 7.15-7.23 (3H, 

m, ArH), 7.44-7.47 (1H, m, ArH). 

δC (300 MHz; CDCl3) 23.15 (CH2), 24.09 (CH2), 24.27 (CH2), 29.67 (CH2), 46.45 (CH2), 

51.71 (CH2), 54.63 (CH), 54.94 (CH), 67.83 (CH2), 71.15 (CH2), 106.33 (C), 108.58 (CH), 

115.86 (CH2), 117.17 (CH), 118.11 (CH), 120.16 (CH), 124.88 (2xCH), 126.15 (CH), 

126.50 (C), 127.65 (2xCH), 133.77 (CH), 135.55 (C), 136.70 (C), 136.81 (C).  

MS (CI) m/z 387 [MH+, 100%]; (Found: MH+, 387.2434. C26H31N2O requires 387.2431) 
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2-((6R,12bS)-4-Oxo-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-6-yl)acetaldehyde 

(69) 3 

N
H

N O

CHO

H
 

Commercial stabilised IBX 45% (5.00 g, 7.77 mmol) was added to a solution of 

(6R,12bS)-6-Hydroxymethyl-2,3,6,7,12,12b-hexahrydro-1Hindolo[2,3-a]quinolizim-4-one 

(20) (1.05 g, 3.89 mmol) in dimethyl sulfoxide (20 ml) under a nitrogen atmosphere. The 

reaction was stirred at room temperature for 24 hours. 

After this time the reaction was poured into water (50 ml), extracted into ethyl acetate 

(3 x 20 ml) and washed with brine (3 x 20 ml). The combined organic fractions were dried 

with anhydrous magnesium sulphate, which was then removed by filtration and the 

solvent removed under reduced pressure. The crude product was absorbed onto silica 

and purified using flash column chromatography over silica using ethyl acetate as the 

eluent. This gave an off white solid (0.83 g, 80%). 

δH (300 MHz; CDCl3) 1.55-1.68 (1H, m, CH(H)CH2CH2CO), 1.87-1.96 (2H, m, 

CH2CH2CH2CO), 2.34-2.47 (1H, m, CH(H)CH2CH2CO), 2.34-2.47 (1H, m, 

CH2CH2CH(H)CO), 2.61-2.68 (1H, m, CH2CH2CH(H)CO), 3.02 (1H, ddd, J 15.9, 6.6, 2.1, 

C=CCH(H)), 3.35 (1H, d, J 15.9, C=CCH(H)), 4.82 (1H, d, J 11.4, NCHC=C), 5.90 (1H, d, 

J 6.3, C=CCH2CH), 7.03-7.13 (2H, m, ArH), 7.22 (1H, t, J 6.3, ArH), 7.47 (1H, d, J 7.5, 

ArH), 8.32 (1H, s br, NH), 9.41 (1H, s, CHO).  
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(6R,12bS)-tert-Butyl 4-oxo-6-(2-oxoethyl)-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-

12(12bH)-carboxylate (70) 3 

 

N
N O

CHO

H
Boc  

 

2-((6R,12bS)-4-oxo-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-6-yl)acetaldehyde 

(69) (2.59 g, 9.59 mmol) was dissolved in anhydrous tetrahydrofuran (30 ml) under a 

nitrogen atmosphere. Triethylamine (2.68 ml, 19.18 mmol), dimethylaminopyridine (0.59 g, 

4.80 mmol) and di-tert-butyl dicarbonate (2.72 g, 12.47 mmol) were added in sequence.  

The reaction was left stirring for 5 hours.  

After this time the volatiles were removed and the remaining oil was re-dissolved in ethyl 

acetate and washed with saturated ammonium chloride solution (2 x 50 ml), saturated 

sodium bicarbonate solution (2 x 50 ml) and brine (2 x 50 ml). The organic extract was 

dried over anhydrous magnesium sulphate, which was then removed by filtration and the 

solvent was removed under reduced pressure. The crude product was absorbed onto 

silica and purified with flash column chromatography over silica using 1:1 ethyl 

acetate: petroleum ether as the eluent. This gave a yellow oil (2.08 g, 59%). 

δH (300 MHz; CDCl3) 1.29-1.44 (1H, m CH(H)CH2CH2CO), 1.50 (9H, s, OC(CH3)3), 1.87-

1.96 (2H, m, CH2CH2CO), 2.39-2.48 (1H, m, CH2CH(H)CO), 2.51-2.57 (1H, m 

CH(H)CH2CH2CO), 2.61-2.70 (1H, m, CH2CH(H)CO), 2.86 (1H, ddd, J 16.5, 6.0, 2.4, 

C=CCH(H)), 3.29 (1H, d, J 16.2, C=CCH(H)), 5.18 (1H, dd, J 10.5, 1.8, NCHC=C), 5.84 

(1H, d, J 5.1, C=CH2CH), 7.15-7.25 (2H, m, ArH), 7.39 (1H, d, J 6.9, ArH), 7.96 (1H, d, J 

7.8, ArH), 9.43 (1H, s, CHO).  
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2-((6R,12bS)-12-(tert-Butoxycarbonyl)-4-oxo-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-

a]quinolizin-6-yl)acetic acid (71) 3 

 

N
N O

COOH

H
Boc  

 

(6R,12bS)-tert-butyl4-oxo-6-(2-oxoethyl)-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-

12(12bH)-carboxylate (70) (1.52 g, 4.12 mmol) was dissolved in acetonitrile (18 ml), tert-

butyl alcohol (67.50 ml) and cyclohexene (33 ml). The reaction was cooled to 0°C using 

an ice bath. Sodium chlorite (2.87 g, 31.70 mmol) and sodium dihydrogen phosphate 

(3.47 g, 28.82 mmol) in water (67.50 ml) were added slowly at 0°C. The reaction was 

warmed to room temperature and left stirring for 18 hours. 

The reaction was extracted into ethyl acetate and washed with 1 M sodium dithionite 

solution (2 x 50 ml). It was then dried over anhydrous magnesium sulphate, which was 

then removed by filtration and the solvents removed under reduced pressure. The crude 

product was absorbed onto silica and purified using flash column chromatography over 

silica using 5% methanol in ethyl acetate as the eluent. This gave a pale yellow foam 

(1.40 g, 88%).  

δH (300 MHz; CDCl3) 1.30-1.43 (1H, m CH(H)CH2CH2CO), 1.59 (9H, s, OC(CH3)3), 1.81-

1.86 (2H, m, CH2CH2CO), 2.34-2.49 (1H, m, CH2CH(H)CO), 2.53-2.59 (1H, m 

CH(H)CH2CH2CO), 2.62-2.65 (1H, m, CH2CH(H)CO), 2.83 (1H, ddd, J 15.9, 6.0, 2.1, 

C=CCH(H)), 3.33 (1H, d, J 16.2, C=CCH(H)), 5.28 (1H, d, J 9, NCHC=C), 5.95 (1H, d, J 

4.5, C=CH2CH), 7.13-7.24 (2H, m, ArH), 7.36-7.38 (1H, m,  ArH), 7.98 (1H, d, J 7.8, ArH). 
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(6R,12bS)-tert-Butyl4-oxo-6-(2-oxo-2-(phenylselanyl)ethyl)-1,2,3,4,6,7 

hexahydroindolo[2,3-a]quinolizine-12(12bH)-carboxylate (57) 3 

 

N

Boc

N O

H

O

SePh

 

 

Anhydrous dichloromethane (20 ml) was added to 2-((6R,12bS)-12-(tert-butoxycarbonyl)-

4-oxo-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-6-yl)acetic acid (71) (1.40 g, 

3.64 mmol) under a nitrogen atmosphere. Diphenyl diselenide (1.71 g, 5.46 mmol) was 

added and the reaction cooled to 0°C. Tributyl phosphine (1.82 ml, 7.28 mmol) was added 

dropwise and the reaction was warmed to room temperature and left for 24 hours. 

Dichloromethane (100 ml) and water (100 ml) were added and the aqueous layer was 

extracted further with dichloromethane. The combined organic extracts were washed with 

brine (100 ml), dried over anhydrous magnesium sulphate, which was then removed by 

filtration and the solvent removed under reduced pressure. The crude product was 

absorbed onto silica and purified by flash column chromatography over silica using ethyl 

acetate followed by 5% methanol in ethyl acetate to give pale yellow foam (1.06 g, 55%). 

δH (300 MHz; CDCl3) 1.34-1.47 (1H, m CH(H)CH2CH2CO), 1.60 (9H, s, OC(CH3)3), 1.88-

2.07 (2H, m, CH2CH2CO), 2.45-2.60 (1H, m, CH2CH(H)CO), 2.45-2.60 (1H, m 

CH(H)CH2CH2CO), 2.68-2.85 (1H, m, CH2CH(H)CO), 2.68-2.85 (1H, m, C=CCH(H)), 3.41 

(1H, d, J 16.5, C=CCH(H)), 5.50 (1H, d, J 10.5, NCHC=C), 6.08 (1H, d, J 4.8, C=CH2CH), 

7.13-7.24 (5H, m, ArH), 7.28-7.32 (2H, m,  ArH), 7.36 (1H, d, J 7.2, ArH), 7.97 (1H, d, J 

8.1, ArH).  
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(S)-tert-Butyl 4-oxo-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-12(12bH)-carboxylate 

(58a) 3 

N

Boc

N O

H

 

 

(6R,12bS)-tert-butyl4-oxo-6-(2-oxo-2-(phenylselanyl)ethyl)-1,2,3,4,6,7 

hexahydroindolo[2,3-a]quinolizine-12(12bH)-carboxylate (57) (0.4 g, 0.764 mmol) in 

anhydrous toluene (10 ml) was added via cannula to a three necked flask under a 

nitrogen atmosphere, and flushed with nitrogen for 15 minutes. Tributylin hydride (0.82 ml, 

3.06 mmol) was added via syringe. The reaction was then heated to 80 °C and 

azobisisobutyronitrile (0.03 g, 0.153 mmol) was added portion wise over two hours. The 

reaction was left for a further two hours and then cooled to room temperature and the 

solvent removed under reduced pressure. 

The crude product was absorbed onto silica and purified using flash column 

chromatography over silica eluting with petroleum ether followed by ethyl acetate to give a 

colourless oil (0.19 g, 72%). 

δH (300 MHz; CDCl3) 1.25-1.40 (2H, m, CH2CH2CH2CO), 1.60 (9H, s, N-Boc), 1.75-1.80 

(2H, m, CH2CH2CO), 2.27-2.39 (1H, m, CH2CH(H)CO), 2.48-2.75 (1H, m, CH2CH(H)CO), 

2.48-2.75 (2H, m, C=CCH2), 2.48-2.75 (1H, m, C=CCH2CH(H)), 4.98-5.09 (1H, m, 

C=CCH2CH(H)), 4.98-5.09 (1H, m, NCHC=C), 7.13-7.23 (2H, m, ArH), 7.34 (1H, d, J 7.2, 

ArH), 7.96 (1H, d, J 8.1, ArH). 
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(S)-1,2,3,6,7,12b-Hexahydroindolo[2,3-a]quinolizin-4(12H)-one (72a) 13 

 

N
H

N O

H

 

 

Anhydrous tetrahydrofuran (20 ml) was added to (S)-tert-butyl 4-oxo-1,2,3,4,6,7-

hexahydroindolo[2,3-a]quinolizine-12(12bH)-carboxylate (58a) (0.2 g, 0.578 mmol) under 

a nitrogen atmosphere. Tetrabutylammonium fluoride 1.0 M solution (5.78 ml, 5.78 mmol) 

was added and the reaction heated under reflux for 9 hours.  

After this time the reaction was cooled and water (20 ml) was added. The product was 

extracted into ethyl acetate (3 x 20 ml) and dried using anhydrous magnesium sulphate, 

which was then removed by filtration and the solvents were removed under reduced 

pressure. The crude product was absorbed onto silica and purified by flash column 

chromatography using 5% methanol in ethyl acetate as the eluent. This yielded a white oil 

(0.11 g, 79%). 

[α]D = -136.36 (c = 0.00022 CHCl3); νmax (cm-1) 3233.33 NH, 1609 NC=O. 

δH (300 MHz; CDCl3) 1.50-1.89 (1H, m, CH(H)CH2CH2CO), 1.50-1.89 (2H, m, 

CH2CH2CO), 2.28-2.42 (1H, m, CH(H)CH2CH2CO), 2.51-2.57 (2H, m, CH2CH2CO), 2.67-

2.87 (1H, m, C=CCH2CH(H)), 2.67-2.87 (2H, m, C=CCH2), 4.69-4.74 (1H, m, NCHC=C), 

5.06-5.16 (1H, m, C=CCH2CH(H)), 7.09 (2H, sid, J 14.4, 7.2, 0.9, ArH), 7.27 (1H, d, J 7.5, 

ArH), 7.44 (1H, d, J 7.2, ArH), 7.98 (1H, br s, NH). 
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δC (300 MHz;  CDCl3) 19.39 (CH2), 21.01 (CH2), 29.07 (CH2), 32.42 (CH2), 40.16 (CH2), 

54.39 (CH), 109.61 (C), 110.95 (CH), 118.44 (CH), 119.86 (CH), 122.18 (CH), 126.88 (C), 

133.30 (C), 136.19 (C), 169.28 (NC=O). 

MS (CI) m/z 241 [MH+, 100%]; (Found: MH+, 241.1337. C15H17N2O requires 241.13335). 
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 (S)-12-Benzyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (73a) 

 

N N O
H

 

(S)-1,2,3,6,7,12b-Hexahydroindolo[2,3-a]quinolizin-4(12H)-one (72a) (0.09 g, 0.375 mmol) 

and sodium hydride (60 % dispersion in mineral oil, 0.023 g, 0.750 mmol) were combined 

under a nitrogen atmosphere and cooled to 0 °C using an ice bath. Anhydrous 

dimethylformamide (20 ml) was added and the ice bath removed. The reaction was stirred 

at room temperature for 30 minutes. After this time benzyl bromide (0.07 ml, 0.750 mmol) 

was added and the reaction was left for 24 hours. 

The reaction was quenched by the addition of ice water (20 ml) and extracted into ethyl 

acetate (3 x 50 ml). It was then washed with brine (2 x 50 ml), dried over anhydrous 

magnesium sulphate, which was then removed by filtration and the solvent was removed 

under pressure. The crude product was absorbed onto silica and purified by flash column 

chromatography over silica using 5% methanol in ethyl acetate as the eluent to give a 

yellow oil (0.11 g, 80%). 

[α]D = -181.82 (c = 0.00077); νmax (cm-1) 2922 CH, 1625 NC=O. 

δH (300 MHz; CDCl3) 1.42-1.80 (1H, m, CH(H)CH2CH2CO), 1.42-1.80 (2H, m, 

CH2CH2CO),  2.26-2.37 (1H, m, CH(H)CH2CH2CO), 2.26-2.37 (1H, m, CH2CH(H)CO), 

2.44-2.52 (1H, m, CH2CH(H)CO), 2.59-2.85 (2H, m, C=CCH2), 2.59-2.85 (1H, m, 

C=CCH2CH(H)), 4.58-4.62 (1H, m, NCHC=C), 5.06-5.12 (1H, m, C=CCH2CH(H)), 5.20 

(1H, d, J 17.5, NCH(H)Ph), 5.30 (1H, d, J 17.5, NCH(H)Ph), 6.90-6.93 (2H, m, ArH), 7.04-

7.09 (3H, m, ArH), 7.16-7.26 (3H, m, ArH), 7.46-7.50 (1H, m,  ArH). 
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δC (300 MHz;  CDCl3) 18.41 (CH2), 20.52 (CH2), 29.32 (CH2), 31.01 (CH2), 39.17 (CH2), 

46.87 (CH2), 53.71 (CH), 108.77 (C), 110.00 (CH), 117.43 (CH), 118.83 (CH), 121.15 

(CH), 124.73 (2xCH), 125.51 (C), 126.48 (CH), 127.87 (2xCH), 133.73 (C), 136.19 (C), 

137.03 (C), 168.70 (NC=O). 

MS (CI) m/z 331 [MH+, 100%]; (Found: MH+, 331.1809. C22H23N2O requires 331.1805). 
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(S)-tert-Butyl 4-oxo-1,6,7,12b-tetrahydroindolo[2,3-a]quinolizine-12(4H)-carboxylate 

(74a) 3 

 

N
N O

H
Boc

 

 

Diisopropylamine (0.72 ml, 5.04 mmol) was added to anhydrous tetrahydrofuran (5 ml) 

under a nitrogen atmosphere at 0 °C. n-Butyllithium (2.5 M in hexanes, 2.02 ml, 

5.04 mmol) was added and the reaction stirred for 15 minutes. This was then cooled 

to -78 °C. (S)-tert-butyl 4-oxo-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-12(12bH)-

carboxylate) (58a) (0.58 g, 1.68 mmol) in anhydrous tetrahydrofuran (10 ml) was added 

via cannula. The reaction was stirred at -78 °C for one hour. Following this, phenyl 

selenium bromide (0.59 g, 2.52 mmol) in anhydrous tetrahydrofuran (10ml) was added via 

cannula and the reaction was left stirring for 24 hours. 

The reaction was then quenched with saturated ammonium chloride solution and 

extracted into diethyl ether (3 x 20 ml). The organic extracts were combined and washed 

with saturated ammonium chloride solution (100 ml), dried over anhydrous magnesium 

sulphate, which was then removed by filtration and the solvents were removed under 

reduced pressure. This produced a brown oil, which was used with no further purification. 

The crude selenide (1.04 g, 2.10 mmol) was dissolved in methanol (220 ml) and water 

(45 ml). Sodium metaperiodate (1.03 g, 4.83 mmol) and sodium bicarbonate (0.21 g, 

2.52 mmol) were added and the reaction was heated at 60 °C for 24 hours. 
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The reaction was quenched with saturated sodium bicarbonate solution (100 ml) and 

ether (150 ml). The organic layer was washed with water (200 ml) followed by brine 

(200 ml), dried over anhydrous magnesium sulphate, which was then removed by filtration 

and the solvents were removed under reduced pressure. The crude product was 

absorbed onto silica and purified by flash column chromatography on silica using ethyl 

acetate as the eluent to give a yellow oil (0.15 g, 26%). 

[α]D = -410.26 (c = 0.00078 CHCl3); νmax (cm-1) 1725 NC=O. 

δH (300 MHz; CDCl3) 1.61 (9H, s, (CH3)3), 2.09 (1H, tt, J 17.1, 4.8, 2.7, CH(H)CH=CHCO), 

2.62-2.84 (1H, m, C=CCH2CH(H)), 2.62-2.84 (2H, m, C=CCH2), 2.95 (1H, dq, J 17.4, 3.9, 

(CH(H)CH=CHCO), 4.91-4.97 (1H, m, C=CCH2CH(H)), 5.16-5.21 (1H, m, NCHC=C), 6.01 

(1H, dd, J 9.9, 3, CH2CH=CHCO), 6.58-6.64 (1H, m, CH2CH=CHCO), 7.19-7.27 (2H, m, 

ArH), 7.40 (1H, d, J 8.4, ArH), 8.00 (1H, d, J 8.1, ArH). 

δC (300 MHz; CDCl3) 20.52 (CH2), 27.20 (CH3)3, 30.61 (CH2), 36.50 (CH2), 52.27 (CH), 

83.51 (C), 114.77 (CH), 116.98 (C), 117.37 (CH), 122.08 (CH), 123.71 (CH), 124.41 (CH), 

127.50 (C), 133.09 (C), 135.53 (C), 138.10 (CH), 149.01 (C), 163.81 (NC=O).  

 

 

 

 

 

 

 

 



222 

 

3.4 Racemic compounds 

1-(2-(1H-Indol-3-yl)ethyl)piperidine-2,6-dione (81) 

 

HN

N

O

O

 

 

Anhydrous tetrahydrofuran (10 ml) was added to tryptamine (79) (1.0 g, 6.24 mmol) and 

glutaric anhydride (80) (0.71 g, 6.24 mmol) under a nitrogen atmosphere. Triethylamine 

(1 ml, 6.55 mmol) was added and the mixture was heated under reflux for 18 hours. After 

this time the volatiles were removed under reduced pressure to yield a brown oil. The 

crude product was absorbed onto silica and purified using flash column chromatography 

over silica with 2:1 ethyl acetate: petroleum ether as the eluent. A compound was isolated, 

and then re-crystallised from chloroform to give and off white solid. This was the 

undesired compound shown below (82). 

HN

H
N

O

O OH

 

 

Mp: 141- 142 °C; νmax (cm-1) 1634 C=O, 1687 C=O, 3054 OH, 3317 NH, 3390 NH. 

δH (300 MHz; DMSO) 1.72 (2H, qu, J 7.2, NHCOCH2CH2), 2.09 (2H, t, J 6.9, NHCOCH2), 

2.20 (2H, t, J 7.2, CH2COOH), 2.80 (2H, t, J 7.2, NHCH=CCH2), 3.27-3.34 (2H, m, 

NCH=CCH2CH2), 6.97 (1H, t, J 7.2, ArH), 7.06 (1H, t, J 7.8, ArH), 7.13 (1H, s, NHCH=C), 
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7.33 (1H, d, J 7.8, ArH), 7.52 (1H, d, J 7.8, ArH), 7.95 (1H, s, NHCO), 10.82 (1H, br s, 

NH).  

δC (300 MHz; DMSO) 20.65 (CH2), 25.24 (CH2), 33.03 (CH2), 34.45 (CH2), 39.37 (CH2), 

111.31 (CH), 111.80 (C), 118.15 (CH), 118.20 (CH), 120.85 (CH), 122.53 (CH), 127.16 

(C), 136.15 (C), 171.40 (C=O), 174.22 (NHC=O). 

This was converted into the desired compound by heating at 200 °C for 24 hours with no 

solvent. 
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1-(2-(1H-Indol-3-yl)ethyl)piperidine-2,6-dione (81) 

 

HN

N

O

O

 

 

Tryptamine (79) (20 g, 124.83 mmol) and glutaric anhydride (80) (14.24 g, 124.83 mmol) 

were combined and heated at 200 °C for 24 hours. The brown oil formed was absorbed 

onto silica and purified by flash column chromatography over silica with 3:2 ethyl 

acetate: petroleum ether as the eluent. This yielded a burnt orange solid (21.21 g, 66%). 

Mp: 171-172 °C; νmax (cm-1) 3324 NH, 1661 NC=O. 

δH (300 MHz; CDCl3) 1.80 (2H, qu, J 6.6, NCOCH2CH2), 2.54 (4H, t, J 6.6, NCOCH2), 2.91 

(2H, t, J 7.8, CH2CH2N), 4.00 (2H, t, J 8.1, CH2CH2N), 6.98 (1H, d, J 1.8, NHCH=C), 7.09 

(2H, qu, J 7.2, ArH), 7.27 (1H, d, J 7.5, ArH), 7.71 (1H, d, J 7.5, ArH), 8.01 (1H, br s, NH). 

δC (300 MHz; CDCl3) 16.08 (CH2), 22.68 (CH2), 31.81 (2xCH2), 39.29 (CH2), 110.03 (CH), 

111.79 (C), 118.07 (CH), 118.36 (CH), 120.93 (CH), 121.12 (CH), 126.56 (C), 135.07 (C), 

171.56 (2xNC=O). 

MS (CI) m/z 257 [MH+, 100%]; (Found: MH+, 257.1289. C15H17N2O2 requires 257.1285). 
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1,2,3,6,7,12b-Hexahydroindolo[2,3-a]quinolizin-4(12H)-one (72a, b) 

 

N
H

N O

H
 

 

1-(2-(1H-indol-3-yl)ethyl)piperidine-2,6-dione (81) (2 g, 7.81 mmol) was dissolved in 

absolute ethanol and cooled to 0 °C with an ice bath. Sodium borohydride (2.9 g, 

78.1 mmol) was added, followed by 2M hydrochloric acid in absolute ethanol (3.9 ml), 

added portion wise over a three hour period via syringe. After this time the solution was 

acidified to pH 1-3 with 2M hydrochloric acid in absolute ethanol over a 15 minute period, 

the ice bath was removed and the reaction was left stirring at room temperature overnight.  

Saturated sodium bicarbonate solution (200 ml) was used to quench the reaction which 

was then extracted into ethyl acetate (2 x 100 ml) and washed with brine (2 x 100 ml). It 

was then dried over anhydrous magnesium sulphate, which was removed by filtration and 

the solvent was removed under reduced pressure. The crude product was heated in 

absolute ethanol, cooled to 0 °C overnight and filtered to give an off white solid (1.27 g, 

68%). A small portion of this was re-crystallised to give white crystals. 

Mp: 245-247 °C; νmax (cm-1) 3259 NH, 1592 NC=O. 

δH (300 MHz; CDCl3) 1.74-2.04 (1H, m, CH(H)CH2CH2CO), 1.74-2.04 (2H, m, 

CH2CH2CO), 2.37-2.51 (1H, m, CH(H)CH2CH2CO), 2.37-2.51 (1H, m, CH2CH(H)CO), 

2.59-2.65 (1H, m, CH2CH(H)CO), 2.76-2.90 (1H, m, C=CCH2CH(H)), 2.76-2.90 (2H, m, 

C=CCH2), 4.80-4.83 (1H, m, NCHC=C), 5.15-5.26 (1H, m, C=CCH2CH(H)), 7.12-7.23 (2H, 

m, ArH), 7.37 (1H, d, J 8.1, ArH), 7.53 (1H, d, J 7.5, ArH), 8.15 (1H, br s, NH). 
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δC (300 MHz;  CDCl3) 19.41 (CH2), 21.01 (CH2), 29.07 (CH2), 32.44 (CH2), 40.14 (CH2), 

54.39 (CH), 109.58 (C), 110.95 (CH), 118.43 (CH), 119.84 (CH), 122.16 (CH), 126.87 (C), 

133.33 (C), 136.18 (C), 169.24 (NC=O). 

MS (CI) m/z 241 [MH+, 100%]; (Found: MH+, 241.1338. C15H17N2O requires 241.1335). 
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12-Benzyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (73a, b) 

 

N
N O

H

 

 

1,2,3,6,7,12b-Hexahydroindolo[2,3-a]quinolizin-4(12H)-one (72a, b) (1.27 g, 5.29 mmol) 

and sodium hydride (60 % dispersion in mineral oil, 0.42 g, 10.58 mmol) were combined 

under a nitrogen atmosphere and cooled to 0 °C. Dimethylformamide (40 ml) was added 

and the solution stirred at room temperature for 30 minutes. After this time benzyl bromide 

(1.27 ml, 10 .58 mmol) was added and the solution was left stirring for 24 hours.  

The reaction was quenched with the addition of ice cold water (30 ml) and extracted into 

ethyl acetate (3 x 50 ml), then washed with brine (2 x 100 ml). The combined organic 

extracts were dried over anhydrous magnesium sulphate, which was then removed by 

filtration and the solvent was removed under reduced pressure. The crude product was 

absorbed onto silica and purified by column chromatography over silica using 5% 

methanol in ethyl acetate as the eluent. This gave an off white solid (1.02 g, 58%). 

Mp: 188-190 °C; νmax (cm-1)1636 NC=O. 

δH (300 MHz; CDCl3) 1.26-1.60 (1H, m, CH(H)CH2CH2CO), 1.26-1.60 (2H, m, 

CH2CH2CO), 2.10-2.22 (1H, m, CH(H)CH2CH2CO), 2.10-2.22 (1H, m, CH(H)CO), 2.30-

2.37 (1H, m, CH(H)CO), 2.46-2.73 (2H, m, C=CCH2), 2.46-2.73 (1H, m, C=CCH2CH(H)), 

4.45 (1H, d, J 8.7, NCHC=C), 5.00 (1H, dd, J 9.9, 2.7, C=CCH2CH(H)), 5.30 (1H, d, J 

17.5, NCH(H)Ph), 5.40 (1H, d, J 17.5, NCH(H)Ph), 6.79 (2H, d, J 6.3, ArH), 6.93-6.96 (3H, 

m, ArH), 7.04-7.13 (3H, m, ArH), 7.35-7.38 (1H, m, ArH). 
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δC (300 MHz;  CDCl3) 19.45 (CH2), 21.68 (CH2), 30.56 (CH2), 32.16 (CH2), 40.24 (CH2), 

47.89 (CH2), 54.76 (CH), 109.94 (CH), 110.90 (C), 118.53 (CH), 119.91 (CH), 122.23 

(CH), 125.82 (2xCH), 126.66 (C), 127.5665 (CH), 128.97 (2xCH), 134.97 (C), 137.39 (C), 

138.14 (C), 169.65 (NC=O).  

MS (CI) m/z 331 [MH+, 100%]; (Found: MH+, 331.1810. C22H23N2O requires 331.1805). 
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tert-Butyl 4-oxo-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-12(12bH)-carboxylate 

(58a, b) 

 

N
N O

H
Boc  

 

1,2,3,6,7,12b-Hexahydroindolo[2,3-a]quinolizin-4(12H)-one (72a, b) (3.79 g, 15.77 mmol) 

was dissolved in anhydrous tetrahydrofuran (100 ml) under a nitrogen atmosphere. 

Triethylamine (9.29 ml, 66.58 mmol), dimethylaminopyridine (0.5 g, 8.32 mmol) and 

di-tert-butyl dicarbonate (7.27 g, 33.29 mmol) were subsequently added. 

After three hours, thin layer chromatography was used to determine that the reaction had 

completed and the solvents were removed under reduced pressure to give a brown oil. 

This was dissolved in ethyl acetate (50 ml) and washed with saturated ammonium 

chloride solution (2 x 100 ml), saturated sodium bicarbonate solution (2 x 100 ml) and 

brine (100 ml). The organic layer was dried over anhydrous magnesium sulphate, which 

was then removed by filtration and the solvent was removed under reduced pressure. The 

crude oil was absorbed onto silica and purified by column chromatography over silica 

using ethyl acetate as the eluent. This yielded a white solid (2.98 g, 55%). 

Mp: 153-154 °C; νmax (cm-1) 1639 NC=O. 

δH (300 MHz; CDCl3) 1.26-1.43 (1H, m, C(H)HCH2CH2CO), 1.62 (9H, s, NCOOC(CH3)3), 

1.74-1.83 (2H, m, CH2CH2CO), 2.27-2.39 (1H, m, CH2CH(H)CO), 2.49-2.74 (1H, m, 

CH2CH(H)CO), 2.49-2.74 (1H, m, C(H)HCH2CH2CO),  2.49-2.74 (2H, m, C=CCH2), 2.49-

2.74 (1H, m, C=CCH2CH(H)), 4.99-5.08 (1H, m, C=CCH2CH(H)), 4.99-5.08 (1H, m, 

NCHC=C), 7.19 (2H, si, J 6.3, ArH), 7.33 (1H, d, J 7.2, ArH), 8.00 (1H, d, J 8.4, ArH). 
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δC (300 MHz; CDCl3) 19.49 (CH2), 21.59 (CH2), 28.14 (CH3)3, 30.15 (CH2), 32.16 (CH2), 

38.80 (CH2), 56.00 (CH), 84.16 (C), 115.45 (CH), 118.23 (CH), 118.26 (CH), 122.95 (CH), 

124.55 (CH), 128.59 (C), 135.23 (C), 136.74 (C), 151.46 (C), 169.40 (NC=O). 

MS (CI) m/z 341 [MH+, 100%]; (Found: MH+, 341.1864. C20H25N2O3 requires 341.1860). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



231 

 

12-Benzyl-1,6,7,12b-tetrahydroindolo[2,3-a]quinolizin-4(12H)-one (100a, b) 

 

N
N O

H

 

 

Diisopropylamine (1.63 ml, 11.56 mmol) was added to anhydrous tetrahydrofuran (10 ml) 

under a nitrogen atmosphere at 0 °C. n-Butyllithium (2.5 M in hexanes, 4.62 ml, 

11.56 mmol) was added and the reaction stirred for 15 minutes. After this time the 

reaction was cooled to -78 °C and 12-benzyl-1,2,3,6,7,12b-hexahydroindolo[2,3-

a]quinolizin-4(12H)-one (73a, b) (1.91 g, 5.78 mmol) dissolved in anhydrous 

tetrahydrofuran (30 ml) was added via cannula. The reaction was left to stir for one hour 

upon which phenyl selenium bromide (2.05 g, 8.67 mmol) dissolved in anhydrous 

tetrahydrofuran (20 ml) was added via cannula. The reaction was left to warm slowly to 

room temperature overnight. 

Saturated ammonium chloride solution (50 ml) was used to quench the reaction. It was 

then extracted into diethyl ether (2 x 50 ml), washed with saturated ammonium chloride 

solution (2 x 50ml), and dried over anhydrous magnesium sulphate which was then 

removed by filtration. The solvents were removed under reduced pressure to give a brown 

oil which was used with no further purification. 

The crude selenide (2.68 g, 5.52 mmol) was dissolved in methanol (220 ml) and water 

(45 ml). Sodium metaperiodite (5.43 g, 25.39 mmol) and sodium bicarbonate (1.11 g, 

13.25 mmol) were added and the reaction was heated to 60 °C and left overnight. 
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The reaction was poured into saturated sodium bicarbonate solution (100 ml) and diethyl 

ether (150). The organic layer was washed with water (100 ml) and brine (100 ml), then 

dried over anhydrous magnesium sulphate, which was then removed by filtration and the 

solvents removed under reduced pressure.  

The crude product was absorbed onto silica and purified by flash column chromatography 

over silica with ethyl acetate as the eluent. This yielded a brown solid (1.05 g, 58%). 

Mp: 121-124 °C; νmax (cm-1) 1658 NC=O. 

δH (300 MHz; CDCl3) 2.02-2.16 (1H, m, CH(H)CH2CH2CO), 2.46 (1H, dt, J 7.4, 4.8, 

CH(H)CH2CH2CO), 2.60-2.83 (2H, m, C=CCH2), 2.60-2.83 (1H, m, C=CCH2CH(H)), 4.68 

(1H, dd, J 13.5, 3, NCHC=C), 4.87-4.94 (1H, m, C=CCH2CH(H)), 5.10-5.14 (2H, m, 

NCH2Ph), 5.92 (1H, dd, J 9.6, 2.1, CH2CHCHCO), 6.35-6.40 (1H, m, CH2CHCHCO), 6.84 

(2H, d, J 6.9, ArH), 7.00-7.04 (3H, m, ArH), 7.13-7.17 (3H, m, ArH), 7.44-7.47 (1H, m, 

ArH).  

δC (300 MHz;  CDCl3) 21.51 (CH2), 32.17 (CH2), 38.76 (CH2), 47.42 (CH2), 51.68 (CH), 

110.03 (CH), 110.65 (C), 118.65 (CH), 120.00 (CH), 122.37 (CH), 125.66 (CH), 125.77 

(2xCH), 126.48 (C), 127.65 (CH), 129.02 (2xCH), 133.82 (C), 137.15 (C), 137.94 (C), 

138.48 (CH), 164.93 (NC=O). 

MS (CI) m/z 329 [MH+, 100%]; (Found: MH+, 329.1653. C22H21N2O requires 329.1648). 
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tert-Butyl 4-oxo-1,6,7,12b-tetrahydroindolo[2,3-a]quinolizine-12(4H)-carboxylate (74a, b) 

 

N
N O

H
Boc  

 

Diisopropylamine (2.49 ml, 17.60 mmol) was added to anhydrous tetrahydrofuran (20 ml) 

under a nitrogen atmosphere at 0 °C. n-Butyllithium (2.5 M in hexanes, 7.04 ml, 

17.60 mmol) was added and the reaction stirred for 15 minutes. After this time the 

reaction was cooled to -78 °C and tert-butyl 4-oxo-1,2,3,4,6,7-hexahydroindolo[2,3-

a]quinolizine-12(12bH)-carboxylate (58a, b) (2.00 g, 5.88 mmol) dissolved in anhydrous 

tetrahydrofuran (40 ml) was added via cannula. The reaction was left to stir for one hour 

upon which phenyl selenium bromide (2.78 g, 11.76 mmol) dissolved in anhydrous 

tetrahydrofuran (20 ml) was added via cannula. The reaction was left slowly to warm to 

room temperature overnight. 

Saturated ammonium chloride solution (50 ml) was used to quench the reaction. It was 

then extracted into diethyl ether (2 x 100 ml), washed with saturated ammonium chloride 

solution (2 x 100 ml) and dried over anhydrous magnesium sulphate which was then 

removed by filtration. The solvents were removed under reduced pressure to give a  

brown oil which was used with no further purification. 

The crude selenide (3.71 g, 7.49 mmol) was dissolved in methanol (220 ml) and water 

(45 ml). Sodium metaperiodite (7.36 g, 34.44 mmol) and sodium bicarbonate (1.51 g, 

17.97 mmol) were added and the reaction was heated to 60 °C and left overnight. 

The reaction was poured into saturated sodium bicarbonate solution (100 ml) and diethyl 

ether (150). The organic layer was washed with water (100 ml) and brine (100 ml), then 



234 

 

dried over anhydrous magnesium sulphate, which was then removed by filtration and the 

solvents removed under reduced pressure.  

The crude product was absorbed onto silica and purified by flash column chromatography 

over silica with 3:2 ethyl acetate: petroleum ether as the eluent. This yielded a yellow solid 

(0.55 g, 37%). 

Mp: 187-189 °C; νmax (cm-1) 1662 NC=O. 

δH (300 MHz; CDCl3) 1.60 (9H, s, NCOOC(CH3)3), 2.01-2.12 (1H, m, CH(H)CH2CH2CO), 

2.64-2.78 (2H, m, C=CCH2), 2.64-2.78 (1H, m, C=CCH2CH(H)), 2.94 (1H, dq, J 17.1, 9.9, 

3.6, CH(H)CH2CH2CO), 4.89-4.95 (1H, m, C=CCH2CH(H)), 5.14-5.18 (1H, m J 12.3, 

NCHC=C), 5.99 (1H, dd, J 9.6, 2.7, CH2CHCHCO), 6.56-6.62 (1H, m, CH2CHCHCO), 

7.15-7.25 (2H, m, ArH), 7.37 (1H, d, J 7.5, ArH), 7.99 (1H, d, J 8.1, ArH). 

δC (300 MHz; CDCl3) 21.56 (CH2), 28.25 (CH3)3, 31.66 (CH2), 37.54 (CH2), 53.31 (CH), 

84.55 (C), 115.82 (CH), 118.01 (C), 118.42 (C), 123.13 (CH), 124.77 (CH), 125.45 (CH), 

128.53 (C), 134.12 (C), 136.57 (C), 139.17 (CH), 150.04 (C), 164.83 (NC=O). 

MS (CI) m/z 339 [MH+, 100%]; (Found: MH+, 339.1708. C20H23N2O3 requires 339.1703). 
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12-Benzyl-2-vinyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (101a, b) 

 

N
N O

H

 

 

A 1.0 M solution of vinyl magnesium bromide in tetrahydrofuran (15.20 ml, 15.20 mmol) 

was added to a suspension of copper cyanide (0.68 g, 7.61 mmol) in anhydrous 

tetrahydrofuran (20 ml) at -78 °C while stirring. The reaction was warmed to 0 °C for 

3 minutes then re-cooled to -78 °C. 12-benzyl-1,6,7,12b-tetrahydroindolo[2,3-a]quinolizin-

4(12H)-one (100a, b) (0.50 g, 1.52 mmol) in anhydrous tetrahydrofuran (30 ml) was added 

via cannula at -78 °C. After 5 minutes trimethylsily chloride (1.00 ml, 7.61 mmol) was 

added and the reaction left to warm to room temperature overnight.  

The reaction as quenched with the addition of saturated ammonium chloride solution 

(20 ml) and water (20 ml) and left stirring for 20 minutes.  A 1.0 M solution of 

tetrabutylammonium fluoride in tetrahydrofuran (6 ml) was added and the stirring 

continued for 15 minutes. The reaction was extracted into ethyl acetate (3 x 50 ml) and 

the combined organic extracts were dried over anhydrous magnesium sulphate. This was 

then removed by filtration and the solvents removed under reduced pressure. The crude 

product was absorbed onto silica and purified by flash column chromatography over silica 

with 2:1 ethyl acetate: petroleum ether as the eluent. This gave a yellow oil (0.11 g, 20%). 

νmax (cm-1) 1662 NC=O. 

δH (300 MHz; CDCl3) 1.76-1.85 (1H, m, CH(H)CHCH2CO), 2.07-2.14 (1H, m, 

CH(H)CHCH2CO), 2.43-2.85 (2H, m, CH2CHCH2CO), 2.43-2.85 (1H, m, CH2CHCH2CO), 
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2.43-2.85 (2H, m, C=CCH2), 2.43-2.85 (1H, m, C=CCH2CH(H)), 4.63-4.66 (1H, m, 

NCHC=C), 4.90-5.05 (1H, m, C=CCH2CH(H)), 4.90-5.05 (2H, m, CHCH=CH2), 5.16 (1H, 

d, J 17.5, NCH(H)Ph), 5.25 (1H, d, J 17.5, NCH(H)Ph), 5.60-5.73 (1H, m, CHCH=CH2), 

6.90-6.93 (2H, m, ArH), 7.02-7.07 (3H, m, ArH), 7.16-7.25 (3H, m, ArH), 7.45-7.48 (1H, m, 

ArH). 

δC (300 MHz; CDCl3) 21.57 (CH2), 32.54 (CH), 34.42 (CH2), 35.88 (CH2), 40.55 (CH2), 

47.99 (CH2), 51.14 (CH), 109.77 (CH), 111.44 (C), 115.70 (CH2), 118.40 (CH), 119.90 

(CH), 122.23 (CH), 125.83 (2xCH), 126.60 (C), 127.60 (CH), 128.99 (2xCH), 134.53 (C), 

137.22 (C), 138.16 (C), 138.91 (CH), 169.33 (NC=O). 

MS (CI) m/z 357 [MH+, 100%]; (Found: MH+, 357.1962. C24H25N2O requires 357.1961). 
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tert-Butyl 4-oxo-2-vinyl-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-12(12bH)-

carboxylate (102a, b) 

N
N O

H
Boc

 

 

A 1.0 M solution of vinyl magnesium bromide in tetrahydrofuran (12.10 ml, 12.10 mmol) 

was added to a suspension of copper cyanide (0.54 g, 6.06 mmol) in anhydrous 

tetrahydrofuran (20 ml) at -78 °C while stirring. The reaction was warmed to 0 °C for 

3 minutes then re-cooled to -78 °C. tert-butyl 4-oxo-1,6,7,12b-tetrahydroindolo[2,3-

a]quinolizine-12(4H)-carboxylate (74a, b) (0.41 g, 1.21 mmol) in anhydrous 

tetrahydrofuran (30 ml) was added via cannula at -78 °C. After 5 minutes trimethylsily 

chloride (0.77 ml, 6.06 mmol) was added and the reaction was left to warm to room 

temperature overnight.  

The reaction as quenched with the addition of saturated ammonium chloride solution 

(20 ml) and water (20 ml) and left stirring for 20 minutes.  A 1.0 M solution of 

tetrabutylammonium fluoride in tetrahydrofuran (6 ml) was added and the stirring 

continued for 15 minutes. The reaction was extracted into ethyl acetate (3 x 50 ml) and 

the combined organic extracts were dried over anhydrous magnesium sulphate. This was 

then removed by filtration and the solvents removed under reduced pressure. The crude 

product was absorbed onto silica and purified by flash column chromatography over silica 

with 2:1 ethyl acetate: petroleum ether as the eluent. This gave a yellow oil (0.20 g, 45%). 

νmax (cm-1) 1639 NC=O. 
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δH (300 MHz; CDCl3) 1.61-1.74 (2H, m, CH2CHCH2CO), 1.61 (9H, s, NCOOC(CH3)3), 

2.42-2.51 (1H, m, CH2CHCH2CO), 2.42-2.51 (1H, m, CH2CHCH(H)CO), 2.57-2.78 (1H, m, 

CH2CHCH(H)CO), 2.57-2.78 (1H, m, C=CCH2CH(H)), 2.57-2.78 (2H, m, C=CCH2), 4.98-

5.14 (1H, m, NCHC=C), 4.98-5.14 (1H, m, C=CCH2CH(H)), 4.98-5.14 (2H, m, 

CHCH=CH2), 5.88-5.99 (1H, m, CHCH=CH2), 7.14-7.25 (2H, m, ArH), 7.34-7.37 (1H, m, 

ArH), 7.91-7.94 (1H, m, ArH). 

δC (300 MHz; CDCl3) 21.67 (CH2), 28.22 (CH3)3, 32.88 (CH), 33.98 (CH2), 36.18 (CH2), 

39.26 (CH2),  52.43 (CH), 84.41 (C), 115.40 (CH), 115.49 (CH2), 118.26 (CH), 118.65 (C), 

122.98 (CH), 124.55 (CH), 128.71 (C), 135.55 (C), 136.75 (C), 139.25 (CH), 150.28 (C), 

169.33 (NC=O). 

MS (CI) m/z 367 [MH+, 100%]; (Found: MH+, 367.2021. C22H27N2O3 requires 367.2016). 
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2-Vinyl-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (103a, b) 

 

N
H

N O

H

 

 

tert-Butyl 4-oxo-2-vinyl-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-12(12bH)-

carboxylate (102a, b) (0.12 g, 0.327 mmol) was dissolved in formic acid (4.80 ml, 

127.11 mmol) under a nitrogen atmosphere and stirred at room temperature for 24 hours.  

After this time the solvent was evaporated and shaken with 10 % aqueous sodium 

carbonate solution then extracted into dichloromethane, dried using magnesium sulphate, 

which was then removed by filtration and the solvent was removed under reduced 

pressure. The crude product was absorbed onto silica and purified by flash column 

chromatography over silica eluting with 1:1 ethyl acetate: petroleum ether as the eluent to 

give a brown oil (0.04 g, 46%). 

νmax (cm-1) 1615 NC=O, 3271 NH. 

δH (300 MHz; CDCl3) 2.09-2.18 (1H, m, CH(H)CHCH2CO), 2.26-2.35 (1H, m, 

CH(H)CHCH2CO), 2.55 (2H, t, J 6.9, CH2CHCH2CO), 2.70-2.83 (1H, m, CH2CHCH2CO), 

2.70-2.83 (1H, m, C=CCH2CH(H)), 2.86-2.99 (2H, m, C=CCH2), 4.84-4.89 (1H, m, 

NCHC=C), 5.09-5.18 (1H, m, C=CCH2CH(H)), 5.09-5.18 (2H, m, CHCH=CH2), 5.92 (1H, 

se, J 5.7, CHCH=CH2), 7.15 (2H, sd, J 18, 14.4, 7.2, 1.2, ArH), 7.34 (1H, d, J 7.5, ArH), 

7.50 (1H, d, J 7.5, ArH), 8.36 (1H, s br, NH). 
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δC (300 MHz; CDCl3) 21.05 (CH2), 32.86 (CH2), 32.96 (CH), 36.63 (CH2), 40.97 (CH2), 

51.77 (CH), 110.03 (C), 111.04 (CH), 115.75 (CH2), 118.30 (CH), 119.80 (CH), 122.10 

(CH), 127.03 (C), 133.18 (C), 136.13 (C), 138.93 (CH), 168.83 (NC=O). 

MS (CI) m/z 267 [MH+, 100%]; (Found: MH+, 267.1496. C17H19N2O requires 267.1492). 
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3.5 Towards a bis-indole compound 

 

Methyl 1,3-dithiolane-2-carboxylate (106) 3 

 

S

SO

MeO

 

 

Sodium hydroxide (0.08 g, 2.0 mmol), was dissolved in methanol (125 ml) and treated 

with ethyl-1,3-dithiolane carboxylate (105) (5 g, 28.2 mmol). The reaction was heated 

under reflux for 30 minutes with the exclusion of light. The solvent was removed under 

reduced pressure and the remaining liquid was dissolved in diethyl ether and washed with 

brine (30 ml). The ether layer was dried over anhydrous magnesium sulphate, which was 

then removed by filtration and the ether was removed under reduced pressure. This gave 

a yellow liquid (3.6 g, 78%). 

δH (300 MHz; CDCl3) 3.13-3.23 (2H, m, SCH2), 3.26-3.34 (2H, m, SCH2), 3.59 (3H, s, 

OCH3), 4.71 (1H, s, CH2SCH). 
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tert-Butyl 2-(2-(methoxycarbonyl)-1,3-dithiolan-2-yl)-4-oxo-1,2,3,4,6,7-

hexahydroindolo[2,3-a]quinolizine-12(12bH)-carboxylate (107a, b) 

 

N
N O

H
Boc

S

S
OMe

O

 

 

Diisopropylamine (0.5 ml, 3.54 mmol) was dissolved in anhydrous tetrahydrofuran (20 ml) 

under a nitrogen atmosphere. After cooling to 0 °C, n-butyllithium (2.5 M in hexanes, 

1.42 ml, 3.54 mmol) was added and the reaction stirred at 0 °C for 15 minutes. It was then 

re-cooled to -78 °C and methyl, 1-2 dithiolane carboxylate (106) (0.21 g, 1.18 mmol) in 

20 ml of anhydrous tetrahydrofuran was added via cannula. The reaction was left stirring 

for a further 15 minutes and then tert-butyl 4-oxo-1,6,7,12b-tetrahydroindolo[2,3-

a]quinolizine-12(4H)-carboxylate (74a, b) (0.2g, 0.591 mmol) in anhydrous tetrahydrofuran 

(40 ml) was added also via cannula. The reaction was then left to warm slowly to room 

temperature overnight. 

The reaction was quenched with the addition of water (25 ml) and extracted into ethyl 

acetate (3 x 50 ml), dried over anhydrous magnesium sulphate, which was then removed 

by filtration and the solvents removed under reduced pressure. The crude product was 

absorbed onto silica and purified by flash column chromatography over silica using 3:1 

petroleum ether: ethyl acetate as the eluent. This yielded a brown oil (0.16 g, 54%). 

νmax (cm-1) 1635 NC=O. 
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δH (300 MHz; CDCl3) 1.34 (1H, qu, J 6.9, CH(H)CHCH2CO), 1.63 (9H, s, NCOOC(CH3)3), 

2.47 (1H, dd, J 17.4, 11.7, CH2CHCH(H)CO), 2.64-2.65 (1H, m, C=CCH(H)), 2.72-2.77 

(1H, m, C=CCH(H)), 2.80-2.84 (1H, m, CH(H)CHCH2CO), 2.80-2.84 (1H, m, 

C=CCH2CH(H)), 2.87-2.96 (1H, m, CH2CHCH(H)CO), 2.87-2.96 (1H, m, CH2CHCH2CO), 

3.18-3.26 (2H, m, SCH2), 3.28-3.36 (2H, m, SCH2), 3.74 (3H, s, COOCH3), 5.03-5.10 (1H, 

m, C=CCH2CH(H)), 5.03-5.10 (1H, m, NCHC=C), 7.15-7.27 (2H, m, ArH), 7.36-7.38 (1H, 

m, ArH), 7.96 (1H. d, J 7.8, ArH).  

δC (300 MHz; CDCl3) 21.67 (CH2), 28.13 (CH3)3, 33.77 (CH2), 35.73 (CH2), 38.39 (CH), 

39.05 (CH2), 40.03 (CH2), 40.32 (CH2), 53.57 (CH3), 55.44 (CH), 74.09 (C), 84.57 (C), 

115.52 (CH), 118.39 (CH), 118.68 (C), 123.08 (CH), 124.77 (CH) 128.55 (C), 135.66 (C), 

136.82 (C), 150.29 (C), 168.67 (C), 171.90 (NC=O). 

MS (CI) m/z 503 [MH+, 100%]; (Found: MH+, 503.1665. C25H31N2O5S2 requires 503.1669). 
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tert-Butyl 2-(2-methoxy-2-oxoethyl)-4-oxo-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-

12(12bH)-carboxylate (108a, b) 

N
N O

H
Boc

O

OMe  

 

tert-Butyl2-(2-(methoxycarbonyl)-1,3-dithiolan-2-yl)-4-oxo-1,2,3,4,6,7-

hexahydroindolo[2,3-a]quinolizine-12(12bH)-carboxylate (107a, b) (0.06 g, 0.12 mmol) 

was dissolved in a 1:3 mixture of tetrahydrofuran: methanol (8 ml). The solution was 

cooled using an ice bath and nickel chloride hexahydrate (0.29 g, 1.20 mmol) was added. 

When this had completed dissolved, sodium borohydride (0.14 g, 3.60 mmol) was added 

cautiously. The reaction was then left to stir at room temperature for 4 hours.  

After this time it was filtered through celite, concentrated, extracted into ethyl acetate 

(3 x 20 ml) and washed with brine (40 ml). It was then dried over anhydrous magnesium 

sulphate, which was removed by filtration and the solvents were removed under reduced 

pressure. The crude product was absorbed onto silica and purified by flash column 

chromatography over silica using 1:1 ethyl acetate: petroleum ether as the eluent. This 

yielded a white oil (0.03g, 61%). 

νmax (cm-1) 1644 NC=O. 

δH (300 MHz; CDCl3) 1.17-1.29 (1H, m, CH(H)CHCH2CO), 1.69 (9H, s, NCOOC(CH3)3), 

2.08-2.18 (1H, m, CH2CHCH(H)CO), 2.24-2.40 (2H, m, CH2CO2CH3), 2.45-2.59 (1H, m, 

CH2CHCH2CO), 2.63-2.88 (1H, m, CH(H)CHCH2CO), 2.63-2.88 (1H, m, 

CH2CHCH(H)CO), 2.63-2.88 (2H, m, C=CCH2), 2.63-2.88 (1H, m, C=CCH2CH(H)), 3.69 
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(3H, s, OCH3), 5.11-5.17 (1H, m, C=CCH2CH(H)), 5.11-5.17 (1H, m, NCHC=C), 7.23-7.34 

(2H, m, ArH), 7.43-7.46 (1H, m, ArH), 8.05 (1H, d, J 7.8, ArH). 

δC (300 MHz; CDCl3) 21.70 (CH2), 28.12 (CH3)3, 28.45 (CH), 35.97 (CH2), 38.27 (CH2), 

39.00 (CH2), 40.40 (CH2), 51.77 (CH3), 55.59 (CH), 84.55 (C), 115.53 (CH), 118.34 (CH), 

118.57 (C), 123.07 (CH), 124.75 (CH), 128.58 (C), 134.78 (C), 136.92 (C), 150.21 (C) 

168.52 (C), 171.95 (NC=O). 

MS (CI) m/z 413 [MH+, 100%]; (Found: MH+, 413.2070. C23H29N2O5 requires 413.2071). 
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Methyl 2-(4-oxo-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)acetate (109a, b) 

 

N
H

N O

H

O

OMe  

 

tert-Butyl 2-(2-methoxy-2-oxoethyl)-4-oxo-1,2,3,4,6,7-hexahydroindolo[2,3-a]quinolizine-

12(12bH)-carboxylate (108a, b) (0.86 g, 2.08 mmol) was dissolved in formic acid 

(30.52 ml, 807.84 mmol) under a nitrogen atmosphere and stirred at room temperature for 

24 hours.  

After this time the solvent was evaporated and the remaining oil was shaken with 10% 

aqueous sodium carbonate solution, then extracted into dichloromethane, dried over 

anhydrous magnesium sulphate, which was then removed by filtration. The solvent was 

removed under reduced pressure to yield a brown oil (0.53g, 82%) which required no 

further purification. 

νmax (cm-1) 1619 NC=O, 3249 NH. 

δH (300 MHz; CDCl3) 1.34 (1H, q, J 12, CH(H)CHCH2CO), 2.00 (1H, q, J 12, 

CH2CHCH(H)CO), 2.14-2.30 (1H, m, CH2CHCH2CO), 2.14-2.30 (2H, m, CH2CO2Me), 

2.50-2.79 (1H, m, CH(H)CHCH2CO), 2.50-2.79 (1H, m, CH2CHCH(H)CO), 2.50-2.79 (2H, 

m, C=CCH2), 2.50-2.79 (1H, m, C=CCH2CH(H)), 3.59 (3H, s, OCH3), 4.67 (1H, d, J 8.4, 

NCHC=C), 5.04 (1H, d, J 7.8, C=CCH2CH(H)), 7.04 (2H, qu, J 6.9, ArH), 7.22 (1H, d, J 

7.8,  ArH), 7.39 (1H, d, J 7.5, ArH), 8.89 (1H, br s, NH). 
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δC (300 MHz; CDCl3) 21.05 (CH2), 28.20 (CH), 34.78 (CH2), 38.29 (CH2), 39.64 (CH2), 

40.08 (CH2), 51.87 (CH3), 53.96 (CH), 108.83 (C), 111.12 (CH), 118.35 (CH), 119.63 

(CH), 122.03 (CH), 126.65 (C), 133.08 (C), 136.42 (C), 168.43 (C), 172.27 (NC=O). 

MS (CI) m/z 312 [MH+, 100%]; (Found: MH+, 313.1551. C18H21N2O3 requires 313.1547). 
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 (+/-) -12b-Epidevinylantirhine (110a, b) 

 

N
H

N

HO

H

 

 

Lithium aluminium hydride (0.44 g, 11.59 mmol) was weighed into a dry, three necked 

flask under a nitrogen atmosphere. Anhydrous tetrahydrofuran (20 ml) was added and 

cooled to 0 °C. Methyl 2-(4-oxo-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-

yl)acetate (109a, b) (0.46 g, 1.47 mmol) dissolved in anhydrous tetrahydrofuran (10 ml) 

was added dropwise via syringe. The experiment was heated under reflux for 3 hours and 

then stirred at room temperature for a further 12 hours. 

The reaction was quenched with diethyl ether (20 ml) and the addition of a potassium 

tartrate solution (10 ml); it was then left stirring for one hour. The organic layer was 

separated and dried with anhydrous magnesium sulphate which was then removed by 

filtration and the solvents were removed under reduced pressure. The crude product was 

absorbed onto alumina and purified by flash column chromatography over alumina using 

1% methanol into chloroform. This yielded a yellow solid (0.30 g, 76%). 

Mp: 238-240 °C; νmax (cm-1) 3181 NH, OH. 

δH (300 MHz; MeOD) 1.17-1.29 (1H, m CH(H)CHCH2CH2N), 1.46 (1H, dd, J 12.3, 3.6, 

CHCH(H)CH2N), 1.53-1.63 (2H, m, CH2CH2OH), 1.73-1.90 (1H, m, CHCH(H)CH2N), 2.40-

2.53 (1H, m, CH(H)CHCH2CH2N), 2.40-2.53 (1H, m, CHCH2CH2N), 2.60-2.77 (2H, m, 

C=CCH2), 2.60-2.77 (1H, m, C=CCH2CH(H)), 2.95-3.15 (1H, m, C=CCH2CH(H)), 2.95-
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3.15 (1H, m, NCHC=C), 2.95-3.15 (2H, m, CHCH2CH2N), 3.71 (2H, t, J 6.6, CH2OH), 7.02 

(2H, si, J 7.2, ArH), 7.30 (1H, d, J 7.8, ArH), 7.39 (1H, d, J 7.5, ArH).  

NH and OH protons were not observed 

δC (300 MHz; MeOD) 22.38 (CH2), 32.88 (CH2), 33.76 (CH), 36.69 (CH2), 40.46 (CH2), 

54.43 (CH2), 56.54 (CH2), 60.36 (CH2), 61.67 (CH), 107.66 (C), 111.95 (CH), 118.57 (CH), 

119.74 (CH), 121.92 (CH), 128.35 (C), 135.81 (C), 138.05 (C). 

MS (CI) m/z 270 [MH+, 100%]; (Found: MH+, 271.1809. C17H23N2O requires 271.1805). 
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tert-Butyl 2-(1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)ethyl carbonate 

(112a, b) 

 

N
H

N

BocO

H

 

 

(+/-) -12b-Epidevinylantirhine (110a, b) (0.05 g, 0.176 mmol) was dissolved in anhydrous 

tetrahydrofuran (20 ml), triethylamine (0.037 ml, 0.264 mmol), 4-dimethylaminopyridine 

(0.011 g, 0.088 mmol) and di-tert-butyl dicarbonate (0.06 g, 0.264 mmol) were 

subsequently added. The reaction was left stirring for one hour after which thin layer 

chromatography was used to determine the reaction was complete.  

The solvents were removed under reduced pressure and the crude oil was dissolved in 

ethyl acetate, and washed with saturated ammonium chloride solution (2 x 50 ml), 

saturated sodium carbonate solution (2 x 50 ml) and brine (100 ml). The organic layer was 

dried using anhydrous magnesium sulphate which was then removed by filtration and the 

solvents were removed under reduced pressure. The crude product was absorbed onto 

silica and purified using flash column chromatography over silica with 1:1 ethyl 

acetate: methanol as the eluent. This yielded a yellow oil (0.05 g, 77%). 

νmax (cm-1) 1639 NC=O. 

δH (300 MHz; MeOD) 1.07-1.17 (1H, m, CH(H)CHCH2CH2N), 1.07-1.17 (1H, m, 

CHCH(H)CH2N), 1.37 (9H, s, CH2OCOOC(CH3)3), 1.52-1.58 (2H, m, CH2CH2OH), 1.68 

(1H, d, J 13.2, CHCH(H)CH2N), 2.25-2.34 (1H, m, CH(H)CHCH2CH2N), 2.25-2.34 (1H, m, 
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CHCH2CH2N), 2.50 (1H, td, J 10.8, 4.02, C=CCH(H)), 2.60 (1H, d, J 15.3, C=CCH(H)), 

2.82-3.01 (2H, m, C=CCH2CH2), 2.82-3.01 (1H, m, CHCH2CH(H)N), 3.14 (1H, d, J 10.8, 

CHCH2CH(H)N), 3.14 (1H, d, J 10.8, NCHC=C), 4.05 (2H, t, J 6, CH2OH), 6.82-6.92 (2H, 

m, ArH), 7.19 (1H, d J 7.8, ArH), 7.27 (1H, d, J 7.5, ArH).  

NH proton not observed. 

δC (300 MHz; MeOD) 20.71 (CH2), 26.49 (CH3)3, 30.99 (CH2), 32.15 (CH), 34.76 (CH2), 

34.92 (CH2), 52.70 (CH2), 54.71 (CH2), 59.87 (CH), 64.09 (CH2), 81.12 (C), 106.06 (C), 

110.47 (CH), 117.06 (CH), 118.23 (CH), 120.44 (CH), 126.72 (C), 133.90 (C), 136.46 (C), 

153.67 (C). 

MS (CI) m/z 370 [MH+, 100%]; (Found: MH+, 371.2332. C22H31N2O3 requires 371.2332). 
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2-(1,2,3,4,6,7,12,12b-Octahydroindolo[2,3-a]quinolizin-2-yl)acetaldehyde (111a, b) 

 

N
H

N

H

O
 

 

Methyl 2-(4-oxo-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)acetate (109a, b) 

(0.032 g, 0.102 mmol) was dissolved in anhydrous dichloromethane (6 ml) under a 

nitrogen atmosphere. The reaction was cooled to -100 °C using liquid nitrogen and 

methanol. Diisobutylaluminium hydride (1M in hexanes, 0.31 ml, 0.305 mmol) was added 

and the reaction stirred at -100 °C for 3 hours. Thin layer chromatography showed 

formation of new compounds, and no remaining starting material.  

The reaction was quenched by the slow addition of methanol (20 ml), and the solvents 

removed under reduced pressure. The crude product was absorbed onto silica and 

purified using flash column chromatography over silica with ethyl acetate as the eluent. 

This yielded a brown oil (0.0102 g, 35%). 

νmax (cm-1) 3215 NH, 2852 and 2923 CHO. 

δH (300 MHz; CDCl3) 1.26-1.47 (1H, m, CH(H)CHCH2CH2N), 2.03-2.11 (1H, m, 

CH2CHCH2CH2N), 2.34-2.58 (2H, m, CH2CHCH2CH2N), 2.34-2.58 (2H, m, CH2CHO), 

2.34-2.58 (1H, m, CH(H)CHCH2CH2N), 2.64-2.86 (2H, m, CH2CHCH2CH2N), 2.64-2.86 

(2H, m, C=CCH2CH2), 2.64-2.86 (1H, m, C=CCH2CH(H)), 4.76-4.80 (1H, m, NCHC=C), 

5.05-5.11 (1H, m, C=CCH2CH(H)), 7.02-7.15 (2H, m, ArH), 7.27 (1H, d, J 7.5, ArH), 7.44 

(1H, d, J 7.5, ArH), 7.97 (1H, br s, NH), 9.76 (1H, s, CHO). 
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δc (300 MHz; CDCl3) 20.98 (CH2), 30.30 (CH), 31.95 (CH2), 35.92 (CH2), 38.34 (CH2), 

53.03 (CH2), 55.15 (CH2), 59.56 (CH), 108.10 (C), 110.87 (CH), 118.16 (CH), 119.43 

(CH), 121.46 (CH), 127.26 (C), 134.19 (C), 136.03 (C), 201.80 (CHO). 

MS (CI) m/z 268 [MH+, 100%]; (Found: MH+, 269.1649. C17H21N2O requires 269.1648). 
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