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ABSTRACT 

 

The genesis and outgrowth of pituitary adenomas is consequent to the combined contributions of 

genetic and epigenetic aberrations. Although the relative contribution of each is not known it is 

likely that particular aberration may be common or particular to an adenoma subtype(s). The 

impact of subtype specific changes presents significant challenges for clinical management 

options. In this thesis the potential impact of epigenetic aberrations, that target the Dopamine D2 

Receptor (D2R) and the cytokine, Bone Morphogenic Protein 4 (BMP-4) were investigated. In 

these cases their expression patterns are frequently comprised in a subtype-specific context. This 

thesis reports that in pituitary cell lines, reduced expression of D2R and that of BMP4 are 

associated with CpG island methylation and histone modifications indicative of gene silencing. In 

these cases, incubation of cells with epidrugs, designed to reverse epigenetic silencing, restores 

their expression. Moreover, epidrug induced re-expression of the D2R is associated with an 

augmented apoptotic response to dopamine agonist challenges. In challenges, designed to de-

repress BMP4 silencing, a cell-context-specific response to retinoic acid (RA) is observed. In these 

cases, epidrug facilitated and RA augmented expression of BMP-4 led to either, increase in cell 

number, in GH3 cells, or decrease in cell number, in AtT-20 cells, and reflected their cell lineages. 

However, while epidrugs incubations were only associated with a marginal decrease in 

methylation, a significant change in histone modifications toward those associated with active 

genes was apparent. In primary pituitary adenomas change in CpG island methylation associated 

with either the D2R or BMP4 gene was not apparent, however, for the BMP4 gene, histone 

modifications associated with either active or silenced genes mirrored their expression patterns 

as determined by RT-qPCR. These studies show the potential of combined drug challenges as a 

treatment option, where epidrug renders silenced genes responsive to conventional therapeutic 

options.     
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1. Pituitary Tumourigenesis 

1.1 The Pituitary Gland 

The pituitary gland is situated at the base of the hypothalamus in the brain, and is often referred 

to as the “master” gland due to its integral role in the endocrine system. Functionally, by means 

of interactions with peripheral endocrine organs, and the immune and nervous systems, it 

regulates basic physiological functions including growth, reproduction and metabolic 

homeostasis. It is composed of three lobes, the anterior, posterior and the intermediate lobes. 

The versatile endocrine functions of the gland are carried out by the six cells types in the anterior 

(AL), intermediate (IL) and the posterior (PL) lobes. These cell types are classified by the hormone 

they produce and secrete: (1) AL-specific  cells such as, corticotrophs producing 

adrenocorticotropic hormone (ACTH), thyrotrophs secreting thyroid-stimulating hormone (TSH), 

somatotrophs secreting growth hormone (GH), lactotrophs  produce prolactin (PRL), 

gonadotrophs secreting luteinizing hormone (LH), and follicle stimulating hormone (FSH) as 

represented in figure 1; (2) IL-specific melanotrophs secreting, melanocyte-stimulating hormones 

(MSH) and (3) PL-specific hormones such as vasopressin (an anti-diuretic hormone) and oxytocin 

and these are secreted from the cell bodies of the secretory  neurons in the hypothalamus and 

stored in the axon ending in the posterior lobe. In humans the IL is normally either very small or 

absent in adulthood and the secretion of MSH by the melanotropes occurs only during fetal life. In 

mouse, the IL cells maintain a robust proliferative capability even during adulthood and therefore 

a relatively constant number of IL cells are maintained [1]    
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Figure 1.1: Pituitary gland cell types and the hormones they secrete. Also shown are their target 

organs and the higher level control exerted by the hypothalamus. CRH; Corticotropin releasing 

hormone, ACTH; Adrenocorticotropic hormone, TRH; Thyrotropin releasing hormone, TSH; 

Thyroid Stimulating Hormone, GHRH; Growth hormone releasing hormone, GH; Growth hormone, 

GnRH; Gonadotropin releasing hormone, PRL; Prolactin, LH; Luteinising hormone, FSH; Follicle 

stimulating hormone.  Adapted and modified from [2] 
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During development the adult pituitary gland arises from progenitors of the neuroectodermic 

primordium (neuronal epithelium and oral ectoderm) known as the rathke’s pouch in a temporal 

and spatial-specific fashion [2, 3]. There are many major pathways implicated in the development 

of the pituitary gland including the Notch and Wnt regulatory networks and are functional only in 

the early phases of the pituitary organogenesis and are essential for the emergence of 

somatotrophs, lactotrophs, thyrotrophs and gonadotrophs [3]. The cell cycle regulator CDK4 

(cyclin dependent kinase 4) has also been implicated in post-natal generation of some anterior 

pituitary cells such as the somatotrophs and lactotrophs [4]. However, the requirement for CDK4 

in other primary cells is not clear as the  pituitary gland itself,  in cdk4-null mice, is smaller [4]. 

Figure 1.2 shows the major transcription factors and signalling pathways that are implicated in the 

development of the pituitary gland. 
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Figure 1.2: Model for the development of the human anterior pituitary cell lineage 

Determined by a temporally controlled cascade of transcription factors. Trophic cells are 

depicted with transcription factors known to determine cell specific human gene 

expression. Transcription factors are shown in blue (SF-1, Dax-1, ER, Zn15, Otx1, Egr1, 

NeuroD1, T-pit, LIF, BMP2, FGF8, Hesx1, Shh, and BMP4) and the black boxes define major 

temporal factors responsible for each differentiated cell type within the gland (Lhx3/p-

LIM, Pitx2, Prop-1, GATA-2 and pit-1). Adapted and modified from [2]. 
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1.1.2. Tumours of the pituitary gland 

Pituitary Tumours account for approximately 16.7% of all diagnosed intracranial neoplasms 

(14.4% in autopsy studies and 22.5% in radiological studies) [5]. Without exception each of the 

distinct cell types within the gland can give rise to a discrete pituitary tumour subtype that is 

either hormonally active or inactive (non-functional adenomas). 

 The classification of pituitary neoplasms has undergone a variety of modifications; typically they 

were separated based on light microscopy. However adenomas are now more commonly 

classified based upon the hormones that they secrete [6]. Endocrinologically they are considered 

either active or inactive. Only if the amount of hormone that they secrete exceeds normal levels 

in the blood and is clinically evident is classed as active. Inactive adenomas contain secretory and 

cellular components necessary for hormone production; however it is thought that inactive cells 

either produce undetectable levels of hormone or abnormal hormone that is not recognised by 

the antibody in radioimmunoassay’s, or that these cells have lost the ability to produce any 

hormone through some acquired genetic defects [5]. Pituitary adenomas can sometimes progress 

after surgery and can be locally invasive. Ki-67 and p53 expression are referred to as indicators of 

aggressive behaviour in the World Health Organisation Classification of Endocrine Tumours [7]. A 

threshold level of greater than 1.3% of Ki-67 labelling index and a positive p53 predicts high 

aggressiveness and progression of the tumour [8]. 

Approximately one third of pituitary tumours exhibit local invasive and or recurrent 

characteristics, although only a small minority progress to pituitary carcinoma which are 

characterised by metastatic invasion to distinct organs such as liver and lymph nodes[9].  

Morbidity is generally caused by inappropriate tissue expansion within the cranium [2]. Despite 

the fact that these adenomas are slow growing a significant proportion invade downwards into 

the paranasal sinuses, laterally into the cavernous sinuses, and upwards into the brain. This 

causes local compressive effects with the associated symptoms, that include headaches, visual 
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defects and cranial nerve dysfunction. Additional, cell subtype-specific effects are caused by the 

downstream biochemical complications associated with over-secretion of the various pituitary 

derived hormones. For example, a consequence of corticotrophinoma development is the 

excessive secretion of adrenocorticotrophic hormone (ACTH). Corticotrophinomas account for 10-

15% of all clinically recognised pituitary adenomas and these ACTH secreting tumours generate a 

glucocorticoid hypersecretion disorder called Cushing’s disease. Cushing’s disease  leads to 

adrenal hyperplasia, abnormal fat deposition, thinning of the skin, hypertension, osteoporosis, 

diabetes and psychological disturbances. In tumours that show aggressive invasion into the brain 

this can often lead to death. At present, with the exception of prolactinomas, diagnosed pituitary 

adenomas are treated by surgical intervention, with or without adjuvant radiotherapy [10]. This 

type of treatment is invasive and can result in undesirable side effects; hence there is need for the 

development of novel treatment strategies. Figure 1.3 shows the phenotypes associated with 

each of the major pituitary adenoma subtypes and shown as Table 1.0 below summarising 

clinically relevant data on the various pituitary adenoma subtypes [2] 
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Figure 1.3: Pituitary gland cell types, the hormones they secrete and the tumours associated 

with the gland. Also shown are their target organs and the higher level control exerted by the 

hypothalamus. The tumour types and clinical phenotypes are discussed in a subsequent section of 

this thesis. Adapted and modified from [2]. 
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Table 1.0: Pathological and clinical characteristics of pituitary adenoma subtypes. 

Cell type Hormone 
produced 

by cell 

Hormone 
function 

Tumour type Incidence Associated 
syndromes 

Corticotroph ACTH and 
other 
POMC 

derived 
peptides 

Adrenal 
cortex; 

regulation of 
glucocorticoid 
synthesis and 

secretion 

Densely granulated 
(Basophilic); 

sparsely granulated 
(chromophobic) 

10-15% Cushing’s 
disease and 

Nelson 
syndrome 

Somatotroph GH Liver 
production of 

IGF1; bone 
and muscle 

growth 

Densely granulated 
(acidophilic); 

sparsely granulated 
(chromophobic) 

10-15% Acromegaly, 
gigantism 

Lactotroph PRL Lactation Sparsely 
granulated 

(densely 
granulated) 

35% Amenorrhoea, 
galactorrhoea. 

Sexual 
dysfunction, 

infertility 

Mammo-
somatotroph 

GH, PRL As above Mamosomatotroph 5% Acromegaly, 
gigantism with 

hyper 
prolactinaemia 

Thyrotroph TSH Thyroid 
regulation of 

thyroid 
hormone 

synthesis and 
secretion 

Thyrotroph 2% Hypo or 
hyperthyroidism 

Gonadotroph FSH, LH Gonadal 
regulation of 

germ-cell 
development 

and sex 
steroid 

hormones 

Gonadotroph, null 
cell, oncocytoma 

35% Hypogonadism, 
mass effects, 

hypopituitarism* 

*Mass effects resulting in hypopituitarism can occur with any tumour type when it/they are large, 

but are more characteristic of the gonadotroph tumour type. ACTH-adrenocorticotroph hormone, 

FSH-follicle stimulating hormone, GH-growth hormone, IGF1- insulin like growth factor, LH- 

luteinizing hormone, POMC, pro-opiomelanocortin, PRL-prolactin, TSH-thyrotrophin stimulating 

hormone. Adapted and modified from [2, 11]. 
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1.1.3. Factors contributing to pituitary tumourigenesis 

On the basis of current pathological investigation criteria, it is not possible to determine whether 

a tumour will progress to the invasive or malignant phenotype or if it will recur. Unlike other 

epithelial cancers, pituitary tumours do not follow the classic paradigm of tumour progression, 

that include (1) initiation; (2) hyperplasia; (3) benign adenoma; (4) aggressive adenoma, and (5) 

carcinomas. Therefore, there are significant challenges to the deciphering of the aberrations that 

underlie this tumour type and our current understanding does not permit us to identify the 

pathogenic changes responsible for the initiation of the disease, or those that promote 

progression [11]. 

Although it is apparent that external factor such as hormonal imbalances can trigger pituitary 

hyperplasia and these changes can in some cases progress to pituitary tumours, it seems unlikely 

that abnormal regulation of such “extrinsic” signalling pathways is primarily responsible for the 

pathogenesis of the pituitary tumours[11].  For example, a variety of hormones, e.g. oestrogen 

and GH-releasing hormone (GHRH), are known to act upon particular pituitary cell subtypes and 

their subsequent adenoma subtype (i.e. prolactin-secreting lactotrophs and GH-secreting 

somatotrophs), and promote  their proliferative potential [11]. Whilst this oestrogen induced 

hyperplasia is required to regulate specific normal physiological events e.g. lactation during 

pregnancy the use of oestrogen containing agents such as the “contraceptive pill” has not been 

shown to increase the risk of the development of prolactin-secreting tumours (prolactinomas). In 

addition, in experimental models in which GHRH  is ectopically expressed in mice these failed to 

lead to somatotrophinoma development, at least in the short term [11].  

The emerging data suggests that “intrinsic” factors are responsible for the triggering of pituitary 

tumourigenesis, as inferred by X chromosome inactivation studies in tumours in female patients 

[12, 13].  
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These studies suggest that pituitary tumours arise from clonal cell populations, and it is 

anticipated that  proto-oncogene and TSG defects exist within these cells. However, some studies 

have suggested the presence of multiple independent monoclones in tumour tissue of recurrent 

tumours [14]. This could suggest that multiple monoclonal expansions are present from the onset 

of tumour development or alternatively, the individual monoclonal expansions could develop 

during the life time of the patient. The development of such pituitary monoclonal expansions on a 

background of diffuse hyperplasia could be reminiscent of the potent mitogenic effects of growth 

factors, hypothalamic and steroid hormones in the transformation process [2, 15]. 

Evidence gathered thus far suggests that both intrinsic (oncogene activation, TSG inactivation), 

and extrinsic factors (growth factors, hypothalamic and steroid hormones) act in concert to 

promote the development of pituitary tumours [16]. This model has been proposed for pituitary 

tumourigenesis and is illustrated in figure 1.4. According to this model [16], cells responding to 

endocrine or paracrine stimuli might expand in a polyclonal manner. As a consequence of this 

increased proliferation, their susceptibility to acquire activating mutations (in proto-oncogenes) 

or sustain inactivating mutations (in tumour suppressor genes) is increased and this prompts the 

emergence of a rapidly expanding monoclonal cell population. At some point in the polyclonal cell 

expansion, cells susceptible toward acquisition of a transformed phenotype  develop, and these 

represent the cells that comprise the  emergence of the monoclonal population. An alternative 

hypothesis is, a normal cell might acquire a sufficient number of activating mutations or sustain a 

similar number of inactivating events to prompt a rapidly expanding monoclonal cell population 

from the onset. Following additional genetic events, this monoclonal expansion may evolve into 

an invasive pituitary tumour, with further events promoting the progression to the rare 

metastatic carcinoma phenotype. The “progress” of either of these pathways can be driven by a 

variety of hormonal stimuli, growth and angiogenic factors, and altered receptor expression.  
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The development of pituitary tumours is, therefore, a multi-stage process that involves several 

mutations and / or aberrant epigenetic transition events that are triggered/promoted or 

facilitated by extrinsic stimuli such as growth factors, hormones, hypothalamic factors, cytokines, 

angiogenic factors etc. 

 

 

 

Figure 1.4. General steps in the development of pituitary tumours.  

Pituitary tumour development is a multi-stage process that involves several mutations and/or 

aberrant epigenetic transition events. Adapted from [11] 
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1.1.4 Genetic abnormalities 

Approximately 50% of pituitary tumours are thought to display  aneuploidy [17]. These findings 

suggest that a significant proportion of pituitary tumours sustain global genetic abnormalities. 

However, and despite these findings, gene specific abnormalities are infrequent in these 

adenomas and the majority of these are found in rare familial tumour types [18, 19] and to a 

moderately high proportion of sporadic GH-secreting somatotrophinomas [20, 21] 

 

 1.1.4.1 Oncogenes implicated in pituitary tumours 

Genes that are characterised by a gain of function(s) by an activating mutation(s) are typically 

manifest as either an abnormal protein product or inappropriate expression and that have 

transforming potential are referred to as oncogenes. The mutation is therefore referred to as an 

activating mutation and earlier studies focused on these changes. 

 

1.1.4.2 G-protein α stimulating activity polypeptide (GNAS) 

The GNAS1 gene encodes the α subunit of the G protein Gs, which couples receptor-activation to 

intracellular adenylate cyclase.  

Activating mutations at the GNAS1 locus (which encodes the GSα protein), at residue 201 

(Arg→Cys or His) or 227 (Gln→Arg or Leu), have been demonstrated in approximately 30% of 

sporadic GH-secreting pituitary tumours [20, 21]. The so named, Gsp mutation, bypasses ligand-

dependant cAMP signalling and leads to somatotrophs proliferation via cAMP response element-

binding protein (CREB) as a GH-associated transcriptional activator. However, despite the 

extraordinarily high frequency at which these mutations have been shown to occur in sporadic 

GH-secreting tumours, other oncogenic mutations commonly associated with non-endocrine 
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tumours (e.g. MYC, FOS and MYB) do not tend to occur in pituitary tumours [22]. Indeed, on rare 

occasions when such mutations have occurred, they have been shown to be induced after cellular 

transformation [22] and are therefore likely to be a consequence of pituitary tumours rather than 

a causal factor in their development. The role of imprinting at GNAS1 locus (Gsp) will be discussed 

in a subsequent section.  

 

1.1.4.3 Pituitary tumour transforming gene (PTTG1) 

Melmed and colleagues isolated a cDNA encoding a novel pituitary tumour transforming gene 

termed PTTG1. Over-expression of this gene in the mouse embryonic fibroblast cell line NIH3T3 

led to transformation in vitro and induced tumours in vivo in athymic mice [23]. The same group 

subsequently demonstrated that majority of human pituitary tumours, irrespective of their 

subtype, showed increasing levels of the human PTTG1 mRNA [24]. The level of expression of 

PTTG1 also correlated with the aggressive/invasive nature of the tumours [24]. The PTTG1  

protein contains a SH3 docking domain indicating a possible role in intracellular signalling [25], 

and potently induces the expression of basic fibroblast growth factor (bFGF) and vascular 

endothelial growth factor (VEGF) which are both known mediators of cell growth and 

angiogenesis. Studies indicate that human PPTG1 is a securin-like protein which inhibits sister 

chromatid separation during mitosis. 

 

1.1.4.4 High-mobility group A2 (HMGA2) 

The HMGA protein family consists of a group of small non-histone nuclear chromatin proteins. 

They are involved in the regulation of chromatin structure [26] and play an important role in the 

assembly of a multi-protein transcriptional complex that regulates the transcription of the target 

genes [26]. It has been shown that transgenic mice over expressing the HMGA2 gene develop 
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growth hormone and prolactin secreting adenomas [27]. Consistent with the development of 

prolactin adenomas in HMGA2 transgenic mice, induction of HMGA2 expression is observed in 

human prolactinomas in association with gene amplification and or rearrangement in the majority 

of cases [27], however, and in contradistinction to these findings  the HMGA2 gene is  not 

expressed  in normal pituitary gland. Moreover, very recent studies from the Fusco  group  have 

shown that HMGA protein levels are regulated by epigenetic mechanisms namely through 

miRNAs interference described in more detail in a subsequent section [28].  

 

1.1.4.5 BMP4 

Bone Morphogenetic Protein-4 (BMP-4), a member of the TGF-β family plays a central role during 

pituitary organogenesis [29, 30] and is overexpressed in different prolactinomas models including 

dopamine D2 receptor knockout (D2R-/-) mice, estradiol treated Fisher rats and in human tumours 

[31], compared to normal tissue and other pituitary adenoma types. Furthermore, GH3 cells , a rat 

somatolactotrophinoma cell line, stably transfected with plasmids that express protein to block 

BMP-4 action have reduced tumorigenicity in nude mice, providing evidence that the BMP-4 

stimulatory pathway plays a role in prolactinoma development in vivo [31]. BMPs mediate their 

effect by binding to a family of membrane tyrosine kinase receptors and subsequently activate a 

family of receptor substrates, the smad proteins, which act as transcription factors in the nucleus. 

Proteins such as noggin bind BMP proteins and through sequestration prevent their association 

with tyrosine kinase receptors, thus controlling the extracellular activating phase of the BMP 

pathway [31]. Even though BMP4 acts as an oncogene in different prolactinoma models and 

human tumours, it has an inhibitory role in corticotroph tumourigenesis [32]. In this case enforced 

expression of BMP-4 in AtT-20 cells inhibited proliferation in vitro and blocked tumour cell growth 

in vivo [32]. These findings are thought to reflect the differences in cell lineage (corticotrophs vs 

somatolactotrophs), where BMP-4 either inhibits or stimulates cell growth respectively. The role 
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of BMP-4 and mechanisms associated with increased and decreased expression form a specific 

aspect of this thesis. These findings will be discussed in a subsequent section of this thesis. 

 

1.1.4.6 Loss of tumour suppressor genes 

Tumour suppressor genes (TSGs) act to restrain cell proliferation by regulating the cell cycle or by 

maintaining genomic stability. Thus, TSGs are characterised by a loss of function and are recessive 

at the cellular level in transformed cells. Inactivation of TSGs, in most cases, requires gene 

deletions or point mutations leading to inactivation of both alleles, i.e requiring two hits in 

Knudson’s hypothesis. These events render the gene either silent or functionally compromised 

with respect to the encoded protein product. Such inactivation could arise from missense 

mutations, deletions, inversion or insertion or through epigenetic modifications (discussed in a 

subsequent section). In the context of pituitary tumours, a number of TSG have been implicated. 

The mechanisms associated with their loss in pituitary tumours are summarised in the following 

table (Table 1.1). 

 

Table 1.1.  Genetic mechanisms characterising the loss of tumour suppressor gene expression in 

pituitary tumours 

Gene Genetic Defect References 

DAPK *Homozygous deletion [33] 
FGFR4 Truncation [21, 34] 
GH-R Inactivating mutation [35] 
GIP2 Inactivating mutation [36] 

MEN1 Germline mutation [18] 

 Also see epigenetic change section. 
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Numerous studies have addressed the role of known and/or putative tumour suppressor loci in 

pituitary tumours and these are most commonly associated with promoter hypermethylation [18, 

37-41]. Exceptions are mutations in the AIP, a gene that encodes the aryl hydrocarbon receptor 

interacting protein, which have been shown to be a relatively frequent event in individuals with 

familial low penetrance pituitary adenoma predisposition (PAP) and familial isolated pituitary 

adenomas (FIPA)[35, 42] but not in sporadic pituitary adenomas. In addition a familial neoplastic 

syndrome called Multiple Endocrine Neoplasia (MEN1) exists in which family members inherit a 

mutated MEN-1 allele from one parent [43]. Affected individuals develop mono-clonal tumours of 

the pancreas; parathyroid and pituitary is to as a somatic mutational event (such as LOH) 

inactivates the other MEN-1 allele[43]. Indeed, loss of heterozygosity analysis was responsible for 

identifying LOH on 11q13 which led to the identification of the MEN-1 gene [43-45]. Interestingly, 

despite this gene being discovered on the basis of its mutation in an inherited disease that leads 

to the occurrence of pituitary tumours in some affected individuals, there has been relatively little 

evidence of MEN-1 mutations in sporadic pituitary tumours [46-48]. However, in sporadic 

pituitary tumours loss of heterozygosity at known or putative tumour suppressors have been 

reported, with mutations rarely encountered in the retained allele[45, 48].  

 

1.1.4.7 RB1 

RB is an important suppressor of E2F-dependent transcription and consequently the G1/S cell 

cycle transition. Its function is in turn antagonised by sequential phosphorylation by cyclin-D-CDK4 

and cyclin-E-CDK2 [11]. RB has been implicated in the pathogenesis of several neoplasms 

including retinoblastoma and osteosarcoma. Loss of heterozygosity (LOH) at 13q, the locus of the 

RB1 gene has been identified in human pituitary adenomas [49, 50], despite the fact that in the 

intermediate lobe pituitary tumours occur with an almost 100% penetrance in the heterozygous 

RB1 knockout mouse[38]. There is also evidence that an independent putative tumour-suppressor 
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gene at that locus is closely linked with, but distinct from, RB1 and might be important in pituitary 

tumourigenesis. Likewise, LOH or homozygous deletion of CDKN2A, which encodes the cyclin 

dependent kinase inhibitor p16, was shown to be uncommon in pituitary adenomas, although 

reduced mRNA and protein expression was often detected [41]. These observations suggest that 

other alterations are driving factors in pituitary tumourigenesis. Indeed, for both of these genes 

epigenetic change, manifest as methylation of their associated CpG island is a frequent finding 

(discussed in a subsequent section).  
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1.2 Epigenetics 

Epigenetics has been defined as the mitotically and/or meiotically heritable changes in  gene 

function that cannot be explained by changes in the DNA sequence alone [51].The additional layer 

of information is much more dynamic than the underlying genetic sequence, and explains how 

cells that possess the same DNA sequence can become “specialised”. For example, epigenetic 

marks are (with rare exceptions) completely erased following fertilisation, however,  the presence  

of epigenetic differences between cells can be determined as early as the 4-cell stage of 

embryogenesis [52]. Nevertheless, once established it is important that epigenetic information  

be maintained (at least in the short-term), and complex systems have evolved to ensure this 

event occurs. However, it is becoming increasingly apparent that epigenetic regulation can  

become deregulated, and just as environmental insults have been shown to lead to changes in the 

genetic “blueprint” that  are associated with developmental disorders such as cancer, it is now 

apparent that epigenetic information is similarly vulnerable to deregulation and change. 

Therefore, the role that epigenetics play in the development of cancer and other diseases is being 

actively pursued. The important mechanisms that alter the expression of a gene include DNA 

methylation, histone modifications, that in turn lead to chromatin remodelling, and the 

expression of micro RNA (miRNA) [53].  

The following sections provides an overview of the major epigenetic modifications apparent 

during development and their impact on gene expression and also the epigenetic modifications 

associated with tumourigenesis. Moreover, this chapter will also focus attention on the fact that 

epigenetic aberrations, unlike genetic mutations, are potentially reversible and their restoration 

to their pre-silencing status may be achieved through epigenetic therapies, that include the 

epidrugs. 
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1.2.1 DNA Methylation 

The chemical modification of cytosine, by the covalent attachment of a methyl group to the 5- 

carbon position, is a frequent occurrence and leads to the formation of  the modified  base, 5-

methylcytosine (m5C) [54], S-adenosylmethionine acts as a methyl donor in this reaction, and is 

converted to S-adenosylhomocysteine following loss of its methyl group (CH3) to cytosine 

(Figure1.5). 

 

 

Figure 1.5: Conversion of cytosine (C) to 5-methylcytosine (m5C) 

Methylation at the 5-position of cytosine involves the transfer of a methyl group from the methyl 

donor S-adenosylmethionine, generating S-adenosylhomocysteine [55] 
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DNA methylation is thought to occur almost exclusively in the context of the cytosine-phosphate 

guanine (CpG) dinucleotide in mammalian cells. In normal cells approximately 70-80% of non CpG 

islands (CGI) CGI dinucleotides are methylated while CGI, which are usually located within gene 

promoters, are in general not methylated [56]. In this case, transcription factors access to  the 

underlying gene sequence is facilitated [57]. In contrast, in cancer cells CGI are frequently  

methylated while non CGI CpG dinucleotides, throughout the genome,  showing a decrease  in 

overall  methylation. The increase in methylation, at CGI s leads to a decrease or in some cases  

loss of gene transcription whereas the genome wide loss of methylation is associated with or 

responsible for genetic instability. 

The majority of 5mC thus far identified in the mammalian genome occurs within repetitive DNA 

sequence [58]. In these cases it is found within  interspersed repeat sequences that include, Alu 

elements and also long interspersed nuclear elements; LINE-1 [59, 60]. Transposons constitute 

more than 45% of the human genome [61], and their inappropriate expression is thought to 

contribute to genomic instability.  DNA methylation also plays an important role in the regulation 

of gene expression of the X-chromosome, sometimes referred to as X-chromosome inactivation. 

In this case, one of the two X chromosomes in all somatic cells of placental female mammals is 

randomly inactivated as a means of dosage compensation [62]. The observation that these 

chromosomes are heavily methylated led to the suggestion that the acquisition of 5mC is an 

important event in the initiation of such gene silencing [63]. In a similar manner, the regulatory 

regions of many genes in the autosomes are associated with DNA methylation. For example, a key 

regulatory epigenetic mechanism is imposed within the imprinting control regions (ICR) of 

particular genes. In these cases, methylation may target, in a gene-specific or cell type manner, 

methylation of either the maternal or the paternal inherited copy of approximately 150 human 

genes [64]. The resultant imprinting leads to allele specific expression that frequently targets 

growth promoting and growth inhibiting genes. In addition, the regulatory sequences of 

approximately 10-20% of mammalian genes also display DNA methylation in a tissue specific and / 



  
     22 

 
  

or temporal manner [65, 66], suggesting that this modification might play an important role in 

development processes. Indeed, a wave of demethylation is observed in early stages of 

embryogenesis [67], and is thought to be critical for ensuring normal development, where a wave 

of  de novo re-methylation then follows as shown in figure 1.6. Epigenetic information is also 

transmitted between generations and plays an important role in trans-generational inheritance.          

However, recent studies, have identified a further modification in DNA methylation and 

characterised  as, 5-hydroxmethylcytosine (5hmC) [68]. The conversion of 5mC to 5hmC is 

catalysed by the chromosome ten-eleven translocation 1 (TET1) protein [69].  TET1 is a 2-

oxoglutarate (2OG) and Fe(II)-dependent enzyme that catalyses conversion of 5mC to 5hmC 

suggesting that this enzyme may have a potential role in epigenetics. Indeed, 5hmC is found at 

high frequency in several types of mammalian cells, this epigenetic modification may play 

important roles in cell functions. For example, in cerebellar Purkinje cell DNA, approximately 20% 

of all cytosine in CpG dinucleotides are present as 5hmC [68]. Data suggested that 5hmC 

epigenetic marks may be involved in the development of the human brain, and the abnormal 

5hmC mark may play a role in the molecular pathogenesis of neurodevelopment disorders [70]. In 

cancer, several pioneer studies have shown that 5hmC is an epigenetic mechanism. For example, 

loss of 5hmC has been shown to be an epigenetic hallmark of melanoma [71]. 
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Figure 1.6: Changes in DNA methylation during mammalian development. Development stages 

for gametogenesis show rapid DNA methylation by de novo methylation giving rise to 

substantially methylated genomes in sperm and egg cells. In the embryo where a wave of 

genome-wide demethylation occurs at the pre-implantation stage and is succeeded shortly after 

by  large scale  de novo methylation beginning at the pregastrulation stage. Adapted from Human 

Molecular Genetics 2, Strachan and Reid. 
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1.2.1.2 CpG “Islands” 

The CpG dinucleotide is under represented through-out the mammalian genome, occurring at 

approximately one fifth  of its expected frequency, however in some regions of the genome the 

observed frequency of CpG dinucleotides is higher at some, 4-6%  [72]. The explanation for these 

different frequencies is that spontaneous deamination of cytosine coverts this base to uracil.  The 

uracil base mismatch is excised from DNA by the enzyme uracil DNA glycosylase which leads to 

error free repair. However, the 5-methylcytosine residues are deaminated to thymine which 

cannot be excised and repaired by this system. As a result 5-methylcystosine residues are 

hotspots for spontaneous transitions. Indeed, the majority of CpG dinucleotides across the 

genome are methylated whereas the CpG dinucleotides in CpG enriched regions associated with 

promoter region are not and accounts for their different frequencies across the genome. The CpG 

“rich” regions are referred to as CpG islands (CGI). CpG islands are frequently found within 

stretches of DNA that are approximately 1000 base pairs (bp) long  and these  are associated with 

more than half of core gene promoters [73] and also found within  intra-genic sequence [74]. It 

has been suggested that the association between gene silencing is more frequent when the CpG 

island is found within the promoter region and extending into the first coding exon [75]. In 1987 

Gardiner-Garden proposed that a CGI should not be smaller than 200bp with a CG percentage 

greater than 50% and have a CpG ratio greater than 60% [76]. However in 2002 Takai and Jones 

proposed  an alternative criteria to define a CGI that suggested  that at least 500bp, with CG 

content of 55% and a CpG ratio of 65% constitute the minimum criteria for a CGI ( a 

representation of normal DNA is shown in figure 1.7) [77].  
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Figure 1.7: Genomic distribution of CpG dinucleotides and their typical methylation status in 

mammals. The red, filled “lollipops” represent methylated CpG sites. The unfilled “lollipops”, 

typically found in clusters, termed CpG islands are in general not methylated. Boxes A, B C 

represents 3 exons labelled A to C. 

   

1.2.1.3 Establishment and propagation of DNA methylation 

Once established, m5C is a highly stable modification that is maintained in dividing cells and is not 

easily reversed [78]. It was predicted that two general classes of DNA methylating enzymes exist: 

de novo methylation enzyme that establish DNA methylation patterns at specific sequences early 

in development, these are DNMT3A/3B, and also the maintenance methylation enzymes (DNMT1) 

that preserves DNA methylation patterns during cell division[63, 79]. The DNMT1 enzyme  

recognises hemi-methylated CpG dinucleotides that are the product of semi-conservative DNA 

replication. Indeed, it has been shown that a conserved group of eukaryotic proteins called DNA 

(Cytosine-5) methyltransferases (DNMTs) fulfil this role (Figure 1.8). 
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Figure 1.8: Establishment and maintenance of DNA methylation in mammalian cells. 

DNA methylation in mammals occurs in the nucleotide, CpG. Methyl group can be introduced into 

unmethylated DNA by the de novo methylation enzymes DNMT3A and 3B. However, in the 

process of DNA  replication, the methyl group on the template, parental strand, is recognised and 

a methyl group  introduced on to the opposite (daughter) strand by the enzyme DNMT1. In the 

presence of DNMT1, hemi-methylated DNA becomes fully methylated and in this way is 

independent of the DNA sequence itself however, methylation patterns are maintained through 

successive replications. 
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DNMT1 was the first DNMT to be reported in 1988 [80]. The 180kDa protein is encoded by the 

DNMT1 gene where it was shown that purified DNMT1 methylates hemimethylated DNA at a rate 

5-30 fold greater then unmethylated DNA. [81] On this basis it was suggested that this enzyme 

plays an important role in the maintenance of DNA methylation in mammalian cells. During the 

G1-G2 phase of the cell cycle  DNMT1 is thought to be diffuse throughout the cells. However 

during the S phase of the cell cycle it is associated with the replication fork consistent with its role 

in maintaining DNA methylation patterns. [82, 83]. Since then, a number of genetic analyses in 

various animal models have been carried out to support this role of DNMT1 as a maintenance 

methylase. For example, extensive studies of ES cells and embryos nullizygous for the murine 

Dnmt1 gene have been carried out [84]. These analyses revealed that DNMT1 is essential for 

development, with lethality seen shortly after gastrulation in Dnmt1-null embryos [85, 86]. These 

mutants show marked loss of genomic m5C and demethylation of surveyed sequences [84-86]. 

Data suggests that two additional members of the DNMT family, DNMT3A and DNMT3B, are 

responsible for the establishment of the 5mC marks. For example, it has been  shown that genetic 

inactivation of Dnmt3a/3b in mouse embryonic stems (ES) cells led to the inhibition of DNA 

methylation patterns being established [87]. However DNA methylation at imprinted regions was 

maintained in these cells, suggesting that these genes do not play an important role in the 

maintenance of DNA methylation. 

 

1.2.1.4 DNA Demethylation 

Inappropriate changes to the epigenomic landscape are frequently harmful, however these 

changes are potentially reversible. However, in contrast to the enzymes responsible for 

methylation those leading to demethylation and the removal of the methyl group from 5mC have 

not thus far been identified. Indeed, although several DNA methyltransferases have been 

identified there are still no conclusive reports of bone fide DNA demethylating enzymes. Where 



  
     28 

 
  

DNA demethylation does occur it is through the process that leads to dilution through successive 

cell generations and during the DNA replication process. In these cases an unmethylated single 

strand of DNA is synthesised which can result in an unmethylated double strand of DNA molecule 

in the following generation [88]. For this to occur DNMT1 must be inhibited, since available 

evidence suggests that DNMT1 recognises hemi-methylated DNA. 

 

1.2.1.5 Abnormal DNA methylation in cancer 

The link between DNA methylation and cancer is firmly established [89, 90], and two general 

phenomena have been shown to occur in relation to DNA methylation in cancer cells. 

Hypomethylation of CpG sites throughout the genome is a characteristic of tumour cell, however,  

the target CpGs are not associated with CGI and the resultant hypomethylation  leads to 

chromosomal instability [91]. In addition there is some evidence that hypomethylation of some 

proto oncogenes leads to their inappropriate expression [92]. Concomitant with the genome-wide 

hypomethylation is the process of  hypermethylation of normally unmethylated CGIs (Figure 1.9). 

In these cases CGI methylation is  associated with or responsible for epigenetic silencing of 

multiple genes and in particular those defined as tumour suppressor genes (TSGs) [89]. 
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Figure 1.9. Abnormal DNA methylation at CpG Islands (CGIs) in cancer. 

The pattern of methylation seen in normal cells (Figure 1.7) is reversed in cancer cells. CGIs are 

hypermethylated and non CGI dinucleotides are hypomethylated. The unfilled circles show the 

absence of methylation at CpG dinucleotide and the filled circle show these CpG sites as 

methylated. The Boxes A, B and C show 3 exons within the gene. 
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1.2.1.6 Global Hypomethylation 

Genome-wide DNA hypomethylation was the first epigenetic modification to be identified in 

tumours [93]. Multiple reports have described global, genome-wide hypomethylation of DNA. In 

these studies majority of the genome-wide hypomethylation was found with DNA repeat 

elements that comprise of 45% of the genome [92, 94]. As described previously this phenomenon 

is linked with genomic instability and in some cases  the re-activation of oncogenes and of  

repetitive DNA elements [92, 95]. In cancer cells, data has suggested the link between global 

hypomethylation, chromatin restructuring, nuclear disorganisation precede and are perhaps 

causal changes in the activity and expression of the histone modifying enzymes and chromatin 

regulators [94]. Interestingly, although global hypomethylation is a common feature across 

multiple tumour types its frequency shows differences between tumour type, tumour stage and 

the specific sequences harbouring these changes [94]. DNA hypomethylation has been shown to 

cause the inappropriate activation of several  growth promoting genes, including C-MYC, H-RAS, 

CCND2 and SERPINB5 in gastric cancers [96-98] S1000A4 in colon cancer [98] and PAX in 

endometrial cancer [99]. In addition, many cancer/testis genes that are expressed normally in the 

healthy testis but not in differentiated cells are often activated in these cells by hypomethylation 

in cancer.  These gene including members of the melanoma-associated antigen (MAGE) gene 

family [100-102] and microRNA gene let-7a-3 [103]. These findings suggest that DNA 

hypomethylation is an early occurrence during the development of cancer. 

 

1.2.1.7 CpG island hypermethylation 

Promoter associated CGI hypermethylation and gene silencing is a frequent observation, together 

with global hypomethylation in multiple diseases and in cancer. Although this association has 

been reported in a large number of publications, it is not clear whether CGI methylation is a cause 
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or the consequence of gene inactivation [104]. While some studies suggest a causal association 

between methylation and gene silencing others suggest that silencing precedes methylation and 

that methylation is necessary to maintain the gene silencing [105]. These aberrations represent a 

major shift in the distribution of the 5mC mark throughout the genome within disease states. CGI 

hypermethylation was first reported in retinoblastoma [106, 107], and was associated with 

epigenetic silencing of the important tumour suppressor gene  RB1 and also that of CDKN2A(p16) 

[108]. Such modifications were then regarded as surrogates for the classic loss [109], of TSGs 

apparent as inactivating mutation or deletion. 

As is the case with genome-wide DNA hypomethylation, it is now becoming clear that CGI 

hypermethylation frequently, but not invariably, occurs during the earliest stages of cancer 

development [110].  For example, a series of genes have been identified that exhibit DNA 

hypermethylation in pre-invasive stages of colon and other cancers. However these genes  are 

infrequently  mutated in such cancers (e.g CDKN2A, SFP1, GATA4 and GATA5) [111]. One 

hypothesis is that in stem/precursor cells that the “normal” epigenetic modulation of expression 

of these genes acts to prevent such cells from proceeding down a differentiation pathway and so 

remaining  immortalized. The activation of these genes, through reversal of epigenetic changes, 

leads to their differentiation [112]. However, their inappropriate CGI hypermethylation inhibits 

transcription, thereby preventing differentiation and promoting survival and clonal expansion. In 

this case one theory is  that the resulting pre-invasive stem cell become “addicted” to the survival 

pathways, and subsequently select for mutations in genetic gatekeeper genes (e.g APC) that 

provide an even stronger progression stimulus  [112]. 
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1.2.2 Histone Modifications 

DNA is rarely in a “naked” configuration and in vivo it is associated with proteins called histones 

that define the chromatin structure. The most important component of the chromatin is the 

nucleosome which is composed of 147 base pairs of DNA wrapped around an octomer of histone 

core proteins. This octomer is composed of two copies of each H2A, H2B, H3 and H4. From this 

fundamental chromatin unit, N- and C- terminals of core histones protrude from this core 

structure and contact adjacent nucleosomes (Figure 1.10)[113]. Traditionally the structure of the 

nucleosome was thought primarily to play a role in the packaging of DNA within the nucleus. 

Although  this role is vital, more recent evidence has emerged which confirms that as with DNA 

methylation, that covalent modification of nucleosome proteins is involved in the epigenetic 

regulation of transcription [114].  

Within the nucleosome, each of the histone proteins, that make up the core octamer, possess a 

lysine rich amino terminal tail and provides sites for many forms of post-translational 

modifications including acetylation [115], and methylation [116], as well as ubiquination, 

phosphorylation, sumoylation, and ADP ribosylation [117] (Figure 1.10). The overall combination 

of these modifications comprises what is frequently termed the  “histone code” and these 

combinatorial changes determine the expression status of the underlying gene sequences [53]. 

The “reading” or interpretation of this code is thought to determine whether DNA at a particular 

genomic location is packaged in a highly compacted (heterochromatin) or relaxed (euchromatin) 

form [113].  Acetylation of histones, associated with an open chromatin structure, is catalysed by 

the histone acetyltrasnferases (HATs)[115] and shown in figure 1.11. Most descriptions of histone 

modifications and their influence on gene expression have focused on the changes in acetylation 

and methylation patterns, especially acetylation of lysine residues in histone N-terminal tails and 

methylation of lysine and arginine residues in the N terminal tails [118-123] see figure 1.12. The 

principal modifications associated with either active or silent genes can be summarised as follows: 
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histone tail acetylation is associated with active genes, as is trimethylation of lysine 4 in the N-

terminal of histone 3 [119, 124]; however, trimethylation of lysine 9 and or lysine 27 in the end 

terminal of histone 3 (H3K9me3 or H3K27me3) or lysine 20 in the N terminal of histone 4 are 

associated with transcriptional repression [125-127] and shown in figure 1.12.   In addition a 

histone variant H2A.Z has been associated with an active chromatin structure and has been found 

to be absent from epigenetically inactivated genes [128]. 
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Figure 1.10: Nucleosome model and the major post translational modifications of histone 

subunits. 

DNA and histones are assembled into nucleosomes. The nucleosomes consist of 147bp of DNA 

wrapped around an octomer of four core histone proteins. The four core histone proteins are 

H2A, H2B, H3 and H4. These four histone proteins contain histone tails that are subject to a 

number of modifications including acetylation, methylation, ubiquination, sumoylation, 

phosphorylation. Adapted from http://chemistry.gsu.edu/ 
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Figure 1.11: Epigenetic modifications associated with transcriptionally active and 

transcriptionally silent genes. A) A transcriptionally active gene with an open relaxed, chromatin 

structure. DNA with non-methylated CpG islands (grey circles) in the promoter region is coiled 

around nucleosomes (blue and yellow cylinders). Histone 3 tails are acetylated (red triangles) at 

lysine 9 (H3K9Ac) or Trimethylated (Blue stars) at lysine 4 (H3K3Me3). This relaxed configuration 

allows access to transcription factors and associated transcriptional machinery, including RNA 

polymerase II. B) A silent gene with a closed chromatin structure. Promoter CpG islands are 

methylated (Pink circles), and the histone 3 tails are Trimethylated (Red stars) at lysine 9 or 27 

(H3K9me3/H3K27me3). Accompanying these changes in methylation, the histone tails are hypo 

acetylated (green triangles) and these patterns are associated with closed chromatin. 

Abbreviations: Hat, histone acetyl transferase; HDAC, histone deacetylase; Pol II, RNA polymerase 

II; TF; Transcription factors.  Adapted from [53]. 
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Figure 1.12. Sites of post translational modification on the histone tails. The modifications 

shown include acetylation (purple), methylation (red), phosphorylation (green), and ubiquination 

(orange)[129].  Abbreviations Ub; Ubiquination, A; alanine, G; glycine, K; lysine, L; leucine, P; 

proline, Q; glutamine, R; arginine, S; serine, T; threonine, V; valine representing amino acids 

sequence on the histone tail.  
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1.2.2.1 Mechanistic interdependence 

The histone changes associated with condensed chromatin and gene silencing are frequently 

accompanied by, or associated with, DNA methylation. The mechanism by which DNA 

methylation might directly regulate gene expression is not entirely clear. Indeed, chromatin 

remodelling is principally mediated through repressive histone modifications as described in 

figure 1.11. However, the observation that transcriptional silencing is frequently associated with 

gene promoter methylation might reflect the interdependence of these two processes as shown 

in figure 1.13. Examples of how these processes are integrated are apparent from multiple studies 

showing that methylated DNA sequences preferentially bind a family of methyl binding domain 

proteins that, in turn, recruit HDACs to the site (Figure 1.13) [130]. Similarly, DNMT1, which 

maintains DNA methylation patterns, also bind  HDACs [131-133]. Conversely, at non methylated 

DNA sequences, the associated histones are acetylated by histone acetyl transferases (HATs) that 

contribute to an open chromatin structure conducive to gene transcription [89, 134]. 

Although the interdependence of DNA methylation and histone modification has not been directly 

investigated in pituitary cells and tumours, the siRNA-mediated knockdown of DNMT3B 

transcription in pituitary cells provides some insight into this relationship. DNMT3B a de novo 

DNA methylase, but once knocked down in pituitary cells is associated with increased histone 

acetylation and decreased methylation [135].  

The opposing actions of HATs and HDACs on covalent histone modifications contribute to the 

reversible nature of acetylation and deaceytlation patterns and to their subsequent effects on 

gene expression. However other histone tail modifications, such as methylation also show 

widespread changes in both normal and tumour cells. Methylation of histone tails is mediated by 

histone methyltransferases (HMTs). Although the principal function of these enzymes is histone 

modification, they are also able to recruit the DNA-methylating enzyme DNMT1 to these regions 
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as shown in figure 1.13. In this way, and in contrast to DNA directed histone modifications, 

histone methylation can drive CpG island methylation. 

 

 

Figure 1.13: Interdependence of DNA methylation and histone modifications. A) Interactions 

between DNA methylation and histone deaceytlation. DNA CpG island methylation (red circles) by 

DNMTs precedes binding of Methyl CpG binding domain protein (MBDs), which recruit HDACs to 

induce transcriptional repression by mediating deaceytlation (green triangles) of histone tails and 

chromatin remodelling. B) Interaction between histone 3 lysine methylation and DNA 

methylation. Non methylated CpG islands in promoters (grey circles) are accompanied by histone 

3 trimethylation at lysine 4 and lysine 27 (H3K4 and H3K27me3; blue stars) mediated by the HMTs 

proceeds de novo DNA methylated (red circles) by DNMTs. Abbreviations; DNMT, DNA 

Methyltransferase; HDAC, Histone deaceytlase; HMT, histone Methyltransferase; MBD, methyl-

CpG binding protein. Adapted from [53]. 
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In addition to histone modifications, a group of proteins call polycomb-group (PcG) proteins have 

been shown to be associated with gene repression and activation. PcG are conserved chromatin 

factors that were originally discovered as HOX genes, these genes are a set of transcription factors 

which are expressed early during embryonic development [136]. PcG maintain the silent state of 

the HOX gene outside of their expression domain. However a second group of protein termed 

Trithorax group maintain the active transcription in the appropriate expression domains. PcG and 

trithorax have long been considered as cellular memory system that stably lock the Hox gene. 

However genome wide studies have revealed that PcG proteins bind more genes in addition to 

Hox gene mainly comprising transcription factors involved in diverse cellular functions and 

developmental pathways [137, 138]. The association of the PcG binding to their target does not 

necessarily result in gene silencing. PcG have been demonstrated to be dynamically involved in ES 

cell plasticity and cell fate determination [137, 139]. Genome wide mapping studies have shown 

that PcG complexes are predominantly bound to genes that encode master development 

regulator proteins [138]. Many of these regulator proteins are repressed in ES cells and upon 

differentiation a discrete set of these genes becomes activated which indicates a crucial role of 

the PcG in a dynamic regulation of stem cell identity and fate determination [137]. H3K27Me3, 

the histone modification associated with repressed genes is distributed over a large chromosomal 

region and its distribution correlates with Polycomb repressive complex 2 (PRC2) which recruits 

the methyltransferase and also distributed up to 20% of gene promoters in ES cells [137]. In these 

cases, most of these promoters are also marked by the activating histone modification H3K4me3 

resulting in bivalent domains [140, 141]. The current hypothesis is that the chromatin states poise 

genes for activation. However the bivalent status of these genes predisposes them not only for 

activation but also for repression. Following specific cell fate decisions non-induced bivalent genes 

tend to lose the active mark and the H3K27Me3 mark is retained (reviewed in [142]). The 

discovery of the de novo bivalent domains has three important implications. First, bivalent 

domains appear to be the consequence of PRC2 targeting [141]. The second, PcG proteins can 
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prime genes for both activation and repression during terminal differentiation and third, de novo 

formation of bivalent domains at later developmental stages indicates that the fate of all targets 

is not predetermined in embryonic stem cells [143].    
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1.2.3 Epigenetic abnormalities in pituitary tumours 

In the context of pituitary tumourigenesis, recent studies have shown that epigenetic aberrations 

play an important role in pituitary tumourigenesis. In these cases the changes have shown 

particular association with the silencing of TSGs. These findings, therefore, provide an alternative 

mechanism for the loss of gene expression and to those attributed to genetic abnormalities. In 

these cases multiple studies now show that DNA methylation within CGI of genes encoding, 

growth factor regulators, apoptosis inducers, cell adhesion molecules, that either alone or in 

combination with histone modifications are associated with gene silencing in various types of 

pituitary tumours. 

1.2.3.1 Inappropriate DNA methylation in pituitary tumours 

DNA methylation is an important epigenetic mechanism associated with inappropriate gene 

expression in pituitary tumours and this has been summarised in the following table. 

Table 1.2: DNA methylation associated gene expression defects in pituitary tumours 

Gene Epigenetic Defect Reference 

CASP8 DNA hypermethylation  [144] 
CDHI DNA hypermethylation [145, 146] 
CDH13 DNA hypermethylation [145] 
CDKN2A (p16) DNA hypermethylation [41] 
CDKN1B DNA hypermethylation [147] 
DAPK DNA hypermethylation [148] 
FGFR2 DNA hypermethylation [3] 
GADD45 DNA hypermethylation [3, 149] 
IK1 DNA hypermethylation [135] 
LGALS3 DNA hypermethylation [150] 
MAGEA3 DNA hypomethylation [151] 
MEG3 DNA hypermethylation [152, 153] 
NNAT DNA hypermethylation [154] 
PTAG DNA hypermethylation [155] 
RASSF1A DNA hypermethylation [156] 
RB1 DNA hypermethylation [157] 
S100A100  DNA hypermethylation [158] 
WIFI DNA hypermethylation [159] 
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The inappropriate silencing of the CDKN2A (p16) gene  is frequently  associated with promoter 

region CGI methylation in pituitary tumours [41]. This appears to be, as in many other types of 

cancer,  an early event in pituitary tumourigenesis [160]. Enforced expression of this gene in 

pituitary tumour cell line, GH3  inhibit cell proliferation [161], which is consistent with its role as a 

cell cycle regulator and classification as a TSG. Subsequent studies showed that this gene is 

infrequently silenced in the somatotrophinomas pituitary tumour subtypes [45], and further 

studies revealed that in these types of tumours, the promoter of the RB1 gene was instead  

methylated [157]. In non-functioning pituitary adenomas, somatotrophinomas and prolactinomas 

diminished levels of GADD45ᵧ mRNA has been identified [149] and this was correlated later to  

inappropriate  CGI methylation [162]. Likewise, in the majority of pituitary tumours analysed, of 

gonadotroph origin, transcriptional silencing of MEG3a is also  apparent  and is associated with 

CpG methylation [153]. Enforced expression of both GADD45ᵧ and MEG3a in tumour cell lines also 

led to the inhibition of growth, thus providing support for their role as tumour suppressor genes 

[151]. Some of the other studies describing methylation associated gene silencing for additional 

cell cycle regulators, as well as for genes that play a role in apoptosis, invasion and metastasis are 

shown in table 2. Many of these genes are known or putative TSGs and these observations 

emphasized the importance of DNA methylation with regards to pituitary tumourigenesis. 
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1.2.3.2 Imprinting defects in pituitary tumours 

Imprinting of the maternal and paternal genomes during gametogenesis establishes conditions 

whereby a specific allele is more abundantly, or in some cases exclusively, expressed in the 

offspring. It has been suggested that inappropriate DNA methylation at the imprinted loci might 

play an important role in the development of cancer. For example, loss of imprinting (LOI) and 

abnormal biallelic expression of the autocrine growth factor IGF2 was first observed in Wilm’s 

tumours [163], and has since been found to be common in lung cancer [164], breast cancer [165], 

ovarian cancer [166]) and glioma [167]. 

 

In the context of the pituitary tumours, approximately 40% of growth hormone secreting tumours 

harbour somatic mutations in the GNAS1 gene (GSα) [20, 21]. Studies in both human and mice 

demonstrate that GSα is imprinted in tissue specific manner, being primarily expressed from the 

maternal allele in some tissues and biallelically expressed in most other tissues [168]. Likewise, in 

normal human pituitary GSα is near exclusively expressed by the maternal allele as described by 

Hayward [168]. In this study, 21/22 growth hormone secreting pituitary tumours harboured 

activating mutations in the maternal allele. Unlike the normal pituitary, even the non-mutated 

paternal allele contributed to the expression of GSα in the tumours [168]. In the same study, 

biallelic expression of GSα transcript of gsp(-) tumours was also demonstrated. Also majority of 

pituitary tumours show transcriptional silencing of MEG3a [153] and it has correlated with the 

abnormal biallelic methylation of the 5’ flanking region of this normally paternally imprinted gene. 

ZAC, a zinc finger binding protein that induces apoptosis and cell cycle arrest, is another imprinted 

gene whose expression is significantly reduced in non-functioning pituitary adenoma [169].  

Another further example of an imprinted gene is Neuronatin (NNAT). NNAT is one of the most 

abundant transcripts in the pituitary and is thought to be involved in the development and 
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maturation of this gland. Its expression is confined to normal pituitary however NNAT has 

significantly reduced expression in pituitary tumour cell line AtT-20. Re-expression was 

established using a siRNA approach in a time dependent manner. Re-expression was associated 

with partial demethylation of NNAT CpG island implying silencing is mediated through DNA 

hypermethylation[154]. MEG3 methylation is associated with silencing to be confined 

predominantly to non-functioning pituitary adenomas in the gonadotroph lineage, however this is 

not the case with methylation associated silencing of NNAT as it does not appear to show subtype 

specificity[152, 154, 170]. Thus similar to MEG3 NNAT represents a further example of an 

imprinted gene that is silenced in association with methylation of the normally expressed and 

unmethylated allele in pituitary tumours which appear to act as a TSG[154]. 
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1.2.3.3 Inappropriate covalent histone modification in pituitary tumours 

Hematopoietic transcription factor Ikaros (IK) 

Ikaros (Ik) was described as a transcription factor that recognises regulatory sequences of genes 

expressed in lymphoid cells [171]. The N terminus encodes zinc finger motifs that recognise 

cognate DNA-binding sites while the C terminus shared by all Ik isoforms contains the 

dimerization domain that is required for the formation of homodimers or heterodimers. Isoforms 

such as Ik6 lack DNA-binding domain can act as dominant negative (dn) regulators of Ik function. 

Significant insight into how histone modifications might be inappropriately regulated in pituitary 

tumours were provided through studies of ikaros (Ik) and its dominant negative isoform Ik6. In 

normal pituitary, abundant expression of the three functional Ik isoforms (1, 2 and 3) is seen in 

the anterior pituitary [34] and these play  important roles in the regulation of multiple hormones 

including proopiomelanocortin (POMC), prolactin (PRL), GH and GHRH, as well as cell growth and 

survival [34, 122]. In contradistinction to these findings, the dn isoform Ik6 was found to be 

expressed in approximately 50% of pituitary tumours [34]. Ik6 protein was subsequently shown to 

lead to H3 lysine acetylation-associated transcriptional induction of the anti-apoptotic factor BCL-

XL [122]. This suggests that abnormal expression of the dominant negative isoform of Ik (Ik6)  

might be responsible for the inappropriate epigenetic regulation of cell proliferation and hormone 

secretion in a proportion of pituitary tumours. These findings were subsequently supported by 

studies in the rat pituitary cell line GH4 where GH transcriptional suppression and PRL 

transcriptional activation are, at least in part, mediated by the effects of Ik6 on promoter 

acetylation [172]. Interestingly, in primary tumours that do not express Ik, as well as in the mouse 

pituitary cell line AtT-20, transcriptional silencing was shown to be associated with exon 1 CGI 

methylation and concomitant histone modifications [3], suggesting that Ik itself could be 

regulated by epigenetic mechanisms.  
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Cancer/Testis (C/T) Antigen-MAGEA3 

C/T antigen are immunogenic proteins that are expressed in normal gametogenic tissues and in 

different tumours types. C/T antigen genes such as Melanoma antigen family A, 3 (MAGEA3) are 

not normally expressed in adult somatic tissues (including the pituitary), and this repression is 

associated with DNA methylation [151]. However recent studies  show that MAGEA3 is 

inappropriately expressed in pituitary tumours, and this is associated with DNA hypomethylation 

and histone lysine acetylation [153], suggesting that gene expression induction through 

epigenetic mechanisms may play an important role in pituitary tumourigenesis.  Interestingly, the 

observation that MAGEA3 was specifically re-expressed in FGFR2- negative pituitary tumours 

suggested that such induction was a downstream response of FGFR2 loss. FGFR2 has been known 

to function as the control of oestrogen-signalling and therefore it is hypothesised that 

inappropriate oestrogen signalling in pituitary tumours may be responsible for the augmentation 

[151]. Indeed, in a cell line model it is clear that oestrogen treatment led to the induction of  

MAGEA3 expression, with associated DNA hypomethylation and histone acetylation in a cell line 

model. Furthermore, in the same study it was also evident that this response was specifically 

observed in FGFR2-negative female tumours in vivo thus providing additional support for the role 

of oestrogen signalling played in this response [151].  
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1.2.4 miRNA in Pituitary adenomas 

The HMGA protein family, a group of small non-histone nuclear chromatin proteins involved in 

the regulation of chromatin structure and play an important role in the assembly of 

transcriptional complexes that in turn regulate transcription of the target genes [26]. HMGA2 has 

been shown to be overexpressed in transgenic mice developing growth hormone and prolactin 

secreting adenomas and also in human prolactinomas in association with gene amplification and 

or rearrangement [27]. However, and in contradistinction the HMGA2 is not expressed in normal 

pituitary gland. Moreover, very recent studies from the Fusco group have shown that HMGA 

protein levels are regulated by miRNAs [28]. miRNA are a class of small (19-25 nucleotides) non 

coding RNAs involved in temporal and tissue specific eukaryotic regulation by binding the 3’-

unstranslated region of the target mRNA. These have been shown to induce mRNA degradation or 

inhibition of its translation. The group analysed the expression levels of HMGA-targeting miRNA 

(miR-15, -16 and Let 7a) in human primary pituitary adenomas. The expression of these miRNAs 

showed an inverse correlation with HMGA2 expression [28]. Furthermore, transfection 

experiments with these specific siRNA, in this case as short-hairpin RNA (shRNA) expression 

vectors, that target the HMGA transcript led to reduced HMGA levels in GH3 cells and mediated a 

significant decrease in proliferation. These data suggests that HMGA-targeting miRNAs are able to 

negatively regulate  pituitary cell cycle progression [28, 173]. 
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1.2.5 Pharmacological Epigenetic unmasking strategies 

The epigenetic aberrations that distinguish tumour cells from their normal counterparts are 

reversible [174, 175]. Administration of pharmacological agents that reverse epimutations 

typically causes global re-expression of previously silenced genes, which can be employed to 

identify the genes subject to this form of regulation. In these studies, gene expression is usually 

detected by cDNA microarrays and can be used to identify unknown genes, some of which are 

tumour specific, a previous study of this group shows by knockdown of DNMT1 and microarray 

analysis the identification of newly expressed genes was possible[158]. Importantly, some genes 

that are re-expressed following drug treatment were not methylated before intervention, and 

others that were expressed before treatment showed reduced expression [176, 177]. These 

findings might reflect reversal of epigenetic silencing of an upstream regulator that could either 

stimulate or repress its downstream targets, which are identified by microarray. Indeed in 

pituitary tumours, the expression status of particular IKZF1 (which encodes IK6) and FGFR2 (which 

encodes FGFR2-IIIb) isoforms and also of DNMT3B affects the expression of their downstream 

target genes and in some cases, their epimutation status.  

A broad range of drugs have been described to target the epigenome and effectively reverse DNA 

methylation and histone modifications in various tumour types [158, 178-180]. The majority of 

these drugs directly target the epigenome through inhibition of the enzymes responsible for these 

aberrations; DNMTs and HDACs. Some researchers have raised concerns about the possible 

adverse effects of these drugs, particularly at high doses although these seem to be particularly 

effective in cells that are undergoing cell proliferation [181]. 
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1.2.5.1 DNA Methyltransferase Inhibition 

Inhibitors of DNA methylation rapidly reactivate the expression of genes that have undergone 

promoter methylation dependant gene silencing, particularly if this silencing has occurred in a 

pathological situation. The first described inhibitors of methylation which were FDA (The US Food 

and Drug Administration) approved is 5-azacytidine (5-Aza) and its deoxy analog (5-Aza-dC) were 

initially developed as chemotherapeutic cytotoxic agents and was used to treat disorders such as 

myelodyplastic syndrome [182], It was subsequently discovered that they are also powerful 

inhibitors of DNA methylation and could induce gene expression and differentiation in cultured 

cells [54, 183]. Once introduced into a nucleus, both nucleoside analogues are converted to the 

deoxynucleotide triphosphates and are then incorporated into replicating DNA in place of 

cytosine. As such, they are primarily active in the S phase of the cell cycle and serve as powerful 

inhibitors of DNA methylation. DNMTs get trapped on DNA containing modified bases such as 

azacytosine, 5-fluorocytosine and Zebularine. This results in the formation of heritable 

demethylated DNA [54, 149].  

A disadvantage and an important concern with the use of these nucleoside analogues is that they 

are chemically unstable in aqueous solution. These agents also suppress the proliferation of blood 

cells of the myeloid lineage and thereby lead to toxicity problems[184]. However other nucleoside 

analogue being evaluated in clinical trials is zebularine.   

Zebularine is a cytidine analogue originally synthesised as a cytidine deaminase inhibitor. 

Zebularine effects seem to be more selective for cancer cells then non-malignant cells as 

cancerous cells have a higher proliferation rate than non-malignant cells [128]. Besides being an 

effective inhibitor of DNA methylation, Zebularine possesses a number of properties desirable for 

a therapeutic agent.  Zebularine has a very stable half-life [185]. Orally administered Zebularine 

has been shown to cause demethylation and reactivation of a silenced and hypermethylated p16 

(CDKN2A) gene in bladder tumour cells grown in nude mice (25). Other studies also show that 
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zebularine is cytotoxic in vitro and in vivo (25). Due to its low cytotoxicity Zebularine can be given 

continuously at low doses to maintain demethylation for a prolonged period [185]. 

 

1.2.5.2 Histone Deacetylase Inhibition 

At present an array of drugs with HDAC inhibitory effects have been described and are currently 

under clinical trials. However the FDA has only approved one HDAC inhibitor, Vorinostat also 

known as SAHA for the treatment of cutaneous T-cell lymphomas [186]. 

The biochemical structures of HDAC inhibitors are extremely heterogeneous. The vast majority of 

HDAC inhibitors are designed to interfere with the catalytic domain of HDACs and thereby block 

substrate recognition and induce gene expression. The HDACs described so far greatly vary in 

structure and origin and can be sub-classed based on their distinct chemical properties as shown 

in table [128]. 

Table 1.3 HDAC inhibitors 

Name Chemical nature Clinical status Reference  

Sodium phenylbutyrate Short-chain fatty acid Phases I, II [187] 
Sodium butyrate Short-chain fatty acid In Clinical trial [128] 
Valproic acid Short-chain fatty acid Phases I, II [188] 
OSU-HDAC42 Short-chain fatty acid Not yet in clinical trial [189] 
Trichostatin A Hydroxamic acid Not yet in clinical trial [190] 
Vorinostat Hydroxamic acid Approved (CTCL) 

Phases I, II and III 
[191] 

Panobinostat Hydroxamic acid Phases I, II and III [128] 
Belinostat Hydroxamic acid Phases I, II [192] 
Romidepsin Cyclic peptide Phases I, II [193] 
Entinostat Benzamide Phases I, II [194] 
MGCD-0103 Benzamide Phases I, II [195] 

 

The short chain fatty acids comprise of one class of HDAC inhibitors of which Valproic acid for 

example has been shown to be efficient in reducing tumour growth and metastasis formation in 

breast cancer rat model [187]. Treatment with valproic acid has also resulted in differentiation of 
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transformed cells [187].  The hydroxamic acids comprise another class of HDAC inhibitors, which 

inhibit zinc-dependent HDACs, including Trichostatin A (TSA). The zinc binding group is analogous 

to the acetyl group of the histone N-acetylated lysine. Treating cells with TSA results in high levels 

of acetylated histones [190]. Differentiating and antiproliferative activities have also been 

observed when treating murine erythroleukaemia cells with TSA at a nanomolar concentration 

[190]. Despite the many anticancer effects of TSA the drug is not in clinical trials due to its severe 

side effects. It could be expected that HDAC inhibitors would have a global effect on gene 

expression as they are supposed to block several classes of HDAC, This is not the case it seems 

that HDAC inhibitors only affect a small fraction of the transcriptome [128]. To date interactions 

between HDACs and a large number of non-histone proteins such as transcription factors, DNA 

repair enzymes, structural proteins and signal transduction mediators have been shown and the 

role of HDACs as key players in many different cellular processes is accepted [196-199]. Therefore 

the various interactions makes it difficult to establish the precise mechanisms of HDACs and in 

turn develop HDAc inhibitors capable of re-activating tumour suppressor genes without 

undesirable effects [128] [200].  

 

1.2.5.3 Combination strategies: DNMT inhibitors combined with HDAC inhibitors. 

Since DNA methylation and histone deaceytlation are both important in the epigenetic 

inactivation of tumour suppressor genes it is acceptable to use DNMT inhibitors and HDAC 

inhibitors in combined treatments strategies. A synergistic effect of combined DNMT inhibitors 

and HDAC inhibitors has been observed in colon cancer cell lines at hypermethylated tumour 

suppressor gene loci including CDKI p16 [201], but have yet to be established together in 

published clinical trials. Initially it has been demonstrated that administration of TSA alone did not 

re-activate densely methylated tumour suppressor genes p16, however when the cancer cells 

were treated with DNMT a synergistic effect of the two drugs was observed [202]. Collectively 
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these findings show that combined therapies that target epimutations offer new therapeutic 

options. 

 

1.2.5.4 Combination strategies: epigenetic therapy and chemotherapy. 

Many HDAC inhibitors; TSA, belinostat and vorinostat have been shown to act as synergists with a 

large number of chemotherapeutic drugs such as paclitaxel, gemcitabine, cisplatin, etoposide and 

doxorubicin [203] have been investigated in cell line model systems [203-206]. In particular the 

administration of DNMT1 inhibitors or HDAC inhibitors before chemotherapy seems to be a 

promising strategy to overcome the development of multidrug resistance as acetylation of core 

histones provides an open conformation making DNA more accessible to drugs [203]. Pre-

treatment of cancer cells with TSA or vorinostat before applying chemotherapeutic drugs; 

ellipticine, doxorubicin and cisplatin increased the sensitivity of the drugs with more than 10 fold 

in brain tumour cell line. The effect was specific [203]. Applying the drugs in reverse order 

initiating with the chemotherapeutic drugs had no effect. The broad capacity of HDAC inhibitors 

to synergise with various chemotherapeutic drugs indicates that they lower the threshold for 

cancer cells to undergo apoptosis mediated by the drugs. However further studies on the effects 

of HDAC inhibitors in combination with chemotherapeutic drugs are needed.  

 

1.2.5.5 Combination strategies: epigenetic therapy and radiation therapy. 

Radiotherapy has widely been used for the treatment of cancer and the search has been for 

different compounds to modulate the cellular response such as radiation sensitizer and also to 

protect against acute and late effects of ionization radiation; radioprotectors [207]. 
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HDAC inhibitors are thought to be able to modulate the effects of ionizing radiation by changing 

gene expression causing cells cycle arrest, growth inhibition and induction of apoptosis [208]. TSA, 

valproic acid, vorinostat have been found to enhance the sensitivity towards ionization radiation 

of different cell lines [209, 210]. The modulation of cell cycle arrest in G-1 phase by inhibition of 

DNA synthesis in the S phase, induction of apoptosis and down regulation of surviving signals 

contributes to irradiation sensitivity of the cells, when HDAC inhibitors are administered at high 

concentrations. However at lower non-toxic concentrations HDAC inhibitors can still modulate 

insensitivity by affecting the expression of genes involved in response to DNA damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
     54 

 
  

1.3 Role of Receptor mediated signalling in the pituitary cells 

1.3.1 Receptors as mediators of endocrine signals 

Proliferation and differentiation of cells during development and the maintenance of cellular 

homeostasis require a continuous flow of information to the cell. This is provided either by the 

diffusing molecules or by the direct cell-cell or cell-matrix interactions. Cells utilise a wide variety 

of molecules and signal transduction systems to communicate to one another and exert their 

effect by interacting with specific receptor proteins that are coupled to one or more intracellular 

effector systems. The presence of an appropriate receptor therefore defines the population of 

target cells for a given effector molecule and provides a molecular mechanism by which the 

effector molecule elicits its biological function [211]. 

 

1.3.2 Receptors expressed by the pituitary cells 

Similar to most other cells in the body, pituitary cells express a wide spectrum of receptors. It 

would be beyond the scope of this thesis to include a discussion of all of the receptors expressed 

by the pituitary gland. However, and for completion Table 1.4 summarises the receptors thus far 

identified as associated with the pituitary gland. In this thesis more detailed consideration will be 

given to receptors and their ligands that impact on hormone secretion and or growth.  

One set of important receptors are the GPCRs, these play important roles in a variety of biological 

and pathological processes such as development and proliferation, neuromodulation, 

angiogenesis, metabolic disorders, inflammation, and viral infection. The GPCR is one of the most 

targeted protein families in pharmaceutical research today representing approximately 35% of 

the top 20 prescribed FDA-approved drugs [212]. In addition, the GPCRs expressed by the 
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pituitary gland (Table 1.4) also include Somatostatin (SSTR1-5) and Dopamine (D1-5) receptors, 

which have been extensively utilised in the clinical treatment of pituitary tumours.  

Mutations in any component of the G protein-coupled signal transduction pathway may cause 

disease including G-protein α-subunits. Genes encoding these molecules are targets for loss and 

gain of function mutations which therefore result in endocrine, metabolic and developmental 

disorders (1-6). In particular mutations in GPCR and G-protein genes typically lead to hormonal 

resistance syndromes. Heterotrimeric guanine nucleotide protein (G protein) are composed of 

three subunits α, β and γ, the functional specificity of each G protein depending on the α-subunit 

which differ from one G protein to another [213]. The guanosine diphosphate (GDP)-bound α-

subunit binds tightly to βγ and is inactive, whereas the GTP bound form dissociates from βγ and 

activates the effector proteins. The interaction of an agonist with the specific GPCR causes 

exchange of GDP to GTP in the α-subunit, while the turn off is timed by GTP hydrolysis. The α-

subunit triggered effectors are enzymes of second messenger metabolism and ion channels. They 

induce short term effects on hormone secretion, neurotransmission and muscle contractions as 

well as long term effects on gene transcription [214]. 

The G proteins that have demonstrated to be targets of disease causing mutations in pituitary 

adenomas is Gsα , and Gsα that mediates adenylyl cyclase activation and cAMP formation. To 

date, the gene encoding Gsα (GNAS) is the only gene encoding a G protein that has been 

identified as a target of either gain of function mutation that unequivocally cause endocrine 

disease. Activating mutations lead to proliferation of endocrine cells in which cAMP is a mitogenic 

signal leading to somatotrophs, thyroid, adrenal and gonadal adenomas or McCune-Albright 

syndrome (9).  
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Figure 1.14 Diversity of G-protein coupled receptors (GPCRs). A wide variety of ligands including 

biogenic amines, amino acids, ions, lipids and proteins use GPCRs to stimulate cytoplasmic and 

nuclear targets through heterotrimeric G protein dependent and independent pathways. Such 

signalling pathways regulate key biological functions such as cell proliferation, cell survival and 

angiogenesis. Adapted and modified from[215]. 
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Table 1.4: Receptors expressed in the pituitary gland 

Receptors studied in the pituitary References 

G-Protein receptors (G-PCRs) 
Adenosine receptors )A1, A2A, A2B, A3) 

[216] 

Angiotensin (AT1A, AT1B, AT2) [217] 

Adiponectin receptors (ADIPOR1, ADIPOR2) [218] 

Complement C3a receptor1 (C3aR1) [219] 

Complement C5a receptor 1 (C5aR1 or CD88) [220] 

Corticotrophin-releasing hormone receptor 
(CRHR1 & 2)  

[221] 

Dopamine receptor (D1-5) [222] 

Endothelin receptor ( ETA, ETB) [223] 

Epidermal growth factor receptor (EGFR)  [224] 

Fibroblast growth factor receptors (FGFR 
1,2,3,4,6) 

[225] 

Growth hormone releasing hormone receptor 
(GHRHR) 

[226] 

Gonadotropin-releasing hormone receptor 
(GnRHR) 

[227] 

GABA receptor B (GABAB) [228] 

Luteinizing hormone receptor (LHR) [229] 

Melatonin receptor (MT1 & MT2) [230] 

Purinergic receptors (PI-A1, A2A, A2B, A3 & 
P2Y-P2RY1,2,4,5,6,8,9-14) 

[231] 

Serotonin receptor (5HT1,2,4-7) [232] 

Somatostatin receptor (SSTR1-5) [222] 

Tachykinin receptor2 (NK2) [233] 

Thyrotropin-releasing hormone receptor 
(TRHR) 

[234] 

Vasopressin receptor (V1B or V3) 
Non- G-protein coupled receptors (Non-
GPCRs) 

[235] 

Estrogen receptors (ER-1 & 2) [236] 

Insulin Receptor (CD220) [237] 

Insulin-like growth factor 1 (IGF-1) [238] 

Interleukin-1/6 receptor (CD126-CD130 
complex) 

[239] 

GABA receptor A (GABAA) [240] 

Purinergic receptors (P2X1-7) [241] 

Prolactin receptor (PRL-R) [242] 

Ryanodine receptors (RyR3) [243] 

Serotonin Receptor (5HT3) [232] 

Stromal cell-derived factor-1 (SDF-1 or CXCL12) [244] 

Vascular endothelial growth factor receptors 
(VEGFR1-3) 

[245] 
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1.3.3 Receptor mediated treatment of pituitary tumours 

The treatment of pituitary tumours is largely dependent upon the adenoma subtype. Some 

tumours are removed surgically while others are treated medically and in some cases a combined 

approach is adopted. Surgery has been the first line of treatment in acromegaly (GH secreting 

adenomas),  non-functioning tumours and corticotroph adenomas that give rise to Cushing’s 

disease [246]. For prolactinomas, the first line of treatment and usually the most successful is 

medical treatment employing dopamine agonist [247, 248]. Therefore, only in those cases where 

medical intervention has failed through either drug resistance and/or intolerance would surgical 

intervention be considered as a therapeutic option [200, 247]. Complications such as 

hypopituitarism, Cerebrospinal fluid leakage, the dependence upon lifelong hormone 

replacement therapy and either regrowth or recurrence (especially in Cushing’s disease) [246] are 

the major disadvantages associated with the pituitary surgery. 

With availability of dopamine (DA) agonist and Somatostatin analogues (SSA), the medical 

treatment of pituitary adenomas and in particular for prolactinomas and inhibition of hormone 

secretion in GH secreting adenomas respectively has shown significant improvement. DA agonists 

comprise the  ergots (Bromocriptine, Pergalide, Metergoline, Lisuride, Terguride and carbogoline) 

and non-ergot derivatives (the Quinagolide compounds). The efficacy of dopaminergic 

compounds in the treatment of prolactinomas is well established with almost 90% success rate 

[249, 250]. Clinically useful formulations of SSA are useful for suppression of GH secretion  in 

acromegaly [251] and in some TSH secreting adenomas [252]. In case of acromegaly, SSAs 

effectively lower  serum GH in more than 90% of patients, normalise IGF-I in 40-60% and some 

reports show reduction in tumour size in almost half of these patients [253]. 
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1.3.4 Expression of D2 and Somatostatin receptors in pituitary tumours 

DA agonists and SSA requires the presence of their respective receptors for their activity. 

Dopamine receptors belong to the G-protein coupled receptor superfamily and at least five 

subtypes of dopamine receptors have been identified (D1, D2, D3, D4 and D5) [254, 255]. These 

are further divided into two groups on the basis of their amino acid sequence and their 

pharmacological properties. The first group are Gα coupled D1 like receptors which stimulate 

adenylyl cyclase activity and it comprises of D1 and D5 receptors. The second group is Gαi/o-

coupled D2 like receptor which inhibit adenylyl cyclase activity and comprises D2, D3 and D4 

receptors.  D2-like dopamine receptors influence additional signalling mechanisms including the 

modulation of potassium and calcium channels [256]. In addition, D2 like receptors also exist in 

two variant forms e.g D2short and D2long. Dopamine stimulation via D2short receptor subtype has 

shown to be greater than that via D2long [257]. It is the D2 receptor that plays a major role in 

mediating the inhibition of dopamine on PRL release compared to D1, D3, D4 and D5 [258, 259]. 

The detailed signalling mechanism induced by dopamine and its agonists will be described in a 

subsequent section. 

Somatostatin (SRIF) regulates the secretion of multiple pituitary derived hormones that include 

GH, PRL and TSH and also has effects on proliferation through binding G protein-coupled SRIF 

receptors. There are five subtypes of this receptor SST1, SST2, SST3, SST4 and SST5 [260]. 

Alternative splicing generates two isoforms of SST2 receptor, these being, SST2A and SST2B [260]. 

Similarly, the expression of SST4 is also rather infrequent in the anterior pituitary. SSA receptor 

activation mediates cytostatic effects and cell cycle arrest in G1, or apoptosis following SSA 

treatment of tumour cells both in vitro and in vivo [261]. Activation of SST2 and SST5 are involved 

in the control of GH secretion [262, 263]. Some reports suggest that the activation of receptors of 

SST1, 2, 4 and 5 induce cell cycle arrest and apoptosis [264]. Downstream activation of 
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phosphotyrosine phosphatases (PTPs) by SSTs represent one of the main intracellular mechanisms 

involved in the antiproliferative effect of SRIF and analogues [265].  

Both SST and D2 receptors are expressed in pituitary adenomas. The D2 receptor which is 

expressed by all types of pituitary tumours, is associated with two or more SST subtypes in 

different adenoma subtypes [reviewed in [266, 267]. For example SST2 and SST5 are associated 

with D2 receptors in the majority of GH-secreting adenoma [268-270] while D2 has been shown 

to associate with SST1, SST2 and SST5 in prolactinomas [270, 271]. Non-functional pituitary 

adenomas express mainly SST3 to a lesser degree, SST2 and rarely associated with SST1 [270, 272, 

273]. D2 and SST5 are almost equally represented in the corticotropes tumours [274, 275]. Finally 

TSH secreting adenomas, expression of SST1, SST2 and SST5 and D2 receptors have been reported 

[270, 276]. Figure 1.15 illustrates the spectrum of D2 and SST receptor subtypes in different types 

of pituitary adenomas. 
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Figure 1.15: The distribution of Somatostatin and D2 dopamine receptors in the different type 

of pituitary adenomas. The D2 is the receptor mostly represented in the pituitary tumours and is 

preferentially associated with SST2 and 5 in somatotrophinomas, with SST1 and SST5 in 

prolactinomas, with SST2 and 3 in non-functioning adenomas and SST5 in corticotrophinomas. 

Adapted from [277]. 
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1.3.5 Dopamine D2 receptor mediated signalling in the pituitary cells 

Dopamine receptors are important for mediating the effects of dopamine and its agonists on the 

pituitary cells. Dopamine secreted from the hypophyseal hypothalamic neurons is a principal 

inhibitory regulator of prolactin (PRL) release by pituitary lactotropes [278]. Similarly, DA agonists 

inhibit PRL secretion from lactotropes in patients with prolactinomas. In addition DA agonists also 

cause tumour shrinkage in prolactinomas [248, 279, 280]. 

In addition to its role in the inhibition of PRL release from the Lactotropes, DA agonist cause 

shrinkage of pituitary tumours especially of prolactinomas [281]. In normal lactotropes and their 

corresponding tumours the molecular pathways through which dopamine and more particularly 

its agonists inhibit proliferation and/or lead to tumour shrinkage are currently under investigation 

[282, 283]. Studies of dopamine and dopamine agonist mediate effect on pituitary cell 

proliferation/death have made extensive use of rodent and murine tumour cell lines relative to 

cultured anterior pituitary cells from these species [284-287]. In these cells, dopamine and its 

agonist have been shown to induce apoptotic cell death [282-289].  

Binding of the DA or its agonist to pituitary D2 receptors mediate the activation or inhibition of a 

series of effector molecules which determine the downstream signalling necessary for the 

physiological effects. The intricate details of D2 mediated signalling in normal and tumour cells 

and their differences especially with respect to antiproliferative and apoptotic functions are 

poorly understood. However, as discussed earlier the involvement of some of the intracellular 

messengers have been confirmed in the pituitary cells and these have been illustrated in figure 

1.15. Binding of dopamine or its agonists to D2 receptor (in both normal and pituitary tumour 

cells) inhibits adenylyl cyclase enzyme and phosphatidylinositol metabolism, activates voltage-

dependent potassium channels and decreases the activity of voltage-dependent calcium currents, 

modulates the activity of phospholipase C [277]. In addition to this, the mitogen-activated protein 
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kinase and extracellular signal-regulated kinase pathway are also involved in the D2 receptor 

mediated signalling (figure 1.16). 

Different types of pituitary tumours show variable D2 expression, localized, in some cases, to both 

the cytoplasm and nuclei.  The significance of nuclear localisation of D2 receptor remains unclear 

but both isoforms of D2 receptors (D2S and D2L) are thought to be relevant to the signalling 

pathways involved in the proliferation and cell death of pituitary tumour cells [281]. Decreased 

expression of D2 isoforms have also been known to lead dopamine agonist resistance in 

prolactinomas [290]. 
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Figure 1.16: Principal signal  transduction associated with the activation of dopamine receptors 

in pituitary cells. Dopamine binding to pituitary D2 receptors inhibits adenylyl cyclase, 

phosphatidylinositol metabolism, activated voltage activated potassium channels and decreases 

voltage activated L type and T type calcium currents. It modulates the activity of phospholipase C, 

activates the mitogen-activated protein kinase and extracellular signal regulated kinase pathway.  

Adapted and modified from [277] 
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1.3.6 Use of dopamine (DA) agonists in the treatment of pituitary tumours 

Bromocriptine (see figure 1.17) is a derivative of the ergot alkaloid. The addition of the bromine 

atom renders this alkaloid a potent dopamine agonist and virtually all of its actions result from 

stimulation of dopamine receptor. 

 

          

 

Figure 1.17: Structure of dopamine and its agonist, Bromocriptine. 

 

 

 

 

 

 



  
     66 

 
  

1.3.6.1 Use in PRL secreting adenomas (Prolactinomas) 

Bromocriptine (BC) was first introduced into clinical practise in 1979, as the first medical 

treatment for prolactinomas [291]. The success of BC in patients with microprolactinomas is 80-

90% normalising serum PRL levels, restoration of gonadal function and also in most cases 

resulting in tumour shrinkage [292]. However success rate is reduced in patients with 

macroprolactinomas [260]. In these patients, headache and visual defects improves dramatically 

even within the first few days of drug treatment. 

The second most commonly used drug to treat prolactinomas is the Carbogoline (CAB). This is a 

D2 receptor selective agonist. The treatment with CAB is associated with normalisation of PRL 

levels in more than 80% of patients [293]. In addition to its effects on PRL normalisation, CAB 

treatment has also known to result in tumour shrinkage [248] and improve visual field effects. The 

only other clinically relevant DA agonist that has been used clinically to treat prolactinomas is 

Quinagolide. Like BC and Cab, Quinagolide therapy also results in normalisation of PRL levels and 

tumour shrinkage [280, 294]. 

 

1.3.6.2 Use in GH secreting adenoma (somatotrophinomas) 

The administration of DA agonist inhibits GH secretion in normal subjects [295, 296]. Treatment 

with DA agonist has been shown to be effective in those GH-tumours which co-secrete PRL [2]. In 

some studies treatment of patients with BC has resulted in 70% of symptomatic improvement but 

the effect on tumour shrinkage has only been observed in 10-15% of cases [296]. Very few studies 

report the effectiveness of Cab in GH secreting adenomas [297-299]. 
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1.3.6.3 Use in ACTH-secreting, TSH secreting & non-functional adenoma 

The medical treatment of ACTH secreting adenoma (corticotrophinoma) is reserved for patients 

with failed surgery [300]. The drugs employed in their treatment are adrenal blocking drugs (such 

as metyrapone, ketoconazole). Even though these are effective in lowering cortisol, they lack 

effect on tumour size [300]. The use of DA agonists in ACTH secreting adenoma is still 

experimental and perhaps warrants a more detailed investigation and appraisal in these patients. 

Treatment of TSH secreting adenoma does not employ DA agonist as these are ineffective in 

blocking TSH secretion. They induce tumour shrinkage only in those cases where there was a 

combined excess of TH and PRL [301]. Similarly, dopamine agonists are not employed in the 

treatment of non-functional adenoma. The reason for this is thought to be due to the low levels 

and affinity of D2 receptors expressed on the surface of NFAs [274]. Tumour shrinkage in these 

types of adenomas have also been associated with expression of short forms of D2 receptor [274]. 

However, CAB and Quinagolide have been used in treatment of NFAs with varying results [302-

304]. 
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1.3.7 Signalling pathways induced by Somatostatin or its analogue 

As already discussed, the effect of Somatostatin and its analogues (SSA) are mediated through the 

activation of PTX sensitive Gi/o couple SST (SST1-5) receptors in the pituitary cells [305]. 

Interaction of Somatostatin with its receptors inhibit  secretion of a wide range of hormones such 

as GH, PRL, TSH and ACTH from the normal pituitaries and also the pituitary tumour cells [253, 

262, 306, 307] [308-311]. Activation of SST2 and SST5 play a major role in the control of GH 

secretion [262, 263], activation of SST1,2,4 and 5 induce cell cycle arrest [264] and activation of 2 

and 3 induces apoptosis [264]. In contrast, the expression of SST4 is infrequent in the anterior 

pituitary. 

The exact mechanisms and intracellular pathways of SST subtype mediated signalling in normal 

and tumour cells and their differences especially with respect to antisecretory, antiproliferative 

and apoptotic functions are not entirely clear, however the role of some of the intracellular 

messengers have been confirmed in the pituitary cells. Therefore when SST receptors are bound 

by ligand or analogues (SRIF or SSA), they initiate a complex set of signalling events in normal and 

tumour cells which include modulation of several key enzymes (figure 1.18).  

The response of cells to SSA treatment is frequently dependent upon the receptor subtype 

specificity of the ligand. Thus, some bind to multiple different receptor subtype whilst some 

target specific receptor subtypes. In addition, despite Somatostatin analogues being available 

with high affinities for specific receptors [252, 268, 304, 312-315] their usefulness is entirely 

dependent on cells expressing the particular receptor subtypes. The loss or reduced expression of 

SST receptor is frequently the limiting factor in a proportion of pituitary adenoma [316, 317]. In 

addition presence of other factors, as example, SSTs internalisation, desensitisation and/or 

receptor crosstalk, subcellular expression pattern of SST subtypes, presence other intracellular 

complement proteins (e.g β-arrestin involved in intracellular vesicle trafficking) will impact on 

cellular response [277, 310, 318].  
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Figure 1.18: Principal intracellular signalling cascades associated to Somatostatin receptors in 

pituitary cells. Somatostatin analogue binding to the Somatostatin receptors inhibits adenylyl 

cyclase, activates potassium channels and/or inhibits calcium channels. Phosphotyrosine 

phosphatases and mitogen-activated protein kinase are modulated as well and along the 

stimulation of phosphotyrosine phosphatases and mitogen activated protein kinase are 

modulated as well and along the stimulation of phosphotyrosine phosphatase may also produce a 

cytostatic action. Adapted and modified from [266]. 
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1.3.8 Somatostatin analogues (SSA) in the treatment of pituitary tumours 

1.3.8.1 Use in GH secreting adenoma 

SSA therapy for GH secreting adenomas yielded promising results. SSAs are successful in reducing 

serum GH and IGF-1 level in 90 % and 40-60% of patients respectively [253]. Tumour shrinkage, as 

an outcome of SSA therapy was seen in 45% of patients [319]. In patients without prior surgical 

and/or radiological intervention, SSA therapy was shown to induce tumour shrinkage in 51% of 

cases [319]. However, in patients where surgical and/or radiological intervention had been 

unsuccessful tumour shrinkage was apparent in significantly fewer cases at 29% of patients [319]. 

There are case reports that demonstrate that patients receiving SSA therapy can show tumour 

shrinkage without any effect on the GH and IGF-I levels [320, 321].  The reason for this was the 

differential expression of SSTs on tumour membranes in which SST2 being poorly expressed while 

that of SST3 and SST5 are highly expressed [320, 321]. Another disadvantage with SSA therapy is 

that tumour shrinkage was found to be reversible once the treatment was discontinued [322]. GH 

secreting adenoma co express D2 and SST2a frequently [268, 270]. Therefore, a combined 

treatment strategy employing DA agonists and SSA could be an answer to avoid/prolong the 

development of resistance in these tumour types [323]. 

 

1.3.8.2 Use in ACTH secreting and clinically non-functioning adenoma 

The drugs of choice for ACTH secreting adenomas are adrenal blocking drugs. However, combined 

treatment with CAB and SR (slow release LAN) has been employed in the treatment of ectopic 

Cushing’s syndrome and this combination showed more benefit than CAB alone [300]. Therefore, 

combined treatment strategy employing both DA agonists and SSA has been proposed but this 

requires more clinical studies. 
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Even though, SSTs are expressed by clinically non-functioning pituitary adenoma [272, 273, 324], 

SSA mediated tumour shrinkage occurs only in 10-13% of cases [325]. However a combined 

treatment with OCT and CAB was associated with tumour shrinkage in approximately 30% 

patients [326]. 

 

1.3.8.3 Use in TSH secreting adenoma 

Somatostatin inhibits the secretion of TSH in physiological conditions and in TSH secreting 

adenomas. In addition, TSH secreting adenomas express Somatostatin receptors. Therefore, SSAs 

are considered the only choice for the medical treatment of these adenomas as they are effective 

in restoring hormone levels and produce tumour shrinkage [306, 327, 328]. OCT has also been 

employed preoperatively to reduce tumour size for easy removal [329]. 

 

1.3.9 SSAs with affinities for multiple SSTs in the treatment of pituitary tumours 

Following the discovery of the SST, the initial pharmacological strategies were to construct ligands 

with a high affinity for each receptor subtype but more recently the approaches have been 

directed towards new compounds that are capable of interacting with more than one SST 

subtype. These include analogues such as BIM-23244, SOM230 (pasireotide). A bi-specific 

analogue BIM232144 can activate both SST2 and SST5 receptor and therefore achieves a better 

control of GH hyper secretion in GH secreting and mixed GH/PRL secreting adenoma [263, 313]. 

Corticotroph adenomas which express higher levels of SST5 relative to SST2 are more sensitive to 

universal SST ligand, pasireotide [312]. It has been demonstrated recently that pasireotide can 

modulate SST trafficking [330] distinct from other SSA analogues and thus providing an alternate 
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explanation for the differential regulation of SST responsiveness during long term administration 

of SSA analogues. 

1.3.10 DA agonists and SSA chimeric molecules Dopastatin in the treatment of pituitary 

tumours 

As illustrated in figure 1.15 the majority of pituitary adenoma co-express SST and D2 receptors on 

their surface. Depending upon the phenotype of the tumours, the expression of these receptors is 

variable. Based on this information a new chemical approach has been adapted which consisted 

of synthesising chimeric molecules containing structural elements of both Somatostatin and DA 

agonist and direct against both the superfamilies of GPCRs). This was attempted with the view 

that such molecules will enable co-engagement and activation of both receptors and therefore 

would increase clinical efficacy [314]. The first molecule of this class were BIM-23A387 (SST2 and 

D2) and BIM-23A760 (SST2, SST5 and D2 affinity). These molecules were effective in controlling 

hormone hypersecretion in human GH-secreting adenomas in vitro [314, 331] which were 

partially responsive to long term treatments with octreotide or lanreotide. In addition, these 

chimeric compounds were also effective in GH/PRL secreting adenomas in vitro [314]. The use of 

dopamine Somatostatin chimeric molecules in other types of pituitary tumours is still unknown 

and requires further studies. 
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1.3.11 Developments in the medical treatment of ACTH secreting adenomas. 

The first line treatment for Cushing’s syndrome is surgery however additional treatments are 

necessary if surgery is not successful. This is performed through various medical therapies that 

have been recently reviewed [332, 333]. Adrenal directed therapy (steroidogenesis inhibitors) 

may be highly effective but does not treat the underlying tumour or restore normal pituitary 

secretory dynamics [332]. The most experience with steroidogenesis inhibitors has been acquired 

with metyrapone and ketoconazole which appear to be more effective and better tolerated than 

aminoglutethimide [334, 335]. Metyrapone treatment leads to inhibition of aldosterone 

biosynthesis and accumulation of aldosterone precursors with mineralocorticoid activity. 

Electrolyte balance and blood pressure levels vary individually with the degree of aldosterone 

inhibition and 11 deoxycorticosterone stimulation levels however these have many side effects 

[336]. 

Pituitary directed therapy targets the underlying cause of the disease and there are several 

investigational agents under evaluation [16, 335, 337, 338], subsequent studies do not support a 

routine clinical role for the use of peroxisome proliferator activated receptor –γ (PPAR-γ) agoinsts 

such as rosiglitazone and pioglitazone [339, 340]. 
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1.3.12 Bone Morphogenic Protein (BMP) a transforming Growth Factor-β (TGFβ) in 

pituitary signalling. 

Bone morphogenetic protein (BMP)-4 is a key mediator of anterior pituitary organogenesis. The 

bone Morphogenic proteins are members of the TGF-β superfamily of multifunctional secretory 

peptides. To date more than 20 TGF family members have been described and these can be 

further subdivided into several groups on the basis of their structure and function. Two of the 

best studied members of this family, BMP-2 and BMP-4, share significant homology and have 

been shown to play a significant autocrine and paracrine roles in anterior pituitary organogenesis. 

BMP-4 is thought to have differential role depending on the pituitary cell subtype. It is thought to 

have growth promoting and inhibiting roles and has been recently reviewed [341]. 

 

1.3.12.1 BMP action on Lactosomatotrope cells 

The discovery of BMP-4 action on differentiated pituitary lactotroph cells was first reported by 

Paez-Pereda and group [31]. The BMP-4 molecule was found to be overexpressed in lactotropes 

adenomas derived from dopamine d2 receptor null mice and also estrogen induced female rat 

tissue. Increased BMP-4 expression was also detected in prolactinomas compared to its 

expression levels with other functioning and non-functioning tumour tissue [31]. Biologically 

BMP-4 only promoted lactotrope cell proliferation but also prolactin production in conjunction 

with Smad-estrogen receptor interaction[342]. 

BMP-4 inhibits the transcriptional activity of estrogen receptor at low doses of estradiol, however 

estrogen stimulates transcriptional activity of BMP-4 specific Smad signalling. The reciprocal 

regulation via BMP4-Smad/ER interaction promotes specific control of PRL synthesis in lactotrope 

cells [342]. However suppression of endogenous BMP receptor activity in vivo by the BMP binding 

protein noggin leads to arrest of the development of Pit-1 lineage pituitary including lactotropes 
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[343]. It was also shown by the same group that noggin expression is conversely down regulated 

in prolactinomas in D2R null mice, endogenously expressed BMP-4 promotes growth and PRL 

productivity by lactotropes through Smad-ER interaction [31]. 

Furthermore it has recently been found a functional interrelationship between BMP system and 

Somatostatin receptor expression in relation to PRL secretion [344]. Endogenous BMP actions are 

involved in the enhancement of PRL production, since BMP-4 and 6 directly increased PRL and 

also cAMP levels. Secondly, BMPs modulate SSTR sensitivity of GH3 cells in an autocrine/paracrine 

manner. Importantly, BMP-4 and 6 reduced SSTR2 expression but increased SSTR5 expression 

[344]. The effect of the SSTR5 preferring agonist Pasireotide which reduced PRL secretion induced 

by forskolin was facilitated by the presence of BMP-4 and in turn blocked by noggin treatment. 

These findings indicate that endogenous BMP activity up regulates SSTR5 but down regulates 

SSTR2 in lactotropes. Thus BMP-4 acts to increase PRL release and furthermore the BMP system 

plays a regulatory role in SSTR sensitivity of lactotrope tumour cells as demonstrated in figure 

1.19 [344].     

 

1.3.12.2 BMP action in Corticotrope cells 

Bioactivity of BMP action was also discovered in corticotropes as a negative regulator for the 

expression of an adrenocorticotropin precursor, proopiomelanocortin (POMC) by Nudi and group 

[345]. BMP-4 signalling suppresses endogenous POMC expression as well as POMC promoter 

activity in mouse Corticotrope AtT-20 cells. The transcription factor Pitx1 and Tpit are critical for 

differentiation of Corticotrope cells. BMP-4 stimulation activates phosphorylation of Smad 1 that 

is recruited to the POMC promoter, in which Smad1 acts through interactions with the 

transcription factor Pitx and or Tpit and functionally disrupts transcriptional activity of POMC [32] 

further demonstrating that BMP-4 inhibits ACTH secretion and cell proliferation in vitro using 
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Corticotroph cell line AtT-20 [32]. In addition AtT20 cells that were stably transfected with a 

dominant negative Smad4 and that treated with noggin have increased tumorigenicity in nude 

mice, showing enhancement of BMP-4 action can inhibit corticotrope tumour growth in vivo [32]. 

BMP-4 ligands including BMP2, 4, 6 and 7 particularly BMP-4 decreased basal ACTH production in 

corticotrope cells as demonstrated in figure 1.19 [344]. BMP-4 inhibited Corticotropin releasing 

hormone (CRH) induced ACTH production and POMC transcription by suppressing CRH induced 

MAPK activity in these cells [341]. The actions of the CRH peptides are mediated through splicing 

variant forms including CRH receptor (CRHR) type 1 and type 2.  CRHR activation results in 

GTP/GDP exchange on the G protein subunit leading to the activation of a series of signalling 

pathways. CRH activates numerous pathways and amongst these cascades BMP-4  suppresses 

CRH induced phosphorylation of ERK and p38 pathways [344]. This indicates that ERK and p38 

activation is likely to occur upstream of cAMP synthesis and that cAMP-PKA and ERK pathways are 

functionally connected. In addition the cAMP-PKA pathways also contributes to Smad 1/5/8 

signalling suggesting that endogenous BMP may act as an auto regulatory machinery to control 

ACTH overproduction [344]. 
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Figure 1.19: Action of BMP-4 as a bifunctional protein 

Action of BMP4 as a bifunctional protein in prolactinomas and Corticotrophinomas. Differential 

action of BMP-4 on lactotroph and corticotroph cells. BMP-4 induces prolactin secretion and cell 

proliferation in lactotroph cells meanwhile inhibits corticotroph cell proliferation and 

adrenocorticotrophic hormone secretion. Adapted from [346]. 
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1.3.13 Retinoic acid in the inhibition of ACTH secretion 

The potential of the retinoids and in particular retinoic acid (RA) as a treatment option for 

pituitary adenomas have been explored by several groups [341, 347-349]. In corticotroph 

adenoma cell line, At-T20, Ra inhibits ACTH biosynthesis and POMC transcription and mediates 

the observed decrease in cell proliferation and cell viability [347]. However predating these 

studies, similar endpoints have been reported in an in vivo nude-mouse model of Cushings 

syndrome and most likely focused attention on the potential of the retinoids as effectors in 

pathways leading to inhibition of hormone secretion and tumour growth [31]. Indeed, a 

subsequent and seminal finding from this group described a significant role for BMP-4 in the 

genesis of pituitary adenomas [31]. However retinoic acid is in its early days of testing and 

requires more work before it reaches clinical trials.  
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2. AIMS OF THIS STUDY 

With limited but important exceptions genetic aberration responsible for the outgrowth or those 

that characterise human pituitary adenomas are infrequent findings. However, at the outset of 

my research it was already apparent that epigenetic changes, apparent, at that time, as 

inappropriate methylation of CpG islands, were a frequent finding. Equally, in a clinical 

management context, it was also apparent that response to medical intervention strategies was 

effective in a limited range of adenoma subtypes and even in these cases resistance to 

therapeutic intervention was a frequent finding.  

Therefore, in this thesis the principal questions I wished to address related to mechanisms 

responsible for resistance to medical intervention. In this case my hypothesis was that sensitivity 

or resistance would be contingent on the expression status of specific receptors. If this were the 

case, then I proposed that resistance to conventional therapeutic interventions reflected changes 

to receptor-associated epigenetic landscapes. 

To test this hypothesis it was necessary to use characterised pituitary tumour cells and examine 

change in these cells and also in primary human pituitary tumours of different subtypes. It was 

also an aim of this work to reverse epigenetic changes, with the so named epidrugs, and in some 

experiments determine the consequences for apoptotic responses.    

To address these aims receptor pathways associated with dopaminergic regulation (D2 receptor 

[D2R]) and the cytokine (bone morphogenic protein 4 [BMP-4]) pathway were investigated in 

pituitary cell lines and primary tumours. The epigenetic aberrations examined included CpG island 

methylation and chromatin remodelling, in this case manifest as histone tail modifications.  

These studies and the data emerging from them prompted me to determine the effects of retinoic 

acid on the BMP-4 pathway in the context of growth promotion and growth inhibition in a 

pituitary cell type specific context.     
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Chapter 3: Materials & Methods 
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Cell Culture Methods 

3.1 Pituitary Cell Lines: 

AtT-20 Cells 

The AtT-20/D16v-F2 (AtT-20) murine pituitary adenoma cell line in the corticotroph lineage was 

purchased from the European collection of Cell Cultures (ECACC, Porton Down, Salisbury, UK). 

Cells were passage 13 upon purchase but were designated passage 0 for the purpose of these 

studies. Cells were not passaged more than 10 times for the studies described in this thesis. 

 

GH3 Cells  

The rodent pituitary adenoma cell line (GH3, ATCC code: CCL-82.1) in the somato-lactotroph cell 

lineage were purchased from the American Type Culture Collection (Manassas, Virginia). Cells 

were passage 1 upon arrival and were designated passage 0 for the purpose of these studies. Cells 

were not passaged more than10 times for the studies described in this thesis.  

 

MMQ Cells 

MMQ cells, a rat pituitary cell line in the lactotroph cell lineage (CRL-10609) were also purchased 

from the American Type Culture Collection (Manassas, Virginia). Cells were passage 1 upon arrival 

and were designated passage 0 for the purpose of these studies Cells were not passaged more 

than 5 times for the studies described in this thesis.   
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3.2 Growth Conditions 

The GH3 and AtT-20 cell lines were grown  in Dulbecco’s modified Eagle’s Medium (DMEM) with 

4500mg/L of glucose, 0.584g/L of L-Glutamine and 0.11g/L of sodium pyruvate (Biosera, Ringmer, 

UK), and supplemented with 10% heat-inactivated fetal bovine serum (FBS, Biosera). The MMQ 

cell line was grown in Hams-F12 media (Biosera) supplemented with 2.5% FBS and 10% horse 

serum (Biosera). Cells were incubated in a Thermo Scientific HEPA filtered single chamber water 

jacketed incubator, at 37⁰C in a humidified 5% CO2 atmosphere. 

 

3.3 Antibiotic Supplementation 

To minimise the risk of bacterial infection the cell culture medium was supplemented with 

4µg/mL of aminoglycoside antibiotic Gentamycin (Sigma-Aldrich, Dorset, UK) and 2µg/mL of 

antibiotic ampicillin (Sigma). 

 

 3.4 Detachment of adherent cells 

Prior to experimental manipulation or routine passage of cell lines it was first necessary to detach 

and dissociate adherent cells from each other and from the base of culture flask. This was 

achieved using a solution of 1.7mM EDTA. Cell dissociation was facilitated by mechanical pipetting 

to further aid the release of the cells into solution before use.  Cells were incubated for 5 minutes 

at room temperature and then following vigorous pipetting. Cells were neutralised by addition of 

1 volume of DMEM containing 10% FBS. Resuspended cells were transferred to a sterile 15mL 

polypropylene tube (Sarstedt, Leicestershire, UK) and centrifuged at 150 x g for 5 minutes at room 

temperature in MSE Mistral 2000 centrifuge (UK). The cell pellet was re-suspended in fresh 

medium by careful pipette mixing. 
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3.5 Culture Vessels 

The type of vessels in which the cells were cultured depended on the experimental procedure 

being undertaken. For general sub-culturing purposes T25 filtered tissue culture flasks (Sarstedt, 

Leicester, UK) were used, whereas T75 filtered tissue culture flasks were used for the purpose of 

growing cells to sufficient density for cryogenic storage. A variety of tissue culture plates (96-well, 

24-well, 12-well, 6-well; Sarstedt) were used for transfection and drug treatment studies. 

 

3.6 Sub-culture  

Sub-confluent (70-80%) cells were routinely sub-cultured in sterile conditions every three to four 

days. Cultured medium was removed and cells were washed with PBS, and then PBS-EDTA was 

added to cells and further diluted with media post detachment as described above. Diluted cells 

were then transferred to a 15mL tube and centrifuged. Cells were then resuspended prior to 

counting with a haemocytometer. Cells were then diluted to 1 X105 per mL and transferred to the 

appropriate culture vessel and incubated at 37°C. For routine culture cells were not grown 

beyond 10 passages and at this point, earlier passage and cryopreserved cells were revived from 

liquid nitrogen storage. 

 

3.7 Cryopreservation of cells 

For long term storage cells were cooled to sub-zero temperatures in a solution containing the 

cryopreservant dimethyl sulphoxide (DMSO). Cells were first grown to approximately 75% 

confluence in a T75 tissue culture flask and were then released from the adherent surface as 

described above and transferred to a 15mL polypropylene tube, and centrifuged at 150 x g for 5 

minutes. Cell pellets were re-suspended in 900µL of FBS (90%) and 10% DMSO (Sigma), and 
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transferred to a 2mL cryovial (BD labs). Vials were placed into a “Mr Frosty” freezing container 

(Nalgene, Neerijse, Belgium) filled to the appropriate level with isopropanol (Sigma) and frozen 

overnight at -80°C. Frozen vials were then transferred to liquid nitrogen. 

 

3.8 Reviving cryopreserved cells 

Cells were revived from liquid nitrogen storage by rapid thawing to 37°C. Thawed cell were 

transferred to a 50mL polypropylene tube and 20mL of DMEM without FBS supplemented was 

added in a drop wise motion with constant swirling. Cells were then centrifuged 150 x g for 7 

minutes and re-suspended in 6mL of DMEM containing 10% FBS. Cells were then transferred to a 

T25 tissue culture flask and incubated overnight at 37°C. The following day medium was replaced 

in order to remove dead cells, whilst healthy cells were grown to sufficient density for sub-

culturing purposes. 

 

3.9 Cell Counting 

Disposable haemocytometer chamber (Glasstic® Slide 10 with grids, Hycor Biomedical Inc, 

California, USA) were used to count cells. Cells were first stained with trypan blue to distinguish 

dead from live cells and suitable dilutions, such that between 20-50 cells, in each of the squares 

were enumerated to determine live-cell counts.  The average number of cells per millilitre 

(cell/mL) was determined using the equation below. 

Total number of cells per mL = average count per mm2 X 104 X Dilution factor.   
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3.10 Transfections 

Lipofection 

Lipofection is a technique used to introduce genetic material into cells via liposome mediated 

endocytosis. Liposomes are artificially prepared vesicles that are composed of a phospholipid 

bilayer, a property that allows them to easily fuse with the mammalian cell membrane. This 

technique is efficient and is capable of transfecting most types of nucleic acids into a wide range 

of cell types. This technique is simple and reproducible generally showing minimal toxicity. For the 

studies described in this thesis this technique was used exclusively for the introduction of small 

interfering RNA (siRNA). 

In these cases, Lipofectamine 2000 (Invitrogen (Life Technologies) was used to introduce siRNA 

into the cell lines. Details of the specific siRNAs used in this study and their targets in rodent cells 

are provided in the Appendix I.  

The day before transfection cells were seeded at a density of 2 X105 cells per well in a 6 well plate 

such that the cells would be at approximately 50% confluence at the time of transfection. 

Lipofectamine 2000 was mixed prior to use and diluted 1:50 in serum free DMEM media (5µL in 

250 µL total volume). In a separate tube, 20nM of the siRNA was combined with serum free 

DMEM (total volume of 250 µl), and both sets of tubes were incubated at room temperature for 

20 minutes. After incubation diluted Lipofectamine 2000 and the siRNA mixtures were combined 

and gently mixed by pipetting. The tubes were then incubated for 20 minutes at room 

temperature. Meanwhile, culture medium was aspirated from the 6 well plates and wells were 

washed with serum free DMEM And then replaced with addition of 1.5mL DMEM, and 

Lipofectamine 2000:nucleic acid complexes. The mixture was added in a drop wise manner to the 

appropriate well using a 1mL pipette. Plates were gently rocked from side to side and then 

incubated for 6 hours in a CO2 incubator. After the incubation a further 2mL of DMEM containing 
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20% FBS was added to each well such that the final concentration of the FBS in the medium was 

10% (in a 4mL total volume). For all transfection procedures a “sham” transfection was included 

where no nucleic acid was added to the Lipofectamine complex. This control was used to 

determine and account for the effects of Lipofectamine 2000 alone on cell viability.  In addition, a 

non-targeting siRNA control was also included along with the sham and siRNA treated reactions. 

The non-targeting control siRNA was used to establish the non-specific effects of siRNA per se on 

gene expression.   
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3.11 Incubation of cell lines with pharmacological agents 

The most commonly used drugs in this study were 1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-

one also known as Zebularine and Trichostatin A (Sigma, UK). Zebularine is a cytidine deaminase 

inhibitor and a DNA demethylating agent. TSA (Trichostatin A) is a histone deaceytlase inhibitor 

[350-352].  

Zebularine was prepared in DMSO and TSA was prepared in ethanol. Both drugs were stored at -

20°C.Typically, drugs were stored as stock solutions: Zebularine (1 µM) and TSA (10ng/mL) and 

diluted prior to use. 

24hours prior to drug treatment, 2.5mL of cells, at a concentration of 1 x 105/mL were seeded 

into 6 well plates. Cells were then treated with the appropriate concentration of drug(s) (see 

figures and figure legends) every 24 hours for 48 hours. Post Zebularine and/or TSA challenges 

cells were harvested prior to extracting protein, nucleic acids and chromatin.  

In some experiments, bromocriptine (BC) [2-Bromo-α-ergocryptine methanesulfonate salt] and 

dopamine (DA) [3-Hydroxytyramine] were used. These were obtained from Sigma. Stock solutions 

were prepared in DMSO and PBS respectively and stored according to manufacturer’s 

instructions. The DA D2R antagonist Eticlopride and Haloperidol were obtained from Calbiochem 

(Nottingham, UK). The drugs were dissolved in PBS and DMSO respectively. The dose of the 

antagonists was first optimised relative to the doses of agonists used in specific experiments. In 

these experiments, antagonists were used at a dose of 25µM since higher doses were found to be 

cytotoxic. The antagonist used within the study was used to determine the specificity of D2R 

mediated response in GH3 and MMQ cells.  

In some experiments retinoic acid was used to treat cells in culture (Sigma, UK). Two forms of 

retinoic acid were used in this study 9-cis retinoic acid and all-trans retinoic acid. Both forms of 

retinoic acid were prepared as stock solutions (1µM) in DMSO and stored at -80°C away from the 
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light. In the described studies, GH3 cells and MMQ cells were treated with the 9-cis retinoic acid 

and AtT-20 cells were treated with all-trans retinoic acid.  

For the experiments described in this thesis, where cells were challenged with retinoic acid and 

the pharmacological agents described above (Zebularine and/or TSA) the following protocol was 

adopted: Cells in culture were first incubated with Zebularine and/or TSA for 48 hours prior to 

challenge with varying concentration of retinoic acid (see figures and their legends) for a further 

24 hours. In cases where cells were treated with retinoic acid alone, cells were first incubated 

with vehicle (solvent uses to dissolve the drugs) for 48 hours prior to addition of retinoic acid  

 

3.12 Colony forming efficiency assay 

In some experiments colony formation efficiency assay were used to determine the effectiveness 

of specific agents on the survival and proliferation of cells. This assay allows enumeration of cells 

able to form colonies. In this way the assay shows if a specific treatment promotes or inhibits 

growth, as determined by the number of colonies formed. Colony formation assay are also used 

to show the tumourigenic properties of cells through their ability to grow in the absence of 

substrate adherence. 

For these experiments cells were first treated with various drug or pharmacological agents 

relative to vehicle controls. The colony forming efficiency (CFE) assays were carried out in 60mm 

petri dishes (Sarstedt, Leicester, UK). For each of the petri dishes (post challenge) equal numbers 

of a single cell suspension (1.5 X 104) in complete media was prepared. Molten low melting point 

soft agar was allowed to cool to 40O C and added to the media containing cells that had been pre-

warmed to 370C. In these cases, the final concentration of soft agar was 0.3%. The dishes had a 

gridded base (Sarstedt) to facilitate enumeration of colonies. After allowing the soft agar to cool 

and set agar was overlayed with 5mL of media.  In these cases, the concentration of FBS and 
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horse serum was increased to 20 and 30% respectively and media replaced every three days. 

Typically cells were cultured for 12 days at 37°C. The number of cells that had formed identifiable 

colonies after 12 days incubation was counted using a Nikon microscope. A colony was 

determined as comprising 100 cells or more.  
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3.13 Caspase activation assay 

Activated caspases were detected using Caspase-GloTM assay kits (Promega UK) that specifically 

detects the terminal caspases (Caspase 3 and 7). Caspase-GloTM assay is a luminescent assay that 

utilises the proluminescent caspase substrate and the thermostable luciferase in a single reagent 

optimised for the caspase activity, luciferase activity and cell lysis. Addition of Caspase-GloTM. 

Addition of Caspase-Glo reagent to the cells results in cell lysis, followed by caspase cleavage of 

the substrate to generate amionoluciferin. The liberated aminoluciferin is consumed by the 

luciferase enzyme generating a “glow-type” luminescent signal. The signal proportional to the 

specific caspase acticity. This assay system enables detection of caspase activity in a multiwall 

plate format using cells (treated and untreated) in culture.  

Cells were seeded into a 96-well plate at a density of 1X105cells/mL and incubated overnight in 

growth media. For various duration of time, semi-confluent cultures were challenged with drugs 

in the absence or presence of specific inhibitors. Duplicate sets of cell treatments were carried out 

such that one set was utilised for caspase activity while the second was used for cell number 

correction. 

The assay reagents which includes Caspase-Glo substrate, Caspase-Glo buffer and MG-132 

(proteasome inhibitor), were combined to make a ready to use assay reagent. 50µl of cuklture 

media was aspirated from each well to be analysed for caspase activity (originally each well 

contained 100µl culture media). The ready to use reagent was then added to each well of the 96 

well plate containing the treated or the untreated cells in a 1:1 ratio (50µl of culture media:50µl 

of ready to use Caspase-Glo Reagent). The plates were rocked sideways to mix the content of the 

wells covered with aluminium foil and incubated at room temperature for 45 minutes. Assay was 

performed for each type of sample in triplicate wells. At the end of the incubation, 75µl of the 

content of the wells were transferred to a clean 96 well late and the luminescence was recorded 

using a plate reader. Data were analysed after correcting for cell numbers. 
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3.14 Primary Tissue material 

 

Normal Pituitary Tissue 

Pathological normal mouse pituitaries (CD-1) and rat pituitaries (Sprague Dawley) were obtained 

from a commercial source, Charles River Research laboratories (Kent, UK). 

As control normal human pituitaries were also used. These were post-mortem normal pituitaries 

acquired within 12 hours of death with no evidence of endocrine disease. The normal pituitaries 

were pulverised under liquid nitrogen using a Biopulveriser stainless steel mortar and pestle 

device (Biospec, California, USA). The resulting granular admix was then stored as 30-50mg 

aliquots in sterile tubes at -80°C until required for downstream analysis. 

 

Pituitary Tumours 

Primary sporadic pituitary tumours were also investigated within this study. They comprised each 

of the major subtypes and were graded according to a modified Hardy classification [353] The 

subtypes  were as follows: growth hormone (GH)-secreting adenomas, all of which were grade 2 

macroadenomas, corticotroph adenomas that were either  grade 1 microadenomas or grade 2 

macroadenomas, prolactinomas (PRL) that were  grades 1, 2 and 3 and  non-functioning 

adenomas (NF) that  were grade 2 and grade 3 macroadenomas. Details of each of the tumours 

used in this study are provided in Appendix II. Tumours were collected from patients during 

hypophysectomy. Adenoma subtype classification was on the basis of staining for mature 

hormone (GH, ACTH, FSH, LH and PRL but not for the α-subunit). The non-functional adenomas 

did not stain for mature hormones. All GH secreting adenomas were classified as pure 

somatotrophinomas because they did not stain for any mature hormones other than GH. None of 
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the patients harbouring GH secreting adenomas had received somatostatin analogues or 

dopamine receptor agonists before surgery and all had elevated GH (3-35mg/mL) and failed to 

suppress to less than 1ng/mL oral glucose.  The prolactinomas were derived from patients where 

all but one was dopamine agonist intolerant where in this case it was pituitary apoplexy. Prolactin 

levels were elevated in all cases and ranged from 107-1666 ng/mL. All subtypes had elevated IGF-

1 when adjusted for sex and age. 

Only those adenomas, in which tumour cells comprised at least 80% of the specimen, as 

determined at surgery and confirmed by neuropathological assessment, were used in the study. 

All tumours were freeze fractured using a biopulveriser as described for the normal pituitaries. 

Tumour tissues were obtained with informed consent, and all studies were performed with 

institutional ethical approval (Reference number: 10/H1207/46) as shown in Appendix II.   
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Molecular Biology Methods 

Cell and Tissue Extractions 

3.15 Isolation of genomic DNA from cell lines and primary pituitary tissue 

The extraction and purification of genomic DNA from cell lines and primary tissue (normal 

pituitaries and primary pituitary tumours) was performed using a standard lysis and 

phenol/chloroform procedure. The extractions used the Nucleon DNA extraction kit (GE 

Healthcare, Buckinghamshire, UK). The protocol for the lysis of samples was dependant on 

whether samples were derived from cell lines or tissue, but otherwise a common extraction and 

purification procedure was employed. 

Lysis of cell line samples: Monolayers of cells (1-3 x 105 cells) were washed once with sterile PBS 

and harvested into a PBS-EDTA solution. Cells were collected by centrifugation at 150 x g for 5 

minutes and the pellets were resuspended in lysis buffer (see Appendix III). Cell samples were 

incubated overnight at 37°C. 

 

Lysis of tissue specimens: 3mL of lysis buffer was added to 10-30mg of tissue and incubated 

overnight at 56°C.  

 

Extraction and precipitation of DNA: After overnight incubations samples were vortexed 

vigorously and an equal volume of phenol was added to lysates and mixed on a rotary shaker for 

10 minutes. The samples were then centrifuged at 914 x g for 10 minutes. The upper aqueous 

phase was then transferred to a fresh tube, and an equal volume of chloroform added and mixed 

on a rotary shaker for 10 minutes, and then centrifuged 914 x g for 10 minutes at 4°C. The upper 

aqueous layer was transferred into a fresh tube and sodium acetate was added to achieve a final 
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concentration of 0.3M. Equal volumes of 100% ethanol was added and allowed to precipitate 

overnight at -20°C. This was then centrifuged at 150 x g for 25 minutes at 4°C. The supernatant 

was discarded and the pellet washed twice with 70% ethanol. After removal of the supernatant 

the pellet was left at room temperature to dry and resuspended in 50-150µL of double distilled 

RNase and DNase free water prior to quantification and storage at -20°C. 
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3.16 RNA extraction from cell lines and primary pituitary tissue 

Total RNA was extracted using the Guanidinium iso-thiocyanate-phenol-chloroform method 

previously described (Chomczynski and Sacchi, 1987). Guanidinium isothiocyanate is a chaotropic 

compound that denatures proteins including ribonucleases, whilst maintaining the integrity of 

RNA. This can then be used for downstream processes such as cDNA synthesis and reverse 

transcription PCR (RT-PCR) analysis. 

 

Isolation from cell lines: 1-3 x 106 cells were pelleted by centrifugation at 150 x g in a 15mL 

polypropylene tube then washed in PBS, and re-suspended in 1mL of Guanidinium thiocyanate 

solution (see appendix III for composition, concentration and storage of stock solution). 

 

Isolation from tissue:  1mL of Guanidinium isothiocyanate lysis buffer was added to 10-30mg of 

tissue and homogenised in a dounce homogeniser to a slurry like consistency. Lysates were then 

transferred to a 15mL poly propylene tube. 

200µl of 2M sodium acetate (pH 4.5) was added and mixed by vortexing. RNA was extracted from 

the solution by addition of equal volume of phenol and 800µl of 24:1 chloroform isoamyl-alcohol 

solution. Vigorous shaking ensured that the organic and aqueous phases were adequately mixed, 

and samples were incubated on ice for 30 minutes. The samples were centrifuged at 914 x g for 

20 minutes at 4°C to separate the two phases; the upper aqueous phase was transferred to a 

fresh sterile tube. A double extraction was carried out by adding a further 800µL of chloroform 

isoamyl alcohol and shaking vigorously (Appendix III). Samples were incubated on ice for a further 

30 minutes. Centrifugation was carried out using the above settings and the upper aqueous phase 

was transferred to a fresh tube. RNA was precipitated by addition of equal volumes of 99% 

isopropanol and incubated overnight at -20°C. Precipitated RNA was pelleted by centrifugation at 
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914 x g for 30 minutes at 4°C. The supernatant was removed and the pellet was washed with 70% 

ethanol. Following re-centrifugation and removal of the supernatant the pellets were air dried to 

remove residual ethanol, and dissolved in 10-50µl of sterile RNase and DNase free water (Sigma) 

depending on the size of the individual pellets. RNA samples were aliquoted out and stored at -

80°C. 

 

3.17 Purification 

During some experiments it was important to further purify the nucleic acid product. This was 

achieved using The GenEluteTm PCR Clean-up Kit. The kit is designed to rapidly purify single and 

double stranded PCR amplification products (100bp-10kb) and this achieved purification from 

excess primers, nucleotides, DNA polymerase, oils and salts. 

The protocol comprises relatively few steps. DNA is initially bound to a silica impregnated 

membrane within the spin column by the addition of a binding buffer. The bound DNA is then 

washed with a wash buffer and the DNA is released from the membrane in elution buffer by 

centrifugation. Purified DNA is suitable for several downstream applications including enzymatic 

digestions, conventional or automated sequencing, ligation, cloning and microarray analysis in 

this case prior to and following sodium bisulphite conversion (see below).  

 

3.18 Quantification of nucleic acid and assessment of purity 

The quality of the nucleic acid isolated in any given RNA or DNA sample was estimated by 

spectrophotometric analysis using the NanoDrop 2000 (ND2000) (Thermo Scientific, Nelson, UK). 

The NanoDrop is a spectrophotometer that measures micro volumes with a patent sample 



  
     98 

 
  

retention technology. It allows samples as small as 0.5µL to be measured without the need of 

cuvettes or capillaries. 

The absorbance measurement made on the spectrophotometer will be of all molecules in the 

sample that absorb at the wavelength of interest. Since RNA, ssDNA and dsDNA all absorb at 

260nm, they will contribute to the total absorbance of the sample so some samples will therefore 

require purification prior to measurement. 

The ratio of the absorbance at 260nm and 280nm (260:280) is used to assess the purity of the 

DNA and RNA. A ratio of ~1.8 is typical for DNA while a ratio of ~ 2.0 is typical for high 

quality/purity of RNA. Lower ratios suggest the presence of proteins, phenol or other 

contaminants that absorb strongly at a wavelength of approximately 280nm. 

 

3.19 cDNA synthesis 

First strand cDNA synthesis was carried out from 1µg of good quality total RNA prepared as 

described above. For the synthesis, 250ng of random primers (Promega, Southampton, UK ) was 

added and incubated at 70°C for 5 minutes to melt and denature any secondary structure. 

Samples were snap frozen before addition of 2.5µL of 5µM dNTP mixture (Appendix III) and 200 

units of M-MLV RT (Promega) and a reverse transcriptase buffer  added to yield a final reaction 

volume of 25µL. Samples were then incubated at 37°C for 1 hour and stored at -80°C until 

required for RT-PCR. 

 

3.20 Primer Design 

Primer 3 online software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) was used 

to design all PCR primers used throughout this study, other than those used for PCR amplification 
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of sodium bisulphite converted DNA. Genomic and cDNA sequences were obtained from the 

Ensemble genome browser (www.ensembl.org). Primer sequences with minimum self-

complementarity, especially 3’ self-complementarity were chosen due to the fact that this is 

known to aid in the prevention of primer dimer amplification. In addition primers yielding 

amplicons within a size range 100-300bp were preferred, as these are known to produce more 

reliable results in quantitative analytical procedures. See Appendix IV for a list of all primer 

sequence and amplicon sizes used throughout the study. All primers used throughout the study 

were purchased from Sigma and Invitrogen.  

 

3.21 Polymerase Chain Reaction 

The polymerase chain reaction (PCR) is an in vitro method of DNA synthesis that allows particular 

regions of DNA (or cDNA in the case of RT-PCR) to be copied and amplified. The DNA template is 

first denatured by incubation at high temperature: then the temperature is lowered and two 

oligonucleotide primers that flank the DNA fragment to be amplified are annealed to their 

complementary sequences on opposite ends of the target sequence. The primers are then 

extended by Taq polymerase and the sequence between the primers is synthesised. Multiple 

rounds of denaturation, annealing and extension allow for specific amplification of the sequence 

of interest. 

 

3.22 Semi-Quantitative PCR 

In reverse transcription (RT)-PCR, cDNA is used as a template in the sqPCR reaction. Primers are 

designed so that they amplify within the cDNA copy of the mRNA sequence under investigation.  

That amplification is reflective of gene expression at the transcript level. RT-PCR can be semi-

quantitative when equal amounts of cDNA template are used as starting material that is in this 

http://www.ensembl.org/
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case assessed by the ability of the template to amplify an endogenous control gene with equal 

efficiencies across all of the samples. In the studies described in this report the endogenous 

controls were Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or Porphobilinogen 

deaminase (PBGD) (see appendix IV for primer sequences). Following approximate equalisation of 

the housekeeping gene cDNA, any observed difference between amplification of the target gene 

provides an indication of differences in the level of transcript expression.  

Semi-Quantitative (sq)RT-PCR amplification were carried out using Promega Go Taq Flexi buffer 

containing a final reaction concentration of 10mM Tris HCl (pH 9.0), 50mM potassium chloride 

(KCl), and 0.1% Triton-X (Promega, Dorset, UK), 1.5mM magnesium chloride (MgCl2: Promega). 

200µM, each of dATP, dCTP, dGTP and dTTP (Fermentas, Belgium),  100µM each of the forward 

and reverse primers, and 1 Unit of GoTaq polymerase (Promega, Southampton, UK). A mastermix 

was prepared by multiplying the volumes of individual reagents required per reaction by the 

number of reactions being carried out: 

Table 3.0: PCR Reagents per reaction.  

Name of reagent Volumes per Reaction (µl) 

5 X GoTaq Flexi Buffer 5 

25mM MgCl2 2.5 

100µM Forward Primer 1 

100µM Reverse Primer 1 

10mM dNTP’s 1 

Taq Polymerase 0.2 

ddH20 12.5 
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Once prepared, 24µL aliquots of the master mix were added to each reaction tube. Finally 1 µL of 

template (DNA or cDNA) or no template control (ddH2O) was added to the appropriate tube giving 

a final reaction volume of 25µL. Reaction cycles were carried out using GMI G-Storm gradient 

thermal cycler and also the MJ research PTC-200 thermal (Bio-Rad, Hemel Hempstead, UK). All 

sqPCR amplifications included a 10 minute denaturation stage at 96°C, followed by 25-35 cycles of 

denaturation, annealing, and extension steps.  A final extension of 10 minutes was included to 

terminate the reaction as shown in table 3.1 PCR products were electrophoresed on Agarose gels, 

and visualised by ethidium bromide staining and compared to a known molecular size DNA ladder 

as described above. 

 

Table 3.1 Thermal profile of sqPCR. Thermal profile of sqPCR showing three different segments 

with temperatures and time per segment. 

 Segment 1 Segment 2 Segment 3 

Denaturation 96°C 10mins Denaturation 96°C 30sec Final Elongation 72°C 15mins 

Primer annealing 50-65°C 

Elongation 72°C 1min 

No of Cycles 1 35 1 
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3.23 Electrophoresis 

Electrophoresis refers to the separation of charged molecules in an electrical field. Molecules in a 

mixture are separated from each other on the basis of size, shape or charge. In this study a variety 

of electrophoresis methods were used to separate and visualise DNA and RNA molecules.  

 

Agarose gel electrophoresis 

To enable visualisation of the products from sqPCR agarose gel electrophoresis was employed.  

Low percentage (1-2%) agarose gels were used to separate DNA and RNA fragments. A typical 1% 

Agarose gel solution was prepared by melting 1g of Agarose (Bioline, London UK ) in 100mL of 1X 

TAE buffer (diluted from 50X stock; see appendix III) using a microwave oven at high power for 3 

minutes. The solution was then allowed to cool before addition of ethidium bromide (Sigma) to 

achieve a concentration of 0.5µg/mL. The gel was then poured into a pre-assembled Bio-Rad gel 

casting tray that had been sealed at each end using autoclave tape. A comb with the appropriately 

sized wells was immersed into the gel, which was then left to cool at room temperature for 

approximately 30 minutes in order for the gel to polymerise. The comb and autoclave tape were 

then removed, and the gel was immersed into a Bio-Rad resolving tank containing sufficient 1 X 

TAE buffer to cover the gel by 2-3mm. 1µL of 6 X loading dye (see appendix III) was added to 5µL 

of nucleic acid samples, which were transferred to individual wells of the gel. Samples were 

electrophoresed from the negatively charged cathode to the positively charged anode for 45 

minutes at 100V, alongside a GeneRuler 100 base pair DNA ladder (Fermentas, Yorkshire, UK), and 

nucleic acid fragments were detected and photographed by UV Transillumination using a Syngene 

gel documentation system (Cambridge, UK). 
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3.24 Quantitative RT PCR (qRT-PCR) 

Real time quantitative qPCR allows quantification of PCR products in “real time” during each 

successive PCR cycle in the course of the reaction. Such reactions are carried out in a 

thermocycler that permits measurement of the fluorescent detector molecule such as the 

intercalating dye SYBR green, which fluoresces upon incorporation into double stranded DNA. 

Increased fluorescence occurs as more dye is incorporated into the DNA as each cycle of the PCR 

reaction. Detection of fluorescence at each successive cycle allows an amplification plot to be 

generated. As well as decreasing post-processing steps this methodology minimises experimental 

error since SYBR Green is not sequence dependant and (unlike other qPCR probes for example 

TaqMan), it can be used for any reaction. 

Quantitative PCR amplification was performed using a Stratagene Mx3005P thermal cycler 

(Agilent, Cheshire, UK). Reactions were prepared containing 1X Brilliant III SYBR Green QPCR 

mastermix (Agilent), 400nmol of forward and reverse primer and ddH2O. 11.5uL of the reaction 

mixture was added to individual wells of 96 well plate or to individual wells of 8 strip tubes 

(Agilent) and 1uL of either cDNA template or no template control was added to each well. All 

samples were analysed in triplicate to account for technical variation. The following reaction 

conditions were carried out, which comprised activation of hot start Taq  (96°C for 3 minutes) 

followed by 40 cycles (96°C 30 seconds followed by an annealing and elongation step for 30 

seconds) as shown in figure 3.1. A dissociation curve was included at the end of each reaction to 

ensure that specific amplification has been achieved.  
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Figure 3.1 Thermal Profile for QPCR using Stratagene MXpro 3005p. Thermal profile showing 

individual stages, temperatures and time in minutes of the stages. 

This method is relative, as it requires normalisation to an endogenous control gene. There are two 

methods by which quantitative (q)RT-PCR can be performed: the relative standard curve and the 

2-ΔΔCT method. The relative standard curve method uses serial dilutions of cDNA samples, of 

known concentrations, from which unknown samples are quantified. This is achieved by 

amplification of the standards alongside the unknowns. It is possible to derive a standard curve 

for both the target gene and the endogenous control, thereby permitting relative levels of 

expression to be determined. In these types of experiments it is important to include a standard 

curve on every plate analysed to counteract potential variability between PCR runs. This method 

requires minimal validation because the PCR efficiencies of the target and endogenous control do 

not have to be equivalent as different efficiencies are accounted for by the standard curve.  

For samples analysed by the 2-ΔΔCT method the comparative differences between the gene of 

interest and the endogenous control are calculated by a mathematical formula, and as such a 

standard curve is not required. First, the difference in the cycle threshold (CT) of the gene of 

interest and endogenous control is calculated (the ΔCT). Next, subtraction of the control ΔCT from 
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the treated ΔCT yields the ΔΔCT. The negative value of subtraction, the –ΔΔCT, is used as the 

exponent of 2 in the equation and represents the difference in “corrected” number of cycles to 

threshold. For all genes analysed using this method it is necessary to ensure the template 

amplification for the target gene occurs at the same efficiency as for the endogenous control. 

Therefore, during optimisation experiments, the standard curve analyses are carried out as 

described above, however, the difference in CT between endogenous control and gene of interest 

are plotted against log (base 10) input across the dilution range. Regression slopes <0.1 are 

considered to be acceptable for 2-ΔΔCT analyses.  
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3.25 Enzyme Linked Immunosorbent assay (ELISA) 

Quantitative expression of intracellular BMP-4 protein was determined by ELISA in the normal 

pituitary and pituitary adenoma subtypes. An enzyme-linked immunosorbent assays (ELISA) kit 

was employed for this study (Abcam, Cambridge, UK). It is a plate based assays designed for 

detecting and quantifying BMP-4 protein. The assay employs an antibody specific for human BMP-

4 coated onto a 96 well plate that is able to bind BMP-4. Detection is accomplished by the binding 

of a second antibody that recognises the bound BMP-4 and where the second antibody is 

biotinylated. Activity is assessed through incubation with horseradish peroxidase (HRP) 

conjugated to streptavidin. After extensive washes the addition of substrate produces a 

measurable coloured end product.   

 

Preparation of Lysate and Protein extraction: Proteins were extracted from the primary pituitary 

adenomas and normal pituitaries into isotonic buffer, this was achieved using the Radio-

immunoprecipitation assay (RIPA) buffer. RIPA enables efficient cell lysis and solubilisation while 

avoiding protein degradation and interference with protein immunoreactivity and biological 

activity. Tissue samples were lysed in RIPA supplemented with Protease inhibitor cocktail (PIC) 

including Leupeptin, Pepstatin and phenylmethanesulfonyl fluoride (PMSF). This was achieved by 

homogenisation in a dounce homogeniser and then centrifuged at 914 x g at 4°C for 10 minutes. 

Supernatant was collected and stored at -80°C. The amount of protein within the samples was 

measured using the Bicinchoninic acid (BCA) protein assay reagent. BCA supplemented with 

0.8mg/mL copper sulphate was added to a set of known BSA standards and the tumour samples. 

The BSA standards ranged from 0.1-2.0 mg/ml. These was left to incubate at 37°C for one hour 

and then measured on a plate reader at 562nm producing a standard curve of absorbance versus 

concentration a typical example of this is shown in appendix V. 
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BMP-4 ELISA: 

All reagents were thawed to room temperature. A constant amount of total protein of 1.5mg/mL 

was used for each BMP-4 protein determination from the pituitary tumours and normal pituitary 

samples. BMP-4 standards were supplied by the manufacturer (8.23-6000pg/mL) and the 

reported sensitivity of the Elisa kit is ~15pg/mL. The ELISA was performed as per kit instructions. 

Standard and sample solutions were added to the wells in duplicate and wells were covered and 

incubated at room temperature for 2.5 hours to facilitate binding of BMP-4 protein to the 

immobilised BMP-4 specific antibody in each of the wells. Solutions were then discarded and wells 

washed with wash solution. The biotinylated secondary antibody was then added to each well and 

incubated for 1 hour at room temperature with gentle shaking. Solution was discarded and wash 

steps were repeated. Horseradish peroxidase (HRP) conjugated with streptavidin was added to 

each of the wells and incubate for 45 minutes at room temperature with gentle shaking. Solution 

was discarded and wash steps repeated. A 3,3’,5,5’- tetramethylbenzidine (TMB) substrate 

solution was added to each of the wells and incubated for 30 minutes in the dark and a colour 

developed in proportion to the amount of BMP4 bound. A stop solution was added which 

changed the colour from blue to yellow and the intensity of the colour was measured at 450nm a 

typical example of this is shown in appendix V. A representation of the antibody binding 

configuration is shown in figure 3.2 below. Interassay and intra-assay variation was measured and 

was found to be minimal.  
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Figure 3.2: Antibody bound complex of ELISA. Shows the fluorescence of a single BMP-4 protein 

bound to the primary antibody in a well of the 96 well plate. The secondary antibody is attached 

to a biotinylated label. This is added to the bound BMP-4 protein. HRP is added to this with 

streptavidin conjugated to it. Streptavidin has a high binding affinity to biotin. Once bound 

produces a measureable colour end product.   

 

Quantification of BMP-4 protein:  

The mean absorbance for the standards and the samples was calculated. The amount of BMP4 

protein measured against the BMP-4 standard samples in pg/ml and was normalised against the 

total protein concentration present in each sample in nmol/mg (see Appendix V for more detail).  
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3.26 DNA Methylation Analysis 

Patterns of DNA methylation were determined by techniques involving sodium bisulphite 

modification of genomic DNA and as first described by Clark et al [354]. Sodium bisulphite 

deaminates unmethylated cytosine to uracil, while m5C remains unaffected. PCR amplicons 

generated from sodium bisulphite converted DNA can therefore be used in downstream 

procedures to distinguish between methylated and non-methylated CpGs within CGIs (see 

introduction for more details). Methylation profile of DNA can be determined by DNA sequencing 

following PCR amplification of sodium bisulphite converted DNA. 

 

3.27 Sodium bisulphite modification of genomic DNA 

Sodium bisulphite conversation of DNA was performed using a commercial kit. The kit used was 

EZ DNA Methylation-GoldTM Kit (ZYMO Research, Cambridge, UK). In this protocol 500ng of 

genomic DNA is first treated with sodium bisulphite, essentially as first described in [354]. For 

efficient conversion genomic DNA was first denatured by incubating with conversion reagent and 

heated to 98°C for 10 minutes and then 64°C for a further 3 hours.  

The converted DNA and M-binding buffer was added to a column (provided in the kit) that had 

been inserted into a 2mL eppendorf tube (provided in the kit) and inverted several times. This was 

then centrifuged at full speed (914 x g) for 30 seconds. The flow-through was discarded and M 

wash-buffer was then added to the column. This was centrifuged as described above. The flow-

through was again discarded. The columns were centrifuged again at full speed to remove any 

residual wash buffer. The M-desulphonation buffer was then added to the column to 

desulphonate the DNA and left to incubate at room temperature for 20 minutes.  The column was 

then centrifuged at full speed and all flow-through discarded. The desulphonated column-bound 

DNA was then washed twice by addition of M-wash buffer and centrifuged at full speed removing 
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all flow-through. Finally the DNA was eluted into 21µL of elution buffer and then quantified on 

the Nanodrop ND2000 under the option of single stranded DNA. Samples were stored in -80°C 

after conversion. 

3.28 Primer design for sodium bisulphite converted DNA 

Primers, that were specific for sodium bisulphite converted DNA were designed for the 

amplification of bisulphite converted DNA. Typically, for specificity and efficient amplification 

these were in the size range, 24-32 bases. An example of a sequence for sodium bisulphite 

converted DNA is shown below: 

 

Figure 3.3 Sodium bisulphite converted sequence. The stages of sodium bisulphite conversion of 

a single strand of DNA from unconverted DNA to PCR amplification using sodium bisulphite 

primers. The red bases show methylated CG’s, The blue bases show non-methylated C’s that 

convert to U’s. The purple sequence shows the primer sequence to the methylated and non-

methylated strand.  
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The non-methylated cytosine would have been converted to uracil during the bisulphite 

conversation reaction. The primer is only able to recognise this conversion if a thymidine (T) is 

incorporated into the design. Methylated Cs, usually in the context of a CpG are not converted 

and in a sequencing reaction are read as C as shown in figure 3.3 above). Optimal amplicon sizes 

were between 150-300bp. See Appendix IV for Primer sequence for sodium bisulphite converted 

DNA. 

 

3.29 PCR amplification of sodium bisulphite converted DNA 

A touchdown sqPCR was performed using sodium bisulphite converted DNA as template. It was 

necessary in some cases to perform nested/hemi nested PCR whereby the initial primary PCR 

product was subjected to a second round of PCR amplification. 

 

3.30 Purification of DNA from agarose gels 

Prior to T:A cloning of PCR amplicons it was necessary to first resolve them by agarose gel 

electrophoresis. This step ensured that the fragment corresponded to the right size and that it 

was separated from primer sequences.  Fragments were, therefore, electrophoresed through a 

2% agarose gel (as described in a previous section) and isolated and purified using a QIAquick Gel 

Extraction Kit (QIAGEN, West Sussex). The region of agarose containing the DNA fragment was 

first visualised with a UV transilluminator and excised from the gel using a sterile scalpel blade. 

The gel fragment was then transferred to a 1.5mL microcentrifuge tube and the volume of 

agarose estimated by measuring the mass of the excised fragment.  3 volumes (relative to the 

volume of the gel fragment) of Buffer QG was added and the agarose was melted by incubation at 

50°C on a heat block for 10 minutes. A further 1 gel volume of isopropanol was added and the 

sample vortexed prior to addition of the DNA containing sample to a column provided within the 
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kit. The sample was the subject centrifugation and the flow through discarded. This step was 

repeated. After further wash steps using Buffer PE the column was put into in a 2mL collection 

tube and elution buffer EB used to release bound DNA as described in the manufacturer’s 

protocol.  

 

3.31 Ligation 

The ability of Taq DNA polymerase to extend PCR amplicons by the template independent 

addition of a single adenine (A) to the 3’–end, enables the rapid and efficient ligation of PCR 

products into a T:A cloning vector, the pGEM T-Easy vector (Promega, Southampton, UK) See 

Appendix VI. The vector is a pre-linearized with a single 3’ –terminal thymidine at either ends. The 

overhang at the insertion site greatly increases efficiency of ligation of PCR products. PCR 

reactions were first performed in duplicate and then combined in a single tube. 6µL of this 

reaction mix was resolved on a 1% gel to confirm amplicon size. The remaining reaction was then 

cleaned on a Gene Elute PCR cleaning column (Sigma-see above). The quantity of the purified PCR 

product was determined on the Nano-drop (OD 260nm). An appropriate quantity (see calculation 

below) was then used for ligation into the pGEM vector at a 6:1 insert:vector molar ratio. This was 

calculated according to the following equation. 

 

ng of vector (50ng) X kb size of insert   X  insert:vector molar ratio = ng of insert 
             kb size of vector (3kb) 
 
 
 
50ng of the 3000bp size pGEM vector was typically used in a ligation reaction; therefore at a 6:1 

insert:vector molar ratio, approximately 5ng per 100 bases of insert was used. To this reaction 

400U of T4 DNA ligase (Promega) and 4.5µL of 10X T4 DNA ligase buffer was added. Ligation 

reactions were incubated at 4°C for 16 hours. 
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Table 3.2 Ligation Reaction. Ligation reagents for one reaction 

Ligation Reagents 1 reaction (µL) 

10 X T4 Ligase buffer 4.5 

T4 Easy Vector 0.7 

PCR product 1-4 

T4 DNA Ligase 4 

H2O (10 µL Total) (~10) 

 

3.32 Transformation  

8µL of the total 10µL reaction was added to a 50µL volume of competent cells (See appendix III on 

growing chemically competent cells) in a sterile 0.5mL microcentrifuge tube, and incubated on ice 

for 20minutes. The microcentrifuge tube was gently flicked to mix the DNA and cells. The cells 

were then heat shocked for 2minutes at 42°C in a thermal cycler, followed by a further incubation 

on ice for 2 minutes. The transformation mixture was then transferred to a sterile 15mL 

polypropylene tube followed by the addition of 1mL sterile LB medium. (Appendix VI) samples 

were incubated at 37°C for 2.5 hours in an orbital shaker with vigorous shaking. 

 

3.33 Spread Plating 

350µL of the bacterial culture was spread onto a LB-agar plate containing 60ug/mL of ampicillin 

using a sterilised spreader. In addition, 0.1M IPTG (isopropyl β-D-1-thiogalactopyranoside) and 

50µL /mL Xgal (5-bromo-4-chloro-3-indolyl β-D-galactopyranonide) were added to agar plates if 

TA cloning was being carried out, as this allowed for blue-white colony selection. Plates were 

incubated inverted at 37°C for 16 hours. (See appendix VI) 
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3.34 Screening 

All vectors used during this investigation contain the ampicillin resistance gene, AMPr, which 

meant that inclusion of ampicillin in the LB agar enabled positive selection of transformed 

colonies. In addition, successfully ligated PCR inserts into the T-Easy vector were screened by a 

simple colour selection procedure due to the presence of IPTG and Xgal in the LB agar. This 

substrate is catalysed by the enzyme β-galactosidase (product of the lacZ gene), yielding colonies 

that appear a distinctive blue colour. As the incorporation of a PCR product into the pGEM vector 

destroys the lacZ gene, β-galactosidase is not produced by successfully transformed cells, which 

therefore produces white colonies. 

To confirm that successfully transformed cells contained an insert, it was necessary to carry out 

sequencing analysis. Colonies were picked off the agar plate using a sterile pipette tip and lysed in 

50µL of ddH2O. This was done by heating at 96°C and then centrifuging at 914 x g for 10 minutes. 

5µL of the lysate was subjected to sqPCR amplification using primers that flank the cloning site 

SP6 reverse and T7 forward (see appendix III). PCR products were purified using the Gene Elute 

PCR Purification kit (Sigma) and sent to be commercially sequenced (gene service, Cambridge UK) 

using the T7 forward primer. Typically, 5-10 molecules that were isolated from individual bacterial 

colonies were sequenced from each of the sample.  
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3.35 Chromatin Immunoprecipitation Assay (ChIP) 

Chromatin immunoprecipitation assay (ChIP) is a powerful technique allowing analysis of protein 

modifications within specific genomic regions. ChIP is used to determine changes to epigenetic 

signatures, chromatin remodelling and transcription regulators that are recruited to specific 

genomic sites. Although ChIP is a versatile and powerful tool it is technically demanding and for 

the studies described in this thesis the Active Motifs ChIP-IT Express Enzymatic Kit (Rixensart, 

Belgium) was employed. There are five main stages to the procedure. In brief intact cells are fixed 

using formaldehyde, which crosslinks and preserves protein and DNA interactions. The DNA is 

then sheared using an enzymatic digestion cocktail containing micrococcal nuclease, into small 

uniform fragments. Specific protein and DNA complexes are immunoprecipitated using antibodies 

directed against the DNA-binding protein of interest (see below for more detail). Once antibodies 

have bound the enriched fractions are pulled down with the aid of magnetic beads coated in 

protein G which has a high binding affinity for the antibody. Following immunoprecipitation cross 

linking is reversed, the proteins are removed by treatment with proteinase K and DNA is 

recovered. The DNA is then analysed to determine which DNA fragments were bound to the 

protein modification of interest. In the case of these studies this was achieved through qPCR. 

Above steps are shown in figure 3.4 and described in detail below. 
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Figure 3.4: Chromatin Immunoprecipitation Assay representation. Representation of the ChIP 

reaction showing the 5 major steps. Demonstration of two different ChIP assays employed from 

the same preparation. On the left showing and antibody specific to the interaction present and on 

the right showing antibody that is not specific for the histone tail modification. MB represents 

magnetic beads coated in protein G. Line with the double break represents no product. Details of 

each of the step are described below.  

MB MB 
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1. Cell collection and DNA-protein crosslinking 

Cells were first grown to 70-80% confluency (approximately 1-1.5 million cells) in a T75 flask. Cells 

were then detached from the surface of the flask using PBS-EDTA and transferred to a siliconised 

50mL tube and centrifuged at 150 x g for 5 minutes. The supernatant was discarded and the pellet 

washed with ice cold PBS. This was again centrifuged. A solution of DMEM media containing a 

final concentration of 1% formaldehyde was added to cells and the cell pellets were disassociated 

by pipetting and incubated on a rotary shaker for 5 minutes. For tissue samples, the 1% 

formaldehyde-DMEM solution was added to the tissue and homogenised in a dounce 

homogeniser. 500µL of the glycine solution, supplied with the kit, was added at room 

temperature and rotated on the rotary shaker for 5 minutes to stop excessive crosslinking and  

centrifuged as described above. 

 

2.  Cell lysis and enzymatic chromatin shearing 

After the fixation step described above, the cells were first lysed in the lysis buffer supplemented 

with PIC (Protease Inhibitor Cocktail) and PMSF (Phenylmethanesulfony fluoride) for 30 minutes 

on ice. During this incubation the enzymatic shearing cocktail was prepared by diluting the 

supplied enzymatic shearing cocktail (2 x 104 U/ml) to 1:100 with a 50% glycerol solution. For the 

chromatin shearing step, and to generate fragments in the size range 200-1000bp, it was 

necessary to perform enzymatic shearing in the presence of micrococcal nuclease. For these 

fragment sizes it was first necessary to optimise shearing in time course experiments. Therefore, 

the lysis solution together with the cells were transferred to an ice cold dounce homogeniser and 

then gently homogenised for 10 strokes on ice to aid nucleic acid release.  After transfer to a 

siliconised microcentrifuge tube and centrifugation (914 x g for 10 minutes at 4°C) the 

supernatant was discarded and the pellet resuspended in warm digestion buffer supplemented 



  
     118 

 
  

with PIC and PMSF and incubated at 37°C for 5 minutes. 17µL of the enzymatic shearing cocktail 

was added to the pre-warmed nuclei and subjected to gentle vortexing and incubated for 12 

minutes at 37°C with intermittent vortexing. The enzyme activity was stopped by addition of 7µL 

of ice cold EDTA and incubated on ice for 10 minutes. All samples were then centrifuged at 914 x g 

for 10 minutes at 4°C and the sheared chromatin supernatant collected. This could be stored at -

20°C for later use.   

 

3. Immunoprecipitation 

The antibodies used for the described studies were purchased from Abcam (Cambridge, UK). The 

antibody used to detect active genes recognises the H3K9Ac (histone 3 lysine 9 acetylation) 

modification [120]. The antibody used to detected silenced genes recognises the H3K27Me3 

(histone 3, lysine 27 tri-methylation)  modification [355].  

After thawing the samples generated in step 2 (see above), 10µL of the chromatin was set aside 

and represented input DNA. For the samples subject to immunoprecipitation,  20-60µL of sheared 

chromatin was added to  siliconised tubes together with the following reagents; 25 µL protein G 

beads, 10µL Chip Buffer, 1µL PIC water and  modification specific antibody and transferred to a 

rotary shaker for 4 hours at 4°C. The protein G beads were magnetic beads coated with protein G. 

The protein G has a binding affinity for the antibody heavy chains and was, therefore, able to pull 

down the antibody in a complex with the specific histone modification. The DNA-histone 

complexes were immunoprecipitated and washed. Immunoprecipitation was achieved by placing 

the tubes on a magnetic stand to pellet the beads and the supernatant was removed without 

disturbing the beads. The beads containing the complex were washed with ChIP buffers 1 and 

then 2 several times and pelleted using the magnetic stand. 
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4. Reversal of Crosslinking and DNA isolation. 

Following the wash steps, the chromatin was eluted from the antibody that was in turn bound to 

the protein G beads. This was achieved by addition of 50µL elution buffer and incubating for 15 

minutes with intermittent pipette mixing at room temperature. The reverse cross linking buffer 

was added (50 µL) and tubes immediately transferred to the magnetic stand to allow the beads to 

pellet. The supernatant (100µL at this point), which contained the chromatin was transferred to a 

fresh tube. 

The immunoprecipitated chromatin and the input chromatin (see step 1) were treated separately. 

88µL of ChIP buffer was added to the 10µL of input sample.  2 µL sodium chloride solution was 

added to both input and immunoprecipitated samples and heated to 95°C for 15 minutes in a 

thermal cycler. Proteinase K (2µL) was then added to both immunoprecipitated chromatin and 

Input chromatin and incubated at 37°C for 1 hour. This step effectively digests proteins including 

the histones that were in complex with the DNA. After the incubation period proteinase K stop 

solution (2µL) was added to the reaction. The DNA within this solution was then concentrated by 

binding onto PCR GeneElute columns (as described in a previous section).   

 

5. Quantitative PCR and data analysis. 

 The input DNA was further diluted 1:10 using ddH2O. Primers were designed to amplify a region 

within 300bp of the known or presumed transcription start  site [121, 356]. A qPCR was set up 

using the DNA isolated by immunoprecipitation of the sheared chromatin and also the Input DNA 

as a control sample for 50 cycles.  

The method used to normalise the ChIP-qPCR data is the percentage input method. It is important 

to normalise against the input as the input sample represents the total chromatin pre-

enrichment. There are several dilution steps subject to immunoprecipitation it is therefore 
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necessary to use a dilution correction factor for the input. This allows you to calculate equal 

concentrations of the immunoprecipitated sample and the input. It allows comparison of “like 

with like” samples. The input sample represented 10% of the sample used for 

immunoprecipitation and therefore necessary to adjust this to 100%. The correction factor of this 

is to subtract 3.32 CT values (The starting material is 10%, a dilution factor of 10 needed to be 

taken into consideration, this is 3.32 cycles and was found by log2 of 10. This was then subtracted 

from the Ct values of the input as demonstrated in figure 3.5 and 3.6 also explained in detail in 

the qPCR section above). 

The following equation was used to calculate the percentage enrichment relative to the input  

100X2^(adjusted input-CT (IP)) see figure 2.5 below for a breakdown of this calculation. 
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Figure 3.5: ChIP calculations. A detailed example of the ChIP calculations used within this study. 

IP is the immunoprecipitated sample. 
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 Figure 3.6 Graph of ChIP calculations. ChIP calculations of one antibody relative to adjusted 

input. 
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4. Reversal of Endogenous Dopamine Receptor silencing in pituitary cells 

augments receptor mediated apoptosis 

 

4.1 Aims & Objectives 

In this study I investigated potential epigenetic mechanisms responsible for or associated with 

loss of D2R expression in pituitary cells and the potential for pharmacological strategies to 

unmask and thereby induce expression of silenced genes. This was investigated using pituitary 

tumour cell lines that either express or do not express endogenous D2R. In addition the possibility 

to reinstate and or even augment receptor mediated apoptotic responses was investigated. 

 

4.2 Introduction 

Dopamine (DA) receptor agonists are considered a first line treatment choice for patients with 

pituitary prolactinomas where they not only effectively suppress prolactin synthesis and secretion 

but induce tumour shrinkage [281, 357]. Despite their success a small proportion of patients are 

intolerant to DA agonist therapy [292, 358], and in cases where resistance is apparent this seems 

to be related to the number of DA D2 receptors (D2R) expressed by the adenoma [359]. 

Activation of the D2R by DA and DA agonists lead to a reduced cAMP production through 

interaction with Gi/Go proteins [259]. The reduction in cAMP levels in normal and tumoural 

lactotrophs is considered integral to the inhibition of PRL synthesis and release [259, 281, 360-

362]. 

In contrast to the understanding of pathways regulating PRL release within the lactotroph our 

understanding of receptors and their intracellular pathways responsible for tumour shrinkage and 

or apoptosis are less clear. Early studies suggested that resistance to DA but not bromocriptine 
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(BC) mediated apoptosis was a consequence of these cells not expressing a D2R [284]. However 

more recent studies by Jaubert and colleagues [283] suggest that DA initiated apoptotic responses 

are mediated through the DA transporter (DAT). Although this transporter represents an 

attractive alternate mechanism a recent study from our laboratory using the same model system 

namely the rodent GH3 cell line, reached a different conclusion. In this case, it is showed that 

both DA and BC elicits an apoptotic response in these cells in the absence of a D2R or a DAT [363]. 

Moreover characterisation of the intracellular apoptotic pathways engaged by these drugs show 

them to be distinct. In those studies we showed that a c-Jun N-terminal kinase mediated 

apoptotic pathway is activated by BC but not by DA. However the DA and BC mediated apoptotic 

pathways converge to activate the terminal caspase-caspase 3. Indeed, co-incubation 

experiments (DA and BC)  reinforced and extended these findings where we observed a 

synergistic increase in apoptotic end points [363]. 

Perhaps surprisingly given its near ubiquitous, but not invariant expression pattern, in the 

different cell types of the normal pituitary gland and their cognate tumours [357], our 

understandings of mechanisms responsible for loss or reduced D2R expression are incomplete. 

However, a caveat to that statement is that a recent investigation, and subsequent to the findings 

reported in this thesis, suggests that Filamin-A (FLNA) expression may modulate D2R expression 

[364].  

Pituitary adenomas, in common with most other tumour types, display genetic and epigenetics 

aberrations. Whilst genetic aberration are infrequent in this tumour type  aberrations that impact 

on the epigenomic landscape are a frequent finding and may act in concert with genetic change(s) 

[91, 365].  Epimutations are apparent as changes in both global and gene specific DNA 

methylation and histone modifications. In these cases aberrations are frequently associated with 

or responsible for altered gene expression profiles that characterise the initiation, development, 

and progression of disease states [91, 181]. In addition, changes to the epigenome may also 
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impact upon treatment responses, and this is apparent in several different tumour types. For 

example in ovarian tumours silencing of genes involved in apoptotic pathway are frequent 

findings [366] as are epigenetic aberrations in specific receptor pathways in primary breast 

tumours and their cell lines [367] and in these cases can lead to a varying degree of drug 

resistance. 

Multiple studies have used the pituitary tumour cell line, GH3 as a model system to investigate DA 

and BC mediated apoptosis [283, 285, 289]. These reports show that GH3 cells do not express the 

dopamine D2 receptor (D2R) whereas, the MMQ cell line does express this receptor. Therefore 

the initial experiments were devised to determine the presence or absence of the D2R receptor in 

early passage GH3 cells relative to normal rat pituitary (NRP). Furthermore, my studies were 

extended to characterise epigenetic changes and apoptotic responses associated with receptor 

expression patterns.  
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4.3 Results 

4.3.1 Expression analysis of D2R in GH3 and MMQ cells as determined by RT-PCR 

Semi quantitative RT-PCR shows the expression of D2R in rodent pituitary cell lines relative to 

normal rat pituitary. The internal control in this case, was the housekeeping gene PBGD. The 

expression of D2R at the transcript level in MMQ cells is similar to that seen in NRP. However, the 

expression of D2R in GH3 is significantly reduced relative to NRP figure 4.1 A.  

 Quantitative RT-PCR (RT-qPCR) showed that expression of D2R in MMQ is similar to that seen in 

NRP. However, the expression of D2R in GH3 cells is significantly reduced relative to NRP Figure 

4.1B. 
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A 

                          

             

Figure 4.1: Expression analysis of dopamine D2 receptor (D2R) in normal rat pituitary (NRP), 

GH3 and MMQ pituitary tumour cell line. (A) sqRT-PCR (B) qRT-PCR analysis of D2R expression in 

NRP, GH3 and MMQ cells. PBGD was used as an internal control for PCR. NC, negative control (B) 

qRT-PCR showing percentage expression relative to normal rat pituitary (NRP) in GH3 and MMQ 

cells. The results are the mean of three triplicate determinations *, P<0.01 MMP, GH3 Vs NRP. 

Data were analysed for significance with a paired t test with Welch’s correction. 

* 

B 
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4.3.2 Methylation status of the D2R in pituitary cell lines 

In silco analysis of the rodent D2R using the CpG island searcher http://www.cpgislands.com and 

also www.ebi.ac.uk, identified a bona fide CpG island within this gene. The island extended from -

374bp to + 650bp relative to the transcriptional start site and is shown in figure 4.2 A. 

A portion of this CpG island was analysed by sodium bisulphite sequencing (as described in the 

Materials and methods section). The sequencing encompassed 20 CpG dinucleotides. In the NRP 

across the 20 CpG dinucleotides, 53% of the CpGs across the total clonal population were not 

methylated (Fig 4.2B).  However, and in contrast to these findings, in the GH3 cell line the 

majority of CpG dinucleotides were methylated and only 5% were not methylated. In MMQ cell 

line this portion of the CpG island shows a high frequency of methylation at 77% relative to the 

normal pituitary, however, 23% of the CpGs are not methylated compared to 5% in GH3 cells.  
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Figure 4.2 Methylation status of the D2R in pituitary cell lines. A). In silico analysis of rodent D2R 

CpG island locus region. The CpG island extending from -374bp to +650bp, relative to the 

transcription start site (Black bent arrow [+1]) was determined using CpG island searcher 

(www.cpgislands.com) and the figure was drawn using a web based program www.ebi.ac.uk. The 

observed GC frequency is plotted across the region and is shown relative to transcription start 

site. Individual CpG dinucleotides are shown as vertical tick marks. The black bar below these tick 

marks (-538 to +7bp) marks the amplicon that includes the 20 CpG reported for the methylation 

status. B). beads on a string representation across 20 CpG dinucleotides shown in panel A above. 

Individual clones from each of the cell lines and NRP are shown. The filled circles show methylated 

CpG dinucleotide and the unfilled circles show unmethylated CpG dinucleotides. 
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4.3.3 Drug-induced demethylation and re-expression of the D2R in GH3 cells 

To determine the contribution and effect of CpG island methylation loss of the D2R 

expression in GH3 cells, the cells were treated with zebularine, a cytidine analogue either 

alone or in combination with histone modifying agent TSA. Zebularine as a single agent at 

the highest dose employed, 3µM, was associated with an increase in the expression of 

D2R as determined by sqRT-PCR and relative to the housekeeping gene PBGD (figure 

4.3A). RT-qPCR results also show that zebularine at this dose was able to augment D2R 

expression (figure 4.3B). In experiments where higher doses of zebularine were used 

these were found to be cytotoxic. Combined drug challenges, where the dose of TSA was 

kept constant (30nM), in the presence of increasing doses of zebularine led to significant 

increases in D2R transcript expression. However TSA as a single agent was ineffective. 

The potential for a mechanistic link between epidrug induced re-expression of the D2R 

and demethylation of its cognate CpG island was further explored by sodium bisulphite 

sequencing and following the drug challenges shown in figure 4.3 A and B. GH3 challenges 

with either zebularine or TSA as single agents was associated with a modest but 

reproducible decrease in methylation of 10-15% relative to the vehicle treated GH3 cells. 

For the combined challenges of zebularine and TSA and at the highest doses employed,   a 

21% decrease in methylation was apparent (figure 4.3B). 
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Figure 4.3 Drug induced demethylation and expression of D2R in GH3 cells. Expression and 

methylation status of D2R in GH3 cells to challenges with zebularine (ZEB) or TSA alone or in 

combined incubations. A) sqRT-PCR and B) qRT-PCR analysis of D2R expression after challenges 

with drug doses shown in the figure. B) qRT-PCR shows expression as a percentage relative to 

NRP. C) Sodium bisulphite sequencing across CpG island. Drug challenges are shown in the figure. 

The beads on a string representation as described previously in figure 4.2B. * P <0.01 vs. vehicle 

alone. Data were analysed for significance by one-way ANOVA with Dunnett’s multiple 

comparison post-test. 
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4.3.4 Drug-induced histone modifications in GH3 cells 

The epidrug induced (zebularine and TSA) re-expression of the D2R in these cells was robust, 

however, the observed changes in CpG island methylation were not dramatic. In addition, the 

necessity to include TSA suggested that aberrations to histone modifications might impact on 

gene expression. Therefore, ChIP assay were used to investigate the histone tail modifications 

associated with the drug challenges used with this cell lines. Histone modifications associated 

with active genes are marked by enrichment of H3K9Ac and silent genes for the H3K27Me3 

modification. Across the D2R promoter region GH3 cells show enrichment for  of H3K27Me3 

relative to normal pituitary and to that seen in MMQ cells that express the D2R (Figure 4.4A). In 

contrast, and again relative to normal pituitary and MMQ cells, GH3 cells show a relative 

depletion in H3K9Ac, the histone modification associated with active genes (Figure 4.4B). 

Challenge of GH3 cells with zebularine was associated with a modest decrease in the enrichment 

of H3K27Me3 relative to GH3 cells challenged with vehicle alone. However no change in the 

histone modification associated with active genes, H3K9Ac, was apparent.  In combined drug 

challenges with zebularine and TSA a further decrease in H2K27Me3 was apparent. Furthermore, 

these challenges also led to a significant increase in H3K9Ac relative to cells treated with vehicle 

alone. Thus results are consistent with the known role of TSA as an inhibitor of histone tail 

deaceytlation and promotion of an active chromatin structure. 
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Figure 4.4 Drug induced histone modifications in GH3 cells. ChIP analysis of the D2R promoter 

region. ChIP analyses are shown relative to the input DNA for A) H3K27Me3 or H3K9Ac B). 

Enrichment in the pituitary cell lines (GH3, MMQ and NRP) are shown after drug challenges with 

Zeb 3µM and TSA 30nM. * P< 0.05 and ** P< 0.01 vs GH3-WT treated with vehicle alone. Data 

were analysed for significance by one-way ANOVA with Dunnett’s multiple comparison test. 
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4.3.5 Apoptotic end points in D2 receptor expressing GH3 cells  

The co-incubations experiments shown in Figure 4.3 show that 3µM zebularine in combination 

with 30nM TSA induced robust expression of the D2R in GH3 cells. In these cases, D2R expression 

was maintained (in the absence of these agents) for a further ~40hrs.  (Figure 4.5A). During this 

“window” and to aid explanation we designated these D2R expressing cell, GH3-D2exp. Culture of 

these cells, in this case in 96 well plates permitted challenge with the apoptosis inducing agent BC 

and DA. The findings from these experiments are shown in Fig 4.5C. Relative to wild type GH3 

cells the D2R expressing cells (GH3-D2exp) are significantly more sensitive to the apoptosis 

inducing effects of DA and BC that their non-induced counterparts Figure 4.5A.  
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Figure 4.5 Apoptotic responses of GH3 cells to DA and BC challenges (A-C). GH3 cells induced to 

express D2R (GH3exp) and labelled D2R in the figure, relative to cells not expressing D2R (WT), 

were challenged with DA or BC at the drug concentrations shown in Figure A. B, Apoptotic cell 

counts (36h post drug challenges) as determined by Hoechst 33342 staining are presented and 

expressed as a percentage of total cell counts. C) Caspase 3/7 activation 6h after each of the drug 

challenges. In Panel B white bars represent vehicle treated, Black bars represent DA treated and 

blue bars represent BC treated. The results are the means of three triplicate determinations in 

each case *, P< 0.001 GH2-WT treated with BC. Data were analysed for significance with a paired t 

test with Welch’s correction. 
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4.3.6 Specificity of D2R mediated apoptosis in GH3 cells 

It was important to assess the specificity of my observations of an augmented apoptotic response 

as mediated through the re-expression of the endogenous D2R in GH3 cells. This was assessed 

using a pharmacological and a genetic approach. For the pharmacological approach this was 

achieved by pre-incubating GH3-D2exp cells with the D2R antagonists, eticlopride or haloperidol 

before challenging with DA or BC. The antagonist eticlopride and also haloperidol (figure 4.6A) 

effectively attenuated the augmented apoptotic response apparent in D2R positive cells (GH3-

D2exp) cells to either DA or BC challenge and relative to the vehicle treated GH3 cells (GH3-

D2veh).  

Further support for a D2R specific effect was also apparent in the genetic siRNA knock-down 

approach. In these cells, D2R expression in D2R expressing cells (GH3-D2exp) was subjected to 

siRNA mediated knock down relative to cells that were treated with the non-targeting siRNA 

(siNT). The augmented apoptotic response to both BC or DA in D2R knockdown cells was 

attenuated in cells incubated with the specific (D2R) siRNA (figure 4.6B). 

 

 

 

 

 

 

 

 



  
     138 

 
  

 

Figure 4.6 Specificity of D2R mediated apoptosis in GH3 cells to DA and BC challenges. A) wild-

type GH3 (unfilled bars) and GH3 cells expressing D2R (filled bars) were challenged with DA 

(25µM) or BC (20µM) and pre-incubated with the D2R antagonists eticlopride (ETIC) or 

haloperidol (HALO). In panel B, white bars represent vehicle treated, Black bars represent DA 

treated and blue bars represent BC treated cells. #, P <  vs. GH3-WT treated with BC. ##, P<  vs. 

GH3-WT cells treated with DA. *, P <  vs GH3-D2R cells treated with BC in the absence of either 

antagonist. **, P <  vs GH3-D2R cells treated with DA in the absence of either antagonist.  

B) Cells treated with the specific agonist challenges shown in A and transfected with D2R specific 

siRNA (siD2R) or a non-target siRNA (siNT). As further control, in D2R expressing cells and in the 

absence of either siRNA, cells were cultured  in the absence or presence of the transfection 

reagent (Lipofectamine) respectively (Sham). *, P < , **, P <0.001 vs GH3-Wt vehicle alone in the 

absence of a specific siRNA to the D2R. #, P< 0.001 vs GH3-D2R expressing cells transfected with 

siNT and treated with either BC or DA. In both panels the proportion (as a percentage) of 

apoptotic cells are shown on the y axis. Data were analysed for significance by 2-way ANOVA with 

Bonferroni post-test. 
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4.3.7 Specificity of D2R mediated apoptosis in MMQ cells 

The MMQ cell line expresses endogenous D2R and provided a means for a more rigorous 

assessment of potential secondary effects of the epidrugs used thus far in the study. The ability of 

DA or BC to induce apoptosis in vehicle treated and epidrug (zebularine and TSA) challenged   

MMQ cells was determined. The results showed that apoptotic responses were not influenced by 

the epidrug challenges prior to incubation with either DA or BC (figure 4.7A). In these cells and in 

agreement with observations in the D2R expressing GH3 cells the D2R antagonist attenuate, with 

approximately equal efficiency, the apoptotic response mediated by either BC or DA. 

Similar to the observations in GH3-D2Rexp cells, knock-down of the endogenous D2R transcript by 

siRNA in MMQ cells attenuated DA and BC mediated apoptosis whereas siNT did not show any 

effect (figure 4.7B). Collectively these experiments provide convincing evidence that DA and BC 

mediated apoptosis is achieved principally through the D2R. Furthermore, pre-treatment 

strategies with the epidrugs zebularine and TSA did not lead to nonspecific sensitisation of these 

cells to apoptosis inducing agents or augmentation of D2R expression. 

 

 

 

 

 

 

 



  
     140 

 
  

 

Figure 4.7 Specificity of apoptotic response of MMQ cells to DA and BC challenges. The 

experiments on MMQ cells (that express endogenous D2R) were performed essentially as 

described in figure 4.6. #, P <  vs MMQ cells treated with either BC (20µM) or Da (25µM) in the 

presence or absence of Zeb and TSA. *, P < 0.001 relative to MMQ cells challenged cells with BC or 

DA in the absence of either antagonist. B *, P < 0.001 vs. MMQ cells treated with BC (20µM) or DA 

(50µM) and siNT. In both panels the proportion (as a percentage) of apoptosis cells are shown on 

the y axis. Data were analysed for significance by two-way ANOVA with Bonferroni post-test. 
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4.3.8 The expression of D2R in primary pituitary adenomas:  

In the absence of characterised human prolactinoma cells line(s) GH3 cells are regarded as a 

model system. The potential of this cell line reflecting changes apparent in primary adenomas was 

investigated. The expression of D2R at the transcript level was assessed in a small subset of 

prolactinomas, that were resistant to medical intervention, and relative to post-mortem normal 

pituitaries.  Five of seven adenomas showed significantly reduced D2R expression at the transcript 

level and relative to normal pituitaries (Figure 4.8 A). 

ChIP analysis of these adenomas was performed essentially as described for the pituitary cells 

lines.  The prolactinomas showing reduced expression of D2R showed lower levels of H3K9Ac 

relative to post-mortem pituitaries and to adenomas expressing D2R. Similarly, prolactinomas 

that showed reduced expression of D2R also showed higher levels of H3K27Me3 relative to 

normal pituitary and prolactinomas that expressed D2R. (Figures 4.8 B and C) 

A Correlation analysis of these adenomas was performed. There is a positive correlation between 

expression of D2R relative to normal pituitary and enrichment of H3K9AC relative to percentage 

input. There is a negative correlation between expression of D2R relative to normal pituitary and 

enrichment of H3K27Me3 relative to percentage input (Figures 4.8D and E). 
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Figure 4.8 Expression analysis and histone modification analysis in primary pituitary 

adenomas.  Expression analysis is shown relative to normal pituitary and ChIP analysis is 

shown relative to the input DNA. A) Expression analysis of seven prolactinomas relative to 

normal pituitary. The unfilled bars show expressers of D2R and the filled bars show 

reduced expression of D2R. Percentage expression of 30% and above is classed as 

expressers. B) H3K9Ac and C) H3K27Me3 enrichment of prolactinomas are shown relative 

to the input DNA. Correlation between Expression of D2R and percentage enrichment of 

D) H3K9Ac and E) H3K27Me3 in seven prolactinomas.  All tumours used are not 

responsive to Dopamine treatment. 

D 

E 
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4.4 Discussion & Conclusions 

Recent  reports, using the pituitary tumour cell line GH3, have explored the apoptotic pathways 

activated after challenge with either DA [283], or its agonists, BC [363]. Despite the absence of the 

D2R in these cells, and in contradistinction to earlier report that DA-mediated apoptosis is 

dependent upon expression of a functional receptor [284].  These studies describe engagement 

and activation of bona fide apoptotic programs. Although the studies described by Jaubert and 

colleagues concluded that DA mediates its apoptotic effects through a DAT [283] our own  studies  

were not able to confirm this finding. Although our studies showed apoptosis to D2R agonists we 

were aware that  in the absence of a detectable D2R or DAT the mechanisms by which DA induced 

apoptosis had not been definitively identified  [363]. Therefore, to extend these previous studies 

and also to address the contribution of the D2R to agonist induced apoptosis potential 

mechanisms responsible for the loss of the D2R in these cells were explored. In addition strategies 

to induce re- expression of the endogenous receptor and the effects of receptor occupancy on 

apoptotic end points were also explored. 

I show here, for the first time, hypermethylation of a portion of the D2R CpG island in GH3 cells 

relative to that seen in NRP and in MMQ cells that express D2R and suggests a relationship 

between loss of D2R expression and methylation. To investigate this potential relationship 

between epigenetic change and gene silencing, GH3 cells were subjected to pharmacological 

epidrug challenges designed to inhibit DNA methylation and histone deaceytlation.  Although 

incubation of GH3 cells with single agents alone was responsible for a marginal but reproducible 

decrease in methylation across the CpG island, re-expression of the D2R transcript was only 

apparent to zebularine, as a single agent challenge at dose of the order of ~3µM. However co-

incubations with both agents (zebularine and TSA) was responsible for a synergistic increase in 

D2R expression and more of a significant decrease in CpG island methylation.   Studies in multiple 

other tumour types and their cell lines have shown that zebularine principally through DNA 
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demethylation, reactivates gene expression and  that the cognate CpG islands are partially  de-

methylated following drug challenges [368-370]. 

Histone modifications either alone or in concert with changes in DNA methylation patterns can 

lead to either gene activation or repression dependent on which residue(s) are modified and also 

the specific modification(s)  [91]. As example, acetylation of histone 3 lysine 9 (H3K9Ac) is 

frequently associated with active genes [120]. However,  trimethylation of histone 3 lysine 27 

(H3K27Me3) is associated with promoters that are transcriptionally repressed [355]. In GH3 cells 

that fail to express D2R, and relative to NRP and MMQ cells, that express this receptor, the 

histone modifications, as determined by ChIP analysis, are consistent with repressed genes. In 

contradistinction to these findings in rodent pituitaries and MMQ cells enrichment for H3K9Ac 

and depletion of H3K27me3 is apparent.  However, combined drug challenges of GH3 cells with 

zebularine and TSA resulted in an enrichment of H3K9Ac and a decrease in the enriched fraction 

of H3K27Me3. These findings are consistent with these agents leading to histone modifications 

and decrease in CpG methylation. Furthermore these changes to the epigenomic landscape lead 

to re-expression of D2R in these cells. A single more recent study has also demonstrated induced 

re-expression of the endogenous D2R in GH3 cells. These studies, from the Spada group used 

retinoic acid to induce re-expression of this receptor in primary human pituitary tumours, 

however this agent was without effect in GH3 cells. A recent report of retinoic acid in 

promyelocytic leukaemia cells has also shown that  retinoic acid is responsible for  induction  of 

change in H3 acetylation and gene expression [371]. The effects of retinoic acid as modifier of the 

epigenomic landscape are explored and discussed in a subsequent section of this thesis. 

The re-expression of endogenous D2R in GH3 cells using the epidrugs zebularine and TSA 

provided an opportunity to examine the apoptotic end points in these cells and relative to those 

seen in cells that do not express the endogenous receptor. These studies, in cells that differed 

only in the D2R status, showed an augment and presumed D2R mediated response to drug 
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challenges with either DA or BC. In this case the agents have been shown previously to induce 

apoptosis in these cell lines [283, 363]. 

A caveat associated with the findings thus far described is that even in the same cell line 

nucleotide analogues do not necessarily have the same effect on the transcriptome in a particular 

tumour or tumour cell line and are reviewed in [128]. For example Flotho and colleagues [176] 

showed that after individual treatment of the same cell line with the nucleoside analogs, 

decitabine, azacitidine and zebularine the identified unmasked genes showed little overlap with 

each other and a considerable number of genes were also down regulated. Similar conclusions 

were reached when comparing the differential effects of decitabine, a DNMT knockout model 

system, and the HDAC inhibitor TSA [177]. In these cases, the effects on gene expression did not 

seem to be dependent on dosage and duration which would be expected if the drugs exert their 

effects solely by incorporation into the DNA during the replicative S phase of the cell cycle. These 

reports, as example only, prompted me to further investigate the specificity of these observations 

in greater detail. 

The specificity of a D2R mediated and augmented apoptosis response to DA and or DA agonist BC 

was addressed through pharmacological (receptor antagonists) and genetic (RNA interference) 

approaches. In these studies, inhibition or interference of dopaminergic signalling pathways was 

initially investigated in GH3 cells, where endogenous D2R expression had been unmasked and also  

in MMQ cell line that expressed endogenous functional D2R [372]. In D2R expressing GH3 cells 

the augmented apoptotic response to either DA or BC challenges was attenuated through pre-

incubation with the D2R antagonists, haloperidol or eticlopride. This was reinforced using siRNA 

mediated knockdown of the D2R in these cells, whereas a non-target siRNA (siNT) was without 

effect. In MMQ cells, receptor antagonist experiments also  attenuated apoptotic responses to DA 

and BC. In these cells, pre-challenge with zebularine and TSA did not augment apoptosis, however 

this end point was effectively attenuated by receptor antagonists. Finally and similar to the 
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findings apparent in D2R expressing GH3, siRNA mediated knockdown of endogenous D2R in 

MMQ cells also attenuated DA and BC induced apoptosis. Although these studies support the 

conclusion that re-expression of the D2R in GH3 cells is indeed specific for the observed 

augmented apoptotic response there may be other aberrations in this apoptotic pathway that we 

have not identified. 

The findings from GH3 cell line as a model system for primary pituitary adenomas was also 

investigated. In these cases, the first line treatment is dopamine agonists. However, a proportion 

of prolactinomas are resistance to this intervention and is frequently attributed to reduced D2R 

number. In these cases or in cases of dopaminergic intolerance these tumours are removed 

surgically. These prolactinomas, albeit small in numbers were used. Five of seven adenomas 

showed reduced expression of the D2R. These adenomas that showed reduced expression of D2R 

also showed depletion for the H3K9Ac modification and enrichment for the histone modification 

associated with silenced genes, H3K27Me3. However, in the two prolactinomas that expressed 

the D2R and in normal pituitary, higher levels of H3K9Ac and lower levels of H3K27Me3 were 

apparent. These results and the concordance between non-expressing prolactinomas and GH3 

cell lines provide the impetus toward a more detailed investigation of larger numbers of primary 

tumours. 

Following publication of the findings reported here in the Spada group have shown that FLNA 

transcript expression is reduced in tumours that also show a decrease in D2R expression. 

Furthermore these findings are confined to DA insensitive prolactinomas. This group proposes 

loss of FLNA expression may be a possible mechanism involved in the reduction of D2R, indicating 

that FLNA is perhaps required to maintain D2R expression. This could possibly lead to an avenue 

of future studies and further work to investigate the levels of FLNA associated with the 

prolactinomas or GH3 cells used within the study. Although alterations in the FLNA promoter 
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methylation were not investigated by this group it is possible that FLNA expression is also subject 

to epigenetic modifications. [364]. 

This study, although principally in a model system shows important, albeit potential,  

consequence for clinical management of primary pituitary adenomas that irrespective of subtype 

express to varying degrees DA receptor subtypes [222, 292, 357-360, 373, 374]. In this context 

several reports in different tumour types now describe strategies where epigenetic therapy is 

combined with chemotherapy or radiotherapy with improved treatment outcomes. These 

possibilities have been subject to recent review [128]. In addition, this approach, that is where 

DNMT and HDAC inhibitors are used in combination with, as example anti-estrogens are effective 

in restoration of  estrogen receptor alpha responsiveness to previous ER negative and 

antiestrogen resistant tumour cells [375-377].  

In conclusion the finding from this part of the study uncovers the epigenetic aberrations that are 

responsible for the D2R receptor silencing in the pituitary cell line GH3 and possibly the primary 

pituitary adenomas. Restoration of functional receptor through an epigenetic therapy strategy re-

establishes a functional dopaminergic pathway that is sensitive to DA and DA agonist challenges. 

These results prove useful and encouraging combined treatment approaches for the medical 

management of prolactinomas and other pituitary tumour subtypes through the activation of the 

Dopamine D2 receptor. 
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5. Epigenomic Silencing of the BMP-4 Gene in Pituitary Adenomas: A 

Potential Target for Epidrug-Induced Re-expression 

 

5.1 Aims & Objectives 

The molecular aberrations responsible for inappropriate expression of BMP-4 in sporadic pituitary 

tumours are not known. Equally the way in which modifications of the epigenetic landscape might 

impact upon BMP-4 expression has not been described. These types of changes, apparent as CpG 

island methylation and/or histone modifications were examined in each of the major pituitary 

adenoma subtypes. Furthermore, to gain mechanistic insight, the causal links between identified 

aberrations and expression were also investigated. For these studies a pharmacological 

unmasking strategy was employed, using the so named “epidrugs” that inhibit DNA methylation 

and histone deaceytlation were employed.  

5.2 Introduction 

The bone morphogenetic protein (BMP) are members of the TGF-β superfamily of multifunctional 

secretory peptides [378, 379]. To date, more than 20 TGF-β family members have been described, 

and these can be further subdivided into several groups on the basis of their structure and 

function [380].  Two of the best studied members of this family are BMP2 and BMP4. These share 

significant homology and have been shown to play significant autocrine and paracrine roles in the 

anterior pituitary organogenesis [343, 381]. BMP-4 is also a mediator in the pathogenesis of 

spontaneous prolactinomas [31] where overexpressing of this cytokine was first described in a 

dopamine receptor type 2 deficient mouse (D2R2-/-). The pituitary adenomas were confined to 

female offspring where an extracellular binding protein and negative regulator of BMP-4, noggin, 

is reciprocally down regulated. Furthermore, in the same report and reinforcing these findings, 

overexpression of BMP-4 was also apparent in estradiol-induced rat prolactinomas and in human 

prolactinomas relative to normal tissue and to other pituitary adenoma  subtypes [31].  
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In normal pituitaries, BMP-4 expression, as determined by immunohistochemistry (IHC), is 

principally confined to the somatotrophs, corticotroph and thyrotroph cell populations and is 

barely detectable in lactotroph cells [32, 382]. Subsequent to identification of BMP-4 

overexpression in prolactinomas, reduced IHC expression of this protein was reported in a 

significant proportion of corticotroph adenomas from patients with Cushings disease[32]. 

Furthermore, a single report has also described reduced expression of BMP-4 as determined by 

RT-PCR, in a gonadotrophinomas, that secretes FSH, and in non-functioning pituitary adenomas 

[383]. 

The adenoma subtype-specific differential expression of BMP-4 is somewhat unusual and suggests 

that this cytokine is bifunctional. If this is the case, then the consequence of BMP-4 expression are 

perhaps dependent on cellular context and/or the repertoire of transcription factors within a 

particular cell type.  The bifunctional, cell-type-specific roles are also apparent in pituitary tumour 

cell lines Thus, in GH3  cells BMP-4 stimulates and noggin inhibits in vivo tumour growth and in 

vitro proliferation, and these cells are in lactosomatotroph cell lineage [31]. Contrary to this,  in 

AtT-20 cells, in the corticotroph cell lineage, BMP-4 inhibits ACTH secretion and in vitro cell 

proliferation [32]. In addition, in these cells, transfected with a dominant negative form of Smad-4 

or with BMP-4 extracellular inhibitor noggin, increased tumorigenicity in a nude mice model is 

apparent [32].  These findings, therefore, provide convincing evidence in a cell-type-specific 

context that BMP-4  is indeed bifunctional, a characteristic exhibited by several other proteins in 

other tumour types [194, 384, 385]. 

Since genetic mutations are an infrequent occurrence in this tumour type it was important to 

determine if epigenetic changes were responsible for the inappropriate expression of BMP-4 and 

to investigate if these changes, if apparent could be reversed. For these studies it was necessary 

to investigate change in primary pituitary adenomas and also in pituitary tumour cell line as a 

model systems.  
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5.3 Results 

5.3.1 Expression of BMP-4 in primary pituitary adenomas 

The expression of BMP-4 was determined in the major pituitary adenoma subtypes at the 

transcript and protein level (qRT-PCR and ELISA) and as described in the materials and methods 

section. The expression of BMP-4 at the transcript level was variable within each of the subtypes 

(Fig 5.1A). A significant proportion, 14 out of 16 non-functioning adenomas, four of four GH 

secreting adenomas and five of seven corticotrophinomas showed reduced transcript expression 

relative to the normal pituitaries. However four of nine prolactinomas showed increased 

expression of BMP-4 relative to normal pituitaries and the other tumour subtypes (Fig 5.1A). In 

these cases GAPDH was used as the internal control housekeeping gene. 

Quantitative expression of BMP4 at the protein level was determined by ELISA. The result, as 

determined by BMP-4 ELISA mirrored the findings apparent at the transcript level (Fig 5.1B). 

However, in the corticotrophinomas although BMP-4 protein was reduced relative to the 

prolactinomas a proportion showed increase relative to normal pituitaries. 
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Figure 5.1: Expression analysis of BMP-4 in primary pituitary tumours: From left to right normal 

pituitaries (NP), non-functioning adenomas (NFT), growth hormone secreting tumours (GH), 

corticotrophinomas (ACTH) and prolactinomas (PRL). A) RT-qPCR analysis of BMP-4 transcript 

expression in primary pituitary tumours and normal pituitary tissue. The percentage expression is 

shown relative to the mean of 4 normal pituitaries B) ELISA analysis of BMP-4 protein expression. 

The percentage expression is relative to the mean of two normal pituitaries. All experiments were 

performed thrice with triple determinations. The bar in each column represents the mean of the 

individual determinations for the normal pituitaries and each of the adenoma subtypes. For RT-

qPCR, the dotted lines represent three times the upper and lower SD of the mean expression in 

the normal pituitaries. Individual adenomas, showing increase or substantial reduction in 

expression, where categorised on the basis of expression above or below these limits respectively 

(see materials and methods).    
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5.3.2 Methylation status of the BMP-4 CpG islands in primary pituitary adenomas 

In silico analysis of the human BMP-4 gene identified two CpG islands, one encompassing exon 1 

and the upstream region of the gene and the other encompassing exon 3. Sodium bisulphite 

sequencing which included at least 10 CpG dinucleotides in each of these islands in normal 

pituitaries and five or more adenomas of each subtype, failed to show changes in methylation 

status. In all cases and irrespective of expression status methylation varied between 4-7%. These 

findings suggest that change in methylation status are not responsible for differential expression 

of BMP-4 in primary pituitary adenomas as shown in figure 5.2A and B. 
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Figure 5.2: Methylation of BMP4 CpG island in primary pituitary adenomas. A) In silico analysis 

of the human BMP4 CpG island locus region.  Two CpG islands are identified and shown relative to 

the transcription start site (black bent arrow) and were determined using CpG island searcher and 

drawn using a web based program (www.ebi.ac.uk). The CpG island plots shows CpG islands 

associated with Exon 1 and 3. Exon 1 showed barely detectable methylation of the CpGs within its 

associated island (data not shown). Broadly similar findings were evident within the exon 3 

associated CpG in some tumours (see figure above). The observed GC percentage is plotted across 

the region and is shown relative to the transcription start sites. B) beads on a string 

representation across 10 CpG dinucleotides shown in exon 3. Individual clones from each six 

primary pituitary tumour subtypes (and five GH secreting adenomas) and relative to normal 

pituitary are shown. The filled and unfilled circles (beads) represent methylated and 

unmethylated CpGs, respectively. 

A 

B 
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5.3.3 Chromatin status of BMP-4 promoter region in primary pituitary adenomas 

To determine the potential impact of chromatin modifications on expression of BMP-4 ChIP 

analysis was employed on samples where I had previously determined expression (figure 5.1) and 

CpG island methylation status (Figure 5.2). The modifications examined are those associated with 

active genes, H3K9Ac, or silent gene, H3K27Me3 as described in the previous chapter (chapter 4). 

For each of the individual adenomas showing loss or significantly reduced expression of BMP-4 as 

determined by qRT-PCR (white bars) ChIP analysis showed enrichment for H3K27Me3 and 

depletion for H3K9Ac relative to normal pituitaries (Fig 5.3 A-D). In tumours showing similar (Blue 

bars) or increased expression (Black bars) of BMP-4, histone modifications were similar to those 

apparent in post-mortem normal pituitaries. Thus in the majority of adenomas available for 

analysis, at the histone modifications sites examined, increase in H3K27me3 and decrease in 

H3K9Ac appear specific for silencing or significantly reduced expression. However two adenomas 

that express BMP4 (Blue bars) at levels similar to normal pituitaries also show chromatin 

modifications that characterise loss or reduced expression. 
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Figure 5.3: ChIP Analysis of the BMP-4 gene in primary pituitary adenomas: In each panel and 

from left to right the bars represent normal pituitaries (NP) and in panel A) human non-

functioning, B) growth hormone secreting, C) prolactinomas, and D) corticotrophinomas. 

Enrichment is expressed relative to the modification seen in input DNA and determined for, 

H3K9Ac and H3K27Me3. All experiments, in available adenomas, were preformed thrice with 

triple determination. Error bars show SEM. In each panel the bars represent enrichment in the 

normal pituitaries and tumour cohort shown in Fig.5.1. The blue bars represent normal pituitaries 

and tumours showing similar expression levels as determined by qRT-PCR, the black and unfilled 

bars represent adenomas where expression is either above or below the limits described in figure 

5.1 respectively and relative to normal pituitaries.  Not all of the tumours shown in Fig 5.1 were 

examined due to limitations in tumour specimen. ChIP data was assessed relative to normal 

pituitaries. *, P < 0.05, ** < 0.01 vs normal pituitaries. Data were analysed for significance by 

Mann Whitney U test. All experiments were done thrice with triplicate determinations. Error bars 

show SEM. 
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5.3.4 Expression of BMP4 in pituitary tumour cell lines 

The expression of BMP4 was analysed at the transcript level in pituitary tumour cell lines relative 

to normal rat/mouse pituitary. The internal control used was PGBD which showed similar levels of 

cDNA in NRP/NMP as the pituitary tumour cell lines. The expression of BMP-4 at the transcript 

level in GH3, MMQ and AtT-20 is significantly reduced relative to normal pituitaries (Figure 5.4) 
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Figure 5.4: Expression analysis of BMP4 in pituitary tumour cell lines. The expression of BMP-4 in 

GH3, MMQ and AtT-20 cells, as determined by RT-qPCR, is shown as a percentage and relative to 

their respective normal pituitaries. All experiments were performed thrice with triplicate 

determination. Error bars show SEM. *, P<0.001 vs normal pituitary. Data were analysed for 

significance with a paired t test with Welch’s correction   
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5.3.5 Methylation status of the BMP-4 CpG Island in pituitary cell lines 

In silico analysis of the murine and rodent BMP-4 genes identifies bona fide CpG islands in rat 

(Figure 5.5A) and the mouse homolog (Figure 5.5 B) of the BMP-4 gene. In rodent cell the BMP-4 

gene has one single CpG island extending upstream from exon 1 into the presumed promoter 

region. A similar analysis of the murine gene identified two CpG island, one that is predominantly 

within an intronic region between exon 1 and 2, and the second encompassing exon 3. 

Sodium bisulphite sequencing of GH3 and MMQ cells in the somatolactotroph and lactotroph (Fig 

5.5 A) and of AtT-20 cells, in the corticotroph cell lineage (Fig 5.5B) were compared to the 

sequence of their respective normal pituitary counterparts. Sodium bisulphite sequencing of 

normal pituitaries did not reveal methylation with the CpG islands in either species. However in 

contrast to these findings, in GH3, MMQ and AtT-20 cells, these regions were heavily methylated. 

However, in AtT-20 cells, CpG methylation was confined to the exon 3 CpG island.  

 



  
     162 

 
  

 

Figure 5.5: In silico analysis of the BMP-4 CpG island locus regions: Panel A shows that the rat 

CpG Island extends from -1542bp to +234bp, relative to the transcription start site (black bent 

arrow) and was determined using CpG island searcher and drawn using a web based program 

(www.ebi.ac.uk). The observed GC percentage is plotted across the region and the vertical tick 

marks signify the individual CpGs. The horizontal black bar underlines the 11 CpG dinucleotides 

interrogated for methylation status and these are shown as a beads-on a-string representation. 

The filled and unfilled circles (beads) represent methylated and unmethylated CpGs, respectively 

for individual clones in normal rat pituitary and GH3 cells. Panel B shows a similar analysis of the 

mouse CpG island locus region to that described in panel A.  The CpG islands extending from 

+2012bp to +4421bp and from +5018 to +5766bp, relative to the transcription start site (black 

bent arrow). Sodium bisulphite sequencing of individual islands showed methylation to be 

confined to the downstream CpG island. In this case the beads- on- string representation is across 

17 CpGs in this island in normal mouse pituitary and At-T20 cells.  

A 

B 
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5.3.6 Drug-Induced demethylation studies in pituitary cell lines 

In GH3, MMQ and AtT-20 cell lines, increased CpG island methylation was associated with 

significantly reduced expression of BMP4 as determined by qRT-PCR and relative to their 

respective normal pituitaries (Fig 5.6 A-C). In cell lines incubated with zebularine, a modest but 

reproducible statistically significant increase in BMP4 expression was apparent in GH3 cells. At the 

highest concentration of zebularine used (10µM) alone there is an increase in the BMP4 

expression in MMQ cells, however, this single agent was not effective in AtT-20 cells. However in 

all three cell lines GH3 (figure 5.6 A), MMQ cells (figure 5.6B) and AtT-20 cells (figure 5.6C) 

combined challenges with zebularine and TSA induced robust re-expression of BMP4 whereas TSA 

alone showed limited effects on BMP4 expression.   

Sodium bisulphite sequencing of GH3, MMQ and AtT-20 cells showed that single agent drug 

challenges was associated with barely detectable  change (decrease) in  CpG island methylation 

(figure 5.6 A-C). However, combined drug challenges with zebularine and TSA were associated 

with a decrease in the CpG dinucleotide methylation. In these cases at the highest dose 

employed, a 30-40% decrease in methylation was apparent in the cell lines. 
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Figure 5.6: Expression and methylation status of BMP-4 in pituitary cell lines: Panel A, GH3 cells, 

panel B, MMQ and panel C AtT-20 cells following challenge with zebularine (Zeb) or TSA alone or 

in combined incubations. In each case, the upper sections of panels shows RT-qPCR analysis of 

BMP-4 expression in response to the challenges and drug doses shown in the figures. BMP-4 

expression is shown as a percentage relative to expression seen in their respective normal 

pituitaries. The lower part of each panel shows sodium bisulphite sequencing across the CpG 

islands. The beads on a string, in each case, represent analysis of four individual clones following 

each treatment. The filled beads represent CpG dinucleotide methylation and unfilled beads 

represent unmethylated dinucleotides. Drug-induced re-expression was assessed relative to 

vehicle treated cells.   *, P < 0.05, ** <0.01, *** <0.001 vs vehicle alone.  Data were analysed for 

significance by one-way ANOVA with Dunnett’s multiple comparison post-test. All experiments 

were done thrice with triplicate determinations. Error bars show SEM.  
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5.3.7 BMP-4 histone modifications post drug challenges 

To determine the potential impact of chromatin modifications on BMP-4 expression, ChIP analysis 

was employed. In GH3, MMQ and AtT20 cell lines and in these cases BMP-4 associated histone 

modification indicative of gene silencing was apparent. Figure 5.7 shows reduced H3K9Ac and 

increased H3K27Me3 of the BMP4 gene in the cell lines relative to input and compared to their 

normal pituitary counterparts. In all three cell lines the histone mark associated with active gene 

H3K9Ac was enriched after incubations with zebularine or TSA as single agents, however, in 

combined drug challenges significant synergy is apparent. In GH3 cells, single agent challenges led 

to a modest reduction in the histone modification associated with silenced gene H3K27Me3. 

However in MMQ and AtT20 cells single agent drug incubations were ineffective. 
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Figure 5.7: ChIP Analysis of BMP-4 promoter region in pituitary cell lines. Analyses are shown relative to the modification seen in input DNA for the 

H3K9Ac and H3K27Me3. Enrichment in the pituitary cell line GH3, MMQ and At-T20, left and right side of the figure respectively, are shown after the  

drug challenges shown in figure 5.6 and relative to enrichment observed in normal pituitary. P, < ** 0.01, *** <0.001 vs normal pituitary. Data were 

analysed for significance by one-way ANOVA with Dunnett’s multiple comparison post-test. All experiments were preformed thrice with triplicate 

determination. Error bars show SEM 
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5.4 Discussion & Conclusion 

Under normal physiological conditions, the pituitary gland retains the capacity to respond to 

signals that lead to reversible changes in growth patterns. The ability to respond in this was is 

shared by cell populations before and after differentiation, as is their capacity for 

transdifferentiation, and has led some authors to propose that the gland is to be considered as 

the “plastic pituitary” [2, 386]. In this context, the growth-promoting and or differentiation 

inducing signals are counterbalanced by those that mediate inhibition of these pathways. Thus, 

and as example, dopamine acting through the D2R is a tonic inhibitor of prolactin secretion 

synthesis and lactotroph proliferation [2, 387, 388]. It is perhaps intuitive, therefore, that 

knockout of the D2R in a mouse model is the critical change responsible for the genesis and 

outgrowth of pituitary adenomas that are predominantly in the lactotroph lineage [388]. 

Mechanistic insight of tumourigenesis in this model has been the identification of BMP-4 as a 

positive regulator of lactotroph cell proliferation and its increased expression in human 

prolactinoma [31]. However, in contradistinction to these findings, subsequent studies showed 

reduced expression of BMP-4 in corticotroph adenomas derived from patients with Cushing’s 

disease [32]. Furthermore, enforced expression of BMP-4 in AtT-20 cells, that are in the 

corticotroph cell lineage, suppresses their growth. The apparent bifunctional role of BMP-4 in a 

cell-type specific context is not without precedent and has been described for several other genes 

in other tumour types [194, 384, 385]. In these cases, the same protein may exert its action as an 

oncogene or as a tumour suppressor gene and perhaps explains increased expression of BMP-4 in 

some pituitary adenoma subtypes and a decrease in others [31, 32]. An example of heterogeneity 

of expression levels within different cell types in the pituitary is the somatostatin receptor. 

Somatostatin and its analogue mediate through the activation of PTX sensitive Gi/o coupled 

somatostatin receptors in pituitary cells [305]. Interaction of somatostatin with its receptor 

inhibits secretion of a wide range of hormones. Somatostatin usefulness is entirely dependent on 
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cells expressing the particular receptor subtypes, loss or reduced expression is frequently the 

limiting factor [316, 317]. SSTR has differential expression in subtype specific adenomas. SST2 and 

SST5 have a bifunctional role in pituitary adenomas. SST2 is expressed in Growth hormone 

secreting tumours and non-function adenomas. Whereas its expression is low in Prolactinomas 

and Cushing adenomas. SST5 is expressed in Prolactinomas and Cushing adenomas and its 

expression is low in the other subtypes [320, 321]. This was a very important key factor in drug 

treatments using SSA. Pharmacological strategies were based on the construction of ligands with 

high affinity for each of the two receptor subtype directed towards new compounds that were 

capable of interacting with more than one SST subtype. This led to the discovery of BIM-23244, 

SOM230 (Pasireotide). Pasireotide was a bi-specific compound that could activate both SST2 and 

SST5 and therefore achieve better control of Growth hormone, adrenocorticotroph hormone 

releasing, Prolactin hormone and clinically inactive non-functioning adenomas [330]. 

In this investigation of BMP-4 at the transcript and protein level differential expression of BMP4 

across and within different pituitary adenomas is apparent. In agreement with previous reports,  

increased expression of BMP-4 is apparent in prolactinomas relative to normal pituitaries and to 

the other adenoma subtypes [31]. However, and in contrast to a previous report [31], only a 

proportion of prolactinomas overexpressed BMP-4 relative to the normal pituitaries used in this 

study, suggesting that aberrations other than overexpression of this cytokine are most likely 

responsible or sufficient for tumour outgrowth. In corticotroph adenomas, variable expression of 

BMP-4 transcript was apparent, where the majority of adenomas show reduced expression, as 

determined by qRT-PCR relative to the normal pituitaries used within this study. Similar findings, 

but in this case as determined by IHC, have been reported previously [32]. However although the 

present study of BMP-4 protein expression in these adenomas shows significantly reduced 

expression relative to the prolactinomas, the expression levels are similar to that seen in normal 

pituitaries and reflect previous reports in which expression was determined by western blot 

analysis [31]. In the other adenoma subtypes, that is, non-functioning adenomas  and 



  
     171 

 
  

somatotrophinomas, the majority of adenomas show reduced expression of BMP-4 relative to 

normal pituitaries, and this was apparent at both transcript and protein level. A single previous 

report has also described reduced BMP-4 expression in non-functioning adenomas and FSH-

secreting gonadotrophinomas, and in this case expression was determined at the transcript level 

[383]. Moreover, It is important to consider the normality of the normal pituitaries used. Previous 

work within the group through Immunohistochemistry and Pyrosequencing, shows data 

suggestive that the normal pituitaries used have a normal homogenous population of pituitary 

cells [154, 389].   

This study of BMP4 expression was designed to identify potential discordance between transcript 

and protein expression in pituitary adenomas, a phenomenon not previously investigated for this 

cytokine. However the broadly similar transcript and protein expression patterns from the 

individual pituitary adenomas mitigate against post-translation modifications as responsible for 

either increased or decreased expression being consequent to effects on protein seen half-life. 

Equally, the observed decrease in BMP4 protein seen in some adenomas is not a consequence of 

loss through a protein degradation pathway. However for other proteins and in pituitary tumour 

context, reduced expression of the cell cycle regulator p27 is apparent and reported to be 

mediated through protein-degradation pathway instead of low mRNA transcript expression [322]. 

 Genetic defects in this tumour type, and as previously discussed, are infrequent whereas 

epigenetic change is a more common finding [390],  Changes to the epigenome  are frequently 

apparent as DNA methylation and or histone modifications. In the same tumour cohort, where 

expression of BMP4 was determined, no change in methylation profiles across bona fide CpG 

island were detected.  However, analysis of histone tail modifications associated with silent [355] 

and expressed genes [120], showed clearly discernible patterns associated with reduced BMP-4 

transcript. In these cases reduced expression is associated with enrichment for the histone 

modification, H3K27Me3 and depletion of H3K9Ac relative to normal pituitaries and tumours 
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expressing BMP-4. These types of modifications have also been described in previous studies in 

relation to reduced expression of D2R in the pituitary tumour cell line GH3 [121]. In the adenomas 

where increased expression of BMP-4 is apparent, histone modifications are similar to those seen 

in normal pituitaries and are consistent with the gene being transcriptionally competent. In these 

cases the observed transcriptional competence suggests that other aberrations in signal 

transduction pathways are responsible for the observed increase of BMP-4. 

To gain an appreciation of the causal impact of epigenetic aberrations on BMP-4 expression a cell 

model system was used, and comprised the pituitary tumour cell lines described herein and  a 

strategy we and others have used previously [121, 151, 391]. The cell line GH3, MMQ and AtT-20 

expressed low but reproducibly detectable BMP-4. However in contrast to the majority of human 

tumours that show reduced BMP-4 expression, the cell lines associated CpG islands were heavily 

methylated. In addition these regions showed enrichment for the histone marks associated with 

silent genes, H3K27Me3 and concomitant depletion of H3K9Ac, a modification frequently 

associated with active genes. Moreover, incubations of the cells with the demethylating agent 

zebularine or the histone deaceytlase inhibitor TSA, as single agent, resulted in a modest change 

in expression. However, combined drug challenges resulted in robust BMP-4 expression in these 

cells. In these cases, the combined drug challenges were responsible for a partial decrease in CpG 

island methylation and marked reversal of histone modification towards the pattern apparent in 

their normal pituitary counterparts that express BMP-4. Collectively, these findings suggest that 

significantly reduced expression of BMP-4 in these cell lines was consequent to changes within 

their respective CpG islands and histone modifications, a phenomenon I had noted previously for 

the expression of the dopamine D2 receptor in GH3 cells [121]. These findings would support, 

albeit indirectly, that similar causal mechanisms of silencing are most likely operative in the 

human pituitary adenomas showing reduced expression of BMP-4. A caveat associated with these 

conclusions is that silencing and or reduced expression of BMP-4 in human tumours is not 

associated with CpG island methylation however they do show histone modifications similar to 
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those seen in the tumour cell lines. Although all of these experiments were performed on early 

passage cells, it is possible that methylation is an in vitro phenomenon or represents a species 

specific epimutation. Thus, although models are useful, there is a need to be mindful of potential 

pitfalls through extrapolation across species boundaries. Equally, epidrug challenges will impact 

on perhaps multiple genes harbouring epigenetic change. Thus, although I observed epidrug-

mediated chromatin modifications to BMP-4 that are coincident with re-expression and suggests 

that the changes are specific, it did not preclude changes at other epigenetically modified loci that 

may also impact on BMP-4 expression. 

The clinical impact and consequences of variable BMP-4 expression in vivo are not yet known. 

Indeed, the physiological impact of aberrant BMP-4 expression will also be dependent on cell 

type, cognate receptor number, and also local level inhibitors such as noggin. However, several 

studies, primarily in these cell line model systems, show that BMP-4 most likely modulates 

responsiveness to drugs commonly used in clinical management and that target the Somatostatin 

receptors. These studies have been subjected to recent review [392, 393] and provide further 

evidence for the bifunctional characteristics of BMP-4 in a cellular context. Thus BMP-4 enhances 

prolactin production and proliferation of GH3 cells and modulates SSTR sensitivity through up 

regulation of SSTR5 and concomitant reduction in SSTR2 expression [393]. However, in AtT-20 

cells, in the corticotroph cell lineage, BMP-4 signalling suppresses ACTH secretion and cell 

proliferation [32, 344].  In the context of the data presented in this section of the study, epidrug-

augmented expression of BMP-4, in combination with conventional therapies, might offer new 

avenues for treatments for these tumours.      
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6. Pre-incubation of Pituitary Tumour Cells with the Epidrugs Zebularine 

and Trichostatin A are permissive for Retinoic Acid Augmented Expression 

of the BMP-4 and D2R genes 

 

6.1 Aims & Objectives 

The purpose of the study was to gain a further insight into the relationship and the interplay 

between RA mediated expression of BMP-4 and D2R and their epigenetic silencing in the pituitary 

cell lines AtT-20 and GH3.  

6.2 Introduction 

As discussed and reviewed in the preliminary introduction to this thesis our understanding of the 

pathogenic mechanisms responsible for the evolution and outgrowth of human pituitary 

adenomas are far from complete. Moreover, each of the differentiated cell types within this gland 

can give rise to a tumour that in some cases shows distinct, subtype-specific, genetic and  or 

epigenetic aberrations [386, 394, 395]. Indeed, the impact of these changes within and between 

subtypes presents significant challenges for their management and the efficacy of the various 

treatment options. 

Studies from several groups have explored the potential of the retinoids and in particular retinoic 

acid (RA) as a treatment option for the pituitary adenomas [347-349, 396]. As example, and in the 

corticotroph adenoma cell line, AtT-20, RA inhibits ACTH biosynthesis and POMC transcription and 

is also responsible for  the observed decrease in cell proliferation and cell viability [348]. Pre-

dating these studies in AtT-20 cells, similar endpoints, in this case in an in vivo nude-mouse model 

of Cushings disease, were reported and most likely focused attention on the potential of the 

retinoids as effectors in the pathways leading to inhibition of hormone secretion and tumour 
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growth [347]. Indeed, subsequent and seminal findings from this group describing a significant 

role of BMP-4 in the genesis of pituitary adenomas [31]. 

The identification of BMP-4 and the first report describing its differential expression in the genesis 

of sporadic pituitary adenomas emanated from investigation of the dopamine D2 receptor 

deficient mice. In the same report, and across a cohort of primary human pituitary adenoma 

subtypes, significant increase in BMP-4 was apparent and confined to prolactinomas [31]. 

Moreover, a subsequent investigation from the same group described reduced expression of the 

BMP-4 in primary human corticotroph adenomas [348]. These studies were also first to establish 

the causal link between RA challenge and the subsequent BMP-4 mediated effects that are 

described above [348]. Differential, subtype specific expression of BMP4 has been reported by 

other groups and confirm earlier findings of increase in transcript and protein primary 

prolactinoma [356] whereas most other subtypes showed reduced expression of this cytokine 

[356, 383]. 

In addition to the RA induced and BMP-4 mediated effects apparent in corticotroph tumour cells, 

novel data describing the effects of this retinoid on expression of the dopamine D2 receptor (D2R) 

have also been reported [373]. The likely impetus of these studies reflects the observations that a 

proportion of adenomas in the lactotroph lineage are resistant to dopaminergic drugs and is 

perhaps consequent to deficiency of the D2R [397, 398]. In these cases, a likely scenario is that an 

activated RA receptor, through its retinoic acid response element (RARE) in the D2R promoter will 

perhaps restore the receptor expression [399]. If this were the case then RA would re-establish or 

augment the anti-secretory and anti-proliferative actions of dopamine, through increase in 

receptor number, in this and perhaps other adenoma subtypes. While these studies show, in a 

proportion of primary adenomas, that RA challenges increase D2R expression it is without effect 

in GH3 cells in the somatolactotroph cell lineage [373]. Paradoxically, dopamine challenge of 

primary adenomas, where RA induced re-expression of D2R was effective, did not lead to 
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augmentation of the anti-proliferative effects. However in GH3 cells it does lead to decrease in 

proliferation and increase in apoptosis [373]. 

My own studies, described in this thesis and that are also now published, have  shown that 

reduced expression of BMP-4 in pituitary tumour cell lines and primary adenomas consequent to 

epigenetic silencing [356]. Similarly, loss or significantly reduced expression of the D2R in pituitary 

tumour cell lines is also associated with epigenetic silencing  [121]. In these cell lines (AtT-20, GH3 

or MMQ) epidrug mediated reversal of these aberrations restore BMP-4 and D2R expression [121, 

356]. However, the epigenetic silencing of the BMP-4 and the D2R gene raises interesting 

question in the context of the observation that RA mediates and or augments expression of the 

BMP-4 gene in AtT-20 cells [348]. Equally, although the RA does not lead to increased expression 

of the D2R in GH3 cells it is associated with increased expression of this receptor in primary 

adenomas [373]. I considered that a possible explanation for these findings is that, RA challenge 

per se might lead to reversal of epigenetic silencing or that this retinoid may, through activation of 

their cognate receptor(s), either directly or indirectly “override” epigenetic silencing and thereby 

increase expression of BMP-4 and or that of the D2R gene in these cell lines.  

To address the possibilities described above experiments were designed to determine the effects 

of RA in the presence and absence of epidrug mediated reversal of epigenetic changes. Since 

these types of studies are reliant on cell that undergo active cell division they were performed on 

the pituitary tumour cell lines described throughout this thesis.  
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6.3 Results  

6.3.1 Retinoic acid induced expression of BMP-4 and D2R in pituitary cell lines 

The expression of BMP4 and D2R was first determined following retinoic acid challenges by qRT-

PCR. The internal control used for all the cell lines was PBGD.  

The expression of BMP-4 was determined following challenge with retinoic acid in At-T20, MMQ 

and GH3 cell lines. In a dose response experiment at the highest and lowest dose used in previous 

studies [348], that is (10nM to 100nM) nether isoform, all-trans RA or 9-cis RA,  induced 

significant increase in BMP-4 expression as determined by qRT-PCR (Figure 6.1A).  

However, in these studies a slight but reproducible increase in the D2R transcript expression was 

detected in GH3 cells following these incubations at the highest dose employed, but this did not 

achieve statistical significance (Figure 6.1B).  In contrast to these findings RA challenges induced 

robust expression of D2R in MMQ cells in the lactotroph cell lineage to levels similar to those 

apparent in normal pituitaries (Figure 6.1B). 
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Figure 6.1: Expression Analysis post Retinoic acid challenge: A) Expression analysis of BMP4 in 

GH3, MMQ and AtT-20 cell line relative to normal rat or mouse pituitary respectively. Expression 

is shown as a percentage relative to the normal pituitaries. B) Expression analysis of Dopamine D2 

receptor in MMQ and GH3 cells. Both panels show treatment with the two isoforms of retinoic 

acid, Trans, (all trans retinoic acid), Cis,: (9-Cis retinoic acid) at the doses shown in the figure. All 

experiments were performed thrice with triplicate determination. Error bars show SEM. P 

***<0.001 relative to untreated cells. 

A  BMP-4 

B  D2R 
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6.3.2 Retinoic Acid induced expression of BMP-4 and D2R in epidrug challenged cells 

In previous studies described in this thesis and published I had shown that the BMP-4 gene is 

epigenetically silenced in AtT-20 and GH3 cells as is the D2R in GH3 cells [121, 356]. On the basis 

of these findings and these studies that show that RA does not induce expression of these genes 

in pituitary cell lines it was important to determine if epigenetic modifications were responsible 

for rendering these genes refractory to RA challenge. To address this possibility, AtT-20 and GH3 

cells were incubated with increasing doses of zebularine and with a constant TSA concentration 

shown to be effective in my previous studies. Response to RA was determined in the presence 

and absence of epidrug challenges.  

In AtT20 cells, epidrug co-incubation challenges led to significant increase of BMP-4 expression at 

zebularine concentrations of 1µM or more, whereas the lower doses were ineffective (figure 

6.2A). Moreover, the dose-dependent epidrug-mediated, increase in BMP-4 expression was 

significantly augmented by RA. In AtT-20 cells, the most significant, RA mediated increase in BMP-

4 expression was apparent in epidrug challenged cells, where zebularine (1µM) was used at 

submaximal concentration. On the basis of these findings, this dose of zebularine in combination 

with TSA was used in other experiments. 

Similar findings of epidrug-mediated and RA-augmented expression of BMP-4 were also apparent 

in GH3 cells (figure 6.2B). The most significant increase in BMP-4 expression was apparent to RA 

challenge and epidrugs where the zebularine concentration was 3µM. This concentration, in 

combination with TSA was used in further experiments in the GH3 cell line. 

Similar findings and conclusions were reached for epidrug-mediated and RA-augmented 

expression of D2R in GH3 cells (figure 6.2C). 
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Figure 6.2: Expression status of BMP4 and D2R transcript in cell lines post epidrug and RA 

challenges. Percentage expression of BMP4 in AtT-20 cells (Figure 6.2A), GH3 (Figure 6.2B) and 

the percentage expression of D2R in GH3 cells (Figure 6.2C).  Transcript expression is shown 

relative to respective normal pituitaries and in these cases set at 100%. Drug treatments are 

shown in the figure. Blue bars represent retinoic acid treated cells. All experiments were done 

thrice with triplicate determinations in each experiment and the error bars show the SEM. P, 

<0.001 vs. vehicle treated cells. 

A 

B 
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6.3.3 Epidrug-mediated demethylation of the BMP-4 and D2R associated CpG islands in 

pituitary cell lines 

The BMP-4 associated CpG islands, in AtT-20 (Fig 6.3A), GH3 cells (Fig 6.3B) and that associated 

with the D2R CpG island (Fig 6.3C) are differentially methylated relative to their respective normal 

counterparts. Single agent challenges with, zebularine, TSA or RA are associated with barely 

detectable changes in the methylation of these gene (figure 6.3A-C). However and as described in 

a previous section of this thesis co-incubation with the epidrugs (zebularine and TSA) is associated 

with a modest decrease in methylation. In these cases at the highest concentration of epidrug 

employed a ~30% decrease in methylation is apparent relative to vehicle treated controls. 

However RA challenge of epidrug treated cells did not lead to further decrease in methylation 

(figure 6.3A-C). 
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Figure 6.3: DNA methylation of the BMP-4 and D2R associated CpG islands in pituitary cell lines. 

The BMP-4 associated CpG Island in AtT-20 cells (panel A), GH3 cells (panel B) and of the D2R 

associated CpG island in GH3 cells (panel C). Drug treatments are shown in each of the figure 

panels. The filled beads represent methylated CpG dinucleotides and the unfilled beads represent 

non methylated CpG dinucleotides. All experiments were performed thrice. 

A 

B 

C              D2R-GH3  
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6.3.4 Epidrug-mediated histone modifications of the BMP-4 and D2R genes in pituitary 

cell lines 

In contrast to their normal pituitary counterparts, AtT-20 (fig 6.4A) and GH3 cells (fig6.4B), where 

BMP4 expression is barely detectable show histone modifications associated with repressed gene. 

Similar histone modifications are also apparent for the D2R gene in GH3 cell line (fig 6.4C) relative 

to their normal pituitary counterparts. In these cases, the promoter regions show enrichment for 

the histone modification, H3K27Me3 and a depletion of the histone modification, H3K9Ac relative 

to their normal counterparts. Co-incubations experiments with the epidrugs, zebularine and TSA 

led to significant change in histone modifications in these cell lines (figure 6.4A-C). In these cases 

epidrugs induce enrichment of the H3K9Ac modification and depletion in the H3K27Me3 

modification. However, the RA-augmented increase in BMP-4 and D2R transcript expression, 

apparent in epidrug treated cells, is not associated with further change in either enrichment of 

H3K9Ac or depletion of H3K27Me3. These findings suggest that epidrug mediated modifications 

to the epigenome are permissive and sufficient for RA augmented response. 
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Figure 6.4: ChIP analysis of the BMP-4 and D2R promoter region in pituitary cell lines. ChIP analyses are shown relative to input for H3K9Ac and 

H3K27Me3. Enrichment, in the pituitary cell line AtT-20 and GH3 are shown for BMP-4 promoter region in panel A and B and for D2R in GH3 in panel C 

following drug challenges. Cells lines were challenged with RA in the presence of sub-maximal concentrations of zebularine and TSA and are shown in 

each panel. Error bars show SEM. P * <0.05, ** <0.01, *** <0.001 relative to vehicle treated cells. 
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6.3.5 Growth promoting and growth inhibiting activity of BMP-4 in pituitary cell lines 

 The role of BMP-4 as a mediator in proliferative responses was determined in proliferation assay 

and by soft agar colony forming efficiency (CFE) experiments. To this end, for the proliferation 

assays, GH3 and AtT-20 cells were incubated with sub-maximal combinations of epidrugs in the 

presence or absence of RA. Viable cell counts were made at 24 hour intervals over 4 days. Figure 

6.5A shows that in GH3 cells, relative to vehicle treated cells, a significant increase in cell number 

is apparent in cell treated with epidrugs. This increase in cell number was further augmented 

when epidrug challenged co-incubated with RA, however, RA alone was ineffective. In AtT20 cells 

(figure 6.5B) the opposite response was apparent. In this case, epidrug mediated and RA 

augmented a decrease in growth rate. RA as a single agent was without effect. 

Soft agar CFE provided further support for these observations where submaximal challenges with 

epidrugs did not lead to a significant change in colony numbers relative vehicle treated cells. 

However, in the epidrug treated cells challenged with RA a significant increase (GH3 cells) or 

decrease (AtT-20 cells) in the number of colonies formed is apparent (figure 6.5C).  

 

 

 

 

 

 

 

 



  
     187 

 
  

Figure 6.5 Proliferation and soft agar colony forming efficiency (CFE) assay of drug challenged 

pituitary cell lines. The proliferation of GH3 (Panel A) and AtT-20 cells (Panel B), as determined by 

viable cell counts are shown in cells subjected to drug challenges that induced significant change 

in CFE shown in Panel C. In epidrug treated GH3 cells a significant increase in the cell number, 

relative to vehicle treated cells was not apparent until the 96hr time point (P,0.001). In combined 

challenges with RA significant increase was first apparent at 48hr time point (P<0.05) and 

increased at 73hr (P<0.01) and 96hrs (P<0.001). No difference in cell number was apparent 

following RA challenge alone (Panel A). In AtT-20 cell line (Panel B), epidrug challenges resulted in 

a significant decrease in proliferation at similar time points as those apparent in Panel A. RA alone 

was without any effect on cell number, but co-incubations with epidrugs led to further decrease 

in cell number that was apparent at an earlier time point of 48hr. CFE was determined following 

the challenges shown in Panel C and the differences determined relative to vehicle treated cells. 
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6.3.6 Specificity of BMP-4 as a mediator in the proliferative response 

The specificity of BMP-4 as a mediator in the observed proliferative responses was assessed by 

knock down experiments of the BMP-4 antagonist noggin. It was important to confirm significant 

and specific siRNA mediated knock down of noggin (siRNA) in GH3 cells relative to that seen in 

cells transfected with a non-target control (siNT). In these experiments, incubation of cells in the 

presence or absence of epidrugs had no further effect on noggin transcript levels as determined 

by qRT-PCR (figure 6.6A). The effects of these manipulations on BMP-4 expression were also 

determined (figure 6.6B). These experiments showed that knock-down of noggin, in the absence 

of epidrug challenges was sufficient to a marginal increase BMP-4 however, the increase was 

significantly augmented in epidrug challenged cells.  

Finally the effect of these manipulations on the proliferation response of GH3 cells was 

determined. Sham transfected and non-target siRNA (siNT) transfected cells showed similar 

growth profiles over four days (figure 6.6C). Relative to these cells, an increase, of similar 

magnitude, in cell number was observed in cell challenged with either the siRNA or with the 

epidrugs. This increase, however, was further augmented when noggin knock down cells were 

incubated in the presence of the epidrugs. 
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Figure 6.6: BMP-4 expression and proliferation response following siRNA mediated knock-down 

of the BMP-4 antagonist noggin. siRNA mediated knock-down of noggin (siRNA) relative to non-

target control siRNA (siNT) leads to significant (*** P<0.001) reduction in noggin expression as 

determined by qRT-PCR  in GH3 cells (Panel A). No further effects on noggin transcript levels were 

apparent in cells challenged with epidrugs in the absence or presence of RA, and at the doses 

shown in figure 6.4. qRT-PCR of BMP-4 in noggin knock-down GH3 cells (Panel B) is associated 

with increase in BMP-4 transcript relative to sham transfected cells. Further increase in BMP-4 is 

apparent in cells subjected to co-challenge with epidrug in the absence or presence of RA. In four 

day proliferation assay and relative to sham and siNT transfected cells, specific knock-down of 

noggin (siRNA) alone and also epidrug challenges led to similar increase in cell number that were 

significant at 72hr (P<0.01) and 96hr (P<0.001), (Panel C). In cells co-incubated with siRNA, 

epidrug and RA a significant increase in cell numbers was apparent at earlier time points (48hr, P 

< 0.001) and maintained through the 72hr and 96hr time points (P <0.001). 
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6.4 Discussion & Conclusion 

The identification of molecular aberrations responsible for the pituitary outgrowth and those 

conferring resistance to medical intervention presents significant challenge. Similar challenges are 

apparent in the identification of effective drug therapies that suppress inappropriate hormone 

secretion and inhibit tumour growth. None the less, these dual pharmacologic outcomes are 

achieved through use of dopamine analogues for most but not all prolactinomas [400]. However, 

other drug based approaches, that target the somatostatin receptor (SSTR) or the peroxisome 

proliferator activated receptor γ (PPARγ), principally in GH and ACTH secreting adenomas 

respectively, achieve benefit in a significantly smaller proportion of cases [324, 332, 333, 401]. 

More recently, attention has focused on RA as a potential therapeutic option where it was initially 

shown to prevent experimental Cushings syndrome [347]. Subsequent studies showed that the 

inhibitory effects on ACTH secretion and cell proliferation were mediated, at least in part, through 

induction of BMP-4 [348]. Moreover, the potential of RA as a treatment option in Cushing’s 

disease has also been addressed, in a small number of patients, in a proof of concept study. Long 

term treatment with RA was well tolerated in the majority of cases and urinary free cortisol (UFC) 

was normalised in four of the seven patients investigated, suggesting that RA represents a 

promising medical approach in Cushings disease [402]. 

My studies show that RA challenges per se does not induce expression of the endogenous BMP-4 

gene in either AtT-20 or GH3 cell lines or induce change or modification to the BMP-4 associated 

epigenome, which in these cases are indicative of gene silencing. A possible explanation for the 

discordance between our findings and those reported by Giacomini and colleagues is their use of 

transfected BMP-4 receptor construct that will not recapitulate the epigenetic modifications of 

the endogenous gene [348]. An alternative explanation is that differences might reflect clonal 

variants of these cell lines, however, the findings of BMP-4 gene silencing in primary pituitary 
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adenomas that is also associated with epigenetic modifications would argue against this being  a 

clonal or cell culture artefact [356]. 

Early studies showed RA induces D2R expression through a consensus RARE in its promoter region 

[399]. In the current investigations we too found, in the MMQ cell line, that the D2R gene is 

responsive to RA. However, GH3 cells were resistant to this challenge and similar conclusions in 

this cell line have been reported by other investigators [373]. Our interpretation is that resistance, 

as with the BMP-4 gene, can be explained by epigenetic modification associated with the D2R 

gene in this cell line. Supporting this interpretation are our findings of histone modification 

associated with silent gene in GH3 cells and modifications associated with expressed gene in 

MMQ cells [121]. However, and as further explanation, a recent study has proposed that 

expression of the D2R is dependent on co-expression of Filamin A, and is reported as essential for 

receptor expression in primary lactotroph adenomas [364]. 

Recent studies including those described within this thesis have shown epidrug mediated re-

expression of silenced genes and has been subject to recent review [394]. Given that my studies  

show that this approach is effective for re-expression of D2R and BMP-4 in pituitary tumour cell 

lines [121, 356] it was reasonable to determine the consequence of epidrug-mediated chromatin 

remodelling as permissive for RA induced expression of the BMP-4 and of the D2R gene. In GH3 

and AtT-20 cells, co-incubations with increasing doses of the demethylating agent, zebularine 

together with the histone deaceytlase inhibitor TSA, but not with either agent alone, led to a dose 

dependent increase in BMP-4 expression and these findings are consistent with earlier findings in 

this thesis and published reports from our group [121, 356]. In cells incubated with epidrugs 

together with RA a significant increase in BMP-4 expression is observed. Similar findings, of an 

epidrug facilitated, and RA augmented increase of the D2R transcript in GH3 cell line is also 

apparent. Epidrug challenges, but not RA (either alone or in co-incubations), were associated with 

limited change to gene associated CpG island methylation status. However, these epidrug 
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challenges were responsible for significant increase and decrease in histone modification 

associated with active and repressed genes respectively and reflect my previous findings and 

reports from our group [121, 356]. The observation that resistance to RA in the absence of 

epidrugs challenges suggests the latter is permissive and the former promotes or augments 

expression of these genes in pituitary cells. 

By way of explanation for the observed increase of BMP-4 expression in prolactinomas and 

decrease in most other pituitary adenoma subtypes we  recently proposed a bifunctional role for 

this cytokine (this thesis) and my published study [356]. In these cases, BMP-4 expression would 

exert either a growth-promoting or growth-inhibiting role in prolactinoma or in other adenoma 

subtypes respectively. In GH3 cells in the somatolactotroph lineage and AtT-20 cells in the 

corticotroph lineage our studies now provide further support for the bi-functionality of this 

cytokine. The observation of an epidrug facilitated and RA augmented increase in cell number and 

CFE was confined to GH3 cells. In contrast to these findings, in AtT-20 cells, drug challenges 

inhibited proliferation and CFE, however the decrease in cell number was not associated with a 

decrease in cell viability. These findings provide further evidence for an RA-induced and BMP-4 

mediated growth modifying responses, where growth promotion and growth inhibition are 

observed in GH3 and AtT-20 cells respectively. 

A direct in vitro approach, with respect to the growth-promoting and growth inhibiting actions of 

BMP-4 per se has been adopted by other investigators. In these cases, incubation of pituitary 

tumour cell lines with exogenous BMP-4 promotes, in GH3 cells [31], or inhibits in AtT-20 

proliferation [348]. Our findings add to this body of evidence, where we show that RA induces 

expression of the endogenous BMP-4 gene in these cells exerts similar effects. A caveat 

associated with this conclusion is that RA challenge in the presence of epidrugs may also induce 

expression of other endogenous and perhaps epigenetically silenced growth regulatory genes. 

However and arguing against this possibility are the findings from the siRNA mediated knock-
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down of the BMP-4 antagonist noggin. These studies in GH3 cells show that siRNA mediated 

knock-down of noggin, in cells incubated with epidrugs, is associated with an increase in cell 

number as determined by proliferation assays. 

Noggin is reported to exert its antagonistic effects through extracellular sequestration of BMP-4 

thereby inhibiting binding to its cognate receptor [31, 379]. In this context an unexpected finding 

from our studies is that knock-down of noggin per se induced expression of the endogenous BMP-

4 gene in the absence of epidrug induced modifications. However, further increase in transcript 

expression is apparent when knock-down is combined with epidrug challenges. Furthermore, the 

4 day proliferation assays reflected the growth promoting properties of re-expressed and epidrug 

augmented expression of BMP-4 in this cell line. While these findings do not preclude the 

characterised role of noggin as a BMP-4 antagonist they perhaps identify additional or perhaps 

cell type specific mechanisms of BMP-4 regulation. It is perhaps worthy of note that in the D2R 

knock-out mouse of pituitary tumourigenesis, loss of noggin expression as determined by 

differential display was accompanied by increase in BMP-4 expression [31]. These findings suggest 

that their expression is perhaps interdependent. Ideally similar studies to be performed in AtT-20 

cells would be ideal however these cells do not express the noggin transcript.  

Although the efficacy of current treatment modalities, in the context of BMP-4 expression, are 

incomplete emerging data shows that BMP-4 may modulates responsiveness to drugs commonly 

used in this tumour type. In these cases, the expression of the BMP-4 in the signalling cascades 

engaged through activation or restoration of the somatostatin, D2R and PPARγ receptors has 

been described [121, 344, 393, 403, 404] and has been subjected to recent review [53, 341]. Thus, 

the reversal of the epigenetic silencing in combination with classic therapeutic option may 

improve clinical management strategies. Indeed, in preclinical trails, and as an example only, the 

histone deaceytlase inhibitor valproic acid in combination with retinoic acid has been shown to be 

effective both in vitro and in vivo in patients with acute myeloid leukaemia [405].   
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7. Conclusion 

 

Under normal physiological conditions the pituitary gland retains the capacity to respond to 

signals that lead to reversible changes in growth patterns. The ability to respond in this way is 

shared by cell populations before and after differentiation and has led some authors to suggest 

the gland be regarded or termed, “the plastic pituitary” [2, 386]. On the basis of our current 

understanding, genetic mutations, leading to activation of oncogenes and loss of TSG, are an 

infrequent finding in this tumour type [16, 386, 390]. However, and in common with many other 

tumour types epigenetic aberrations are common findings [53, 390, 391]. Indeed multiple reports 

now describe methylation mediated gene silencing that targets CpG islands [53, 406, 407]. In the 

majority of these reports genes have been identified using candidate gene approaches and have 

focused on those in tumour suppressor and or apoptotic pathways [389, 408]. However, more 

recent reports have used techniques or technologies that either directly or indirectly identified 

novel genes [31, 158, 389, 408]. In these cases investigators have used techniques that include, 

differential display, siRNA mediated knockdown strategies and BeadArray analyses [389].  

While early studies of pituitary tumours and indeed that performed in many other tumour types 

focused on CpG island methylation as a mechanism leading to or responsible for gene silencing 

other epigenetic mechanisms, associated with or responsible for gene silencing, have received 

less attention. However, where studied, chromatin remodelling, associated with histone 

modifications and expression of miRNA impact on gene expression or transcript translation in 

many tumour types including those of pituitary origin [121, 390, 394, 406]. What is more, 

emerging data would suggest that the demarcation between genetic aberration and epigenetic 

changes may not be as distinct as we first thought. In this case emerging data from the Fusco 

laboratory suggest that inappropriate expression of The High Mobility Group A proteins (HMGA), 
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either through amplification of this gene locus or in addition to decreased expression of microRNA 

(miRNA) that target HMGA1 and HMGA2 are now described [28, 37, 409].  

The treatment options, for the management of patients with pituitary adenoma, are largely 

dependent on the adenoma subtype. Indeed, the majority are treated surgically whereas those of 

lactotroph origin, the prolactinoma, are treated with dopamine agonists and in some cases 

somatotrophinoma, that secrete GH are treated with somatostatin receptor analogues [357, 358].  

However, recent studies targeting other receptor types, including somatostatin, PPARγ and BMP-

4 receptor have been described [341, 357, 402, 410-412].  In these cases, as indeed is the case for 

the D2R, some patients and or their adenomas are resistant to these medical intervention 

strategies [332, 333, 358, 401, 413]. Furthermore, these interventions are frequently designed to 

not only inhibit inappropriate hormone secretion but also induce tumour shrinkage. It is, 

therefore, perhaps not surprising that these dual functional end-points are rarely achieved [357, 

358]. Although resistance to medical therapy is clearly multi-factorial, and includes in some cases 

patients who are intolerant to the intervention, a body of literature would suggest that the 

absence or reduced expression of cognate receptors as responsible for resistance [283, 359, 363, 

410]. To our knowledge, and particularly at the inception of this research project, few studies had 

determined mechanisms or aberrations responsible for loss or reduced expression of clinically 

relevant receptors in this adenoma subtype. We also considered that if aberrations were 

identified, and given the knowledge that changes to the epigenomic landscape are reversible, this 

new knowledge would provide new, perhaps novel, therapeutic options, and perhaps across 

multiple pituitary adenoma subtypes. 

For the receptor directed studies of pituitary tumours my research initially focused on the D2R 

and subsequently the BMP-4 receptor and mechanisms/aberrations associated with their 

expression patterns in pituitary adenoma. Research was initially directed toward two key 

epigenetic modifications, namely CpG island methylation, and histone modifications associated 
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with gene silencing. In these cases it was recognised that prolactinoma are rarely treated 

surgically making the availability, or rather, the lack of primary adenoma a limiting factor. 

Furthermore, primary pituitary show limited proliferative potential in vitro. These limitations were 

partially overcome through use of characterised cell lines in the somato-lactotroph cell lineage, 

GH3 and in the corticotroph lineage, namely AtT20 cells. Our confidence in these cell lines as 

models of GH (somatotroph) and ACTH (corticotroph) “like” adenoma, respectively, was based on 

studies by multiple other investigators and their published reports [31, 283, 348, 363]. However, a 

caveat associated with these conclusions is that we were, in some cases, extrapolating across 

species boundaries.  

In the context of CpG island methylation in pituitary tumour cell line, my studies showed that loss 

or reduced expression of the D2 and BMP4 receptors is associated with increase in methylation 

relative to their normal pituitary counterparts. Challenge of these cells line with drugs that inhibit 

methylation and histone deacetylation restored expression of D2R and BMP4, however, despite 

robust transcript expression, as determined by RT-qPCR, the decrease in CpG island methylation 

was marginal. These findings, at least in part, prompted studies of histone modifications as 

determined by ChIP analysis. In this case, and again for both genes, histone modifications were 

those associated with gene silencing and epidrug challenges led to significant change to these 

modifications. Thus, relative to the marginal, epidrug-induced changes to DNA methylation, the 

change in histone modifications were far less equivocal. Indeed the findings strongly supported 

epigenetic change(s) as responsible for gene silencing and that epidrug incubation restored 

receptor expression.  

The silencing and subsequent epidrug-induced re-expression of the D2R in GH3 cells provided 

opportunity, in follow on studies, to determine dopamine-agonist mediated apoptotic responses. 

These studies did show a significantly augmented apoptotic response and suggest that reduced 

receptor number in GH3 cells and perhaps in primary tumours might, at least in part, be 
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responsible for a failure to respond to dopamine agonists or perhaps explain a blunted response 

in these adenomas. Indeed in primary tumours, although the number available to us for analysis 

was limited, histone modifications do appear to reflect receptor expression status, at least as 

determined by RT-qPCR. While this study was in progress the Spada group showed other 

mechanisms associated with reduced D2R receptor number and these findings [364] warrant 

more detailed investigation in a larger adenoma cohort and in the context of epigenetic changes.   

My investigations of BMP-4 expression in pituitary cell lines (GH3 and AtT-20) also showed loss or 

significantly reduced expression of this cytokine. In these cases, as with the D2R in GH3 cells, loss 

was associated with CpG island methylation and histone modifications. Again, epidrugs restored 

BMP-4 expression, and as with the epidrug-induced modifications to the D2R epigenome, these 

were apparent as significant change in histone modification and marginal change in CpG island 

methylation. In agreement with previous reports, BMP-4 was increased in prolactinoma and 

decreased in most other adenoma subtypes and these observations suggested that BMP-4 was 

perhaps bifunctional. In these cases, and dependent on cellular context, this cytokine might either 

promote or inhibit proliferation. In contrast to pituitary cell lines, primary tumours showing 

reduced or barely detectable BMP-4 expression were not methylated across their CpG island, 

however, they did show histone modification associated with gene silencing. In tumours that 

showed elevated BMP-4 expression, relative to normal pituitary, histone modification reflected 

those apparent in “transcriptionally competent” genes. 

Although my studies had shown that the D2R and BMP-4 were rendered “transcriptionally 

incompetent” through changes to their epigenome other groups had suggested that the BMP-4 

gene is responsive to RA challenge [32, 347]. These findings suggested that RA might, perhaps, 

either override epigenetic silencing or perhaps lead to its reversal. It, therefore, seemed 

appropriate to investigate this possibility in some detail. My studies clearly demonstrated that RA 

challenge per se was ineffective as an agent that could override epigenetic silencing. However, 
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epidrugs were permissive, that is obligate for RA augment BMP-4 expression. I was also able to 

show in these cell lines that BMP-4 could promote or inhibit growth as determined by drug 

induced expression of this cytokine in GH3 and AtT-20 cells respectively. These findings provide 

exciting new opportunities in adenoma subtypes, other than prolactinoma, to use epidrugs in 

combination with RA to inhibit adenoma growth and hormone secretion in this case in 

corticotrophinoma.     
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7.1 Future Work 

The data presented within this thesis so far presents future scope of work to address some of the 

following: 

1. Investigate the effects of epidrug mediated D2R alongside commonly used drugs in 

clinical management of pituitary adenomas irrespective of the subtypes they express. 

2. The expression of D2R is thought to be dependent on the levels of Filamin A. Filamin A is 

reported as an essential receptor expression in primary adenomas. Investigate the levels 

of D2R in relation of Filamin A in GH3 cells and also in primary pituitary adenomas. It is 

also important to investigate the epigenomic landscape associated with Filamin A and the 

effects of this on the D2R expression. 

3. To investigate the effects of epidrugs and retinoic acid on hormone secretion/ production 

in conditioned media of cell lines. 

4. To investigate the impact and consequence of variable expression of BMP-4 in vivo. 

5. Investigate the epidrug mediated BMP-4 expression in responsiveness to drugs commonly 

used in clinical management and target this towards the somatostatin receptor and 

receptor sensitivity. 

6. To investigate the link between DNA methylation and histone modification in vitro. This 

could be done by investigating transcription factors associated with DNA methylation 

alongside the histone conformation in genes that have DNA methylations against those 

that do not. 

7. To investigate the link between genetics and epigenetics. This could be done by 

investigating microRNA’s associated with HMGA1 and HMGA2, further investigating 

epigenetic aberrations associated with silencing of microRNA’s. 
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Appendix 



Appendix I: siRNA Transfection. 

siRNA calculations for transfection: 

Smartpool of siRNA were obtained as lyophilized powder from Dharmacon. These were 

reconstituted in the recommended volume of siRNA dilution buffer (provided by Dharmacon) to 

make 20µM working stock solution (see below). These were then stored as s 20µL aliquots at -

20°C. The stock solutions were used in the concentrations shown in the Table below to determine 

optimal, gene specific knock down. In these cases the siRNA solutions were combined with FBS-

free DMEM prior to mixing with the Lipofectamine 2000 transfection reagent:  

 siRNA (20µM stock) FBS free- DMEM 

20nM 2µl 248 µl 

40nM 4 µl 246 µl 

100nM 10 µl 240 µl 

 

 The Smartpool siRNA used in this thesis are shown in the following Table: 

Name Target Sequence Mol. Wt.(g/mol) 

Noggin (1) ACACUGACGUACAUCAUUG 13,414.9 

Noggin (2) GGCAUUGACAUAUGAGACA 13,414 

Noggin (3) GAAAGAGGCUCGUCCACGC 13,474 

Noggin (4) GAACAUCCAGACCCUAUCU 13,429.9 



Appendix II: Primary pituitary adenomas used within the study and a copy of theEthical 

approval granted for the work. 

 

Study Number Tumour Number Classification Grade 

GH1 16 Somatotrophinoma 2 

GH2 23 Somatotrophinoma 2 

GH3 27 Somatotrophinoma 2 

GH4 529 Somatotrophinoma 2 

GH5 596 Somatotrophinoma 2 

ACTH1 4 Corticotrophinoma 1 

ACTH2 10 Corticotrophinoma 2 

ACTH3 22 Corticotrophinoma 1 

ACTH4 32 Corticotrophinoma 1 

ACTH5 59 Corticotrophinoma 2 

ACTH6 195 Corticotrophinoma 2 

ACTH7 207 Corticotrophinoma 1 

PRL1 25 Prolactinoma 2 

PRL2 29 Prolactinoma 2 

PRL3 46 Prolactinoma 1 

PRL4 56 Prolactinoma 1 

PRL5 57 Prolactinoma 1 

PRL6 396 Prolactinoma 1 

PRL7 535 Prolactinoma 1 

PRL8 536 Prolactinoma 1 

PRL9 698 Prolactinoma 3 

NF1 7 Non-functioning  3 

NF2 8 Non-functioning 2 

NF3 9 Non-functioning 2 

NF4 12 Non-functioning 2 

NF5 30 Non-functioning 3 

NF6 31 Non-functioning 3 

NF7 40 Non-functioning 2 

NF8 42 Non-functioning 3 

NF9 47 Non-functioning 3 

NF10 58 Non-functioning 2 

NF11 63 Non-functioning 2 

NF12 64 Non-functioning 2 

NF13 75 Non-functioning 3 

NF14 81 Non-functioning 3 

 

 

 

 



 

 



 

 



Appendix III: Reagents 

All reagents were purchased from Sigma-Aldrich unless stated otherwise. 

RNA extraction reagents 

The reagents stated below are used in the extraction of RNA in addition to those stated in the 

materials and methods: 

Lysis buffer: 5M Guanidinium thiocyanate: 

5M Guanidinium isothiocyanate 

0.5% (w/v) Sarkosyl (N-lauroylsarcosine) 

25mM sodium citrate 

8% (v/v) β-mercaptoethanol 

Mix well and autoclave 

Chloroform Isoamyl-alcohol (24:1) 

Add 239.6mL of chloroform to 10.4mL of isoamyl-alcohol (250ml total volume), mix well and 

store at 4°C 

2M Sodium acetate pH4.0: 

Add 82.03g of sodium acetate to 200mL of H2O. Adjust the pH to 4.0 using glacial acetic acid, 

adjust the volume to 500mL by adding H2O and autoclave. 

70% Ethanol 

Take 70mL of 100% ethanol and add 30mL of H2O. 

 

 



cDNA synthesis reagents: 

All reagents arrived ready prepared (Promega, Southampton, UK). However the dNTP’s require 

diluting. 

Dilution of dNTP (Bioline, London, UK) 

The dNTP’s are purchased as a 100mM stock and, therefore, comprise 25mM of each of the four 

bases. For the majority of experiments the working concentration for each base was 5mM. 

Therefore 200µL of the supplied dNTP was added to 800µL of ddH2O. Aliquots were stored at -

20°C and thawed on no more than three occasions. 

 

 

 

 

 

 

 

 

 

 

 

 

 



DNA extraction Reagents: 

The regents used for DNA extraction in addition to those in the materials and methods are as 

follows:  

Lysis buffer: TE buffer (pH8.0), 0.5% SDS pH 7.2 and 200µg/mL of Proteinase K 

TE buffer (pH 8.0) 

10mM Tris HCl (pH 8.0) 

1mM EDTA (pH 8.0) 

Mix well and autoclave. The amount of TE buffer added to the reaction will vary between samples 

and between experiments. Cells require 1.5mL of TE buffer whereas tissue requires 3mL of TE 

buffer. 

20% SDS 

10g of SDS added to 50mL of H2O and rotate on the rotary shaker at room temperature for 2 hours. 

Proteinase K 

Obtained from Sigma in a powdered form. Add H20 to give a concentration of 10mg/mL. Add 

desired amount to give 200µg/mL final concentration in lysis buffer.  

 

 

 

 

 

 

 

 



Gel Electrophoresis 

Products from RNA extraction, DNA extraction and PCR were in some cases resolved by gel 

electrophoresis. In these cases the following reagents were used: 

TAE buffer (50X) 

To 800ml ddH2O add 242g Tris base, 57.1ml glacial acetic acid, 100ml 0.5M EDTA. Make up to 

1X final volume using dH2O. 

10X Tris-Borate-EDTA (TBE) electrophoresis buffer (10X): 

108g Tris base 

55g Boric acid 

40mL 0.5M EDTA (pH8.0) 

Mix well and store at room temperature. 

Loading buffer: 

1mg/ml Bromophenol blue in 50% glycerol. Store aliquots at -20°C 

Loading dye: 

0.25% Bromophenol blue 

0.25% Xylene cyanol FF 

40% Sucrose. 

 Make up to required volume in dH2O. Loading buffer is X6 therefore when loading 5µL of PCR 

product add 1µL of loading buffer. Mix well and load onto gel. If adding more or even less sample 

scale up or down the loading buffer quantities. 



Appendix IV: Primer Sequencing and amplicon size 

Gene/Primer 

Name 

Species Forward (5’→3’) Reverse (5’→3’) Amplicon 

size (bp) 

RT-PCR     

PBGD Rat CAGCATCGCTACCACAGTGTC ATGTCCGGTAACGGCGGC 126 

BMP4 Rat TTCCGAGCGACGCACTGCC TGAGCGGCGTCCTCCCGC 240 

D2R Rat GCCATTGTTCTCGGTGTGTT CGGAACTCGATGTTGAAGGT 176 

Noggin Rat CTACGCCCTGGTGGTGGT TCCTTAGGGTCAAAGATAGGGT 141 

PBGD Mouse CGGGAAAACCCTTGTGATGC TTCTTCTGGGTGCAAAATCTGG 285 

BMP4 Mouse GTTTTCTGTCAAGACACCAT CAGACTGGAGCCGGTAAAG 292 

Noggin Mouse GACCTGGCTTTCTGGTTCCT TTCCTTTTGCTTGCCTTTTT 159 

GAPDH Human  CGACCACTTTGTCAAGCTCA GGGTCTTACTCCTTGGAGGC 102 

BMP4 Human AGGGAGGGAGGGAAGGAG AGCAGGACTTGGCATAATAAA

A 

227 

D2R Human ATCTCCTGCCCACTCCTCTT GTTTGGTGTTGACTCGCTTG 184 

Noggin Human CCAGAGGCATGGAGCGCTGC

C 

AGCAGCGTCTCGTTCAGATCC 205 

Sodium 

bisulphite  

    

BMP4 Rat TATAATGAGATTTTGGAGTAG ACTAAAACTCCAACTAC 405 

Nested BMP4 Rat TGTAATGTATTTGGTTAGGT ACCTAACCAAATACATTACA 183 

D2R Rat GTATAAGAGGGGATTAGTTT ACCTTCTTTATCATTCCCATCTT

AAA 

545 

Noggin Rat TAGAGGGTGGTGGAATT AACTATAATCACAAACCTTCTA

C 

352 

Nested Noggin  Rat GGTGGGGATTTATTAAGT AAATAAACAACTACTTCAACA

A 

226 

BMP4 Mouse TATTTTTGTTAGGTTG TTAGGTATTAAATTAGTATGGT

T 

167 

Hemi Nested 

BMP4 

Mouse GTAGTTTAAATATTTGTAGAA

GT 

 138 



Noggin Mouse TGAGGTTTATTAGGGG ACTCATACTACCTACCCTAC 271 

Hemi Nested 

Noggin 

Mouse  GATGTGTAGATAGTGTTGG  245 

BMP4 Human  GTTATTTGAAGTTAGAGGATT

TGG 

ACTATCATTAAAAACAATATTT

AACC 

266 

Hemi-nested 

BMP4 

Human  GAGAGGTATTTAAAAAGGAA

AG 

 143 

Noggin Human  GAAATTTAAAGGTTTGGAT AAAAAAACACACAAATTAAC 369 

Hemi nested 

Noggin 

Human AAGTGTTTTTAGAATTAGTTT

AG 

 243 

ChIP     

BMP4 Rat GGGAGCCAATCTTGAACAAA ACTCCTAGGGGCTGGAAGAA 157 

D2R Rat ACAGTGCAGAGATAGTTCTG GGACAGCTCCGCGGAATCA 133 

Noggin Rat CAGCAGCGTCTCGTTCAGAT CTACACATCCGCCCAGCAC 108 

BMP4 Mouse GACTGGGGAGGAAGGGAAG CGTCTTAGGCTGGGGTCTCT 156 

Noggin Mouse    

BMP4 Human AGGAAGGAAGATGCGAGAAG

G 

CCTGGGGACCTCTGAACG 243 

D2R Human ACTCAGTGTCACGGGGAGAG

GAGGA 

TAGCCTCCTCGCCACTTAGA 211 

Noggin  Human  GCTTGGACCCTGCGAGAC ACTTCCCTCCGCCTGCTC 119 

     

 

 



Appendix V: BMP-4 ELISA, Protein extraction and analysis 

 

ELISA 

Elisa was performed on primary pituitary adenomas and normal pituitary tissue. The following 

stages state the preparation and analysis of the proteins used for this kit.  

An example of protein BSA standards, A) readings at A562nm, B) Linear graph showing 

protein concentration against absorbance: 

 

Measurement of the protein concentration of sample 1 and 2 against the protein BSA 

standards taking any dilution factor into considerations: 

   Protein 

concentration 

      

           

   Sample 

dilution  

      

   factor =    2   

      

 
 

      

 Sample1 Sample2  Mean [Protein] 

 (A595) (A595)  (A595) (mg/ml) 

Sample 1 0.819 0.822  0.8205 3.260514 

Sample 2 0.918 0.903  0.9105 3.654887 
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BMP-4 ELISA 

The ELISA was performed as per kit instructions and also as described in the materials and 

methods section. The amount of BMP-4 protein was analysed similar to the BSA stated above 

using the BMP-4 standards ranging from 8.23-6000pg/mL as shown below: 

BMP-4 standards A) readings at 450nm, B): Linear graph showing protein concentration 

against absorbance:  

 

[Protein] A450 

pg/ml)   

0.00 0.166 

8.230 0.153 

24.69 0.162 

74.07 0.186 

222.20 0.237 

666.70 0.425 

2000.00 0.89 

6000.00 1.337 

 

Measurement of the BMP-4 protein concentration of sample 1 and 2 against the protein 

standards taking any dilution factor into considerations: 

   Protein 

concentration 

      

           

   Sample dilution        

   factor =    5   

      

 
 

      

 Sample1 Sample2 Sample3 Mean [Protein] 

 (A595) (A595) (A595) (A595) (pg/ml) 

Sample 1 1.021 1.012  1.0165 19733.14 

Sample 2 1.01 1.235  1.1225 22348.07 
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Normalised BMP-4 protein in nmol/mg against total protein: 

  BMP4 BCA Protein Normalized BMP-4   

  pg/ml mg/ml pmol/mg nmol/mg 

Sample 1 19733.14 3.26 6052.15 6.052157 

Sample 2 22348.06 3.65 6114.57 6.114571 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix VI: Bacterial Transformation 

DNA sequencing analysis: 

DNA sequencing was performed commercially. In this case sequencing of native DNA or of DNA 

subject to sodium bisulphite conversion was performed. Converted DNA and amplified PCR 

product was first eluted from Gene Elute PCR column prior sub-cloning into the T:A vector prior 

to bacterial cloning and transformation (and as described in the M&M).  

LB Medium: 

Luria Broth is used for maintenance and propagation of E.coli. LB broth comprises Bacto-tryptone, 

Yeast and NaCl.  

To 500mL of ddH2O add 12.5g of LB broth mix well and autoclave immediately 

LB agar plates containing ampicillin, IPTG and X-Gal: 

Dissolve 12.5g of LB and 7.5g agar in 500mL of ddH2O. Mix well and autoclave immediately. 

Cool to 50 °C before adding 60µl/mL ampicillin, 0.5mM IPTG, 0.08mg/ml X-gal. Mix solution 

avoiding frothing and pour into 90mm petri dishes at a depth of 3-5mm. Allow to set on the bench 

and further incubating at 37°C for complete setting. Once plates have set store at 4°C until ready to 

use. 

 

  

 

 

 

 



Bacterial Transformation 

Preparation of competent cells 

Chemically Competent JM109 cells (Promega) were routinely prepared for transformation 

purposes. A colony from an LB plate was inoculated into 5mL of LB media and incubated for 16 

hours at 37°C with shaking in the orbital shaker (150-200rpm). The entire 5mL culture was used to 

inoculate 250mL of LB medium containing 20mM MgSO4 in a sterile glass flask and incubated at 

37°C again with shaking. The culture was allowed to grow to an absorbance (OD600) of 0.4-0.6 

(typically 3-5 hours). The cells were collected by centrifugation at 914 x g for 10 minutes at 4°C 

using IEC Centra-8R Centrifuge (International equipment company, USA) a temperature controlled 

centrifuge. The supernatant was discarded and the cells were re-suspended in 10mL of ice cold 

chemical buffer 1: TFB1 (see below) and incubated on ice for 30 minutes. Cells were then 

centrifuged at 914 x g for 10 minutes at 4°C. The supernatant was removed again and cells were re-

suspended in chemical buffer 2: TFB2 (see below) and incubated for a further 30 minutes on ice. 

This was then aliquoted into 0.5mL cold microcentrifuge tubes. These aliquoted chemically 

competent cells were then flash frozen by liquid nitrogen and were placed at -80°C until ready to 

use, and were used once without refreezing. 

TFB1: 

30mM Potassium acetate 

10mM CaCl2 

50mM MnCl2 

100mM RbCl 

15% glycerol 

Adjust pH to 5.8 with 1M acetic acid, Filter sterilise and store at room temperature. 

 



TFB2: 

10mM MOPS (4-Morpholinepropanesulfonic acid) pH6.5 

75mM CaCl2 

10mM RbCl 

15% glycerol 

Adjust to pH 6.5 with 1M KOH, filter sterilise and store at room temperature. 

Vector Map: pGEM-T Vector:  
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